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Human T-Cell Leukemia Virus Type

1 (HTLV-1)

Jun-ichi Fujisawa

2.1 Human T-Cell Leukemia Virus Type 1 (HTLV-1)

as the First Human Retrovirus

Within several decades after identification of the first retroviruses as agents of

neoplastic diseases in chickens at the beginning of last century [36, 150], a large

number of “RNA tumor virus” were found in fowl, mice, cat, cattle, and monkeys. In

addition to the extraordinary and unique features of life cycle such as reverse

transcription of genomic RNA to DNA and its integration into the host chromosomal

DNA, analysis of retroviruses led to the finding of “oncogenes” and provided a strong

evidence for the paradigm, the genetic origin of cancer. However, retroviruses had

been searched for without success in most types of human tumors by the end of the

1970s; thus, it seemed questionable whether a human retrovirus existed at all.

In 1980, the first human retrovirus was found in a T-cell line established from a

patient with mycosis fungoides, and the retrovirus was named human T-cell

leukemia virus type I (HTLV-1) [145], but the link between this retrovirus and

human disease was not certain. Prior to this finding, Takatsuki and his colleague

reported a new disease entity, adult T-cell leukemia (ATL). Patients with ATL were

clustered in a limited area of Japan, including the islands of Kyushu and Okinawa,

which suggested a transmissible leukemogenic agent [178]. A large number of

T-cell lines, so-called ATL cell lines, were established from ATL patients, and it

was found that all ATL patients had antibodies that reacted with these cell lines,

confirming the involvement of virus infection [65]. Subsequently, a retrovirus

particle was identified in the ATL cell line [127], and the nucleotide sequence of

the retrovirus, initially called ATLV, was determined [154, 193]. Comparison of
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the nucleotide sequences between HTLV-1 and ATLV revealed that these two

viruses were almost identical [186].

Cloning of the HTLV-1 genome provided a molecular tool to prove the close

association of HTLV-1 infection to ATL. First, the HTLV-1 provirus was detected

without exception in the genome of leukemic cells from ATL patients. Second, a

majority of leukemic cell from a given patient harbored the provirus at the same

chromosomal site in the genome, indicating monoclonal growth of the infected cell;

otherwise, the integration would occur at random in the natural retrovirus infection.

Thus, it was concluded that HTLV-1 is a causative agent of ATL [154].

Nucleotide sequencing of its viral genome showed that HTLV-1 lacked a cell-

derived oncogene, yet it was more complex than other oncogenic retroviruses

[154]. Integration sites of the provirus in leukemic cells from different ATL

patients, however, differ from each other, demonstrating the absence of insertional

activation of a cellular oncogene. The two well-known mechanisms of retroviral

oncogenesis, transduction and cis-activation of an oncogene, therefore did not

apply to HTLV-1.

In addition to essential structural and enzymatic genes (gag, pro, pol, and env)
shared by all retroviral family members [92], HTLV-1 encodes a unique pX region,

which generates two regulatory (Tax, Rex) and five accessory (HBZ, p30, p12, p13,

p8) proteins [25, 100]. Among them, Tax and HBZ have been shown to play pivotal

roles in the viral life cycle and affect expression levels of several host genes

[38, 125, 159]. Therefore, a new type of oncogenic mechanism by retrovirus, in

which viral transforming proteins other than viral or cellular oncogene are involved,

was presented in the development of ATL.

2.2 Genome Structure and Replication of HTLV-1

2.2.1 Structural Genes

A full-length mRNA, which is identical to genomic RNA, is translated mainly to

produce a Gag precursor protein (PrGag, p55). After being assembled with genomic

RNA to form viral particle, PrGag is processed by viral protease (PR) to produce the

matrix (MA; p19), the capsid (CA; p24), and the nucleocapsid (NC; p15) proteins

(Fig. 2.1b).

The pro and pol gene products were produced by the proteolytic cleavage of

Gag-Pro and Gag-Pro-Pol fusion proteins translated from the same full-length

mRNA by one and two successive slip-back of reading frame (frameshifts), respec-

tively. Viral protease further separates the Pol protein (p98) into the reverse

transcriptase (RT; p62) and integrase enzymes (IN; p49) (Fig. 2.1a).

The env message is a singly spliced mRNA, removing the gag and pol genes as

an intron from the mRNA. The env mRNA is translated to a precursor Env protein

and the protein is glycosylated and trimerized in the endoplasmic reticulum (ER).
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The precursor, gp68, is then cleaved by cellular protease, furin, to form the separate

surface (SU; gp46) and transmembrane (TM; p21) subunits [61] (Fig. 2.1b). Cell

receptor-binding activity is conferred by gp46 and the fusion activity is a function

of gp21.

2.2.2 Regulatory Proteins: Tax and Rex

Tax and Rex are essential for efficient HTLV-1 replication and production, since

HTLV-1 mutants lacking either Tax or Rex function are not able to replicate in vitro

as well as in vivo [148].

Both Tax and Rex proteins are translated from an identical doubly spliced tax/
rex mRNA species using different initiation codons and reading frames of transla-

tion. Tax is a transcriptional activator of HTLV-1 and thus further amplifies the

HTLV-1 transcripts, mostly spliced forms, by augmenting transcriptional activity

of the long terminal repeat (LTR). Once the other product, Rex, accumulates in a

sufficient amount, it enhances the export of singly spliced envmRNA and unspliced

genomic RNA encoding gag/pro-pol, leading to the formation of HTLV-1 particle.

Nuclear export of primary unspliced and singly spliced transcripts, in turn, results in
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are presented. (b) Structure of HTLV-1 virion and function of regulatory and accessory gene
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the reduction of doubly spliced tax/rex mRNA, thereby causing the temporal

cessation of transcriptional activation (Fig. 2.2).

In addition to activation of viral transcription, Tax plays pivotal roles in HTLV-1

immortalization of T cells, persistent infection, inflammation, and pathogenesis, as

discussed in the following sections. Rex is essential for persistent HTLV-1 infec-

tion in rabbits but not required for immortalization of human T cells in vitro [191].

