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Standardization of Terminology

Formal Name of HTLV-1

The formal name of HTLV-1 is “human T-cell leukaemia virus type I” or “human

T-lymphotropic virus type I”. In principle, the name of an animal retrovirus should

be specified using the name of the disease initially associated with the virus.

Furthermore, we regard “lymphotropic” as an improper name for HTLV-1 because

the HTLV-1 receptor on the cell surface is not cell-type specific, and it has been

shown that HTLV-1 infects not only lymphocytes but also several other kinds of

cells. For these reasons, we have adopted “human T-cell leukaemia virus type I” as

the formal name for HTLV-1 in this book.

Abbreviation of Adult T-Cell Leukaemia-Lymphoma

In the first report on adult T-cell leukaemia-lymphoma, Uchiyama et al. focused on

16 patients with leukaemic cells in peripheral blood and called the disease “adult

T-cell leukaemia”. Therefore, “ATL” was initially used as the abbreviation for the

disease. It was subsequently revealed that some patients had lymphoma-type

disease, which led to the general understanding that this disease is a subtype of

peripheral T-cell lymphoma. Thus, “adult T-cell leukaemia-lymphoma” became

the common disease name, and “ATLL” has also been used as an abbreviation. The

WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues (2008)

uses “ATLL”, but both “ATL” and “ATLL” are now generally accepted. In this

book, we adopt the initial name of this disease, and these abbreviations of adult

T-cell leukaemia-lymphoma are consolidated to “ATL”.
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Chapter 1

Overview

Toshiki Watanabe and Takuya Fukushima

The disease entity of adult T-cell leukemia-lymphoma (ATL) was proposed by

Takatsuki et al. in 1977, and human T-cell leukemia virus type I (HTLV-1) was

discovered as the causative virus of ATL in the early 1980s. Since then, many

researchers—especially in Japan where it is endemic with the highest prevalence in

the world—have been investigating and clarifying its many features including the

epidemiology of HTLV-1, the molecular mechanisms of the progression from

HTLV-1 infection to ATL, and the development of more effective treatment

for ATL.

In the field of basic research, the start was the clarification of the whole structure

of HTLV-1 genes. A large amount of evidence has accumulated about the function

of viral gene products such as Tax, Rex, antisense RNA/protein HBZ, and others,

which has led to a new concept of pathogenetic roles for development of ATL and

other associated diseases. Characterization of HTLV-1-infected cells and their

clonal growth in vivo has provided a new insight into the behavior of HTLV-1-

infected T cells. ATL develops based on the multistep carcinogenesis model

involving five or more genetic events. Recent studies using new technologies

such as next-generation sequencing have provided a series of new results about

genetic and epigenetic abnormalities underlying ATL leukemogenesis including

those underlying the progression from HTLV-1 carrier status to ATL and from

indolent ATL to aggressive ATL. The results also provided possible targets for

molecularly targeted therapies.
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In the clinical field, clinical trials of therapy for aggressive ATL have been

conducted after the establishment of the clinical classification by Shimoyama et al.,

and a 5-year overall survival of aggressive ATL has improved from 5% in the 1980s

to 15% in the 1990s. Mogamulizumab, a defucosylated anti-CC chemokine recep-

tor 4 antibody, was approved for relapsed ATL from 2012 and untreated ATL from

2014 by the Ministry of Health, Labour and Welfare in Japan, and combination

therapy with antineoplastic agents is expected to improve the survival outcome of

patients with aggressive ATL. Moreover, allogeneic hematopoietic stem cell trans-

plantation, which has been applied to aggressive ATL actively from the 1990s, has

demonstrated a better outcome than standard chemotherapy and provided the

possibility of cure in some patients with aggressive ATL.

To establish a comprehensive strategy against HTLV-1 infection and HTLV-1-

associated diseases, HTLV-1 comprehensive methods were started from 2010 in

Japan. Moreover, the Japanese Society of HTLV-1 was founded in 2013 followed

by the Japanese Workshop of HTLV-1, and research combining and utilizing both

basic science and clinical medicine is accelerating.

This book about HTLV-1 and ATL was written by experts of epidemiology,

basic science, and clinical medicine and includes recent knowledge about the

disease. We truly appreciate all authors and also the efforts of the staff in Springer

Japan. We believe that this book will provide many insights for clinicians and basic

researchers.

2 T. Watanabe and T. Fukushima



Chapter 2

Human T-Cell Leukemia Virus Type

1 (HTLV-1)

Jun-ichi Fujisawa

2.1 Human T-Cell Leukemia Virus Type 1 (HTLV-1)

as the First Human Retrovirus

Within several decades after identification of the first retroviruses as agents of

neoplastic diseases in chickens at the beginning of last century [36, 150], a large

number of “RNA tumor virus” were found in fowl, mice, cat, cattle, and monkeys. In

addition to the extraordinary and unique features of life cycle such as reverse

transcription of genomic RNA to DNA and its integration into the host chromosomal

DNA, analysis of retroviruses led to the finding of “oncogenes” and provided a strong

evidence for the paradigm, the genetic origin of cancer. However, retroviruses had

been searched for without success in most types of human tumors by the end of the

1970s; thus, it seemed questionable whether a human retrovirus existed at all.

In 1980, the first human retrovirus was found in a T-cell line established from a

patient with mycosis fungoides, and the retrovirus was named human T-cell

leukemia virus type I (HTLV-1) [145], but the link between this retrovirus and

human disease was not certain. Prior to this finding, Takatsuki and his colleague

reported a new disease entity, adult T-cell leukemia (ATL). Patients with ATL were

clustered in a limited area of Japan, including the islands of Kyushu and Okinawa,

which suggested a transmissible leukemogenic agent [178]. A large number of

T-cell lines, so-called ATL cell lines, were established from ATL patients, and it

was found that all ATL patients had antibodies that reacted with these cell lines,

confirming the involvement of virus infection [65]. Subsequently, a retrovirus

particle was identified in the ATL cell line [127], and the nucleotide sequence of

the retrovirus, initially called ATLV, was determined [154, 193]. Comparison of
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the nucleotide sequences between HTLV-1 and ATLV revealed that these two

viruses were almost identical [186].

Cloning of the HTLV-1 genome provided a molecular tool to prove the close

association of HTLV-1 infection to ATL. First, the HTLV-1 provirus was detected

without exception in the genome of leukemic cells from ATL patients. Second, a

majority of leukemic cell from a given patient harbored the provirus at the same

chromosomal site in the genome, indicating monoclonal growth of the infected cell;

otherwise, the integration would occur at random in the natural retrovirus infection.

Thus, it was concluded that HTLV-1 is a causative agent of ATL [154].

Nucleotide sequencing of its viral genome showed that HTLV-1 lacked a cell-

derived oncogene, yet it was more complex than other oncogenic retroviruses

[154]. Integration sites of the provirus in leukemic cells from different ATL

patients, however, differ from each other, demonstrating the absence of insertional

activation of a cellular oncogene. The two well-known mechanisms of retroviral

oncogenesis, transduction and cis-activation of an oncogene, therefore did not

apply to HTLV-1.

In addition to essential structural and enzymatic genes (gag, pro, pol, and env)
shared by all retroviral family members [92], HTLV-1 encodes a unique pX region,

which generates two regulatory (Tax, Rex) and five accessory (HBZ, p30, p12, p13,

p8) proteins [25, 100]. Among them, Tax and HBZ have been shown to play pivotal

roles in the viral life cycle and affect expression levels of several host genes

[38, 125, 159]. Therefore, a new type of oncogenic mechanism by retrovirus, in

which viral transforming proteins other than viral or cellular oncogene are involved,

was presented in the development of ATL.

2.2 Genome Structure and Replication of HTLV-1

2.2.1 Structural Genes

A full-length mRNA, which is identical to genomic RNA, is translated mainly to

produce a Gag precursor protein (PrGag, p55). After being assembled with genomic

RNA to form viral particle, PrGag is processed by viral protease (PR) to produce the

matrix (MA; p19), the capsid (CA; p24), and the nucleocapsid (NC; p15) proteins

(Fig. 2.1b).

The pro and pol gene products were produced by the proteolytic cleavage of

Gag-Pro and Gag-Pro-Pol fusion proteins translated from the same full-length

mRNA by one and two successive slip-back of reading frame (frameshifts), respec-

tively. Viral protease further separates the Pol protein (p98) into the reverse

transcriptase (RT; p62) and integrase enzymes (IN; p49) (Fig. 2.1a).

The env message is a singly spliced mRNA, removing the gag and pol genes as

an intron from the mRNA. The env mRNA is translated to a precursor Env protein

and the protein is glycosylated and trimerized in the endoplasmic reticulum (ER).

4 J.-i. Fujisawa



The precursor, gp68, is then cleaved by cellular protease, furin, to form the separate

surface (SU; gp46) and transmembrane (TM; p21) subunits [61] (Fig. 2.1b). Cell

receptor-binding activity is conferred by gp46 and the fusion activity is a function

of gp21.

2.2.2 Regulatory Proteins: Tax and Rex

Tax and Rex are essential for efficient HTLV-1 replication and production, since

HTLV-1 mutants lacking either Tax or Rex function are not able to replicate in vitro

as well as in vivo [148].

Both Tax and Rex proteins are translated from an identical doubly spliced tax/
rex mRNA species using different initiation codons and reading frames of transla-

tion. Tax is a transcriptional activator of HTLV-1 and thus further amplifies the

HTLV-1 transcripts, mostly spliced forms, by augmenting transcriptional activity

of the long terminal repeat (LTR). Once the other product, Rex, accumulates in a

sufficient amount, it enhances the export of singly spliced envmRNA and unspliced

genomic RNA encoding gag/pro-pol, leading to the formation of HTLV-1 particle.

Nuclear export of primary unspliced and singly spliced transcripts, in turn, results in

Provirus DNA
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AAAAAA
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MA NC
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AAAAAAenv mRNA
TM

tax/rex mRNA
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p30 mRNA 

p12 mRNA 
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gag pol envpro pX

Transcription
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Splicing

Frame-shiftPr Gag 
Pr Gag-Pro 
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Fig. 2.1 HTLV-1 genome structure and expression of viral genes. (a) Schematic organization of

HTLV-1 proviral DNA (upper), its transcripts (lower), and their translated products (lower right)
are presented. (b) Structure of HTLV-1 virion and function of regulatory and accessory gene

products
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the reduction of doubly spliced tax/rex mRNA, thereby causing the temporal

cessation of transcriptional activation (Fig. 2.2).

In addition to activation of viral transcription, Tax plays pivotal roles in HTLV-1

immortalization of T cells, persistent infection, inflammation, and pathogenesis, as

discussed in the following sections. Rex is essential for persistent HTLV-1 infec-

tion in rabbits but not required for immortalization of human T cells in vitro [191].

2.2.2.1 Transcriptional Activation of LTR by Tax

Tax protein of 353 amino acids long activates HTLV-1 transcription through LTR.

Three highly conserved 21-bp repeat elements located within the U3 region of the

LTR are critical to Tax-mediated transcriptional activation, thus referred to as

Tax-responsive element (TRE) [22, 37, 42]. The TRE contains an octamer motif

TGACG(T/A)(C/G)(T/A) that shares homology with the consensus cAMP-

responsive element (CRE) 50-TGACGTCA-30 [43, 75], and a number of proteins

HTLV-1 Provirus

AAAAAA
gag-pro-pol mRNA

AAAAAAenv mRNA

tax/rex mRNA AAAAAA

AAAAAA

U3 R U5

p30 mRNA

AAAAAA
HBZ mRNA

gag pol envpro pX

Transcription

LTRLTR

Splicing

Splicing & nuclear export

HBZ

Rex

Rex

c p30

Tax

p30

HBZ

Nuclear export of 
genomic RNA and 

mRNAs for 
structural proteins

Signal transduction 
pathways in host cell

Oncogenesity

Rex

Transcriptional 
activation RxRE

RxRE

TRE

CREB/ATF

NF-κB

PI3K/AKT

TGF-β/Smad

others
Signal transduction pathways

Fig. 2.2 Control of viral and cellular gene expression by viral gene products. Upon initial

infection, doubly spliced mRNAs for tax/rex gene are dominantly expressed. Tax first augments

viral transcription by indirect binding to TRE sequence in the HTLV-1 long terminal repeat (LTR)
promoter, and this activity is negatively regulated by HBZ. Rex enhances the nuclear export of

unspliced and singly spliced mRNAs though binding to the RxRE sequence at the 30 end of

unspliced and singly spliced mRNA, thereby increasing the translation of structural proteins,

resulting in HTLV-1 virion production. p30 binds to the splice junction of tax/rex mRNA and

inhibits its nuclear export. In addition, Tax and HBZ modulate a variety of cellular signaling

pathways, leading to accelerated cell proliferation and induction of genome lesions. In most

pathways, HBZ has opposite effects to Tax
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of the CRE-binding/activating family of transcription factors (CREB/ATF) bind to

this sequence [175, 194]. Tax does not bind directly to the TRE element [44, 48] but

interacts with members of CREB/ATF family, including CREB, CREM, ATF1,

ATF2, ATF3, ATF4 (CREB2), and XBP1 (X-box-binding protein 1) [10, 40, 103,

112, 146, 162, 197].

Among them, CREB plays a major role in the transcriptional activation of LTR.

CREB regulates several cellular genes, especially cAMP-responsive genes, and

cAMP signal leads to the phosphorylation of CREB at serine 133, recruiting

coactivators (CBP/p300 and P/CAF) to facilitate transcriptional initiation. The

direct interaction of Tax with CBP allows the binding of the coactivator in the

absence of CREB phosphorylation [104]; however, strong Tax binding to

CPB/p300 requires TRE DNA and phosphorylated CREB [94]. On the other

hand, Tax expression directly enhances CREB phosphorylation in vivo to ensure

availability for Tax transactivation [94].

Tax also binds to CREB coactivator proteins called transducers of regulated

CREB activity (TORC1, TORC2, and TORC3) [27, 72] and TORCs cooperate with

Tax to activate the LTR in a CREB and p300-dependent manner

[97, 158]. Downregulation of TORC2 through its phosphorylation is associated

with the in vivo specific transcriptional repression of HTLV-1 LTR [78].

2.2.2.2 Posttranscriptional Regulation of Viral RNA by Rex

In addition to genomic unspliced mRNA encoding gag/pol, HTLV-1 expresses

multiple mRNAs with distinctive splicings [155]. Three different singly spliced

mRNAs encode env, p12 and p13, respectively, and two doubly spliced mRNAs are

for tax/rex and p30 (Fig. 2.1).

Upon initial infection of host cells, primary transcripts with introns generally

undergo splicing by the cellular RNA machinery, resulting in the preferential

expression of doubly spliced tax/rex and p30 mRNAs. Once the Rex protein

accumulates, Rex binds specifically to the HTLV-1 RNA at the Rex-responsive

element (RxRE) located in the U3 and R regions of the 30 LTR [17, 179], through

the interaction with a long stem-loop structure in the RxRE [18, 174]. Then Rex

interacts with the nuclear export receptor protein CRM1/exportin 1, which mediates

the transport of viral mRNAs from the nucleus to the cytoplasm, by the function of a

typical leucine-rich nuclear export signal (NES) in Rex (aa81–94) [54]. Thus, Rex

increases the amount of singly spliced (env) and unspliced (gag-pol) mRNAs and

reduces the amount of its own doubly spliced mRNA by inhibiting the splicing of

simply spliced (env, p12, p13, and p21rex) and unspliced (gag/pro-pol) mRNAs,

stabilizing them, and promoting their transport to the cytoplasm [62, 71] (Fig. 2.2).

2 Human T-Cell Leukemia Virus Type 1 (HTLV-1) 7



2.2.3 Accessory Proteins: HBZ, p30, p12, p13, and p8

In contrast to Tax and Rex, HTLV-1 accessory genes HBZ, p30, p12, p13, and p8
are not absolutely required for virus replication and for the immortalization of

human primary T cells in vitro [31, 105, 149]. However, investigations using

animal models to study HTLV-1 infection in vivo revealed that HBZ, p30, and
p12 are essential for HTLV-1 infection and replication in nonhuman primates but

p30 and p12 were dispensable in rabbits [181]. Human T-cell lines immortalized

with HTLV-1 molecular clones lacking p30 or p12 grow less efficiently than their

wild-type counterpart clones and more dependent on the presence of interleukin-2

(IL-2) in the media [1, 131, 170].

2.2.3.1 Viral Persistence and HTLV-1-Related Pathogenesis by HBZ

HBZ (HTLV-1 bZIP factor) is encoded by the minus strand of the HTLV-1 provirus

and interacts with various host factors [3, 46, 125] (Fig. 2.1). The bZIP domain of

HBZ is responsible for the interaction with the host bZIP factors, such as c-Jun,

JunB, JunD [11, 172], CREB, CREB2 (ATF-4), CREM, ATF-1 [109], ATF-3 [53],

and MafB [132]. The interaction mostly results in the suppression of transcriptional

activity, including the Tax-mediated viral gene transcription from 50 LTR, whereas
the interaction with JunD activates transcription of target genes [172]. HBZ also

enhances the TGFβ/Smad pathway, which is suppressed by Tax, through interaction

with Smad2/3 and p300 [198], and then induces the expression of FoxP3 [89], a

master regulatory molecule of regulatory T (Treg) cells. On the other hand, the

transcriptional activity of Foxp3 is repressed by the interaction with HBZ [153]. As

a result, HBZ increases the number of functionally impaired Treg cells and may

lead to the development of malignancy derived from Treg cells.

Tax activates two types of NF-κB pathway, canonical and noncanonical (see the

following section). p65 activation in the canonical pathway enhances the expres-

sion of CDK inhibitors p21 and p27, which cause the senescence of Tax-expressing

cells. HBZ selectively inhibits the canonical NF-κB pathway by inhibiting DNA

binding of p65 and promoting the degradation of p65 [199]. Thus, co-expression of

HBZ with Tax delay or prevent the Tax-induced senescence, leading to cell

proliferation.

Besides the functional modulation of various cellular transcription factors

through protein-protein interaction, HBZ mRNA itself exerts a growth-promoting

effect on T cells [152] (Fig. 2.1b). The first exon of the HBZ transcript

corresponding to the R region of 30 LTR, which forms an extensive stem-loop

structure, is critical for this activity. Further details of how HBZ RNA promotes

proliferation remain to be elucidated.

8 J.-i. Fujisawa



2.2.3.2 Posttranscriptional Regulation of Viral and Cellular RNA

by p30

p30 is a basic 241-amino acid protein encoded by the doubly spliced mRNA distinct

from tax/rex mRNA (Fig. 2.1). p30 binds to the splice junction region of tax/rex
mRNA and inhibits its nuclear export, thereby reducing the expression of Tax and

Rex (Fig. 2.2). Conversely, Rex interacts with p30 and counteracts its activity to

induce the expression of Tax/Rex proteins [8].

p30 expression activates the G2-M cell cycle checkpoint [29] and inhibits G1-S

progression and homologous recombination (HR) repair to increase the genome

instability through the protein-protein interaction with cyclin E/CDK2 and Nbs1/

Rad50, respectively [13, 14]. Human T cells immortalized by a HTLV-1 proviral

clone defective in p30 expression were more susceptible to apoptosis induced by

camptothecin, a topoisomerase I inhibitor.

2.2.3.3 Augmentation of Reactive Oxygen Production by p13

p13 is identical to the C-terminal 87 amino acids of p30 but encoded by a distinct

singly spliced mono-cistronic mRNA (Fig. 2.1). A highly basic protein, p13,

localizes mostly to mitochondria [28] and triggers an inward K+ and Ca+ current

causing depolarization, activation of the electron transport chain, and augmentation

of reactive oxygen species (ROS) production [16, 156] (Fig. 2.1b). Ectopic expres-

sion of p13 significantly reduces the incidence and growth rate of tumors arising

from c-myc- and Ha-ras-co-transfected rat embryo fibroblasts [157]; therefore, low

level of ROS production might help keep the infected cells benign through selec-

tively killing the transformed HTLV-1 cells.

2.2.3.4 Modulation of Signal Transduction and Immune Response by

p12/p8

p12 is a highly hydrophobic membrane protein of 99 amino acids and localized in

the endoplasmic reticulum (ER) and Golgi complex [33]. p12 increases intracellu-

lar Ca2+ concentration by interacting with two ER resident proteins – calnexin and

calreticulin – that regulate Ca2+ release from the ER [33]. Increased concentration

of Ca2+ leads to the activation of calcineurin to dephosphorylate NFAT, thereby

augmenting the transcription of genes such as IL-2 [2]. p12 also interacts with the

beta and gamma c chain of the IL-2R and enhances the phosphorylation of STAT5

and its DNA binding [131]. Thus, p12 decreases the IL-2 requirement for T-cell

proliferation and promotes cell proliferation (Fig. 2.1b).

In addition, p12 interacts with the major histocompatibility complex (MHC)

class 1 heavy chain to inhibit its interaction with β2-microglobulin, thereby induc-

ing the proteasome-dependent degradation of MHC class I [80]. The down-

2 Human T-Cell Leukemia Virus Type 1 (HTLV-1) 9



modulation of MHC class I reduces CTL-mediated killing of HTLV-1 infected

cells. Furthermore, p12 also reduces expression of ICAM-1 and ICAM-2 to evade

NK cells, which recognize cells lacking MHC class I molecule (Fig. 2.1b).

Proteolytic cleavage of p12 removes the ER retention motifs to generate the

C-terminal product p8 [182]. p8 is localized to the T-cell membrane to induce

lymphocyte function-associated antigen-1 (LFA-l)-mediated cell clustering,

augmenting the number and length of conduits (filopodia-like membrane exten-

sions) which are involved in HTLV-1 transmission as discussed later (Figs. 2.1b

and 2.4).

2.3 Transmission

HTLV-l is primarily transmitted from infected mother to child through

breastfeeding, while sexual contact and blood transfusion are additional routes of

transmission [51]. Initial infection in vivo first requires interaction with oral,

gastrointestinal, or cervical mucosa except infection through blood transfer.

HTLV-1 infected cells can directly bypass a disrupted mucosa [143], while

HTLV-1-infected macrophages could transmigrate through an intact epithelium

as observed for human immunodeficiency virus (HIV) [168, 177] (Fig. 2.3a). On

the other hand, viral particles produced by HTLV-1 infected T cells have been

shown to cross the epithelium within an endosome from the apical to the basal

A. Virological synapse

B. Cellular conduits

C. Extracellular assemblies

D. Trans-infection

MTOC

DC

b. Infection cycle

c. Clonal expansion

Disrupted mucosa/ 
Trans-migration

Trans-cytosis

Trans-infection

Epithelial Cells

Apical 
surface

Basal 
surface

Immune response 
against HTLV-1

Lumen

a. Invasion of mucosal epithelia

Fig. 2.3 Transmission and expansion of HTLV-1. (a) Three different modes of mucosal invasion

of HTLV-1. (b) Four different modes of cell-to-cell transmission of HTLV-1. (c) Clonal expansion

mode of HTLV-1 replication
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surface of an epithelial cell (transcytosis) [122]. Alternatively, HTLV-1 can also

infect an epithelial cell and produce new virions that are then released from the

basal surface [143, 195].

Having crossed the epithelial barrier, HTLV-1 infects mucosal immune cells

directly or via APCs such as DCs or macrophages. APCs can either undergo

infection or transfer membrane-bound extracellular virions to uninfected T cells

(trans-infection) [83]. HTLV-1 predominantly infects CD4+ T cells but also targets

other cell types such as CD8+ T and B lymphocytes, dendritic cells (DCs), mono-

cytes, and macrophages [83, 101, 116].

HTLV-1 entry into susceptible cells begins with the binding of the HTLV-1

envelope glycoprotein (Env) to a viral receptor on the membrane of the host cell,

and it is followed by the fusion of viral and cell membranes (Fig. 2.4). Efficient

entry of HTLV-1 has been shown to involve three distinct molecules: heparin

sulfate proteoglycans (HSPGs) and neuropilin 1 (NRP-1) for the initial binding to

the cell and glucose transporter 1 (GLUT1) for entry [47, 82, 107, 120]. These

molecules are ubiquitously expressed and may explain the wide range of target

cells, but HTLV-l might differentially utilize these molecules in a cell type-

dependent manner. In the current model, HTLV-1 Env first attaches to HSPGs on

the target cell, which increases the local concentration of the viruses at the cell

surface. HTLV-1 Env then binds to NRP-1, inducing a conformational change of

Env that facilitates its interaction with GLUT-1. The ternary complex formation of

Env, NRP-1, and GLUT-1 gives rise to an additional conformational change of Env

that triggers the fusion of the viral and cell membranes.

HTLV-1 transmission usually occurs through cell-to-cell contact of HTLV-1-

uninfected cells with HTLV-1-infected cells, and cell-free viruses are poorly

HSPGs NRP-1

GLUT1

Receptor binding by gp46

Membrane fusion
by gp21 

Fig. 2.4 Model of HTLV-1 entry. Gp46 subunit of envelope protein attaches to heparan sulfate

proteoglycans (HSPGs) on the target cell, which increases the local concentration of the viruses at
the cell surface. Gp46 then binds to neuropilin-1 (NRP-1), and this binding induces a conforma-

tional change of the subunit that facilitates its interaction with glucose transporter 1 (GLUT-1).
The formation of a ternary complex of gp46, NRP-1, and GLUT-1 induces a conformational

change of gp21 that triggers the fusion of the viral and cell membranes
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infectious [30, 126]. Cell-to-cell transfer of HTLV-1 virions then potentially

involves several nonexclusive mechanisms: a virological synapse [70, 119, 129],

cellular conduits [182], or extracellular viral assemblies [81, 137] (Fig. 2.3b).

During cell-to-cell HTLV-1 transmission, the site of contact between an HTLV-

1-infected cell and a target cell forms a special structure called the virological

synapse (VS, named thus because of its similarity to the immunological synapse)

[70] (Fig. 2.3b-A). VS formation involves polarization of the microtubule-

organizing center (MTOC) near the site of cell-to-cell contact in the infected

cells. ICAM-1 and Tax appear to play a role in polarization of the MTOC during

cell-to-cell transmission.

HTLV-1 can also spread from an infected to an uninfected T cell by membrane

extensions, which is referred to as cellular conduits [182] (Fig. 2.3b-B). HTLV-1

particles are concentrated at the point of contact between the HTLV-1-infected cell

and the target cell.

Extracellular carbohydrate-rich assemblies attached to the surfaces of HTLV-l-

infected cells contain infectious virions, and their removal prominently reduces

cell-to-cell HTLV-1 transmission [137] (Fig. 2.3b-C). These virion-containing

assemblies resemble bacterial biofilm in structure and composition and contain

HSPGs, collagen, agrin, and galectin-3. When HTLV-1-infected T cells are

exposed to uninfected T cells, these assemblies are quickly transferred to the target

cell [137].

In addition to spreading between T cells, HTLV-1 can be transmitted from DCs

to CD4+ T cells in two different ways, cis- and trans-infection. In cis mode of

transmission, the DCs are infected, and then the de novo produced HTLV-1 is

transferred to the T cells [83] (Fig. 2.3b-D). In the trans-infection, uninfected DCs

capture and transmit the virus to T cells prior to becoming infected themselves [74].

2.4 Clonal Expansion and Immune Response

Soon after primary infection, HTLV-1 expands by reverse transcription of the viral

RNA, integration of the provirus into the chromosome, expression of viral proteins,

and budding of new virions (the infectious cycle, Fig. 2.3b). At this stage of

infection, host restriction factors such as SAMHD1 [164], APOBEC3 [136], and

miR-28-3p [7] have been shown to limit HTLV-1 infection.

An antiviral immune response is quickly initiated, and the efficacy of the

infectious cycle is severely attenuated soon after infection. Then, HTLV-1 repli-

cates through another mode of replication which involves mitotic division of a cell

containing an integrated provirus (the clonal expansion, Fig. 2.3c). The limited

variability in the HTLV-1 genome compared to HIV suggests a replication mode by

cellular DNA polymerase rather than by error-prone viral reverse transcriptase in a

major part of viral expansion. In fact, high-throughput sequencing of proviral

integration sites reveal a high clonal stability over years [50].
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On the other hand, clonal expansion and cell proliferation also require expres-

sion of viral factors such as Tax [19]. The in vivo proliferation of CD4+ T cells

correlates with Tax expression [6]. Because Tax is a major target of CTLs [73, 84],

Tax-expressing cells are rapidly eliminated (Fig. 2.5). However, transcription of the

tax gene from the 50 LTR is suppressed in vivo, and ex vivo culture of HTLV-1-

infected cells elicits a rapid recovery of the tax gene expression [173], indicating a

mechanism of inhibiting viral gene transcription in vivo [45, 56, 78]. Thus, repet-

itive cycles of viral expression followed by transcriptional silencing continuously

challenge the immune response, thereby initiating inflammation and ultimately

leading to HAM/TSP. Identification of integration sites by high-throughput

sequencing shows that negative selection is predominant in chronic infection

[50]. By favoring emergence of sporadic mutations in the cell genome, unrestrained

proliferation also paves the way to malignant transformation and development of

ATL [6, 91] (Fig. 2.5).

2.5 Leukemogenesis by Tax and HBZ

Among an array of viral factors, Tax and HBZ play a major role in leukemogenesis

of HTLV-1 infected cells. Tax immortalizes human T cells in the presence of IL-2

and transforms rat fibroblasts and drives tumor formation in transgenic mouse

models, supporting its oncogenic potential [52, 60, 133]. Mutation of the tax gene

Clonal
expansion 

Infection cycle

In vivo silencing of 
Tax expression

Activation of cell proliferation  
and induction of genomic 
lesion by Tax 

Recurrent Tax 
expression

Immune response 
against Tax 

expressing cells

Clonal 
selection

Accumulation of 
mutations in 

“Tax interactome”  
genes

ATL

Tax HBZ

Fig. 2.5 Model of clonal selection and ATL development. In early stage of infection, Tax and

HBZ promote the proliferation of infected cells as well as the induction of genomic lesions (clonal

expansion). Because of strong immunogenicity of Tax, Tax-expressing cells are rapidly elimi-

nated. However, a substantial part of infected cells is escaped from the immune response due to the

in vivo specific silencing mechanism of viral expression. Repetitive cycles of viral expression

followed by transcriptional silencing lead to clonal selection and accumulation of mutations,

finally in genes of Tax interactome, a network of molecules that Tax physically interacts with

and/or deregulates, in ATL
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in recombinant HTLV-1 abrogates immortalization as well as persistent infection in

rabbits [148].

Although HBZ is dispensable for the HTLV-1-mediated T-cell transformation

in vitro, it plays an indispensable role in persistent viral infection in vivo [3]. In

transgenic mouse model, HBZ expression in CD4 T cells induces chronic inflam-

mation and T-cell lymphoma [153]. Furthermore, HBZ is constitutively expressed

throughout HTLV-1 infection [91, 124, 180], whereas Tax expression is frequently

suppressed or diminished in ATL cells [91, 98, 167], indicating the role of HBZ in

maintaining the transformed phenotype [125]. Because of the strong immunoge-

nicity of the Tax protein, these mechanisms can confer a selective advantage to

HTLV-1-transformed T cells [73, 84, 86] (Fig. 2.5). In contrast, HBZ triggers a less

efficient immunity that renders its persistent expression in vivo [64, 117].

