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Preface

Amino acid fermentation is a field of applied microbiology that started approxi-

mately 50 years ago and it has a unique history in research and industrial applica-

tion. In this field, both research and application progressed together. The former

includes the elucidation of biosynthetic pathways and its regulation mechanism,

and the latter, the optimization of the strain, fermentation conditions, and isolation

process of the produced amino acid.

In 1908, a Japanese professor, Kikunae Ikeda, discovered glutamate as an umami

substance, and a new seasoning, monosodium glutamate (MSG), was commercial-

ized. In the early days of its manufacture, glutamate was extracted from the

hydrolysate of wheat or soybean. However, with the increasing demand for MSG

throughout the world, a more efficient production system was required.

Amino acid fermentation emerged as one of the candidates for a new production

method of glutamate. Several methodologies for the new production system,

including chemical synthesis and enzymatic conversion, were invented. The fer-

mentation method was among the choices, and a producer strain was sought.

However, in those days, many researchers felt that such a strain did not exist. The

fermentation products known then were ethanol, lactate, acetone-butanol, and

similar substances. They are the fermentation end products formed under anaerobic

conditions. In contrast, glutamate is one of the building blocks of proteins. There-

fore, it was not expected to find bacteria that would overproduce and excrete such

an important compound. Therefore, it was truly an epoch-making success to find a

glutamate-producing bacterium, Corynebacterium glutamicum (formerly Micro-
coccus glutamicus). With this discovery, today all the commercially supplied

glutamate is produced by the fermentation method.

Subsequently, the target product has been extended from glutamate to other

amino acids. Apart from being used as seasoning agents, these amino acids are of

great value for medical use and nutrition in feed, as well as for cosmetics and other

chemical and biological functions. For breeding the producer of each amino acid, “the

conventional breeding method” was used, in which auxotrophic or analog-resistant

mutants were derived to screen the desired producer. Later, the application of
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genetic engineering techniques extended the host bacteria used for the production

of substances to other than C. glutamicum, including Escherichia coli. The

increased capacity to supply these amino acids at reasonable prices created new

markets. For example, lysine and other amino acids such as threonine, tryptophan,

and valine are used as feed additives by livestock farmers. At present, lysine is

produced in larger volume than glutamate. As a consequence, a new field of

research and industry, so-called amino acid fermentation, has been established.

In this book, 50 years of history, the present situation, and future prospects for

amino acid fermentation as well as recent advances in fermentation research of

several amino acids are described.

Atsushi Yokota

Masato Ikeda
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Present Global Situation of Amino Acids

in Industry

Naoto Tonouchi and Hisao Ito

Abstract At present, amino acids are widely produced and utilized industrially.

Initially, monosodium glutamate (MSG) was produced by extraction from a gluten

hydrolysate. The amino acid industry started using the residual of the lysate. The

discovery of the functions of amino acids has led to the expansion of their field of

use. In addition to seasoning and other food use, amino acids are used in many fields

such as animal nutrients, pharmaceuticals, and cosmetics. On the other hand, the

invention of the glutamate fermentation process, followed by the development of

fermentation methods for many other amino acids, is no less important. The supply

of these amino acids at a low price is very essential for their industrial use. Most

amino acids are now produced by fermentation. The consumption of many amino

acids such as MSG or feed-use amino acids is still rapidly increasing.

Keywords Animal nutrients, Cosmetics, Function of amino acids, Gluten

hydrolysate, Industrial use, Pharmaceuticals
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1 Introduction

Amino acids are the building blocks of proteins. Each amino acid molecule has an

amino group and a carboxyl group. At present, amino acids are widely produced

and used in many fields. Table 1 shows the production methods and industrial

applications of each amino acid. There are many production methods such as

extraction, chemical synthesis, fermentation, and enzymatic conversion. Fermen-

tation is suitable for the large-scale production of optically active compounds. Most

amino acids are now produced by fermentation, although some such as glycine or

DL-methionine are still produced by chemical synthesis or enzymatic production.

On the other hand, the field of amino acids is not limited to seasoning. In the

livestock industry, pharmaceuticals, and cosmetics, various amino acids are also

used in large amounts. In this chapter, we review the present situation of the amino

acid industry in some fields along with their functions.

2 Amino Acids and Fermentation

Amino acids are the building blocks of proteins. The amino group of an amino acid

molecule can connect to the carboxyl group of another amino acid. The chained

amino acids are called proteins. Our bodies contain hundreds of thousands of

proteins (Fig. 1). Proteins are the building blocks of our body: skin, hair, muscles,

bones, internal organs, and even red and white blood cells are made up of proteins.

They also perform other inevitable functions such as providing nutrition, protecting

the body (through the immune system), and controlling metabolic reactions. Pro-

teins make up approximately 20% of the human body. There are more than 100,000

types of proteins; however, they are all made up of only 20 types of amino acids. It

can therefore be said that amino acids are the essence of life. Previously, in Japan,

the term “amino acid” was only understood as a nutrient. In 1995, the term was

recognized by only less than 5% of the population. However, at the beginning of the

twenty-first century, amino acids were labeled as “good for health,” and more than

90% of the population recognized the term by 2008 [1]. In the nutrition field,

20 amino acids are divided into two categories: essential (indispensable) amino

acids and nonessential (dispensable) amino acids. Essential amino acids are not

produced by our body and must be obtained through food. It is often assumed that

only essential amino acids are important, whereas nonessential amino acids are not

so important. However, this assumption has recently been proven to be untrue.

4 N. Tonouchi and H. Ito
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From the physiological point of view, obtaining amino acids from food saves

energy. Nonessential amino acids have many biological functions, not only as

building blocks but also as intermediates in the metabolic system of the body

(energy sources, nitrogen donors, and precursors of other compounds); therefore,

we should be aware of the mechanism for synthesizing these amino acids.

Fermentation is a conversion process by microorganisms. There are many

fermented foods worldwide, such as “miso” (bean paste) and soy sauce made from

soybeans, paste and sauce made from fish or shrimp, “nata” (gelatinous pellicle)

from coconut juice (nata de coco), yogurt and cheese from milk, “sauerkraut” (sour

cabbage), and many kinds of pickles and alcohols made from local materials.

Another type of fermentation is the conversion of sugars into useful compounds.

Such fermentation results in the efficient production of the desired substances. It is

effective in the production of optically active substances. Low-price carbohydrates

such as starch, crude sugar, and molasses are used as the raw material.

3 Outline of the History of the Amino Acid Industry

In 1908, Prof. Kikunae Ikeda discovered glutamate as the umami substance.

Following this, monosodium glutamate (MSG) was sold as seasoning in 1909.

MSG was the first industrially commercialized amino acid. At that time, glutamate

was extracted from the hydrolysate of wheat protein. In wheat, glutamic acid

constitutes 30% of the total amino acids. Therefore, 70% is other amino acids.

The applications of the remaining amino acids marked the start point of the amino

acid industry. We started with a modest beginning from glutamic acid to more

efficient use of that acid and expanded into other amino acids as well.

In 1935, the production of the first pharmaceutical product made with amino acids,

“Histamine B,” was started. Following this, in the 1950s, a highly purified

Nutrient/Blood
Albumin,

hemoglobin...

Building 
blocks

Keratin, 
collagen, actin, 

myosin

Body Protection
Immunoglobulin

(lgG, etc.)

Control 
reactions
Enzymes, 

hormones…

Fig. 1 Proteins in human body
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pharmaceutical-use amino acid product for infusionswas launched. In the 1960s, feed-

use amino acid production was started using the fermentation method. The fermenta-

tion process made it possible to produce large amounts of amino acids at a low cost.

One of the important properties of these molecules is their reactivity. Amino acids

express novel functions by reacting with other substances. For example, amino acid

such as glutamate can react with fatty acids. The product, N-acyl glutamate, has amild

detergent activity and is used in the cosmetics field as a nonirritating soap. In recent

years, many fundamental food and biotechnology businesses are being developed on

the basis of the newly discovered physiological functions of amino acids.

4 Umami, Glutamate, and MSG

Umami is one of the five basic tastes (Table 2). It was discovered by Prof. Ikeda in

1908. A hundred years ago, only four basic tastes were recognized (sweet, sour,

salty, and bitter). However, Prof. Ikeda thought that there was a fifth taste for foods.

He found that glutamate is the umami substance. However, it was recognized

worldwide only in the twenty-first century. One can easily imagine the other tastes:

sweet is for the taste of sugar, sour is for acetate or citrate, salty is for sodium

chloride, and bitter for caffeine or catechin. But umami is not. It is expressed as

some word such as ‘meaty’, ‘savory’, ‘brothy’ or ‘mouthfulness’. The mechanism

of basic tastes is illustrated in Fig. 2. At the bottom of the tongue, there are some

dots in a line; these are the nipples or papillae. At the bottom of each nipple, there

are many buds, known as taste buds. On the surface of the taste buds, receptors for

the basic tastes exist [2]. When umami substance binds to the taste buds, we

perceive the taste. How do we perceive the taste? A signal is generated and

transferred to the brain through the taste nerve. For tastes other than the basic

ones such as hot, spicy, or astringent, the signal is different. It is transferred to the

brain through another nerve system (the trigeminal nerve).

Umami is the signal of protein; it is the taste of digested protein. Glutamate is the

most abundant amino acid and has the strongest umami taste. Similarly, sweet taste

is the signal of carbohydrates (starch or other polysaccharides); the sweet taste of

sugar comes from digested polysaccharides. Actually, the taste sense triggers the

cephalic phase response to prepare the food digestion in the gut [3]. Characteristic

of glutamate absorption at the intestine is very unique. Uptake of dietary free

Table 2 The five basic tastes

Taste Examples of taste material Implication of the taste

Sweet Sugar (sucrose, glucose) Carbohydrates (energy)

Sour Acetate, citrate Possibly unripe or rotten (caution)

Salty Salt (sodium chloride) Minerals

Bitter Caffeine, catechin Possibly toxic (warning)

Umami Glutamate, nucleotide (inosinate, guanylate) Proteins (body building)

Present Global Situation of Amino Acids in Industry 7



glutamate into the portal vein is less than 5%, and most of luminal is metabolized as

an energy source within the intestinal epithelial cells [4].

In earlier days, most people in the Western countries did not understand the

umami taste. They did not have any concept or equivalent word for umami. At first,

in the USA, MSG was not considered a seasoning but a flavor enhancer. They

described the taste as savory, meaty, mouthful, delicate, and subtle. Even some

scientists tended to not recognize umami as a basic taste. In the 1990s, umami was

accepted as a basic taste by the academia. Chaudhari et al. [5] and Li et al. [6] found

umami receptors on the tongue, and umami started to receive attention from many

fields. It is known that the effect of umami can be enhanced by the combination of

glutamate and nucleotides (inosinate or guanylate). In 2013, washoku (Japanese

cuisine) was listed in the Intangible Heritage of UNESCO, and umami is now

getting more attention from many people worldwide and is a known word

worldwide.

Glutamate was first found as an umami substance from konbu (kelp). Konbu

contains abundant glutamate; nevertheless, other food materials such as cheese,

green tea, and tomato are also rich in glutamate. Human breast milk has high

glutamic acid content as well [7], which means that umami is the first taste

experienced by newborn babies. This component of umami is found in various

traditional foods worldwide and contributes to many culinary cultures. In fact,

soy sauce and miso are rich in glutamate and are very popular in Japan. There are

Tongue

Tooth

Soft 
Palate

Papillae
Taste Bud

Taste Cell

Epithelial
Cell

Taste
Pore

Taste  Nurve

Fig. 2 Mechanism of basic taste perception
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many types of traditional umami seasonings in other countries as well. In Southeast

Asia, fish sauce (nam-pla in Thailand, nuoc mam in Vietnam, patis in the Philip-

pines) and shrimp paste (belachan in Malaysia, terasi in Indonesia, bagoong in the

Philippines, kapi in Thailand) are very popular. Fish sauces were also used more

than 2,500 years ago in the ancient Greece (as garon) and ancient Rome (as garum)

[8]. In the USA, ketchup made from tomatoes is also a type of umami seasoning.

Vegemite is a food unique to Australia, and it is made from yeast extract.

Glutamate was commercialized in 1909 as umami seasoning. The estimated

market is 2.6 million tons per year (2011), and it is still growing at a rate of 4–5%.

At present, it is sold in more than 100 countries. It is used not only in Japan but also

in other Asian countries and other parts of the world. They use glutamate for their

own cuisine. Because of the invention of the fermentation method, the output

volume of MSG had increased 100 times from 1950 to 1970. Glutamate fermenta-

tion has become essential in the modern world (Fig. 3).

There are many people who still doubt the safety of MSG. The doubt originated

from the report of an American scientist, Dr. Olney [9]. In his experiment using

neonatal mice, large amounts of MSG were administered by injection or were

forced through direct tube. This resulted in brain damage in these animals. How-

ever, Dr. Takasaki conducted another experiment. He used pregnant, lactating, or

weaning mice; the animals were fed MSG with food or with water. In his experi-

ments, no pathogenic change was observed [10]. Therefore, he concluded that the

consumption of MSG from normal food intake is not harmful. There is also a report

about Chinese restaurant syndrome (CRS): the ingestion of Chinese dishes caused

symptoms such as headache, numbness, and palpitations. Dr. Kwok proposed that

MSG is one of the compounds causing these symptoms [11]. To clarify this, a

double-blinded, multicenter clinical study was conducted [12]. In this study,

130 volunteers were fed food samples containing MSG or other substances. The

tests were repeated several times. The study concluded that CRS is not caused by

the intake of MSG. In conclusion, on the basis of the data from many studies, MSG

is confirmed to be safe by international organizations. The Joint Expert Committee

for Food Additives (JEFCA) has confirmed the safety of MSG. The acceptable daily

intake (ADI) is yet to be specified. Committees of the European Commission

Fig. 3 Production volume of MSG producing method in days

Present Global Situation of Amino Acids in Industry 9



(EC) and the USA have also confirmed the same. MSG is now one of the most

extensively investigated compounds.

5 Other Food Uses

Amino acids are crucial to the taste of food. They interact with other ingredients in

food to create the final taste. The taste of glutamic acid is umami. However, each

amino acid has its own taste. For example, glycine, alanine, threonine, proline, and

serine are sweet; phenylalanine, tyrosine, arginine, valine, leucine, isoleucine,

methionine, and lysine are bitter; and glutamate and aspartate have an umami

taste. Various combinations of amino acids are essential to determine the taste of

food. For instance, glutamate, glycine, alanine, and arginine are essential for the

flavor of crab or scallop. For the flavor of sea urchin (“uni” in Japanese dishes),

amino acids such as glutamate, glycine, alanine, valine, and methionine are impor-

tant. If methionine is removed from sea urchin, the taste will be somewhat like

shrimp or crab [13]. In another case, for tomato flavor, the presence of glutamate

and aspartate (at a ratio of 4:1) is essential. The removal of the glutamic and aspartic

acid from the tomatoes resulted in a flavor resembling that of fresh cranberries.

Aspartame, an aspartic acid–phenylalanine methyl ester, a kind of peptide, is

used as a low-calorie sweetener. Although carbohydrates are essential for us as the

source of energy, excess of carbohydrates in the diet is a serious problem that can

lead to obesity and other lifestyle diseases. The peptide tastes very sweet; it is

200 times sweeter than sucrose. The production of aspartame (aspartic acid–

phenylalanine methyl ester) as a sweetener was first commercialized in 1982,

although an affordable way of production was discovered in 1965. This product is

currently used in over 120 countries worldwide.

6 Animal Nutrients

If we eat beef, will we turn into a cow? Of course not. Well, why not? This is

because proteins are not absorbed into the human body directly. Instead, they are

broken down into amino acids. Amino acids are absorbed in the intestine and

transported throughout the body. Following this, amino acids are reconnected in

the body to form human proteins.

In livestock industry, feed is used to supply energy and as building blocks of the

body. For the building of the animal body, a good balance of each essential amino

acid is important. However, the amino acid content of most feed ingredients such as

corn or wheat is not well balanced. If we use only corn or wheat to feed the animals,

most amino acids will not be used to build the animal body but will be wasted in

excrements. On the other hand, soybean has a good balance of amino acids;

however, the yield per area is low. It is possible to make corn into a well-balanced
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feed by supplementing it with amino acids such as methionine, lysine, threonine,

and tryptophan. Methionine is supplied as the chemically synthesized DL-methio-

nine because it is metabolized in the animal body and used as L-methionine. Lysine,

threonine, and tryptophan are produced by fermentation, and the estimated market

(in 2012) was 2.0 million tons for lysine, 0.33 million tons for threonine, and

9.0 thousand tons for tryptophan. For example, when we fed 35-kg pigs with feed

supplemented with amino acids, they grew faster than pigs fed by feed only, which

is insufficient in amino acids [14]. Weight gain of the pigs for 4 weeks in well-

balanced amino acid feed group was 26 kg, whereas that of pigs in the corn feed

group was only 8 kg.

The demand for farmland has been increasing with the increase in global

population. The development of new farmland, however, harms the environment

through deforestation. Feed-use amino acids can be used to replace the soybean

meal in the conventional corn feed without changing the amino acid balance of the

feed. The yield of corn per unit land is approximately 3 times higher than that of

soybeans. Therefore, this replacement will lead to more effective use of farmland.

Furthermore, amino acids can reduce the environmental impact of the livestock

industry. One of the biggest issues in the livestock industry is its increasing

environmental impact due to the animal excrement which contains nitrogen com-

pounds. These compounds give rise to ammonia and nitrogen oxide, causing air,

soil, and groundwater pollution. As the well-known “barrel theory” proposes, in a

poorly balanced feed, most amino acids are not used for the growth of livestock but

are excreted. However, by adding amino acids to produce a well-balanced feed, the

amino acids are efficiently used for growth. And as the result, the environmental

impact of the animal excrement is decreased. The use of amino acid supplements

can contribute to the reduction of environmental issues worldwide.

7 Pharmaceuticals

The nutritional functions of amino acids are also important in the medical field.

Patients with mouth damage or accepted for a surgery are sometimes unable to

receive sufficient nutrition through food consumption. In order to continue living,

they must replenish that lost nutrition. In 1956, an infusion containing highly

purified amino acids was first commercialized. At that time, infusions often had

adverse side effects caused by the impurities in amino acids. Most of these

problems were avoided using highly purified amino acids. Since then, various

products with purified amino acids of medical grade have been supplied, e.g.,

medical foods, through the gastrointestinal tract or intravenously. Today, the

world market for the medical-use amino acids is more than 30,000 tons per year.

In particular, branched-chain amino acids (BCAAs) are widely used. They can

improve the nutritional status even in patients with decompensated cirrhosis, a

serious liver disease. Hepatitis is the inflammation of the liver, and it can progress to

cirrhosis if left untreated; cirrhosis can progress further to liver failure or liver
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cancer. Pharmaceuticals containing BCAAs directly act on liver cells to promote

protein synthesis. By assisting the function of the liver, these pharmaceuticals

improve the patient’s nutritional status and slow down disease development.

Because many studies on the functions of amino acids are in progress, the use of

amino acids will increase in the medical field in the future.

8 Cosmetics

Recently, amino acids have attracted more attention in the cosmetics market. The

estimated market of amino acids for use in cosmetics is 14,000 tons per year (2012).

Skincare is an important field in cosmetics. The world market of cosmetics is USD

230 billion, of which USD 50 billion is accounted for by skincare products. Amino

acids are also used for skincare. Collagen is the main protein present in the skin; it

keeps the skin elastic by forming a flexible mesh structure. Exposure to UV rays or

aging can break this mesh, causing wrinkles and sagging. A diet rich in proteins

with good amino acid balance is effective to maintain beautiful skin. On the other

hand, the surface layer of the skin has an important function of limiting the loss of

water (Fig. 4). At the surface, natural moisturizing factors (NMFs) are the key to

this functionality [15]. Approximately half of NMFs are free amino acids [16] and

pyrrolidone carboxylic acid (PCA), which is a metabolite obtained from glutamate

[17]. Using lotions or creams enriched with amino acids will efficiently improve the

skin moisture content [18].

As described above, amino acid derivatives are used for foaming cleansing

agents. In particular, N-acyl glutamate, which is produced by the reaction of

glutamate and a fatty acid obtained from palm oil, is known to be ultra-mild for

the skin and hair; it is also environment friendly. It causes lesser skin irritation and

has higher biodegradability than the regular soap. N-acyl glutamate is widely used

(a) (b)

Collagen

(NMF) S. Corneum

Epidermis

Dermis

Hypodermis

Others
Amino 
acids

*

Fig. 4 Amino acids on human skin. (a) Structure of skin. (b) Composition of natural moisturizing

factor (NMF). *PCA pyrrolidone carboxylic acid
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in many body shampoos for individuals with sensitive skin and as the base for

baby soap [19].

Amino acids are also used in the haircare field. There are many causes of

damaged hair, such as friction due to brushing or washing, heat from hair dryers,

UV light, and chemical treatments such as dyeing or permanent waving. Over 80%

of our hair consists of proteins. Various factors can cause the degradation of the

proteins, and the hair gradually loses the proteins, resulting in dry, unruly hair or

split ends. Amino acids play a role in protecting hair from further damage,

replenishing the voids created by the loss of proteins and moisturizing the hair.

Cysteine is the most abundant amino acid contained in the hair proteins. The

formation of disulfide bonds (S–S bonds) with other protein chains is responsible

for the toughness of the hair. Cysteine and its derivative, N-acetyl cysteine, have

strong reductive properties conferred by the thiol residue. They are used in the

reduction reagent for permanent wave. The mechanism underlying permanent wave

is cutting the disulfide bonds using the reduction reagent, followed by reforming the

bonds (with a different protein chain) using the oxidation reagent. A chemical

reduction agent such as thioglycolic acid (TGA) is often used; however, cysteine

has the advantage of reducing the hair damage and is suitable for the formation of

soft waves [20]. Cysteine has lower acute phase toxicity and causes lesser skin

irritation than TGA.

9 Conclusions

The first amino acid to be commercialized was MSG, which was purified from a

gluten lysate. Later, the amino acid industry started to use the residual of gluten

lysate. This development of the use of each amino acid expanded with the discovery

of the functions. On the other hand, the supply of these amino acids at a low price is

very important for industrial applications. Undoubtedly, the invention of the gluta-

mate fermentation process is an epoch-making event. It has made it possible to

produce large amounts of glutamate at a low price. In fact, the production volume

increased 100 times in the 20 years after the invention. Nevertheless, the develop-

ment of fermentation methods for other amino acids is equally important. In

particular, with the increase in meat consumption in Asia and Central and South

America, the production volume of the feed-use amino acids is rapidly increasing.

The production volume of lysine is currently at a similar level as that of glutamate.

Many new functions of amino acids are extensively investigated at present, and the

resulting functions are expected to expand the fields of the amino acid industry.

These new functions and possible application of amino acids are described in

Chap. 13.
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Discovery and History of Amino Acid

Fermentation

Shin-ichi Hashimoto

Abstract There has been a strong demand in Japan and East Asia for L-glutamic

acid as a seasoning since monosodium glutamate was found to present umami taste

in 1907. The discovery of glutamate fermentation by Corynebacterium glutamicum
in 1956 enabled abundant and low-cost production of the amino acid, creating a

large market. The discovery also prompted researchers to develop fermentative

production processes for other L-amino acids, such as lysine. Currently, the amino

acid fermentation industry is so huge that more than 5 million metric tons of amino

acids are manufactured annually all over the world, and this number continues to

grow. Research on amino acid fermentation fostered the notion and skills of

metabolic engineering which has been applied for the production of other com-

pounds from renewable resources. The discovery of glutamate fermentation has had

revolutionary impacts on both the industry and science. In this chapter, the history

and development of glutamate fermentation, including the very early stage of

fermentation of other amino acids, are reviewed.

Keywords Amino acid fermentation, Corynebacterium glutamicum, Glutamate

fermentation, L-Amino acid, Metabolic engineering, Strain breeding
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Amino acid fermentation is a huge industry. More than 5 million metric tons of

amino acids (more than 2 million metric tons of glutamate, around 2 million metric

tons of lysine, etc.) are manufactured annually all over the world [1]. Amino acids

find application in a wide range of fields: seasoning, animal feed, medicine, and

starting material for chemicals including pharmaceuticals. A number of scientific

paper and patent on amino acid fermentation have been published every year. These

studies have been contributing to widen our knowledge on the science of meta-

bolism, genetics, and physiology.

The discovery of glutamate fermentation by Corynebacterium glutamicum in

1956 was the inception of amino acid fermentation. This discovery was a major

breakthrough not only for glutamate production but also for research, demonstrat-

ing that amino acid fermentation is possible. In this chapter, the history of amino

acid fermentation (glutamate fermentation is mainly focused on) before and after its

discovery is reviewed.

1 Prehistory of Glutamate Fermentation

Although glutamate was isolated from gluten in 1866, its major applicational value

was found in 1908 by Kikunae Ikeda [2]. He studied taste presenting substance

derived from kelp, whose soup has traditionally been used as a basic seasoning in

Japan, and identified the monosodium salt of L-glutamate as an umami substance.
An entrepreneur, Saburosuke Suzuki, collaborated with Dr. Ikeda and commercial-

ized the discovery; he began selling monosodium glutamate (MSG) as a new

seasoning “AJI-NO-MOTO®” in 1908 (Fig. 1).

Because umami is a traditional taste component in Japan, the new product got a

great sales success. However, there were several difficulties in manufacturing

MSG, for which wheat gluten was hydrolyzed using hydrochloric acid and L-

glutamate was isolated following the recrystallization as the monosodium salt.

Because there were scarce materials that could tolerate acidic conditions under

high temperature during hydrolyzation in the early twentieth century, obtaining

suitable vessels for hydrolyzation was a big issue. After several trials and errors, a

certain type of ceramic pot was found to be suitable. Hydrogen chloride gas

released during the hydrolyzation process was very hazardous. Furthermore, the
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formation of a large volume of waste (the remaining fraction of the hydrolyzate)

presented additional issue [3].

Therefore, there was a strong demand for a new manufacturing process for MSG

or L-glutamate. During the mid-1950s, a decade after the end of World War II, the

economy and life of people in Japan was returning to normal. Corresponding with

the social situation, the demand for MSG had increased rapidly; the production of

MSG by Ajinomoto Co., Inc jumped from 6,662 metric tons in 1955 to 13,586 met-

ric tons in 1959 [4].

Several attempts were made to establish a new method for manufacturing L-

glutamate. Because of the necessity of optical resolution, chemical synthesis was

not advantageous while it was used commercially for a particular period. Chemical

synthesis coupled with enzymatic resolution was a feasible method [5]. Izaki

Fig. 1 The first product of

umami seasoning, “AJI-

NO-MOTO®.” The photo is

reprinted under the kind

permission of Ajinomoto

Co., Inc.