2.2.2.1 Transcriptional Activation of LTR by Tax

Tax protein of 353 amino acids long activates HTLV-1 transcription through LTR.

Three highly conserved 21-bp repeat elements located within the U3 region of the

LTR are critical to Tax-mediated transcriptional activation, thus referred to as

Tax-responsive element (TRE) [22, 37, 42]. The TRE contains an octamer motif

TGACG(T/A)(C/G)(T/A) that shares homology with the consensus cAMP-

responsive element (CRE) 50-TGACGTCA-30 [43, 75], and a number of proteins
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Fig. 2.2 Control of viral and cellular gene expression by viral gene products. Upon initial

infection, doubly spliced mRNAs for tax/rex gene are dominantly expressed. Tax first augments

viral transcription by indirect binding to TRE sequence in the HTLV-1 long terminal repeat (LTR)
promoter, and this activity is negatively regulated by HBZ. Rex enhances the nuclear export of

unspliced and singly spliced mRNAs though binding to the RxRE sequence at the 30 end of

unspliced and singly spliced mRNA, thereby increasing the translation of structural proteins,

resulting in HTLV-1 virion production. p30 binds to the splice junction of tax/rex mRNA and

inhibits its nuclear export. In addition, Tax and HBZ modulate a variety of cellular signaling

pathways, leading to accelerated cell proliferation and induction of genome lesions. In most

pathways, HBZ has opposite effects to Tax
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of the CRE-binding/activating family of transcription factors (CREB/ATF) bind to

this sequence [175, 194]. Tax does not bind directly to the TRE element [44, 48] but

interacts with members of CREB/ATF family, including CREB, CREM, ATF1,

ATF2, ATF3, ATF4 (CREB2), and XBP1 (X-box-binding protein 1) [10, 40, 103,

112, 146, 162, 197].

Among them, CREB plays a major role in the transcriptional activation of LTR.

CREB regulates several cellular genes, especially cAMP-responsive genes, and

cAMP signal leads to the phosphorylation of CREB at serine 133, recruiting

coactivators (CBP/p300 and P/CAF) to facilitate transcriptional initiation. The

direct interaction of Tax with CBP allows the binding of the coactivator in the

absence of CREB phosphorylation [104]; however, strong Tax binding to

CPB/p300 requires TRE DNA and phosphorylated CREB [94]. On the other

hand, Tax expression directly enhances CREB phosphorylation in vivo to ensure

availability for Tax transactivation [94].

Tax also binds to CREB coactivator proteins called transducers of regulated

CREB activity (TORC1, TORC2, and TORC3) [27, 72] and TORCs cooperate with

Tax to activate the LTR in a CREB and p300-dependent manner

[97, 158]. Downregulation of TORC2 through its phosphorylation is associated

with the in vivo specific transcriptional repression of HTLV-1 LTR [78].

2.2.2.2 Posttranscriptional Regulation of Viral RNA by Rex

In addition to genomic unspliced mRNA encoding gag/pol, HTLV-1 expresses

multiple mRNAs with distinctive splicings [155]. Three different singly spliced

mRNAs encode env, p12 and p13, respectively, and two doubly spliced mRNAs are

for tax/rex and p30 (Fig. 2.1).

Upon initial infection of host cells, primary transcripts with introns generally

undergo splicing by the cellular RNA machinery, resulting in the preferential

expression of doubly spliced tax/rex and p30 mRNAs. Once the Rex protein

accumulates, Rex binds specifically to the HTLV-1 RNA at the Rex-responsive

element (RxRE) located in the U3 and R regions of the 30 LTR [17, 179], through

the interaction with a long stem-loop structure in the RxRE [18, 174]. Then Rex

interacts with the nuclear export receptor protein CRM1/exportin 1, which mediates

the transport of viral mRNAs from the nucleus to the cytoplasm, by the function of a

typical leucine-rich nuclear export signal (NES) in Rex (aa81–94) [54]. Thus, Rex

increases the amount of singly spliced (env) and unspliced (gag-pol) mRNAs and

reduces the amount of its own doubly spliced mRNA by inhibiting the splicing of

simply spliced (env, p12, p13, and p21rex) and unspliced (gag/pro-pol) mRNAs,

stabilizing them, and promoting their transport to the cytoplasm [62, 71] (Fig. 2.2).
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2.2.3 Accessory Proteins: HBZ, p30, p12, p13, and p8

In contrast to Tax and Rex, HTLV-1 accessory genes HBZ, p30, p12, p13, and p8
are not absolutely required for virus replication and for the immortalization of

human primary T cells in vitro [31, 105, 149]. However, investigations using

animal models to study HTLV-1 infection in vivo revealed that HBZ, p30, and
p12 are essential for HTLV-1 infection and replication in nonhuman primates but

p30 and p12 were dispensable in rabbits [181]. Human T-cell lines immortalized

with HTLV-1 molecular clones lacking p30 or p12 grow less efficiently than their

wild-type counterpart clones and more dependent on the presence of interleukin-2

(IL-2) in the media [1, 131, 170].

2.2.3.1 Viral Persistence and HTLV-1-Related Pathogenesis by HBZ

HBZ (HTLV-1 bZIP factor) is encoded by the minus strand of the HTLV-1 provirus

and interacts with various host factors [3, 46, 125] (Fig. 2.1). The bZIP domain of

HBZ is responsible for the interaction with the host bZIP factors, such as c-Jun,

JunB, JunD [11, 172], CREB, CREB2 (ATF-4), CREM, ATF-1 [109], ATF-3 [53],

and MafB [132]. The interaction mostly results in the suppression of transcriptional

activity, including the Tax-mediated viral gene transcription from 50 LTR, whereas
the interaction with JunD activates transcription of target genes [172]. HBZ also

enhances the TGFβ/Smad pathway, which is suppressed by Tax, through interaction

with Smad2/3 and p300 [198], and then induces the expression of FoxP3 [89], a

master regulatory molecule of regulatory T (Treg) cells. On the other hand, the

transcriptional activity of Foxp3 is repressed by the interaction with HBZ [153]. As

a result, HBZ increases the number of functionally impaired Treg cells and may

lead to the development of malignancy derived from Treg cells.