An integrated genome analysis of a large number of ATL cases revealed that the

driver mutations overlap significantly with the Tax interactome [19], a network of

molecules that Tax physically interacts with and/or deregulates [91]. Thus, it seems

that ATL cells still depend on deregulated Tax interactome molecules, even though

Tax itself is no longer expressed in most ATL cases.

The modes of action of Tax and HBZ are remarkably pleiotropic and involve a

variety of cell signaling pathways (CREB, NF-κB, and AKT, Fig. 2.2).

Tax inhibits tumor suppressors (p53 [147], Bcl11B [166], and TP53INP1 [192])

and activates cyclin-dependent kinases (CDKs) [55, 69, 134, 151], both of these

mechanisms leading to accelerated cell proliferation. In addition, Tax induces

genomic instability [20, 21, 23, 95], generating somatic alterations [121], and

attenuates the Mad1 spindle assembly checkpoint protein, thereby promoting

aneuploidy [79].

HBZ counteracts Tax-mediated viral and cellular pathway modulation (such as

NF-κB, Akt, and CREB) and stimulates cell proliferation via apoptosis/senescence

inhibition and cell cycle modulation [4, 152]. The interaction of HBZ with AP-1

factors (c-Jun, JunB, or MafB) results in the inhibition of their transcriptional

activities and prevents the subsequent activation of AP-1-regulated genes [26, 67,

123].

2.5.1 Activation of NF-κB

The NF-κB pathway is a key player in regulation of immunity and inflammation

[161], and Tax activates the transcription factor NF-κB, thereby inducing the

expression of several cellular genes. HTLV-1 carrying a mutant Tax that cannot

activate NF-κB fails to immortalize human T cells in vitro [148]. Moreover, several

NF-κB inhibitors induce apoptosis in HTLV-l-infected T cells. Thus, the NF-κB
activity is crucial for the immortalization and the survival of HTLV-1 infected T

cells.

By activating the NF-κB pathway, Tax upregulates antiapoptotic proteins:

caspase-8 inhibitory protein c-FLIP [102, 135] and members of the Bcl-2 family
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(Bcl-2, Bcl-xL, Mcl-1 and Blf-1) [115, 130, 163, 176], thereby supporting the

proliferation and survival of HTLV-1-infected T cells. A variety of growth-

promoting cytokines (such as IL-1, IL-6, TNF, and EGF) [88, 187] are also induced

by Tax through the activation of NF-κB.
Conversely, NF-κB activation by Tax is associated with an upregulation of

p21WAF1/CIP1 and p27KIP1, leading to cellular senescence [68, 200]. Instead, HBZ

prevents Tax-induced senescence through downregulation of NF-κB [141, 200].

NF-κB is a family of transcription factors, and these factors are divided into two

groups belonging to the canonical (NF-κB1/p50, p65, c-Rel) and the noncanonical

(NF-κB2/p52, RelB, Bcl-3) pathways. Tax activates both pathways.

Through interacting with IKKγ/NEMO, a scaffold component of the IκB kinase

(IKK) complex (IKKα/IKKβ/IKKγ), Tax activates the IKKβ to induce phosphory-

lation and degradation of IκBs (IκBα, IκBγ), allowing nuclear translocation of

p50/p65 complex to activate transcription of NF-κB-responsive genes (canonical

pathway) [58, 161]. Concurrently, the IKKα is activated to phosphorylate p65,

which stimulates its transcriptional activation function.

Tax interaction with another IKK complex composed of IKKα and IKKγ, but not
IKKβ, induces IKKα-dependent processing of p100 into p52 [58, 161] and the

subsequent nuclear translocation of p52/RelB (noncanonical pathway). Knockdown

of NF-κB2/p100 abrogates the Tax-induced transformation of CTLL-2 cell in vitro

[63], and the knockout of NF-κB2/p100 gene attenuates the tumorigenesis in Tax

transgenic mouse [41].

Although the constitutive activation of NF-κB pathway is crucial for the

transformed phenotype of HTLV-1-infected T cells, ATL cells often lack the Tax

expression due to deletions or epigenetic silencing of the 50 LTR or mutations in

Tax [66, 167]. The mechanisms of Tax-independent chronic activation of NF-κB
remain poorly understood but may result from epigenetic alterations. Epigenetic

downregulation of microRNA-31 (miR-31) in ATL promotes increased the expres-

sion of NIK (NF-κB-inducing kinase) that activates IKKα and noncanonical NF-κB
pathway [189]. The expression of NIK is also enhanced by double-stranded RNA

(dsRNA)-dependent protein kinase (PKR) that is activated by antisense transcripts

at R region detected in all ATL cases [96].

2.5.2 Activation of the PI3K/AKT Pathway

Tax promotes cell proliferation and survival through the activation of the

phosphatidylinositol 3-kinase (PI3K)/Akt pathway [140]. Tax directly interacts

with the p85α inhibitory subunit of PI3K, causing the release of the active p110α
catalytic subunit [140]. Inhibition of Akt in HTLV-1-transformed cells decreases

phosphorylated Bad and induces caspase-dependent apoptosis [77].

In contrast, HBZ inhibits Tax-dependent activation of the PI3K/Akt pathway

and downstream antiapoptotic properties [160]. HBZ suppresses apoptosis by

attenuating the function of FOXO3a and altering its localization [169].

2 Human T-Cell Leukemia Virus Type 1 (HTLV-1) 15



2.5.3 Modulation of TGF-β/Smad and Wnt Signaling
Pathways

Tax represses TGF-β signaling by blocking the association of Smad proteins with

Smad-binding elements [108] and via c-Jun activation [5]. Conversely, HBZ

interacts with Smad2/3 to enhance TGF-β/Smad transcriptional responses in a

p300-dependent manner, improving transcription of different genes, such as the

FOXP3 mediator of regulatory T cells [198]. This activation also results in the

enhanced transcription of Wnt5a, a key protein of the noncanonical Wnt pathway.

Knockdown of Wnt5a represses proliferation and migration of ATL cells, indicat-

ing the role of this pathway in HTLV-1-infected cell growth [113].

Tax interacts with DAPLE (dishevelled-associating protein with a high fre-

quency of leucine residues) to activate the canonical Wnt pathway, whereas HBZ

suppresses this activation by inhibiting DNA binding of TCF-1/LEF-1 transcription

factors in the downstream.

2.5.4 Enhancement of S Phase Entry and Cell Cycle
Progression

Through interaction with cyclins and CDKs, Tax interferes with cell cycle progres-

sion by several mechanisms. By stabilizing the cyclin D2/CDK4 complex and

repressing cyclin-dependent kinase inhibitors (CKIs) such as members of INK4

family and KIP1, Tax enhances the phosphorylation of retinoblastoma protein

(Rb) to free E2F1 that activates transcription of genes required for G1/S transition.

Tax also activates the cyclin D1 transcription via CREB pathway, thereby

enhancing S phase entry of HTLV-1 infected cells, whereas HBZ interacts with

CREB and inhibits transcription of cyclin D1 [114]. Early firing of late replication

origins by Tax is associated with p300-dependent histone hyperacetylation, and

interaction of Tax with the replicative helicase (minichromosome maintenance

complex, MCM2-7) also accelerates S phase progression [20].

In contrast to Tax, HBZ modulates expression of cell division cycle 2 (CDC2)

and cyclin E2 through interaction with activating transcription factor 3 (ATF3),

thereby promoting proliferation of ATL cells [53]. Concomitantly, HBZ suppresses

ATF3-induced p53 transcriptional activity. Moreover, the growth-promoting effect

of HBZ mRNA on T cells is correlated with the enhanced transcription of E2F1

gene [152].
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2.5.5 Induction of Chromosomal Abnormality and DNA
Damage

The tumor-suppressor protein p53, the main factor that controls G1 checkpoint, is

functionally inactivated in leukemic and HTLV-1 transformed cells [165]. NF-κB
p65 subunit is critical for Tax-induced p53 inactivation [144] and wild-type

p53-induced phosphatase 1 (Wip1) is involved in the inactivation [49, 196].

ATL cells are characterized by loss of spindle assembly checkpoint function [90]

and aneuploidy [190]. Tax binding to Mad1 perturbs the organization of the spindle

assembly and results in multinucleated cells [79]. Tax also interacts with the

anaphase-promoting complex APC Cdc20, inducing the mitotic abnormalities in

HTLV-1-infected cells [111].

Firing of supplementary origins of replication by Tax triggers replicative stress

and genomic lesions, such as double-strand breaks (DSBs) [21, 23], which generate

reactive oxygen species (ROS) [95]. Tax-associated DNA damages activate several

phosphoproteins of the DDR pathway (H2AX, ATM, CHK1-2, P53, BRCA1),

which in turn arrest the cell cycle transiently or lead to apoptosis and senescence.

In the presence of DNA-damaging agents (e.g., UV irradiation), Tax inhibits the

DDR machinery by sequestrating key signaling pathway components [15, 24, 35,

57, 138, 139]. Induction of genomic lesions and inhibition of the DDR leads to

proliferation in presence of DNA mutations, potentially to leukemogenesis.

HBZ also induces DNA lesions through activation of miR-17 and miR-21 and

downregulation of the DNA damage factor OBFC2A [183] and deregulates the

cellular responses to DNA damage by inhibiting the activity of growth arrest and

DNA damage gene 34 (GADD34) [128].

In addition, Tax has negative effects on DNA repair pathways. Downregulation

of β-polymerase transcription by Tax [76] leads to the inhibition of base excision

repair (BER) [142]. Tax interferes with nucleotide excision repair (NER) by

activating PCNA [87, 110] and suppresses nonhomologous end joining (NHEJ)

by repressing Ku80 gene transcription and also by interacting with Ku80 protein

[34, 118], while DSBs are preferentially repaired by error-prone NHEJ in

Tax-expressing cells [12].

2.6 Animal Model

To evaluate viral pathogenesis and elucidate the function of viral products in vivo, a

variety of animal models have been established [9, 32, 39, 45, 60, 99, 153,

184]. The Tax transgenic mouse, which expresses Tax under the control of the

Lck promoter, results in characteristic ATL-like phenotypes [60]. The HBZ trans-

genic mouse, which expresses HBZ under the control of a CD4-specific promoter/

enhancer/silencer, develops lymphomas characterized by induction of Foxp3 in

CD4 T cells, similar to leukemic cells in ATL patients [153].
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In addition to transgenic mouse models, a number of HTLV-1-infected small-

animal models have provided valuable findings regarding virus-host interactions;

however, they are unable to fully recapitulate pathological conditions resembling

ATL, likely due to the low efficiency of HTLV-1 infection [93, 106].

As immune responses against HTLV-1 play a pivotal role in controlling the

proliferation or selection of HTLV-1-infected T-cell clones in vivo [59, 85], animal

models of ATL that induce more humanlike HTLV-1-specific immune responses

are required for analysis of the development of ATL. Humanized mice are highly

susceptible to infection with human lymphotropic viruses, such as EBV, HIV-1,

and HTLV-1, and are able to recapitulate specific disorders and human immune

responses [184, 185, 188]. HTLV-1 infection of humanized mouse, which is

produced by the intra-bone marrow transplantation of human hematopoietic stem

cells, displayed distinct ATL-like symptoms, including hepatosplenomegaly,

hypercytokinemia, oligoclonal proliferation of HTLV-1-infected T cells, and the

appearance of flower cells [171]. Furthermore, HTLV-1-specific immunity was

induced.

2.7 Perspective

Since the discovery of HTLV-1, extensive studies have revealed a complex network

of interactions between viral genes and host factors. This network controls the

expression of viral genes and facilitates persistent infection by allowing evasion of

the host immune response and promoting the proliferation of infected cells.

Recent findings from the integrated molecular study of ATL genome provide a

strong evidence for the notion that the aberrant growth-promoting activities attrib-

uted to Tax function are taken over by mutations in genes belonging to the Tax

interactome [91]. Knowledge of the genes and the mutations will guide the devel-

opment of new diagnostics and therapeutics for ATL.

As the incident rate of mutations correlates with the number of infected cells

and, probably, with Tax expression during persistent infection, it is important to

control the viral expression and the clonal expansion of infected cells in vivo to

suppress the onset of ATL. Therefore, further analysis with suitable animal model

of HTLV-1 infection, in which anti-HTLV-1 immune response is established,

should provide vital information for developing antiviral and/or preventive therapy.
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Chapter 3

Epidemiology

Masako Iwanaga

3.1 Introduction

Adult T-cell leukemia-lymphoma (ATL) is a malignancy of peripheral T lympho-

cytes caused by human T-cell leukemia virus type 1 (HTLV-1). In 1977, ATL was

first reported as a distinct clinical entity in Japan [79, 89], and HTLV-1 was

subsequently discovered as the causative agent of ATL [59, 98]. The first set of

diagnostic criteria for ATL and the four clinical subtypes (acute, lymphoma,

chronic, and smoldering) were proposed based on the prognostic factors, clinical

features, and the natural history of the disease in 1991 [71]. The causal etiological

association of HTLV-1 with ATL was established on the basis of a broad range of

experimental and epidemiological evidence in the early 1980s, including that all

ATL patients have antibodies against HTLV-1 [24, 25], geographical areas of high

incidence of ATL patients correspond closely with areas of high incidence of

HTLV-1 carriers [81], HTLV-1 immortalizes human CD4 T cells in vitro [21],

and monoclonal integration of HTLV-1 provirus DNA was demonstrated in ATL

cells [95]. Nevertheless, the current molecular, clinical, and epidemiological evi-

dence is insufficient to understand fully what determines who will and who will not

develop ATL among HTLV-1 carriers. This chapter reviews available information

on the epidemiological aspects of HTLV-1 and ATL and the risk factors for the

development of ATL from HTLV-1 carriers.
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3.2 Prevalence, Incidence, and Lifetime Risk

3.2.1 Prevalence and Geographic Distribution of HTLV-1

The exact numbers of HTLV-1-seropositive individuals and ATL patients world-

wide are unknown. Several studies have estimated the worldwide prevalence of

HTLV-1, but few for ATL. Areas with HTLV-1 seroprevalence >1% are recog-

nized as highly endemic regions [17]. Given that ATL occurs exclusively in areas

endemic for HTLV-1 [29], it is useful to know the geographic distribution of

HTLV-1 infection.

From the late 1980s to 1990s, HTLV-1 seroscreening was vigorously conducted

worldwide. Currently, Southwestern Japan, sub-Saharan Africa, South America,

the Caribbean islands, and part of the Middle East and Australo-Melanesia are

recognized as the major endemic regions for HTLV-1 (summarized by Proietti et al.

[62]). The number of HTLV-1 carriers worldwide was estimated to be ~20 million

in 1993 [13] and ~10 million in 2012 [18].

In Asia, Japan is one of the most endemic regions for HTLV-1. Within Japan,

there is uneven distribution of endemic foci, such as southwestern districts (Kyushu

and Okinawa), coastal areas of Shikoku and Kinki, and other microendemic

regions. The overall HTLV-1 seroprevalence in blood donors was reported to be

1–6% in the 1980s [78] and 0.1–2% in 2006 [66]. The number of HTLV-1-infected

individuals in Japan was estimated to be around one million in 1990 [78] and 2012

[66]. In other Asian regions, a low HTLV-1 seroprevalence was reported in China

(0.013–0.06%), Korea (0.007–0.25%), Taiwan (0.058–0.82%), India (0.14%), and

Israel (0.001%), in all of which only a few cases of ATL were reported [18].

In Middle East, Mashhad, a northeastern part of Iran, is a known endemic area

for HTLV-1 with a seroprevalence of 0.7–3% [1, 63].

In Oceania, a high HTLV-1 seroprevalence and non-negligible number of

patients with ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis

(HAM/TSP) have been reported among Aboriginal populations in Central Australia

[14], Papua New Guinea, and the Solomon Islands [18]. Interestingly, HTLV-1

strain subtype in Oceania is distinct from those in other regions. Among seven

HTLV-1 strain subtypes (a–g), the Cosmopolitan subtype (a) has spread worldwide,

and the African subtypes (b and d–g) have spread in African and Caribbean regions,

but the Australo-Melanesian subtype (c) is found only in Oceania [92].

In the USA, HTLV-1 prevalence has been studied extensively in blood donors.

The Retrovirus Epidemiology Donor Study Group reported that the HTLV-1

seroprevalence among first-time blood donors was 0.009% during 1991–1995

[70] and 0.0051% during 2000–2009 [11]. Most of the HTLV-1-positive individ-

uals were Asians from Japan or Blacks from the Caribbean regions.

The Caribbean regions (including Jamaica, Haiti, and Martinique) and Brazil are

the most endemic regions for HTLV-1 infection [18]. The majority of HTLV-1-

infected people are of African ancestry from areas endemic for HTLV-1 and ATL.

HTLV-1 prevalence in the Caribbean regions is up to 17.4% [49]. In Brazil, HTLV-1
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prevalence among first-time blood donors was 0.14% during 2007–2009, and the

prevalence differed by region, from 0.08% to 0.22% [9]. In particular, Salvador da

Bahia, located on the northeast coast of Brazil, is the highest endemic area for

HTLV-1.

In Africa, HTLV-1 seroprevalence among the general population varies from

low in North Africa (e.g., Morocco, 0.6%) to high in sub-Saharan countries

(Cameroon and Guinea-Bissau, 5%) [18]. HTLV-1 seroprevalence among pregnant

women also varies from 0.7 to 5.5% [18].

In Europe, Romania is the country with the highest HTLV-1 prevalence (0.64%)

among blood donors [58]. In other European countries, HTLV-1 seroprevalence in

first-time blood donors is <0.004%, and patients with ATL are rare [43]. HTLV-1

carriers and ATL are also reported in France and the UK where the majority of

infected people are immigrants and their descendants from a high-endemic area of

HTLV-1 such as Africa and the Caribbean. In the UK, the overall HTLV-1

prevalence among pregnant women was 31 per 100,000 [2]. In France, it is

estimated that there are 10,000–25,000 HTLV-1-infected persons [18].

3.2.2 Incidence of ATL in the General Population

Few population-based prospective cohort studies have investigated the risk of

developing ATL. Most of the epidemiological studies of ATL have been conducted

cross-sectionally through countrywide surveys or cancer registry systems (summa-

rized in Iwanaga et al. [34]). In regional cancer registry systems, ATL patients are

registered according to the International Classification of Diseases for Oncology,

3rd edition (ICD-O-3) histological code, 9827 [15]. However, information on

clinical subtype of ATL is not available in regional cancer registry systems because

there is no ICD-O-3 code for the subtypes.

In Japan, ATL accounts for 40–50% of non-Hodgkin lymphoma (NHL) in

HTLV-1-endemic areas

[4, 55], but for only 10% of NHL throughout Japan [3]. A series of nationwide

hospital-based surveys reported 700–800 new cases of ATL annually during

1986–1997 [82] and 910 cases in 2006–2007 [94]. Based on these surveys, the

estimated number of annual new cases of ATL in Japan was ~1,000 cases. The

mean age at diagnosis of ATL has increased with time, from the early 50s in

1980–1990 to the late 60s in 2006–2007. Regarding subtype distribution, lym-

phoma subtype tended to increase with time from 19.1% of all ATL in 1984–1987

[71], to 23.7% in 1980–1990 [82], and 34.8% in 2006–2007 [94] (Fig. 3.1). A recent

analysis of 15 population-based cancer registries in Japan estimated annual

age-standardized incidence of ATL during 1993–2006 was 2.53–2.09 (per

100,000 persons, standardized to the world population) for men and 1.66–1.67 for

women in endemic regions, whereas 0.10–0.21 for men and 0.09–0.14 for women

in nonendemic regions [12]. They also reported that the annual incidence was

declining in endemic regions but increasing in nonendemic regions. Unfortunately,
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insufficient data for ATL have been accumulated in regional cancer registries in

Japan.

In the USA, most patients with ATL are migrants from endemic areas. A

population-based survey reported that the annual incidence of ATL in African

Americans in Brooklyn was estimated to be 3.2 per 100,000 person-years

[44]. The North American Association of Central Cancer Registries [96] reported

a total of 431 cases (248 men and 183 women) of ATL between 1997 and 2002,

showing that the age-adjusted incidence rate was 0.05 for men and 0.03 for women

per 100,000 population. The study also reported a racial difference in the incidence,

showing that African Americans had the highest rates of ATL (0.12 for men and

0.13 for women per 100,000 population). This observation can be explained by the

higher number of migrants from endemic areas of the Caribbean and parts of

sub-Saharan Africa rather than a racial difference in susceptibility.

In Brazil, ATL accounts for ~30% of patients with T-cell malignancies [61]. A

Brazilian ATL Study Group identified 195 cases of ATL in the national registry of

T-cell malignancies in 1994–1998 [60], but no epidemiological indicators were

available.

3.2.3 Incidence and Lifetime Risk of ATL Among HTLV-1
Carriers

Few prospective studies have investigated development of ATL among asymptom-

atic HTLV-1 carriers. Most studies have evaluated cross-sectionally the incidence

of ATL by a linkage between age- and sex-specific ATL incidence in regional

Fig. 3.1 Changes in proportion of ATL subtype (acute, lymphoma, chronic, and smoldering

types) over time. The percentage shows the proportion of each subtype in the total number of

ATL cases in the respective survey duration (The data for 1984–1987 and 1988–1997 were taken

from reports of the Lymphoma Study Group in Japan [71, 82], and the data for 2006–2007 were

based on a report by Yamada et al. [94])
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cancer registries and age- and sex-specific seroprevalence data of blood donors or

hospital patients.

In Japan, crude annual incidence of ATL was reported as ~60 per 100,000

HTLV-1 carriers aged �20 years in a nationwide survey [78]: 116 for men and

66 for women per 100,000 HTLV-1 carriers in Saga (Southwest Japan) [84]; 137.7

for men and 57.4 for women per 100,000 HTLV-1 carriers aged >30 years in small

islands with high HTLV-1 seroprevalence [4]; and 61 per 100,000 HTLV-1 carriers

in a hospital-based study in Nagasaki (Southwest Japan) [42]. Based on these data,

the cumulative lifetime risk for development of ATL in HTLV-1 carriers is

estimated to be 3–5% (4–7% for men, 2–4% for women) in Japan. A recent analysis

reported an annual ATL incidence among 10,000 HTLV-1 carriers of 7.7 and 8.7

for the endemic and nonendemic areas, respectively, by multiplying the seroprev-

alence of first-time blood donors in 2006–2007 by the number of ATL cases

accumulated by a nationwide survey in 2007–2008 [65].

In Jamaica, Murphy et al. reported that the cumulative lifetime risk of ATL for

HTLV-1 carriers before age 20 years is estimated to be 4% for men and 4.2% for

women [50].

3.3 Risk Factors for ATL Development from HTLV-1

Carriers

HTLV-1 infection alone is not sufficient for development of ATL. A variety of host

susceptibility, laboratory, viral, and immune markers, genetic abnormalities, and

other factors are potential factors for the development of ATL (Table 3.1). How-

ever, so far, there is no critical determinant for progression from HTLV-1 carrier

status to overt ATL.

3.3.1 Host Susceptibility

There is consistent evidence that aging is a definite risk factor for the development

of ATL from HTLV-1 carrier status. In Japan, ATL occurs mostly in adults and

most patients with ATL are diagnosed at age >60 years [94]. In the most recent

nationwide survey of ATL diagnosed during 2010–2011, 65% of patients with ATL

were aged �60 years (unpublished data). In Japan, most transmission of HTLV-1

occurs during infancy through mother-to-child transmission via breastfeeding;

therefore, the latent period from primary infection until ATL onset may be

>60 years. In Jamaica and Brazil, however, the average age at diagnosis of ATL

was reported to be 43 years and 44 years, respectively [20, 60]; thus, age at onset of

ATL in the Caribbean is younger than in Japan. The reason for the difference in age

at onset between Japanese and Caribbean patients is unknown. Differences in race,

3 Epidemiology 37



lifestyle and HTLV-1 genotype [Cosmopolitan subtype (a) in Japan vs African

subtypes (b and d–g) in the Caribbean] [92], and other unknown differences may be

involved.

There is consistent evidence that male sex is a definite risk factor for the

development of ATL from HTLV-1 carrier status in Japan. Several Japanese cohort

studies reported that male HTLV-1 carriers had a three- to fivefold higher risk of

developing ATL than female carriers had [4, 27]. However, the male-to-female

ratio of ATL patients with HTLV-1 African subtypes differs from the ratio in

patients with Japanese subtypes: a population-based survey in Brooklyn,

New York, reported that the annual incidence of ATL was three times higher in

women than in men [44]. A Jamaican study also showed that the cumulative

lifetime risk of ATL was higher in women (4.2%) than in men (4.0%) [50]. The

reason for the sex-related differences in the incidence rate of ATL between Japan

and other regions is unknown. This also may be related to the difference in HTLV-1

subtype.

Specific human leukocyte antigens (HLAs) are associated with an increased risk

of developing ATL in Japan [90]. The allele frequencies of HLA-A26,

HLA-B4002, HLA-B 4006, and HLA-B4801 were higher in ATL patients than in

asymptomatic HTLV-1 carriers, and ATL patients possessing these alleles

Table 3.1 Risk markers for

the development of ATL in

HTLV-1 carriers

Host susceptibility

Attained at an age of >50 years

Male sex

Mother-to-child infection in infancy

HLA-A26, HLA-B4002, HLA-B4006, and HLA-B4801

Immune system abnormalities

Co-infection with Strongyloides stercoralis

Undergoing immunosuppressive treatment

Viral markers

High HTLV-1 proviral load >4 copies/100 PBMCs

Monoclonal integration of proviral DNA

Laboratory markers

High level of sIL-2R >500 U/mL

High level of anti-HTLV-1 titer >1024

High level of circulating abnormal lymphocytes >0.6%

High level of white blood cell count >9000/μL
Low level of of anti-Tax reactivity

Decreasing cell surface antigen CD26 CADM1 + CD7

Decreasing cell surface antigen ratio of CD26/CD25

References are described in Sect. 3.3 “Risk factor for ATL devel-

opment from HTLV-1 carriers” in this chapter

ATL adult T-cell leukemia, HTLV-1 human T-cell leukemia virus

type 1, HLA human leukocyte antigen, PBMC peripheral blood

mononuclear cell, sIL-2R soluble interleukin-2 receptor, CD clus-

ter of differentiation
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developed ATL 12.6 years earlier than patients with other alleles [97]. The impact

of HLA alleles on the development of HTLV-1-related diseases has been investi-

gated to explain familial clustering and ethnic differences of ATL [73, 86].

Apparent ethnic or racial differences in susceptibility to HTLV-1 infection and

developing ATL seem unlikely. Studies from the USA and UK show a higher

incidence of ATL in Blacks than in Whites [72, 73, 96]; however, most of the ATL

patients were of African origin, particularly from areas where HTLV-1 is endemic.

3.3.2 Immune System Abnormalities

HTLV-1 infects CD4-positive T cells, and chronic infection can lead to abnormal

immunity in HTLV-1 carriers. A variety of abnormalities of immunoregulatory

genes has been investigated to explain the development of ATL (summarized in

Matuoka et al. 2011 [46]). All of these abnormalities suggest that a higher prolif-

eration of HTLV-1-infected cells and a low immune response against Tax may be

associated with the onset of ATL.

There are many clinical reports to suggest that persistent immune abnormality

contributes to the development of ATL from HTLV-1 carrier status. For example,

HTLV-1 carriers co-infected with Strongyloides stercoralis (as an opportunistic

pathogen) are considered a high-risk group for developing ATL, with a high

provirus load [16, 51], high level of soluble interleukin-2 receptor (IL-2R) [69],

and high level of soluble CD30 [7]. Furthermore, a lot of clinical evidence has

accumulated recently to indicate the potential contribution of immunosuppression

in HTLV-1 carriers to the development of ATL. For example, ATL developed from

HTLV-1 carriers undergoing immunosuppressive treatment after organ transplan-

tation [28, 39, 86, 97] and from HTLV-1 carriers with comorbid rheumatoid

arthritis treated with tocilizumab or other first biological agents [8, 52]. Further

studies are needed to confirm the definite association between the immunosuppres-

sive state and the development of ATL from HTLV-1 carriers.

3.3.3 Laboratory Markers

A variety of laboratory prognostic indicators for the development of ATL from

HTLV-1 carrier status have been reported. These include a high number of circu-

lating abnormal lymphocytes, high level of soluble IL-2R (>500 U/mL), high level

of lactate dehydrogenase, low anti-Tax reactivity, high HTLV-1 antibody titers, and

high white blood cell count (>9000/μL), after adjustment for age, sex, and relative

lymphocyte counts [26, 31, 35].

Aberrant expression of cell surface antigens is usually used for clinical routine

diagnosis of ATL based on the fact that ATL cells phenotypically express CD4,

CCR4, and CD25. Two studies reported that expression of CD3, CD7, and CD26 on
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HTLV-1-infected cells was diminished in acute and chronic ATL and slightly

downregulated in smoldering ATL [82, 86]. These results suggest that the

downregulation of those cell surface antigens could be predictive markers for the

early phase of leukemogenesis of ATL from HTLV-1 carriers. Kamihira et al. [36]

analyzed cell surface antigens on HTLV-1-infected cells in HTLV-1 carriers,

smoldering ATL, and chronic ATL, by taking into consideration the pattern of

Southern blot hybridization and provirus load. The results suggest that reduced

expression of CD26 and decreasing CD26/CD25 ratio are novel biomarkers for

predicting clonal bands and discrimination of carriers and smoldering ATL.

Kobayashi et al. [41] reported that flow cytometry of T cells revealed that expres-

sion of cell adhesion molecule 1 (CADM1) and stepwise downregulation of CD7

were closely associated with the clonal expansion of HTLV-1-infected cells in

ATL. They also showed that CADM1+ cells with downregulated expression of CD7

in asymptomatic HTLV-1 carriers exhibited properties in common with those in

indolent ATL carriers [41]. Ishigaki et al. [32] established the four-color flow

cytometry system to distinguish HTLV-1 carriers with a high risk for ATL devel-

opment from those with a low risk, by selecting the CADM1 versus CD7 plot [32].

3.3.4 Provirus Load

A higher HTLV-1 provirus DNA load in the peripheral blood mononuclear cells

(PBMCs) is a strong risk marker for developing ATL from asymptomatic HTLV-1

carriers [26, 33, 45, 56]. In particular, HTLV-1 carriers with a high provirus load

>4 copies/100 PBMCs is an independent factor for progression of ATL, even after

adjusting for sex, age, family history of ATL, and other possible risk factors

[33]. Nevertheless, the association between HTLV-1 provirus load and disease

development remains unclear because the majority of HTLV-1 carriers with a

higher provirus load remain ATL-free, and a higher HTLV-1 provirus load is also

an important predictor for the development of HAM/TSP.

3.3.5 Provirus Integration Status

Some HTLV-1 carriers have monoclonal integration of HTLV-1 provirus DNA into

mononuclear cells, without signs of malignant proliferation or clinical signs and

symptoms related to leukemia [30]. Such carriers are suggested to be a high-risk

group for development of ATL, but their prognosis varies from being stable long-

term carriers to development of ATL [30, 31]. Carvalho and Da Fonseca Porto [10]

also found a correlation between monoclonal integration of provirus DNA and

abnormal lymphocytes in peripheral blood, with a trend for greater severity of the

parasitic infection.
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3.4 Transmission of HTLV-1 and Its Prevention

Direct cell-to-cell contact is required for the efficient transmission of HTLV-1

[6]. There are three main routes of transmission of HTLV-1: mother to child via

breastfeeding [22], sexual intercourse [37], and blood transfusions containing

cellular blood components [57]. Other minor modes of transmission are parenteral

transmission via needle-sharing among drug users and via organ transplantation

from HTLV-1-infected donors.