Discovery and History of Amino Acid Fermentation 17



et al. have reported specific degradation of D-glutamate by Aerobacter [6]. The

optical resolution of N-acyl-DL-glutamate by D-specific acylase activities derived

from Aspergillus tamarii and Penicillium vinaceum presented additional

approach [7].

Since glutamate is biosynthesized from 2-oxoglutarate through amination, it was

natural to pursue the process that consisted of microbial production of

2-oxoglutarate and microbial amination of the oxoacid.

The earliest report on fermentative production of 2-oxoglutarate can be found in

1946; Pseudomonas fluorescens accumulated 16–17 g of the acid per 100 g of

glucose [8]. The yield was increased to 41 g of the acid per 100 g of glucose [9].

Formation of small amounts of glutamate in the presence of 2-oxoglutarate and

ammonium salts was reported in Clostridium [10], Escherichia coli [11], Bacillus
subtilis [12], P. fluorescens [13], and Pseudomonas ovalis [14]. Attempts to per-

form the conversion using amino acids as amino donors were also reported [13, 15].

The combination of 2-oxoglutarate fermentation and amination of the oxoacid

appears to be just one step away from direct fermentation of glutamic acid (direct

fermentation refers to the process of producing the product from a low-cost carbon

source, such as sugar, and a nitrogen source, such as ammonia, through the

cultivation of microorganisms). It was known that accumulation of small amounts

of glutamate occurred in the cultivation medium of certain bacteria. Morrison and

Hinshelwood and Dagley et al. have observed very small amount of accumulation

of the amino acid in the cultivation broth of E. coli and Aerobacter aerogenes
[16, 17]. Thorne et al. have reported that B. anthracis formed glutamate (2 g/L)

under the conditions in which polyglutamate formation was hampered [18]. Asai

et al. screened for a glutamate producer and found Micrococcus varians to be the

best producer although the accumulation was far lower (2.9 g/L at the optimal

efficiency) for industrial application [19].

2 Discovery and Industrialization of Glutamic Acid

Fermentation

M. J. Johnson, an emeritus professor at the University of Wisconsin, described the

situation in 1955, “there is, in many quarters, great interest in fermentative glutamic

acid production” [20]. However, there was a strong notion that it is irrational to

expect a microorganism to accumulate a large quantity of the amino acid extracel-

lularly because (1) glutamate is an essential component for the organism, (2) excre-

tion of glutamate is an economical loss for the cell because the biosynthesis of the

amino acid is energetically expensive, and (3) secretion of glutamate would not be

expected to have suppressing effect against surrounding microorganisms like anti-

biotic dose. Researchers in Kyowa Hakko Kogyo Co., Ltd. have overcome this

conceptual obstacle.
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Dr. Udaka, a researcher of Kyowa Hakko Kogyo Co., Ltd. at that time, has set

the following screening method [21]. Bacteria isolated from the environment were

replicated on nutrient agar plates and several types of defined medium plates (test

plates). After colony formation, the test plates were exposed to UV radiation to kill

the organisms. Then, soft agar medium containing the glutamate auxotroph

Leuconostoc mesenteroides was overlaid on the test plates. The halo of growth

development around the colony on the test plates indicated glutamate excretion by

the colony (Fig. 2).

After screening only approximately 500 isolates, they found the superior strain,

Corynebacterium glutamicum (originally reported under the name of Micrococcus
glutamicus). The strain accumulated 10.3 g of glutamate per liter when cultivated in

a flask with liquid synthetic medium with 5% glucose [22], and the accumulation

was easily increased to >30 g/L [23] with >25% yield against glucose input,

indicating that the strain is applicable for industrial glutamate fermentation.

When the study was scaled up, however, the researchers faced a puzzle; the

bacterium produced only trace amounts of glutamate. Several months of intensive

research revealed important characteristics of glutamate fermentation: the bacte-

rium is a biotin auxotroph and produces glutamate only under biotin-limited

conditions. It was assumed that the cells grew in screening and flask cultivation

using a trace amount of biotin carried over from the pre-culture and, thus, resulted

in biotin-limited conditions.

The first commercial fermentation of glutamate was conducted in 1958 at a plant

of Kyowa Hakko Kogyo. There were still problems to be solved for commercial-

ization, such as the downstream process, particularly the control of the crystal form.

In that way amino acid fermentation took the first step.

Fig. 2 Bioassay screening

of glutamate-producing

microorganisms. Glutamate

productivity of the test

strain can be estimated by

the scale of the halo formed

around the strain. The photo

is reprinted under the kind

permission of Kyowa

Hakko Bio Co. Ltd.
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3 Establishment of Glutamate Fermentation

Glutamate fermentation by C. glutamicum was first presented at the International

Symposium on Enzyme Chemistry held in Japan in 1957. As the congress was the

first major international scientific meeting held in Japan after World War II, the

presentation attained great attention from Japanese researchers in the field of life

sciences. Once the discovery of glutamate fermentation was public, several

researchers and companies rushed into the research. It looks like a “gold rush,”

which is observed in Figs. 3 and 4.

Until 1970, Japanese researchers enthusiastically conducted research and held a

monopoly on the scientific papers on glutamate fermentation (Fig. 3). Japanese

research activity appeared to steady down by the 1980s; however, it showed

resurgence during the 2000s. In contrast, reports from other Asian countries,

particularly from China and India, showed an increase from the 1980s. Several of

these studies have outlined the discovery of a new strain (most strains are under

Corynebacterium sp.), the application of a new raw material, and improvement of

the production system, suggesting a strong economical demand of glutamate

fermentation in these areas. Research from Europe began to emerge from the

1990s. Most of the European research focused on the mechanism of glutamate

fermentation and played an essential role in understanding the mechanism.

Figure 4 shows the “gold rush” in Japan from a different angle. A rapid increase

of patents in 1960 suggests that companies began research on glutamate fermenta-

tion after the announcement of the discovery of C. glutamicum. Representative
strains and carbon source are shown in Table 1. Most of the important aspects of the

fermentation appeared before 1980, which are summarized below. These insights

are closely or directly related to the elucidation of the mechanism of glutamate

production discussed in [35].
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Fig. 3 Trends of scientific paper publication on glutamate fermentation in English. For each

decades (except for 1957–1970 and 2001–2014), the number of papers are counted by country.

Reviews, patents, and oral presentations are not included
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3.1 Producer Strain

Many species were claimed as glutamate-producing microorganisms such as

Brevibacterium lactofermentum, Brevibacterium flavum, Corynebacterium
callunae, Corynebacterium lilium, etc. Most of them were aerobic, gram-positive,

nonacid-fast, nonspore-forming, rod-shaped, and biotin-requiring bacteria. These

“new” species were categorized in the spices of Corynebacterium glutamicum by
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Fig. 4 Numbers of Japanese patents (black bar) and oral presentations (white bar) in the annual

meeting of Japan Society for Bioscience, Biotechnology, and Agrochemistry from 1957 to 1967

Table 1 Glutamate fermentation from different carbon sources by different microorganisms

Carbon source Microorganism Titer (g/L) Reference

Glucose 12% C. glutamicum 30 [24]

Glucose ?% C. glutamicum 195 [25]

Cane molasses 13% C. glutamicum 63 [26]

Acetate 9% C. glutamicum 23 [27]

Ethanol ?% Brevibacterium sp. 53.1 [28]

Methanol 11% M. methylovora 6.8 [29]

Methanol ?% B. methanolicus 69 [30]

n-Paraffin 3% Corynebacterium sp. 5 [31]

n-Hexadecane 8% C. hydrocarboclustus 19.6 [32]

Benzoate ?% Brevibacterium sp. 75 [33, 34]

The earliest scientific report (patents and oral presentations are not included) on each carbon

source is listed. For glucose and methanol, reports of the highest titer are also shown. Symbol “?”

in the carbon source indicates no description of the amount of input carbon source in the report
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thorough taxonomic investigation in later years [36–38]. Thus, the name of

C. glutamicum is used for these bacteria hereinafter. It became a shared sense

within several years after the discovery of the bacterium that the bacterium (even

wild-type strain) produces glutamate at a yield of >40% against input sugar

(Table 1) under appropriate conditions.

Bacteria capable of producing glutamate from sugar and not belonging to

C. glutamicum have also been reported. Chao and Foster have reported productivity

of 13.5 g/L from 3% glucose by Bacillus megaterium [39]. It is interesting that this

strain is also biotin auxotroph. Some Arthrobacter [40] and Streptomyces [41]

strains were also reported to produce glutamate. Recently, it was reported that

metabolically engineered E. coli, Enterobacter agglomerans, Klebsiella planticola,
and Pantoea agglomerans produce significant amounts of glutamate [42, 43].

3.2 Carbon Source

As C. glutamicum readily utilizes glucose, fructose, and sucrose, these sugars are

initially used as a carbon source. Molasses, a more economically desirable source,

was mainly used after the discovery of an alternative method of biotin limitation

because it contains excess amount of biotin. Ethanol and acetic acid have also been

reported to provide the bacterium a good productivity. Recently, it was demon-

strated that the spectrum of usable sugar of C. glutamicum can be expanded by

expressing heterologous genes [44].

Carbohydrate obtained by petrochemistry was studied as an alternative carbon

source. Shiio and Uchio have reported several kinds of bacteria capable of forming

glutamate from paraffin [32]. C. hydrocarboclustus was reported to have relatively

high productivity (Table 1). Ghosh and Banerjee have described the production

from n-alkane by the Serratia marcescens strain [45]. In addition, aromatic com-

pounds, such as benzoate, have been investigated as a carbon source [33, 34, 46].

Glutamate fermentation from methanol has been attempted since the 1970s

[29, 47]. As C. glutamicum cannot assimilate methanol, various microorganisms

such as Methanomonas methylovora [29], Methylobacillus glycogenes [48], and

B. methanolicus [30] have been screened and used. The B. methanolicus strain

M168-20(pHP13) appears to be the highest producer from methanol (Table 1).

Glutamate production through photosynthesis (carbon source is CO2) has also been

investigated using algae [49, 50].

3.3 Production Conditions

As described above, biotin limitation was the crucial factor of glutamate fermen-

tation by C. glutamicum. This feature made it impossible to use some economically

desirable raw materials, such as molasses. Attempts to clarify the underlying
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mechanism and finding alternative methods of biotin limitation have been made

since a very early period. Shiio et al. first reported that biotin limitation causes the

change of cellular permeability of amino acids including glutamate [51]. Reports

that followed confirm the association between biotin limitation and glutamate

permeability [52, 53].

Several alternative methods of biotin limitation were devised in the 1960s. One

of the major breakthroughs was the addition of penicillin; adding an appropriate

amount of penicillin at an early stage of cultivation triggers glutamate production

under biotin excess conditions [54]. Addition of surfactant was an alternative

method. Because the effect of surfactant depends on its chemical composition,

specific surfactants were chosen, such as polyoxyethylene sorbitan monostearate

[55, 56] and cetyltrimethylammonium bromide [57].

Penicillin inhibits cell wall synthesis. The first action point of a surfactant should

be the cell surface. Putting these and the biotin effect together, the “permeability

hypothesis” or the “leak model” was claimed to be the mechanism of glutamate

fermentation; change in cellular permeability of glutamate caused by some treat-

ment triggers the leak out of the amino acid, which shifts intracellular metabolism

toward glutamate formation [53, 58]. The finding of the relationship between fatty

acid composition in the cell membrane and glutamate productivity [59, 60]

supported the notion. It was also supported by the finding that an oleic acid-

requiring mutant produces glutamate under biotin-sufficient conditions

[26, 61]. Based on these lines of evidences, the mechanism of glutamate fermen-

tation seemed to have been settled around 1970. However, further contention

emerged later (see below and [35]).

Conditions other than biotin were investigated in detail, but only effects of

oxygen and pH are mentioned here. Glutamate production by C. glutamicum
requires aerobic conditions. Under oxygen-insufficient conditions, the bacterium

produces succinic acid and/or lactic acid [62]. Medium pH should be maintained

slightly above 7.0. When pH is controlled to be acidic, around pH 5.5, the bacterium

produces mainly glutamine.

4 Recent Development in Glutamic Acid Fermentation

4.1 In C. glutamicum

In general, (a) genetic modification(s) is necessary for forcing a microorganism to

overproduce a certain amino acid, for example, deregulation of aspartokinase for

lysine production. Glutamate production by C. glutamicum is different. The wild-

type strain exerts high productivity under appropriate conditions as described

above. Although there have been a lot of patents claiming mutations beneficial

for glutamate production by the bacterium, none of them appear to improve the

productivity significantly. However, since the 1990s, genes essential for glutamate
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fermentation have been identified, which shed new light on the mechanism. Since

the mechanism is discussed in Chap. 4, a very rough sketch is presented below.

There have been two predominant hypotheses on the mechanism. The first idea

is the “permeability hypothesis” as described above. The other is the “flux hypo-

thesis,” claiming that change in carbon metabolism is the major cause of the

overproduction, which is a quite common concept among other amino acid fermen-

tations. Facts supporting each hypothesis are presented below; however, it should

be noted that the two hypotheses are not necessarily exclusive.

Before mentioning on the flux hypothesis, the biosynthetic pathway of glutamate

is briefly reviewed. Glutamate is formed by amination of 2-oxoglutarate. Glutamate

dehydrogenase (GDH) and the coupled reactions of glutamine synthetase and

glutamine synthase (GS/GOGAT system) are involved in the amination [63–

67]. While cell growth can be sustained either by GDH or GS/GOGAT system,

GDH is responsible for glutamate overproduction [67]. Carbon from sugar is

metabolized to 2-oxoglutarate through glycolysis and part of the TCA cycle.

Enzymes contributing to the flux have been clarified, although the flux around

oxaloacetate is complicated. Characteristics and regulation of these enzymes have

also been reported [68–73]. 2-Oxoglutarate is the important branch point, the

glutamate-forming direction by amination and the glutamate-degrading direction

by oxidative decarboxylation to succinate with 2-oxoglutaratedehydrogenase com-

plex (ODHC). ODHC is the focal point in flux control.

During the 1960s, it was assumed that C. glutamicum had no or very low activity

of ODHC [74]. This was the basis of the flux model during the early 1960s, but the

permeability hypothesis became dominant as described above. Later, it was con-

firmed that C. glutamicum possessed certain ODHC activity [75]. The flux hypo-

thesis was revived by the finding that deletion of the odhA gene (encoding E1o

subunit of ODHC) conferred the bacterium glutamate overproductivity ([76], oral

presentation was in 1996). Simultaneously it was reported that ODHC activity is

reduced under glutamate-producing conditions [77]. Kim et al. have reported the

supportive results [78]. Recently, it was revealed that ODHC activity is regulated

by OdhI/PknG [79] and that OdhI, the inhibitor of ODHC, is induced under

glutamate-producing conditions [80].

In parallel with the revival, supportive findings for the permeability hypothesis

have also been accumulated. In 1989, Hoischen and Kramer have demonstrated by

biochemical analysis that glutamate excretion is mediated by an active efflux

system and not by simple leakage [81]. They further demonstrated the importance

of alternation of membrane tension [82, 83]. Changes in the membrane components

cause such alternation of membrane tension, and there have been several reports

indicating the association between change in membrane composition and glutamate

overproductivity [84–86].

Genetic findings supporting the permeability hypothesis have also been accu-

mulated. Kimura et al. have described the dtsR gene that restores detergent (Tween

40) sensitivity [87]. DtsR has a high similarity to the β-subunit of methylmalonyl-

CoA carboxyltransferase, and it is suggested to be the biotin enzyme involved in

fatty acid biosynthesis. The disruption of dtsR causes oleic acid auxotrophy and
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glutamate production [88]. The ltsA gene was found to code a gene whose disrup-

tion causes the cell to be lysozyme sensitive and glutamate productive [89, 90];

however, the physiological role of the gene product is not known. Nakamura

et al. found a mechanosensitive channel Ncgl1221 for glutamate excretion [91–

95]. Mutation of the gene caused glutamate overproduction even in the presence of

intact OdhA [92, 94].

The production mechanism still remains elusive, but it will be comprehensively

understood in the near future.

Because glycolysis and the TCA cycle are the major carbon metabolic pathways

to glutamate, the relation between energy metabolism and glutamate production is a

point to be investigated. In this respect, Yokota et al. have reported that mutants

decreasing H-ATPase activity at below 1/4 the level of the wild type produce less

glutamate [96].

4.2 In Other Bacteria

It was a strong support of the flux hypothesis that the disruption of odhA confers

E. coli glutamate productivity [43, 74]. Since glutamate productivity by the disrup-

tion of the gene has known in other bacteria [42], at least, reducing the flux through

ODHC appears to be generally applicable.

Glutamate excreted in the medium is reimported by the glutamate import system

in C. glutamicum [97, 98] or other bacteria, such as E. coli [99]. Thus, an increase in
glutamate in the medium exerts a negative effect on glutamate synthesis through the

regulation of biosynthetic enzymes. When glutamate dissolved in the medium

forms crystals, it no longer has further effect on the regulation. Since isoelectric

point of glutamate is around pH 5.5, glutamate concentration dissolved in the

medium is lowest at the pH area. Thus, if a bacterium that grows and produces

glutamate in this pH, it must be advantageous for glutamate production by reducing

the negative effect of glutamate in the medium. Based on this idea, several bacteria

were found and constructed as the producers [100]. The entire genome sequence of

one strain has recently been published [101].

5 Amino Acid Fermentation

Whether it is a natural expectation or not, researchers in Kyowa Hakko Kogyo Co.,

Ltd. thought that C. glutamicummight produce other amino acids immediately after

the discovery of glutamate fermentation. They started delivering mutants for amino

acid producers. The attempt quickly resulted in the second amino acid fermen-

tation; a mutant requiring arginine accumulated ornithine [24]. This was the first

report releasing regulation on amino acid biosynthesis by amino acid auxotrophy.

Further, in the next year, the researchers reported lysine-producing mutants of
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C. glutamicum based on the same idea [102]. Earliest reports on each of the amino

acid fermentations are listed in Table 2.

The other important method liberating regulation is delivering analogue-

resistant mutants. Although it was known since the 1950s that analogue resistance

confers amino acid overproductivity [106, 108], the first clear and quantitative

example was presented by Sano and Shiio [103]. They demonstrated that an S-
(2-aminoethyl)-L-cysteine-resistant mutation makes aspartokinase of

C. glutamicum insensitive to feedback regulation by lysine, resulting in lysine

production. Since obtaining resistant mutants (positive screening) is easier than

obtaining auxotrophic mutants (negative screening), this method was a very pow-

erful tool for amino acid fermentation.

Producer breeding was not limited to C. glutamicum. Other bacteria, such as

E. coli and S. marcescens, were manipulated and used as amino acid producers.

In these enterobacteria, destroying the degrading activity of the target amino acid

was important at some times. For example, the construction of the threonine

producer of S. marcescens was initiated by getting a mutant incapable of meta-

bolizing threonine [116]. Destruction of the amino acid-degrading ability and

deregulation of the biosynthetic pathway can be regarded as the general strategy

of strain improvement.

Table 2 Earliest scientific reports on each of the amino acid fermentations

Amino acid Type of producer

Titer

(g/L) Reference

Ornithine C. glutamicum A-mutant 26.2 [24]

Lysine C. glutamicum A-mutant 14 [102]

C. glutamicum R-mutant 32 [103]

Tyrosine E. coli R-mutant ? [104]

Tyrosine,

phenylalanine

C. glutamicum R-mutants 2.2 [105]

Methionine E. coli R-mutant ? [106]

C. glutamicum A- and R-mutant 2 [107]

Histidine E. coli R-mutant ? [108]

C. glutamicum R-mutant 7 [109]

Valine Aerobacter cloacae strain isolated by

screening

12 [110]

Threonine E. coli A-mutant 3.7 [111]

Proline C. glutamicum A-mutant 11.4 [112]

Tryptophan C. glutamicum A- and R-mutant 2 [113]

Isoleucine S. marcescens R-mutant 6.7 [114]

Leucine S. marcescens A- and R-mutant 13.5 [115]

Patents and oral presentations are not included. For lysine, the first report of auxotrophic mutant

and that of the analogue resistant mutant are shown. For methionine and histidine, the first reports

describing the titer are also shown. A-mutant, auxotrophic mutant; R-mutant, analogue resistant

mutant. Symbol “?” in titer indicates no description on the titer in the report
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Since the 1980s, recombinant DNA technology has been available and appli-

cable for strain improvement. Gene dosage effect is the most instant use of the

technology. A gene coding for a key enzyme is amplified by cloning on a multi-

copy plasmid. An increase in the expression results in the increase of the activity,

enhancing the metabolic flux to the desired direction. Combining conventional

mutation and recombinant DNA technology enables the construction of a producer

strain for the amino acid whose biosynthesis is under multiple and complex

regulation, such as tryptophan [117].

Discovery of an amino acid exporter was noteworthy. The lysine exporter in

C. glutamicum was first predicted using biochemical analysis [118, 119] and then

confirmed genetically [120]. The finding is interesting not only because it is

counterintuitive but also because it raises a new key concept in amino acid

fermentation. Currently, over eight kinds of amino acid exporters have been

identified in C. glutamicum [121, 122] and E. coli [123–127].
Knowing carbon flux in the producer microorganism is important for strain

improvement. Carbon distributions between the hexose monophosphate pathway

(HMP) and the pentose monophosphate pathway (PPP) and around the oxaloacetate

supply have been the focal points of research interest. 13C-NMR analysis combined

with metabolic balance analysis has been widely used for this purpose, and much

insight has been accumulated [128–130]. One of the earliest finding of the analysis

is that the carbon distribution through HMP and PPP in C. glutamicum is different

between the glutamate producer and the lysine producer [131]. The carbon flux

distribution between HMP and PPP was 8:2 in the glutamate producer, whereas it

was 4:6 in the lysine producer, suggesting that the flux is controlled by the necessity

of NADPH. Subsequently, this finding led to cofactor engineering [132–134].

6 Feature Prospective

At the end of the twentieth century, the whole genome sequence determination was

initiated in various kinds of organisms including E. coli [135] and C. glutamicum
[136]. Genome data enabled a new way of strain improvement termed as “genome

breeding” [137–139] that creates a minimal set of mutations beneficial for produc-

tion by (1) comparative analysis of whole genomes of the wild-type strain and a

producer strain obtained from the wild-type via successive classical mutations,

(2) defining beneficial mutations, and (3) assembling them in the wild-type back-

ground. This enables the construction of a producer strain with high productivity

without undesirable traits of the classical producer mutant, such as slow growth and

stress sensitiveness.

Glutamate fermentation has been used mainly for production of MSG, a season-

ing. However, it may take part in wider areas of application because glutamate is

expected to be one of the basic chemicals from renewable resources [140]. Thus,

glutamate fermentation yet retains enough potential for contributing for the quality
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of human life in addition to its historical role in modern fermentation industry and

applied microbiology.
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Early History of the Breeding of Amino

Acid-Producing Strains

Shigeru Nakamori

Abstract Amino acid production started in Japan in 1908 with the extraction of

monosodium glutamate (MSG) from acid hydrolysates of proteins. In addition to

extraction, other methods of amino acid production include chemical synthesis,

fermentation, and enzymatic synthesis both for glutamic acid and other amino

acids. In this chapter, we review the historical transition of these production

methods; currently, fermentation is the chief production method of amino acids.

All wild-type microorganisms possess a negative feedback control system (feed-

back inhibition and repression) on the enzymes within the amino acid biosynthetic

pathways. Therefore, techniques for the development of amino acid-overproducing

strains and also for the establishment of enzymatic processes for the synthesis of

amino acids were developed to artificially release these feedback controls. The key

techniques used to bypass these controls are as follows: (a) artificial acceleration of

the easy efflux of intracellularly synthesized amino acids outside of cells;

(b) limitation of the concentration level of feedback inhibitors (amino acids)

using auxotrophic mutants; (c) genetic desensitization of key enzymes to feedback

inhibition by mutation and selection of amino acid analog-resistant mutants;

(d) amplification of genes coding for desensitized biosynthetic enzymes;

(e) disruption of amino acid degradation activity; and (f) application of enzyme

reactions free from feedback controls for amino acid synthesis. Selection and

breeding of amino acid producers by the application of these techniques is

described.

Keywords Analog-resistant mutant, Desensitization, Feedback inhibition,

Production method, Release of metabolic regulation, Repression
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1 Historical Transition of Amino Acid ProductionMethods

As is well known, in 1908, Kikunae Ikeda, a professor of Tokyo Imperial Univer-

sity, found that MSG was the umami substance contained in a type of kelp (konbu in
Japanese) that had traditionally been used as soup stock in Japanese cooking

(washoku) [1]. He then succeeded in producing MSG from acid hydrolysates of

wheat or soybean proteins. Saburosuke Suzuki, the progenitor of Ajinomoto

Co. Inc., further developed this production process and commercialized MSG as

a seasoning under the brand name of “AJI-NO-MOTO®.” The process was the first

industrialization of amino acid production and continued successfully for approx-

imately 50 years.

However, this production process had drawbacks in large-scale production,

namely, the high cost of raw materials and the use of hot hydrochloric acid,

which affected both the environment and the health of operators, as well as causing

corrosion of the manufacturing facilities.
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Thus, new approaches to solve these problems were investigated with both

chemical synthesis and fermentation, including enzymatic synthesis.

Chemical synthesis of glutamic acid from acrylonitrile, carbon monoxide, and

hydrogen cyanide by the application of the Strecker reaction was established and

industrialized by the Ajinomoto Co. in 1960. The process was praised in those days

as the first successful production of a food from “inexhaustible” petroleum. How-

ever, the process of obtaining L-glutamic acid through the optical division of its

racemic form was long, and, therefore, the cost was rather higher than that of

fermentation. Moreover, the concept of “chemically synthesized food” was often

not to be accepted emotionally by consumers, and this chemical process was

abolished in 1973.

The first successful fermentative production of L-glutamic acid was achieved by

the Kyowa Hakko Kogyo Co. Ltd. (now Kyowa Hakko Bio Co. Ltd.) in 1957

through the finding of a novel glutamic acid-producing bacterium, Micrococcus
glutamicus (later reclassified as Corynebacterium glutamicum), and the establish-

ment of suitable culture conditions for this bacterium.

Thereafter, various L-glutamic acid-producing bacteria, such as those belonging

to the genera Brevibacterium,Microbacterium, and others were found. All of these
bacteria have similar taxonomic characteristics: each has a biotin requirement, with

L-glutamic acid production occurring under biotin-limiting conditions, and each is a

Gram-positive rod, does not form spores, is nonmotile, and has a narrow-range

GC-content and an rRNA gene restriction pattern. Thus the common name

C. glutamicum was assigned to these bacteria [2, 3]. In this chapter, however,

conventional names are used from the sources of the original reports.