Tax activates two types of NF-κB pathway, canonical and noncanonical (see the

following section). p65 activation in the canonical pathway enhances the expres-

sion of CDK inhibitors p21 and p27, which cause the senescence of Tax-expressing

cells. HBZ selectively inhibits the canonical NF-κB pathway by inhibiting DNA

binding of p65 and promoting the degradation of p65 [199]. Thus, co-expression of

HBZ with Tax delay or prevent the Tax-induced senescence, leading to cell

proliferation.

Besides the functional modulation of various cellular transcription factors

through protein-protein interaction, HBZ mRNA itself exerts a growth-promoting

effect on T cells [152] (Fig. 2.1b). The first exon of the HBZ transcript

corresponding to the R region of 30 LTR, which forms an extensive stem-loop

structure, is critical for this activity. Further details of how HBZ RNA promotes

proliferation remain to be elucidated.
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2.2.3.2 Posttranscriptional Regulation of Viral and Cellular RNA

by p30

p30 is a basic 241-amino acid protein encoded by the doubly spliced mRNA distinct

from tax/rex mRNA (Fig. 2.1). p30 binds to the splice junction region of tax/rex
mRNA and inhibits its nuclear export, thereby reducing the expression of Tax and

Rex (Fig. 2.2). Conversely, Rex interacts with p30 and counteracts its activity to

induce the expression of Tax/Rex proteins [8].

p30 expression activates the G2-M cell cycle checkpoint [29] and inhibits G1-S

progression and homologous recombination (HR) repair to increase the genome

instability through the protein-protein interaction with cyclin E/CDK2 and Nbs1/

Rad50, respectively [13, 14]. Human T cells immortalized by a HTLV-1 proviral

clone defective in p30 expression were more susceptible to apoptosis induced by

camptothecin, a topoisomerase I inhibitor.

2.2.3.3 Augmentation of Reactive Oxygen Production by p13

p13 is identical to the C-terminal 87 amino acids of p30 but encoded by a distinct

singly spliced mono-cistronic mRNA (Fig. 2.1). A highly basic protein, p13,

localizes mostly to mitochondria [28] and triggers an inward K+ and Ca+ current

causing depolarization, activation of the electron transport chain, and augmentation

of reactive oxygen species (ROS) production [16, 156] (Fig. 2.1b). Ectopic expres-

sion of p13 significantly reduces the incidence and growth rate of tumors arising

from c-myc- and Ha-ras-co-transfected rat embryo fibroblasts [157]; therefore, low

level of ROS production might help keep the infected cells benign through selec-

tively killing the transformed HTLV-1 cells.

2.2.3.4 Modulation of Signal Transduction and Immune Response by

p12/p8

p12 is a highly hydrophobic membrane protein of 99 amino acids and localized in

the endoplasmic reticulum (ER) and Golgi complex [33]. p12 increases intracellu-

lar Ca2+ concentration by interacting with two ER resident proteins – calnexin and

calreticulin – that regulate Ca2+ release from the ER [33]. Increased concentration

of Ca2+ leads to the activation of calcineurin to dephosphorylate NFAT, thereby

augmenting the transcription of genes such as IL-2 [2]. p12 also interacts with the

beta and gamma c chain of the IL-2R and enhances the phosphorylation of STAT5

and its DNA binding [131]. Thus, p12 decreases the IL-2 requirement for T-cell

proliferation and promotes cell proliferation (Fig. 2.1b).

In addition, p12 interacts with the major histocompatibility complex (MHC)

class 1 heavy chain to inhibit its interaction with β2-microglobulin, thereby induc-

ing the proteasome-dependent degradation of MHC class I [80]. The down-
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modulation of MHC class I reduces CTL-mediated killing of HTLV-1 infected

cells. Furthermore, p12 also reduces expression of ICAM-1 and ICAM-2 to evade

NK cells, which recognize cells lacking MHC class I molecule (Fig. 2.1b).

Proteolytic cleavage of p12 removes the ER retention motifs to generate the

C-terminal product p8 [182]. p8 is localized to the T-cell membrane to induce

lymphocyte function-associated antigen-1 (LFA-l)-mediated cell clustering,

augmenting the number and length of conduits (filopodia-like membrane exten-

sions) which are involved in HTLV-1 transmission as discussed later (Figs. 2.1b

and 2.4).

2.3 Transmission

HTLV-l is primarily transmitted from infected mother to child through

breastfeeding, while sexual contact and blood transfusion are additional routes of

transmission [51]. Initial infection in vivo first requires interaction with oral,

gastrointestinal, or cervical mucosa except infection through blood transfer.

HTLV-1 infected cells can directly bypass a disrupted mucosa [143], while

HTLV-1-infected macrophages could transmigrate through an intact epithelium

as observed for human immunodeficiency virus (HIV) [168, 177] (Fig. 2.3a). On

the other hand, viral particles produced by HTLV-1 infected T cells have been

shown to cross the epithelium within an endosome from the apical to the basal
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c. Clonal expansion
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Fig. 2.3 Transmission and expansion of HTLV-1. (a) Three different modes of mucosal invasion

of HTLV-1. (b) Four different modes of cell-to-cell transmission of HTLV-1. (c) Clonal expansion

mode of HTLV-1 replication
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surface of an epithelial cell (transcytosis) [122]. Alternatively, HTLV-1 can also

infect an epithelial cell and produce new virions that are then released from the

basal surface [143, 195].

Having crossed the epithelial barrier, HTLV-1 infects mucosal immune cells

directly or via APCs such as DCs or macrophages. APCs can either undergo

infection or transfer membrane-bound extracellular virions to uninfected T cells

(trans-infection) [83]. HTLV-1 predominantly infects CD4+ T cells but also targets

other cell types such as CD8+ T and B lymphocytes, dendritic cells (DCs), mono-

cytes, and macrophages [83, 101, 116].