3.4.1 Mother-to-Child Transmission and Its Prevention

Intrauterine transmission via transplacental infection or placental micro-transfusion

is rare because no provirus HTLV-1 DNA was detected in cord blood of infected

mothers [38]. Instead, postnatal transmission via breastfeeding is the major route of

mother-to-child transmission [22]. Gender difference in the transmission rate via

breastfeeding is debatable [91]. The major risk factors for HTLV-1 transmission via

breastfeeding from mother to child are long duration of breastfeeding for

>6 months, high HTLV-1 antibody titers in maternal serum, and high level of

HTLV-1 provirus load in breast milk [47, 91].

As ATL and HAM develop only from HTLV-1 carriers and most HTLV-1

infection results from mother-to-child transmission, prevention of transmission

via breastfeeding is the most efficient way to reduce the development of HTLV-

1-associated diseases. Since the discovery of breastfeeding transmission in 1985 in

Japan, several interventional programs to prevent breastfeeding transmission have

been implemented. The most active prefecture-wide intervention program, named

the ATL Prevention Program, was started in August 1987 in Nagasaki [23]. The

efficiency of the program showed that the transmission rate was 2.4% when there

was no breastfeeding, 8.3% when breastfeeding was limited to<6 months, and 20%

when breastfeeding was >6 months [22]. In Jamaica, a prospective study showed

that 32% of children breastfed for>12 months were infected, compared with 9% of

those breastfed for <12 months [93].

3.4.2 Sexual Transmission and Its Prevention

Sexual transmission is the second main route of HTLV-1 transmission. Sexual

transmission occurs predominantly from male to female via HTLV-1-infected

lymphocytes in semen [48]. A prospective cohort study in Japan reported that the

rate of transmission was 3.9 times higher if the carrier spouse was male rather than

female [74]. A recent retrospective cohort analysis of new HTLV-1 infections of

HTLV-1-negative repeat blood donors also reported that the incidence of new
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HTLV-1 positivity was 3 times higher in female donors than male donors [67].

These are thought to be responsible for the increased HTLV-1 seroprevalence with

age in female blood donors than in male donors after age 30 years [66]. The

efficiency of male-to-female transmission of HTLV-1 is thought to depend on

viral load and duration of married life [37, 72]. Therefore, contraceptive use is the

only preventive measure for sexual transmission of HTLV-1.

3.4.3 Blood-Borne Transmission and Its Prevention

Transmission of HTLV-1 through blood transfusion was verified serologically and

virologically in Japan [57, 68]. Retrospective analyses of HTLV-1-negative recip-

ients who were transfused with blood positive for HTLV-1 antibody found that 62%

of recipients had seroconverted [57]. To prevent virus transmission via blood

transfusion, countrywide serological screening of donated blood for HTLV-1 has

been implemented in Japan, followed by the USA in 1988, France in 1991, Brazil in

1993, and the UK in 2002. In Japan, HTLV-1 transmission via transfusion has been

almost eliminated through the serological screening of donated blood using the

particle agglutination assay (until 2007) and chemiluminescence enzyme immuno-

assay since 2008 and indirect immunofluorescence assay as a confirmatory test for

screening test-positive blood [66].

Transmission of HTLV-1 through needle-sharing is another route of blood-borne

transmission. No data are available for this transmission route in Japan. In Brazil

and Latin America, several reports show an increasing number of new HTLV-1

infections through needle-sharing with the length of the needle use [19]. As with

HIV prevention, public education, such as needle exchange programs, is the only

way to prevent new transmission.

Furthermore, there are a non-negligible number of case reports about transmis-

sion of HTLV-1 through organ transplantation from HTLV-1-positive donors to

HTLV-1-negative recipients, with subsequent development of HAM [5, 53, 85]. To

prevent new transmission via organ transplantation, prior screening of the donor’s
HTLV-1 status should be mandatory.

3.5 Future Perspective

Strategies for prevention of mother-to-child and blood transfusion transmission of

HTLV-1 have reduced the number of new infections. Advanced biological tech-

niques have revealed many molecular mechanisms and risk factors for the devel-

opment of ATL in HTLV-1 carriers. However, there is still no strategy to eliminate

HTLV-1 from infected individuals or to prevent ATL development from the virus

carrier status. The ultimate preventive and therapeutic strategy is a vaccine to

eliminate or neutralize HTLV-1 infection or to prevent the development of ATL
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and HAM in asymptomatic HTLV-1 carriers. Several vaccine designs have been

developed, such as HTLV-1 Tax DNA-targeted vaccine [54] and HTLV peptide-

based vaccine [40, 77]. Recently, additional promising vaccines and antibodies

have been developed, such as dendritic cell-based anti-HTLV-1 vaccine [64, 75],

anti-HBZ vaccine [76], and antibodies against envelope gp46 [80].
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Chapter 4

Pathology

Koichi Ohshima and Hiroaki Miyoshi

4.1 Neoplastic Lesions

4.1.1 Sites of Involvement

Most Adult T-cell leukemia/lymphoma (ATL) patients present with widespread

lymph node involvement as well as peripheral blood. The fact that the concentration

of neoplastic cells in a peripheral blood sample does not correlate with the degree of

bone marrow involvement suggests that circulating neoplastic cells are recruited

from other organs such as the skin and lymph nodes, and indeed, the skin is the most

common extralymphatic site of involvement (>50% of patients with ATL)

[7]. Other clinically relevant extranodal sites of involvement associated with

morbidity include the lungs, liver, spleen, gastrointestinal tract, and central nervous

system [8] (Table 4.1).

4.1.2 Clinical Features: Peripheral Blood

Four clinical subtypes of ATL have been identified: acute, lymphomatous, chronic,

and smoldering (Table 4.2) [9]. Because most patients have stage IV disease at

presentation, the Ann Arbor staging system is not prognostically useful. The most

common subtypes, acute ATL, is characterized by a leukemic phase, often with a

markedly elevated white blood cell count, skin rash, and generalized lymphade-

nopathy. The leukemic cells are medium- to large-sized lymphoid cells with
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irregular nuclei and basophilic cytoplasm. Characteristic ATL cells have been

described as “flower cells,” with many nuclear convolutions and lobules

(Fig. 4.1). Patients with ATL usually have hepatosplenomegaly, constitutional

symptoms, and elevated lactate dehydrogenase levels. Hypercalcemia, with or

Table 4.1 Human T-cell leukemia virus type I (HTLV-1)-related disease

Neoplastic disorders Reactive disorders

Peripheral blood (leukemia) Confirmed

Smoldering type HTLV-I-associated myelopathy (HAM)

Chronic type HTLV-I-associated uveitis

Acute type Not confirmed

Lymph node (Lymphoma) HTLV-I-associated lymphadenitis

Hodgkin’s-like type HTLV-I-associated bronchopneumopathy

(HAB)

Pleomorphic small-cell type HTLV-I-associated arthropathy (HAAP)

Pleomorphic (medium- and large-cell)

type

HTLV-I-associated nephropathy

Anaplastic large-cell type Infective dermatitis

Skin Polymyositis

Erythema Sj€ogren syndrome

Papule Autoimmune thyroiditis

Nodule Polyneuropathy

Tumor Immunodeficiency association

Gastrointestinal tract Strongyloidiasis (gastrointestinal tract)

Erosion Varicella zoster (skin)

Ulceration Crusted scabies (skin)

Tumor Opportunistic lung infection

Liver Pneumocystis carinii

Portal or sinus infiltration Cytomegalovirus

Bone marrow Aspergillus fumigatus

Infiltration with or without fibrosis Candida albicans

Lung Cryptococcus neoformans

Interstitial infiltration Carcinoma (not confirmed)

Modified from Ref. [64]

Table 4.2 Diagnostic criteria for clinical subtypes of ATL

Smoldering Chronic Acute

Lymphocytosis No Increased Increased

Blood abnormal lymphocytes >5% Increased Increased

LDH Normal Slight increased Increased

Ca Normal Normal Variable

Skin rash Erythema, papules Variable Variable

Lymphadenopathy No Mild Variable

Hepatosplenomegaly No Mild Variable

Bone marrow infiltration No No Variable

Modified from Ref. [9]
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without lytic bone lesions, is a common feature, while leukocytosis and eosino-

philia are common complications [10].

The lymphomatous variant is characterized by prominent lymphadenopathy.

However, there is no peripheral blood (PB) involvement.

The chronic subtype is associated with skin lesions, most commonly exfoliative.

While absolute lymphocytosis may be present, atypical lymphocytes are not

numerous in the blood. ATL cells of the chronic subtype are generally small with

slightly abnormal notched, indented, and convoluted nuclei (Fig. 4.1). Hypercalce-

mia is absent. Although patients may have hepatosplenomegaly, the clinical course

is generally indolent; the median survival is about 2 years [9].

In patients with the smoldering subtype, the white blood cell count is normal,

with >5% circulating neoplastic cells. ATL cells are generally small with a normal

appearance of small lymphocyte. Patients frequently have skin or pulmonary

lesions and do not have hypercalcemia. Progression from the chronic or smoldering

to the acute subtype occurs in 25% of cases, but usually after a long period of time

(Fig. 4.1) [9].

OS according to the clinical subtypes.

Hiroo Katsuya et al. Blood 2015;126:2570-2577

©2015 by American Society of Hematology

Fig. 4.1 Survival of patients with ATL subtypes. Acute and lymphomatous forms have an

aggressive clinical course, whereas longer survival is seen in patients with chronic or smoldering

disease (Adapted from Ref. [9]). In peripheral blood of acute ATL, the leukemic cells are medium-

sized to large lymphoid cells with irregular nuclei and basophilic cytoplasm. The characteristic

ATL cells have been described as “flower cells” because of their many nuclear convolutions and

lobules (a). ATL cells in the chronic variant are generally small with slight nuclear abnormalities,

such as notching, indentation, and convolution (b)

4 Pathology 51



4.1.3 Lymph Node Lesions

Histopathological examination of HTLV-I-involved lymph nodes usually, although

not uniformly, finds lymph nodes with a typical pleomorphic appearance. In

addition to the lymph nodes of patients with overt ATL, the lymph nodes of some

patients with pre-ATL show a Hodgkin disease-like morphology. The lymph nodes

of carriers without ATL manifest features of lymphadenitis [11–13].

4.1.3.1 Lymphomatous Lesions

4.1.3.1.1 Pleomorphic (Medium- and Large-Cell) Type

The medium and large tumor cells vary in size and show obvious nuclear irregu-

larities. Giant cells with cerebriform, Reed-Sternberg-like or bizarre nuclei are

frequently seen in lymph nodes (Fig. 4.2a). This type is the typical nodal lesion

of ATL.

Fig. 4.2 Histology of HTLV-I associated lymph nodes. (a) The pleomorphic (medium-sized and

large-cell) type shows a diffuse proliferation of atypical medium-sized to large lymphoid cells

with irregular nuclei, intermingled with cerebriform giant cells (center). (b) The lymph nodes of

the pleomorphic small-cell type show a diffuse proliferation of atypical medium-sized to small

lymphoid cells. (c) The anaplastic large-cell type shows a diffuse proliferation of atypical large

lymphoid cells with prominent nucleoli. (d) AILT-like ATL shows proliferation of high endothe-

lial venules with a variety of infiltrating inflammatory cells
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4.1.3.1.2 Pleomorphic Small-Cell Type

Histologically, these tumor cells are as large as or slightly larger than normal

lymphocytes in the peripheral circulation (Fig. 4.2b) and show mild nuclear irreg-

ularities, with only a few cells displaying mitotic figures. Tumor cells have the

phenotype of a peripheral T cell. [13, 14]

4.1.3.1.3 Anaplastic Large-Cell Type

The tumor cells are much larger than the cells of large-cell lymphoma and show a

uniform pattern of cell proliferation. Tumor cells with prominent nucleoli and an

abundant cytoplasm have been found, and multinucleated giant cells such as Reed-

Sternberg cells have also been detected (Fig. 4.2c). Tumor cells express the CD30

antigen and have the phenotype of a peripheral T cell [13, 15].

4.1.3.1.4 AILT-Like ATL

Angioimmunoblastic T-cell lymphoma (AILT) is a rare morphological variant of

ATL. Examined lymph nodes have shown proliferation of high endothelial venules

and various infiltrating inflammatory cells, including plasma cells and eosinophils

(Fig. 4.2d). The lymphoma cells are medium to large in size, with clear

cytoplasm [16].

4.1.3.1.5 Immunophenotypes and Genotypes

Tumor cells express T-cell-associated antigens (CD2, CD3, CD5), but usually not

CD7. While the cells of most cases are CD4+CD8-, a few are CD4-CD8+ or double

positive/negative for CD4 and CD8. CD25, the interleukin-2 receptor alpha subunit,

is strongly expressed in nearly all cases. The large transformed cells may be

positive for CD30, but are ALK negative [17]. None of the cases appear to have

tumor cells that express the cytotoxic molecules T-cell-restricted intracellular

antigen and granzyme B. The absence of the expression of these markers is a key

consideration in differentiating between ATL and extranodal cytotoxic T-cell

lymphoma in HTLV-I-endemic areas. In addition, tumor cells frequently express

the CCR4 chemokine receptor and FoxP3, a regulatory T-cell (Treg) marker

[18]. The origin of ATL cells has been postulated to be peripheral CD4+ alpha/

beta T cells, and it has been suggested that CD4+CD25+FoxP3+ Treg cells are their

closest normal counterpart [18] (Fig. 4.3). The follicular T-cell markers CD10,

bcl6, and CXCL13 are not expressed by ATL, including AILT-like ATL, tumor

cells.

Most ATL cases are characterized by monoclonal integration of HTLV-I provi-

ral DNA, and some by oligoclonal integration, but clonal integration is not present
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in carriers [19]. T-cell receptor genes of the α-, β-, γ-, and δ-chains are clonally

rearranged in ATL. While a dominant T-cell clone has not been observed in HTLV-

I carriers, oligoclonal T-cell expansion can be detected [19].

4.1.3.2 Atypical Lymphomatous and Nonlymphomatous Lesions

4.1.3.2.1 Hodgkin Cell-Like Type

The lymph nodes exhibit a relatively preserved nodal architecture with diffuse

infiltration of small- or medium-sized lymphocytes with mild nuclear irregularities.

Small aggregated foci or clusters of a few giant cells with irregularly lobulated,

highly convoluted, Reed-Sternberg- or Hodgkin cell-like nuclei are scattered

throughout the expanded paracortex (Fig. 4.4a). The giant cells occasionally dis-

play mitotic features. Immunohistological analysis reveals that proliferating small-

to medium-sized lymphocytes possess a peripheral T-cell phenotype of helper/

inducer cells (CD1-, CD2+, CD3+, CD4+, CD8-) and that giant cells show a

Hodgkin lymphoma phenotype, which reacts with anti-CD30 antibody and/or

anti-CD15 and anti-PAX5 antibodies. Analysis of receptor genes has found

rearrangement and/or deletion of the T-cell receptor genes Cβ and/or Jγ. Proviral
HTLV-I DNA bands have been found, although the bands are weaker than those

usually seen in typical ATL, probably because of the small population of integrated

HTLV-I lymphocytes. Molecular analysis by single-cell polymerase chain reaction

Fig. 4.3 Immunophenotype of ATL. (a) ATL cells express T-cell-associated antigen of CD3 (a)

and CD4 (b). (c, d) ATL cells frequently express FoxP3 of the regulatory T-cell marker (c) and

CCR4 of the chemokine receptor (d)
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has confirmed that the giant cells are reactive cells that specifically resemble the

immature B cell lineage, while the background CD4-positive T cells, which show

evidence of clonality, are HTLV-I infected [11, 20].

4.1.3.2.2 Lymphadenitis Type

Histological examination of the lymph nodes of HTLV-I-associated lymphadenitis

shows a preserved nodal architecture with small lymphoid follicles, enlargement of

the paracortex, and diffuse infiltration by small- or intermediate-sized lymphocytes

(Fig. 4.4b), with the latter cells showing slight nuclear irregularities.

Immunohistochemically stained sections have shown proliferating small- to

intermediate-sized lymphocytes possessing a peripheral helper/inducer T-cell

Survival of HTLV-I associated lymph node lesions

Fig. 4.4 Survival and histology of HTLV-I associated lymph nodes (Adapted from Ref. [13]). (a)

The lymph nodes of HTLV-I-associated lymphadenitis show an enlarged paracortex with a diffuse

infiltration of lymphocytes, which express the CD4 antigen (inset). (b) The lymph nodes of

Hodgkin-like ATL feature Reed-Sternberg-like giant cells, which react with CD30 antibody

(inset). Survival curve of HTLV-I-associated lymph node lesions. The pleomorphic (medium-

and large-cell) and ALCL types are associated with a rapidly deteriorating survival curve, while

Hodgkin’s type shows a progressive decline in the survival rate. The pleomorphic small-cell type

is associated with an initial steep increase in mortality, which reaches a plateau during the middle

and late periods of disease progression. In contrast, all cases with lymphadenitis were still alive at

the end of the study concerned (Adapted from Ref. [13])
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phenotype (CD1-, CD2+, CD3+, CD4+, CD8-), while no cases have shown

rearrangement or deletion of the T-cell receptor genes Cβ and Jγ or rearrangement

of the immunoglobulin heavy chain gene (JH). Except for a few cases in which

oligoclonal bands were detected, no monoclonal proviral DNA bands have been

found. However, these bands were weaker than those of typical ATL cases,

probably because of the small population of lymphocytes with integration of

HTLV-I proviral DNA [12].

4.1.3.3 Survival Rates

The median survival time (MST) and 2- and 5-year survival rates of patients with

the different types of ATL are shown in Fig. 4.3. The survival curve of patients with

pleomorphic (medium- and large-cell)-type lesions, which display features typical

of ATL, rapidly decreases, during both the early and late stages of the disease

(Fig. 4.4). ATL manifested by anaplastic large-cell- and AILT-type lesions is also

associated with a highly aggressive course; most patients die within 2 years after

diagnosis. ATL with Hodgkin-type lesions was found to be associated with a

progressively decreasing survival curve during an observation period of 8 years.

Pleomorphic small-cell-type lymphoma has been associated with an initial steep

increase in mortality, with plateauing of the rate during the middle and later

observation periods. On the other hand, all cases with lymphadenitis were alive at

the end of one study (Fig. 4.3) [13].

4.1.4 Cutaneous Lesions

ATL commonly involves the skin, as well as the peripheral circulatory system and

lymph nodes. Cutaneous lesions related to ATL are polymorphous in appearance.

Skin lesions are frequently observed in all the clinical subtypes. The prevalence of

lesions reportedly ranges from 43% to 72% [21]. Furthermore, some reports have

described patients who presented with cutaneous lesions only, remaining free for

many years of leukemic changes or visceral invasion [22, 23]. Johno et al. [22]

proposed a new category of ATL, cutaneous ATL (cATL), manifested throughout

the entire course of disease by persistent skin lesions and which does not easily

progress to leukemia or nodal lymphoma. Their findings also indicate that the

prognosis of the tumoral type of ATL (MST: 26 months) is worse than that of the

erythematopapular type (80 months) [22].

We previously investigated the HTLV-I proviral status and clinicopathological

features of the cutaneous lesions of 80 cases with serum anti-ATL antibody

(ATLA) to evaluate the relationship between the macroscopic/histopathological

findings of the patients and patient outcome [23]. The MST of patients with the

provirus was found to be 14 months, which was markedly shorter than the MST of

patients negative for integrated proviral DNA (72 months). Of 46 cases with
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proviral DNA, 21 had solitary or multiple red nodules (including 3 with subcuta-

neous induration), 8 had multiple red papules, and 17 had erythema (Fig. 4.5).

Patients with papules and tumors tended to have worse outcomes than those with

erythema (Fig. 4.6).

Histopathological examination of the biopsy tissue from the erythematous

lesions of the cases found perivascular or diffuse infiltration in the upper dermis

by small- to medium-sized atypical lymphoid cells with mild to moderate nuclear

atypia (Fig. 4.5). Mitotic figures were few in number. These atypical lymphoid cells

had the phenotypes of peripheral T cells (CD1-, CD2+, CD3+, 45RO+, and usually

CD4+) [21–23].

Histopathological examination of the biopsy tissue from nodular lesions of cases

with nodules found infiltration by medium- to large-sized atypical lymphoid cells

with round or irregular nuclei and small nucleoli. Mitotic figures were occasionally

encountered. Biopsy tissue with a diffuse infiltration pattern also manifested atyp-

ical medium- to large-sized lymphoid cells. The outcome of patients with nodular

or diffuse infiltration by medium- to large-sized lymphoma cells was worse than the

Fig. 4.5 Macroscopic/histopathological findings of skin. (a) The macroscopic findings have been

classified as erythema (a), papules (b), nodules (c), and tumor (d). Histopathological findings. The

lymphoma cells have infiltrated the epidermis, producing Pautrier-like microabscesses. The

lymphoma cells react with CD3 antibody (inset) (e). The lymphoma cell sizes are varied to

small (f), medium sized (g), and large (h)
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outcome of those with perivascular infiltration by small- to medium-sized lym-

phoma cells (Figs. 4.5 and 4.6) [23].

The macroscopic findings were fairly similar to the histopathological findings.

The nodular lesions of cases with nodules showed nodular infiltration. The papular

lesions showed nodular or diffuse infiltration. The erythematous lesions showed

diffuse or perivascular infiltration. In this series of 80 cases, patients with nodules

and papules had a worse outcome than those with erythema, and the histopatho-

logical analysis found that patients with nodular infiltration by atypical lymphoid

cells had the worst outcome (MST: 9 months). The outcome of patients with

diffusely infiltrated lesions (MST: 20 months) was somewhat better than the

outcome of patients with perivascular infiltration of their lesions (MST:

24 months) [23].

4.1.5 Gastrointestinal Tract

The results of a few studies have suggested that HTLV-I may also be involved in

the development of gastrointestinal T-cell lymphoma (GTL) [24, 25]. Sakata et al.

[25] reported that 23–78% of ATL cases showed stomach invasion, and almost all

of these patients were in an advanced clinical stage of the disease. While these

findings indicate that gastric invasion by ATL cells occurs frequently during the

advanced stage of ATL, there have also been reports of a few early-stage ATL cases

with HTLV-I-associated GTL.

We analyzed 15 patients with HTLV-I-associated GTL [26]. The gastric lesions

were located in the upper or middle corpus in eight cases and widely distributed in

seven. Macroscopic examinations found ulcerated masses, erosions, or tumors.

Histopathological examination found three types of lesions. One type showed

diffuse infiltration by atypical medium-sized lymphoid cells with round or irregular

HTLV-I associated cutaneous lesions

Fig. 4.6 Survival of cutaneous lesions. Patients with papules, nodules, and tumors have poorer

prognosis than those with erythema. The large-cell type have poorer prognosis than small and

medium-sized type (Adapted from Ref. [23])
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nuclei. A second type showed diffuse infiltration by medium- and large-sized

pleomorphic lymphoid cells with round or irregular nuclei. The third type, which

occurred in rare cases, had diffuse proliferation of large to giant anaplastic cells

with round or lobulated nuclei, distinct nucleoli, and abundant cytoplasm. Cohesive

growth patterns were detected (Figs. 4.7 and 4.8). Among all three types, the

destruction of gastric glands by infiltrating lymphoma cells was obvious. These

patients all had poor outcomes, dying within 2 years of treatment. Four cases in this

series showed no evidence of leukemic changes, but nine cases showed atypical

lymphoid cells in the peripheral blood (1–2% of lymphocytes were atypical)

[26]. Rare cases showed small and large intestinal lesions, which appeared on

endoscopy as multiple ulcers or erosive changes [24].

4.1.6 Liver

ATL involvement of the liver is mainly seen in the portal area, which shows

infiltration by atypical medium- to large-sized lymphoid cells with irregular nuclei.

Destruction of the limiting plate of hepatocytes is occasionally seen, and in some

Fig. 4.7 Macroscopic/histopathological findings of gastrointestinal tracts. (a) Endoscopy dem-

onstrated edematous and reddish mucosa in large intestine. (b) The spreading methylene blue on

the mucosa surface enabled to discriminate the lesions. (c) The large intestine shows a diffuse

infiltration of lymphoma cells in the mucosa. (d) The lymphoma cells are pleomorphic medium-

sized and large-cell type. The lymphoma cells react with CD3 (e) and CD4 (f) antibody
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cases, there is sinus infiltration. Fibrosis is rare (Fig. 4.8c, d). Mitotic features are

occasionally encountered. [14]

4.1.7 Bone Marrow

ATL involvement of the bone marrow is occasionally seen, even in cases with a

leukemic blood picture, as are patchy infiltrates of atypical lymphoid cells with

irregular or round nuclei in the marrow cavity, sometimes near bone trabeculae.

Clinically, hypercalcemia is an important laboratory finding associated with ATL.

Absorption of bone accompanied by periosteal fibrosis, such as seen in osteitis

fibrosa generalisata, may or may not be accompanied by tumor cell infiltrates

(Fig. 4.9). Increased numbers of osteoclasts are sometimes seen in the

peritrabecular spaces (Fig. 4.9) [14].

Fig. 4.8 Histological findings of stomach and liver. (a) The stomach shows a tumorous lesion

with a diffuse proliferation of lymphoma cells with anaplastic large-cell features (inset). (b) The

lymphoma cells react with CD3. (c) The liver shows diffuse swelling but no local lesions. (d) The

portal area of the liver shows a diffuse infiltration of atypical lymphoid cells
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4.2 Nonneoplastic Lesions

4.2.1 HTLV-I-Associated Myelopathy/Tropical Spastic
Paraparesis (HAM/TSP)

The first symptoms are weakness of the lower limbs and lumbar pain, although the

initial complaint can be sensory in nature, such as tingling, burning, or pins and

needles. Urinary and sexual problems can also be initial symptoms [27].

The disease mainly affects the spinal cord, particularly the lateral and anterior

columns, where bilateral loss of myelin and axons has been observed, mainly along

the neural tract. Perivascular and parenchymal infiltration by lymphocytes and

macrophages, as well as astrocytosis, have been found in the white and gray matter

of the spinal cord, while blood vessels in the spinal cord and in the subarachnoid

space of the spinal cord have shown hyaline thickening of the media and adventitia,

associated with infiltrating lymphocytes (Fig. 4.10a). The lymphocytes have not

shown nuclear atypia, and mitotic figures have rarely been encountered. The spinal

lesion is associated with dense perivascular mononuclear cell infiltrates, largely

CD8+ lymphocytes [28].

Fig. 4.9 Bone and bone marrow of ATL. (a) A radiograph of the leg shows extensive lytic bone

lesions. (b) The bone marrow shows diffuse infiltration of lymphoma cells. (c) The lymphoma

cells are pleomorphic medium-sized and large-cell type. And osteoclasts of the peri-trabeculae are

increased in number. (d) The lymphoma cells react with CD3 antibody
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4.2.2 HTLV-I-Associated Uveitis (HAU)

Based on seroepidemiological, clinical, and virological data, it can be concluded

that HTLV-I is closely associated with a certain type of uveitis. Uveitis is a vision-

threatening inflammatory disorder affecting the intraocular tissues (iris, ciliary

body, vitreous body, optic nerve, retina, choroid). Histopathological examination

has found that the intraocular tissues are infiltrated by a number of inflammatory

cells, including lymphocytes and histiocytes. The lesion is characterized by a

granulomatous or nongranulomatous reaction accompanied by vitreous opacity

and retinal vasculitis. The lymphocytes do not show nuclear atypia, and mitotic

figures are rarely encountered. [29]

Fig. 4.10 Histology of HAM and immunodeficient disorders. (a) HAM mainly affects the spinal

cord, particularly the lateral and anterior columns, where loss of myelin and axon, accompanied by

dense lymphocytic perivascular infiltration (inset) (Kluver-Barrera staining). (b) Strongyloides

stercoralis was detected in the gastric glands. (c) Pneumocystis carinii was identified in the

alveolar spaces by means of Grocott staining. (d) HTLV-I-associated bronchopneumopathy

(HAB) displays diffuse reticular shadow in CT. (e) The histology shows a proliferation of

bronchial mucosa epithelium with an infiltration of lymphocytes. (f) The lymphocytes show no

nuclear atypia
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4.2.3 HTLV-I-Associated Bronchopneumopathy or Diffuse
Panbronchiolitis (HAB)

Kimura et al. [30] reported that some individuals with idiopathic interstitial pneu-

monia and diffuse panbronchiolitis possessed an anti-ATL antibody (ATLA). They

postulated an association between HTLV-I infection and idiopathic interstitial

pneumonia and diffuse panbronchiolitis.

Histopathologically, there is a proliferation of bronchial epithelial mucosa

accompanied by thickening of the basement membrane and an infiltrate in the

epithelial layer and mucosa propria, predominantly consisting of lymphocytes

together with some plasma cells, histiocytes, and neutrophils (Fig. 4.10d–f). The

lymphocytes are usually small; and nuclear atypia and mitotic features are rare,

while in the alveolar areas there is mild fibrosis and edema of the alveolar wall and

infiltration by lymphocytes and some plasma cells.

In cases with leukemia/lymphoma invasion, however, there is prominent diffuse

infiltration by atypical lymphocytes with irregular nuclei. Nodular proliferation is

also present in these cases.

4.2.4 Opportunistic Infections

Opportunistic infections occur frequently in patients with ATL [4]. In addition,

HTLV-I-infected carriers seem to have an increased risk of strongyloidiasis, which

suggests a possible subclinical immunodeficiency. HTLV-I-infected individuals

from areas where Strongyloides stercoralis is highly endemic should probably

have regular fecal examinations (Fig. 4.10b, c). Other reported infections associated

with HTLV-I carriers include crusted scabies, disseminated molluscum

contagiosum, and extrapulmonary histoplasmosis [4].
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Chapter 5

Immunophenotype

Kaoru Uchimaru

5.1 Typical Immunophenotype of Adult T-cell leukemia/

lymphoma (ATL) Cells

Adult T-cell leukemia/lymphoma (ATL) is a malignancy of CD4(+) peripheral T

cells. Accordingly, ATL cells express T cell-associated antigens (pan-T markers)

such as CD2, CD3, and CD5 but usually lack CD7 [1]. Most ATL cells express

CD45RO, which is expressed on effector/memory T cells, and not the naı̈ve T cell

marker CD45RA. Because at least one of these pan-T markers, particularly CD5

and/or CD7, is usually lost in T cell malignancies [2] and CD7 is also lost on tumor

cells in most cases with Sezary Syndrome or mycosis fungoides [3], loss of CD7 is

not specific for ATL. ATL cells usually express CD4 but not CD8 antigen. However,

in some cases, the tumor cells express CD8. In these cases, some express CD4 and

others do not. The incidence of the typical CD4(+)/CD8(�) phenotype in ATL cases

is around 80% and 10–20% of the cases are CD8(+), that is, CD4(�)/CD8(+) or

double-positive [4]. There are also CD4/CD8 double-negative cases. The CD8

antigen is composed of α and β subunits and the CD8αα homodimer can be induced

on the surface of CD4 T cells [5]. ATL cells can reversibly express CD4 and CD8α
antigen and sometimes CD8β antigen [6, 7]. Yamada and colleagues [7] reported the

induction of a CD8αα(+) cell line from CD4(+) ATL cells. Most CD8(+) ATL cases

express CD8αα homodimer on the surface of tumor cells. These results suggest that

most CD8(+) ATL cells are derived from CD4(+) cells.