Since this discovery, the fermentative production of L-glutamic acid has been

carried out successfully such that in 2010 the worldwide amount of MSG produced

was estimated to be approximately 2.4 million tons per year.

Other amino acids were only by-products of L-glutamic acid at first; however, as

science progressed, the nutritional and medical importance of amino acids was

recognized and further production techniques were developed. Bacteria that could

produce various amino acids were obtained by deriving amino acid analog-resistant

mutants as well as auxotrophs from the L-glutamic acid-producing bacteria,

Escherichia coli and Serratia marcescens (S. marcescens, which had been used

by the Tanabe Seiyaku Co. Ltd. (now Mitsubishi Tanabe Pharma Corporation), is

not supposed to be used today).

Enzymatic synthesis was developed through the conversion of metabolic pre-

cursors or chemical synthetic intermediates of amino acids to the corresponding

amino acids using application of microbial enzymes. Bioreactors using

immobilized enzymes or enzyme-containing cells contributed to improved yields

by the stabilization and repeated use of enzymes.

Application of recombinant DNA and protein engineering techniques using

E. coli systems has been in use to further improve the yields of fermentation and

enzymatic synthesis since the 1980s.

An outline of the historical transition of the production methods for each amino

acid is shown in Fig. 1. As shown in the figure, production methods, as a whole,
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changed from extraction from the acid hydrolysate of proteins to chemical synthesis

and also to fermentation techniques, including enzymatic synthesis.

L-Tyrosine, L-leucine, L-cysteine, and L-asparagine, which had rather small

markets, are produced by extraction, whereas they are produced also by fermenta-

tion today. Glycine, DL-methionine, and DL-alanine are produced by chemical

synthesis. Other amino acids are the products of fermentation and enzymatic

synthesis.

Thus, four methods (extraction, chemical synthesis, fermentation, and enzy-

matic synthesis) are all in parallel use today. Fermentation is the major production

technique, yielding about 80–90% of the production quantity and 60% of the

produced items.

2 Biosynthesis of Amino Acids and Its Regulation

in Microorganisms

As is well known, wild-type microorganisms possess metabolic regulatory systems

to prevent the overproduction of amino acids. Figure 2 shows an outline of amino

acid biosynthesis and its regulation (feedback inhibition and repression) in micro-

organisms. Feedback inhibition works on key enzymes in the first steps of biosyn-

thetic pathways.

Thus, it is necessary to first overcome or avoid these metabolic regulations in

order to establish amino acid production. There were many pioneering works to

obtain bacteria capable of production despite these regulations. For about 50–60

years, various types of amino acid production were established and industrialized,

mainly in Japan, and these were commonly the result of microorganisms that were

released from metabolic regulations. Techniques that were applied to overcome

these regulations are classified in the following section.

3 Key Techniques to Overcome or Avoid Metabolic

Regulation

3.1 Acceleration of the Efflux of Intracellularly Synthesized
Amino Acids Outside of Cells

As described in Sect. 2, an overproduction of L-glutamic acid is observed when

C. glutamicum and related bacteria are cultured in media containing either (1) lim-

ited amounts of biotin or (2) suitable amounts of penicillin or surface-active agents

in media containing a high biotin concentration.

In the pathway of L-glutamic acid biosynthesis in Brevibacterium flavum (later

reclassified as C. glutamicum), L-glutamic acid inhibits glutamate dehydrogenase
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and represses the formation of citrate synthetase and phosphoenolpyruvate carbox-
ylase [4]. In spite of these negative feedback mechanisms, L-glutamic acid is

overproduced, leading to the question of why this occurs. Overproduction in

these culture conditions has been explained by efflux of the amino acid to the

outside of the cells through the cell membrane. Due to the fact that the intracellular

concentration of L-glutamic acid was lower than that of the extracellular concen-

tration, L-glutamic acid was excreted positively, and the regulation no longer

worked [5].

3.2 Limitation of the Concentration Levels of Feedback
Inhibitors

If the concentration of inhibitors can be reduced to low levels, feedback inhibition

of the key enzymes of amino acid biosynthesis is released. This was accomplished

through use of auxotrophic mutants. For example, using arginine auxotrophs of

C. glutamicum and limiting the amount of L-arginine in the medium led to the

release of the inhibition of L-arginine on N-acetylglutamate synthase and

N-acetylglutamokinase, as well as the repression of other enzymes, and thus the

overproduction of L-ornithine [6]. Similarly, the overproduction of L-lysine was

observed in homoserine auxotrophs of C. glutamicum by limiting the concentration

of L-homoserine (L-threonine plus L-methionine), thus releasing feedback inhibition

on aspartokinase by L-threonine plus L-lysine [7]. L-Citrulline production by argi-

nine auxotrophs of Bacillus subtilis [8] and C. glutamicum were also reported.

However, this application of auxotrophs is rather restricted, because the amino

acids are supplied from the media and the negative feedback mechanism is not

released.

3.3 Genetic Desensitization of Key Enzymes to Feedback
Inhibition and Selection of Amino Acid Analog-Resistant
Mutants

It has been shown that amino acid analog-resistant mutants of E. coli excrete amino

acids into their surrounding media, such as L-methionine by ethionine-resistant

strains [9], L-tryptophan by 5-methyltryptophan-resistant strains [10], L-threonine

by α-amino-β-hydroxyvaleric acid (AHV)-resistant mutants [11], and others.

Cohen and Patte also showed that homoserine dehydrogenase, a key enzyme of

threonine biosynthesis, was insensitive to feedback inhibition by L-threonine in

AHV-resistant mutants. These analog-resistant mutants excrete only a small

amount of amino acids; the exact amount produced was not described in these

reports, possibly due to the interest of these authors simply in their production
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“ability” [11]. On the other hand, AHV-resistant mutants derived from B. flavum
(later reclassified as C. glutamicum) produce a large amount of L-threonine

[12]. The amount produced was large enough to be industrialized, and this was

the first successful use of an analog-resistant mutant for large-scale amino acid

production. Homoserine dehydrogenase of the mutant strain is 1,300-fold more

insensitive to feedback inhibition by L-threonine than the parent strain [13]. The

mutation that impairs feedback was found to be the replacement of one amino acid

in the C-terminal region of the protein [14, 15].

Following this, various amino acid-producing strains were derived from their

corresponding analog-resistant mutants: L-lysine, L-isoleucine, L-tryptophan, L-his-

tidine, L-valine, L-phenylalanine, L-glutamine, L-arginine, L-proline, L-serine, and

others from the progenitor strains of B. flavum, B. lactofermentum, C. glutamicum,
S. marcescens, E. coli, and so on. Many of these mutants were shown to have key

enzymes that were desensitized to feedback inhibition, and a number of these

strains were successfully put into industrialization (as described in Sects. 4.2–4.9

of this chapter).

3.4 Disruption of Amino Acid Degradation Activity

Enteric bacteria, such as E. coli and S. marcescens, possess activities to degrade

amino acids.

When using these bacteria as the parent strains for the breeding of amino acid

producers, these activities prevented production. Therefore, it was necessary to

abrogate these activities for use of these strains to produce amino acids. Mutants

with disrupted degradation activities were derived from strains that could not

assimilate amino acids as sources of carbon or nitrogen. However, amino acid

overproduction has never been observed in strains containing only mutations that

disrupt these processes.

3.5 Amplification of Genes Coding for Desensitized
Biosynthetic Enzymes

Recombinant DNA techniques have made it possible to amplify and modify genes

that code for biosynthetic enzymes. L-Threonine production by E. coli mutants was

vastly improved by the amplification of desensitized L-threonine biosynthetic

enzymes [16].

Thereafter, many more strains that have improved yields of various amino acids

by the application of recombinant DNA techniques have been reported.
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3.6 Application of Metabolic Enzyme Reactions Free From
Feedback Controls of the End Products

Ordinary L-aspartic acid biosynthesis via pyruvic acid is regulated by the levels of

intracellular L-aspartic acid, but the reaction for the conversion of fumaric acid to

L-aspartic acid is not regulated. Various microorganisms able to convert fumaric

acid to L-aspartic acid by aspartase were selected, which allowed ammonium

fumarate to be effectively converted to L-aspartic acid. The process was further

improved using immobilized cells containing aspartase on either a polyacrylamide

gel or a k-carrageenan gel [17].

Similarly, production of L-alanine from L-aspartic acid, L-tryptophan from indole

plus serine or from anthranilic acid, L-serine from glycine, L-threonine from

homoserine, and L-isoleucine from DL-α-aminobutyric acid has been reported.

These enzyme reactions are all characterized by the absence of regulation by

intracellular amino acid levels.

However, these reactions were not of practical use because the required pre-

cursors are too expensive. Only L-aspartic acid and L-alanine synthesis were put into

practical use as described in Sect. 3.6.

Chemically synthesized intermediates of amino acids can be converted to their

corresponding amino acids through the use of enzymes from microorganisms that

are able to assimilate these synthesized intermediates as carbon or nitrogen sources.

For these reactions, microorganisms that can convert hydantoin compounds and

thiazoline compounds to their corresponding D- or L-amino acids were selected,

including those that produced D-p-hydroxyphenylglycine and L-cysteine, which

were industrialized by the Kaneka Co. and the Ajinomoto Co., respectively.

These key techniques (3-1 through 3-6) are illustrated schematically in Fig. 3.

4 Selection and Construction of Amino Acid-Producing

Strains

4.1 L-Glutamic Acid

As described in detail in Sect. 3, L-glutamic acid fermentation was accomplished

through the finding of the newly isolated strain C. glutamicum. This bacterium was

isolated through a unique bioassay system that employed lactic acid bacteria, which

require amino acids for growth. Naturally occurring samples of bacteria were

screened on plates of minimal medium supplemented with lactic acid bacteria

⁄�

Fig. 3 (continued) desensitized enzyme, : release of feedback inhibition, :

block of reaction, AA : amino acid produced
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and all required amino acids except L-glutamic acid. Halo-forming colonies on

plates, which showed excretion of L-glutamic acid, were then selected easily [18].

4.2 L-Lysine

Production of L-lysine was attained by culturing homoserine bradytrophs of

C. glutamicum under limiting concentrations of homoserine (L-threonine plus

L-methionine) in culture media, as described in Sect. 3.2 (Nakayama et al. 1958).

Mutants of the homoserine auxotrophs of B. flavum, which show phenotypic

sensitivity to threonine or methionine, are also high L-lysine producers. Sensitivity

comes from repression by L-methionine or inhibition by L-threonine, respectively,

which affects the homoserine dehydrogenase of the strain [19].

Resistant mutants of B. flavum to S-(2-aminoethyl)-L-cysteine (AEC), an analog

of L-lysine, produce large amounts of lysine [20]. Aspartokinase, a key enzyme of

lysine and threonine biosynthesis, was mutated to become insensitive to feedback

inhibition by threonine plus lysine [20]. B. lactofermentum strains, also derived

from mutants resistant to AEC as well as other analogs and an alanine auxotroph,

produce a large quantity of L-lysine [21]. These days, genetically constructed E. coli
strains with much higher yields are used in practical production.

4.3 L-Threonine

L-Threonine is both used for medicine and as a feed additive, which has recently

been in high demand. As described in Sect. 3.3, strains that produce L-threonine

were selected as AHV-resistant mutants of B. flavum [12], C. glutamicum [22], and

S. marcescens [23].
Deriving an isoleucine and methionine double auxotroph and culturing in

L-isoleucine- and L-methionine-limiting conditions improved L-threonine produc-

tion by an AHV-resistant mutant of E. coli. Increased production can be

explained by the release of repression by L-isoleucine plus L-threonine of the

L-threonine biosynthetic enzymes and by methionine of the methionine-sensitive

aspartokinase and homoserine dehydrogenase [24].

As described in Sect. 3.5, production of L-threonine was greatly improved by the

amplification of genes coding for the desensitized L-threonine biosynthetic enzymes

through the application of recombinant DNA techniques in E. coli [16]. The

production was further improved and stabilized by integrating the genes on the

bacterial chromosome using a defective Mu phage system [25]. This strain has been

used in practical production of amino acids.

Improved production of L-threonine by the application of DNA techniques has

also been reported for strains of B. flavum, B. lactofermentum, C. glutamicum, and
S. marcescens; however, it is not certain whether these results were put into
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practical use [26]. These days, genetically constructed E. coli strains with much

higher yields are used in practical production.

4.4 L-Tryptophan

L-Tryptophan is a promising amino acid for use as a feed additive. Approaches for

its production have a long history as follows: (a) enzymatic conversion of pre-

cursors, such as indole, pyruvate, and ammonia using tryptophanase, and indole

plus L-serine using tryptophan synthase; (b) fermentative conversion of anthrani-

late; (c) enzymatic conversion of a DL-hydantoin compound, an intermediate for

chemical synthesis of DL-tryptophan, to L-tryptophan; and (d) direct production

from sugars. Method (d) is the most economical because precursors used in

(a) through (c) are expensive. In the biosynthetic pathway of L-tryptophan, the

main regulation sites are 3-deoxy-D-arabinoheptulosonate-7-phosphate (DAHP)

synthase and anthranilate synthase. Construction of strains capable of producing

L-tryptophan was carried out through selection of mutants resistant to various

tryptophan analogs.

A typical example of a producing strain was derived from B. flavum; this mutant

is a tyrosine-auxotrophic, 5-fluorotryptophan-, and azaserine-resistant mutant

[27]. Other mutants include a C. glutamicum tyrosine and phenylalanine double

auxotrophic strain and several analog-resistant mutants (5-methyltryptophan, tryp-

tophan hydroxamate, tyrosine hydroxamate, phenylalanine hydroxamate,

6-fluorotryptophan, 4-methyltryptophan, and p-fluorophenylalanine) [28] and

mutants of B. subtilis resistant to 5-fluorotryptophan and indolmycin [29]. These

strains are able to produce 10–15 g/l of L-tryptophan and are used in practical

fermentations. These days, genetically constructed E. coli strains with much higher

yields are used in practical production.

4.5 L-Phenylalanine

There is a large demand for L-phenylalanine as it is a component of aspartame, a

low-calorie sweetener. The biosynthesis and feedback regulations of L-phenylala-

nine, L-tyrosine, and L-tryptophan were described in Sect. 4.4. DAHP synthase and

the chorismate mutase-prephenate dehydratase complex are key enzymes in L-

phenylalanine production. The best producing strain reported was derived from

B. lactofermentum as a mutant resistant to p-fluorophenylalanine and

5-methyltryptophan while being sensitive to decoinine, an analog of purine; this

strain is able to produce 25 g/l by the cultivation in a medium containing fumarate

and acetate with 13% glucose [30]. These days, genetically constructed E. coli
strains with much higher yields are used in practical production.
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4.6 L-Proline

An industrialized L-proline-producing strain was derived from B. flavum as an

isoleucine auxotrophic and sulfaguanidine- and dehydroproline-resistant mutant

[31]. Another producing strain was also derived from S. marcescens in the form

of a proline oxidase-deficient and proline analog-resistant mutant [32, 33]. Improve-

ment of their yield was attained by the amplification of the proAB, the gene coding
for L-proline biosynthetic enzyme from the S. marcescens-overproducing strain

itself [32, 33].

4.7 L-Serine

L-Serine is produced by the fermentative conversion of glycine. A mutant with a

low activity for L-serine degradation derived from C. glycinophilum can produce

14 g/l of L-serine from glycine with a molar yield of 33% [34]. Several other

bacteria, such as those belonging to Nocardia, Sarcina, methanol-utilizing bacteria,

Pseudomonas, and Hyphomicrobium sp., were also found to produce L-serine from

glycine [35]. Production of L-serine from glucose without addition of glycine was

also discovered using an azaserine-resistant mutant derived from an L-serine-

nondegradative strain of B. flavum [36], which has been in use for practical

production.

4.8 L-Histidine

L-Histidine-producing strains were selected from various analog-resistant mutants

of C. glutamicum, B. flavum, and S. marcescens. The C. glutamicum strain, which

was selected sequentially as a mutant resistant to 1,2,4-triazolealanine, 6-mercap-

topurine, 8-azaguanine, 2-thiouracil, 6-methylpurine, and 5-methyltryptophan, can

produce about 15 g/l of L-histidine. The B. flavum strain, which was selected as a

mutant resistant to 2-thiazolealanine, sulfaguanidine, AHV, ethionine, and

2-aminobenzothiazole, produces 10–12 g/l of L-histidine. A S. marcescens mutant,

which has low L-histidine-degradative activity, both through a feedback-insensitive

enzyme and derepressed L-histidine biosynthetic enzymes combined with transduc-

tional techniques and 6-methylpurine resistance, can produce 23 g/l of L-histidine.

Recombinant DNA techniques have been applied to amplify genes for the biosyn-

thetic enzymes, and improvement of yields has been reported in the above-

described bacteria [37].
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4.9 L-Arginine, L-Ornithine, and L-Citrulline

L-Arginine-producing bacteria were derived from both arginine and other analog-

resistant or sensitive mutants. An isoleucine-bradytrophic, D-serine-sensitive, D-

arginine-resistant, arginine hydroxamate-resistant mutant of C. glutamicum, a

sulfaguanidine- and 2-thiazolealanine-resistant mutant of B. flavum, and an arginine
hydroxamate- and 6-azauracil-resistant mutant of B. subtilis can each produce

25–35 g/l of L-arginine. An improved producer was derived from S. marcescens,
which has an arginine-nondegradative activity and feedback-insensitive and

derepressed arginine biosynthetic enzymes introduced through transduction

[38]. Production of L-ornithine and L-citrulline is described in Sect. 3.2.

4.10 L-Aspartic Acid

L-Aspartic acid is used both as a medicine and as a component of aspartame, a

low-calorie sweetener composed of a dipeptide from aspartic acid and phenylala-

nine methyl ester. L-Aspartic acid was the first amino acid produced by enzymatic

synthesis. As described in Sect. 3.6, this amino acid is formed in a reaction mixture

containing E. coli cells from a strain that exhibited high activity of aspartase and

ammonium fumarate [39]. A continuous production process was established with

these E. coli cells immobilized on a polyacrylamide gel and then on a k-carrageenan

gel [40]. Direct production from glucose using B. flavummutants has been reported;

however, their productivity was not so high.

4.11 L-Alanine

DL-Alanine is now practically produced through chemical synthesis from acetalde-

hyde, ammonia, and cyanide. Microbially produced alanine from glucose forms in

the DL-form. An L-alanine-producing strain was constructed by deriving an alanine

racemase-deficient mutant of Arthrobacter oxydans, which was selected to be a

strain possessing a glucose-nonrepressible alanine dehydrogenase. Production of L-

alanine was 75 g/l in a medium containing 14.5% glucose [41]; however, practical

use of the strain is uncertain.

L-Alanine is produced from L-aspartate by aspartate-β-decarboxylase. Ps.
dacunhae (now reidentified as Comamonas testosteroni) was found to be the best

producer of this enzyme, and optimal conditions were determined [42]. The process

was improved by use of immobilized cells of Ps. dacunhae in k-carrageenan gels.

Further, the process for direct formation of L-alanine from fumarate, a substrate of

aspartate, was developed by the combination of immobilized cells containing
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aspartase of E. coli and aspartate-β-decarboxylase of Ps. dacunhae, respectively, as
shown in Fig. 4 [43].

4.12 L-3,4-Dihydroxyphenylalanine

L-3,4-Dihydroxyphenylalanine (Dopa) is not found in microbial sources but in brain

organs and several plants. The compound is used for the treatment of Parkinson’s
disease. Enzymatic production of L-Dopa is achieved by the application of

β-tyrosinase, which catalyzes the α,β-elimination of L-tyrosine to form pyruvic

acid, phenol, and ammonia. Synthesis of L-Dopa is achieved by means of

β-replacement between pyruvic acid, ammonia, and pyrocatechol using the enzyme

from Erwinia herbicola (Fig. 5). A final concentration of 55 g of L-Dopa per liter of

reaction mixture was obtained by the addition of a limited concentration of pyro-

catechol [44, 45], and the process was industrialized by the Ajinomoto Co. in 1992.

HOOC

Immobilized E. coli Immobilized Ps. dacunhae
aspartate-β-decarboxylaseaspartase

CH

CH

COOH COOH COOH

HOOC

NH4
+

HCNH2 HCNH2

CH2 CH3

CO2Fumarate L-aspartate L-alanine

Fig. 4 Enzymatic synthesis of L-aspartic acid and L-alanine from fumaric acid with immobilized

aspartase and aspartate-β-decarboxylase

HO

HO

Pyrocatechol Pyruvic acid Ammonia L–3,4–Dihydroxyphenylalanine

CH3–CO–COOH CH2–CH(NH2)– COOHNH3 HO

β-Tyrosinase of

+ +

HO

Erwinia herbicola

Fig. 5 Enzymatic synthesis of L-3,4-dihydroxyphenylalanine with β-tyrosinase of Erwinia
herbicola
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4.13 L-Cysteine

L-Cysteine is now produced by extraction from acid hydrolysates of hair or feathers

and enzymatic conversion of chemically synthesized DL-2-amino-△2thiazole-4-

carboxylic acid (ATC), an intermediate compound of DL-cysteine, to L-cysteine.

Enzymes (ATC racemase, ATC hydrolase, and s-carbamoylcysteine hydrolase)

from a newly isolated bacterium, Ps. thiazolinophilum, which can assimilate DL-

ATC as a nitrogen source, can effectively form L-cysteine from DL-ATC [46], a

process that was put into practical production in 1980 by the Ajinomoto Co. Now

cysteine is also produced industrially by fermentation.

4.14 D-p-Hydroxyphenylglycine

D-Hydantoinase catalyzes the hydrolysis of 5-substituted hydantoin derivatives,

which are synthesized chemically as precursors of amino acids to form

N-carbamoyl-D-amino acids. The enzyme is distributed widely in microorganisms,

and various N-carbamoyl-D-amino acids can be obtained by the enzymes from

corresponding 5-substituted hydantoin compounds. Among them, production of

D-p-hydroxyphenylglycine, a building block for a semisynthetic β-lactam antibi-

otic, amoxicillin, from DL-p-hydroxyphenylhydantoin by using the enzyme of Ps.
putida followed by chemical hydrolysis of the intermediate N-carbamoyl-D-p-
hydroxyphenylglycine to D-p-Hydroxyphenylglycine, was established. Thereafter,
the chemical process, which had several weak points, including use of large

amounts of acids and alkalis and the appearance of by-products, was improved by

replacement with a biochemical one, as follows: (a) selection of a strain belonging

to Agrobacterium sp. that had high D-carbamylase activity, (b) modification of the

gene to form a heat-stable carbamylase using an established E. coli system,

(c) large-scale production by employing an E. coli strain, and (d) immobilization

of the enzyme on an ion-exchange resin, such as Duolite A568. Combining this

system with that of immobilized hydantoinase, a bioreactor system (Fig. 6) for the

HO CH CO + H2O

NH NH

HO

Immobilized Ps. putida Immobilized recombinant

D-carbamylaseHydantoinase

+H2O

NH2

+ NH3HOCHCOOH CHCOOH + CO2

NHCONH2

C

O

DL–5–(p-Hydroxyphenyl)- N-Carbamoyl-D-p-hydroxy- D-p-Hydroxyphenylglycine

hydantion phenylglycine

Fig. 6 Enzymatic synthesis of D-p-hydroxyphenylglycine from DL-5-( p-hydroxyphenyl)-
hydantoin with the combination of hydantoinase and D-carbamylase
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production of D-p-hydroxyphenylglycine, has been industrialized by the Kaneka

Co. [47, 48].

4.15 L-4-Hydroxyproline

Hydroxyproline theoretically has eight isomers, among which the naturally occur-

ring trans-4-hydroxyl-L-proline is a component of collagen and sugar proteins. This

amino acid is used as a starting material for various pharmaceuticals, such as

optically active proline and pyrrolidine derivatives. The production of this sub-

stance had been carried out through hydrolysis of collagen. The recently developed

microbial production process included (a) screening of microbial proline

hydrooxigenizing enzymes from strains belonging to Streptomyces and

Dactylosporangium, (b) cloning and amplification of the gene coding for this

enzyme using a gene expression system in E. coli, and (c) construction of a

hydroxyproline-producing strain of E. coli using this expression system as well as

incorporating a proline-nondegradative activity and L-proline-overproducing abil-

ity [49]. The process was industrialized by the Kyowa Hakko Co. in 2000.

5 Discussion and Future Prospects

In view of the early history of amino acid production, research and development as

well as modification into practical production has been carried out mainly by

Japanese companies, who hold a leading position in this field in the world today

though some of the companies have changed the policy.

Demand for amino acids will increase as the population of the world continues to

increase, and amino acids cannot be replaced by any other substances; further,

novel uses for amino acids will also be developed. Amino acids used for feed

additives, which include L-lysine, L-threonine, L-tryptophan, and chemically syn-

thesized DL-methionine, compete with natural sources, such as soybean meal and

fish meal. Prices of these materials vary according to their supply. Thus, a stable

and cheap supply of amino acids is important. Judging from the numbers of

publications, recent research and development activities appear to have decreased

when compared with those of the twentieth century. Further efforts for improve-

ment in the construction of strains, search for raw materials, cultivation, separation

and purification, and reduction of environmental load are still required.
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Glutamate Fermentation-2: Mechanism

of L-Glutamate Overproduction

in Corynebacterium glutamicum
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Abstract The nonpathogenic coryneform bacterium, Corynebacterium glutamicum,
was isolated as an L-glutamate-overproducingmicroorganism by Japanese researchers

and is currently utilized in various amino acid fermentation processes. L-Glutamate

production by C. glutamicum is induced by limitation of biotin and addition of fatty

acid ester surfactants and β-lactam antibiotics. These treatments affect the cell surface

structures of C. glutamicum. After the discovery of C. glutamicum, many researchers

have investigated the underlying mechanism of L-glutamate overproduction with

respect to the cell surface structures of this organism. Furthermore, metabolic regula-

tion during L-glutamate overproduction by C. glutamicum, particularly, the relation-
ship between central carbon metabolism and L-glutamate biosynthesis, has been

investigated. Recently, the role of a mechanosensitive channel protein in L-glutamate

overproduction has been reported. In this chapter, mechanisms of L-glutamate

overproduction by C. glutamicum have been reviewed.

Keywords 2-Oxoglutarate dehydrogenase complex, Corynebacterium
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1 Introduction

As reviewed in the previous chapters, the discovery of Corynebacterium
glutamicum has enabled us to produce L-glutamate, which is known as a flavor

enhancer, by microbial fermentation. This microorganism has also been utilized for

industrial fermentative production of various amino acids such as L-lysine and L-

valine.