HTLV-1 entry into susceptible cells begins with the binding of the HTLV-1

envelope glycoprotein (Env) to a viral receptor on the membrane of the host cell,

and it is followed by the fusion of viral and cell membranes (Fig. 2.4). Efficient

entry of HTLV-1 has been shown to involve three distinct molecules: heparin

sulfate proteoglycans (HSPGs) and neuropilin 1 (NRP-1) for the initial binding to

the cell and glucose transporter 1 (GLUT1) for entry [47, 82, 107, 120]. These

molecules are ubiquitously expressed and may explain the wide range of target

cells, but HTLV-l might differentially utilize these molecules in a cell type-

dependent manner. In the current model, HTLV-1 Env first attaches to HSPGs on

the target cell, which increases the local concentration of the viruses at the cell

surface. HTLV-1 Env then binds to NRP-1, inducing a conformational change of

Env that facilitates its interaction with GLUT-1. The ternary complex formation of

Env, NRP-1, and GLUT-1 gives rise to an additional conformational change of Env

that triggers the fusion of the viral and cell membranes.

HTLV-1 transmission usually occurs through cell-to-cell contact of HTLV-1-

uninfected cells with HTLV-1-infected cells, and cell-free viruses are poorly

HSPGs NRP-1

GLUT1

Receptor binding by gp46

Membrane fusion
by gp21 

Fig. 2.4 Model of HTLV-1 entry. Gp46 subunit of envelope protein attaches to heparan sulfate

proteoglycans (HSPGs) on the target cell, which increases the local concentration of the viruses at
the cell surface. Gp46 then binds to neuropilin-1 (NRP-1), and this binding induces a conforma-

tional change of the subunit that facilitates its interaction with glucose transporter 1 (GLUT-1).
The formation of a ternary complex of gp46, NRP-1, and GLUT-1 induces a conformational

change of gp21 that triggers the fusion of the viral and cell membranes
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infectious [30, 126]. Cell-to-cell transfer of HTLV-1 virions then potentially

involves several nonexclusive mechanisms: a virological synapse [70, 119, 129],

cellular conduits [182], or extracellular viral assemblies [81, 137] (Fig. 2.3b).

During cell-to-cell HTLV-1 transmission, the site of contact between an HTLV-

1-infected cell and a target cell forms a special structure called the virological

synapse (VS, named thus because of its similarity to the immunological synapse)

[70] (Fig. 2.3b-A). VS formation involves polarization of the microtubule-

organizing center (MTOC) near the site of cell-to-cell contact in the infected

cells. ICAM-1 and Tax appear to play a role in polarization of the MTOC during

cell-to-cell transmission.

HTLV-1 can also spread from an infected to an uninfected T cell by membrane

extensions, which is referred to as cellular conduits [182] (Fig. 2.3b-B). HTLV-1

particles are concentrated at the point of contact between the HTLV-1-infected cell

and the target cell.

Extracellular carbohydrate-rich assemblies attached to the surfaces of HTLV-l-

infected cells contain infectious virions, and their removal prominently reduces

cell-to-cell HTLV-1 transmission [137] (Fig. 2.3b-C). These virion-containing

assemblies resemble bacterial biofilm in structure and composition and contain

HSPGs, collagen, agrin, and galectin-3. When HTLV-1-infected T cells are

exposed to uninfected T cells, these assemblies are quickly transferred to the target

cell [137].

In addition to spreading between T cells, HTLV-1 can be transmitted from DCs

to CD4+ T cells in two different ways, cis- and trans-infection. In cis mode of

transmission, the DCs are infected, and then the de novo produced HTLV-1 is

transferred to the T cells [83] (Fig. 2.3b-D). In the trans-infection, uninfected DCs

capture and transmit the virus to T cells prior to becoming infected themselves [74].

2.4 Clonal Expansion and Immune Response

Soon after primary infection, HTLV-1 expands by reverse transcription of the viral

RNA, integration of the provirus into the chromosome, expression of viral proteins,

and budding of new virions (the infectious cycle, Fig. 2.3b). At this stage of

infection, host restriction factors such as SAMHD1 [164], APOBEC3 [136], and

miR-28-3p [7] have been shown to limit HTLV-1 infection.

An antiviral immune response is quickly initiated, and the efficacy of the

infectious cycle is severely attenuated soon after infection. Then, HTLV-1 repli-

cates through another mode of replication which involves mitotic division of a cell

containing an integrated provirus (the clonal expansion, Fig. 2.3c). The limited

variability in the HTLV-1 genome compared to HIV suggests a replication mode by

cellular DNA polymerase rather than by error-prone viral reverse transcriptase in a

major part of viral expansion. In fact, high-throughput sequencing of proviral

integration sites reveal a high clonal stability over years [50].
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On the other hand, clonal expansion and cell proliferation also require expres-

sion of viral factors such as Tax [19]. The in vivo proliferation of CD4+ T cells

correlates with Tax expression [6]. Because Tax is a major target of CTLs [73, 84],

Tax-expressing cells are rapidly eliminated (Fig. 2.5). However, transcription of the

tax gene from the 50 LTR is suppressed in vivo, and ex vivo culture of HTLV-1-

infected cells elicits a rapid recovery of the tax gene expression [173], indicating a

mechanism of inhibiting viral gene transcription in vivo [45, 56, 78]. Thus, repet-

itive cycles of viral expression followed by transcriptional silencing continuously

challenge the immune response, thereby initiating inflammation and ultimately

leading to HAM/TSP. Identification of integration sites by high-throughput

sequencing shows that negative selection is predominant in chronic infection

[50]. By favoring emergence of sporadic mutations in the cell genome, unrestrained

proliferation also paves the way to malignant transformation and development of

ATL [6, 91] (Fig. 2.5).