ATL cells express CD25, which is the α chain of the IL-2 receptor. It is expressed

on activated T cells and B cells [8, 9]. Furthermore, most resting memory T cells

express CD25 [10], and it is one of the most important markers of regulatory T cells
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[11]. So, though it is also a well-known Tac antigen expressed on ATL cells [12], it is

not a specific marker of ATL. Indeed, presently, there is no known single surface

marker that can be used to discriminate between ATL cells and other T cell

malignancies.

CD25 has been a therapeutic target for ATL. Denileukin diftitox is a fusion

protein of the diphtheria toxin and the receptor-binding domain of IL-2, which can

bind to CD25 [13, 14]. It is active for cutaneous T-cell lymphoma and peripheral

T-cell lymphoma (PTCL) and may be active for ATL.

Recently, a phase I/II clinical trial of the monoclonal anti-CD25 antibody

daclizumab was conducted for aggressive and indolent ATL. Some chronic and

smoldering ATL patients achieved partial remission, but it failed to show activity

against aggressive ATL [15]. LMB-2 is an anti-CD25 antibody Fv fragment fused

to a pseudomonas exotoxin [16]. Promising results were reported in a phase II

clinical trial of LMB-2 combined with cyclophosphamide and fludarabine [17].

Typical ATL cells are morphologically distinct. They have a multi-lobulated

nucleus and basophilic cytoplasm and have been called “flower cells,” but the

morphology of ATL cells is diverse and it is often difficult to morphologically

distinguish ATL cells from non-ATL cells, particularly in indolent-type ATL cases.

In acute myeloid/lymphoblastic leukemia, leukemic cells can be clearly detected as

CD45-diminished cells using fluorescence-activated cell sorting (FACS) analysis.

For ATL, there is not yet a widely accepted FACS system that can detect tumor

cells. As described above, typical ATL cells express CD3 and most cases lack CD7

expression. In a previous study, CD3 expression decreased after Human T-Cell

Leukemia Virus Type 1 (HTLV-1) infection, correlating with the downregulation

of CD7 expression [18–20]. Using these data, another study constructed a multi-

color flow cytometric analysis system to discriminate acute-type ATL cells from

non-ATL cells [21]. In this FACS system, ATL cells are detected as a CD3-dim/

CD7(�) population within the CD4(+) population, in which monocytes are gated

out according to CD14 expression. Representative data are shown in Fig. 5.1. ATL

cells are detected as a CD3-dim/CD7(�) population with high purity. Flow

cytometric analysis of ATL cells in the peripheral blood is useful for an accurate

estimation of the efficacy of treatment.

5.2 Chemokine Receptor

Chemokines are cytokines that induce chemotaxis and the activation of leukocytes.

Chemokines bind to their specific receptors: 18 chemokine receptors have been

identified [22]. Chemokines and their receptor systems are important in lymphocyte

differentiation and migration. T lymphocytes are divided into various subsets

according to their function and these functions depend on their chemokine receptor

expression [23]. Among them, CCR4 is expressed selectively on Th2 cells and

regulatory T cells [24, 25]. CCR4 is a characteristic marker of ATL cells. In one

study, 88.3% of ATL cases expressed CCR4 but only 4.9% expressed CXCR3, a

typical marker of Th1 cells [26]. In addition, compared to CCR4(�) ATL patients,
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CCR4(+) ATL patients were significantly more likely to have skin involvement

because cutaneous endothelia expressed the CCR4 ligand thymus and activation-

regulated cytokine (TARC) and had significantly worse prognoses. The authors

reported that CCR4 expression was an independent and significant prognostic

factor of aggressive ATL.

Peripheral T cell lymphoma not otherwise specified (PTCL-NOS) is a hetero-

geneous clinical entity, and various chemokine receptors are expressed on the

tumor cells. From the viewpoint of chemokine receptor expression patterns,

PTCL-NOS can be classified into three groups: the CCR4, CCR3, and CXCR3

types. In gene expression profile analyses using DNA tip chips arrays, ATL,

angioimmunoblastic T cell lymphoma (AILT), and anaplastic large cell lymphoma

(ALCL) had tendencies to cluster, whereas some PTCL-NOS cases clustered with

ATL, some with AILT, and others with ALCL. They expressed CCR4, CXCR3,

and CCR3, respectively. Furthermore, an array comparative genomic hybridization

(array CGH) study revealed that a pattern of genomic imbalance in CCR4-positive
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PTCL-NOS was very close to that of lymphoma-type ATL. The subgroup had

similar prognoses to ATL, AILT, and ALCL, respectively [27]. These data may

suggest that CCR4-positive PTCL-NOS, regardless of HTLV-1 infection, may

share some common oncogenic pathways with ATL, particularly in the lymphoma

type [27].

CCR4 may be a therapeutic molecular target, and an anti-CCR4 antibody has

been developed to treat CCR4-positive lymphoid malignancies. Mogamulizumab is

a defucosylated humanized anti-CCR4 antibody [28]. In a phase II study conducted

in Japan, mogamulizumab achieved an overall response rate of 50% for refractory

or relapsed ATL patients, and 30.8% showed complete remission [29]. Recently, a

multicenter, randomized phase II study that compared combination chemotherapy

(mLSG15) with or without mogamulizumab reported that adding mogamulizumab

to mLSG15 increased the overall response rate and the proportion of patients who

had complete remission [30]. As CCR4 is also a marker for regulatory T cells,

mogamulizumab also depletes regulatory T cells (Tregs; see Sect. 5.3). This may

contribute to enhanced anti-tumor immunity, but it may also exaggerate graft-

versus-host disease after allogeneic hematopoietic stem cell transplantation, and

should be carefully revealed whether mogamulizumab can be used safely before

allogeneic stem cell transplantation in the future.

Surveillance studies on chemokine expression other than CCR4 have revealed

that ATL cells express CCR1, CCR7, CCR8, CCR10, and CXCR4 but barely

express CCR2, CCR3, CCR5, CCR6, CCR9, CXCR1, CXCR2, CXCR3, or

CXCR5 [31–33]. Because chemokines are important for chemotaxis and tissue-

homing of T cells, these chemokine expression profiles have a significant influence

on ATL cell biology. As mentioned above, CCR4 is a receptor for TARC (CCL17)

and macrophage-derived chemokine (MDC, CCL22). Skin keratinocytes, dendritic

cells, and endothelial cells produce CCL17 and CCL22, and thus CCR4 expression

is likely one reason why ATL cells infiltrate skin lesions [34]. Moreover, consider-

ing that CCL27 (cutaneous T-cell attracting chemokine; CTACK) is the ligand for

CCL10 produced by epidermal keratinocytes, CCR10 expression may contribute to

skin infiltration of ATL cells. Another CCR10 ligand, CCL28 (mucosa-associated

epithelial chemokine; MEK), has been reported to be expressed in the intestinal

mucosa [35, 36]; thus, CCR10 expression may explain the frequent gastrointestinal

infiltration in ATL [33].

5.3 Regulatory T Cell Markers

Tregs are a distinct subset of T cells that suppress aberrant or excessive immune

responses, maintaining self-tolerance [37]. Tregs express CD4 and CD25, which

they share with Th2 cells and ATL cells. Furthermore, they express CCR4 and

CCR8 chemokine receptors, which are also typically expressed on ATL cells.

Given these immunophenotypical similarities between Tregs and ATL cells and

the strong immunosuppressive activity of ATL cells [7], expression of regulatory
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T cell-associated molecules on ATL cells has been extensively surveyed.

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR,

CD357) and cytotoxic T-lymphocyte-associated protein 4 (CTLA4, CD152) have

been reported to be key markers of functional Tregs [38, 39]. GITR is a member of

the TNF receptor superfamily and is mainly expressed in lymphoid tissues, includ-

ing Treg cells. CTLA4 has been reported to be a costimulatory molecule of Tregs.

Markedly higher expression of GITR has been reported in primary ATL cells

[40]. Regarding CTLA4, CD4(+)CD25(+) cells in the peripheral blood express

considerable levels of CTLA4 in representative ATL cases [41]. These data, along

with the immunosuppressive activity of ATL cells, suggest that ATL cells may

originate from Tregs.

FoxP3 is a transcription factor that is essential for Treg function [42]. It is a

master regulator of Treg development and function. Several studies have revealed

that ATL cells express FoxP3 [40, 43] and these findings further suggest that ATL

cells may be derived from Treg cells. In the peripheral blood of HTLV-1 asymp-

tomatic carriers, HTLV-1 is frequently detected in CD4(+)FoxP3(+) cells [44]. One

possible explanation for FoxP3 expression on HTLV-1-infected CD4(+) T cells is

induction by HTLV-1 basic leucine zipper factor (HBZ). HBZ is encoded on the

minus strand of the HTLV-1 provirus [45] and is constitutively expressed from the

30-LTR. HBZ transgenic mice develop T-cell lymphomas that express CD4, indi-

cating that HBZ has transforming activity for T cells [46]. Tumor cells of transgenic

mice resemble ATL cells and cells infected with HTLV-1 in HTLV-1 asymptom-

atic carriers. These lymphoma cells express FoxP3, and HBZ directly induces

FoxP3 expression in CD4(+) T cells. These results indicate that FoxP3 expression

can be induced by HBZ in cells infected with HTLV-1 and as FoxP3 is a master

regulator of the Treg phenotype, cells infected with HTLV-1 may exhibit a Treg-

like phenotype. It may be that ATL cells do not necessarily originate from

Treg cells and the origin of ATL cells should be determined in future studies.

5.4 Transferrin Receptor

The transferrin receptor (CD71) is a glycoprotein that plays a key role in the

regulation of iron metabolism and cell growth [47, 48]. It is expressed constitutively

on actively proliferating cells, such as hematopoietic cells and enterocytes of the

intestinal mucosa [49]. HTLV-1 infection upregulates surface transferrin receptor

expression by changing its distribution between the cytoplasm and cell membrane

[50]. In ATL patients, tumor cells have been reported to express high levels of this

receptor, particularly in acute-type ATL patients [51]. Its expression in indolent-

type ATL is lower than in aggressive-type ATL. Blockade of the transferrin

receptor using a monoclonal antibody suppresses the proliferation of cells infected

with HTLV-1. An anti-transferrin receptor antibody can block the binding of

transferrin to the transferrin receptor and inhibit cell proliferation and induce

apoptosis [51]. These data suggest that a monoclonal antibody for the transferrin

5 Immunophenotype 71



receptor may represent a novel immunotherapy for ATL. Clinical assessments of

anti-transferrin receptor monoclonal antibodies for ATL treatment have been

undertaken. The expression level of the receptor may be variable even in aggressive

ATL cells (Fig. 5.2, lower right) and should be determined in each case.

The transferrin receptor is relevant to cell proliferation and there is a possibility

that a non-proliferating fraction does not express it. Yamaguchi et al. [52] investi-

gated cancer stem cells in a Tax-transgenic mouse model of ATL and identified

putative cancer stem cells in a side population that showed the immunophenotype

of CD38(�), CD71(�), and CD117(+). These results suggest that there may be a

tumor cell population that does not express the transferrin receptor in ATL patients.

The distribution of its expression in cells infected with HTLV-1 and ATL cells

should be investigated further.

5.5 Death Receptors

The Fas receptor, also called CD95, is a transmembrane glycoprotein belonging to

the tumor necrosis factor (TNF) receptor family [53]. Fas induces apoptosis by

binding to Fas ligand (FasL) and is important in the regulation of physiological and

pathological cell death. Receptors that induce cell death are called death receptors

and Fas is a representative death receptor, along with the TNF-related apoptosis-

inducing ligand (TRAIL) receptor. Regulation of cell proliferation and cell death is

crucial in physiological states, and deregulation of apoptosis can induce clonal

expansion, leading to malignancy. In ATL cells, Fas expression is paradoxically
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upregulated. Among ATL subtypes, chronic-type ATL cells express significantly

higher levels of Fas than acute-type ATL cells [54]. Despite high expression of Fas,

ATL cells are resistant to FasL-induced apoptosis. Several mechanisms, such as

induction of cellular FADD-like IL-1β converting enzyme (FLICE) inhibitory

protein (c-FLIP) by Tax [55–57] and expression of truncated Fas, which deletes

the transmembrane domain and suppresses membrane-bound Fas signals in a

dominant negative manner [58, 59], confer this resistance in ATL cells. c-FLIP

profoundly inhibits Fas-mediated apoptosis by preventing the formation of death-

inducing signaling complex (DISC) [56, 60]. TRAIL belongs to the TNF gene

superfamily, which induces apoptosis in various tumor cells [61]. The TRAIL

receptor has four isoforms, of which TRAIL R1 and R2 are the active forms, and

most ATL cells express a TRAIL receptor, principally TRAIL R2 [62]. Despite

expression of TRAIL R2, ATL cells are also resistant to TRAIL-induced cell death

due to overexpression of c-FLIP [55, 56, 63].

5.6 CADM1

Tumor suppressor of lung cancer 1 (TSLC1) is a tumor suppressor gene identified in

non-small cell lung cancer [64]. It is frequently inactivated in various cancers, such

as esophageal, gastric, pancreatic, breast, and uterine cervical cancer [64]. It

belongs to the immunoglobulin superfamily and is involved in the formation of

epithelial structure. It has also been called immunoglobulin superfamily 4 (IGSF4),

Necl-2, SgIGSF, RA175, and SynCAM1, depending on its observed function, but is

now called cell adhesion molecule 1 (CADM1) [65, 66]. CADM1 is expressed in

most tissues, except peripheral lymphocytes. In hematopoietic cells, it is weakly

expressed in erythrocytes and more weakly in neutrophils and monocytes but is not

expressed in T lymphocytes [67]. A fraction of CD4(+)CD25(+)FoxP3(+) Tregs in

the peripheral blood of healthy volunteers express CADM1, but the expression

level is low [68].

Although CADM1 was first identified as a tumor suppressor gene, ectopic high

expression has been reported in ATL [69]. Morishita and colleagues examined gene

expression profiles of more than 12,000 genes using microarrays in acute-type ATL

cells and found that CADM1 was one of the three most upregulated genes and

confirmed their expression in acute- and chronic-type ATL cells [67]. The same

group further studied CD4(+)CADM1(+) cells in ATL patients and revealed that

the proportion of CD4(+)CD25(+) double-positive cells and abnormal lymphocytes

correlated well with that of CD4(+)CADM1(+) cells in the peripheral blood

[68]. Furthermore, they showed that the proportion of CADM1(+) cells in

CD4-positive cells in the peripheral blood of HTLV-1 asymptomatic carriers

correlated well with the HTLV-1 DNA copy number [68, 69]. These results suggest

that CADM1 may be a marker for cells infected with HTLV-1, even in the

early phase of the oncogenic process in ATL development.

5 Immunophenotype 73



Kobayashi et al. [70] constructed a multi-color FACS analysis system using

CADM1 and CD7 expression. Briefly, dead cells were initially excluded and mono-

cytes were gated out as CD14(+)/CD4-dim cells on a CD4 versus CD14 plot. After

CD4(+) T lymphocytes were gated on a CD3 versus CD4 plot, a CADM1 versus

CD7 plot was prepared (Fig. 5.3). Representative data are shown in Fig. 5.4. Acute-

type ATL cells were detected and highly purified as a CADM1(+) CD7-negative

population (N, Fig. 5.4, top left). When analyzing indolent-type ATL cells, such as

smoldering and chronic cells, two other populations can be clearly detected:

CADM1(+)/CD7-dim and CADM1(�)/CD7(+) (P, D, Fig. 5.4, top, middle, and

right). In asymptomatic carriers, these three populations can be detected and the

proportions of the D and N populations increase as disease status progresses

(Fig. 5.4, bottom, middle, and right). Clonally expanding cells can be detected in

the D and N populations by inverse PCR (Fig. 5.5a, b) and major expanding clone

(s) exist in advanced asymptomatic carriers and ATL patients. These D and N

populations, detected in the peripheral blood of advanced asymptomatic carriers

and indolent ATL patients, have some common properties with aggressive ATL

cells, such as severe suppression of miR31 expression and aberrant splicing patterns

of Ikaros family genes [70–73]. These results suggest that the immunophenotype of

cells infected with HTLV-1 changed from CD7(+)CADM1(�), through CD7-dim/

CADM1(+), to CD7(�)/CADM1(+). The CD7(+)/CADM1-negative population
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includes some cells infected with HTLV-1 which can be detected by real-time PCR,

so there are some CADM1-negative cells infected with HTLV-1, although most

HTLV-1 cells are CADM1(+), particularly in advanced asymptomatic carriers and

ATL patients [70]. This multi-color FACS system using CD7 and CADM1 was

named the second-generation HTLV-1 analysis system (HAS-2G) and is useful for

monitoring patients infected with HTLV-1 and promising for detecting high-risk

carriers for ATL development [74]. Cell sorting using HAS-2G makes it possible to

separate and purify an intermediate-state population of cells infected with HTLV-1

that will develop into ATL and be useful for analyzing the oncogenic process to

ATL.

5.7 CD26

CD26 is a glycoprotein that possesses dipeptidyl peptidase IV (DPPIV) activity in

its extracellular domain. It is expressed in various tissues, including the kidney,

lung, liver, melanocytes, and T cells [75]. CD26 is a multifunctional protein whose

functions include T cell co-stimulation and immune regulation [76]. Changes in

CD26 expression have been reported in lymphoid malignancy. Tumor cells of
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mycosis fungoides patients lose CD26 expression [77], whereas upregulation of

CD26 has been reported in T-cell acute lymphoblastic leukemia and B-cell chronic

lymphocytic leukemia [78]. These data suggest that CD26 may be a useful marker

for detecting malignant cells, particularly in lymphoid malignancy, although it may

also be useful for other malignancies such as melanoma [79] and mesothelioma

[80]. Kamihira et al. examined CD26 expression in ATL patients and HTLV-1

asymptomatic carriers and found that CD26 expression was suppressed or lost in

ATL cells [81]. The expression level declined along with progression of disease

status by promoter methylation of the gene. The same group further investigated the

proportion of CD26-positive cells along with those of CD7, CD25, and CCR4 in the

peripheral blood from asymptomatic carriers to indolent ATL (smoldering- and

chronic-type) patients [82]. The downregulation of CD26 expression preceded the

decrease in CD7 expression and upregulation of CD25 and CCR4 expression as

asymptomatic carriers progressed into indolent ATL. They revealed that the CD26/

CD25 ratio was a specific and sensitive surrogate marker for the detection of the

clonal status of cells infected with HTLV-1. This is important considering that there

are asymptomatic carriers who exhibit an oligoclonal pattern of cells infected with

HTLV-1, and similarly, smoldering ATL is heterogeneous in the clonality of cells

infected with HTLV-1 [70].

5.8 Conclusions

ATL is a malignancy of CD4(+) T cells, but some cases express CD8 and may lose

CD4 expression. Among pan-T markers, ATL cells express CD2, CD3, and CD5,

but usually lack CD7. They express CD25, which is the α chain of the IL-2 receptor

and an activated T cell marker. Regarding chemokine receptors, they express

CCR1, CCR4, CCR7, CCR8, CCR10, and CXCR4. This immunophenotypic profile

resembles those of Th2 cells and Treg cells. In fact, ATL cells express Treg

markers, such as GITR and CTLA4. Furthermore, ATL cells express FoxP3, the

master regulator of Treg cells. These data suggest that ATL cells may originate

from Tregs, but FoxP3 is induced by HBZ and the Treg phenotype can be induced

by FoxP3. The origin of ATL cells should be determined in the future. ATL cells

paradoxically express CADM1, a tumor suppressor gene of many cancers. Cells

infected with HTLV-1 acquire CADM1 expression along with oncogenesis into

ATL. Furthermore, cells infected with HTLV-1 gradually lose expression of

CD7 and CD26 in the oncogenic process and downregulate CD3 expression.

These immunophenotypical changes are useful for analyzing oncogenesis in cells

infected with HTLV-1. The typical immunophenotype of ATL cells is summarized

in Table 5.1.
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Chapter 6

Leukemogenesis and Molecular

Characteristics of Tumor Cells

Toshiki Watanabe

6.1 Introduction

Adult T-cell leukemia (ATL) is caused by human T-cell leukemia virus (HTLV-1)

[1, 2]. ATL develops after a long clinical latency of about 50 or more years after

mother-to-child infection and is classified into four clinical subtypes: smoldering,

chronic, acute, and lymphoma [3]. ATL cells are monoclonally expanded HTLV-1-

infected cells with malignant transformation. However, whether ATL develops

after horizontal transmission by sexual contact or blood transfusion remains

unclear. Conversely, as described in detail in the following sections, asymptomatic

HTLV-1 carriers have also been shown to have clonally expanded HTLV-1-

infected cells in peripheral blood. Thus, the malignant transformation of a limited

number of cells among the immortalized and clonally expanded HTLV-1-infected

cells is suggested to result in the apparent monoclonal growth and onset of ATL.

This process is based on the accumulation of five or more genetic events, thus fitting

with the multistep carcinogenesis model [4]. HTLV-1 infection, followed by the

expression of viral gene products in infected cells, is considered to be among the

early events that determine the fate of infected T cells.

In this chapter, we summarize the cellular and molecular characteristics of ATL

cells. We particularly focus on the clonal growth, cellular and molecular charac-

teristics, and genomic and epigenomic abnormalities with aberrant gene expression

profiles of HTLV-1-infected cells and ATL cells. Full understanding of the pro-

cesses underlying immortalization, clonal proliferation, and malignant transforma-

tion is not yet complete. Questions that remain to be answered include the

following:
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1. How and when are virus-infected cells immortalized?

2. How is the size of HTLV-1-infected clones regulated?

3. What are the genetic and/or epigenetic mechanisms that determine the differ-

ences between immortalization and transformation?

4. Which genes are involved in the phenotypic progression of HTLV-1-infected T

cells?

The information summarized in this chapter will aid in the understanding of the

molecular mechanisms underlying the leukemogenesis of ATL and provide clues

for designing molecularly targeted therapies against ATL.

6.2 Clonal Growth of HTLV-1-Infected T Cells

6.2.1 Clonality of ATL Cells

Soon after the discovery of HTLV-1, clonal growth of ATL cells was demonstrated

by Southern blot analysis using HTLV-1 provirus DNA as a probe [5, 6]. The

results clearly showed that ATL cells were monoclonally expanded HTLV-1-

infected cells. A part of the patients were shown to have a monoclonal tumor

cells harboring two or more integrated proviruses by analysis of T-cell receptor

β-chain rearrangement and the observation of multiple bands by Southern blotting.

The next set of studies determined whether ATL patients could simultaneously

have multiple clones of HTLV-1-infected cells. Some case reports provided sug-

gestive evidence for the presence of multiple clones in vivo at certain time points or

during the clinical course. Examples include a chronic ATL patient with concom-

itant CD4+/CD8� and CD4�CD8+ clones [7], a patient with two independent clones
in the peripheral blood and lymph nodes [8], a patient with the emergence of a new

clone after spontaneous remission [9], and a patient with a giant skin tumor

harboring five independent clones [10]. Clonal exchange during the clinical course

was also reported in another study [11]. Taken together, these data suggested that

multiple clones could be concurrently undergoing transformation in an individual

and that two or more fully transformed clones could occasionally coexist.

Using array comparative genomic hybridization (CGH), Seto and colleagues

analyzed paired samples from the peripheral blood and lymph nodes of patients

with acute-type ATL. They demonstrated that these patients contained multiple

subclones with distinct genomic aberrations. In many ATL cases, multiple

subclones in the lymph nodes have been found to originate from a common

clone, often with a specific lymph node subclone found in the peripheral blood

[12, 13]. Collectively, these reports strongly suggest the presence of clones con-

currently undergoing transformation in vivo (Fig. 6.1).
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6.2.2 Clonality of HTLV-1-Infected T Cells in Carriers

Given that ATL cells result from the clonal expansion ofHTLV-1-infected T cells that

undergo malignant transformation, the next question pertains to the clonality of

infected T cells in asymptomatic carriers in vivo. Matsuoka and colleagues utilized

inverse polymerase chain reaction (iPCR) to address this question [14]. They demon-

strated that iPCR could quickly detect clonally integrated HTLV-1 proviral DNA in

samples from ATL patients. They also showed that iPCR could detect multiple

amplified bands consisting of HTLV-1 proviral and flanking cellular DNA, demon-

strating the polyclonal nature ofHTLV-1-infected cells in asymptomatic carriers. This

technique has been widely applied to characterize the clonality of HTLV-1 infected

cells in various clinical settings [15–17]. Okayama et al. reported a difference in the

stability of clonality depending on the mode of virus transmission. The clonality of

adult seroconverters who appeared to have acquired the virus horizontally from their

spouses was more heterogeneous and less stable than that of long-term carriers who

had most likely been infected through breastfeeding in their infancy [18, 19].

Wattel et al. employed linker-mediated PCR (LMPCR) to analyze integration

sites of the HTLV-1 provirus. LMPCR was more sensitive, allowing detection of a

HAM

HU

Asymptomatic carriers

Infection Carrier state

Polyclonal population

Carrier and Patients

Polyclonal
growth

Accumulation of 
genetic events

5%

Fig. 6.1 Clonality of human T-cell leukemia virus 1-infected T cells in different clinical stages. A

schematic presentation of clonal growth of human T-cell leukemia virus 1 (HTLV-1)-infected T

cells shows the polyclonal nature of HTLV-1-infected cells in carriers, consisting of varying

numbers of immortalized cells. Each clone originates from a single infected T cell. Accumulation

of genetic events leads to the progression and transformation of a subset of cells resulting in the

onset of adult T-cell leukemia (ATL). ATL cells are members of specific clones that have been

malignantly transformed. HTLV-1 human T-cell leukemia virus 1, ATL adult T-cell leukemia/

lymphoma, HAM HTLV-1-associated myelopathy, HU HTLV-1 uveitis
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greater number of integrated proviruses [20, 21]. Carriers with strongyloidiasis

showed oligoclonal expansion of HTLV-1-infected cells and high proviral loads

[22]. These new techniques provided information on the clonality of HTLV-1-

infected cells in various clinical conditions.

Subsequently, Bangham and colleagues developed a novel, high-throughput

protocol using next-generation sequencing (NGS) to map and quantify proviral

genomic integration sites. They revealed that there were between 10,000 and

100,000 clones in the peripheral blood of HTLV-1-infected individuals, which

was much higher than previously speculated [23]. They also claimed that HTLV-1

integration into the host genome was not random and that it was associated with

specific transcription factor binding sites [24]. They also suggested that integration of

HTLV-1 upstream of certain proto-oncogenes was associated with ATL

[25]. Although information revealed by this new approach significantly impacted

the understanding on the clonality of infected T cells in vivo, this technique was

limited in determining the number of infected cells. This approach depended on the

size variation of sheared genomic DNA fragments that were a maximum of 400 base

pairs as the size of recovered DNA fragments was distributed between 300 and

700 base pairs following shearing. To overcome this limitation, Firouzi et al. intro-

duced oligomer tags of eight nucleotides that marked sheared DNA before amplifi-

cation, which enabled the discrimination of more than 60,000 cells, dramatically

expanding the ability to quantify cells with this technique [26].

The results of these analyses provided firm evidence supporting the hypothesis

that HTLV-1 carriers harbor a great number of HTLV-1-infected and immortalized

clones and that each clone originates from a single infected T cell. The size of cell

populations belonging to specific clones (clone sizes) also varied greatly, and some

clones had large populations that could be detected as clonal expansion by conven-

tional techniques, such as Southern blot hybridization and iPCR.

One other issue related to HTLV-1-infected T cells in vivo is the identification of

HTLV-1-infected cells among uninfected T cells. Uchimaru and colleagues devel-

oped a technique using multicolor fluorescence-activated cell sorting (FACS) to

identify infected cells and discriminate between untransformed and transformed

HTLV-1-infected CD4+ lymphocytes based on the cell surface expression of CD7

and CADM-1 (TSLC1) [27, 28]. A combination of the abovementioned techniques

will provide detailed information on the number and cellular characteristics of

HTLV-1-infected cells in carriers and in patients with HTLV-1-associated diseases.

6.3 Molecular Characteristics of ATL Cells

6.3.1 mRNA Expression

ATL cells have been extensively documented to express cytokines, chemokines, their

receptors, and adhesionmolecules, most of which have also been shown to be targeted

by the viral transactivator protein Tax [29–33].Morishita and colleagues reported that
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CADM1, a cell surface molecule originally isolated as a tumor suppressor in

non-small cell lung cancer [34],was highly expressed inATLcells [35]. Subsequently,

CADM1 was shown to be expressed not only in transformed ATL cells but also in

HTLV-1-infected non-transformed T cells in carriers. CADM1 is currently used for

the identification of HTLV-1-infected T cells by multicolor FACS analysis as

described above [27, 28]. Other highly expressed molecules include PTHrP and

other markers that are not expressed in normal T cells but play important roles in

the unique pathophysiology ofATL. PTHrP is responsible for humoral hypercalcemia

of malignancy (HHM) that occasionally accompanies solid cancers. In ATL, HHM is

observed during the clinical course ofmore than half of the patients andwas one of the

major causes of mortality until therapy for HHM was established [36].

The overexpression of cell adhesion molecules and chemokine receptors [30–33,

37–40] and aberrant expression of these genes may be a source of organ infiltration

of ATL cells. One intriguing aspect of these data is the expression of genes that are

not normally expressed in T cells [41, 42]. Lineage-independent ectopic expression

of many genes characterizes ATL cells and suggests underlying abnormalities in

epigenetic regulation that determines tissue-specific gene expression.

6.3.2 MicroRNA Expression

To date, only four studies have characterizedmicroRNA (miRNA) expression profiles

in HTLV-1/ATL cell lines and ATL patients. Pichler et al. reported thatmiR-21,miR-
24, miR-146a, and miR-155 were upregulated, whereas miR-223 was downregulated
inHTLV-1-transformed cells. They showed thatmiR-146a expressionwas induced by
HTLV-1 Tax and NF-κB signaling [43]. Bellon et al. analyzed ATL cells and control

samples from HTLV-1 negative donors using microarray and demonstrated the

downregulation of miR-181a, miR-132, and miR-125a and upregulation of miR-155
and miR-142-3p. They also reported that miR-150 and miR-223 were differentially

expressed in vitro and in vivo. Both miR-150 and miR-223 were upregulated in

uncultured ATL cells and downregulated in HTLV-1-transformed cell lines [44].