The amount of L-glutamate produced by C. glutamicum is notably high and the

wild-type C. glutamicum strain does not produce any amino acids other than L-

glutamate. Therefore, it was thought by many researchers that the metabolic

pathways related to L-glutamate biosynthesis were different from those of the

other microorganisms. However, later on, it was found that the L-glutamate bio-

synthetic pathway in C. glutamicumwas identical to those of other microorganisms.

C. glutamicum undergoes unique cell division called snapping division; it grows

as V-shaped cell groups after the septation followed by cell division (Fig. 1). In

addition, C. glutamicum has distinct cell wall structures; the peptidoglycan layer is

covered with an additional outer layer, mainly composed of mycolic acids, which

are long-chain fatty acids, R1-CH(OH)-CH(R2)-COOH (R1 and R2 are the alkyl

chains). The existence of this mycolic acid-containing layer in the cell wall may be

somehow involved in the mechanism of snapping division in C. glutamicum.
L-Glutamate fermentation by C. glutamicum can be induced by limitation of

biotin, which is a necessary compound for its growth [1]. It can also be induced by

addition of fatty acid ester surfactants such as Tween 40 [2], addition of β-lactam
antibiotics such as penicillin G [3], or addition of inhibitors that affect formation of

cell surface layer containing mycolic acids such as ethambutol [4]. It had been

speculated that the produced L-glutamate passively leaks through cell surface

structures of C. glutamicum because the treatments to induce L-glutamate produc-

tion were thought to affect cell surface structures of this bacterium. Therefore,
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many researchers had investigated the changes in cell surface components during L-

glutamate production by C. glutamicum. Subsequently, regulation of the central

carbon metabolism during L-glutamate production, based on the decrease in

2-oxoglutarate dehydrogenase complex (ODHC) activity, was reported. In addition,

the protein responsible for this metabolic regulation, OdhI, was identified. Further,

the contribution of mechanosensitive channel protein NCgl1221 in the excretion of

L-glutamate by C. glutamicum was reported.

In this chapter, analyses of the mechanism involved in L-glutamate

overproduction by C. glutamicum have been reviewed with emphasis on metabolic

regulation, relationship between cell surface structures and L-glutamate production,

and the role of mechanosensitive channel.

2 Metabolic Regulation in L-Glutamate Production by

C. glutamicum

Since the amount of L-glutamate produced by C. glutamicum is significantly high, it

was believed that C. glutamicum possesses unique biosynthetic pathways for L-

glutamate biosynthesis. As shown in Fig. 2, however, the cellular metabolisms

related to L-glutamate biosynthesis are same as those in other microorganisms; L-

glutamate is synthesized from 2-oxoglutarate and ammonia, and its biosynthetic

reaction is catalyzed by glutamate dehydrogenase (GDH), with NADPH as a

reducing equivalent [5]. In addition, 2-oxoglutarate is synthesized from isocitrate

and converted further to succinyl-CoA in the TCA cycle. The conversion of

2-oxoglutarate to succinyl-CoA is catalyzed by ODHC, consisting of a catalytic

subunit E1o (OdhA; NCgl1084), dihydrolipoamide acetyltransferase subunit E2

(AceF; NCgl2126), and dihydrolipoamide dehydrogenase subunit E3 (Lpd;

Fig. 1 Scanning electron

microphotograph of

C. glutamicum cells. Scale
bar: 1 μm

Glutamate Fermentation-2: Mechanism of L-Glutamate. . . 59



NCgl0355). The regulatory mechanisms in the L-glutamate metabolism of

C. glutamicum have been investigated extensively.

2.1 The Decrease in ODHC Activity During L-Glutamate
Production by C. glutamicum

Initially, while investigating the mechanism of L-glutamate production, the activity

of ODHC could not be detected in C. glutamicum. It was therefore believed by

many researchers that this is the reason for outstanding productivity of L-glutamate

by this bacterium. However, Kawahara et al. succeeded to detect the activity of

ODHC and found that the ODHC activity was decreased during L-glutamate

production induced by the biotin limitation, Tween 40 addition, and penicillin

addition [6]. Since ODHC is located at the branching point between the TCA

cycle and L-glutamate biosynthesis, it was widely assumed that a change in meta-

bolic flow from the TCA cycle to L-glutamate synthesis caused by a decrease in

ODHC activity induces L-glutamate production.

Afterward, Shimizu et al. investigated the metabolic impact of the change in

activity of enzymes related to L-glutamate biosynthesis, isocitrate dehydrogenase

(ICDH), which catalyzes the formation of 2-oxoglutarate [7], ODHC and GDH, by

metabolic control analysis [8, 9]. As expected, the change in the activities of ICDH

and GDH had a small impact only on L-glutamate production, but the change in the

activity of ODHC had a great impact on the L-glutamate production induced by
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biotin limitation. Metabolic flux analysis during L-glutamate production also

supported this phenomenon. In addition, the Michaelis–Menten constant of

ODHC for 2-oxoglutarate was lower than that of GDH, indicating that the affinity

of ODHC to 2-oxoglutarate was higher than that of GDH. These results suggest that

the accumulation of 2-oxoglutarate due to the decreased ODHC activity is required

for the increased metabolic flux of L-glutamate production.

2.2 Discovery of the OdhI Protein and Its Role
in L-Glutamate Production

In 2006, Niebisch et al. reported the discovery of a novel protein, OdhI, in

C. glutamicum [10]. They found that the mutant strain for pknG gene, encoding a

serine/threonine protein kinase, showed a defect in growth on glutamine. OdhI

(NCgl1385) was identified as one of the target proteins of PknG, based on prote-

omic analysis. The OdhI protein has a fork-head-associated (FHA) domain, which

is known to be responsible for its interaction with other proteins. The PknG protein

phosphorylates Thr14 and/or Thr15 residues of the OdhI protein. Moreover,

unphosphorylated OdhI protein interacts with OdhA protein (E1o subunit) of

ODHC via FHA domain and, thereby, inhibits ODHC activity. Since ODHC is

essential for the growth on glutamine, the pknG mutant showed growth defect on

glutamine due to the inhibition of ODHC activity by unphosphorylated OdhI. The

crystal structure of OdhI protein suggests an autoregulatory mechanism; the

N-terminal region of the phosphorylated OdhI protein masks the FHA domain

itself, and as a result, it cannot interact with the OdhA protein [11].

Schultz et al. examined L-glutamate production by the odhI mutant of

C. glutamicum under biotin limitation, Tween 40 addition, penicillin addition,

and ethambutol addition; ethambutol is known as an inhibitor for mycolic acid

layer formation in the cell wall structures [12]. The odhI mutant strain produced

almost zero or very small amounts of L-glutamate under these induction treatments,

suggesting that the L-glutamate production by C. glutamicum is dependent on OdhI.

Kim et al. reported that penicillin-induced L-glutamate production was inhibited

by chloramphenicol, a de novo protein synthesis inhibitor, indicating that the de

novo protein synthesis is required for L-glutamate production in C. glutamicum
[13, 14]. Therefore, they performed the proteomic analysis of C. glutamicum during

penicillin-induced L-glutamate production to identify the protein(s) required for L-

glutamate production by C. glutamicum. OdhI was one of the proteins upregulated
by addition of penicillin. These results suggested that the de novo synthesis of OdhI

protein is required for penicillin-induced L-glutamate production by C. glutamicum.
Kim et al. also investigated the phosphorylation status of OdhI during L-gluta-

mate production induced by Tween 40 and penicillin additions [13, 15]. Under both

L-glutamate production conditions, the amount of unphosphorylated OdhI was high.

Boulahya et al. also observed the dephosphorylation of OdhI during biotin-limited
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and the temperature-induced L-glutamate production [16]. However, no clear rela-

tion between the specific L-glutamate production rate and OdhI phosphorylation

level has been demonstrated, suggesting that the phosphorylation status of OdhI

might not be the only factor necessary for the induction of L-glutamate production

in C. glutamicum.

2.3 Contribution of Anaplerotic Reactions to L-Glutamate
Production by C. glutamicum

In the anabolic metabolism, anaplerotic reactions are important to supply oxaloac-

etate in the TCA cycle, because the intermediate metabolites of the TCA cycle are

utilized for biosynthesis of amino acids and fatty acids. C. glutamicum carries two

anaplerotic reactions catalyzed by phosphoenolpyruvate carboxylase (PEPC) [17]

and pyruvate carboxylase (PC) [18]. Since the anaplerotic reactions are essential for

L-glutamate biosynthesis, the contribution of anaplerotic reactions to L-glutamate

production by C. glutamicum was analyzed.

We investigated the redistribution of metabolic flux in C. glutamicum during L-

glutamate production induced by biotin limitation [19]. Under the biotin limitation,

it is thought that PC cannot function because biotin is a cofactor of PC. Indeed, the

mutant strain for PEPC could not produce L-glutamate under biotin limitation,

because both anaplerotic reactions did not function in this mutant. Overexpression

of ppc encoding PEPC increased L-glutamate production. Metabolic flux analysis of

C. glutamicum during L-glutamate production was performed; cells were grown on
13C-labeled glucose under biotin limitation and information on 13C-labeling of L-

glutamate produced was obtained by nuclear magnetic resonance spectroscopy. The

metabolic flux for anaplerotic reactions in the mutant for PC was lower than that in

the wild-type strain. These results suggest that the anaplerotic reaction catalyzed by

PEPC contributes to L-glutamate production under biotin limitation.

Shirai et al. investigated the metabolic flux redistribution in C. glutamicum
ATCC 13869 strain during L-glutamate production induced by Tween 40 addition,

using 13C-metabolic flux analysis [13, 20]. 13C-metabolic flux analysis is recog-

nized as a powerful tool to determine the precise metabolic flux distributions and

for evaluating cellular metabolic state [21, 22]. Cells were grown on 13C-labeled

glucose, and biomass hydrolysate was obtained after the addition of Tween 40 to

induce L-glutamate production. Then, the 13C-labeling information of the amino

acids in the cellular proteins was obtained using gas chromatography–mass spec-

trometry. The metabolic flux distributions were determined, taking into consider-

ation the glycolysis, the pentose phosphate pathway, the TCA cycle, and the

anaplerotic reactions. Under the Tween 40 addition, the flux for PC was enhanced,

while not for PEPC. This suggests that the anaplerotic reaction catalyzed by PC

contributes to L-glutamate production induced by Tween 40 addition.
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3 Relationship Between Cell Surface Structure and

L-Glutamate Production in C. glutamicum

As described above, the L-glutamate production by C. glutamicum is induced by

biotin limitation, Tween 40 addition, and penicillin addition. Since these treatments

have been thought to affect cell surface structures of C. glutamicum, some

researchers investigated the relationship between the cell surface, i.e., cell mem-

brane and cell wall, and L-glutamate production.

3.1 Relationship Between the Fatty Acid Content and
L-Glutamate Production in C. glutamicum

Hoischen and Krämer investigated the relationship between the content and com-

position of lipids in the cytoplasmic membrane and L-glutamate secretion

[23]. They found that the change in fatty acid or phospholipid contents and their

composition were not apparently related to L-glutamate secretion, although the

overall lipid content was reduced. These suggest that alteration of lipid content

and/or its composition in cytoplasmic membrane are not sufficient for induction of

glutamate production.

Nampoothiri et al. investigated the effect of change in gene expression related to

lipid synthesis, which leads to the modification of lipid contents in the membrane,

on L-glutamate secretion ability of C. glutamicum [24]. Overexpression of plsC
encoding acylglycerol acyltransferase increased L-glutamate production induced by

Tween 60 addition, while overexpression of acp encoding acyl carrier protein

decreased L-glutamate production.

Furthermore, Hashimoto et al. examined the change in mycolic acid composition

in cell wall during L-glutamate production by C. glutamicum [25]. They found that

the major mycolic acids in C. glutamicum are C30–34 mycolic acids. The total

amount of mycolic acids in C. glutamicum was decreased by induction treatments

for L-glutamate overproduction. In case of biotin limitation and Tween 40 addition

conditions, these treatments affect mycolic acid biosynthesis directly. On the other

hand, in case of penicillin addition, the decrease in mycolic acid amount seems to

result from a decrease in the peptidoglycan synthesis, because peptidoglycan layer

functions as a scaffold for the outer layer, including the mycolic acid-containing

layer in C. glutamicum. Moreover, under the biotin limitation condition, the content

of short-chain mycolic acids was increased. Such alteration of the total amount and

compositions of mycolic acids can be associated to L-glutamate overproduction by

C. glutamicum. It is known that the mycolic acid-containing layer functions as a

permeability barrier for extracellular compounds and is involved in maintaining the

intracellular osmotic pressure. As described below, such alteration of mycolic acid-

containing layer in C. glutamicum may be related to the function of

mechanosensitive channel during L-glutamate overproduction.
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3.2 Role of DtsR Protein in Fatty Acid Biosynthesis and
L-Glutamate Production in C. glutamicum

The dtsR gene (NCgl0678) was identified as a multi-copy suppressor gene of a

C. glutamicum mutant, which showed hypersensitivity to Tween 40 (palmitic acid

ester surfactant) [26]. The amino acid sequence of the dtsR gene product showed

strong homology with β-subunit of propionyl-CoA carboxylase of Mycobacterium
leprae and β-subunit of acetyl-CoA carboxylase (AccC and AccD) of Escherichia
coli, which are responsible for fatty acid biosynthesis. Moreover, a dtsR-disrupted
mutant showed the auxotrophy of oleic acid [27]. The dtsR gene product would be

responsible for the fatty acid biosynthesis.

The dtsR-disrupted mutant produced L-glutamate in the presence of excess biotin

[28]. Overexpression of dtsR gene suppressed L-glutamate production induced by

Tween 40 addition. Moreover, under biotin limitation and Tween 40 addition

conditions, the levels of DtsR protein were decreased. These results suggest that

change in the levels of DtsR protein is somehow related to the change in the ODHC

activity.

3.3 Function of LtsA Protein in Cell Surface Formation
and L-Glutamate Production in C. glutamicum

C. glutamicum shows high tolerance to a lytic enzyme, lysozyme, which catalyzes

the hydrolysis of β-1,4 bonds between N-acetylglucosamine and N-acetylmuramic

acid in the peptidoglycan, although it belongs to the Gram-positive bacteria. This is

in turn facilitated by the unique mycolic acid-containing cell wall structure, which

functions as a permeability barrier against the compounds outside C. glutamicum
cells. We investigated the lysozyme-sensitive mutant strains of C. glutamicum for

understanding the relationship between the cell surface formation and L-glutamate

production [29, 30].

A mutant strain of C. glutamicum KY9714 showed high sensitivity to lysozyme,

and temperature-sensitive growth at 37�C. Morphology of the KY9714 mutant was

swollen at the restrictive temperature, which is one of the typical morphology of

C. glutamicum temperature-sensitive mutants [31]. Therefore, it was thought that

this mutant had a defect(s) in the cell surface formation. It was observed that the

ltsA gene (NCgl2116) complemented the temperature-sensitive growth and lyso-

zyme sensitivity of the KY9714 mutant. A nonsense mutation was found in the ltsA
gene of the KY9714 mutant, and the ltsA-disrupted strain showed both temperature-

sensitive growth and lysozyme sensitivity.

The amino acid sequence of LtsA protein shows high homology with those of

glutamine-dependent asparagine synthetases, which belong to the purF-type
glutamine-dependent amidotransferases, from various organisms. However, the

ltsA gene could not complement the asparagine auxotrophy of E. coli asparagine
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auxotrophic mutant (i.e., asnA asnB double mutant). This result suggested that the

ltsA gene does not encode asparagine synthetase but glutamine-dependent

amidotransferase responsible for the synthesis of cell wall component(s). Recently,

Levefaudes et al. reported that the C. glutamicum LtsA protein is involved in

amidation of meso-diaminopimelate (mDAP) residue in the peptidoglycan struc-

ture. The LtsA protein specifically amidates mDAP in the lipid intermediates during

the peptidoglycan biosynthesis [32]. For understanding the detailed function(s) of

the LtsA protein, further biochemical and molecular biological studies would be

required.

The ltsA mutant strains produced L-glutamate on increasing the culture temper-

atures [29, 30]. At the restrictive temperatures, the cell surface rigidity is reduced in

the ltsA mutant strains due to a defect of peptidoglycan amidation, which may

induce the L-glutamate production.

4 A Role of the Mechanosensitive Channel Protein in

L-Glutamate Secretion in C. glutamicum

In the last few decades of the twentieth century, Krämer and co-workers demon-

strated that the excretion of L-glutamate, L-lysine, L-isoleucine, and L-threonine

from C. glutamicum cells is an active process (for a review, [33]). Based on these

pioneering studies, Eggeling and co-workers successfully identified novel trans-

porters responsible for amino acid efflux, including LysE, TherE, and BrnFE, which

export L-lysine, L-threonine, and L-isoleucine, respectively (for reviews, [34–36])

(also see Chap. 32). On the other hand, the nature of the L-glutamate exporter has

long been unclear, although it was suggested that the secretion of L-glutamate by

C. glutamicum is mediated by a carrier system in the cytoplasmic membrane

[23, 37]. Recently, the contribution of a mechanosensitive channel protein on the

cytoplasmic membrane in export of L-glutamate overproduced by C. glutamicum
has been proposed.

4.1 Discovery of a Mechanosensitive Channel Protein
NCgl1221

As described above, a wild-type C. glutamicum does not produce L-glutamate at all

when cells grow happily. Cells produce large amounts of L-glutamate only under

appropriate culture conditions. L-glutamate production is induced under biotin-

limiting conditions, whereas the presence of biotin, which is required for

C. glutamicum growth, inhibits its production [1]. L-Glutamate production is also

induced by treatment with fatty acid ester surfactants [2] or penicillin [3]. Since

biotin limitation and the other inducting treatments cause damage to the cell surface
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structures of this microorganism, it has long been assumed that L-glutamate leaks

through the cell membrane [38].

Moreover, the activity of ODHC decreases during L-glutamate production in

response to inducing treatments [6]. It was reported that mutants of odhA gene,

encoding a subunit of ODHC, produced L-glutamate constitutively [39]. During the

analysis of such odhA mutants, we found that specific mutations in the NCgl1221

gene, but not odhA mutations, were responsible for constitutive L-glutamate secre-

tion [40]. The NCgl1221 gene encodes a homolog of the small-conductance

mechanosensitive channel (MscS). Disruption of NCgl1221 essentially abolishes

L-glutamate secretion. Based on these findings, we proposed a hypothetical mech-

anism of L-glutamate production by C. glutamicum (Fig. 2). Inducible treatment

causes an alternation in membrane tension, and the NCgl1221 mechanosensitive

channel is then activated, which leads to L-glutamate excretion [40, 41].

Electrophysiological studies done by different research groups indicated that

NCgl1221 indeed possesses mechanosensitive channel activity. Using E. coli giant
spheroplasts, lacking MscS and MscL, it was shown that NCgl1221 exhibits the

typical pressure-dependent gating behavior of a stretch-activated channel on patch-

clump analysis [42]. The mechanosensitive channel activity of NCgl1221 was also

confirmed by patch-clump analysis using giant provacuoles of Bacillus subtilis
lacking mechanosensitive channels, MscL and YkuT (an MscS homolog) [43]. It

was also shown that L-glutamate passes across the cytoplasmic membrane through

the NCgl1221 mechanosensitive channel by passive diffusion [44]. These results

indicate that NCgl1221 is a long-elusive L-glutamate exporter.

4.2 Functional Characterization of the Mechanosensitive
Channel NCgl1221 in L-Glutamate Secretion
in C. glutamicum

The NCgl1221 protein has an N-terminal domain (1–286 a. a.) homologous to the

E. coli MscS and a long C-terminal domain (287–533 a. a.) of unknown function

(Fig. 3a). In order to investigate the role of the C-terminal domain in L-glutamate

secretion, a series of C-terminally truncated mutants of NCgl1221 were constructed

and their ability for L-glutamate secretion was examined [45, 46] (Fig. 3b). It was

shown that the N-terminal domain, homologous to E. coliMscS, retained the ability

to cause L-glutamate secretion in response to the inducing treatments. In addition, it

was also shown that a mutant with NCgl1221 lacking the C-terminal

extracytoplasmic domain produced L-glutamate without any inducing treatments.

These results suggest that the N-terminal domain is necessary and sufficient for the

excretion of L-glutamate in response to inducing treatment and that the C-terminal

extracytoplasmic domain has a negative regulatory role in L-glutamate production.

Since the N-terminal domain alone can secrete L-glutamate in response to inducing
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treatments, the precise role of the C-terminal domain, including the

extracytoplasmic domain, remains obscure.

As mentioned above (see Sect. 4.2), the inducing treatments cause a decrease in

ODHC activity, which change the metabolic flux from TCA cycle to biosynthesis of

L-glutamate [6]. This metabolic regulation is conducted by the OdhI, an inhibitory

protein of ODHC [10, 12]. Since a disrupted mutant of the odhI gene produces

almost zero or very small amounts of L-glutamate under inducing conditions [12],

the metabolic regulation by OdhI is definitively required for L-glutamate production

by this bacterium. Overproduction of OdhI did induce L-glutamate production, but

the production levels were much lower than observed under normal induction

conditions [14]. On the other hand, gain-of-function mutants of NCgl1221 produce

a large amount of L-glutamate constitutively without any inducing treatments

[40, 47]. This means that the activation of NCgl1221 mechanosensitive channel is

a prerequisite for L-glutamate production prior to a change in metabolic flux

facilitated by OdhI. The relationship between NCgl1221 and OdhI is still to be

elucidated.

C. glutamicum possesses only one MscL homolog and one MscS homolog as a

mechanosensitive channel. A mutant lacking both channels, however, does not

show increased sensitivity to hypo-osmotic shock [48]. Recent electrophysiological

studies showed that the opening rates at saturating tensions and the closing rates at

zero tension of NCgl1221 are at least one order of magnitude slower than those

E. coli MscS

C. glutamicum
NCgl1221

(A)

(B)

0 10 20 30 40
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1–110
1–224
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L-Glutamate production (g/L)

Mutant

110 
224 286
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Fig. 3 Contribution of the

mechanosensitive channel

NCgl1221 to L-glutamate

secretion in C. glutamicum.
(a) Comparison of

membrane topologies

between E. coli MscS and

C. glutamicum NCgl1221.

Arrowheads indicate the
positions of truncation for

construction of mutant

NCgl1221 proteins. (b) L-

Glutamate production by

the C. glutamicum
harboring mutant NCgl1221

proteins. L-Glutamate

production in the

C. glutamicum wild-type

strain and the NCgl1221-

disrupted strain expressing

NCgl1221 truncated at the

X-th residues (1–X) under
biotin limitation are shown.

In case of the mutant 1–419,

L-glutamate production

under biotin-sufficient

condition is shown

Glutamate Fermentation-2: Mechanism of L-Glutamate. . . 67



observed for E. coliMscS. Moreover, whereas MscS is inactivated under sustained

stimulus, NCgl1221 does not undergo inactivation. It is considered that the fast

activation kinetics of MscS is advantageous for responding to an abrupt tension

change upon an osmotic downshock. On the other hand, it seems that NCgl1221 is

not suitable for the response to such fast changes, but is turned to execute slower

processes, such as L-glutamate export [49]. That is, NCgl1221 mechanosensitive

channel does not function as a safety valve for osmotic downshock, but should have

another physiological function that remains to be elucidated.

Amino acid exporters are increasingly attracting attention for improving the

industrial producer strains of amino acids (for reviews, [36, 50–52]).

Overproduction of LysE and ThrE enhances the excretion of L-lysine and L-threo-

nine, respectively, in their producer strains at least at laboratory scales [53, 54]. The

NCgl1221 mechanosensitive channel shows a relatively lower specificity for sub-

strates, although it exhibits a slight preference for cations over anions. Patch-clamp

experiments showed that aspartic acid as well as potassium ion and chloride ion, in

addition to L-glutamate, could pass thought this channel [42, 44, 49]. Introduction

of gain-of-function mutant NCgl1221 into an E. coli proline producer strain

improved its productivity [44]. These suggest a great potential of this channel for

application in production of valuable molecules other than glutamate.

5 Conclusion and Future Perspectives

As described in this chapter, the molecular mechanisms of L-glutamate

overproduction by C. glutamicum have become much clearer for this decade.

However, the physiological role of L-glutamate overproduction, i.e., the reason

why C. glutamicum produces and secretes significant amounts of L-glutamate, has

not been understood. It is now expected that the L-glutamate production mecha-

nisms can be applied to the production systems for useful chemicals.

The complete genomic DNA sequence of C. glutamicum has been already

determined [55–59]. Therefore, genome-wide analysis such as transcriptomics,

proteomics, metabolomics, and fluxomics for C. glutamicum are now available.

For example, Kataoka et al. investigated the transcriptome of C. glutamicum during

L-glutamate overproduction [60]. Moreover, systems biology studies, based on

metabolic simulations, using genome-scale metabolic models have been carried

out [61, 62]. Further studies on L-glutamate production mechanisms using such

genome-wide analysis systems are required to understand the physiological roles of

L-glutamate overproduction and to generate producer strains of useful chemicals,

other than amino acids based on metabolic engineering.
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Lysine Fermentation: History and Genome

Breeding

Masato Ikeda

Abstract Lysine fermentation by Corynebacterium glutamicum was developed in

1958 by Kyowa Hakko Kogyo Co. Ltd. (current Kyowa Hakko Bio Co. Ltd.) and is

the second oldest amino acid fermentation process after glutamate fermentation.

The fundamental mechanism of lysine production, discovered in the early stages of

the process’s history, gave birth to the concept known as “metabolic regulatory

fermentation,” which is now widely applied to metabolite production. After the

development of rational metabolic engineering, research on lysine production first

highlighted the need for engineering of the central metabolism from the viewpoints

of precursor supply and NADPH regeneration. Furthermore, the existence of active

export systems for amino acids was first demonstrated for lysine in C. glutamicum,
and this discovery has resulted in the current recognition of such exporters as an

important consideration in metabolite production. Lysine fermentation is also

notable as the first process to which genomics was successfully applied to improve

amino acid production. The first global “genome breeding” strategy was developed

using a lysine producer as a model; this has since led to new lysine producers that

are more efficient than classical industrial producers. These advances in strain

development technology, combined with recent systems-level approaches, have

almost achieved the optimization of entire cellular systems as cell factories for

lysine production. In parallel, the continuous improvement of the process has

resulted not only in fermentation processes with reduced load on downstream

processing but also in commercialization of various product forms according to

their intended uses. Nowadays lysine fermentation underpins a giant lysine demand

of more than 2 million metric tons per year.
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1 Introduction

Lysine, one of the essential amino acids for animals, has a significant commercial

value as a feed additive to promote the growth of animals including swine and

poultry and thus is the second-ranking amino acid after glutamate with regard to

worldwide annual production. Lysine is also used as a fish feed additive, because

lysine is generally the first limiting essential amino acid in many protein sources

used in fish feeds [1]. The global lysine market is currently estimated to be

2.2 million metric tons per year [2, 3] and is still growing at annual rates of around

10% (Fig. 1). As the scale of production has increased, lysine prices per kilogram

have dropped to around 1.5 USD, fluctuating between 1.3 and 2.5 USD over the past

decade [2, 3], depending largely on competition from natural lysine sources such as

soybean meal and sardine (Fig. 1). Because only the L-form of lysine is effective as

a feed additive, this amino acid is manufactured through fermentation. The main

suppliers are CJ CheilJedang (South Korea), Global Bio-Chem Technology Group

(China), Ajinomoto (Japan), Archer Daniels Midland (USA), and Evonik Industries
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(Germany), among others [2, 3]. Major commercial plants are located in the

respective corn belts in China, North America, Brazil, Indonesia, and Russia.