2.5 Leukemogenesis by Tax and HBZ

Among an array of viral factors, Tax and HBZ play a major role in leukemogenesis

of HTLV-1 infected cells. Tax immortalizes human T cells in the presence of IL-2

and transforms rat fibroblasts and drives tumor formation in transgenic mouse

models, supporting its oncogenic potential [52, 60, 133]. Mutation of the tax gene

Clonal
expansion 

Infection cycle

In vivo silencing of 
Tax expression

Activation of cell proliferation  
and induction of genomic 
lesion by Tax 

Recurrent Tax 
expression

Immune response 
against Tax 

expressing cells

Clonal 
selection

Accumulation of 
mutations in 

“Tax interactome”  
genes

ATL

Tax HBZ

Fig. 2.5 Model of clonal selection and ATL development. In early stage of infection, Tax and

HBZ promote the proliferation of infected cells as well as the induction of genomic lesions (clonal

expansion). Because of strong immunogenicity of Tax, Tax-expressing cells are rapidly elimi-

nated. However, a substantial part of infected cells is escaped from the immune response due to the

in vivo specific silencing mechanism of viral expression. Repetitive cycles of viral expression

followed by transcriptional silencing lead to clonal selection and accumulation of mutations,

finally in genes of Tax interactome, a network of molecules that Tax physically interacts with

and/or deregulates, in ATL
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in recombinant HTLV-1 abrogates immortalization as well as persistent infection in

rabbits [148].

Although HBZ is dispensable for the HTLV-1-mediated T-cell transformation

in vitro, it plays an indispensable role in persistent viral infection in vivo [3]. In

transgenic mouse model, HBZ expression in CD4 T cells induces chronic inflam-

mation and T-cell lymphoma [153]. Furthermore, HBZ is constitutively expressed

throughout HTLV-1 infection [91, 124, 180], whereas Tax expression is frequently

suppressed or diminished in ATL cells [91, 98, 167], indicating the role of HBZ in

maintaining the transformed phenotype [125]. Because of the strong immunoge-

nicity of the Tax protein, these mechanisms can confer a selective advantage to

HTLV-1-transformed T cells [73, 84, 86] (Fig. 2.5). In contrast, HBZ triggers a less

efficient immunity that renders its persistent expression in vivo [64, 117].

An integrated genome analysis of a large number of ATL cases revealed that the

driver mutations overlap significantly with the Tax interactome [19], a network of

molecules that Tax physically interacts with and/or deregulates [91]. Thus, it seems

that ATL cells still depend on deregulated Tax interactome molecules, even though

Tax itself is no longer expressed in most ATL cases.

The modes of action of Tax and HBZ are remarkably pleiotropic and involve a

variety of cell signaling pathways (CREB, NF-κB, and AKT, Fig. 2.2).

Tax inhibits tumor suppressors (p53 [147], Bcl11B [166], and TP53INP1 [192])

and activates cyclin-dependent kinases (CDKs) [55, 69, 134, 151], both of these

mechanisms leading to accelerated cell proliferation. In addition, Tax induces

genomic instability [20, 21, 23, 95], generating somatic alterations [121], and

attenuates the Mad1 spindle assembly checkpoint protein, thereby promoting

aneuploidy [79].

HBZ counteracts Tax-mediated viral and cellular pathway modulation (such as

NF-κB, Akt, and CREB) and stimulates cell proliferation via apoptosis/senescence

inhibition and cell cycle modulation [4, 152]. The interaction of HBZ with AP-1

factors (c-Jun, JunB, or MafB) results in the inhibition of their transcriptional

activities and prevents the subsequent activation of AP-1-regulated genes [26, 67,

123].

2.5.1 Activation of NF-κB

The NF-κB pathway is a key player in regulation of immunity and inflammation

[161], and Tax activates the transcription factor NF-κB, thereby inducing the

expression of several cellular genes. HTLV-1 carrying a mutant Tax that cannot

activate NF-κB fails to immortalize human T cells in vitro [148]. Moreover, several

NF-κB inhibitors induce apoptosis in HTLV-l-infected T cells. Thus, the NF-κB
activity is crucial for the immortalization and the survival of HTLV-1 infected T

cells.

By activating the NF-κB pathway, Tax upregulates antiapoptotic proteins:

caspase-8 inhibitory protein c-FLIP [102, 135] and members of the Bcl-2 family
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(Bcl-2, Bcl-xL, Mcl-1 and Blf-1) [115, 130, 163, 176], thereby supporting the

proliferation and survival of HTLV-1-infected T cells. A variety of growth-

promoting cytokines (such as IL-1, IL-6, TNF, and EGF) [88, 187] are also induced

by Tax through the activation of NF-κB.
Conversely, NF-κB activation by Tax is associated with an upregulation of

p21WAF1/CIP1 and p27KIP1, leading to cellular senescence [68, 200]. Instead, HBZ

prevents Tax-induced senescence through downregulation of NF-κB [141, 200].

NF-κB is a family of transcription factors, and these factors are divided into two

groups belonging to the canonical (NF-κB1/p50, p65, c-Rel) and the noncanonical

(NF-κB2/p52, RelB, Bcl-3) pathways. Tax activates both pathways.

Through interacting with IKKγ/NEMO, a scaffold component of the IκB kinase

(IKK) complex (IKKα/IKKβ/IKKγ), Tax activates the IKKβ to induce phosphory-

lation and degradation of IκBs (IκBα, IκBγ), allowing nuclear translocation of

p50/p65 complex to activate transcription of NF-κB-responsive genes (canonical

pathway) [58, 161]. Concurrently, the IKKα is activated to phosphorylate p65,

which stimulates its transcriptional activation function.

Tax interaction with another IKK complex composed of IKKα and IKKγ, but not
IKKβ, induces IKKα-dependent processing of p100 into p52 [58, 161] and the

subsequent nuclear translocation of p52/RelB (noncanonical pathway). Knockdown

of NF-κB2/p100 abrogates the Tax-induced transformation of CTLL-2 cell in vitro

[63], and the knockout of NF-κB2/p100 gene attenuates the tumorigenesis in Tax

transgenic mouse [41].