Yeung et al. studied miRNA expression profiles in ATL cells obtained from

acute-type ATL patients and in ATL-derived cell lines. Among miRNAs that were

differentially expressed, six miRNAs were upregulated in ATL cells, and of these,

miR-93 and miR-130b were shown to target TP53INP1. The low levels of

TP53INP1 detected in ATL cells were upregulated by the addition of an antagomir

[45]. Yamagishi et al. investigated the miRNA expression signature in primary

ATL cells using 40 ATL samples and CD4+ T cells from 22 age-adjusted healthy

volunteers. They found that the vast majority of differentially expressed miRNAs

were downregulated in primary ATL cells. Furthermore, among significantly

downregulated miRNAs, the most severely suppressed was miR-31, which was

nearly undetectable. They also identified NIK as a target of miR-31 and showed that
the deficiency of miR-31 resulted in overexpression of NIK that led to the consti-

tutive activation of the NF-κB pathway [46].
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6.3.3 Signal Transduction

Expression of HTLV-1 Tax induces various signaling pathways, many of which are

also observed in primary ATL cells. The best known example is the NF-κB
pathway, which is constitutively active in ATL cells. This pathway has been

shown to underlie uncontrolled growth and apoptosis resistance [47]. Inhibition

of NF-κB by a selective inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ),

has been documented to induce apoptosis of ATL cells and specifically reduce the

number of HTLV-1-infected T cells in asymptomatic carriers [48]. One of the

demonstrated mechanisms underlying NF-κB activation is the suppression of

miR-31 overexpression, leading to NIK and NF-κB activation [46]. In addition,

the activation-inducible lymphocyte immunomediatory molecule (AILIM)/induc-

ible costimulator (ICOS) signaling has been shown to be responsible for the

constitutive activation of phosphoinositide-3 (PI3)-kinase/AKT cascade in ATL

cells, inducing the formation of multi-lobulated nuclei observed in ATL [49]. Fur-

thermore, the Jak/STAT pathway has been shown to become activated in ATL cells

and in this case was associated with leukemic cell proliferation [50].

There is limited information on other signal transduction pathways that may be

involved in primary ATL cells, although HTLV-1 Tax has been shown to activate

the MAPK pathway in vitro.

6.4 Genomic Abnormalities

6.4.1 Cytogenetic Characteristics

ATL cells exhibit a variety of cytogenetic abnormalities; however, specific recom-

bination or amplification/deletion events have not been cytogenetically identified.

Kamada et al. reported the results of a cytogenetic study including 107 ATL

patients and found that clonal chromosome abnormalities were found in 96% of

the cases. A variety of numerical and structural abnormalities were also found;

however, none of these were ATL specific [51].

Itoyama et al. studied the relation between chromosomal abnormalities and

clinical outcomes in 50 ATL cases. They found certain chromosomal aberrations

to be correlated with one or more of the clinical features as well as the clinical

severity. Multiple breaks (at least six) correlated with shorter survival [52]. CGH

analysis of 64 cases also revealed a correlation with the clinical course. The most

frequent aberrations included gains at chromosomes 14q, 7q, and 3p and losses at

chromosomes 6q and 13q. Chromosomal imbalances, losses, and gains were more

frequently observed in aggressive ATL cases than in indolent ATL cases. Analyses

of sequential samples during progression suggested clonal changes at crisis; clonal

diversity was common during progression to ATL, and CGH alterations were

associated with the clinical course [53].
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6.4.2 Specific Genetic Abnormalities

Tumor suppressor genes are essential for controlling cellular proliferation, inducing

apoptosis, linking DNA damage signals to cell cycle arrest checkpoints, and

activating appropriate DNA repair pathways. Thus, the inactivation of tumor

suppressors by somatic mutations or epigenetic mechanisms is frequently reported

in many cancer types and is suggested to be involved in tumor initiation and

development.

There are many reports on the inactivation of tumor suppressor genes involved

in cell cycle checkpoints that may lead to the uncontrolled proliferation of ATL

cells. Mutations in TP53 have been reported in about 30% of ATL cases [54–57] in

contrast to its observation in less than 3% of non-HTLV-1-associated T-cell neo-

plasms [58]. Functional inactivation of p53 has also been reported in ATL cells

[59–61]. Although the viral oncoprotein Tax has been shown to inactivate the

transcriptional functions of p53 [62–66], the underlying mechanisms of p53 inac-

tivation are not known as viral protein Tax is not expressed in ATL cells [67].

In many human cancers, CDKN2A (p14ARF and p16INK4a) is frequently

mutated, deleted, or inactivated through promoter hypermethylation [68, 69]. Homo-

zygous deletion or promoter hypermethylation of CDKN2A has been observed in at

least 20% of acute ATL patients, whereas the loss of CDKN2A is infrequent in

chronic and smoldering ATL cases [70–72].

The expression of CDKN1A (p21CIP1/WAF1) is frequently downregulated in

acute ATL cases due to hypermethylation of the promoter region. Watanabe et al.

reported that promoter methylation was observed in 95% of the ATL patients

analyzed, with hypermethylation and partial methylation found in about 25% and

70% of the cases, respectively [73].

A study suggested that RB1 is infrequently mutated or deleted in ATL tumor

cells [55]. Another study reported on the homozygous loss of exon 1 in 5% of ATL

patients, whereas no point mutations were found [74]. In addition, mutations of

RB2/p130 were found in approximately 2.5% of ATL patients [75, 76]. In another

study, ATL cells were documented as expressing low levels of RB1 in about 50% of

ATL patients, and the posttranscriptional regulation of RB1 was hypothesized

[76]. Additionally, low levels of Rb expression have been reported to correlate

with poor prognosis and shorter survival [77].

SHP1 is implicated in the degradation of PIP3 and inhibition of the PI3K/AKT

pathway [78]. SHP1 has been found to be hypermethylated in 90% of the ATL

patients. Inactivation by DNA methylation is more frequently observed in

aggressive-type ATL [79]. No mutations have been identified in the H-, N-, and
K-Ras or c-Myc genes [55].
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6.4.3 Comprehensive Analysis of Genomic Abnormalities

Comprehensive analyses of gene expression (transcriptome analysis) of ATL cells

have been conducted by several groups. Morishita and colleagues found that

CADM1, which was overexpressed in ATL cells, was involved in interactions

with vascular endothelial cells [35]. They demonstrated that CADM1 is a cell

surface marker of ATL [80]. CADM1 expression has also been confirmed to be a

marker of HTLV-1-infected immortalized T cells and has been used in multicolor

FACS analysis to identify these cells in vivo [27]. Asanuma et al. reported the

expression of alternatively spliced Helios variants, some of which were specific to

ATL cells. One of the variants played a role in the proliferation of ATL cells [81].

Ogawa and colleagues reported the results of an integrated genomic and

transcriptomic analysis in a cohort of 426 ATL cases [67]. This study, with a

massive amount of genomic, methylomic, and transcriptomic data, coupled with

cell-based experiments, provided comprehensive and detailed information to gain

insight into the pathogenesis of ATL. The data confirmed the deletion and mutation

of the viral genome in ATL cells and the lack of expression of the sense strand,

including mRNA encoding Tax, in contrast to the constitutive expression of

antisense transcript HBZ. Based on the results of whole-genome sequencing and

single nucleotide polymorphism array-based copy number analysis, they confirmed

the existence of genomic instability that was previously described in ATL. On

average, they identified 60 structural variations per sample. Whole-exome sequenc-

ing in 81 cases, combined with targeted resequencing of 370 ATL cases, identified

50 genes that were recurrently and significantly mutated, with 13 genes affected in

more than 10% of the cases. The most frequently mutated genes in this group were

PLCG1, PRKCB, CARD11, and STAT3, which are implicated in T-cell receptor

(TCR)–NF-κB signaling. In addition, either CCR4 or CCR7 was mutated in 40% of

ATL cases; CCR4mutations were shown to lead to increased PI3K signaling. These

data are compatible with the concept of a memory of Tax in the absence of Tax

expression in ATL cells (Fig. 6.2).

Accumulation of additional mutations affecting the TCR and NF-κB pathways,

together with inactivation of TP53, CDKN2A, and other mutations, eventually

transforms T cells into fully malignant cells. The study by Ogawa and colleagues

also showed that ATL cells delete, mutate, or hypermethylate genes encoding

components of the class I major histocompatibility complex (MHC), death recep-

tors, and proteins involved in cellular adhesion or immune checkpoints as a strategy

to escape detection by the immune system.

The same group recently reported that structural variations (SVs) commonly

disrupt the 30 region of the programmed cell death 1 (PD-1) ligand (PD-L1) gene in
27% of ATL cases [82]. These SVs invariably led to marked elevations in aberrant

PD-L1 transcripts that were stabilized by the truncation of the 30-untranslated
region. This is a unique genetic mechanism of immune escape triggered by SVs

since the only known mechanisms for elevated PD-L1 expression is gene
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amplification and utilization of an ectopic promoter by translocation, found in

Hodgkin and other B-cell lymphomas and in gastric adenocarcinoma.

Ogawa and colleagues have also reported on the existence of unique RHOA
mutations in ATL by whole-genome sequencing of an index case, followed by deep

sequencing of 203 ATL samples [83]. RHOA mutations were found in 15%

(30/203) of the samples and were widely distributed across the entire coding

sequence but were almost invariably located at the guanosine triphosphate (GTP)-

binding pocket. Depending on mutation types and positions, these RHOA mutants

showed different or even opposite functional consequences related to

GTP/guanosine diphosphate (GDP)-binding kinetics, regulation of actin fibers,

and transcriptional activation. These findings suggest that both the loss- and gain-

of-RHOA functions could be involved in ATL leukemogenesis.

Based on the results of whole-genome NGS using freshly isolated ATL cells,

Nicot and colleagues reported the presence of mutations in SUZ12, DNMT1,
DNMT3A, DNMT3B, TET1, TET2, IDH1, IDH2, MLL, MLL2, MLL3, and MLL4
[84]. TET2 was the most frequently mutated gene, occurring in 32% of the samples

(10/31). NGS revealed nonsense mutations accompanied by the loss of heterozy-

gosity in TET2 and MLL3, suggesting important consequences of MLL3 and TET2
inactivation in the leukemogenesis of HTLV-1-induced ATL.
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Fig. 6.2 Accumulation of genomic abnormalities in adult T-cell leukemia cells. In HTLV-1-

infected T cells, viral regulatory proteins, Tax and HBZ, are predicted to affect normal cellular

functions. After a long latency period, a variety of structural and numerical genomic abnormalities

are observed in terminally transformed ATL cells; some of these changes serve the function of

Tax, since Tax is not expressed in ATL cells

6 Leukemogenesis and Molecular Characteristics of Tumor Cells 91



6.5 Epigenetic Abnormalities

6.5.1 DNA Methylation Abnormalities

The first report on DNA methylation of cellular genes was that of the CDKN2
family. The CDKN2 locus encodes proteins such as p16, p14, and p15 and is

involved in cell cycle regulation and considered to be a hot spot of genomic and

epigenomic abnormalities. Our copy number variation (CNV) analyses revealed the

clustering of genomic deletions at this locus in 46 out of 168 cases (27%)

[46]. Nosaka et al. conducted CpG methylation analyses, which showed DNA

hypermethylation of this locus in 47% and 73% of acute-type and lymphoma-

type ATL cases, respectively, whereas the methylation levels were 17% in both

chronic- and smoldering-type ATL cases. Control samples from asymptomatic

carriers and uninfected healthy volunteers did not reveal any methylation of this

locus [85]. Hofman et al. reported that the levels of CpG methylation of CDK2B
were higher than those of CDK2A [86].

A recent report described the progressive accumulation of CpG methylations of

HCAD, SHP1, DAPK, and other genes in association with disease progression

[79]. However, our expression profiling data of ATL samples did not show any

downregulation in the expression of CDKN2 family members. This underscores the

importance of detailed analyses of expression levels and functional consequences

of these cell cycle regulators in ATL cells [46]. CDKN1A (p21waf/Cip1) has been
reported to be downregulated by DNA methylation [73], which is in line with our

data (46). These results suggest a relation between abnormal DNA methylation and

cell cycle regulation and the possible breakdown of their functions.

DNA methylation analyses have also been reported for genes other than cell

cycle regulators. In one study, high levels of DNA methylation of bone morpho-

genetic protein-6 (BMP6) were found in all subtypes of ATL, with higher levels in

aggressive subtypes [87]. In one ATL patient, BMP6 methylation was associated

with progression from chronic to acute type, suggesting the functional involvement

of this gene in tumor progression. DNA methylation of adenomatous polyposis coli

(APC) has also been reported, suggesting that the downregulation of tumor sup-

pressors may be involved in leukemogenesis and/or progression of ATL [88]. The

downregulation of CD26 expression has been found in ATL cells and has been

documented as leading to the discrimination of these cells from normal T cells

[89]. DNA methylation was shown to be involved in this downregulation

[89]. Yasunaga et al. conducted a screening study using methylated CpG island

amplification/representational difference analysis (MCA/RDA) of ATL cells

[90]. They found abnormal DNA methylation in 53 genes, including those involved

in apoptosis resistance such as KLF4 and EGR3. They also reported the aberrant

expression of MEL1S, an alternatively spliced variant of MEL1 resulting from its

hypomethylation, in ATL cells [91].

These data collectively suggest that changes in DNA methylation patterns are

one of the molecular characteristics of ATL cells that contribute to their unique
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cellular phenotypes. A comprehensive description was not available until the

completion of genetic and epigenetic landscape studies conducted by Ogawa and

colleagues [67].

6.5.2 Abnormalities of Histone Modifications

Various chemical histone modifications are known to be involved in the modulation

of the structure of chromatin and gene expression. Thus, complex aberrations of

histone modifications are predicted in ATL cells, which constitute one rationale for

profiling aberrant gene expression. However, mainly due to technical difficulties,

significant progress has not been made in characterizing histone modifications in

ATL cells, in contrast to an extensive number of DNA methylation studies.

Previous studies have provided firm evidence on the abnormalities of histone

deacetylases (HDACs) in human tumor cells and their involvement in malignancy

phenotypes. HDAC inhibitors play important roles in epigenetic studies. Specifi-

cally related to HTLV-1 and ATL, Nishioka et al. reported that HDAC inhibition

induced apoptosis of HTLV-1-infected cell lines [92] and suppressed the constitu-

tively active NF-κB pathway. In contrast, HDAC inhibitors have been shown to

activate the NF-κB pathway by inducing RelA acetylation [93]. Thus, the effects of

HDAC inhibitors on HTLV-1-infected cells remain contradictory and should be

studied in detail. Genes with CpG islands are frequently regulated by the cooper-

ative function of DNA methylation and histone acetylation. One example is TBP-2,
which was downregulated by DNA methylation and histone deacetylation during

the transformation of HTLV-1-infected T cells [94, 95]. Since TBP-2 suppresses the
proliferation of HTLV-1 infected T cells, it is conceivable that epigenetic deregu-

lation of gene expression is directly involved in the regulation of ATL cell prolif-

eration. Another report showed that a new HDAC inhibitor, AR42, successfully

suppressed tumor cell growth in a mouse xenograft model of ATL [96]. The results

of clinical trials with new HDAC inhibitors are expected.

In oncological research, methylation of histone 3 lysine 27 (H3K27) and its

function have been extensively studied. The trimethylation of H3K27 (H3K28m3)

is well known to be involved in the survival, proliferation, dedifferentiation,

invasion, and metastasis of many human cancers, such as breast cancer and prostate

cancer, as well as in B-cell lymphoma [97]. H3K27m3 is a marker for the suppres-

sion of gene expression in the euchromatin region. Polycomb group (PcG) proteins

form multi-protein complexes that function as transcriptional repressors of several

thousand genes controlling differentiation pathways during development. Although

the mechanism by which PcG proteins work as transcriptional repressors is not

completely understood, it is widely predicted to involve posttranslational chemical

modifications of histones by two major PcG protein complexes: polycomb repres-

sive complex 1 (PRC1) and polycomb repressive complex 2 (PRC2).

Fujikawa et al. recently conducted a comprehensive study on the polycomb-

dependent epigenetic landscape of ATL cells to decipher the ATL-specific
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epigenetic code critical for ATL pathogenesis [98]. Integrative analyses of the

epigenome (n ¼ 3) and transcriptome (n ¼ 58) of primary ATL cells and

corresponding normal CD4+ T cells revealed that H3K27me3 was significantly

and frequently reprogrammed in over half of the genes (53.8%) in ATL cells and

that its pattern was distinct from other cancer types and PcG-dependent cell

lineages. Downregulation of gene expression was associated with disease progres-

sion, which included key genes such as miR-31, BCL2L11, EVC1/2, CDKN1A, and
NDRG2. Diverse outcomes were also found by the remote regulation of a broad

spectrum of gene regulators, including various transcription factors, miRNAs,

epigenetic modifiers, and developmental genes. The mutation of EZH2 was not

found in 50 ATL patients studied. High levels of EZH1 expression were confirmed

in peripheral T cells, which compensated for the functions of EZH2. Thus, the
simultaneous depletion of two H3K27me3 writers, EZH1 and EZH2, significantly

diminished cellular H3K27me3 levels and dramatically inhibited ATL cell growth

in comparison to single depletion, suggesting that the compensatory actions of

EZH1/2 might be critical for ATL (Fig. 6.3).
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Fig. 6.3 Epigenetic landscape of ATL. The predominant characteristic feature of an ATL

epigenome is the accumulation of H3K27m3, which suppresses the expression of genes with

important cellular functions. Downregulation of transcription factors, epigenetic modifiers, and

miRNAs leads to secondary effects in gene regulation that determine cellular functions and

clinical manifestations
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6.6 Conclusion

Significant progress has been made in the field of ATL research. This research has

provided extensive information on the cellular and molecular characteristics of

ATL cells. However, several questions remain unanswered. First, information on

the process of immortalization after HTLV-1 infection of T cells is limited due to

the technical difficulties of in vitro infection experiments and the lack of appropri-

ate animal models with HTLV-1 infection. Second, molecular events during clonal

progression have not yet been well delineated. Because the reported landscape of

genetic and epigenetic abnormalities is that of terminally transformed ATL cells,

studies on HTLV-1-infected clones in various carrier states will provide crucial

data on the mechanisms of immortalization and clonal expansion. Finally, there is

insufficient information on the discrimination between low-risk and high-risk

HTLV-1 carriers, although proviral load, one of the major risk factors, is evidently

determined by host factors. Taken together, studies anticipated to delineate molec-

ular processes involved in the natural history of HTLV-1 infection will provide the

basis for the prevention and treatment of HTLV-1-associated diseases,

including ATL.
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Chapter 7

Clinical Features of Adult T-cell Leukemia/

Lymphoma (ATL)

Yoshitaka Imaizumi

7.1 Clinical Features of Adult T-cell leukemia-lymphoma

(ATL)

Adult T-cell leukemia-lymphoma (ATL) is a distinct T-cell malignancy caused by

human T-cell leukemia virus type I (HTLV-1) [15, 20]. ATL usually develops in

elderly carriers of HTLV-1, and recent analysis has shown that the median age of

ATL patients is increasing. Serial nationwide surveys of ATL patients have clearly

demonstrated this trend. The mean age of ATL patients has gradually increased

from 52.7 years in the first survey (cases before 1980) to 61.1 years in the ninth

survey (1996–1997) and finally to 66.0 years in the most recent survey (2006–2007)

(The T- and B-cell Malignancy Study Group. 1981, [18]).

ATL is known as “leukemic lymphoma” and has an extremely poor prognosis

[15]. However, its onset and clinical course are highly heterogeneous among

patients [4]. In some patients, inspection-level abnormalities such as leukocytosis

and abnormal lymphocytes in the peripheral blood (PB) are present without any

symptoms and eventually lead to the diagnosis of ATL. Some patients visit a

dermatologist with skin lesions that are the only clinical symptom. In contrast,

some patients present with high fever, disturbance of consciousness, and organ

failure. Because the general condition of these patients has already become very

poor at the time of consultation, they have a very aggressive clinical course.

The involvement of multiple extranodal lesions is an important clinical feature

of ATL [5]. ATL is a malignancy of mature lymphocytes, and thus, lymphadenop-

athy is frequently observed among ATL patients. However, many ATL patients also

experience extranodal lesions in sites such as the PB, skin, lung, gastrointestinal

tract, bone, central nervous system, ascites, and pleural effusion, among others. The
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combination of extranodal lesions and the various degrees of involvement generate

highly heterogeneous clinical features in ATL. The leukemic manifestation is one

of the most distinctive features of ATL. The abnormal cells in PB are typically

multi-lobulated and have condensed nuclei with basophilic cytoplasm. Such cells

are called “flower cells” and are the characteristic morphology of ATL [10]. The

skin is also frequently involved in ATL. Several types of skin lesions have been

reported in ATL, and a relationship between the type of skin lesion and the

prognosis of ATL has also been shown [9]. Thus, careful observation of not only

the presence of skin lesions but also the type is important for clinicians. ATL cells

invade multiple organs, and therefore, ATL patients often have a high tumor burden

in addition to complications such as the dysfunction of organs including the liver

and/or kidney [17]. A high number of involved lesions and tumor burden are poor

prognostic factors [5].

Infection is an important complication of ATL [11]. Infections are present in

26% of ATL patients at the initial presentation, and more than half are fungal or

viral infections. In ATL patients, CD4-positive T cells are infected with HTLV-1

and have transformed into malignant cells; thus, the normal function of

CD4-positive T cells is lost. Suppressed or altered function has been reported in

HTLV-1-infected T cells [7, 16]. Thus, cellular immunity is severely impaired,

resulting in frequent opportunistic infections such as cytomegalovirus infection,

pneumocystis pneumonia, fungus infection, and strongyloidiasis, among others

[11]. Bacterial infections such as bacterial pneumonia and bacteremia also occur

frequently during the course of the disease. In some patients, severe infections

become the main cause of death [11]. Thus, the diagnosis and treatment of infec-

tious complications are very important in the clinical management of ATL.

Hypercalcemia, another important complication of ATL, causes nausea,

vomiting, constipation, thirst, frequent urination, and a disturbance in conscious-

ness. Renal dysfunction may occur in severe cases [11]. Several factors such as

parathyroid hormone-related peptide and the receptor activator of nuclear factor-

kappa B ligand are involved in hypercalcemia in ATL [2, 6].

These complications (opportunistic infection and hypercalcemia) and a large

tumor burden result in a poor general condition and performance status. These

factors are correlated with difficulties in the treatment of ATL. For such patients,

modification of the dose of anticancer agents and adequate supportive care for

severe complications are necessary.

7.2 Diagnosis of ATL

In practice, the diagnosis of ATL is made clinically when a patient with peripheral

T-cell lymphoma (PTCL) is anti-HTLV-1 antibody positive [11]. In many patients

with ATL, abnormal lymphocytes (flower cells) appear in PB, but “atypical”

abnormal lymphocytes (ATL cells), which are small with a mature nuclear texture

and an incised or lobulated nucleus, are also seen in some patients. The analysis of

cell surface antigens by flow cytometry is very useful for diagnosis. Typically, ATL
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cells show CD3-positive/dull, CD4-positive, CD8-negative, and CD25-positive

phenotypes. However, ATL cells show aberrant phenotypes in some patients

[3]. Recently, expression of CC chemokine receptor 4 (CCR4), a type of chemokine

receptor, has been reported in most ATL cases [1, 19]. The expression of cell

adhesion molecule 1/tumor suppressor in lung cancer 1 (CADM1/TSLC1) has also

been reported [8]. These cell surface markers are expected to become useful

markers for the detection of HTLV-1-infected ATL cells. The details of the

immunophenotype of ATL cells are described in another chapter of this issue.

When abnormal lymphocytes or lymphocytosis are not detected in PB, a biopsy

of the involved lesion is required for the pathological diagnosis of ATL or PTCL.

The monoclonal proliferation of HTLV-1-infected cells can be detected with

Southern blot hybridization (SBH) analysis of PB and/or biopsied samples from

ATL patients [21]. SBH analysis is a useful tool for distinguishing ATL from other

types of PTCL in HTLV-1 carriers. However, when the number of tumor cells in the

sample is not sufficient, a false negative may occur. We should remember the

sensitivity of SBH analysis and the quantity of the specimen required for SBH.

7.3 Clinical Subtypes of ATL

Most ATL patients have abnormal cells in PB. Such patients are categorized as

stage IV in the Ann Arbor staging classification, which has been widely utilized for

staging patients with Hodgkin or non-Hodgkin lymphoma. Because of the leukemic

nature of ATL, the Ann Arbor staging does not reflect the natural progression of

ATL and is not always useful for determining the treatment strategy. According to

the clinical manifestation and natural history, clinical subtypes of ATL were

proposed and are useful for determining a prognosis. ATL is divided into four

clinical subtypes: acute, lymphoma, chronic, and smoldering (Table 7.1) [11]. In a

retrospective study of 818 ATL patients in Japan, the median survival time was

6.2 months for the acute type, 10.2 months for the lymphoma type, 24.3 months for

the chronic type, and not yet reached for the smoldering type. Thus, clinical subtype

classification should be determined to decide the treatment strategy for each patient.

7.3.1 Lymphoma Type

Patients with histologically proven lymphadenopathy and no abnormal lympho-

cytes in PB (<1% and no lymphocytosis) are classified as the lymphoma type. The

precise differential diagnosis of ATL and other PTCL in HTLV-1 carriers is

sometimes difficult, especially for non-leukemic types such as the lymphoma

type, without the result of HTLV-1 SBH analysis.
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7.3.2 Chronic Type

Patients with absolute lymphocytosis (�4000/mm3) and >5% morphologically

abnormal lymphocytes in PB are classified as chronic ATL. If <5% abnormal

lymphocytes are present in PB, histologically proven skin and/or pulmonary lesions

are required for the diagnosis of chronic ATL. The serum lactate dehydrogenase

(LDH) level should be less than twice the normal upper limit, and the serum

calcium level should be normal (<5.5 mEq/l). Lymphadenopathy and some

extranodal organ involvement such as the skin, lung, liver, and spleen are allowed

as criteria for the chronic type. However, involvement of the central nervous

system, bone, and gastrointestinal tract is not allowed. Ascites and pleural effusions

are also not allowed for the chronic type. For patients with chronic ATL, three poor

prognostic factors have been identified: decreased serum albumin, increased serum

LDH, and increased blood urea nitrogen [12]. Chronic ATL patients with normal

values for these three factors have a favorable prognosis and account for about 30%

of chronic ATL.

Table 7.1 Diagnostic criteria for the clinical subtype of ATL

Smoldering Chronic Lymphoma Acute

Anti-HTLV-1 antibody + + + +

Lymphocyte (�103/mm3) <4 ≧4 <4 a

Abnormal lymphocyte ≧5% + ≦1% a

Flower cells a a No a

LDH ≦1.5ULN ≦2ULN a a

Corrected calcium <5.5mEq/l <5.5mEq/l a a

Histology-proven lymphadenopathy No a Yes a

Tumor lesion � � � �
Skin a a a a

Lung a a a a

Lymph node No a Yes a

Liver No a a a

Spleen No a a a

CNS No No a a

Bone No No a a

Ascites No No a a

Pleural effusion No No a a

GI tract No No a a

Modified from Shimoyama [11]

Histologically proven tumor lesions are required, if abnormal lymphocytes in peripheral blood are

less than 5% in the smoldering, chronic, and acute type

ULN upper limit of normal, CNS central nervous system, GI tract gastrointestinal tract
aNo essential qualification except terms required for other subtypes
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7.3.3 Smoldering Type

Patients with a normal absolute lymphocyte count (<4,000/mm3) and �5% of

abnormal lymphocytes in PB without lymphadenopathies are classified as the

smoldering type. The LDH levels should be <1.5 times the upper limit, and

serum calcium should be <5.5 mEq/l. Skin and/or pulmonary involvement of

ATL cells is allowed as a criterion for smoldering ATL, although other extranodal

organ lesions are not. If abnormal lymphocytes are <5% in PB, histologically

proven skin and/or pulmonary lesions are required for the diagnosis of

smoldering ATL.

7.3.4 Acute Type

ATL patients not considered having the smoldering, chronic, or lymphoma types

are classified as having the acute type. Most acute-type ATL patients have abnor-

mal lymphocytes in PB. However, patients without abnormal lymphocytes in PB

should be classified as having the acute type only if they have extranodal lesions,

except in the skin or lung, and have no lymphadenopathy; such patients may be rare.

7.3.5 Indolent and Aggressive ATL

These clinical subtypes are closely related to the prognosis and are used for

stratification of the treatment of ATL patients. The smoldering type and the chronic

type without any of the three poor prognostic factors are called indolent ATL. On

the other hand, the chronic type with any of the poor prognostic factors, acute type,

and lymphoma type are called aggressive ATL [14].

7.3.6 Points to Notice Regarding the Clinical Subtypes
of ATL

Some indolent ATL patients progress to a more aggressive disease status, a

situation that is called “crisis” [13]. In general, patients with progression from

indolent to aggressive ATL are in a state of crisis and are candidates for systemic

chemotherapy. However, we should note that no precise criterion for the diagnosis

of “crisis” has been established. The criteria for the clinical subtype of ATL were

originally made by using clinical data at the time of diagnosis of ATL. These

criteria have not been validated for the management of patients with clinical

progression including “crisis.”
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Another point is important for subtype classification. The borderline of these

subtypes is not always clear. One problem is due to the fact that morphological

detection of abnormal lymphocytes is sometimes difficult. For example, smoldering

ATL patients without skin and/or pulmonary lesions and HTLV-1 carriers are

distinguished according to the percentage of abnormal lymphocytes in PB. Thus,

the differential diagnosis may be difficult if the number of abnormal lymphocytes in

PB is small. A similar situation occurs for distinguishing lymphoma from acute

types of ATL.
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Chapter 8

Prognosis and Prognostic Index

Takuya Fukushima

8.1 Introduction

The classification of adult T-cell leukemia-lymphoma (ATL) into the acute, lym-

phoma, chronic, and smoldering types was proposed by Shimoyama and members

of the Lymphoma Study Group based on prognostic factors, clinical features, and

the natural history of the disease [1]. In that study, 818 ATL patients who were

newly diagnosed between 1983 and 1987 were analyzed using this classification

system. The median survival time (MST) was reported to be 6.2 months,

10.2 months, and 24.3 months for the acute, lymphoma, and chronic types, respec-

tively, whereas the MST for the smoldering type had not yet been determined. The

projected 2- and 4-year survival rates were 16.7% and 5.0% for the acute type,

21.3% and 5.7% for the lymphoma type, 52.4% and 26.9% for the chronic type, and

77.7% and 62.8% for the smoldering type, respectively (Fig. 8.1). Chronic-type

ATL can be further categorized into the favorable and unfavorable subtypes

according to the presence of either lactate dehydrogenase (LDH) or blood urea

nitrogen (BUN) levels above the normal upper limit or an albumin level below the

normal lower limit [2]. The acute, lymphoma, and unfavorable chronic types are

defined as aggressive ATL, while the favorable chronic and smoldering types are

defined as indolent ATL. These two categories of ATL are widely used to plan

suitable therapeutic strategies.
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8.2 Prognosis of Aggressive ATL

The MST of patients with aggressive ATL in the 1980s has been reported to be

approximately 8 months, with a 2-year survival rate of <5%. This was because this

category of aggressive ATL is associated with a multidrug-resistant phenotype of

malignant tumor cells, rapid proliferation of the tumor cells, a large tumor burden

with multi-organ failure, hypercalcemia, and/or occurrence of frequent opportunis-

tic infections [1–4]. The Japan Clinical Oncology Group (JCOG)-Lymphoma Study

Group has conducted consecutive clinical trials to improve the survival of patients

with aggressive ATL. Earlier trials (JCOG7801, JCOG8101, and JCOG8701)

showed that the prognosis of aggressive ATL is worse than that of other types of

non-Hodgkin lymphomas (Fig. 8.2) [5, 6]. After the classification system for ATL

was established, three JCOG trials were conducted to test new therapeutic agents

exclusively targeting aggressive ATL. The first phase II trial, JCOG9101

(1991–1993), evaluated combination chemotherapy with deoxycoformycin, an

inhibitor of adenosine deaminase, which has been shown to be effective as

monotherapy against relapsed and refractory ATL. However, the results were

disappointing, with an MST of 7 months [7]. The next phase II trial, JCOG9303

(1994–1996), evaluated the chemotherapy regimen VCAP–AMP–VECP against

aggressive ATL, with VCAP comprising vincristine (VCR), cyclophosphamide

(CPA), doxorubicin (DXR), and prednisone (PSL); AMP comprising DXR,

ranimustine, and PSL; and VECP comprising vindesine, etoposide, carboplatin,

and PSL. This phase II trial showed promising results, with an MST of 13 months at

the expense of hematological and other toxicities (Fig. 8.3.) [8]. In the light of these

findings, the phase III trial, JCOG9801 (1998–2003), was conducted to compare a

modified VCAP–AMP–VECP regimen versus the CHOP (CPA, VCR, DXR, and

PSL)-14 regimen. The 3-year overall survival (OS) was higher in the modified

Fig. 8.1 Survival curves of patients with adult T-cell leukemia-lymphoma (ATL) according to

clinical subtype [1]
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VCAP-AMP-VECP arm than in the CHOP-14 arm (24% vs. 13%), suggesting that

the former is the more effective regimen at the expense of high toxicity for patients

with newly diagnosed aggressive ATL (Fig. 8.4) [9].