The history of lysine fermentation goes back to the late 1950s when Kyowa

Hakko Kogyo (current Kyowa Hakko Bio) found that a homoserine-auxotrophic

mutant of Corynebacterium glutamicum produced significant amounts of lysine in

liquid medium [4]. Based on the patents issued at that time, the first-generation

lysine producers with homoserine auxotrophy seem to have been capable of

achieving final titers of 40–60 g/L and around 25% fermentation yields (w/w) of

lysine hydrochloride from sugar [5, 6]. Further improvement was persistently

carried out in the 1970s and 1980s by inducing mutants with additional amino

acid auxotrophies and resistance to antimetabolites including the lysine analogue S-
(2-aminoethy)-L-cysteine (AEC). The titers produced by these strains reached

100 g/L with yields of 40–50% on sugar in fed-batch cultures [7, 8]. In the late

1980s and 1990s, various tools for genetic engineering of this microbe were

exploited, and these molecular techniques were applied to strain improvement

aimed at enhancing lysine production [9, 10]. This allowed rational metabolic

engineering not only for the lysine-biosynthetic pathways but also for the central

metabolism: more carbon could be directed toward the terminal pathways and the

NADPH supply could be augmented. Since the beginning of the 2000s, systems-

level approaches, including in silico modeling and simulation approaches, have

come to be used to help identify new targets for further strain improvement [11–

14]. Meanwhile, the availability of high-throughput DNA sequencing has made it

feasible to decode the genomes of classical industrial producers and thereby to

identify important genetic traits that distinguish them from their wild-type ances-

tors. As a result, the conventional style of selecting improved strains by their

phenotypes, formerly the standard practice in the industry, is rapidly being replaced

by a new method called “genome breeding,” where desirable genotypes are sys-

tematically assembled in a wild-type genome [15–17]. The reconstructed strains

can be more robust, give higher fermentation yields in less time, and resist stressful

conditions better than classical industrial producers.
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Fig. 1 Changes in estimated global markets (bars) and prices (circles) for lysine during the past

decade
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According to recent publications [3, 9], the current yields on sugar and titers of

lysine hydrochloride can be estimated at 55–60% and 120–170 g/L, respectively.

This means that strain development for lysine production almost achieves the

optimization of entire cellular systems. For a half century following the start of

lysine fermentation, C. glutamicum and its relatives were the sole production

organism, but recently, Escherichia coli has also come to play a significant role

in the process of lysine fermentation [18–20].

This chapter first briefly describes the general outlines of lysine fermentation and

typical production strains and then highlights advances in lysine production tech-

nology with a special focus on genome breeding methodology, which has currently

become a standard practice in the amino acid industry. The biosynthesis of lysine,

including the relevant pathways, enzymes, and genes, has been omitted because

such fundamental information can be found in many other publications [9, 10, 14].

2 Fermentation Processes of Lysine

2.1 Fermentation Operations

Industrial fermentation processes typically comprise two steps: cultivation of a

strain for lysine production and downstream processing including purification of

lysine from fermented broth and wastewater treatment. The lysine industry is highly

competitive in the world market, and the entire manufacturing process has so far

been optimized from various perspectives including the cost of the raw materials,

the fermentation yield, the purification yield, the productivity of the overall process,

the investment cost, the cost of waste-liquor treatment, the formulation of the

product, and so on. Since the carbon source is the major cost factor in the

fermentation process, its selection is of primary importance. As the main source

of carbon, cane molasses, beet molasses, sucrose, and starch hydrolysates (glucose

or dextrose) from corn, cassava, and wheat are widely used in industrial processes.

The preferred carbon source among these varies from one region to another. For

example, starch hydrolysate from corn, i.e., corn syrup, is the usual carbon source in

North America, China, and Indonesia, while cane and beet molasses are advanta-

geously used in Europe and South America, respectively, on the basis of each

substance’s cost and availability in these regions.

Industrial lysine fermentation is usually performed by means of fed-batch

processes using large-scale tank fermenters in the size range of 500 kL or larger.

In production plants where the fed-batch process is used, lysine accumulates to a

final titer of 170 g/L after 45 h [21]. To improve overall productivity further, it is

possible to extend fed-batch fermentation by drawing out part of the broth one or

more times during the process and refilling it through nutrient feeding

(semicontinuous fermentation) or by shifting the fermentation from batch to con-

tinuous culture, in which fresh medium containing all nutrients is fed into a
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fermenter at a specific rate while the same quantity of broth with a portion of the

microorganisms is continuously taken from the fermenter, thus maintaining a

constant culture volume (continuous fermentation). In continuous fermentation,

stable lysine production for more than 300 h was demonstrated with a

C. glutamicum lysine-producing mutant; this process yielded a maximum volumet-

ric productivity value of 5.6 g/L per hour, which is more than 2.5 times higher than

that seen in fed-batch culture with the same strain [22].

Industrial processes for recovering lysine from the fermented broth differ

depending on many factors such as the grade and intended use of the product, the

raw materials used, local environmental regulations, and so on. In the past, recovery

of feed-grade lysine from the broth has mainly depended on the conventional

chromatographic method [7]. In this method, after the cell mass was removed

through centrifugation or ultrafiltration, lysine was purified as a hydrochloride

salt using an ion exchange resin; this was followed by crystallization or spray-

drying. Chromatographic purification can result in a higher-quality product, but has

the disadvantage of generating lower product concentrations and larger volumes of

waste liquor, increasing the cost of waste-liquor treatment. To cope with this

problem, organic compound fertilizers were manufactured as a means of effectively

utilizing the waste liquor from lysine fermentation, recycling resources and

protecting the environment [7].

Recently, however, downstream processes for feed-grade lysine have become

much simpler and more economical. After removal of the cell mass, the filtrate is

merely evaporated and, in some cases, spray-dried. Today, development to meet

various requirements has resulted in commercialization of different product forms

at lower prices [9]. These include liquid concentrates and granulated solids with

different concentrations of lysine. An example of a liquid product is Liquid Lysine

60 (feed grade) from Ajinomoto Co., Inc., which contains free lysine and lysine

hydrochloride at a concentration of 60%. An example of a granulate product is sold

as Biolys® by Evonik Industries. This product is extracted directly from the

fermented broth by evaporation and granulation without removal of the cell mass

and thus contains coproducts such as other amino acids and proteins in addition to

lysine (more than 54.6% purity as a sulfate salt).

A unique production process has been developed with the goal of making

downstream processing more efficient [23]. While conventional processes utilize

sulfate and/or chloride as counter anion(s) to produce lysine sulfate and/or lysine

hydrochloride, the new process predominantly utilizes hydrocarbonate and carbon-

ate ions to produce lysine carbonate. This type of fermentation can be achieved by

gradually shifting the pH of the culture to alkaline conditions where relatively high

concentrations of hydrocarbonate and carbonate ions can exist. Since the

hydrocarbonate and carbonate ions are derived from carbon dioxide gas, which

itself is produced by a production strain, the amounts of ammonium sulfate and

ammonium chloride added to the medium can be reduced, which allows for

significant cost savings as well as reduction of the environmental loads resulting

from downstream processing. This process also allows for the simple recovery of a
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high lysine content because the counter anions are easily discharged as carbon

dioxide gas just by heating.

2.2 Production Strains

The industrial lysine producers used in the early stages of the process’s history were
regulatory mutants derived from Corynebacterium glutamicum and its subspecies,

flavum and lactofermentum. The following two properties are considered to be most

crucial for lysine production by these mutant strains: (1) homoserine auxotrophy

due to a defect of homoserine dehydrogenase and (2) AEC resistance due to the

desensitization of aspartokinase from feedback inhibition [10, 24–26]. Practical

industrial strains were constructed by combining these two properties, resulting in

lysine production with a conversion yield of approximately 30% on sugar (w/w) as

lysine hydrochloride [27, 28].

In addition to these fundamental properties, leucine auxotrophy is known to

increase lysine production [29–31]. This was originally explained as occurring due

to release from the leucine-dependent repression of the dapA gene encoding

dihydrodipicolinate synthase, which is the first enzyme of the lysine-biosynthetic

pathway [31]. More recently, however, since no significant upregulation of dapA
was observed under leucine-limited conditions, it is believed that a different

mechanism is likely to be involved in the positive effect of leucine limitation on

lysine production [32]. In relation to this, it has been reported that leucine limitation

gives rise to the global induction of the amino acid biosynthesis genes, including the

lysC gene encoding the key enzyme aspartokinase [32].

Further strain development was carried out introducing auxotrophy for alanine

or vitamins; resistance to antimetabolites, such as 6-azauracil, naphtoquinoline,

3,30,5-L-triiodo-L-thyronine, α-chlorocaprolactam, and NαNε-dioctanoyl-L-lysine;

and resistance to antibiotics such as rifampicin and streptomycin [7, 9]. Additional

screening and selection for these phenotypic characters has resulted in lysine

production with yields of 40–50% on sugar [33].

Since lysine requires oxaloacetate and pyruvate as precursors for its biosynthe-

sis, flux balances leading to optimal precursor supply are crucial for efficient lysine

production. From this perspective, production strains were further improved by

means of classical mutagenesis, which has led to strains capable of producing lysine

with conversion yields of up to 50% on sugar. These include pyruvate kinase-

deficient mutants and β-fluoropyruvate-sensitive mutants with decreased pyruvate

dehydrogenase activities [34–36]. Defect or reduction of phosphoenolpyruvate

carboxykinase [37, 38], isocitrate dehydrogenase [39], or citrate synthase [40, 41]

was used as another option for the same objective of increasing availability of the

precursors.

In addition to C. glutamicum strains, E. coli strains have been found to be useful
in industrial processes [19]. Lysine-producing strains of E. coli have been devel-

oped mainly by rational approaches. These include amplification and deregulation
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of the rate-limiting enzymes on the terminal pathway [42, 43], deletion of lysine-

degradation pathways [44], amplification of the lysine exporter YbjE [45, 46],

enhancement of respiratory chain pathways with high energy efficiency or reduc-

tion of those with low energy efficiency [47], disruption of the ribosome modulation

factor [48], and overexpression of ppGpp synthetase [49]. The lysine fermentation

performance of such E. coli strains has almost reached a level comparable to that of

C. glutamicum strains. More than 130 g/L of lysine production with a yield of 45%

on glucose has been demonstrated by using a threonine and methionine double-

auxotrophic E. coli strain carrying a plasmid which contains the ppc gene encoding
phosphoenolpyruvate carboxylase, the pntB gene encoding pyridine nucleotide

transhydrogenase, and the aspA gene encoding aspartate ammonia-lyase

[20]. E. coli generally shows faster growth at higher temperatures than

C. glutamicum does, which is why E. coli strains may be economically advanta-

geous, especially in tropical regions, because in those regions the cost of utilities is

not negligible to keep the fermentation temperature optimum.

Thermotolerant bacterial species such as Corynebacterium efficiens and Bacillus
methanolicus have also drawn attention as promising lysine producers

[19]. C. efficiens, formerly named Corynebacterium thermoaminogenes, is phylo-
genetically close to C. glutamicum but can grow at temperatures approximately

10�C higher [50–52]. B. methanolicus is a thermotolerant methylotroph that grows

at 35–60�C on methanol, an alternative carbon source which does not compete with

human food [53].

The typical production strains, especially the regulatory mutants developed by

classical mutagenic approaches, are listed in Table 1.

3 Metabolic Engineering for Lysine Production

Needless to say, lysine-producing mutant strains constructed according to the

techniques described above were further improved through the use of recombinant

DNA technology, although the practical applicability of such recombinant strains to

industrial fermentation has not been disclosed. The targets of metabolic engineering

have expanded beyond the core biosynthetic pathways leading to lysine and include

central metabolism, cofactor-regeneration systems, uptake and export systems,

energy metabolism, global regulation, and feedstock utilization (Fig. 2). In this

section, recent advances in molecular strain improvement for lysine production are

described.

3.1 Precursor Supply

As mentioned above, classical approaches aiming at increasing the supply of pre-

cursors into the lysine-biosynthetic pathway have led to incremental gains in lysine
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production. The same objective has also been achieved through molecular

approaches. For example, carbon flux from glycolysis intermediates to oxaloacetate

has been increased by overexpression of the pyruvate carboxylase gene [67], by

deregulation of phosphoenolpyruvate carboxylase [68], or by deletion of the phos-

phoenolpyruvate carboxykinase gene [37, 38], resulting in significantly increased

production of lysine. Increasing the availability of pyruvate by abolishing pyruvate

dehydrogenase activity can also improve lysine production [69]. On the other hand,

inactivation or attenuation of the TCA cycle enzyme(s) isocitrate dehydrogenase

[39], citrate and methylcitrate synthases [70, 71], or malate:quinone oxidoreductase

[72] was shown to improve lysine production, probably by means of a flux shift

from the TCA cycle toward the lysine-biosynthetic pathway.

3.2 NADPH Availability

Availability of NADPH is crucial, especially for the production of lysine, because

4 mol of NADPH are required for the biosynthesis of 1 mol of lysine from

oxaloacetate. In C. glutamicum, the usual strategy for increasing NADPH supply

is the redirection of carbon from glycolysis into the pentose phosphate pathway,

through disruption of the phosphoglucose isomerase gene [73] or through

overexpression of the fructose 1,6-bisphosphatase gene [74] or the glucose

Glucose

NADPH

NADP+

Alternative carbon

Feedstock Utilization

Energy metabolism

H2O
H+

O2
H+

NADH
NAD+

Central
metabolism Cofactor

regeneration

Global
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Lysine
NADPH

NADP+

ATP

ADP
Lysine

Export Terminal pathways Pyruvate

Oxaloacetate

Fig. 2 Targets of metabolic engineering for lysine production
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6-phosphate dehydrogenase gene [75]. The introduction of a mutant allele of the

6-phosphogluconate dehydrogenase gene encoding an enzyme that is less sensitive

to feedback inhibition can be another option [76]. In terms of carbon yield,

however, supplying carbon through the pentose phosphate pathway is less advan-

tageous than supplying it via the glycolytic pathway because the former pathway

inevitably involves the release of 1 mol of carbon dioxide (CO2) accompanied by

the oxidation of 1 mol of hexose. To solve this dilemma, an attempt was recently

made to engineer a functional glycolytic pathway in C. glutamicum supplying

NADPH through a new route [77, 78]. In this study, endogenous NAD-dependent

glyceraldehyde 3-phosphate dehydrogenase (GapA) of C. glutamicum was replaced

with nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydro-

genase (GapN) of Streptococcus mutans, leading to a C. glutamicum strain with an

NADPH-generating glycolytic pathway (Fig. 3). A lysine producer derived from

the engineered GapN strain has been shown to produce considerably more lysine

than the reference GapA strain. Moreover, it has been demonstrated that blockade

of the oxidative pentose phosphate pathway through a defect in glucose

Glucose

1,3-Bisphosphoglycerate

Oxaloacetate

3-Phosphoglycerate

ATP

ADP

Glyceraldehyde 3-P

GapA
NAD

NADH

NADP

NADPH

GapN

S. mutansC. glutamicum 

Lysine

Fig. 3 Design of S. mutans-type redox metabolism in C. glutamicum. Endogenous NAD-depen-
dent glyceraldehyde 3-phosphate dehydrogenase (GapA) of C. glutamicum was replaced with

nonphosphorylating NADP-dependent glyceraldehyde 3-phosphate dehydrogenase (GapN) of

S. mutans, leading to a C. glutamicum strain with an NADPH-generating glycolytic pathway
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6-phosphate dehydrogenase did not significantly affect lysine production in the

engineered strain, while a drastic decrease in lysine production was observed for the

reference strain [77]. Considering that the intracellular NADPH/NADP+ ratio in the

engineered strain was significantly higher than that of the reference strain

irrespective of the pentose phosphate pathway, it seems reasonable to consider

that the high NADPH/NADP+ ratio not only allows cells to bypass the pentose

phosphate pathway but also causes a decreased flux through the TCA cycle,

resulting in increased availability of oxaloacetate and pyruvate for lysine biosyn-

thesis. This study is the first to demonstrate efficient lysine production independent

of the oxidative pentose phosphate pathway.

As alternatives to the S. mutans GapN enzyme, the Clostridium acetobutylicum
GapN [79] and the modified endogenous GapA with preference of NADP [80] have

been successfully used for improved lysine production by C. glutamicum. On the

other hand, expression of the membrane-bound transhydrogenase genes from

E. coli in C. glutamicum has been shown to provide another source of NADPH [81].

3.3 Lysine Export

The export step is critical for achieving efficient amino acid production in

C. glutamicum [82]. The amino acid exporter first identified in bacteria is LysE,

which exports the basic amino acids lysine and arginine in C. glutamicum
[83]. Overexpression of the lysE gene resulted in a fivefold increase in the excretion

rate for lysine compared to the rate of the control strain [83]. The functions of LysE

also can be transferred to heterologous bacterial species. For example, a mutant

allele of the C. glutamicum lysE gene has been successfully used to improve lysine

production in the methylotrophMethylophilus methylotrophus [84]. In E. coli, YbjE
has been identified as a possible lysine exporter. The ybjE gene has been shown to

confer AEC resistance and increased lysine production on E. coli strains when

amplified on a multi-copy vector [19, 46].

3.4 Glucose Uptake

In C. glutamicum, the phosphoenolpyruvate-dependent sugar phosphotransferase

system (PTS) had long been the only known system to take up glucose, but recently,

potential glucose uptake systems that function as alternatives to the PTS have been

identified in this bacterium [85–89]. These include the iolT1 and iolT2 gene

products, both known as myo-inositol transporters [90]. Expression of the iolT1-
specific glucose uptake bypass instead of the native PTS resulted in approximately

20% increased lysine production [86]. This positive effect has been explained as

occurring through an increased availability of PEP, which contributes to an

increased supply of carbon from the central metabolism into the lysine-biosynthetic

pathway through an anaplerotic reaction involving PEP carboxylase (Fig. 4). More
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recently, a third non-PTS glucose uptake route consisting of the bglF-specified EII

permease and native glucokinases has been identified in C. glutamicum ATCC

31833 [91]. This will expand the options for the development of more efficient

production strains.

3.5 Energy Efficiency

Like redox balance, energy balance is critical for efficient lysine production. For

this reason, improving the efficiency of ATP synthesis is another strategy for

increasing lysine production. In C. glutamicum, two terminal oxidases are posi-

tioned in a branched respiratory chain [92]. One branch is composed of the

cytochrome bc1-aa3 supercomplex, which has a threefold-higher bioenergetic effi-

ciency than the other cytochrome bd branch. Disruption of the inefficient cyto-

chrome bd branch caused increased lysine production with no marked effect on

growth or glucose consumption [93]. The usefulness of this alteration of the

respiratory chain pathway has also been demonstrated for E. coli lysine

producers [47].
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PEP Pyr
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Pyr

Lysine Oxaloacetate

PTS

Glucose

Glucose 6-P

PEP
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Lysine Oxaloacetate

IolT1

Pyc
Ppc

Pyc
Ppc

PTS strain Non-PTS strain

Fig. 4 Possible mechanism for an increase in lysine production, activated by switching the

glucose transport systems from the PTS to the iolT1-specified non-PTS route. Considering that

lysine production is generally limited by the pyruvate carboxylase (Pyc) reaction [67], it is likely

that the increased availability of phosphoenolpyruvate (PEP) relative to pyruvate (Pyr) in the

non-PTS strain contributes to a better balanced supply of carbon from the central metabolism into

the lysine-biosynthetic pathway through the two anaplerotic reactions involving pyruvate carbox-

ylase and PEP carboxylase (Ppc)
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Recently, it has been shown that C. glutamicum can grow anaerobically by

means of nitrate respiration [94, 95]. In the presence of nitrate, lysine and arginine

production occurred anaerobically, though at a very low level, indicating the

potential of this bacterium for anaerobic amino acid production [95].

3.6 Global Regulation

Since amino acid biosynthesis in C. glutamicum is directly or indirectly subject to

both pathway-specific and global regulation [96, 97], global regulation is also

important in strain improvement. Actually, it has been demonstrated through

transcriptome analysis that the global induction of amino acid biosynthesis genes

occurred in a classically derived industrial lysine-producing strain of C. glutamicum
[98]. In this strain, the lysC gene, encoding the key enzyme aspartokinase, was

upregulated severalfolds, though a repression mechanism for lysine biosynthesis is

not known in C. glutamicum. Although the genetic elements responsible for these

changes have not yet been identified, the introduction of a mutant allele of the leuC
gene into a defined lysine producer has been shown to trigger a stringent-like global

response and thereby to enable a significant increase in lysine production [32].

3.7 Carbon Substrate Spectrum

The main feedstocks for industrial lysine fermentation by C. glutamicum are sugars

from agricultural crops, such as cane molasses, beet molasses, and starch hydroly-

sates (glucose or dextrose) from corn and cassava. However, due to environmental

concerns, considerable efforts have been made to broaden the substrate spectrum of

this organism toward alternative raw materials, especially those that do not compete

with human food or energy sources. For example, wild-type C. glutamicum cannot

utilize whey, which contains lactose and galactose, but heterologous expression of

both lacYZ from Lactobacillus delbrueckii subsp. bulgaricus and galMKTE from

Lactococcus lactis subsp. cremoris in a C. glutamicum lysine producer has resulted

in a strain that is able to produce lysine at up to 2 g/L fromwhey [99].C. glutamicum
is also unable to use starch, but expression of the α-amylase gene from Streptomy-
ces griseus has allowed C. glutamicum to utilize soluble starch for lysine produc-

tion, albeit at an efficiency lower than that obtained using glucose [100]. More

efficient lysine production from soluble starch has been achieved in C. glutamicum
by displaying the α-amylase from Streptococcus bovis on the cell surface. As the

anchor protein, PgsA from Bacillus subtilis was fused to the N-terminus of the

α-amylase. A lysine producer displaying this fusion protein on its cell surface

produced 6.04 g/L of lysine with a conversion yield of 18.89% on starch; this

titer and yield are higher than those obtained in glucose medium [101]. On the other

hand, glycerol, the main by-product of biodiesel production, is a potential carbon
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source for biotechnological processes. C. glutamicum has been engineered to

express the E. coli glycerol utilization genes glpF, glpK, and glpD so that it can

grow on glycerol. This has allowed lysine production from glycerol with a yield of

19% [102].

Furthermore, C. glutamicum is being engineered to use lignocellulose as a

feedstock. Although this organism is unable to utilize the pentoses xylose and

arabinose, components of lignocellulose, a successful attempt has been made to

implement the respective pathways that would allow growth on lignocellulose. A

xylose-utilizing C. glutamicum strain has been constructed that expresses the xylA
and xylB genes from E. coli on a high-copy plasmid [103]. Similarly, heterologous

expression of the E. coli arabinose-utilizing pathway in C. glutamicum resulted in a

strain that is able to grow on arabinose [104]. Recently, lysine production from rice

straw hydrolysate has been demonstrated using a C. glutamicum strain which

expresses the endogenous xylulose kinase gene from C. glutamicum itself and the

xylose isomerase gene from Xanthomonas campestris, together with the E. coli
araBAD genes [105].

4 Genome Breeding of Lysine Producers

As has been described above, a long history of strain development for lysine

production has resulted in a variety of industrially useful mutants (Table 1). Yet

most of these industrial producers remain veiled in mystery because the causative

mutations that enable them to be so useful are unknown. In search of a global

understanding of the mechanisms that would permit lysine hyperproduction and

more efficient lysine production, extensive research has recently been directed

toward analyzing the genomes of the current producers, which has resulted in a

novel methodology called “genome breeding” [15–17, 106–109]. Genome breeding

aims to reengineer more efficient producers using knowledge regarding the muta-

tions that have accumulated over decades of industrial strain development. Specif-

ically, this approach starts with decoding the genomes of classical industrial

producers to identify the important genetic traits that distinguish them from their

wild-type ancestors and progresses to systematically assembling the beneficial

genetic properties in a single wild-type background (Fig. 5). With this strategy, it

is possible to create a defined mutant that carries a minimal set of essential

mutations for high-level production, while rationalizing production mechanisms

at the same time. The procedure and impact of this approach are described here.
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4.1 First Stage: Genome Analysis of a Classical Production
Strain

C. glutamicum B-6 (Table 1) is a lysine-hyperproducing strain that originated from

the wild-type strain ATCC 13032 but has since undergone decades of conventional

mutagenesis and screening. As a useful producer, its genome is well worth study-

ing. Whole-genome sequencing of this strain revealed that more than 1,000 muta-

tions have accumulated in its genome. This means that between 50 and

100 mutations were introduced at every round of mutagenesis. The mutation

types were mostly G∙C!A∙T transitions with a small fraction of A∙T!G∙C
transitions [110]. About 60% of them were mutations causing amino acid sub-

stitutions. Metabolic pathway mapping of the mutations showed them to be widely

distributed throughout the metabolic pathways including the central metabolism

and the amino acid-biosynthetic pathways. Allele-specific PCR revealed the history

of the mutations by identifying the step in which each mutation was introduced

during the multiple rounds of mutagenesis. This form of analysis allowed us to

associate genotypes with phenotypes and thereby made it easy to select the positive

mutations that have been beneficial for production.

Reengineered strainWild-type strain

Industrial producer

?