Although the constitutive activation of NF-κB pathway is crucial for the

transformed phenotype of HTLV-1-infected T cells, ATL cells often lack the Tax

expression due to deletions or epigenetic silencing of the 50 LTR or mutations in

Tax [66, 167]. The mechanisms of Tax-independent chronic activation of NF-κB
remain poorly understood but may result from epigenetic alterations. Epigenetic

downregulation of microRNA-31 (miR-31) in ATL promotes increased the expres-

sion of NIK (NF-κB-inducing kinase) that activates IKKα and noncanonical NF-κB
pathway [189]. The expression of NIK is also enhanced by double-stranded RNA

(dsRNA)-dependent protein kinase (PKR) that is activated by antisense transcripts

at R region detected in all ATL cases [96].

2.5.2 Activation of the PI3K/AKT Pathway

Tax promotes cell proliferation and survival through the activation of the

phosphatidylinositol 3-kinase (PI3K)/Akt pathway [140]. Tax directly interacts

with the p85α inhibitory subunit of PI3K, causing the release of the active p110α
catalytic subunit [140]. Inhibition of Akt in HTLV-1-transformed cells decreases

phosphorylated Bad and induces caspase-dependent apoptosis [77].

In contrast, HBZ inhibits Tax-dependent activation of the PI3K/Akt pathway

and downstream antiapoptotic properties [160]. HBZ suppresses apoptosis by

attenuating the function of FOXO3a and altering its localization [169].
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2.5.3 Modulation of TGF-β/Smad and Wnt Signaling
Pathways

Tax represses TGF-β signaling by blocking the association of Smad proteins with

Smad-binding elements [108] and via c-Jun activation [5]. Conversely, HBZ

interacts with Smad2/3 to enhance TGF-β/Smad transcriptional responses in a

p300-dependent manner, improving transcription of different genes, such as the

FOXP3 mediator of regulatory T cells [198]. This activation also results in the

enhanced transcription of Wnt5a, a key protein of the noncanonical Wnt pathway.

Knockdown of Wnt5a represses proliferation and migration of ATL cells, indicat-

ing the role of this pathway in HTLV-1-infected cell growth [113].

Tax interacts with DAPLE (dishevelled-associating protein with a high fre-

quency of leucine residues) to activate the canonical Wnt pathway, whereas HBZ

suppresses this activation by inhibiting DNA binding of TCF-1/LEF-1 transcription

factors in the downstream.

2.5.4 Enhancement of S Phase Entry and Cell Cycle
Progression

Through interaction with cyclins and CDKs, Tax interferes with cell cycle progres-

sion by several mechanisms. By stabilizing the cyclin D2/CDK4 complex and

repressing cyclin-dependent kinase inhibitors (CKIs) such as members of INK4

family and KIP1, Tax enhances the phosphorylation of retinoblastoma protein

(Rb) to free E2F1 that activates transcription of genes required for G1/S transition.

Tax also activates the cyclin D1 transcription via CREB pathway, thereby

enhancing S phase entry of HTLV-1 infected cells, whereas HBZ interacts with

CREB and inhibits transcription of cyclin D1 [114]. Early firing of late replication

origins by Tax is associated with p300-dependent histone hyperacetylation, and

interaction of Tax with the replicative helicase (minichromosome maintenance

complex, MCM2-7) also accelerates S phase progression [20].

In contrast to Tax, HBZ modulates expression of cell division cycle 2 (CDC2)

and cyclin E2 through interaction with activating transcription factor 3 (ATF3),

thereby promoting proliferation of ATL cells [53]. Concomitantly, HBZ suppresses

ATF3-induced p53 transcriptional activity. Moreover, the growth-promoting effect

of HBZ mRNA on T cells is correlated with the enhanced transcription of E2F1

gene [152].
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2.5.5 Induction of Chromosomal Abnormality and DNA
Damage

The tumor-suppressor protein p53, the main factor that controls G1 checkpoint, is

functionally inactivated in leukemic and HTLV-1 transformed cells [165]. NF-κB
p65 subunit is critical for Tax-induced p53 inactivation [144] and wild-type

p53-induced phosphatase 1 (Wip1) is involved in the inactivation [49, 196].

ATL cells are characterized by loss of spindle assembly checkpoint function [90]

and aneuploidy [190]. Tax binding to Mad1 perturbs the organization of the spindle

assembly and results in multinucleated cells [79]. Tax also interacts with the

anaphase-promoting complex APC Cdc20, inducing the mitotic abnormalities in

HTLV-1-infected cells [111].

Firing of supplementary origins of replication by Tax triggers replicative stress

and genomic lesions, such as double-strand breaks (DSBs) [21, 23], which generate

reactive oxygen species (ROS) [95]. Tax-associated DNA damages activate several

phosphoproteins of the DDR pathway (H2AX, ATM, CHK1-2, P53, BRCA1),

which in turn arrest the cell cycle transiently or lead to apoptosis and senescence.

In the presence of DNA-damaging agents (e.g., UV irradiation), Tax inhibits the

DDR machinery by sequestrating key signaling pathway components [15, 24, 35,

57, 138, 139]. Induction of genomic lesions and inhibition of the DDR leads to

proliferation in presence of DNA mutations, potentially to leukemogenesis.

HBZ also induces DNA lesions through activation of miR-17 and miR-21 and

downregulation of the DNA damage factor OBFC2A [183] and deregulates the

cellular responses to DNA damage by inhibiting the activity of growth arrest and

DNA damage gene 34 (GADD34) [128].

In addition, Tax has negative effects on DNA repair pathways. Downregulation

of β-polymerase transcription by Tax [76] leads to the inhibition of base excision

repair (BER) [142]. Tax interferes with nucleotide excision repair (NER) by

activating PCNA [87, 110] and suppresses nonhomologous end joining (NHEJ)

by repressing Ku80 gene transcription and also by interacting with Ku80 protein

[34, 118], while DSBs are preferentially repaired by error-prone NHEJ in

Tax-expressing cells [12].