The results of these three JCOG trials among patients with aggressive ATL led to

an improvement in the 5-year OS among such patients from 5% in the 1980s to 15%

Fig. 8.2 Comparison of the survival curves of ATL and non-ATL in JCOG8701 [6]

Fig. 8.3 Kaplan–Meier estimate of the overall survival for the 93 eligible patients in JCOG9303

[8]
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in the 1990s. However, the best MST after chemotherapy for such patients remains

short at around 1 year.

8.3 Prognosis of Indolent ATL

A retrospective analysis conducted across 40 institutions in Kyushu and Okinawa,

Japan, among 337 patients with the smoldering and chronic types of ATL revealed

an MST of 5.7 and 3.6 years, respectively [1]. Subgroup analysis revealed that for

the smoldering type of ATL, there was no difference in the MST between patients

treated with chemotherapy and those managed with watchful waiting. In contrast,

for the chronic type of ATL, the MST of the patients managed with watchful

waiting was significantly greater than that of those treated with chemotherapy

(7.4 years vs. 2.0 years). Considering these data, watchful waiting is recommended

as the standard treatment for indolent ATL.

A retrospective analysis of 90 patients with newly diagnosed smoldering

(25 patients) and chronic (65 patients) ATL who were treated between 1974 and

2003 at Nagasaki University Hospital revealed an MST of 4.1 years. Twelve

patients survived for more than 10 years, 44 patients progressed to the acute type,

and 63 patients died. The estimated 5-, 10-, and 15-year survival rates were 47.2%,

25.4%, and 14.1%, respectively, with the absence of any plateau in the survival

curve (Fig. 8.5) [10]. In a multicenter follow-up study between 1988 and 1997 in

Kyushu, the MST of 26 patients diagnosed with smoldering ATL was

7.3 years [11].

These data indicate that the prognosis of indolent ATL is poorer than expected,

although some patients could survive for more than 10 years.
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8.4 Prognostic Index of Aggressive ATL

Several reports have been published on the risk factors for ATL. In a prospective

randomized trial on advanced non-Hodgkin lymphoma conducted between 1981

and 1983, Shimoyama et al. found that poor performance status (PS) and high LDH

levels are poor prognostic factors in patients with advanced T-cell leukemia-

lymphoma, including ATL [5]. In a nationwide Japanese survey of 854 patients,

multivariate analysis revealed that the major prognostic indicators of ATL are poor

PS, high LDH levels, age�40 years, involvement of>3 lesions, and hypercalcemia

[3]. These factors were then used to construct a risk model. Multivariate analysis

identified the following additional factors associated with poor prognosis: throm-

bocytopenia [12], eosinophilia [13], bone marrow involvement [14], high interleu-

kin (IL)-5 and IL-10 serum levels [15], C-C chemokine receptor 4 (CCR4)

expression [16], lung resistance-related protein [17], TP-53 mutation [18], and

CDKN2A deletion [12].

Recently, two types of prognostic indices (PIs) for aggressive ATL were

published. A PI was defined for acute- and lymphoma-type ATL (ATL-PI) based

on the findings of a retrospective analysis conducted in Japan between 2000 and

2009 using the medical records of 807 patients who did not receive allogeneic

hematopoietic stem cell transplantation [19]. Multivariate analysis revealed the

following independent and significant prognostic factors: Ann Arbor stage (I/II

vs. III/IV), PS (0/1 vs. 2/3/4), age, serum albumin level, and soluble IL-2 receptor

(IL-2R) expression. A simplified ATL-PI was established as follows:

Simplified ATL-PI ¼ 2 (if stage ¼ III/IV)

+1 (if ECOG PS >1)

+1 (if age >70 years)

+1 (if albumin <3.5 g/dL)

+1 (if sIL2-R>20,000 U/mL)
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Patients with scores of 0–2 were categorized into the low-risk group, those with

3 and 4 into the intermediate-risk group, and those with 5 and 6 into the high-risk

group. In the validation sample, the number of patients in the low-, intermediate-,

and high-risk groups were 77 (19%), 208 (52%), and 118 (29%), respectively. The

MST and 2-year OS were 16.2 months and 37%, 7.0 months and 17%, and

4.6 months and 6% in the low-, intermediate-, and high-risk groups, respectively

(Fig. 8.6).

On the other hand, JCOG prospectively analyzed 276 patients with aggressive

ATL (acute, lymphoma, and unfavorable chronic types) recruited from three

prospective clinical trials (JCOG9109, JCOG9303, and JCOG9801) conducted

after the introduction of the classification system for the clinical subtypes of

ATL. Based on the results, the JCOG-PI was defined according to the corrected

calcium levels and PS in the multivariate analysis of 193 patients [20]. On appli-

cation of the JCOG-PI, the MST and 5-year OS were found to be 14 months and

18% in patients with both corrected calcium of <5.5 mEq/L and a PS of 0 or

1 (moderate risk) and 8 months and 4% in patients with corrected calcium of

�5.5 mEq/L and/or a PS of 2–4 (high-risk group), respectively (Fig. 8.7). External

validation of 127 evaluable patients revealed that the MST was 18 months and

6 months in the moderate- and high-risk groups, respectively, and the JCOG-PI

showed good reproducibility.

Thus, both types of PIs for aggressive ATL are valuable tools for identifying

patients with extremely poor prognosis and will be useful for the design of future

studies on the combinations of new drugs or investigational strategies. However,

the 5-year OS rates noted in both the studies were less than 15%, even in the group
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with better prognosis; therefore, the subgroup of patients with relatively favorable

prognosis could not be identified using these tools. Future studies accounting for the

use of molecular markers are necessary to identity factors indicating a favorable

prognosis in patients with aggressive ATL.
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Chapter 9

Treatment of Indolent Adult T-cell

Leukemia/Lymphoma (ATL)

Kenji Ishitsuka

9.1 Treatment of Indolent Adult T-cell Leukemia/

Lymphoma (ATL)

9.1.1 Definition of Indolent ATL

Based on prognostic factors, clinical features, and natural history of the disease,

ATL is divided into four clinical subtypes: acute type, lymphoma type, chronic

type, and smoldering type [16]. Chronic ATL can be further divided into “favor-

able” and “unfavorable” subtypes based on either LDH or BUN levels above the

normal upper limits or albumin level below the normal lower limit [17]. The acute,

lymphoma, and unfavorable chronic types are classified as aggressive ATL and

have median survival times (MSTs) of 6, 10, and 15 months, respectively. How-

ever, the smoldering and favorable chronic types, which have 4-year survival rates

(OS) of 70% and 63%, respectively, are instead classified as indolent ATL.

9.1.2 Clinical Course of Indolent ATL

Several large-cohort retrospective analyses for patients with indolent ATL have

been reported from Japan. Retrospective analysis of 337 patients with chronic and

smoldering ATL at 40 institutions based in Kyushu and Okinawa, Japan, demon-

strated that the MSTs for each type were 3.6 years and 5.2 years, respectively

[22]. Subgroup analysis revealed that there is no difference in survival time
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between watchful waiting and chemotherapy in patients with smoldering ATL, and

that furthermore MST of the watchful waiting group was superior to that of the

chemotherapy group in patients with chronic type (7.4 years vs 2.0 years).

Based on these data, watchful waiting is regarded as the standard treatment for

patients with indolent ATL in Japan, as no benefits to early intervention with

antineoplastic agents have been established. Meanwhile, in Europe and America,

antiviral therapy with interferon-α and a retroviral agent, zidovudine (IFN/AZT),

which is not covered under health insurance for ATL in Japan, is administered to

patients with both indolent and acute ATL as standard treatment.

According to a recent Japanese nationwide survey, MST in patients with the

smoldering type is 55 months with a 52% 4-year OS (n ¼ 157). MST has not yet

been elucidated for the favorable chronic type, but 4-year OS has been found to be

60% (Fig. 9.1) [12]. In this study, the MST of patients with smoldering ATL treated

by hematologists was 36.7 months and that of those treated by dermatologists was

74.5 months. Most patients included in the study were followed by supportive care

only—namely, watchful waiting—until progression to aggressive ATL. In another

Japanese study from Nagasaki University, the MST for patients with smoldering

ATL treated by hematologists was reported to be 34.8 months (n ¼ 25) [19].
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Fig. 9.1 Overall survival in patients with chronic and smoldering ATL (From Katsuya et al. [12])
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9.1.3 Treatment Strategy for Indolent ATL
in an International Consensus Meeting

An International Consensus Meeting has recommended treating patients with

IFN/AZT or watchful waiting if patients are symptomatic or with watchful waiting

alone if patients are asymptomatic [21].

9.1.3.1 Watchful Waiting

As mentioned earlier, no study has reported benefits of early therapeutic interven-

tion for patients with indolent ATL. A retrospective Japanese study failed to show

the benefit of chemotherapy for patients with chronic ATL; in this study, MST was

2.0 years with chemotherapy (n¼ 49) and 7.4 years with watchful waiting (n¼ 90)

[22]. Although there may be possible bias in determining the therapeutic modality

due to the retrospective nature of the patient cohort, watchful waiting has been held

to be the standard of care for this group of patients. This might be partly because

clinicians were familiar with using a similar strategy for patients with early stage

chronic lymphocytic leukemia.

The long-term study of 90 patients with indolent ATL in Nagasaki revealed that

MST was 4.1 years; 12 patients remained alive for over 10 years, 44 progressed to

acute ATL, and 60 patients died. The estimated 5-, 10-, and 15-year OSs were

47.2%, 25.4%, and 14.1%, respectively, with no plateau in survival curve [19]. In

addition, the aforementioned Japanese retrospective study in 2015 showed that

median time to introduction to systemic chemotherapy for smoldering and favor-

able chronic ATL were 56.0 months and 39.1 months, respectively (Fig. 9.2) [12].

Prognosis of indolent ATL with watchful waiting was poorer than expected, as

about half of patients progressed to aggressive ATL. Further studies of indolent

ATL are required to develop effective treatments for preventing progression to

aggressive ATL.

9.1.3.2 Local Therapy

Some patients with indolent ATL have skin lesions. These can be treated with skin-

directed therapy for relief of symptoms as well as cosmetic purposes, such as

topical steroids, narrow-band ultraviolet B, psoralen photochemotherapy, electron

beam therapy, and radiation therapy. A retrospective analysis of ten consecutive

ATL patients at the National Institutes of Health between 1997 and 2010, including

two patients with smoldering ATL treated with radiotherapy, demonstrated that all

20 lesions (cutaneous ¼ 10, nodal ¼ 8, extranodal ¼ 2) responded to therapy, with

in-field complete responses in 40% of lesions [20]. Although no report has yet

revealed clear evidence about the effectiveness of local therapy for skin lesions,

radiotherapy could be considered in symptomatic local progression of ATL.
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However, the benefits of these approaches on the eventual prognosis are unknown

[12, 18].

9.1.3.3 Chemotherapy

Currently, there exist no curative treatment procedures for ATL except for alloge-

neic hematopoietic stem cell transplantation. In addition, early introduction of

chemotherapy for patients with indolent ATL is not currently supported by any

solid data regarding any potential positive or negative effects on survival. Early

introduction of chemotherapy might prolong progression-free survival but not

necessarily overall survival, and it is at the expense of toxicities that are similar

to the experiences of patients with low-grade lymphoma [22].

Systemic therapy such as steroids, oral retinoids, interferon-γ, or single-agent
chemotherapy, for example, with oral etoposide, may be applied for relief of

symptoms as well as cosmetic purposes; however, the beneficial effects of these

approaches on the eventual prognosis of the patients are also not yet confirmed [18].
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9.1.3.4 Interferon-α and Antiretroviral Agents

In several small series of patients, interferon-α monotherapy produced complete

remission in less than 10%, although occasional durable responses have been

reported [6, 9, 11, 14]. Shibata et al. found that the combination of interferon-α
and an antiretroviral agent such as zidovudine (IFN/AZT) induced a rapid and

durable response in a patient with ATL who was coinfected with both HIV type I

and human T-cell leukemia virus type I (HTLV-1) [23]. Based on these data, two

preliminary phase II studies were conducted, and a high response rate was observed

in previously untreated acute ATL [3, 4]. The efficacy of IFN/AZT was confirmed

in a French trial that included 19 newly diagnosed patients with ATL and in a UK

clinical trial that included 15 patients with ATL [5, 15]. A retrospective meta-

analysis reported 5-year OS of 100% and 42% in patients with chronic and

smoldering ATL treated by IFN/AZT and chemotherapy, respectively (Fig. 9.3)

[1]. The number of patients included in this analysis was very small, and possible

bias, such as heterogeneity of the decision process for selecting the therapeutic

modality for each patient and unreliable information of maintenance therapy and

second-line chemotherapy [7] due to its retrospective nature, cannot be avoided.

However, the results of IFN/AZT in patients with smoldering and chronic ATL

were promising in light of potentially establishing a new effective ATL treatment.

Considering the promising but preliminary nature of the findings by Bazarbachi

et al. [1], the Japan Clinical Oncology Group-Lymphoma Study Group (JCOG-

LSG) has started a phase III study comparing IFN/AZT with watchful waiting for

Fig. 9.3 Overall survival in patients with chronic and smoldering ATL treated with either

chemotherapy or antiretroviral therapy represented by combination of interferon-α and zidovu-

dine, observed in a retrospective study [1]
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indolent ATL (JCOG1111; UMIN000011805). This study may validate the efficacy

of early intervention for indolent ATL by IFN/AZT in Japanese populations.

Several suggested mechanisms of the anti-ATL effects induced by IFN/AZT

have been reported; however, these effects must be clarified further [8]. The

feasibility and efficacy of combination of arsenic trioxide and IFN/AZT have also

been reported in a small number of patients with chronic ATL [13]; however, these

results are also in need of confirmation by larger prospective studies.

9.1.4 Further Perspectives

The standard of care for indolent ATL in Japan has been watchful waiting, while

recent international studies have suggested the potential for prolonging survival

with combination therapy with interferon-α and antiretroviral drugs. Moreover, two

recent Japanese retrospective studies [12, 19] indicated that indolent ATL, espe-

cially smoldering ATL, has poorer prognosis than that reported in former studies

[16]. Taken together, efforts toward innovative treatment are warranted to improve

the prognosis for indolent ATL without sacrificing patients’ quality of life. Two

approaches can be considered for possible improvement of the outcome for patients

with indolent ATL. One is to stratify patients who should have early intervention by

elucidating prognostic factors in indolent ATL. The second is to develop an optimal

treatment based on the risk-stratified approach. Combination of interferon-α and

antiretroviral therapy is one option, with other possible modalities such as immu-

nological approach by vaccination, use of mogamulizumab (a defucosylated

humanized C-C chemokine receptor 4 antibody), and use of immunomodulatory

drugs, as well as novel chemotherapeutics such as pralatrexate (a folate analogue

metabolic inhibitor) and forodesine (a transition-state analogue of purine nucleo-

side phosphorylase), which have been introduced or are in clinical trials for

aggressive ATL and/or peripheral T-cell lymphoma.

Recently, integrated molecular analysis for patients with ATL has revealed that

somatic alterations affected highly enriched T-cell receptor/NF-κB signaling, G

protein-coupled receptors associated with T-cell migration, and other T-cell-related

pathways, as well as immune surveillance-related genes [10]. Another study on

epigenetic landscape of ATL cells has revealed that ATL cells are characterized by

Polycomb Repressive Complex 2 (PRC2) hyperactivation with genome-wide his-

tone 3 lysine 27 trimethylation (H3K27 me3) accumulation [2]. A new agent that

inhibits both histone methylases EZH1 and EZH2 that are the components of PRC2

can induce cell death of ATL cells as well as HTLV-1-infected cells [2]. Clinical

study is now underway for this dual inhibitor of EZH1/2. Further studies are

ongoing to detect genes associated with the progression from indolent to aggressive

disease. The development of new agents for target genes specific to indolent ATL,

which may become clear as a result of these studies, in addition to well-designed

clinical studies involving international collaboration is needed to overcome this

incurable, heterogeneous, and rare disease.
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Chapter 10

Chemotherapy of Aggressive Adult T-cell

Leukemia/Lymphoma (ATL)

Kunihiro Tsukasaki

10.1 Development of Chemotherapy for Aggressive Adult

T-cell Leukemia-Lymphoma (ATL)

The recent International T-Cell Lymphoma Project on 1314 patients revealed that

ATL was the fourth most common T-cell lymphoma, mainly in Asia, especially

Japan, and the prognosis was worst among the T-cell lymphomas [5]. The poor

prognosis is associated with the multidrug resistance of ATL cells, high tumor

burden with multi-organ involvement, complicated immunodeficiency and hyper-

calcemia, and advanced age at onset [1].

Since 1978, chemotherapy trials have been consecutively conducted for patients

newly diagnosed with aggressive non-Hodgkin lymphoma including ATL by

JCOG’s Lymphoma Study Group (LSG), and the following results were obtained

for this disease (Table 10.1) [4]. The first trial, called LSG1 (1978–1980), utilized

VEPA therapy, which consisted of vincristine (VCR), cyclophosphamide (CPA),

prednisolone (PSL), and doxorubicin (DOX) [6]. In this study, patients with NHL

(including ATL) at an advanced stage were enrolled. The complete remission

(CR) rate was lowest (18%) for ATL, intermediate (36%) for peripheral non-ATL

T-cell lymphoma (PNTL), and highest (64%) for B-cell lymphoma [4]. Between

1981 and 1983, the JCOG-LSG conducted a phase III trial using LSG1-VEPA

versus LSG2-VEPA-M (VEPA + methotrexate) against advanced NHL, including

ATL [7]. Patients’ sera were examined for anti-HTLV-1 antibody to distinguish

ATL from PNTL. The CR rate for patients who were given LSG2-VEPA-M for

ATL (37%) was higher than that for patients who were given LSG1-VEPA (17%;

P ¼ 0.09). In the LSG1/LSG2 trial, however, the CR rate was significantly lower

for ATL than for B-cell lymphoma and PNTL (P < 0.001). The MST of the
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54 patients with ATL treated with LSG1/LSG2 was 6 months, and the estimated

4-year survival rate was only 8% [7]. These results suggest that CHOP-like

chemotherapy of the first generation was not very effective against ATL.

In 1987, JCOG initiated a multicenter phase II study (JCOG8701) of a

multiagent combination chemotherapy (LSG4) for advanced aggressive NHL

(including ATL). LSG4 consisted of three regimens: (1) VEPA-B (VEPA plus

bleomycin), (2) M-FEPA (methotrexate, vindesine, cyclophosphamide, prednisone,

and doxorubicin), and (3) VEPP-B, (vincristine, etoposide, procarbazine, predni-

sone, and bleomycin) [4, 8]. The CR rate (72%) for the LSG4 protocol among

patients with aggressive NHL including ATL was significantly higher than that for

the LSG1/LSG2 trial (57%; P < 0.05). The CR rate for ATL was improved from

28% (LSG1/LSG2) to 43% (LSG4). On the other hand, the CR rate for LSG4 was

significantly lower for ATL than for B lymphoma and PNTL (P < 0.01). The

patients with ATL still showed a poor prognosis, with an MST of 8 months and a

4-year survival rate of 12%; however, the CR rate was increased to 12% (5 of 43)

compared with 4% (2 of 54) in the LSG1/LSG2 trial. A multivariate analysis of the

267 patients with advanced aggressive NHL who were treated with LSG4 demon-

strated that the clinical diagnosis of ATL was the most significant unfavorable

prognostic factor (relative risk: 3.19; P ¼ 0.0001) for aggressive NHL patients in

Japan [4, 8].

The disappointing results with conventional chemotherapies have led to a search

for new active agents. Multicenter phase I and II studies of 20-deoxycoformycin

(DCF; pentostatin), a purine analog having irreversible inhibition activity of aden-

osine deaminase), were conducted against ATL in Japan. The phase II study

revealed a response rate of 32% (10 of 31) in cases of relapsed or refractory ATL

(2CRs and 8PRs) [9]. These encouraging results and the proposal of subtype

classification of ATL by JCOG-LSG through nationwide survey of ATL prompted

the Japanese investigators to conduct a phase II trial (JCOG9109; LSG11) of

DCF-incorporated regimen with VCR, DOX, ETP, and PSL as initial chemotherapy

exclusively for aggressive ATL [10]. Sixty-two previously untreated patients with

ATL (34 acute, 21 lymphoma, and 7 unfavorable chronic type) were enrolled.

Table 10.1 Results of the JCOG-LSG trials for adult T-cell leukemia-lymphoma (ATL)

Protocol Regimen Phase No. of pts %CR MST (mo) Survival (%) Refs.

JCOG7801 VEPA II 18 17 5 0 (3 years) [6]

JCOG8101 III 54 28 7.5 8.3 (4 years) [7]

VEPA 24 17 NA NA

VEPAM 30 37 NA NA

JCOG8701 LSG4 II 42 43 8 12 (5 years) [9]

JCOG9109 LSG11 II 60 28 7 15.5 (2 years) [10]

JCOG9303 LSG15 II 93 35 13 31 (2 years) [11]

JCOG9801 III 118 [2]

mLSG15 57 40 13 24 (3 years)

CHOP-14 61 25 11 13 (3 years)
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Among the 60 eligible patients, there were 17 CRs (28%) and 14 partial responses

(PRs) (overall response rate [ORR] ¼ 52%). The MST was 7.4 months, and the

estimated 2-year survival rate was 17%. The prognosis of patients with ATL

remained poor, even though they were treated with a pentostatin-containing com-

bination chemotherapy.

In 1994, JCOG-LSG initiated a new multiagent combination phase II study

(JCOG9303; LSG15): a nine-drug regimen consisting of VCR, CPA, DOX, PSL,

nimustine (MCNU), VDS, ETP, and carboplatin (CBDCA) with the intrathecal

administration of MTX and PSL, for untreated patients with ATL [11]. In this

study, the elevation of relative dose intensity was attempted with the prophylactic

use of granulocyte colony-stimulating factor (G-CSF). In addition, non-cross-resis-

tant agents such as MCNU and CBDCA were incorporated into the regimens.

Ninety-six previously untreated patients with aggressive ATL were enrolled:

58 with acute type, 28 with lymphoma type, and 10 with unfavorable chronic

type. Of the 93 eligible patients, 81% responded (75 of 93), 33 patients (35%)

achieving CR and 42 (45%) achieving PR. Patients with lymphoma-type ATL

showed a better CR rate (67%, 18 of 27) than patients with acute-type ATL

(20%, 11 of 56) and patients with unfavorable chronic-type ATL (40%, 4 of 10).

The OS rate of 93 eligible patients at 2 years was 31%. The MST was 13 months,

and the median follow-up duration of the 20 surviving patients was 4.2 years. A

trend toward better survival for patients with lymphoma-type ATL (MST,

20 months) compared with patients with acute-type ATL (MST, 11 months) was

recognized (hazard ratio: 1.65). Grade 4 hematologic toxicities of neutropenia and

thrombocytopenia were observed in 65% and 53% of the patients, respectively, but

grade 4 non-hematologic toxicity was observed in only one patient. It was con-

cluded that LSG15 was feasible with mild non-hematologic toxicity, and that it has

improved the clinical outcome of patients with ATL (Fig. 10.1).

Fig. 10.1 Kaplan-Meier estimate of overall survival (OS) for all patients with aggressive

non-Hodgkin lymphoma treated with LSG4 in relation to disease entity. ATL adult T-cell leukemia-

lymphoma
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To confirm whether LSG15 is a new standard for the treatment of aggressive

ATL, JCOG-LSG conducted a phase III study comparing mLSG15 and CHOP-14

(CPA, DOX, VCR, and PSL) [2]. Previously untreated patients with aggressive

ATL were randomly assigned to receive either six courses of LSG15 every 4 weeks

or eight courses of CHOP-14. Both regimens were supported with G-CSF and

intrathecal prophylaxis. mLSG15 in JCOG9801 was a modified version of LSG15

in JCOG9303, consisting of three regimens: VCAP [VCR 1 mg/m2 (maximum

2 mg), CPA 350 mg/m2, ADM 40 mg/m2, PSL 40 mg/m2] on day 1, AMP [ADM

30 mg/m2, MCNU 60 mg/m2, PSL 40 mg/m2] on day 8, and VECP [VDS 2.4 mg/m2

on day 15, ETP 100 mg/m2 on days 15–17, CBDCA 250 mg/m2 on day15, PSL

40 mg/m2 on days 15–17] on days 15–17, and the next course was to be started on

day 29. The modifications in mLSG15 as compared to LSG15 were as follows:

(1) The total number of cycles was reduced from 7 to 6 because of progressive

cytopenia, especially thrombocytopenia, after repeating the VCAP-AMP-VECP

therapy. (2) Cytarabine 40 mg was added to MTX 15 mg and PSL 10 mg for

prophylactic intrathecal administration, at the recovery phases of courses 1, 3, and

5 because of the high frequency of central nervous system relapse in the JCOG9303

study. One hundred and eighteen patients were randomized. Seventy-two percent of

the patients responded, with 23 patients achieving CR (40%) and 18 achieving PR

(32%) in mLSG15. The ORR was 66%, with 15 patients achieving CR (25%) and

25 achieving PR (41%) in CHOP-14. The CR rate was higher in the mLSG15 arm

than CHOP-14 arm (40% vs. 25%, respectively; P ¼ 0.020). The median

progression-free survival (PFS) time and PFS at 1 year in the former were

7.0 months and 28%, respectively, compared to 5.4 months and 16% in the latter

(P¼ 0.10). The MST and OS at 3 years were, respectively, 12.7 months and 24% in

the former and 10.9 months and 13% in the latter (P ¼ 0.085). After the adjustment

of patients’ characteristics by Cox regression, the P value for OS became 0.029

because of unbalanced prognostic factors such as bulky lesions and B symptoms. In

Fig. 10.2 Kaplan-Meier estimate of overall survival (OS) for all randomly assigned patients in

JCOG9801 study in relation to treatment regimen
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mLSG15 versus CHOP-14, the percentage with grade 4 neutropenia, percentage

with grade 4 thrombocytopenia, and percentage with grade 3–4 infection were 98%

versus 83%, 74% versus 17%, and 32% versus 15%, respectively. Three treatment-

related deaths (TRDs), two from sepsis and one from interstitial pneumonitis

related to neutropenia, were reported in the former. The longer OS at 3 years and

higher CR rate with mLSG15 than CHOP-14 suggest mLSG15 to be a more

effective regimen at the expense of greater toxicities providing a basis for future

investigations in the treatment of ATL [2]. The superiority of VCAP-AMP-VECP

in mLSG15 to CHOP-14 may be explained by the more prolonged, dose-dense

schedule of therapy in addition to four more drugs. In addition, agents such as

CBDCA and MCNU not affected by multidrug-resistance (MDR)-related genes,

which were frequently expressed in ATL cells at onset, were incorporated

[12]. Intrathecal prophylaxis, which was incorporated in both arms of the phase

III study, should be considered for patients with aggressive ATL even in the

absence of clinical symptoms because a previous analysis revealed that more than

half of relapses at a new site after chemotherapy occurred in the CNS [13]. How-

ever, the prognosis of aggressive ATL after chemotherapy is still poor as compared

to other hematological malignancies. Allo-HSCT is now recommended for the

treatment of relatively young patients with aggressive ATL (refer to another

chapter). To evaluate the efficacy of allo-HSCT, possibly associated with a graft-

versus-ATL effect, more accurately, especially in view of a comparison with

intensive chemotherapy, a prospective multicenter phase II study of mLSG15

chemotherapy followed by up-front allo-HSCT, comparing the results with histor-

ical control in JCOG9801, is ongoing (JCOG0907).

10.2 Development of Anti-CCR4 Antibody

with Chemotherapy for Aggressive ATL

CC chemokine receptor 4 (CCR4) is expressed on normal T helper type 2 and

regulatory T (Treg) cells and on certain types of T-cell neoplasms. CCR4 is

expressed on the neoplastic cells of most ATL patients, and this expression has

been associated with the cutaneous manifestation and poor prognosis [14]. The

aberrant expression of Fra-2 promotes that of CCR4 and cell proliferation in ATL

cells [15]. CCR4 mutation is frequently observed in ATL cells and associated with

gain of function [16]. The defucosylated humanized anti-CCR4 monoclonal anti-

body (mogamulizumab), the ADCC activity of which was stronger than that of the

usual Ab in preclinical analysis using primary ATL and effector cells, was

approved for the treatment of relapsed/refractory ATL in Japan based on the results

of phase I and II studies, with a response rate of approximately 50% and manage-

able toxicities including moderate to severe skin reactions for relapsed aggressive

ATL [4, 17]. The findings of a subsequent randomized phase II study on intensive

chemotherapy (mLSG15) +/� mogamulizumab for untreated aggressive ATL have
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recently been reported [18]. This combination was anticipated because the former

was more effective for ATL cells in lymph nodes than those in the peripheral blood,

while the opposite was true for the latter [2, 3]. The combination was well tolerated

and produced a higher CR rate {52% (95% CI; 33, 71) vs. 33% (CI; 16, 55)},

respectively, with manageable hematological and cutaneous toxicities.

Immunochemotherapy of mLSG15 + mogamulizumab is a promising and possible

new standard therapy for aggressive ATL despite no difference in PFS and OS so

far in relatively short observation period and small sample size.

10.3 Conclusion: Future of Multidisciplinary Treatment

for ATL

IFN/AZT therapy is apparently promising for types with leukemic manifestation

but not for lymphoma-type ATL, according to the retrospective meta-analysis from

the USA, Europe, and Lebanon [19]. The results of a retrospective analysis in

73 patients with aggressive ATL (acute ATL, 29; lymphoma ATL, 44) suggested

that chemotherapy with concurrent/sequential IFN/AZT as initial treatment might

improve survival for both acute and lymphoma types of ATL compared with

chemotherapy alone [20]. Further evaluation of IFN/AZT therapy alone or with

chemotherapy or other modality including As2O3 is warranted in relation to sub-

types of ATL.

Mogamulizumab eradicates Treg cells as well as ATL cells, and a preliminary

retrospective analysis revealed that the agent with or without chemotherapy might

increase the risk of acute GVHD and non-relapse mortality after allo-HSCT

[21]. Further evaluation is warranted to establish the strategy of treatment of

aggressive ATL in multidisciplinary treatment with mogamulizumab.