Assembling
beneficial mutations

Identifying 
beneficial mutations

hom59 lysC311
…

Decoding
producer genome

Fig. 5 Reengineering of defined lysine producers by genome breeding. This approach starts with

comparative genomic analysis to identify mutations and eventually leads to creation of a defined

mutant that carries a minimal set of beneficial mutations (e.g., hom59, lysC311) and no undesirable
mutations (x)
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4.2 Second Stage: Identification of Basal Mutation(s)
Causing Lysine Production

The first step toward genome breeding was to identify the basal mutation(s) that

conferred the ability to produce lysine on wild-type C. glutamicum. In general, such
a basal mutation(s) is considered to exist in the relevant terminal pathways and at or

near the earliest step in the phylogenetic tree of strain development. In the case of

strain B-6, there were six point mutations identified, one in each of the hom, lysC,
dapE, dapF, thrB, and thrC genes of the relevant terminal pathways (Fig. 6). The

first two of these, that is, the hommutation (V59A, designated hom59) and the lysC
mutation (T311I, designated lysC311), existed at the earliest and second earliest

steps in the phylogenetic tree, respectively. The presence of the hom59 mutation

and the lysC311 mutation in the wild-type genome resulted in lysine accumulation

at 10 and 55 g/L, respectively, in fed-batch fermentation using a glucose medium

(Table 2), revealing that both mutations were basal mutations [108]. Comparative

phenotypic analyses also clarified the relationship between the genotype of hom59
and the phenotype of a partial requirement for homoserine, as well as that between

the genotype of lysC311 and the phenotype of resistance to AEC.
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represent genes in which mutations were identified. The five specific mutations indicated above

the black boxes were defined as positive mutations for lysine production. Abbreviations and

symbols for genes are as described in the previous report [111]
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4.3 Third Stage: Selection for a Wild-Type Background
with Best Performance

C. glutamicum and its subspecies, known as glutamic acid-producing bacteria, have

previously been classified as belonging to different genera or species, such as

Brevibacterium lactofermentum and Corynebacterium acetoacidophilum
[112]. Although they are currently classified as belonging to the original species

C. glutamicum [113], these different wild-type strains exhibit considerable pheno-

typic diversity. Therefore, in the genome breeding process, it is important to start

from the wild-type background with the best industrial performance because the

intrinsic properties of the host strain chosen at the beginning of the process can have

a significant impact on the ultimate outcome. For this purpose, the basal mutation

lysC311 was introduced into six representative C. glutamicum wild-type strains,

including ATCC 13869 (formerly known as B. lactofermentum) and ATCC 13870

(formerly known as C. acetoacidophilum). The resulting isogenic mutants were

then screened for their abilities to produce lysine using jar fermenters under both

traditional 30�C conditions and suboptimal 40�C conditions. The six lysC mutants

all produced large amounts of lysine at both temperatures, but at different levels

with respect to final titers and productivities [114]. Through this evaluation,

C. glutamicum ATCC 13032, a parental wild-type strain of strain B-6, was chosen

as the best background with which to begin the process because its lysC mutant

exhibited the highest titer and productivity under both temperatures among the six

mutants.

Table 2 Phylogeny of defined lysine producers reengineered by the genome breeding approach

Strain Genotype

Titer

(g/L)

Time

(h)

Productivity

(g/L/h)

ATCC 13032

(Wild-type)

– 0 30 0

HD-1 hom59 10 30 0.33

AK-1 lysC311 55 30 1.83

AHD-2 hom59, lysC311 80 30 2.67

AHP-3 hom59, lysC311, pyc458 85 30 2.83

APG-4 hom59, lysC311, pyc458, gnd361 90 30 3.0

AGM-5 hom59, lysC311, pyc458, gnd361,
mqo224

94 30 3.13

AGL-6 hom59, lysC311, pyc458, gnd361,
mqo224, leuc456

100 30 3.33

Cultivations for lysine production were carried out at 40�C in 5-L jar fermenters using a medium

consisted of (per liter) 50 g of glucose, 20 g of corn steep liquor, 25 g of NH4Cl, 1 g of urea, 2.5 g of

KH2PO4, 0.75 g of MgSO4∙7H2O, and some trace elements and vitamins (pH 7.0). After the sugar

initially added was consumed, a solution containing glucose, NH4Cl, and D-biotin was continu-

ously fed until the total amount of sugar in the medium reached 25% [15, 108]
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4.4 Fourth Stage: Assembling Beneficial Mutations

The two basal mutations hom59 and lysC311 were assembled in the best back-

ground strain, ATCC 13032, which led to a synergistic effect on lysine production

and the accumulation of 80 g/L of lysine (Table 2) [108]. No other mutations

identified in the terminal pathways as coexisting with hom59 and lysC311 were

effective for lysine production. Thus, the next task was to evaluate mutations

positioned metabolically upstream, specifically in the central metabolism. In the

genome of strain B-6, there were 14 point mutations identified in the genes relevant

to central metabolism (Fig. 6). These mutations were separately evaluated for their

effects on lysine production under the hom59 and lysC311 background. Eventually,
three specific mutations, pyc458 (P458S) in the anaplerotic pathway [108], gnd361
(S361F) in the pentose phosphate pathway [76], and mqo224 (W224opal) in the

TCA cycle [72], were identified as beneficial mutations for improved production

(Fig. 6). Likewise, leuC456 (G456D) in the leucine-biosynthetic pathway was

defined as the beneficial mutation from among mutations in other metabolic

pathways [32]. These four beneficial mutations were then assembled one by one

under the hom59 and lysC311 background, which resulted in stepwise increases in

lysine production and a final titer of 100 g/L (Table 2) [15, 64].

4.5 Performance of the Reengineered Strain

The reengineered strain, designated AGL-6 (Table 2), is, so to speak, a minimally

mutated strain from which all undesirable mutations accumulated in the genome of

strain B-6 were eliminated and thus has several advantages over the classical

producer. One of these is its high rate of growth and sugar consumption. The new

strain can consume 250 g/L of glucose within 30 h, a rate comparable to that of the

wild-type strain. This allows the fermentation period to be shortened to nearly half

of that traditionally required [108]. A second advantage is improved stress toler-

ance, because the reengineered strain is assumed to inherit the robustness of the

wild-type strain. The new strain indeed exhibited efficient lysine production at a

suboptimal temperature of 40�C and achieved a titer of 100 g/L after only 30 h of jar

fermenter cultivation, whereas strain B-6 could not work at all above 35�C
[15, 115]. This performance allows for the reduction of cooling costs and, further-

more, makes cost-effective manufacture feasible in tropical regions with easy

access to low-cost carbon sources. In the future, assembling positive mutations

derived from different lines of classical producers in a single wild-type background

is expected to lead to more impressive results, as demonstrated in genome breeding

for arginine production [116].
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4.6 Rationalizing Lysine Production Mechanism

The coexistence of the two basal mutations hom59 and lysC311 in the wild-type

genome exerted a synergistic effect on lysine production. The possible explanation

for this is that the lysC311 mutation, which causes partial deregulation of

aspartokinase, would achieve greater deregulation of the enzyme with the help of

the hom59 mutation, which causes threonine limitation [108]. This cooperation is

considered to be the fundamental mechanism of lysine production in the

reengineered strain as well as the classical producer B-6. Increased production by

the pyc458 mutation in the anaplerotic enzyme pyruvate carboxylase can be

explained by improved catalytic activity, thereby increasing precursor supply for

lysine biosynthesis [108]. The gnd361 mutation in the 6-phosphogluconate dehy-

drogenase gene obviously contributes to increased supply of NADPH, as enzymatic

and metabolic flux analyses have revealed that the mutation alleviated the allosteric

regulation of the enzyme and caused an 8% increase in carbon flux through the

pentose phosphate pathway [76]. The mqo224 mutation in the malate:quinone

oxidoreductase gene is a nonsense mutation changing TGG, a tryptophan codon,

into TGA, a stop codon. The resulting loss of enzyme activity is useful for lysine

production. Since transcriptome analysis revealed a coordinated downregulation of

the TCA cycle genes as a consequence of a deletion in the mqo gene, the mecha-

nism for increased lysine production can be rationalized by decreased flux of the

TCA cycle, resulting in redirection of oxaloacetate into lysine biosynthesis [72]. On

the other hand, the leuC456 mutation in the leucine-biosynthetic pathway has been

found to cause leucine limitation and give rise to the global induction of the amino

acid biosynthesis genes through a stringent-like regulatory mechanism. This

upregulation likely contributes to increased lysine production mainly through

increased expression of the lysC gene encoding the key enzyme aspartokinase [32].

5 Holistic Metabolic Design for Optimizing Lysine

Production

Progress in C. glutamicum genomics and so-called post-genome technologies has

opened up new avenues for the development of various global analysis techniques,

which have led to the use of in silico modeling and simulations in planning further

strain engineering. For example, integration of the annotated genome, the available

literature, and various “omic” data have resulted in the construction of a genome-

scale model of the C. glutamicum metabolic network [11]. This metabolic model,

comprised of 446 reactions and 411 metabolites, helps predict metabolic fluxes

during lysine production and growth under various conditions at levels that strongly

reflect experimental values. The ability to predict the metabolic state associated

with maximum production yield has been used in the rational design of high lysine-

producing strains of C. glutamicum [12, 13, 74].
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Such systems-level approaches, when combined with the ever-accumulating

metabolic engineering and genome breeding data, as well as metabolic flux profil-

ing and modeling technologies, have made it possible to predict a minimum set of

genetic modifications that would lead to the theoretically best flux scenario for

optimum lysine production [65]. Through a series of these processes, now known as

systems metabolic engineering, it has been demonstrated that 12 genetic modifica-

tions in a wild-type genome led to the lysine hyperproducer LYS-12 (Table 1,

Fig. 7). This strain was shown to give a final titer of 120 g/L with a yield of 55% on

glucose after 30 h of 5-L jar fermenter cultivation at 30�C. Among the twelve

modifications shown in Fig. 7, six are relevant to this strain’s increased flux through
the lysine-biosynthetic pathway. These include the introduction of the lysC311 and
hom59 mutations, duplication of the ddh and lysA genes, and overexpression of the

lysC and dapB genes under a strong promoter. Three of the other six modifications

are the introduction of the pyc458mutation, overexpression of the pyc gene under a
strong promoter, and deletion of the pck gene, all of which cause increased flux

toward oxaloacetate through anaplerotic carboxylation. Two of the remaining three

modifications are overexpression of the fbp gene and the zwf-opcA-tkt-tal operon
under strong promoters, both of which cause increased flux through the pentose
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Fig. 7 Systems metabolic engineering for lysine production. On the basis of the metabolic

blueprint, 12 genetic modifications were introduced into a wild-type genome, which resulted in

the lysine hyperproducer C. glutamicum LYS-12. Abbreviations and symbols for genes are as

described in the previous report [111]
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phosphate pathway for NADPH supply. The last one, replacement of the start codon

ATG by the rare GTG in the icd gene, reduces flux through the TCA cycle and

thereby increases the availability of oxaloacetate. It is worth noting that the three

specific mutations lysC311, hom59, and pyc458 carried by strain LYH-12 were

originally identified from the genome of the classical industrial producer

C. glutamicum B-6 during the genome breeding process (Table 2).

6 Conclusions and Outlook

The global lysine market has expanded to more than 2 million metric tons through

the combined effects of the development of fermentation technology and increased

lysine demand. This market growth is expected to continue, considering the

increases in both nutritional values and applications of this amino acid [3]. Cur-

rently, lysine fermentation, including strain development technology, biochemical

engineering, and downstream processing, is the most advanced example of a

bio-based production process.

This chapter has provided an overview of lysine production processes and

typical production strains and summarized the history of lysine production tech-

nology. To the best of our knowledge, the best lysine fermentation performance

ever achieved is 170 g/L after 45 h [21]. However, it should be noted that the record

titer was attained by a classical strain. This suggests that there is still a significant

gap in performance between the best classical strain and strains metabolically

engineered from wild type. It has not yet been possible to reproduce the record

titer from scratch through rational approaches only, probably due to the existence of

unknown mechanisms for hyperproduction. This means that there is a great deal

more to learn from the genomes of classical strains. As we enter the genomic era,

new possibilities emerge, including analysis of producer’s genomes, leading to

genome breeding, and systems metabolic engineering, leading to tailor-made cell

factories with designed properties [117]. The next-generation strains are expected

to be created through the synergy of these approaches and through integrating the

knowledge accumulated over decades of industrial strain development with the

emerging technology of in silico modeling and simulation.

At the same time, the lysine industry is beginning to consider sustainable and

environmentally friendly manufacturing systems in response to the continuing

crisis of global warming. From this standpoint, the industry is expected to develop

strains enabling the use of feedstocks that are renewable and that do not compete

with human food or energy sources. The development of innovative technologies

enabling reduction in effluents and wastes generated during fermentation and

purification processes is also expected. Tackling these challenges will lead to a

new era for the lysine industry.
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83. Vrljić M, Sahm H, Eggeling L (1996) A new type of transporter with a new type of cellular

function: L-lysine export from Corynebacterium glutamicum. Mol Microbiol 22:815–826

84. Gunji Y, Yasueda H (2006) Enhancement of L-lysine production in methylotroph

Methylophilus methylotrophus by introducing a mutant LysE exporter. J Biotechnol 127:1–13

85. Ikeda M (2012) Sugar transport systems in Corynebacterium glutamicum: features and

applications to strain development. Appl Microbiol Biotechnol 96:1191–1200

86. Ikeda M, Mizuno Y, Awane S, Hayashi M, Mitsuhashi S, Takeno S (2011) Identification and

application of a different glucose uptake system that functions as an alternative to the

phosphotransferase system in Corynebacterium glutamicum. Appl Microbiol Biotechnol

90:1443–1451

87. Ikeda M, Takeno S, Mizuno Y, Mitsuhashi S (2013) Process for producing useful substance.

US Patent 8530203
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Branched-Chain Amino Acids

Keisuke Yamamoto, Atsunari Tsuchisaka, and Hideaki Yukawa

Abstract Branched-chain amino acids (BCAAs), viz., L-isoleucine, L-leucine, and

L-valine, are essential amino acids that cannot be synthesized in higher organisms

and are important nutrition for humans as well as livestock. They are also valued as

synthetic intermediates for pharmaceuticals. Therefore, the demand for BCAAs in

the feed and pharmaceutical industries is increasing continuously. Traditional

industrial fermentative production of BCAAs was performed using microorganisms

isolated by random mutagenesis. A collection of these classical strains was also

scientifically useful to clarify the details of the BCAA biosynthetic pathways,

which are tightly regulated by feedback inhibition and transcriptional attenuation.

Based on this understanding of the metabolism of BCAAs, it is now possible for us

to pursue strains with higher BCAA productivity using rational design and

advanced molecular biology techniques. Additionally, systems biology approaches

using augmented omics information help us to optimize carbon flux toward BCAA

production. Here, we describe the biosynthetic pathways of BCAAs and their

regulation and then overview the microorganisms developed for BCAA production.

Other chemicals, including isobutanol, i.e., a second-generation biofuel, can be

synthesized by branching the BCAA biosynthetic pathways, which are also

outlined.
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1 Introduction

Branched-chain amino acids (BCAAs), namely, L-isoleucine, L-leucine, and L-

valine, are essential amino acids [1] that are not synthesized in mammals, but

have critical roles in physiological functions and metabolism [2]. BCAAs are

used in dietary products, pharmaceuticals, and cosmetics and serve as a precursor

of antibiotics and herbicides. Moreover, they are expected to play a leading role in

future feed additives [3]. As other amino acids, BCAAs have been manufactured by

fermentation using mutated or metabolically engineered microorganisms that origi-

nated from Corynebacterium glutamicum or Escherichia coli [4, 5]. The amount of

the annual production of L-isoleucine, L-leucine, and L-valine in 2001 was approxi-

mately 400, 500, and 500 tons, respectively [6, 7], and has been increasing

continuously. For example, the nonfeed market for L-valine reached around

1,000–1,500 tons per annum with an estimated 5–8% annual increase [8].

Historically, BCAAs were produced chemically, and their enantiomers were

separated enzymatically after chemical derivatization or via chromatographic sep-

aration followed by crystallization. However, as the demand for BCAAs increased,

fermentative methods gathered attention for economic reasons as well as from an

environmental perspective. In the early stages, most BCAA production strains were

isolated by random mutagenesis. However, the random mutagenesis approach

distributes genetic alterations throughout the chromosome, which are difficult to

identify and may cause unexpected effects. Recently, amino acid-producing strains

have been developed by rational genetic manipulation to avoid this problem.

Highly productive strains can be created in a genetically defined manner, e.g., by

specifically overexpressing biosynthetic genes responsible for a target amino acid.

Systems metabolic engineering, which analyzes metabolism in a genome scale [9],

also helps us to optimize carbon flux toward the biosynthesis of a target amino

acid [10].

In this chapter, we will describe the biosynthetic pathways of BCAAs and their

regulation in microorganisms, in particular, C. glutamicum, which is a nonpatho-

genic Gram-positive bacterium of the family Actinomycetes and is widely used for

the industrial production of amino acids and nucleotides [11]. The development of
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microbial strains for production of BCAAs will then be outlined. Finally, the

extrapolated application of the BCAA biosynthetic pathways to other chemicals,

including isobutanol, i.e., a second-generation biofuel, will be shown.

2 Regulation of BCAA Biosynthesis

The biosynthetic pathways of BCAAs of C. glutamicum are summarized in Fig. 1.

C. glutamicum has one acetohydroxy acid synthase (AHAS) encoded by ilvBN [12],

which catalyzes the initial step of the BCAA biosynthesis. AHAS produces

L-threonine

2-ketobutyrate

2-aceto-2-hydroxybutyrate

2,3-dihydroxy-3-methylvalerate

2-keto-3-methylvalerate

2-acetolactate

2,3-dihydroxyisovalerate

2-isopropylmalate2-ketoisovalerate

2-keto-4-methylvalerate

3-isopropylmalate

ilvBN
(AHAS)

ilvC
(AHAIR)

ilvD
(DHAD)

ilvE
(BCAT)

ilvA
(TDH)

leuA
(IPMS)

leuCD
(IPMI)

ilvE
(BCAT)

leuB
(IPMD)

tyrB
(TrAT)

ilvC
(AHAIR)

ilvD
(DHAD)

ilvE
(BCAT)

aspartyl phosphate

aspartate semialdehyde

homoserine

homoserine phosphate

lysC
(AK)

asd
(ASADH)

hom
(HDH)

thrB
(HK)

thrC
(TS)

L-lysine

L-methionine

L-isoleucine

L-valine

L-leucine

pyruvate

L-aspartate

Fig. 1 The BCAA biosynthetic pathways and their regulation in C. glutamicum. The genes and
enzymes are shown in italic font and in parentheses, respectively. Dotted lines and gray lines
indicate feedback inhibition and transcriptional attenuation, respectively. Abbreviations: AHAIR
acetohydroxy acid isomeroreductase, AHAS acetohydroxy acid synthase, AK aspartate kinase,

ASADH aspartate semialdehyde dehydrogenase, BCAT branched-chain amino acid aminotransfer-

ase,DHAD dihydroxy acid dehydratase,HDH homoserine dehydrogenase,HK homoserine kinase,

IPMD isopropylmalate dehydrogenase, IPMI isopropylmalate isomerase, IPMS isopropylmalate

synthase, TDH threonine dehydratase, TrAT tyrosine-repressible transaminase, TS threonine

synthase
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2-acetolactate and 2-aceto-2-hydroxybutyrate for the L-leucine/L-valine and L-iso-

leucine biosynthesis, respectively. The starting materials for this reaction are

pyruvate and 2-ketobutyrate. Pyruvate is provided from the glycolytic pathway,

while 2-ketobutyrate is synthesized from L-threonine by threonine dehydratase

(TDH) encoded by ilvA. TDH is feedback inhibited by L-isoleucine [13], although

the activity can be restored by L-valine [14]. AHAS consists of large and small

subunits, which are encoded by ilvB and ilvN, respectively. The small subunit of

AHAS is responsible for the multivalent regulation by all three BCAAs [12]. Unlike

C. glutamicum, some bacteria have several isoforms of AHAS. For instance, E. coli
has three isozymes, AHAS I, II, and III [3], which are encoded by ilvBN, ilvGM, and

ilvIH, respectively. The expression of these genes is regulated differently, and

ilvGM is attenuated by all BCAAs, while ilvBN is affected only by L-leucine and

L-valine [15]. The activity of AHAS I and III is inhibited strongly by L-valine and

weakly by L-isoleucine, while L-leucine has no effect [16]. E. coli is very sensitive

to L-valine, and its growth is inhibited at an extremely low concentration [17].

The ilvC gene encodes acetohydroxy acid isomeroreductase (AHAIR) and is

transcripted as an operon with the ilvBN genes [18] in C. glutamicum. AHAIR
converts 2-acetolactate to 2,3-dihydroxyisovalerate in the L-valine and L-leucine

biosynthesis and 2-aceto-2-hydroxybutyrate to 2,3-dihydroxy-3-methylvalerate in

the L-isoleucine biosynthesis by using NADPH as a cofactor. The expression of

ilvBNC operon is controlled by transcriptional attenuation, which is mediated by all

BCAAs [19].

Dihydroxy-acid dehydratase (DHAD) encoded by ilvD [20] is the enzyme for

the next biosynthetic step in which 2-ketoisovalerate and 2-keto-3-methylvalerate

are formed from 2,3-dihydroxyisovalerate and 2,3-dihydroxy-3-methylvalerate,

respectively. This enzyme is inhibited by either L-valine or L-leucine [21]. Tran-

scriptional regulation of the ilvD gene is unknown.

Branched-chain amino acid transaminase (BCAT) or transaminase B encoded by

ilvE [20] is the last player in the L-isoleucine and L-valine biosynthesis. This

enzyme transfers the amine moiety of L-glutamate to 2-ketoisovalerate and

2-keto-3-methylvalerate to afford L-valine and L-isoleucine, respectively [22].

The specific pathway of the L-leucine biosynthesis starts from the reaction by

isopropylmalate synthase (IPMS) encoded by leuA, which generates

2-isopropylmalate from 2-ketoisovalerate and acetyl-CoA. This enzyme in

C. glutamicum is subjected to strong feedback inhibition, and its expression is

also regulated by L-leucine [23]. Then, 2-isopropylmalate is isomerized to

3-isopropylmalate by isopropylmalate isomerase (IPMI). IPMI consists of large

and small subunits, which are encoded by leuC and leuD, respectively. Next,
3-isopropylmalate is converted to 2-keto-4-methylvalerate by isopropylmalate

dehydrogenase (IPMD), which is encoded by leuB. In C. glutamicum, leuB is

strongly repressed by L-leucine [24], while the leuABCD genes form an operon in

E. coli, and their expression is controlled by the transcriptional attenuation medi-

ated by L-leucine [25]. As the other two BCAAs, L-leucine is formed from 2-keto-4-

methylvalerate by the catalysis of BCAT, which is activated by the substrate itself
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[26]. Additionally, the same reaction is catalyzed by tyrosine-repressible transam-

inase (TrTA) encoded by tyrB [27].

3 Production of BCAAs by Metabolically Engineered

Microorganisms

In this section, we describe the BCAA-producing strains that have been developed

to date. Table 1 shows the recent representative strains for BCAA production.

3.1 L-Valine

Microbial production of L-valine was first reported by Udaka and Kinoshita [50]

and Sugisaki [51] independently. Udaka and Kinoshita screened a large number of

microorganisms, and the selected bacteria, namely, Paracolobacterum coliforme
and Brevibacterium ammoniagenes, produced L-valine in 23% molar yield from

glucose. Sugisaki isolated Aerobacter cloacae and A. aerogenes, which produced L-

valine in 20% molar yield from glucose. These initial findings provoked a hunt for

better L-valine producers, and auxotrophic mutants or amino acid analog-resistant

mutants were included within the research scope. One example of the auxotrophic

mutants is the isoleucine auxotrophic mutant of Micrococcus glutamicus [52],

which produced more than 10 g/L L-valine when the culture was supplemented

with a small amount of DL-isoleucine and DL-valine. An amino acid analog-resistant

mutant accumulating L-valine was then found while validating a method to isolate

amino acid-producing microorganisms using E. coli ATCC 4157 as a model

microbe [53]. This L-valine-producing mutant was originated from a norvaline-

resistant strain, which was further mutated to acquire L-leucine auxotrophy. The

resultant strain accumulated more than 2 g/L L-valine. An amino acid analog-

resistant mutant was also developed using Serratia marcescens [54]. Among sev-

eral BCAA analogs tested, α-aminobutyric acid conferred mutants that were able to

accumulate more than 8 g/L L-valine. An enzymatic analysis revealed that in these

mutants, expression of AHAS was derepressed and/or AHAS was only weakly

affected by feedback inhibition. Three L-glutamate-producing bacteria,

B. lactofermentum, C. acetoacidphilum, and Arthrobacter citreus, were also led

to L-valine production mutants using a histidine analog, 2-thiazolealanine [55]. The

most efficient strain, one from B. lactofermentum, achieved 31 g/L production in

72 h. In this strain also, AHAS was desensitized from the feedback inhibition by L-

valine as well as L-isoleucine and L-leucine. Moreover, the expression of this

enzyme was partially derepressed [56]. An interesting example is the

α-aminobutyric acid-resistant mutant of the biotin-auxotrophic B. flavum MJ-233

[57]. In the reaction using this mutant, carbon resources were converged to L-valine
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production when the medium lacked biotin and the bacteria did not grow [58]. This

“living cell reaction” process using this strain allowed for accumulation of 300 mM

L-valine within one day in 80% molar yield from glucose with 96% purity out of

the total amino acids.

Genetically defined strains for L-valine production have been developed mostly

by using C. glutamicum along with a few examples using other bacteria, including

E. coli. The following mainly describes the strains derived from these two bacteria.

The general basic strategy in fermentative production of chemicals is to direct

common intermediates for various end products solely to a target compound. In the

case of L-valine, this can be achieved by deleting or repressing the transcription of

ilvA and panB [20, 28–30, 59], which are the first genes for the L-isoleucine and D-

pantothenate biosynthesis, respectively (Figs. 1 and 2). Limitation of D-panto-

thenate biosynthesis leads to reduction of CoA supply, which is an additional

benefit for L-valine production because consumption of pyruvate by pyruvate de-

hydrogenase complex (PDHC) is suppressed due to the decreased concentration of

the reaction partner [20].