2.6 Animal Model

To evaluate viral pathogenesis and elucidate the function of viral products in vivo, a

variety of animal models have been established [9, 32, 39, 45, 60, 99, 153,

184]. The Tax transgenic mouse, which expresses Tax under the control of the

Lck promoter, results in characteristic ATL-like phenotypes [60]. The HBZ trans-

genic mouse, which expresses HBZ under the control of a CD4-specific promoter/

enhancer/silencer, develops lymphomas characterized by induction of Foxp3 in

CD4 T cells, similar to leukemic cells in ATL patients [153].
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In addition to transgenic mouse models, a number of HTLV-1-infected small-

animal models have provided valuable findings regarding virus-host interactions;

however, they are unable to fully recapitulate pathological conditions resembling

ATL, likely due to the low efficiency of HTLV-1 infection [93, 106].

As immune responses against HTLV-1 play a pivotal role in controlling the

proliferation or selection of HTLV-1-infected T-cell clones in vivo [59, 85], animal

models of ATL that induce more humanlike HTLV-1-specific immune responses

are required for analysis of the development of ATL. Humanized mice are highly

susceptible to infection with human lymphotropic viruses, such as EBV, HIV-1,

and HTLV-1, and are able to recapitulate specific disorders and human immune

responses [184, 185, 188]. HTLV-1 infection of humanized mouse, which is

produced by the intra-bone marrow transplantation of human hematopoietic stem

cells, displayed distinct ATL-like symptoms, including hepatosplenomegaly,

hypercytokinemia, oligoclonal proliferation of HTLV-1-infected T cells, and the

appearance of flower cells [171]. Furthermore, HTLV-1-specific immunity was

induced.

2.7 Perspective

Since the discovery of HTLV-1, extensive studies have revealed a complex network

of interactions between viral genes and host factors. This network controls the

expression of viral genes and facilitates persistent infection by allowing evasion of

the host immune response and promoting the proliferation of infected cells.

Recent findings from the integrated molecular study of ATL genome provide a

strong evidence for the notion that the aberrant growth-promoting activities attrib-

uted to Tax function are taken over by mutations in genes belonging to the Tax

interactome [91]. Knowledge of the genes and the mutations will guide the devel-

opment of new diagnostics and therapeutics for ATL.

As the incident rate of mutations correlates with the number of infected cells

and, probably, with Tax expression during persistent infection, it is important to

control the viral expression and the clonal expansion of infected cells in vivo to

suppress the onset of ATL. Therefore, further analysis with suitable animal model

of HTLV-1 infection, in which anti-HTLV-1 immune response is established,

should provide vital information for developing antiviral and/or preventive therapy.
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23. Chaib-Mezrag H, Lemaçon D, Fontaine H, Bellon M, Bai XT, Drac M, Coquelle A, Nicot

C. Tax impairs DNA replication forks and increases DNA breaks in specific oncogenic

genome regions. Mol Cancer. 2014;13:205. doi:10.1186/1476-4598-13-205.

24. Chandhasin C, Ducu RI, Berkovich E, Kastan MB, Marriott SJ. Human T-cell leukemia virus

type 1 tax attenuates the ATM-mediated cellular DNA damage response. J Virol.

2008;82:6952–61. doi:10.1128/JVI.02331-07.

25. Ciminale V, Pavlakis GN, Derse D, Cunningham CP, Felber BK. Complex splicing in the

human T-cell leukemia virus (HTLV) family of retroviruses: novel mRNAs and proteins

produced by HTLV type I. J Virol. 1992;66:1737–45.

26. Clerc I, Hivin P, Rubbo P-A, Lemasson I, Barbeau B, Mesnard J-M. Propensity for HBZ-SP1

isoform of HTLV-I to inhibit c-Jun activity correlates with sequestration of c-Jun into nuclear

bodies rather than inhibition of its DNA-binding activity. Virology. 2009;391:195–202.

doi:10.1016/j.virol.2009.06.027.

27. Conkright MD, Canettieri G, Screaton R, Guzmán E, Miraglia L, Hogenesch JB, Montminy

M. TORCs: transducers of regulated CREB activity. Mol Cell. 2003;12:413–23.

28. D’Agostino DM, Silic-Benussi M, Hiraragi H, Lairmore MD, Ciminale V. The human T-cell

leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth. Cell

Death Differ. 2005;12(Suppl 1):905–15. doi:10.1038/sj.cdd.4401576.

29. Datta A, Silverman L, Phipps AJ, Hiraragi H, Ratner L, Lairmore MD. Human T-lymphotropic

virus type-1 p30 alters cell cycle G2 regulation of T lymphocytes to enhance cell survival.

Retrovirology. 2007;4:49. doi:10.1186/1742-4690-4-49.

30. Derse D, Hill SA, Lloyd PA, Chung H, Morse BA. Examining human T-cell leukemia virus

type 1 infection and replication by cell-free infection with recombinant virus vectors. J Virol.

2001;75:8461–8. doi:10.1128/JVI.75.18.8461-8468.2001.

31. Derse D, Mikovits J, Ruscetti F. X-I and X-II open reading frames of HTLV-I are not required

for virus replication or for immortalization of primary T-cells in vitro. Virology.

1997;237:123–8. doi:10.1006/viro.1997.8781.

32. Dewan MZ, Terashima K, Taruishi M, Hasegawa H, Ito M, Tanaka Y, Mori N, Sata T,

Koyanagi Y, Maeda M, Kubuki Y, Okayama A, Fujii M, Yamamoto N. Rapid tumor

formation of human T-cell leukemia virus type 1-infected cell lines in novel NOD-SCID/

gammac(null) mice: suppression by an inhibitor against NF-kappaB. J Virol.

2003;77:5286–94. doi:10.1128/JVI.77.9.5286-5294.2003.

33. Ding W, Albrecht B, Luo R, Zhang W, Stanley JR, Newbound GC, Lairmore

MD. Endoplasmic reticulum and cis-Golgi localization of human T-lymphotropic virus

type 1 p12(I): association with calreticulin and calnexin. J Virol. 2001;75:7672–82. doi:10.