Chemotherapy of aggressive ATL has advanced in several decades with new

cytotoxic agents, supportive cares including G-CSF and prophylaxis, and treatment

of opportunistic infections and anti-CCR4 antibody. Several new molecular

targeting, immune-regulatory agents and human T-cell leukemia virus type I

(HTLV-1) vaccines are now under evaluation or in preparation for relapsed

and/or refractory aggressive ATL. Then, among them, promising agents should

be evaluated with chemotherapy for newly diagnosed aggressive ATL.
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Chapter 11

Transplantation for Aggressive Adult T-Cell

Leukemia/Lymphoma (ATL)

Atae Utsunomiya

11.1 Introduction

Adult T-cell leukemia-lymphoma (ATL) is an intractable disease caused by human

T-cell leukemia virus type I (HTLV-1) [1–3]. The median overall survival

(OS) time for patients with aggressive-type ATL is only about 1 year; new thera-

peutic strategies are required for these patients [4, 5].

At the present time, allogeneic hematopoietic stem cell transplantation (allo-

HSCT) is considered to be the only curative treatment for ATL patients [6]. How-

ever, the efficacy of this therapy is limited by high transplant-related mortality

(TRM) and relapse rates. Herein, a review of allo-HSCT for the treatment of

aggressive-type ATL in the past, present, and future is presented.

11.2 History of HSCT

It has been reported that ATL cells are resistant to chemotherapeutic agents due to

the expression of multidrug resistance genes [7, 8]. In order to overcome this drug

resistance, autologous bone marrow transplantation (auto-BMT) with high-dose

chemotherapeutic agents was undertaken and reported by Asou et al. in a case in

1985 [9]. However, the OS time was not prolonged because of early relapse in this

case. Since that report, several cases of autologous HSCT (auto-HSCT) have been

reported, but improved OS times were not obtained in these cases because of early

relapse or infections [10].
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On the other hand, Sobue et al. first reported a case of allogeneic BMT (allo-

BMT) for a patient with aggressive ATL in 1987. The patient appeared to have had

been successfully treated with allo-BMT, but died of interstitial pneumonitis due to

cytomegalovirus infection 205 days after the transplantation [11]. Subsequently,

several ATL cases have been successfully treated with allo-HSCT. We reported ten

ATL cases treated with allo-HSCT in 2001, concluding that allo-HSCT might

improve the prognoses of ATL patients [12].

Since our report, the number of ATL patients receiving allo-HSCT has been

increasing over time [13]; between 1991 and 2013, 1,535 ATL cases were reported

to have received allo-HSCT, and approximately 150 ATL patients are now receiv-

ing allo-HSCT annually [13].

11.3 Transplant Procedure

There are two transplant procedures: auto-HSCT and allo-HSCT. Conditioning

regimens consist of myeloablative conditioning (MAC) and reduced-intensity con-

ditioning (RIC) [14, 15]. Three stem cell sources, bone marrow (BM), peripheral

blood stem cells (PBSC), and cord blood (CB), are used from the patient, a related

donor or an unrelated donor. All transplant procedures are used for ATL patients

except for auto-HSCT, which does not improve the OS time because of early

relapse or infectious complications [10].

11.4 Prognostic Factors

Five prognostic factors have been associated with a poor prognosis in a study by the

Japan Clinical Oncology Group-Lymphoma Study Group (JCOG-LSG). These

include poor performance status (PS), high serum lactate dehydrogenase (LDH),

over 40 years of age, total number of involved lesions, and hypercalcemia

[16]. Multivariate analysis revealed other poor prognostic factors, including eosin-

ophilia, thrombocytopenia, bone marrow invasion, high serum interleukin-5,

expression of CC chemokine receptor 4 (CCR4), lung resistance protein, P53
mutation, and P16 deletion [17, 18]. Recently, Katsuya et al. have identified five

poor prognostic factors, i.e., advanced Ann Arbor stage, poor Eastern Cooperative

Oncology Group PS, the increased age, decrease in serum albumin, and elevated

soluble interleukin-2 receptor (sIL-2R), and they reported that the prognoses differ

among three groups (low, intermediate, and high risk) stratified by a combination of

these prognostic factors [19]. On the other hand, four factors, i.e., age over 40 years,

male sex, non-complete remission (non-CR), and cord blood transplantation (CBT),

have been reported to influence the OS time of patients who received allo-HSCT in

a nationwide retrospective study [20]. In univariate analysis, an elevated serum

sIL-2R level has been identified as a poor prognostic factor at both the time of

134 A. Utsunomiya



diagnosis and the time of preconditioning [21, 22]. In addition, the European Group

for Blood and Marrow Transplantation (EBMT) risk score and elevated sIL-2R are

significant poor prognostic factors, and they can be used in combination to stratify

patients into three risk groups (low, intermediate, and high risk) [23].

11.5 Results of Allo-HSCT

The outcomes of allo-HSCT for patients with aggressive ATL are shown in

Table 11.1 [5]. Although the prognoses of ATL patients were improved with allo-

HSCT, a high TRM rate using MAC remains one of the most important issues

[5, 6]. In order to reduce the high TRM rate, reduced-intensity stem cell transplan-

tation (RIST) has been applied for elderly ATL patients.

11.6 Results of Allo-HSCT According to the Intensity

of Conditioning

The 3-year OS rate with a MAC or RIC regimen was 27–73% (Table 11.1)

[5]. Since Okamura et al. first reported the feasibility of RIST for elderly ATL

patients [24], a RIC regimen has been used more frequently for allo-HSCT in

elderly ATL patients. No statistical differences were observed in the OS rates

between patients receiving MAC and RIC regimens in a nationwide retrospective

analysis [25]. The TRM rate was high with the MAC regimen, while it was low with

RIC. On the other hand, there was a trend toward increased ATL-related deaths

with RIC than with MAC [25].

11.7 Results of Allo-HSCT According to Stem Cell Source

There was no difference in the OS time between patients receiving BM cells and

those receiving PBSC. A nationwide retrospective study revealed that the 3-year

OS rate with BM cells or PBSC from HLA-matched related donors was 41%, while

that with BM cells from HLA-matched unrelated donors was 39%. The 3-year OS

rate using BM cells or PBSC from HLA-mismatched donors is 24%, while that

using CB cells is 17% [20]. Thus, the OS rate of CBT was poorer than those of other

transplant procedures [20]. It is thought that this poor outcome might be an effect of

the increased patient age and/or poor disease condition. It has recently been

reported that the OS rate of ATL patients undergoing CBT with a good disease

status is improving [26, 27].
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11.8 Timing of Allo-HSCT

It has been reported that the outcomes of ATL patients receiving allo-HSCT in CR

are better than those in non-CR [20]. We have also reported that the OS rate of

patients who received allo-HSCT from a related donor within 100 days after the

establishment of their ATL diagnosis was better than that of patients waiting more

than 100 days after diagnosis [28]. Interestingly, this effect was also observed in

non-CR patients [28]. These findings suggest that many courses of chemotherapy

might induce a poor condition in ATL patients, and a poor PS might result in poor

patient outcomes after transplantation.

11.9 Minimum Residual Disease

The quantification of HTLV-1 proviral loads in peripheral blood (PB) is very useful

for the early detection of leukemic ATL relapse after allo-HSCT. HTLV-1, however,

exists not only in ATL cells but also in the recipient’s non-ATL cells. In addition, if

patients receive allo-HSCT fromHTLV-1 carrier donors, HTLV-1 will be transferred

from the donor to the recipient. Furthermore, non-HTLV-1-infected donor cells can

be infected by HTLV-1 from ATL cells or HTLV-1-infected non-ATL cells of

recipient origin. Thus, these four types of HTLV-1-infected cells exist in PB

(Fig. 11.1); this principle has been clearly demonstrated by Yamasaki et al. [29].

HTLV-1 infected recipient's non-ATL cellHTLV-1 infected recipient's non-ATL cell

Donor HTLV-1 infected cellDonor HTLV-1 infected cell
(in case of HTLV-1 carrier donor)(in case of HTLV-1 carrier donor)

Primary ATL cellPrimary ATL cell

Donor HTLV-1 infected cellDonor HTLV-1 infected cell
(HTLV-1 from recipient)(HTLV-1 from recipient)

Indicates cells from donorIndicates cells from donor

Indicates HTLV-1 from recipient originIndicates HTLV-1 from recipient origin

Indicates cells from recipientIndicates cells from recipient

Indicates HTLV-1 from donor originIndicates HTLV-1 from donor origin

Fig. 11.1 HTLV-1-infected cells after allo-HSCT. HTLV-1-infected cells after allo-HSCT

include four types of cells: primary ATL cells, the HTLV-1-infected recipient’s non-ATL cells,

donor HTLV-1 -infected cells in the case of patients who received an allo-HSCT from an HTLV-1

carrier donor, and donor HTLV-1-infected cells that have been infected with HTLV-1 from

recipients after allo-HSCT
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It has been reported that the number of HTLV-1-infected cells decreases shortly

after allo-HSCT, but HTLV-1-negative donor cells are sometimes infected by

HTLV-1 1 or 2 years after allo-HSCT [30]. Although the monitoring of HTLV-1

proviral loads is useful for leukemic relapse, it should be considered that HTLV-1-

infected cells do not necessarily represent only ATL cells of the recipient.

11.10 Graft-Versus-ATL Effect

We have reported that the cessation of immunosuppressants and/or donor lympho-

cyte infusion (DLI) induced another remission in relapsed ATL patients after allo-

HSCT [31]; this phenomenon is thought to be caused by a graft-versus-ATL

(Gv-ATL) effect. Harashima et al. reported that Tax-specific cytotoxic T lympho-

cytes played an important role in these Gv-ATL effects [32].

It has been recently reported that although chemotherapy or DLI alone did not

induce remission in relapsed ATL patients after allo-HSCT, DLI after the reduction

of tumor burden with chemotherapy effectively induced remission [33]. These

phenomena might indicate that the reduction of tumor size plays a crucial role in

the induction of the Gv-ATL effect.

11.11 Role of Mogamulizumab

A humanized anti-CCR4 monoclonal antibody, mogamulizumab, has been

approved as a new molecular targeting drug for ATL patients [34]. Single agent

of mogamulizumab showed high efficacy for relapsed or refractory ATL [34], and a

combination of VCAP-AMP-VECP (vincristine, cyclophosphamide, adriamycin,

prednisone–adriamycin, ranimustine, prednisone–vindesine, etoposide,

carboplatin, prednisone) therapy (modified LSG15 regimen) and mogamulizumab

showed a 52% CR rate in newly diagnosed ATL patients [35]. Mogamulizumab is

now used for ATL to improve the CR rate because the outcomes of ATL patients

who received allo-HSCT are better than those in non-CR [20]. However,

mogamulizumab can reduce not only ATL cells but also normal regulatory T

cells [34, 35], which have critical roles in the control of acute graft-versus-host

disease (GVHD). Actually, it has been reported that the administration of

mogamulizumab before allo-HSCT increased non-relapse mortality and acute

GVHD in ATL patients [36]. Therefore, we should use mogamulizumab appropri-

ately, not only before conditioning but also after ATL relapse (Fig. 11.2).
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11.12 Donor Cell-Derived ATL

Donor cell-derived leukemia (DCL) has rarely been reported in patients with allo-

HSCT [37]. Although the mechanism of the occurrence of DCL has not been

elucidated, there are several possibilities, such as the existence of occult leukemia

in donor cells or aberrant BM microenvironment in the recipients [37]. Three cases

of DCL after allo-HSCT in ATL patients have been reported [38–40]. One had

acute myeloid leukemia [38], and the other two had ATL [39, 40]. Both of the ATL

patients had received allo-HSCT from HTLV-1 carriers [39, 40]. We should pay

special attention to not only the relapse of ATL but also donor cell-derived ATL.

11.13 Indication for Allo-HSCT

The indication for allo-HSCT for ATL patients is the same as that for other

hematological malignancies. The patient’s age, disease status, PS, organ function,

existence of active infection, and appropriate stem cell source are the main factors in

deciding whether to perform allo-HSCT. In ATL patients, the inclusion criteria for

allo-HSCT are as follows:�70 years of age (�65 years of age if the patient receives

allo-HSCT from an unrelated donor or CB), good disease status [CR, partial

remission (PR) or stable disease (SD)], good performance status (PS ¼ 0 or 1),

Fig. 11.2 Mogamulizumab therapy for ATL patients receiving allo-HSCT. There are several

timings in administration of mogamulizumab as shown in Fig. 11.2 (①–⑤). Since

mogamulizumab can reduce not only ATL cells but also normal regulatory T-cells, which have

critical roles in graft-versus-host disease, we do not recommend the administration of

mogamulizumab as conditioning treatment
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and no active infection. Allo-HSCT is recommended to be performed within

6 months after the establishment of a diagnosis, if possible, because the OS time if

it is performedmore than 100 days from diagnosis is shorter than that if the patient is

less than 100 days from the diagnosis in the patients who received allo-HSCT from

related donors [28].

11.14 Eligibility of Donor

The eligibility criteria of donors for allo-HSCT in ATL patients are the same as

those for other diseases, except for HTLV-1 carrier donors; in unrelated HSCT or in

allo-HSCT for diseases other than ATL, HTLV-1 carriers are always excluded as

donors. However, the eligibility of HTLV-1 carriers as related donors for ATL

patients who receive allo-HSCT has not been determined. As donor cell-derived

ATL after allo-HSCT using HTLV-1 carrier donors in ATL patients has been

reported, we have to carefully determine the eligibility of HTLV-1 carriers for

donors. Therefore, we examined the HTLV-1 status in detail by evaluating HTLV-1

proviral DNA in PB with not only Southern blot analysis but also real-time PCR. If

the monoclonal or oligoclonal integration of HTLV-1 provirus has been detected in

HTLV-1 carriers, these donors should be excluded.

Several HTLV-1 carrier recipients who had received a renal or liver transplan-

tation developed ATL, probably due to the administration of immunosuppressants

[41, 42]. Importantly, donor cell-derived ATL can occur in ATL patients because

the recipients receive intensive immunosuppressive therapy after allo-HSCT. In

allo-HSCT from HTLV-1 carrier donors, donor eligibility should be determined

carefully based on the results of their HTLV-1 status. The copy number of HTLV-1

proviral loads, as determined with real-time PCR, is preferably �4 copies/100

PBMCs, without monoclonal or oligoclonal proliferation of HTLV-1, because

high proviral loads in PB (>4 copies/100 PBMCs) have been reported as one of

the risk factors for ATL development [43].

11.15 Future Directions

At the present time, the relapse rate of ATL after allo-HSCT increases when we

attempt to reduce the TRM rate. In contrast, the TRM rate increases if we attempt to

reduce the ATL relapse rate. The evaluation of new molecular targeting therapy and

immunotherapy is underway [34, 35, 44–46]. In the near future, a combination of

chemotherapy, allo-HSCT, molecular targeting therapy, and immunotherapy may

bring promising outcomes for ATL patients.
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11.16 Conclusions

Although some ATL patients can now be cured with allo-HSCT, the cure rate of

ATL patients is still low due to the high TRM rate and frequent ATL relapse after

allo-HSCT. The establishment of allo-HSCT with a high cure rate through the

combination of new therapies is required for ATL therapy.
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Chapter 12

New Agents of Adult T-cell Leukemia/

Lymphoma (ATL)

Wataru Munakata and Kensei Tobinai

12.1 Introduction

Adult T-cell leukemia-lymphoma (ATL) is a distinct subtype of peripheral T-cell

lymphomas (PTCLs) caused by human T-cell leukemia virus type I (HTLV-1) and

is relatively frequent in southwestern Japan, West Africa, the Caribbean islands,

and Brazil, which are HTLV-1 endemic areas [1, 2]. ATL is clinically classified into

four disease subtypes (acute, lymphoma, chronic, and smoldering), based on clin-

ical features including leukemic changes, high lactate dehydrogenase, hypercalce-

mia, and organ infiltration, and it was reported that the median survival time varies

according to the disease type: acute type, 6 months; lymphoma type, 10 months;

chronic type, 24 months; and smoldering type, 3 years or more [3]. It is

recommended that treatment strategies should be selected according to the disease

subtype [3]. In Japan, the acute type, lymphoma type, and chronic type with

unfavorable prognostic factors have been regarded as aggressive ATL subtypes

requiring immediate treatment. Generally, the disease is resistant to conventional

chemotherapeutic agents in most ATL patients, and limited treatment options

currently exist; thus, ATL of these aggressive forms has the worst prognosis

among various major subtypes of PTCL, with 5-year overall survival (OS) and

failure-free survival (FFS) rates of 14% and 12%, respectively [4]. A phase III trial

for previously untreated patients with aggressive ATL (acute, lymphoma, or unfa-

vorable chronic type) revealed that a dose-intensified multidrug regimen (modified

LSG15), VCAP-AMP-VECP (vincristine, cyclophosphamide, doxorubicin, and

prednisone; doxorubicin, ranimustine, and prednisone; and vindesine, etoposide,

carboplatin, and prednisone), resulted in median progression-free survival (PFS)
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and OS of 7.0 and 12.7 months, respectively, which were superior to those of the

comparator arm, CHOP-14 [5]. However, since the outcome achieved by this dose-

intensified regimen was still inferior to that in other PTCLs and B-cell non-Hodgkin

lymphomas, further improvements were deemed necessary. Allogeneic hematopoi-

etic stem-cell transplantation has evolved into a promising approach in treating

patients with ATL over the last decade. However, only a small fraction of patients

with ATL can benefit from transplantation [6–8]. Therefore, the development of

alternative treatment strategies or effective novel drugs for patients with ATL,

especially for elderly or frail patients who are ineligible for allogeneic hematopoi-

etic stem-cell transplantation or intensive chemotherapy, is an urgent issue. In this

chapter, we will discuss the novel drugs for ATL (Table 12.1).

12.2 CC Chemokine Receptor 4 (CCR4)

and Mogamulizumab

Chemokines, which are a small family of cytokines, act as signaling molecules in

the migration and tissue homing of various leukocytes. Among them, thymus- and

activation-regulated chemokine (TARC) and monocyte-derived chemokine (MDC)

induce the selective recruitment of distinct subsets of T cells by triggering the

chemokine receptor, CCR4. CCR4 is a seven-transmembrane G-protein-coupled

receptor that is a marker for type 2 helper T cells (Th2) and regulatory T (Treg) cells

[9, 10]. Although the expression of CCR4 on normal cells such as Th2 cells can be

partly regulated by the ligand [11], especially MDC, this regulation by ligands on

tumor cells has not yet been fully elucidated. Ishida et al. examined ATL cells

obtained from 103 patients with ATL and found that tumor cells from approxi-

mately 90% of patients were positive for the expression of CCR4 [12] (Table 12.2).

They also showed that patients with CCR4-positive ATL were more likely to have

skin infiltration and a worse outcome than those with CCR4-negative ATL, which

indicated that CCR4 played an important pathogenetic role in ATL [12]. CCR4 is

also expressed on tumor cells in approximately 30–65% of patients with other types

Table 12.1 Novel agents for ATL

Mogamulizumab

monotherapy [22]

Mogamulizumab + VCAP-

AMP-VECP [23]

Lenalidomide

monotherapy

[35]

Brentuximab

vedotin +

CHP [38]

Number 26 relapsed ATL 29 untreated ATL 9 relapsed

ATL

2 untreated

ATL

Treatment Weekly� 8 doses 4 cycles of VCAP-AMP-

VECP + 8 doses once every

2 weeks

Daily Once every

3 weeks for

6 cycles

ORR (%) 50% (13/26) 86% (25/29) 33% (3/9) 100% (2/2)

CR (%) 31% (8/26) 52% (15/29) 0% (0/9) 100% (2/2)

CR complete response, ORR overall response rate
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of PTCL [13, 14] (Table 12.2). An analysis of 50 patients with PTCL-NOS revealed

that CCR4-positive patients had significantly shorter survival times than those of

CCR4-negative patients [14]. Furthermore, CCR4 expression increased with

advancing disease stages in patients with mycosis fungoides (MF) or Sézary

syndrome [15]. Although the role of CCR4 in the tumorigenesis and progression

of ATL and PTCLs has not been fully elucidated, CCR4 appears to be a promising

target molecule in the treatment of ATL and PTCLs.

Mogamulizumab, KW-0761, is a humanized anti-CCR4 monoclonal antibody

that recognizes the N-terminal region of human CCR4 [16]. It has a defucosylated

Fc region that markedly enhances antibody-dependent cell-mediated cytotoxicity

(ADCC) due to increased binding affinity to the Fcγ receptor on effector cells

[17]. An in vitro ADCC assay and in vivo studies in a humanized mouse model

showed that mogamulizumab exhibited potent antitumor activity against ATL and

PTCL cells [16, 18–20].

12.2.1 Clinical Efficacy of Mogamulizumab

12.2.1.1 Phase I Study of Mogamulizumab for Relapsed ATL

and CCR4+ PTCL in Japan

A phase I study was conducted in patients with relapsed ATL and CCR4-positive

PTCL [21]. The primary objectives of this study were to assess the safety of

mogamulizumab, its pharmacokinetic (PK) profile, and its maximum tolerated

dose (MTD) and also determine the recommended phase II dose. The secondary

objectives included the best overall response rate (ORR) and PFS. Patients received

mogamulizumab by intravenous infusions once a week for 4 weeks at four dose

levels (0.01, 0.1, 0.5, and 1.0 mg/kg) according to the conventional 3 + 3 design.

Sixteen patients were enrolled in this phase I study, 13 of whom had ATL (11 acute

type, 2 lymphoma type), 1 had MF of the tumor stage, and 2 had PTCL-not

otherwise specified (PTCL-NOS). All 16 patients receiving mogamulizumab were

included in the safety and efficacy analyses. No dose-limiting toxicity (DLT) was

Table 12.2 CCR4 expression in mature T-cell and NK-cell neoplasms [12–14]

Pathological subtypes Positivity

NK-/T-cell lymphoma, nasal type 1/27 (4%)

Mycosis fungoides in transformation 10/20 (50%)

Anaplastic large cell lymphoma, ALK positive 1/24 (4%)

Anaplastic large cell lymphoma, ALK negative 8/16 (50%)

Peripheral T-cell lymphoma-not otherwise specified 24/58 (41%)

Angioimmunoblastic T-cell lymphoma 12/38 (32%)

Adult T-cell leukemia-lymphoma 108/120 (90%)

Others 5/12 (42%)
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observed in any of the 13 patients who received mogamulizumab at a dose

0.01–1.0 mg/kg, and MTD was not reached. Additional three patients were enrolled

to receive the highest dose of 1.0 mg/kg. The best ORR in all 16 patients was 31%

(5/16; of those, 2 had complete response [CR] and 3 had partial response [PR]), and

the best ORR was also 31% in patients with ATL (4/13; of those, 2 had CR and

another 2 had PR). These results demonstrated the potential efficacy against

relapsed ATL. Although MTD was not reached, a tendency toward increase in

the incidence of grade 3 or higher toxicity was observed at 1.0 mg/kg; therefore,

mogamulizumab at a dose of 1.0 mg/kg was recommended for a subsequent phase

II study.

12.2.1.2 Phase II Study of Mogamulizumab for Relapsed ATL in Japan

A multicenter phase II study of mogamulizumab was conducted for patients with

relapsed CCR4-positive ATL [22]. The primary endpoint was ORR, and secondary

endpoints included the best responses by disease sites such as peripheral blood ATL

cells, skin and nodal/extranodal lesions, as well as PFS and OS. Mogamulizumab

was intravenously administered once a week for 8 weeks at a dose of 1.0 mg/kg. A

total of 28 patients were enrolled in this phase II study. Of these, 27 patients who

received mogamulizumab were included in the safety analysis, and 26 patients,

excluding 1 patient who was judged ineligible, were evaluated in the efficacy

analysis. Of the 27 patients who received mogamulizumab, 14 had acute type,

6 lymphoma type, and 7 chronic type with unfavorable prognostic factors. ORR

was 50% (13/26, 95% confidence interval [CI], 30–70%) including 8 CR; thus, the

efficacy of mogamulizumab was confirmed. Responses according to disease sites

were 100% (of 13 patients, all CR) for peripheral blood, 63% (of eight patients,

three CR and two PR) for skin, and 25% (of 12 patients, 3 CR/CRu) for nodal and

extranodal lesions. Median PFS and OS were 5.2 and 13.7 months, respectively.

ORR was also calculated for each disease subtype, reaching 43% of patients with

acute type (of 14 patients, 5 CR and 1 PR), 33% of patients with lymphoma type

(of six patients, one CR and one PR), and 83% of patients with unfavorable chronic

type (of six patients, two CR and three PR). Thus, these findings demonstrated that

mogamulizumab induced favorable responses in patients with any disease subtype

of ATL. In addition, for each age group, ORR was 39% (of 13 patients, 3 CR and

2 PR) in patients younger than 65 years and 62% (of 13 patients, 5 CR and 3 PR) in

patients 65 years or older. The most common adverse events in 27 patients with

ATL were lymphopenia (96%), neutropenia (52%), and thrombocytopenia (52%)

as hematological toxicities and acute infusion reaction (89%), pyrexia (82%), and

skin eruption (63%, 22% in grade 3/4) as non-hematological toxicities. One patient

developed Stevens-Johnson syndrome (SJS), which was judged as possibly related

to mogamulizumab, although that patient also received trimethoprim/sulfamethox-

azole, fluconazole, and acyclovir for prevention of infection according to the

protocol. These adverse events were manageable with supportive measures includ-

ing corticosteroids or other drugs in all patients. These results demonstrated that

148 W. Munakata and K. Tobinai



mogamulizumab monotherapy showed clinically meaningful antitumor activity in

patients with relapsed ATL, without an unacceptable toxicity profile.

Based on the result of this phase II study, mogamulizumab was approved for the

treatment of relapsed ATL by the Japanese Pharmaceuticals and Medical Devices

Agency (PMDA). However, post-marketing surveillance in Japan revealed that

skin-related severe adverse events occurred in a fraction of patients with ATL.

Thus, during the first 4 months after the approval by PMDA, nine skin-related

severe adverse events, including four cases of SJS/toxic epidermal necrolysis

(TEN), were reported, with one fatality. Therefore, a close and careful follow-up

of adverse events is necessary, and the prompt use of 0.5–1.0 mg/kg prednisolone is

recommended for grade 2–4 skin disorders. If SJS or TEN is suspected, methyl-

prednisolone pulse therapy should be considered. The mechanism of skin disorders

is not fully understood, but Treg reduction may contribute to skin disorders

associated with the mogamulizumab treatment.

12.2.1.3 Randomized Phase II Study of Mogamulizumab With or

Without a Dose-Intensified Chemotherapy for Newly

Diagnosed Aggressive ATL in Japan

A multicenter, randomized phase II study was conducted to examine the efficacy of

the combination of mogamulizumab with a dose-intensified multidrug regimen, the

so-called mLSG15, for newly diagnosed aggressive ATL [23]. In this study,

patients with newly diagnosed CCR4-positive aggressive ATL were randomly

assigned in a 1:1 ratio to receive mLSG15 plus mogamulizumab (arm A) or

mLSG15 alone (arm B). The primary endpoint was the CR rate (%CR), and

secondary endpoints included ORR, PFS, OS, and safety.

Patients received four cycles of mLSG15, with or without a total of eight cycles

of mogamulizumab once every 2 weeks for 16 weeks at a dose of 1.0 mg/kg. Of the

54 randomized patients, 29 were treated in arm A and 24 in arm B. The %CR and

ORR in arms A and B were 52% (15/29, 95% CI, 33–71%) vs. 33% (8/24, 95% CI,

16–55%) and 86% (25/29, 95% CI, 68–96%) vs. 75% (18/24, 95% CI, 53–90%),

respectively. The %CR according to the disease site in arm A and arm B was 100%

(14/14) and 43% (3/7) for peripheral blood, 92% (24/26) and 73% (16/22) for nodal

and extranodal lesions, and 50% (4/8) and 60% (3/5) for skin lesions, respectively.

The ORR according to the disease site in arms A and B was 100% (14/14) and

100% (7/7) for peripheral blood, 92% (24/26) and 77% (17/22) for nodal and

extranodal lesions, and 75% (6/8) and 80% (4/5) for skin lesions, respectively.

The median PFS in arm A and arm B was 8.5 months and 6.3 months, respectively.

The median OS was not reached in both arms. The most common adverse events of

any grade in each arm were neutropenia (100%, 96%), thrombocytopenia (100%,

96%), leukopenia (100%, 92%), lymphopenia (97%, 96%), anemia (97%, 92%),

and febrile neutropenia (90%, 88%). Papular rush (21%), hyperglycemia (14%),

pyrexia (14%), interstitial lung disease (10%), erythematous rash (7%), cytomeg-

alovirus infection (7%), cytomegalovirus pneumonia (7%), and decreased oxygen
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saturation (7%) occurred only in arm A. Although mLSG15 plus mogamulizumab

was found to be associated with substantial toxicities, particularly infectious and

skin-related adverse events, the majority of the adverse events were manageable.

These results suggested that the combination of mogamulizumab with mLSG15

may be a reasonable treatment option for managing patients with newly diagnosed

aggressive ATL. However, further clinical trials are needed to confirm these results,

mainly because of the small number of patients in this randomized phase II study.

12.3 Lenalidomide

Lenalidomide is an immunomodulatory drug (IMiD) that has been derived by

altering the structure of thalidomide and was approved for multiple myeloma

(MM) and myelodysplastic syndrome associated with 5q deletion in Japan. Several

mechanisms of lenalidomide to boost immune response have been proposed.

Lenalidomide enhances antigen uptake by antigen-presenting cells [24] and poten-

tiates immune response by restoring dendritic cell function, inhibiting regulatory

T-cell activity and activating NK cells and T cells by boosting production of

interferon gamma and interleukin-2 [25]. In addition to the immunomodulatory

effects, lenalidomide also has anti-angiogenic effects [26], impairs interaction

between malignant cells and bone marrow stromal cells [27], induces cell cycle

arrest, and has direct antiproliferative effects [28]. The antitumor activities are

based on the direct interference of key pathways in tumor cells and the indirect

modulation of the tumor microenvironment. In MM as well as activated B-cell type

(ABC) diffuse large B-cell lymphoma (DLBCL), cereblon has been identified as the

target for the immunomodulatory and antiproliferative activities of lenalidomide

[29, 30]. IMiD resistance is associated with downregulation of cereblon [31], and

high concentration of cereblon is associated with increased responsiveness of

IMiDs [32]. In MM cells, lenalidomide-bound cereblon acquires the ability to

target the proteasomal degradation of two B-cell transcription factors, IKZF1 and

IKZF3, an essential step in the anti-myeloma effect [33]. In ABC-DLBCL, the

tumoricidal effect of lenalidomide is associated with the cereblon-mediated

downregulation of interferon regulatory factor 4 (IRF-4) leading to inhibition of

the B-cell receptor signal that activates nuclear factor κappa B (NF-κB) [30]. It is
considered that these mechanisms lead to clinical efficacy of lenalidomide in

patients with MM and B-cell non-Hodgkin lymphoma.