Radmacher et al. [20] prepared C. glutamicum ΔilvA ΔpanBC whose biosyn-

thesis of L-valine was strengthened by introduction of the plasmid containing

ilvBNCD or ilvBNCE. The best strain C. glutamicum ΔilvA ΔpanBC
(pJC1ilvBNCD) accumulated 92 mM L-valine along with a small amount of L-

alanine (1.3 mM) in 48 h. Though AHAS was not desensitized from the feedback

2-keto-3-methylvalerate

2-ketoisovalerate 2-keto-4-methylvalerate

isobutanol

isobutyraldehyde

kivd
(KIVD)

adh
(ADH)

D-pantothenate

ketopantoate

pantoate

panB
(KPHMT)

ilvC
(AHAIR)

panC
(PS)

2-methyl-1-butanol

kivd
(KIVD)

adh
(ADH)

2-methyl-1-butyraldehyde

3-methyl-1-butanol

kivd
(KIVD)

adh
(ADH)

isovaleraldehyde

L-isoleucine

L-valine L-leucine

pyruvate
L-threonine

Fig. 2 The biosynthetic routes branched from the BCAA biosynthetic pathways for production of

isobutanol, 3-methyl-1-butanol, 2-methyl-1-butanol, and D-pantothenate. Abbreviations: ADH
alcohol dehydrogenase, AHAIR acetohydroxy acid isomeroreductase, KIVD 2-ketoisovalerate

decarboxylase, KPHMT ketopantoate hydroxymethyltransferase, PS pantothenate synthetase
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inhibition by L-valine in this strain, it was able to produce L-valine efficiently. This

is because the feedback inhibition of AHAS of C. glutamicum by L-valine is not

very strong, and the maximum inhibition of the enzymatic activity does not exceed

50% [12]. Nonetheless, desensitization of AHAS from the feedback inhibition was

investigated [28]. The native gene of the regulatory subunit of AHAS (ilvN) was
replaced with the feedback-resistant mutant ilvNM13, which was designed based on

the precedent structural information on the feedback-resistant homologs of E. coli
and Streptomyces cinnamonensis. This plasmid-free strain C. glutamicum ΔilvA
ΔpanB ilvNM13 produced 90 mM L-valine in the 48-h cultivation, while less than

40 mM L-valine formed in the culture of the parent strain C. glutamicum ΔilvA
ΔpanB. L-Valine production by these strains was strengthened by a plasmid-

carrying ilvBNC, and the resultant strain C. glutamicum ΔilvA ΔpanB ilvNM13

(pECKAilvBNC) produced 130 mM L-valine. It should be mentioned that the effect

of the mutation on ilvN was less significant in the strains with the plasmid-borne

ilvBNC, and the parent C. glutamicum ΔilvA ΔpanB (pECKAilvBNC) was able to

produce up to 120 mM L-valine.

Formation of L-alanine was a prevailing issue in the L-valine-producing strains

[59]. Pyruvate is a common precursor for the biosynthesis of L-valine and L-alanine.

Therefore, suppression of L-alanine formation is beneficial for L-valine production.

Two genes, alaT or avtA, are responsible for the conversion of pyruvate to L-

alanine, which encode aminotransferases using L-glutamate or L-valine as an

amine source, respectively [59]. Deletion of either gene was performed on

C. glutamicumΔilvAΔpanBC (pJC1ilvBNCD), and there was no detrimental effect

on L-valine production in both cases. While the avtA-deficient mutant showed only

slight decrease of L-alanine accumulation, the alaT-deficient mutant improved

greatly, and L-alanine formation decreased to 0.16 mM from 1.2 mM in the parent

strain. It should be mentioned that the effect of deletion of these genes may be

dependent on strains, and in other cases, effectiveness of avtA deletion has been

demonstrated as described below.

In place of the complete deletion of the side-path genes or strong overexpression

of the rate-limiting enzymes for production of target compounds, their expression

can be modified by tuning promoter activity. Holátko et al. [29] prepared

C. glutamicum ilvNM13 ΔpanB P-ilvAM1CG P-ilvDM7 P-ilvEM6, in which

expression of ilvA was downregulated by the mutated promoter, while that of

ilvD and ilvE was upregulated. This strain produced 136 mM L-valine in 48 h of

flask fermentation. Modulation of promoter activities allows for overexpression of

genes without using plasmids, which ensures genetic stability as well as no need for

antibiotic markers. Additionally, the bradytrophic property is advantageous in that

the strains do not require nutrition supplementation.

Recently, a strain with mixed strategies was reported [30], where expression of

ilvA is partially limited by a mutated weak promoter, and production of L-alanine

was suppressed by deletion of avtA. The resultant strain overexpressing the

feedback-free L-valine biosynthetic genes, C. glutamicum MPilvA ΔavtA
(pDXW-8-ilvEBNrC), produced 266 mM L-valine in 27% molar yield from glu-

cose. It is noteworthy that the side products, such as L-lactate and L-glutamate, were
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controlled by maintaining the dissolved oxygen (DO) at 15% saturation. The same

strategy was applied to B. flavum JV16, which is an α-aminobutyric acid-resistant

and Leu–Ile–Met-auxotrophic strain generated by random mutagenesis from

B. flavum DSM20411. The resultant strain B. flavum JV16 avtA::Cm (pDXW-8-

ilvEBNrC) produced 331 mM L-valine in 39% molar yield from glucose [30]. It

should be mentioned that there is another example of an L-valine-producing strain

using this subspecies of C. glutamicum [38]. B. flavum ATCC14067, which was

transformed with the plasmid pDXW-8-ilvEBNrC, was able to produce 325 mM L-

valine in 37% molar yield from glucose at elevated temperatures as high as 37�C
after the 48-h fed-batch fermentation.

An alternative strategy for producing L-valine to deleting ilvA and panB was

reported by Blombach et al. [32]. Deletion of aceE, which encodes the E1p subunit
of PDHC, resulted in inability to grow solely on glucose, while acetate supplemen-

tation compensated for it [60]. Blombach et al. [32] investigated accumulation of

organic acids and amino acids in the culture medium of this strain and found that it

started to produce pyruvate (30–35 mM), L-alanine (25–30 mM), and L-valine

(30–35 mM) after depletion of acetate. Pyruvate accumulated as a direct conse-

quence of inactivation of PDHC, while L-alanine and L-valine were the drain-off

compounds of pyruvate. When ilvBNCE was overexpressed using the plasmid, the

resultant strain C. glutamicum ΔaceE (pJC4ilvBNCE) produced 210 mM L-valine

in the overall 50% molar yield from glucose along with 5 mM pyruvate in the

fed-batch process. This strain is advantageous over the aforementioned ΔilvA
ΔpanB strains because it does not require supplementation of L-isoleucine or D-

pantothenate.

Blombach et al. [34] performed further improvement of this aceE-deficient
strain. They deleted the pqo gene encoding pyruvate:quinone oxidoreductase

(PQO), which converts pyruvate to acetate and carbon dioxide. This resulted in

an increase of 30% molar yield. It is likely that PQO in the combination with

acetate kinase and phosphotransacetylase bypasses the PDHC reaction to provide

acetyl-CoA when the cell density is high. Therefore, inactivation of PQO led to the

increase of L-valine production by cutting off the supply of the carbon resources for

growth purposes in the late phase. They continued to observe pyruvate in the culture

of C. glutamicum ΔaceE Δpqo (pJC4ilvBNCE), which indicated that L-valine

production is limited by the downstream reactions from pyruvate to L-valine.

They then tested to improve supply of NADPH. In the total reactions from glucose

to L-valine, the downstream part (pyruvate to L-valine) requires two equivalents of

NADPH at the AHAIR reaction as well as for regeneration of L-glutamate con-

sumed by BCAT, whereas the glycolytic pathway provides only NADH, not

NADPH. To compensate for the shortage of NADPH supply in L-valine production,

they deleted pgi so that the carbon flux from glucose is directed to the pentose

phosphate pathway, which produces 2 mol of NADPH from 1 mol of glucose. This

strain, C. glutamicum ΔaceE Δpqo Δpgi (pJC4ilvBNCE), achieved more than

400 mM L-valine excretion in the 75% molar yield from glucose, and pyruvate

was not observed anymore. From the viewpoint of carbon usage, the deletion of pyc
encoding pyruvate carboxylase was also beneficial, and C. glutamicum ΔaceE
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Δpqo Δpgi Δpyc (pJC4ilvBNCE) reached 86% molar yield, although the final

concentration of L-valine was about 240 mM.

Addition of acetate inhibits production of L-valine during growth of the ΔaceE
strains because acetate represses the genes of the phosphoenolpyruvate:sugar

phosphotransferase system (PTS), ptsG, ptsI, and ptsH via the DeoR-type regulator,

SugR, and prevents uptake of glucose [61–63]. Therefore, Blombach et al. [33]

deleted the sugR gene to remove repression of the PTS genes. Indeed,

C. glutamicum ΔaceE Δpqo ΔsugR (pJC4ilvBNCE) consumed glucose five times

faster than the parent strain and produced L-valine even in the growth phase in the

presence of acetate, although the overall production was 40% lower. Alternatively,

they tested ethanol instead of acetate as the secondary carbon source to avoid the

repression of the PTS genes. Under this condition, C. glutamicum ΔaceE Δpqo
(pJC4ilvBNCE) was able to produce L-valine during its growth phase. These strains

are effective producers of L-valine, but they accumulated 14–26 mM L-alanine and

pyruvate. This accumulation of the by-products may be overcome by supply of

NADPH in the strategy mentioned above.

Recently, Chen et al. [37] prepared a strain, which lacked both ilvA and aceE and

alaT from C. glutamicum ATCC13869 to direct as much pyruvate as possible for

production of L-valine. They also overexpressed the brnF and brnE genes encoding

the BCAA exporter and the lrp gene encoding the global regulator Lrp that activates
the expression of brnFE in addition to the L-valine biosynthetic genes (ilvBNC).
The resultant strain C. glutamicum ATCC13869 ΔaceE ΔalaT ΔilvA (pJYW-4-

ilvBNC1-lrp1-brnFE) produced 435 mM L-valine after a 96-h fermentation under

the fed-batch condition.

Other strains of interest are the H+-ATPase-defective strains [31], which are

known to increase the intracellular concentration of pyruvate [64, 65]. The native

atpGDC genes were replaced with the inactivated atpG*DC genes containing a

single point mutation, and the resultant strain was transformed with the plasmid

pVK7ilvN53C, which allows for overexpression of feedback-resistant AHAS as

well as AHAIR. C. glutamicum atpG*DC (pVK7ilvN53C) produced 96 mM L-

valine in 72 h under the flask-shaking condition.

A completely different strategy is to exploit oxygen deprivation conditions,

where most of the glucose is expected to be utilized for product formation and

not for growth in C. glutamicum. Hasegawa et al. [35] used the strain without the

ldhA gene, which encodes lactate dehydrogenase and is responsible for the produc-

tion of lactate, i.e., the main fermentation product under oxygen deprivation

conditions. Mere overexpression of the L-valine biosynthetic ilvBNCDE genes did

not result in the efficient L-valine production because of poor glucose uptake caused

by the redox imbalance. They solved this issue by converting the cofactor depen-

dence from NADPH to NADH through mutagenesis of AHAIR (ilvCTM) and

introduction of NADH-dependent exogenous leucine dehydrogenase in place of

NADPH-dependent endogenous BCAT using the plasmid, pCRB-DLD. In addi-

tion, the feedback-resistant mutant of AHAS (ilvBNGE) was overexpressed. The

114 K. Yamamoto et al.



resultant strain C. glutamicum R ΔldhA (pCRB-BNGECTM, pCRB-DLD) produced

1,470 mM1
L-valine in 63%molar yield from glucose in 24 h, and the concentration

of L-valine reached 1,940 mM1 in 48 h. This strain produced succinate as a major

by-product and left room for improvement [36]. To minimize the carbon flux to

succinate, the phosphoenolpyruvate carboxylase gene ppc was deleted. While

succinate production was suppressed, this resulted in the elevated NADH/NAD+

ratio. However, this redox imbalance was overcome by deletion of three genes,

ctfA, pta, and ackA, associated with acetate synthesis, which produces excess

NADH. Additionally, five glycolytic genes, gapA, pyk, pfkA, pgi, and tpi, were
overexpressed. Moreover, L-alanine production was suppressed by deleting avtA.
The resultant strain C. glutamicum R ilvNGECTM, gapA, pyk, pfkA, pgi, and tpi
ΔldhA Δppc Δpta ΔackA ΔctfA ΔavtA (pCRB-BNGECTM, pCRB-DLD) produced

1,280 mM1
L-valine in 88% molar yield from glucose in the 24-h fed-batch

fermentation.

Compared with C. glutamicum, development of the L-valine-producing strains of

E. coli lags behind, which is probably because of the more complicated regulatory

mechanisms for L-valine biosynthesis. However, using E. coli as a base strain is

advantageous because of its rapid growth rate and rich genetic information. Early

examples include the strains that acquire resistance against the feedback inhibition

of AHAS III [66] or overexpress ygaZH encoding the L-valine exporter [67]. The

strain with the mutation in isoleucine-tRNA synthetase [68] and the lipoic acid

auxotroph with the inactivated H+-ATPase [69] were also reported to accumulate L-

valine. However, these strains were prepared by classical random mutagenesis and

their genotypes cannot be defined. It was only recently that the rationally designed

strain of E. coli was reported to produce L-valine [39]. In this example, Park

et al. first removed the product regulation by disarming the feedback inhibition of

AHAS III and removing the transcriptional attenuation of the ilvBN and ilvGMEDA
operons by replacing their attenuator leader regions with tac promoters. Then the

ilvA, panB, and leuA genes were knocked out to converge the carbon resources to L-

valine production. Next, AHAS I, which has higher affinity to pyruvate than other

two isozymes, was overexpressed as well as ilvCED by the plasmid

pKBRilvBNCED. The strain was further improved by the plasmid

pTrc184ygaZHlrp harboring lrp and ygaZH that encodes the positive regulator

for the ilvIH operon and the L-valine exporter, respectively. In silico gene knockout

simulation was then performed, and they identified three candidates to be deleted:

aceF, pfkA, and mdh. When these genes were deleted, the resultant strain E. coli
ilvH (G41A, C50T), Ptac-ilvBN, Ptac-ilvGMED, and ΔilvA ΔpanB ΔleuA ΔaceF
ΔpfkA Δmdh (pKBRilvBNCED, pTrc184ygaZHlrp) improved the yield and pro-

duced 64 mM L-valine in 58% molar yield from glucose.

1The concentration values are corrected by the dilution factors caused by addition of ammonia

solution to maintain the pH of the reaction solutions.
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3.2 L-Isoleucine

An L-isoleucine producer was initially reported by Hayashibe and Uemura [70],

which is an α-aminobutyric acid-resistant B. subtilis No. 14 that was isolated during
the investigation of threonine metabolism and produced 4.3 g/L L-isoleucine.

Screening of the α-aminobutyric acid-resistant microorganisms led to other L-

isoleucine-producing strains, such as A. aerogenes IAM 1019 (2.4 g/L), Pseudo-
monas aureofaciens IAM 1001 (3.0 g/L), S. marcescens (2.7 g/L), and Erwinia
carotovora E30 (1.3 g/L) [70]. Alternatively, D-threonine was used as a natural

amino acid analog for the screening of the bacteria belonging to genera Serratia and
Pseudomonas [71]. The most efficient strain among them, S. marcescens
No. 1, produced more than 8 g/L L-isoleucine in a 40-h incubation. More microor-

ganisms for L-isoleucine production were isolated using other BCAA analogs [72],

including thiaisoleucine for E. coli [73, 74], Salmonella typhimurium [72, 75], and

Saccharomyces cerevisiae [76], cyclopentaneglycine for S. typhimurium [75],

glycyl isoleucine for E. coli [74], isoleucine hydroxamate for S. marcescens [77],
and ketomycin for Bacillus subtilis [78]. As is the case for L-valine production, the

“living cell reaction” process was effective for L-isoleucine production [58, 79, 80],

which was performed using an α-aminobutyric acid-resistant B. flavumMJ-233 [57]

to produce 200 mM L-isoleucine per day.

For rational metabolic engineering to enhance L-isoleucine production, it is

important to address the fact that the biosynthetic pathway of L-isoleucine shares

the genes and enzymes with those of L-valine and L-leucine (Fig. 1) and to converge

the common intermediates toward the L-isoleucine synthesis. The specific issue for

L-isoleucine production is the supply of L-threonine, which is one of the precursors

for L-isoleucine biosynthesis. Additionally, removal of the tight feedback regulation

for TDH (Fig. 1) is key to the efficient production of L-isoleucine.

As mentioned above, L-isoleucine production requires a supply of L-threonine.

Therefore, the biosynthetic pathway of L-threonine and its regulation will be

outlined briefly (Fig. 1). The biosynthesis of L-threonine starts from L-aspartate,

and the pathway consists of five enzymatic reactions [81], which are catalyzed by

aspartate kinase, aspartate semialdehyde dehydrogenase, homoserine dehydro-

genase, homoserine kinase, and threonine synthase. E. coli has three aspartate kinase
isozymes, I, II, and III, encoded by thrA, metL, and lysC, respectively, while
C. glutamicum has only one aspartate kinase encoded by lysC. Aspartate kinases I

and III of E. coli are under control of the feedback inhibition by L-threonine and L-

lysine, respectively, whereas aspartate kinase II is not affected by feedback inhibi-

tion [82]. Instead, aspartate kinase II of E. coli is regulated by L-methionine through

repression of metBL operon [83]. Aspartate kinase of C. glutamicum is subjected to

the feedback inhibition by both L-lysine and L-threonine [13].

Homoserine dehydrogenase and homoserine kinase are encoded in the hom and

thrB genes, respectively, in C. glutamicum. They form an operon and its expression

is repressed by L-methionine [84]. Additionally, both enzymes are feedback

inhibited by L-threonine [13]. In E. coli, thrA encodes a bifunctional enzyme that
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works as homoserine dehydrogenase in addition to aspartate kinase [85]. This gene

forms an operon with thrB and thrC, the latter of which encodes threonine synthase.
Expression of the thrABC operon is controlled by transcriptional attenuation by L-

threonine as well as L-isoleucine [82]. Moreover, the activity of homoserine dehy-

drogenase and homoserine kinase is feedback inhibited [82].

For L-isoleucine production, it is advantageous to use L-lysine-producing strains

to supply L-threonine because the biosynthetic pathway of L-threonine shares a

significant part with that of L-lysine. Colón et al. [40] reported accumulation of

114 mM L-isoleucine using an L-lysine-producing strain C. glutamicum ATCC

21799 (termed as C. lactofermentum in the original paper) by overexpressing the

wild-type ilvA. Morbach et al. [13, 86] used another L-lysine-producing strain of

C. glutamicum generated by random mutagenesis. They introduced multiple copies

of the feedback-resistant hom and thrB in the chromosome or replaced the chro-

mosomal native lysC and hom genes with the feedback-resistant ones. Along with

overexpression of ilvA, the former strain produced 96 mM L-isoleucine in the batch

culture and the latter 138 mM in the fed-batch culture. It should be mentioned that

overexpression of hom was possible only after overexpression of ilvA because

otherwise accumulation of L-threonine and L-homoserine caused instability of the

strains [42]. Yin et al. [45] identified the feedback-resistant mutants of TDH and

AHAS from the L-isoleucine-producing strain C. glutamicum JHI3-156. When the

both feedback-resistant enzymes were overexpressed in the same strain, this resul-

tant strain produced 234 mM L-isoleucine in the fed-batch condition. A comparative

proteomic study on this strain further identified up- and downregulated proteins,

which were related to cell growth, L-isoleucine biosynthesis, and stress

response [87].

Introduction of exogenous genes is also a useful strategy. For example, an

E. coli-derived ilvA was introduced to an L-threonine-producing B. flavum strain,

a relative bacterium to C. glutamicum, to yield 153 mM L-isoleucine [88]. Wang

et al. [43] introduced the E. coli K-12-originated thrABC genes to C. glutamicum.
After deletion of alaT, the resultant strain produced 100 mM L-isoleucine along

with low concentrations of L-lysine, L-alanine, and L-valine. Guillouet et al. [89]

reported the advantage of the tdcB gene encoding the catabolic TDH of E. coli over
the feedback-resistant ilvA. The strain with the tdcB gene accumulated four times

more L-isoleucine than the one with the ilvA gene and yielded 30 mM L-isoleucine

in the batch culture [41].

As is the case for L-valine, export of the accumulated product is important for

efficient production of L-isoleucine. Therefore, overexpression of the global regu-

lator Lrp and the BCAA exporter BrnFE was performed in C. glutamicum JHI3-156

to produce 205 mM L-isoleucine [46]. Recently, Zhao et al. [47] reported increased

L-isoleucine production using C. glutamicum IWJ001, which was identified as an L-

isoleucine-producing strain by random mutagenesis. They found that the biosyn-

thetic enzymes for L-isoleucine were significantly upregulated when the fusA and

frr genes, which encode ribosome elongation factor G and ribosome recycling

factor, respectively, were overexpressed. Together with overexpression of ilvA,
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ilvB, ilvN, and ppnk (a polyphosphate/ATP-dependent NAD kinase), the resultant

strain produced 217 mM L-isoleucine in 72 h of fed-batch fermentation.

Optimization of the fermentation conditions is also an issue to be addressed.

Peng et al. [44] optimized DO and pH of the fermentation conditions using

C. glutamicum JHI3-156 (termed as B. lactofermentum in the original paper) and

finally achieved 203 mM L-isoleucine in the batch culture.

E. coli is also the target of manipulation for L-isoleucine bio-production.

Hashiguchi et al. [90] strengthened the downstream reactions by introducing the

plasmid with the ilvA, ilvGM, ilvD, and ilvE genes to an L-threonine-producing

E. coli K-12 mutant, and the resultant strain produced 78 mM L-isoleucine. This

strain coproduced L-valine, but they solved this problem by introducing the gene of

the feedback-resistant aspartate kinase III, which successfully reduced L-valine

production and increased the final concentration of L-isoleucine to 94 mM [48].

3.3 L-Leucine

In the classical examples, accumulation of L-leucine was observed in the revertants

of S. marcescens from the L-isoleucine auxotrophic mutant, which had been gen-

erated by resistance to α-aminobutyric acid [91]. Mechanistic investigations

[91, 92] revealed that the resistance to α-aminobutyric acid was acquired by

derepression of both L-isoleucine/L-valine and L-leucine biosynthetic enzymes.

Interestingly, the reversion from the L-isoleucine auxotrophy was not due to

desensitization of the feedback inhibition of TDH, but due to that of IPMS, which

allowed for overproduction of L-leucine as well as supply of 2-ketobutyrate, i.e., a

precursor for biosynthesis of L-isoleucine in place of TDH.

Another L-leucine-producing mutant was obtained from the glutamic acid-

producing bacterium, B. lactofermentum [93]. This strain was screened from an L-

methionine/L-isoleucine double auxotroph of B. lactofermentum 2256 using

2-thiazolealanine as an amino acid metabolism competitor. The optimization of

the culture conditions allowed production of 30 g/L L-leucine [94, 95]. In this strain,

IPMS is both desensitized and derepressed while AHAS remained intact

[56]. Therefore, another screening was performed using β-hydroxyleucine, which
obtained AHAS mutants desensitized from all of the BCAAs [96]. These strains

showed improved productivity of 34 g/L L-leucine. A further campaign was

conducted using high concentrations of D-α-aminobutyric acid, and a mutant with

higher activities of AHAS and IPMS was isolated [97]. This mutant produced more

L-leucine and showed a better L-leucine/L-valine ratio than the parent strain.

Mutants of E. coli have been developed for L-leucine production more recently.

Some 4-azaleucine-resistant strains derived from E. coli K-12 were desensitized to

the feedback inhibition of IPMS, and the most efficient strain produced 5.2 g/L L-

leucine [25]. Alternatively, the L-isoleucine/L-valine double auxotroph with muta-

tion in ilvEwas isolated [98]. This strain was then supplemented with the plasmid to

overexpress tyrB, which works only on the L-leucine biosynthesis among the
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BCAAs. The resultant strain produced 2.7 g/L L-leucine with no detectable L-valine

or L-isoleucine. Lowering the promoter activity of the sucAB gene encoding

α-ketoglutarate dehydrogenase is likely to reduce the carbon flux into TCA cycle

and decrease consumption of acetyl-CoA [99]. When this was combined with the

feedback-free IPMS and the inactivated BCAT, the resultant strain produced

11.4 g/L L-leucine.

L-Leucine-producing strains were also found from amino acid auxotrophs of

C. glutamicum. One of the best producers was the L-phenylalanine/L-histidine

double auxotroph, which accumulated 16.0 g/L L-leucine. Another example is the

S-(2-aminoethyl)-L-cysteine-resistant mutant of C. glutamicum [100], though this

strain was found to be unstable and generated several types of revertants during the

fermentation.

Recently, a genetically defined strain which produces L-leucine was reported

[49]. This strain contains three copies of the Ptuf-leuA_B018 module in the chro-

mosome. This gene, leuA_B018, encodes IPMS, which is disarmed from feedback

inhibition by L-leucine. Moreover, in this module, the native promoter was replaced

by the strong tuf promoter, which is free from transcriptional attenuation. Acetyl-

CoA, i.e., another substrate for the IPMS reaction, was increased by replacing the

native promoter of gltA (encoding citrate synthase) to PdapA-L1. The transcriptional

repressor-encoding gene ltbR was deleted to enhance expression of the downstream

genes leuBCD for L-leucine production. Furthermore, mutations were introduced to

the regulatory site of AHAS (encoded by ilvN) to be desensitized from feedback

inhibition and increase the carbon flux toward L-leucine production. IolT1, which is

regulated by IolR, catalyzes glucose uptake in a PTS-independent manner. There-

fore, the iolR gene was also deleted to enhance glucose uptake. This strain,

C. glutamicum Ptuf-leuA_B018 Pdap-L1-gltA ilvN_fbr ΔltbR::Ptuf-leuA_B018
ΔleuA::Ptuf-leuA_B018 ΔiolR, produced up to 181 mM L-leucine in the culture

solution along with precipitate of L-leucine after 72 h of the fed-batch fermentation.

4 Production of Chemicals Using the BCAA Biosynthetic

Pathways

Recently, the instability of oil prices and environmental concerns has been driving

the microbial production of biofuels. Such research includes ethanol fermentation

as well as production of higher alcohols, which are expected to be next-generation

biofuels due to their high energy density [101, 102]. Isobutanol is one representa-

tive example of such alcohols.

Isobutanol can be synthesized using the L-valine biosynthetic pathway (Fig. 2).

2-Ketoisovalerate, i.e., an intermediate of the L-valine biosynthesis, is a starting

material for isobutanol production. It is first converted to isobutyraldehyde by

2-ketoisovalerate decarboxylase (KIVD), and then isobutanol is formed from the

aldehyde by reduction using alcohol dehydrogenase (ADH). Like L-valine
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production, overexpression of the genes encoding AHAS, AHAIR, and DHAD is

effective to enhance availability of 2-ketoisovalarate for isobutanol production

[103]. The bacterial strains developed for isobutanol production are reported for

E. coli [104, 105], B. subtilis [106], and C. glutamicum [107], and the yields range

between 74 and 297 mM. Although less efficient, S. cerevisiae is also used as a host
for isobutanol production. The engineered strain overexpressing the L-valine bio-

synthetic genes accumulated 2.4 mM isobutanol [108], and the one whose L-

isoleucine biosynthesis was eliminated produced 3.0 mM [109]. One of the diffi-

culties in microbial production of isobutanol is that this alcohol is very toxic for

microbes. To address this issue, Yamamoto et al. [110] performed isobutanol

production in a growth-uncoupled manner under oxygen-deprived conditions.