1128/JVI.75.16.7672-7682.2001.

34. Ducu RI, Dayaram T, Marriott SJ. The HTLV-1 Tax oncoprotein represses Ku80 gene

expression. Virology. 2011;416:1–8. doi:10.1016/j.virol.2011.04.012.

20 J.-i. Fujisawa

http://dx.doi.org/10.1186/1742-4690-5-76
http://dx.doi.org/10.1182/blood-2011-05-356790
http://dx.doi.org/10.1186/1742-4690-9-2
http://dx.doi.org/10.1186/1476-4598-13-205
http://dx.doi.org/10.1128/JVI.02331-07
http://dx.doi.org/10.1016/j.virol.2009.06.027
http://dx.doi.org/10.1038/sj.cdd.4401576
http://dx.doi.org/10.1186/1742-4690-4-49
http://dx.doi.org/10.1128/JVI.75.18.8461-8468.2001
http://dx.doi.org/10.1006/viro.1997.8781
http://dx.doi.org/10.1128/JVI.77.9.5286-5294.2003
http://dx.doi.org/10.1128/JVI.75.16.7672-7682.2001
http://dx.doi.org/10.1128/JVI.75.16.7672-7682.2001
http://dx.doi.org/10.1016/j.virol.2011.04.012


35. Durkin SS, Guo X, Fryrear KA, Mihaylova VT, Gupta SK, Belgnaoui SM, Haoudi A, Kupfer

GM, Semmes OJ. HTLV-1 Tax oncoprotein subverts the cellular DNA damage response via

binding to DNA-dependent protein kinase. J Biol Chem. 2008;283:36311–20. doi:10.1074/

jbc.M804931200.

36. Ellermann V, Bang O. Experimentelle Leukämie bei Hühnerm. Zentralbl Bakteriol

Parasitenkd Infectionskr Hyg Abt Orig. 1908;46:595–609.

37. Felber BK, Paskalis H, Kleinman-Ewing C, Wong-Staal F, Pavlakis GN. The pX protein of

HTLV-I is a transcriptional activator of its long terminal repeats. Science. 1985;229:675–9.

38. Feuer G, Chen IS. Mechanisms of human T-cell leukemia virus-induced leukemogenesis.

Biochim Biophys Acta. 1992;1114:223–33.

39. Feuer G, Zack JA, Harrington WJ, Valderama R, Rosenblatt JD, Wachsman W, Baird SM,

Chen IS. Establishment of human T-cell leukemia virus type I T-cell lymphomas in severe

combined immunodeficient mice. Blood. 1993;82:722–31.

40. Franklin AA, Kubik MF, Uittenbogaard MN, Brauweiler A, Utaisincharoen P, Matthews

MA, DynanWS, Hoeffler JP, Nyborg JK. Transactivation by the human T-cell leukemia virus

Tax protein is mediated through enhanced binding of activating transcription factor-2

(ATF-2) ATF-2 response and cAMP element-binding protein (CREB). J Biol Chem.

1993;268:21225–31.

41. Fu J, Qu Z, Yan P, Ishikawa C, Aqeilan RI, Rabson AB, Xiao G. The tumor suppressor gene

WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated

tumorigenesis. Blood. 2011;117:1652–61. doi:10.1182/blood-2010-08-303073.

42. Fujisawa J, Seiki M, Sato M, Yoshida M. A transcriptional enhancer sequence of HTLV-I is

responsible for trans-activation mediated by p40 chi HTLV-I. EMBO J. 1986;5:713–8.

43. Fujisawa J, Toita M, Yoshida M. A unique enhancer element for the trans activator (p40tax)

of human T-cell leukemia virus type I that is distinct from cyclic AMP- and 12-O-

tetradecanoylphorbol-13-acetate-responsive elements. J Virol. 1989;63:3234–9.

44. Fujisawa J, Toita M, Yoshimura T, Yoshida M. The indirect association of human T-cell

leukemia virus tax protein with DNA results in transcriptional activation. J Virol.

1991;65:4525–8.

45. Furuta RA, Sugiura K, Kawakita S, Inada T, Ikehara S, Matsuda T, Fujisawa J-I. Mouse

model for the equilibration interaction between the host immune system and human T-cell

leukemia virus type 1 gene expression. J Virol. 2002;76:2703–13. doi:10.1128/JVI.76.6.

2703-2713.2002.

46. Gaudray G, Gachon F, Basbous J, Biard-Piechaczyk M, Devaux C, Mesnard J-M. The

complementary strand of the human T-cell leukemia virus type 1 RNA genome encodes a

bZIP transcription factor that down-regulates viral transcription. J Virol. 2002;76:12813–22.

doi:10.1128/JVI.76.24.12813-12822.2002.

47. Ghez D, Lepelletier Y, Lambert S, Fourneau J-M, Blot V, Janvier S, Arnulf B, van Endert

PM, Heveker N, Pique C, Hermine O. Neuropilin-1 is involved in human T-cell lymphotropic

virus type 1 entry. J Virol. 2006;80:6844–54. doi:10.1128/JVI.02719-05.

48. Giam CZ, Xu YL. HTLV-I tax gene product activates transcription via pre-existing cellular

factors and cAMP responsive element. J Biol Chem. 1989;264:15236–41.

49. Gillet N, Carpentier A, Barez P-Y, Willems L. WIP1 deficiency inhibits HTLV-1 Tax

oncogenesis: novel therapeutic prospects for treatment of ATL? Retrovirology. 2012;9:115.

doi:10.1186/1742-4690-9-115.

50. Gillet NA, Malani N, Melamed A, Gormley N, Carter R, Bentley D, Berry C, Bushman FD,

Taylor GP, Bangham CRM. The host genomic environment of the provirus determines the

abundance of HTLV-1-infected T-cell clones. Blood. 2011;117:3113–22. doi:10.1182/blood-

2010-10-312926.
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