On the other hand, lenalidomide has shown clinical efficacy in patients with

relapsed or refractory PTCLs. The multicenter, single-arm phase II trial, the

EXPECT trial, was conducted to evaluate the efficacy and safety of lenalidomide

monotherapy in patients with relapsed or refractory PTCL [34]. Lenalidomide at a

dose of 25 mg was orally administered once daily on days 1–21 of each 28-day

cycle for a maximum of 24 months, until disease progression or development of

intolerable adverse events. A total of 54 patients were enrolled in this phase II

study, mostly with angioimmnoblastic T-cell lymphoma (AITL, n ¼ 26, 48%) and
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PTCL-NOS (n ¼ 20, 37%). ORR was 22% (12/54, 95% CI, 12–36%) including CR

or unconfirmed CR (CRu) in six (11%) patients. ORR was also 31% (8/26) in

patients with AITL. These results demonstrated that lenalidomide monotherapy

showed clinically meaningful antitumor activity in patients with heavily pretreated

PTCL. However, no patients with ATL were registered in this trial.

12.3.1 Phase I Study of Lenalidomide for Relapsed ATL
and PTCL in Japan

A phase I study was conducted in patients with relapsed ATL and PTCL in Japan to

assess the safety of lenalidomide, MTD, its PK profile, and the efficacy [35]. Dose-

escalation was conducted according to the conventional 3 + 3 design. Patients in

cohort 1 received oral lenalidomide 25 mg daily on days 1–21 of each 28-day cycle.

Patients in cohorts 2 and 3 received 25 and 35 mg, respectively, on each day of the

28-day cycle. The treatment was continued until the development of unacceptable

toxicity or disease progression.

Thirteen patients, nine of whom had ATL, and four had PTCL, were enrolled in

this phase I study: three in cohort 1, six in cohort 2, and four in cohort 3. The three

patients in cohort 1 received lenalidomide until disease progression without the

instances of DLT. In cohort 2, one patient experienced DLT (thrombocytopenia,

platelets <10,000/uL). In cohort 3, two patients had DLTs (thrombocytopenia,

platelets <10,000/uL in one patient and grade 3 prolongation of QTc interval in

one patient). Based on these results, 25 mg daily per 28-day cycle was regarded as

the MTD in patients with ATL and PTCLs. Other grade 3 or 4 non-DLT adverse

events occurring in two or more patients included neutropenia (n ¼ 8),

lymphopenia (n ¼ 7), thrombocytopenia (n ¼ 3), skin rash (n ¼ 3),

hyperbilirubinemia (n ¼ 2), and increased aminotransaminase. Among the nine

patients with ATL, three achieved PR with hematological CR in two patients,

including the disappearance of skin lesions in one patient. These responses occurred

between 54 and 57 days and lasted for 92, 279 + and 505 days. On the other hand,

among four patients with PTCL, one achieved PR. Therefore, lenalidomide 25 mg

daily on each day of the 28-day cycle was recommended for the subsequent phase II

study. These results suggested the promising antitumor activity of lenalidomide in

patients with ATL and PTCL. Based on the encouraging results of this phase I

study, a phase II study was conducted to evaluate the efficacy of lenalidomide in

patients with relapsed ATL in Japan, and patient’s enrollment was completed.

12 New Agents of Adult T-cell Leukemia/Lymphoma (ATL) 151



12.4 Brentuximab Vedotin: Anti-CD30 Antibody-Drug

Conjugate

CD30, a transmembrane protein from the TNF receptor family, is expressed on

activated cells, and signaling via CD30 has pleiotropic effects depending on the

cellular context [36]. These effects range from promotion of cell death to alteration

in cell survival, activation, and differentiation. CD30 expression is highly regulated

and is restricted in normal tissue to activated B and T cells; however, CD30 can also

be expressed on virally infected cells. Tumor cells from various lymphocytic

malignancies have also been found to express CD30. Therefore, CD30 has been

considered to be an important therapeutic target for the treatment of malignant

lymphomas, especially Hodgkin lymphoma and anaplastic large cell lymphoma

(ALCL), because CD30 expression is higher in tumor cells of Hodgkin lymphoma

and ALCL than other lymphomas. Brentuximab vedotin is an antibody-drug con-

jugate (ADC) containing an antimitotic drug, monomethyl auristatin E (MMAE),

linked to an anti-CD30 monoclonal antibody, cAC10 [37]. Brentuximab vedotin

delivers the antitubulin agent MMAE to CD30-positive malignant cells by binding

specifically to CD30 on the cell surface and, after internalization, releasing MMAE

inside the cell via lysosomal degradation. Because tumor cells are CD30 positive in

some ATL patients, brentuximab vedotin is potentially effective for ATL.

The clinical data on brentuximab vedotin in patients with ATL is very limited. A

phase I study was conducted to examine the safety and efficacy of the combination

of brentuximab vedotin with multidrug regimen (cyclophosphamide, doxorubicin,

prednisone (CHP)) for newly diagnosed CD30-positive PTCLs [38]. “Positive for

CD30” was defined as �1% CD30 expression on malignant cells by immunohis-

tochemistry. In this study, 39 patients were enrolled and 2 patients had ATL. The

CD30-positive rate on tumor cells was 25% and 98%, respectively. These two

patients with ATL received brentuximab vedotin in combination with CHP once

every 3 weeks for 18 weeks at a dose of 1.8 mg/kg and achieved CR at the end of six

cycles. The PFS of each patient was 7.1 and 22.8 months, respectively. Although

these are results of only two patients, these results suggested the promising

antitumor activity of brentuximab vedotin in patients with ATL. A randomized

phase III trial is under way to compare brentuximab vedotin + CHP with CHOP

(cyclophosphamide, doxorubicin, vincristine, and prednisone) for patients with

newly diagnosed CD30-positive PTCLs, including CD30-positive ATL. Further

investigations are warranted to evaluate the efficacy of brentuximab vedotin in

patients with ATL.
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12.5 Other Novel Agents for ATL and PTCL

Several novel agents have recently been developed for the treatment of PTCL,

mainly in patients with relapsed or refractory diseases. These agents have various

mechanisms of action, including a proteasome inhibitor (bortezomib), histone

deacetylase inhibitors (vorinostat, romidepsin, panobinostat, belinostat, and

chidamide), antifolate (pralatrexate), purine nucleoside phosphorylase inhibitor

(forodesine), and biologics including antibodies and antibody-toxin conjugates

(alemtuzumab, denileukin diftitox) [39]. However, the clinical data on these

novel agents are mainly derived from patients with PTCL, not from ATL.

12.6 Conclusions

Mogamulizumab monotherapy achieved a high response rate in patients with

relapsed ATL, with an acceptable toxicity profile. Available data suggest that it is

one of the most active agents for ATL, and it is expected to play a key role in the

treatment of ATL, especially for elderly or frail patients who are ineligible for

allogeneic hematopoietic stem-cell transplantation or intensive chemotherapy. Fur-

thermore, dose-intensified combination chemotherapy with mogamulizumab may

be a reasonable treatment option for managing patients with newly diagnosed

aggressive ATL. On the other hand, a reduction of the Treg subset was commonly

observed in ATL patients receiving mogamulizumab and may contribute to skin

disorders associated with the mogamulizumab treatment [40]. Recently, it is also

considered that Treg reduction due to mogamulizumab administration may exac-

erbate graft-versus-host disease (GVHD) after allogeneic hematopoietic stem-cell

transplantation. The mechanisms of skin adverse events and the effect of

mogamulizumab on GVHD have to be analyzed more precisely. In addition,

lenalidomide and brentuximab vedotin have shown the promising antitumor activ-

ity in patients with ATL. Further investigation is warranted.
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Chapter 13

Prevention of Human T-Cell Leukemia

Virus Type 1 (HTLV-1) Mother-to-Child

Transmission

Kiyonori Miura and Hideaki Masuzaki

13.1 Human T-Cell Leukemia Virus Type 1

(HTLV-1)-Related Diseases

Worldwide, there are an estimated 20 million people infected with human T-cell

leukemia virus type 1 (HTLV-1) [1]. The main regions with endemic HTLV-1 are

the southern part of Japan, sub-Saharan Africa, South America, the Caribbean

region, and specific regions in the Middle East and Australo-Melanesian

populations [2].

HTLV-1 causes adult T-cell leukemia-lymphoma (ATL) and HTLV-1-associated

myelopathy (HAM) in a small proportion of HTLV-1 carriers, after a long incubation

period. Improving knowledge on the epidemiology of HTLV-1-associated diseases

demonstrates why HTLV-1 prevention is necessary.

13.1.1 Adult T-Cell Leukemia-Lymphoma

Adult T-cell leukemia-lymphoma (ATL) is a malignancy of peripheral T-cell

lymphocytes, caused by HTLV-1 infection. The number of HTLV-1 carriers who

develop ATL is estimated at 1200 annually, and the lifetime risk for ATL in HTLV-1

carriers is approximately 5% [3]. The median survival time of people with ATL is

under 12 months [5], and currently there is no vaccine available. When acute

transformation of ATL occurs, chemotherapy is the first choice of medical treat-

ment. To date, various chemotherapy protocols have been used to treat aggressive
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ATL in Japan [4]; however, ATL is difficult to cure and presently has a poor

prognosis. The median age of onset is 67 years, indicating a long latent period

from initial infection with HTLV-1 to the onset of ATL. The majority of ATL cases

develop from cases of HTLV-1 infection acquired in childhood, through vertical

transmission frommother to child, rather than in adult life (through blood transfusions

or sexual transmission) [6, 7].

13.1.2 HTLV-1-Associated Myelopathy

HTLV-1-associated myelopathy (HAM), which can develop after an incubation

period of several years (mean age at onset is 40–50 years), is characterized by

serious neurological clinical signs, including spasticity and/or hyperreflexia of the

lower extremities, urinary bladder disturbance, lower extremitymuscleweakness, and

sensory disturbances with lower back pain. The lifetime risk of HAM in HTLV-1

carriers is 0.25% in Japan [6, 7] and 1.9% in Jamaica and Trinidad [8]. In a prospective

study in the United States (USA), 3.7% of HTLV-1 carriers were diagnosed with

HAM [9].Major symptoms for individuals with HTLV-1 include pain, sensory-motor

dysfunction, and urinary symptoms. To date, various therapies have been used to try

and improve patients’ quality of life; however, there is no cure for this disease.
It is important to recognize that there are no effective vaccines against HTLV-1

and no medication or therapies that will cure HTLV-1-related diseases. Therefore,

primary prevention of mother-to-child transmission of HTLV-1 infection is the

only effective strategy likely to reduce HTLV-1 carrier status and HTLV-1-related

diseases in the next generation.

13.2 Infection Routes of HTLV-1

HTLV-1 has three modes of transmission: (1) vertically, from mother to child,

antenatal or postnatal, predominantly linked with prolonged breastfeeding; (2) sex-

ual intercourse, mainly occurring from male to female; and (3) blood-borne trans-

mission. In addition, transmission through intravenous drug use is also possible

[7]. Routine HTLV-1 screening of blood donations has been performed in Japan

and many other countries, to prevent blood transfusion-related HTLV-1 transmis-

sion. Since 2011, HTLV-1 screening of pregnant women has been recommended in

Japan [10].
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13.3 Mother-to-Child Transmission Through

Breastfeeding

HTLV-1 is primarily transmitted vertically from mother to child. In Nagasaki, an

HTLV-1-endemic area in Northern Kyushu, Japan, several studies supporting the

possibility of breast milk-borne transmission include (1) HTLV-1 antigens identi-

fied in breast milk from HTLV-1 carriers; (2) oral administration of fresh human

breast milk from HTLV-1 carriers to uninfected marmosets causing transmission;

(3) retrospective data showing an increased rate of HTLV-1 infection in breast

milk-fed children, compared with bottle milk-fed children; and (4) prospective data

showing that prevalence of mother-to-child transmission was 20.5% in a group of

mothers that breastfed for 6 months or longer, 8.3% in a group that breastfed for less

than 6 months, and 2.4% in a group that bottle-fed (Fig. 13.1). The above studies

have provided important information; breastfeeding is associated with mother-to-

child transmission of HTLV-1, but breast milk-borne transmission is not the only

route of transmission. A longer duration of breastfeeding increases the risk of

mother-to-child transmission, whereas bottle-feeding could reduce this risk

[7, 11]. To reduce the prevalence of HTLV-1 carriers and prevent further develop-

ment of HTLV-1-related diseases in the next generation, routine HTLV-1 screening

of pregnant women is essential [7, 11].

Several studies in other regions and countries support these Nagasaki studies. In

Kagoshima (an endemic area in southern Kyushu, Japan), an epidemiological study

identified the prevalence of mother-to-child transmission to be 25.0% in a group

that breastfed for 7 months or longer (long-term breastfeeding), 3.8% in a group

20.5%
(71/346) 

8.3%
(14/169) 

2.4%
(23/962) Bottled-feeding

0 5 10 15 20 25 (%)

Short-term
breast-feeding  

Long-term
breast-feeding  

Fig. 13.1 Prevalence of mother-to-child transmission of HTLV-1 for each feeding method. The

prevalence of mother-to-child transmission was 20.5% in the group of long-term breastfeeding,

8.3% in the group of the short-term breastfeeding, and 2.4% in the group of bottle-feeding. Long-

term breastfeeding is defined as a duration of 6 months or longer, while short-term breastfeeding is

defined as a duration of less than 6 months
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that breastfed for less than 7 months (short-term breastfeeding), and 5.6% in a group

that bottle-fed [12]. There was a significant difference between the short-term and

long-term breastfeeding groups. In Jamaica, in children observed for at least

24 months, the prevalence of mother-to-child transmission was 32% in the group

that was breastfed for 12 months or longer and 9% in the group that was breastfed

for less than 12 months [13]. Compared with children who were breastfed for

12 months or less, relative risk in children who were breastfed for 12 to 18 months

was 6.4 and for those who were breastfed for longer than 18 months was 18.1 [13].

As previously noted, with the vertical transmission of HTLV-1 from mother to

child, a longer duration of breastfeeding increases the risk of transmission

[7, 11]. The most effective time to prevent vertical transmission of HTLV-1 is at

birth. To provide a choice of feeding methods for babies born to HTLV-1 carriers,

antenatal screening for HTLV-1 has been carried out in Nagasaki since 1987

[7, 11] and has also been proposed in Europe and Jamaica. In Japan, the estimated

number of HTLV-1 carriers in 2007 was 1.08 million [14, 15]. The number of

HTLV-1 carriers in each region has been estimated to be 492,582 in Kyushu,

171,843 in Kinki, and 190,609 in Kanto. Between 1990 and 2007, the prevalence

of HTLV-1 carriers in Kyushu decreased significantly from 50.9% in 1990 to 45.7%

in 2007, while those in the metropolitan areas (Kinki and Kanto regions) increased

from 10.8% in 1990 to 17.7% in 2007 [14, 15]. These changes were considered to

be mainly because of migration from Kyushu to the metropolitan areas

[14, 15]. HTLV-1 carriers are distributed across the whole country, and primary

prevention is the only effective strategy to reduce HTLV-1 carriers in the next

generation; therefore, to prevent mother-to-child transmission of HTLV-1, nation-

wide antenatal screening for HTLV-1 has been implemented since 2011 in

Japan [10].

13.4 Prevention of Vertical Transmission of HTLV-1

at Birth

13.4.1 Bottle-Feeding

It is important to emphasize that HTLV-1-associated diseases are only caused by

HTLV-1 carriers, and people who are seronegative for HTLV-1 will never develop

HTLV-1-associated diseases. Furthermore, it is not possible to prevent the devel-

opment of ATL or other HTLV-1-associated disorders in carriers. To date, no

HTLV-1 vaccine has reached clinical trial stage. The majority of HTLV-1 infec-

tions are through mother-to-child transmission, and in general, ATL only develops

from HTLV-1 carriers infected in childhood [7, 11]. Bottle-feeding has demon-

strated a reduction in the prevalence of mother-to-child transmission from 20.5% to

2.4% [7, 11]. In Japan, primary prevention of mother-to-child transmission of

HTLV-1 infection is the only effective strategy likely to reduce HTLV-1 carrier
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status and HTLV-1-related diseases in the next generation, despite the loss of health

benefits associated with breastfeeding. Because breastfeeding can improve infant

mortality rates in some developing countries, this prevention strategy for HTLV-1

may be controversial, and implementation will be dependent on pregnancy status

and/or medical situations in each country [7].

13.4.2 Two Alternative Feeding Methods to Reduce the Risk
of Breastmilk HTLV-1 Transmission

In Nagasaki, bottle-feeding is recommended as the best feeding method to prevent

mother-to-child transmission of HTLV-1 [7, 11]. Conversely, in Kagoshima,

HTLV-1-positive mothers are advised to bottle-feed or breastfeed short term

[16]. In general, most pregnant women seem to believe that breastfeeding has

positive effects for the health of both baby and mother. Therefore, HTLV-1-carrier

mothers want to choose breastfeeding for their babies. There are two alternative

breastfeeding methods to reduce the risk of HTLV-1 vertical transmission, one is

freeze-thawing breast milk, and the other is short-term breastfeeding.

Freeze-thawing breast milk disrupts HTLV-1-infected cells in vitro and seems to

reduce the rate of mother-to-child transmission. However, freeze-thawing breast

milk is a difficult feeding method for many mothers, as breast milk should be frozen

at �20 �C or below for 12 h or longer. Conversely, several studies, as noted above,

demonstrated that short-term breastfeeding could also reduce the rate of mother-to-

child transmission of HTLV-1. In particular, a study in Kagoshima suggested that

short-term breastfeeding (<3 months) and bottle-feeding showed almost the same

protective effect in reducing mother-to-child transmission of HTLV-1 [16].

Based on the benefit of breastfeeding and the risk of mother-to-child transmis-

sion of HTLV-1 in alternative feeding methods, some HTLV-1-positive pregnant

women choose short-term breastfeeding or freeze-thawing breast milk in Japan. In

addition, other reasons also may affect their decision to select alternative

breastfeeding methods including: (1) medical staff (gynecologists, pediatricians,

midwives, and public health nurses) might strongly recommend breastfeeding,

based on its benefits, (2) HTLV-1-positive mothers might be concerned that their

family and/or neighbors will become aware of their carrier status if they decide not

to breastfeed, and (3) some mothers might continue to breastfeed because of their

economic situation.
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13.5 Current Strategy in Japan to Prevent Mother-to-

Child Transmission of HTLV-1

Since 2011, it is recommended that all pregnant women in Japan are screened for

HTLV-1 by particle agglutination (PA) or chemiluminescent enzyme immunoassay

(CLEIA) [7, 10, 11].

In Nagasaki, the committee for the ATL Prevention Program Nagasaki has been

established since 1987 [17]. The establishment of a committee is recommended to

promote HTLV-1 prevention programs. The latest version of the prevention protocol

for HTLV-1 mother-to-child transmission in Nagasaki is shown in Fig. 13.2 [7]. It is

important to highlight that both PA and CLEIA have high sensitivity and specificity,

but there is still the possibility of false-positive results, especially in non-endemic

areas [18].WhenPAorCLEIA tests showpositive or pseudo-positive results,Western

blotting should also be performed to confirm results. However,Western blots can also

show indeterminate results. Therefore, for a definitive result, polymerase chain reac-

tion (PCR) analysis to detect HTLV-1 provirus DNA is performed as an additional

confirmation test. In Nagasaki, as the best system to screen HTLV-1 carriers, Western

blots in combination with PCR tests seem to be more useful than Western blot tests

alone. In Nagasaki, since 2011, for pregnant women with inconclusive results by

Western blot, a PCR has been performed as an additional confirmation test. PCR
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Fig. 13.2 Prevention protocol for HTLV-1 mother-to-child transmission in Nagasaki, Japan. In

Nagasaki, the committee of adult T-cell leukemia-lymphoma (ATL) Prevention Program Nagasaki

has been established since 1987. This is the latest version of prevention protocol in Nagasaki.

CLEIA chemiluminescence enzyme immunoassay, PA particle agglutination, WB Western blot
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primers and probes for real-time PCR have been designed for the pX region of HTLV-

1, because this region is conserved between HTLV-1 subtypes.

When advising on HTLV-1 infection during pregnancy, pregnant women with

HTLV-1 infections receive detailed information about HTLV-1, mother-to-child

transmission, and clinical significance, to prevent the vertical transmission of

HTLV-1. Except for HTLV-1-positive women with high-risk babies, e.g., prema-

ture or severe fetal growth restrictions, all pregnant women with HTLV-1 infection

are advised to undertake exclusive bottle-feeding, freeze-thawing of breast milk, or

short-term breastfeeding (<3 months). Continuous support for HTLV-1-carrier

mothers is critical, especially for those who have chosen the latter two feeding

options. In Nagasaki, at 1-month checkups, obstetricians introduce the babies born

from HTLV-1-carrier mothers to pediatricians, to support HTLV-1-positive

mothers and their babies. For the children born from HTLV-1-positive mothers, it

is recommended that an HTLV-1 test is performed at 3 years old.

13.6 Importance of Educating Medical Staff

in the Prevention of Vertical Transmission of HTLV-1

Education of medical staff (obstetricians, pediatricians, midwives, and public

health nurses) is essential [11]. If medical staff do not understand the severity of

HTLV-1-related diseases, it is difficult to deliver the appropriate information to

pregnant women and to explain the significance of preventing HTLV-1

transmission [11].

In Nagasaki, to prevent mother-to-child transmission, HTLV-1 carriers are

advised to undertake bottle-feeding as a first choice and short-term breastfeeding

(for a maximum of 3 months) or freeze-thawing breast milk as second choice.

Medical staff in Nagasaki recognize that bottle-feeding is the most reliable and

effective method to reduce the risk of breast milk-borne transmission of HTLV-1.

However, the prevalence of HTLV-1 carriers selecting bottle-feeding decreased

from 79.1% in 1999 to 59.4% in 2008. If medical staff have no experience of

encountering ATL, they may think it is treatable like other leukemias (e.g., acute

lymphoblastic leukemia, acute lymphocytic leukemia, malignant lymphoma), and

the incidence of ATL in carriers would be low. In our experience, most pregnant

women visiting doctors select breastfeeding rather than bottle-feeding, probably

because they believe breastfeeding is the most important tool for rearing babies.

Conversely, HTLV-1-carrier mothers may be concerned about confidentiality.

Education of medical staff and the community is important, so consequently, to

raise awareness in medical staff that ATL is still difficult to cure, and prevention of

mother-to-child transmission of HTLV-1 is important, we implemented annual

workshops as part of the ATL prevention program. In these workshops, medical

staff working on the prevention program listened to the experiences of patients with

HTLV-1-related diseases, the current state of ATL/HAM treatment in hematology
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and current HTLV-1 research. An increase in awareness in medical staff was

reflected in an increase in the rate of the bottle-feeding selected by HTLV-1

carriers, with a prevalence of 75.8% in 2013 (manuscript in preparation). For the

prevention of HTLV-1 mother-to-child transmission, education about HTLV-1 and

related diseases can heighten the awareness of medical staff [11].

13.7 Importance of Follow-Up for HTLV-1-Carrier

Mothers and Their Babies

As mentioned previously, in the HTLV-1 mother-to-child transmission prevention

program, there were serious problems economically, emotionally, and socially.

Recently, the difficulty of weaning from the breast has been recognized as a serious

problem with short-term breastfeeding [7, 16]. In Kagoshima, approximately 12.5%

of mothers who had chosen short-term breastfeeding failed to wean their babies as

scheduled [16]. Therefore, supporting HTLV-1-positive mothers to stop

breastfeeding within the 3-month period is important. In Kagoshima, visits by

public health nurses are standard and they determine if mothers need the support

of midwives [16].

13.8 Agenda for the Future

PCR tests for HTLV-1 provirus DNA were performed in umbilical cord-blood

samples of babies born to carrier mothers. None of the babies who were positive

in the cord blood were still positive in peripheral blood at 6 months after birth

[19]. Conversely, all babies who were diagnosed as HTLV-1 carriers beyond

12 months of age had been PCR negative in their cord blood [19]. Therefore,

intrauterine transmission of HTLV-1 may be rare.

When HTLV-1-positive mothers chose to bottle-feed, mother-to-child transmis-

sion of HTLV-1 was identified in 2.4% of babies, suggesting other routes of vertical

transmission antenatally or postnatally [7, 11]. In addition, previous studies

reported that vertical transmission of HTLV-1 was associated with higher maternal

HTLV-1 antibody titer or provirus load in blood or breast milk, prolonged duration

of ruptured membranes during delivery, and lower maternal income [13, 20, 21].

In the future, to develop the best prevention protocol for HTLV-1 mother-to-

child transmission, the following needs to be clarified: (1) the secondary pathway of

HTLV-1 mother-to-child transmission, e.g., transmission during delivery and trans-

placental transmission, (2) association between clinical findings during pregnancy

and the risk of mother-to-child transmission, (3) association between HTLV-1

provirus load in carrier mothers and the risk of mother-to-child transmission,

(4) association between HTLV-1 provirus load in carrier mothers and the future
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development of ATL, and (5) the possibility of a vaccine for HTLV-1 in endemic

areas. In addition to the prevention of HTLV-1 mother-to-child transmission, for

the obstetric care for pregnant women with HTLV-1 infection, effectiveness of

avoiding fetal invasive monitoring and iatrogenic rupture of membranes, the influ-

ence of maternal proviral load, and the mode of delivery should be also

clarified [22].

13.9 Lessons from the Cases in the Nagasaki HTLV-1

Prevention Program

We have experienced several difficult cases in the prevention program; critical

points learned from these cases are summarized here.

Case 1: The Aim of HTLV-1 Screening in Pregnant Women

A pregnant woman (gravida 0, para 0) was diagnosed as an HTLV-1 carrier during

the standard screening for HTLV-1 infection in pregnant women. After counseling

regarding feeding methods, the husband and pregnant woman’s mother were also

tested to identify the route of transmission; however, the tests were negative.

Consequently, the pregnant woman and her husband separated. Before the

HTLV-1 screening test is performed, we explain to parents that HTLV-1 screening

in pregnant women is for their baby’s health, because the aim of this prevention

protocol is to reduce HTLV-1 carriers and HTLV-1-related diseases in the next

generation. In the HTLV-1 screening of pregnant women, we do not recommend

testing grandmothers, because there is the possibility for additional concerns within

the family. Furthermore, it was revealed during the medical interview there was the

possibility that this pregnant woman received donated milk at birth. Therefore, the

community of obstetricians, midwives, and neonatologists should pay attention to

the issue of donated milk, and donated milk should be also screened for HTLV-1

infection [23].

Case 2: Sexual Transmission from Husband to Wife

A pregnant woman (gravida 1, para 1) was diagnosed as HTLV-1 negative during

her first pregnancy. However, in her second pregnancy, the PA test identified a

positive result. Therefore, a Western blot test was performed as a confirmation test,

which was indeterminate. Consequently, a PCR was performed, and a very low

proviral load of HTLV-1 was detected. The pregnant woman’s mother was HTLV-1

negative, but her husband was positive, suggesting sexual transmission from hus-

band to wife. Other studies have reported that more than half of cases (6/11) of

husband-to-wife transmission were between 1 and 4 years after marriage

[24]. Therefore, we recommend that the HTLV-1 screening test should be

performed for each pregnancy. In future studies, to gather more detailed data

regarding HTLV-1 carriers with a low HTLV-1 provirus load, we have to clarify
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if a very low HTLV-1 provirus load can cause mother-to-child transmission of

HTLV-1 and lead on to the development of HTLV-1-related diseases.

Case 3: ATL in a Pregnant Woman Diagnosed as an HTLV-1 Carrier

We have experienced ATL in a pregnant woman with HTLV-1 [25]. A family tree

of the present case (II-3), who was diagnosed with ATL during pregnancy, is shown

in Fig. 13.3. In Nagasaki, screening for HTLV-1 in all pregnant women has been

implemented since 1987 [7, 11]. As a result, for the first time, a grandmother (I-2)

had a diagnosis of being an HTLV-1 carrier at her fourth pregnancy (II-4) in 1987.

Therefore, her younger sister (II-4) received bottled milk to avoid mother-to-child

transmission of HTLV-1. The present case (II-3), who was born before 1987,

became an HTLV-1 carrier because alternative feeding methods were not

recommended. When the present case (II-3) was pregnant with her first child

(III-1), HTLV-1 infection was detected by screening, and she selected bottle-

12 weeks of gestation

TOP at 15 weeks of 

pregnancy

HTLV-1 carrier

HTLV-1 screening test of 

pregnant women was started 

since 1987

born in 1987

bottled milk feeding

breast feeding 

HTLV-1 carrier at first pregnancy

ATL at the present pregnancy

breast feeding

bottled milk feeding

I

II

III

1 2

1 2 4

1 2

3

HTLV-1 carrier diagnosed 

at third pregnancy

ATL

Fig. 13.3 Family tree of pregnant woman with adult T-cell leukemia-lymphoma. The present case

(II-3) was breastfed and became an HTLV-1 carrier via mother-to-child transmission. When her

younger sister (II-4) was born in 1987, her mother (I-2) was diagnosed with HTLV-1. To reduce

the risk of mother-to-child transmission of HTLV-1, her younger sister (II-4) was bottle-fed, and

she did not become an HTLV-1 carrier. During her first pregnancy, the present case (II-3) was

diagnosed as an HTLV-1 carrier by screening, and she chose to bottle-feed her first child (III-1).

Her first child was confirmed as HTLV-1 negative. When her first child was 8 years old, the present

case (II-3) was diagnosed with unfavorable chronic ATL at 12 weeks’ gestation (Reused from Ref.

[24] with permission)
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feeding. When her child was 3 years old, he (III-1) was confirmed as HTLV-1

negative. This family history highlights the significance of HTLV-1 screening in

pregnant women.

During the second pregnancy of the present case, she had a persistent fever and

cough at 8 weeks’ gestation. From the detailed hematological examination, she was

diagnosed with chronic ATL with unfavorable prognostic factors for survival,

defined by one or more of the following clinical factors: low serum albumin, high

lactate dehydrogenase (LDH), or high blood urea nitrogen (BUN) levels

[26, 27]. The median survival time for chronic ATL cases with unfavorable

prognostic factors is about 15 months [27]. Once ATL progresses to acute crisis,

the median survival time is approximately 1 year [28]. To date, five cases of ATL

during pregnancy have been reported (Table 13.1), all of which had a poor

prognosis despite medical treatment [25, 29–32].

13.10 Conclusion

There are an estimated 1.08 million HTLV-1 carriers in Japan [14]. ATL and other

HTLV-1-related diseases are still difficult to cure and currently have a poor

prognosis. Therefore, to reduce ATL and HTLV-1-related diseases in the next

generation, especially in endemic areas, HTLV-1 screening in pregnant women is

an important step in preventing mother-to-child transmission of HTLV-1 infection

[7, 11].

Table 13.1 Five cases of adult T-cell leukemia–lymphoma (ATL) during pregnancy (Modified

from Ref. [24] with permission)

Case no. Country

Age

(years)

Gestational

weeks at

diagnosis of

ATL

Clinical

variant of

ATL

Clinical course after diagnosis of

ATL

128 Japan 28 38 Acute At 6 months after delivery, she died

despite chemotherapy

229 Japan 43 30 Acute At 4 weeks after delivery, she died

despite chemotherapy

330 USA 23 26 Acute At 3 days after delivery, she died

because of widespread disease

431 USA 27 28 Acute Chemotherapy was performed and

she was discharged after a 4-week

hospital stay. Subsequently, hemato-

poietic stem cell transplantation was

considered

5 (Case 3)26 Japan 30 12 Unfavorable

chronic

Within 1 year after TOP, she died

despite medical treatment

TOP termination of pregnancy
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