Moreover, they continuously extracted isobutanol from the aqueous reaction

phase by layering oleyl alcohol and achieved as high as 981 mM of volumetric

productivity.

In a similar manner to isobutanol, 3-methyl-1-butanol and 2-methyl-1-butanol

can be produced from 2-keto-4-methylvalerate and 2-keto-3-methylvalerate, i.e.,

intermediates for the L-leucine and L-isoleucine biosynthesis, respectively, by the

catalysis of KIVD and ADH (Fig. 2) [104, 111]. Such examples include the E. coli
strain reported by Connor and Liao [112], where accumulation of 17 mM of

3-methyl-1-butanol was achieved when expression of the L-valine and L-leucine

biosynthetic genes was enhanced to increase availability of 2-keto-4-

methylvalerate for 3-methyl-1-butanol production. They also performed random

mutagenesis and obtained an efficient strain that was able to produce 128 mM of

3-methyl-1-butanol in the biphasic fermentation using oleyl alcohol [113]. Cann

and Liao [114] engineered E. coli to produce 2-methyl-1-butanol. In addition to

strengthening the L-isoleucine biosynthetic pathway, the flux to L-threonine was

optimized, and the resultant strain produced 14 mM of 2-methyl-1-butanol.

Recently, production of isobutanol (17 mM), 3-methyl-1-butanol (8.5 mM), and

2-methyl-1-butanol (12 mM) was performed by the strains engineered for each

alcohol with relevant genes from S. cerevisiae using C. crenatum as a parent

strain [115].

Another important chemical for which the BCAA fermentative pathway can be

applied is D-pantothenate. In C. glutamicum, it is produced from 2-ketoisovalerate

by three enzymatic reactions catalyzed by ketopantoate hydroxymethyltransferase

(KPHMT), AHAIR, and pantothenate synthetase (PS) [116] (Fig. 2). H€user
et al. [117] reported a D-pantothenate-producing strain. In this strain, ilvA was

deleted, and the transcription of ilvE was attenuated to decrease the carbon flux to

the competing BCAA biosynthesis. Additionally, overexpression of ilvBNCD was

performed to increase availability of 2-ketoisovalerate as well as overexpression of

panBC to direct more 2-ketoisovalerate to the D-pantothenate biosynthetic pathway.

This strain produced 8 mM of D-pantothenate.
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5 Conclusion

In this chapter, the biosynthetic pathway of BCAAs and its regulatory system were

described, and the microbial strains engineered for BCAA production were sum-

marized. The classical mutagenic strains provided a heritage of information about

the complicated feedback inhibition and transcriptional attenuation in the BCAA

biosynthesis. They now work as a guide for the rational design of BCAA-producing

strains using advanced molecular biology techniques.

Generally, genetic modifications for producing target BCAAs are divided into

four stages [3]: (1) to disarm feedback inhibition by the target BCAA, (2) to remove

transcriptional attenuation by the target BCAA, (3) to minimize carbon flux to the

competing pathways to reduce formation of by-products, and (4) to enhance

expression of genes encoding biosynthetic enzymes of a BCAA to converge carbon

resources as much as possible to production of it. Additionally, engineering of the

export and import systems as well as modification of the transcriptional factors or

the global regulators may be beneficial to improve production of the target amino

acid further.

Disarming feedback inhibition is the most important step for efficient production

of BCAAs because it has a very strong inhibitory effect on the microorganism

growth and therefore the fermentative production of BCAAs. For example, the

minimum inhibitory concentration of L-valine to the growth of E. coli K-12 is

reported to be as low as 2 mg/L [17]. The complicated feedback inhibition system

of the BCAA biosynthetic pathways was clarified by the early-stage studies on the

auxotrophic strains and the amino acid analog-resistant strains. The key players of

feedback inhibition are AHAS for all BCAAs, TDH for L-isoleucine, and IPMS for

L-leucine, which can be now desensitized by rational mutation.

Production of BCAAs is also affected by transcriptional attenuation of the

relevant genes. Derepression of the genes coding for AHAS is a common tactic

because they are related to biosynthesis of all BCAAs. Removal of transcriptional

attenuation of leuA is also important for L-leucine production. For L-isoleucine

production, increasing supply of L-threonine by relieving transcriptional attenuation

of the relevant genes may be beneficial. These can be performed by replacing the

native promoters with others, e.g., tac promoter.

Minimization of carbon flux to competing pathways is required for efficient

BCAA production. This can be achieved by deleting the corresponding genes.

Pyruvate, which is the common intermediate for BCAA production, is also used

for production of other competing by-products such as lactate, acetate, and succi-

nate. Therefore, the genes responsible for production of these by-products are the

target of deletion to increase availability of pyruvate for the BCAA biosynthesis.

Additionally, for production of one of the BCAAs, the genes specifically relevant to

the other two BCAAs are to be deleted, or their expression should be suppressed.

For example, the ilvA gene, which is involved only in the L-isoleucine biosynthesis,

is the target of deletion or attenuation for L-valine production.
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Finally, overexpression of the genes responsible for biosynthesis of the target

amino acid enhances its productivity. In particular, overexpression of AHAS,

AHAIR, and DHAD, which catalyze the common reactions for all BCAAs, is

effective for their production. It is beneficial to overexpress the ilvA and leuA
genes for production of L-isoleucine and L-leucine, respectively, because they

code for the enzymes responsible for their specific biosynthetic pathways. In

addition, enhanced expression of the exporters of BCAAs as well as their positive

regulators is also beneficial.

Currently, in silico studies of carbon flux simulation are emerging as a powerful

tool to design strategies to maximize efficiency of biosynthetic pathways for

production of the target compound [118, 119]. Application of these techniques

will become an essential part of creating more sophisticated microbial strains,

which can realize our goals.
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L-Cysteine Metabolism and Fermentation

in Microorganisms

Hiroshi Takagi and Iwao Ohtsu

Abstract L-Cysteine is an important amino acid both biologically and commer-

cially. Although most amino acids are industrially produced by microbial fermen-

tation, L-cysteine has been mainly produced by protein hydrolysis. Due to

environmental and safety problems, synthetic or biotechnological products have

been preferred in the market. Here, we reviewed L-cysteine metabolism, including

biosynthesis, degradation, and transport, and biotechnological production (includ-

ing both enzymatic and fermentation processes) of L-cysteine. The metabolic

regulation of L-cysteine including novel sulfur metabolic pathways found in micro-

organisms is also discussed. Recent advancement in biochemical studies, genome

sequencing, structural biology, and metabolome analysis has enabled us to use

various approaches to achieve direct fermentation of L-cysteine from glucose. For

example, worldwide companies began to supply L-cysteine and its derivatives

produced by bacterial fermentation. These companies successfully optimized the

original metabolism of their private strains. Basically, a combination of three

factors should be required for improving L-cysteine fermentation: that is,

(1) enhancing biosynthesis: overexpression of the altered cysE gene encoding

feedback inhibition-insensitive L-serine O-acetyltransferase (SAT), (2) weakening
degradation: knockout of the genes encoding L-cysteine desulfhydrases, and

(3) exploiting export system: overexpression of the gene involved in L-cysteine

transport. Moreover, we found that “thiosulfate” is much more effective sulfur

source than commonly used “sulfate” for L-cysteine production in Escherichia coli,
because thiosulfate is advantageous for saving consumption of NADPH and relat-

ing energy molecules.

H. Takagi and I. Ohtsu

Graduate School of Biological Sciences, Nara Institute of Science and Technology,

8916-5 Takayama-cho, Ikoma, Nara 630-0192, Japan

e-mail: hiro@bs.naist.jp

mailto:hiro@bs.naist.jp


Keywords Escherichia coli, Feedback inhibition, Fermentation, Glutaredoxin,

L-Cysteine, L-Cysteine desulfhydrase, L-Cysteine transporter, L-Cysteine/

L-Cystine shuttle system, L-Serine O-acetyltransferase, O-acetyl-L-serine
sulfhydrylase, Thioredoxin, Thiosulfate

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

2 Conventional Processes for L-Cysteine Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.1 Extraction from Human Hairs and Animal Feathers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

2.2 Asymmetrical Hydrolysis of DL-2-Amino-Δ2-Thiazoline-4-Carboxylic Acid . . . . . . 132

3 L-Cysteine Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.1 L-Cysteine Biosynthesis in Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.2 L-Cysteine Biosynthesis in Other Microorganisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4 L-Cysteine Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5 L-Cysteine Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Direct Fermentation of L-Cysteine from Glucose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1 Enhancement of L-Cysteine Biosynthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Weakening of L-Cysteine Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3 Enhancement of L-Cysteine Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7 Novel Pathways of L-Cysteine Metabolism in Escherichia coli . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1 Thioredoxin/Glutaredoxin-Mediated L-Cysteine Biosynthesis from S-Sulfocysteine 142

7.2 Involvement of the yciW Gene in L-Cysteine

and L-Methionine Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8 L-Cysteine/L-Cystine Shuttle System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9 Conclusions and Future Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

1 Introduction

L-Cysteine is the most important sulfur-containing compound because it is a

sole metabolic entrance for reduced sulfur into cell metabolism in most organisms,

and it is required for the biosynthesis of sulfur-containing compounds such as

L-methionine, thiamine, biotin, and coenzymes A. It is also needed for Fe/S clusters

of the catalytic domain of some enzymes, such as aconitase, cytochromes, and

degradative L-serine dehydratase of Escherichia coli [1]. In addition, L-cysteine

plays crucial roles in protein folding, assembly, and stability through disulfide-bond

formation. Furthermore, glutaredoxin (Grx) and thioredoxin (Trx) that use an

L-cysteine-containing peptide, L-glutathione, as a cofactor are involved in

protecting cells under oxidative stress conditions. Recently, we have proposed

that the periplasmic L-cysteine protects E. coli cells from hydrogen peroxide,

which is produced by phagocytes, in the environment [2].

In addition to the essential function in cellular metabolism, L-cysteine is also an

important amino acid in terms of its applications in the pharmaceutical (expectorant

agent and freckles preventive medicine), food (dough conditioner, flavor enhancer,
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and dietary supplement), and cosmetic (perm assistant and whitening agent) indus-

tries. L-Cysteine represents a global market of approximately 5,000 tons per year

and is now supplied by a combination of different production technologies, which

include the hydrolysis of keratin, enzymatic synthesis, and fermentation [3–5].

However, extraction methods result in low yields and cause unpleasant odors and

problems of waste treatment [6]. Although L-cysteine is considered a substance that

is generally recognized as safe (GRAS) by the Food and Drug Administration

(FDA), synthetic or biotechnological products are presently preferable for con-

sumers because of the bovine spongiform encephalopathy (BSE) problem in

animal-origin products [7].

The metabolic pathway of L-cysteine has been well studied in E. coli; however,
studies of other microorganisms remain limited. This chapter focuses on the recent

findings on L-cysteine metabolism and advances of biotechnological production

(including both enzymatic and fermentation processes) of L-cysteine. We also

discussed the metabolic regulation of L-cysteine and sulfur compounds including

novel sulfur metabolic pathways found in microorganisms.

2 Conventional Processes for L-Cysteine Production

The protein primary amino acids are all manufactured on an industrial scale. The

production methods fall into three classes: extraction from protein hydrolysates,

fermentation processes, and chemical synthesis. However, most of the amino acids

can now be prepared by fermentation or synthesis, although extraction remains

important for L-histidine, L-leucine, L-cysteine, and L-tyrosine [3, 8].

2.1 Extraction from Human Hairs and Animal Feathers

L-Cysteine has been obtained from acid hydrolysates of keratin, which is the key

structural protein with abundant L-cysteine of human hairs and animal feathers.

Prior to electrolysis, L-cysteine is extracted through a chemical process that

includes treatments with activated charcoal and concentrated hydrochloric acid.

This process is the simplest and easiest method for L-cysteine production, but it has

drawbacks such as a low yield and unpleasant odor and also includes serious

environmental and safety problems, the disposal of hydrochloric acid-containing

waste liquid and the use of animal-derived raw materials, respectively.
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2.2 Asymmetrical Hydrolysis of DL-2-Amino-Δ2-Thiazoline-
4-Carboxylic Acid

Instead of the hydrolysis of hairs, a bioconversion process for L-cysteine production

has been developed [9]. Some bacteria belonging to the genus Pseudomonas exhibit
activities involved in the asymmetric hydrolysis of DL-2-amino-Δ2-thiazoline-4-

carboxylic (DL-ATC) acid to L-cysteine [10, 11]. The conversion of DL-ATC to

L-cysteine consists of the following three successive steps (Fig. 1): (1) enzymatic

racemization of D-ATC to L-ATC; (2) a ring-opening reaction of L-ATC to

N-carbamoyl-L-cysteine (L-NCC) as intermediate; and (3) hydrolysis of L-NCC to

L-cysteine [12]. The improvement of this enzymatic conversion process, mainly in

terms of the yield, has been reported [9]. This process has been industrialized with

Ajinomoto Co., Inc.

The genes encoding L-ATC hydrolase (atcB) and L-NCC amidohydrolase (atcC)
are cloned and sequenced from Pseudomonas sp. strain BS. The deduced amino

acid sequence of the atcC gene product is highly homologous with other bacterial

L-N-carbamoylases, although that of atcB is novel [13]. The atcB gene is first

identified as a gene encoding an enzyme that catalyzes thiazoline ring-opening

reaction and does not share high homology with other enzymes whose functions

have been reported in detail. Similar results have been also reported using

Pseudomonas sp. strain ON-4a [14].

3 L-Cysteine Biosynthesis

3.1 L-Cysteine Biosynthesis in Escherichia coli

The precursor of L-cysteine is L-serine in most bacteria and plants. L-Serine is

synthesized from 3-phosphoglycerate, the glycolytic intermediate, via a three-step

pathway in enteric bacteria [15]. 3-Phosphoglycerate is first oxidized to

phosphohydroxypyruvate by the reaction of 3-phosphoglycerate dehydrogenase

(PGDH; EC 1.1.1.95, the serA gene product). Subsequent transamination leads to

the formation of phosphoserine, which is dephosphorylated to give L-serine

D-ATC L-ATC L-CysteineN-Carbamyl-L-cysteine 
(L-NCC)

S
N

COOH

NH2

S
N

COOH

NH2

HS
COOH

NHCONH2

HS
COOH

NH2

atcB atcC

Fig. 1 A metabolic pathway of DL-2-amino-Δ2-thiazoline-4-carboxylic acid (DL-ATC) to L-

cysteine via N-carbamoyl-L-cysteine (L-NCC) in Pseudomonas species. The atcB and atcC
genes encode L-ATC acid hydrolase and L-NCC amidohydrolase, respectively
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O-Acetyl-L-serine
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Fig. 2 Biosynthesis of L-cysteine and L-methionine in Escherichia coli. For L-methionine bio-

synthesis, Corynebacterium glutamicum has the direct sulfhydration pathway other than the

transsulfuration pathway. The cysE, cysK,metA,metB,metC,metE, ormetH gene encodes L-serine

O-acetyltransferase (SAT), O-acetyl-L-serine sulfhydrylase-A (OASS-A), L-homoserine

O-succinyltransferase, L-cystathionine γ-synthase/O-succinyl-L-homoserine sulfhydrylase, L-

cystathionine β-lyase (CBL), and L-methionine synthase (vitamin B12-dependent or -indepen-

dent), respectively

Major transporters

Ser + Acetyl-CoA

OAS

SAT SO4
2- (internal)

S2-
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(TNA, CBL,
OASS-A,
OASS-B,
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Fig. 3 Rational approach for L-cysteine fermentation by enzyme, protein, and metabolic engi-

neering. Ser L-serine, Cys L-cysteine, SAT L-serine O-acetyltransferase, CD L-cysteine

desulfhydrase, TNA tryptophanase, CBL L-cystathionine β-lyase, OASS-A OAS sulfhydrylase-A,

OASS-B OAS sulfhydrylase-B
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(catalyzed by phosphoserine aminotransferase and phosphoserine phosphatase,

respectively). The activity of PGDH is inhibited by L-serine [16].

The biosynthesis of L-cysteine from L-serine in enteric bacteria such as E. coli
(Fig. 2) and Salmonella typhimurium proceeds via a two-step pathway. L-Serine

undergoes a substitution of its β-hydroxyl with a thiol in two steps. L-Serine O-
acetyltransferase (SAT; EC 2.3.1.30, the cysE gene product) catalyzes the acetyla-

tion by acetyl-CoA of the β-hydroxyl of L-serine to give O-acetyl-L-serine (OAS).
The second step, the α,β-elimination of acetate from OAS and the addition of H2S

to give L-cysteine, is then catalyzed by OAS sulfhydrylase-A (OASS-A; EC

4.2.99.8, the cysK gene product). The first reaction catalyzed by SAT is the rate-

limiting step of L-cysteine biosynthesis in E. coli (Fig. 3). The enzyme inhibition

constant (Ki) for L-cysteine of E. coli SAT was reported to be on the micromole

order [17]. Some protein engineering approaches for obtaining feedback inhibition-

insensitive SAT have been reported and are described in the section below. The

SAT/OASS-A pathway was believed to be a sole L-cysteine biosynthetic pathway,

and E. coli does not have a reverse transsulfuration pathway (Fig. 2), which

converts L-cystathionine, which is the product of L-methionine metabolism, into

L-cysteine. The cysE mutants in both E. coli and S. typhimurium showed L-cysteine

auxotrophy [18].

The biosynthesis of L-cysteine in E. coli is regulated not only at the level of

enzymatic activity (feedback inhibition) but also at that of gene expression. The

cysteine regulon (known as “cys-regulon”) comprises the gene for biosynthesis of

L-cysteine and those for the uptake and reduction in oxidized sulfur sources, such as

sulfate or thiosulfate. The expression of these genes (except for cysE and cysG) is
under the control of the transcriptional activator CysB. CysB requires the inducer

N-acetyl L-serine (which is formed from OAS by chemical reaction) for activity and

sulfur limitation. Sulfide and thiosulfate act as anti-inducer for CysB. A detailed

discussion of mechanism of cys-regulon can be found elsewhere [17].

3.2 L-Cysteine Biosynthesis in Other Microorganisms

In every organism, L-cysteine and L-methionine are inevitable as sulfur-containing

compounds. Animals intake the amino acids as organic sulfur sources, and catab-

olize them to provide various cellular sulfur compounds. By contrast, most micro-

organisms as well as plants can assimilate environmental inorganic sulfur sources

such as sulfate (SO4
2�) and thiosulfate (S2O3

2�) into L-cysteine and the down-

stream metabolite L-methionine. E. coli has two well-known pathways for inorganic
sulfur assimilation (Fig. 4) [19, 20]. One is a sulfate-utilizing “sulfate pathway,”

which consumes two molecules of ATP and four molecules of NADPH to synthe-

size one molecule of L-cysteine. Another is a thiosulfate-utilizing “thiosulfate

pathway,” which requires only one molecule of NADPH [19]. For incorporation

of sulfur atom, both pathways use a common carbon skeleton OAS that is synthe-

sized from L-serine and acetyl-CoA by SAT. OASS-A catalyzes the conversion of
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OAS and sulfide (S2�) into L-cysteine. In the sulfate pathway, while in the thiosul-

fate pathway, OAS sulfhydrylase-B (OASS-B; EC 4.2.99.8, the cysM gene product)

produces S-sulfocysteine (SSC) from OAS and thiosulfate. SSC is reductively

divided into L-cysteine and sulfite (SO3
2�) with NrdH and Grx1 [19]. Sulfate

transport into cell is dominantly mediated by Sbp-CysTWA and thiosulfate trans-

port is dominantly mediated by CysP-CysTWA complex on the inner membrane

[20–22]. It is noteworthy that the inner-membrane channel part consisting of

CysTWA is common for both uptakes (Fig. 4).

Corynebacterium glutamicum and related bacteria are Gram-positive and non-

pathogenic and are known as coryneform glutamic acid-producing bacteria. Their

derivatives have been used in industry for the production of various amino acids

by means of fermentation. The precursor of L-cysteine is also L-serine as in the case

of E. coli. L-Serine is synthesized from 3-phosphoglycerate, the glycolytic inter-

mediate, via a three-step pathway same as E. coli [23]. In C. glutamicum, L-cysteine
is synthesized through basically the same pathway as E. coli. However,

C. glutamicum has the direct sulfhydration pathway (Fig. 2) other than the

transsulfuration pathway for L-methionine biosynthesis [24]. Both SAT and

OASS-A of C. glutamicum have been partially purified and characterized

[25, 26]. The Ki for L-cysteine of C. glutamicum SAT is also estimated to be of

Thiosulfate
pathway

Sulfate 
pathway

ATP cysDN
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Fig. 4 Overall sulfur metabolism in E. coli [19]. Sulfate and thiosulfate are imported from the
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the micromole order [25]. However, detailed characterization of purified

C. glutamicum SAT has not yet been reported. Protein engineering on

C. glutamicum SAT, such as construction of the feedback inhibition-insensitive

mutant enzyme, also remains to be investigated.

Some microorganisms, such as Saccharomyces cerevisiae, Lactococcus lactis
[27], and Pseudomonas putida [28], have been reported to synthesize L-cysteine

from L-methionine through the reverse transsulfuration pathway (Fig. 2). With

regard to S. cerevisiae, previous studies concluded that detectable SAT and

OASS-A do not constitute an L-cysteine biosynthetic pathway and that L-cysteine

is exclusively synthesized via cystathionine by L-cystathionine β-synthase (CBS;

EC 4.2.1.22) and L-cystathionine γ-lyase (CGL; EC 4.4.1.1) [29, 30]. Wheeler

et al. [31] reported that pathogenic bacteria, namely, the Mycobacterium tubercu-
losis complex, have a reverse transsulfuration pathway and can synthesize cysteine

from methionine. However, C. glutamicum, which is taxonomically closely related

toM. tuberculosis, cannot synthesize L-cysteine from L-methionine [25]. L-Cysteine

production by C. glutamicum has been reported, although the productivity was

relatively low (290 mg/L) compared with the productivity of that produced by

E. coli [32].
Some archaea have been reported to synthesize L-cysteine from L-methionine

through reverse transsulfuration from L-homocysteine to L-cysteine [33]. On the

other hand, several archaea are considered to have genes encoding SAT and OASS

[34]. In an extremely thermophilic bacterium, Thermus thermophilus, L-cysteine is
synthesized with OAS and sulfide by the catalysis of OASS-A [35]. This organism

catalyzes the reactions of transsulfuration from L-cysteine to L-homocysteine when

ammonium sulfate is used as the sulfur source, but is unable to catalyze reverse

transsulfuration because of the absence of CBS [35]. It was suggested that OASS-A

purified from T. thermophilus HB8 is responsible for the synthesis of L-cysteine in

this organism cultured with either sulfate or L-methionine given as the sole sulfur

source [36]. The sat1 gene encoding SAT of T. thermophilus HB8 was cloned and

overexpressed in E. coli cells, based on the genome sequence [37]. The predicted

amino acid sequence was homologous to those of the O-acetyltransferase members.

The recombinant enzyme was active over a wide range of temperatures, with

maximum activity at around 75�C. Interestingly, the enzyme was highly activated

by Co2+ or Ni2+, and contained Zn2+ and Fe2+, indicating that the T. thermophilus
SAT is a novel type of enzyme different from this protein family [37].

4 L-Cysteine Degradation

In E. coli, L-cysteine degradation is catalyzed mainly by L-cysteine desulfhydrase

(CD) [38]. Enzymes having CD activity in E. coli have been investigated in

considerable detail (Fig. 3). Awano et al. [39] reported that tryptophanase (TNA;

EC 4.1.99.1, the tnaA gene product) and L-cystathionine β-lyase (CBL; EC 4.4.1.8,

the metC gene product) catalyzed CD reaction and acted on L-cysteine degradation
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in E. coli by analyses with CD activity staining and gene disruption. Subsequently,

using the plasmid gene library of E. coli, which contains 4,388 kinds of open

reading frame, three additional proteins having CD activity were identified as

OASS-A, OASS-B, and MalY protein in E. coli [40]. These five CD proteins

(TNA, CBL, OASS-A, OASS-B, and MalY) involved in L-cysteine degradation

are all pyridoxal 50-phosphate (PLP)-dependent enzymes. Therefore, the CD activ-

ity of these enzymes may be only a side reaction that is often observed in

PLP-dependent enzymes due to the chemistry of PLP. Growth phenotype and

transcriptional analyses suggest that the CD activity of TNA contributes primarily

to L-cysteine degradation in vivo. In fact, TNA, which primarily degrades L-

tryptophan to indole, pyruvate, and ammonia, is induced by the addition of L-

cysteine to the culture medium, suggesting that a novel transcriptional regulation

system is involved in the gene expression. However, it appears that unidentified

proteins with CD activity, which may be induced by L-cysteine, are still present in

E. coli. It is possible that one gene disruption would affect the expression of other

CD proteins and the whole metabolic profile in E. coli [40].
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Fig. 5 L-Cysteine export systems in E. coli. It is known that the outer membrane channel TolC

forms various types of tripartite efflux pump in Gram-negative bacteria (dashed box), and serves as
an essential element of some mechanisms responsible for tolerance to various compounds,

including hydrophobic antibiotics and organic solvents [43]. TolC interacts with an inner-

membrane transporter, AcrB, which provides export energy, and a protein of the adaptor family,

AcrA, which brings TolC and the inner-membrane transporter together. In addition, the TolC

channel also exports L-cysteine from the periplasm to outside the cell [44]. In contrast, both major

(YdeD and YfiK) and minor (CydDC and Bcr) L-cysteine transporters once export L-cysteine from

the cytoplasm to the periplasm, and then the periplasmic L-cysteine diffuses to outside the cell

through TolC [44]
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In C. glutamicum, only one CD enzyme has been purified and characterized

[32]. The enzyme was identified as the aecD gene product, a C-S lyase with a

β-elimination activity [41]. This enzyme is also annotated as CBL [42]. Thus, the

CD activity of this enzyme may be a side reaction of CBL as in the case of E. coli.
However, other enzymes having CD activity in C. glutamicum remain to be

clarified. Disruption of the aecD gene was effective for L-cysteine production by

C. glutamicum, as in the case of E. coli [32].

5 L-Cysteine Transport

Export systems for L-cysteine in E. coli were also well studied. Previously, two

transporter proteins, YdeD and YfiK, have been identified as L-cysteine exporters in

E. coli (Fig. 5) [45, 46]. Both YdeD and YfiK are membrane-integral proteins and

belong to different protein families. Overexpression of either YdeD or YfiK led to

parallel secretion of OAS and L-cysteine by E. coli cells [47]. L-Cysteine is also

exported from the E. coli cytoplasm to the periplasm by CydDC, which is an

ATP-binding cassette (ABC)-type transporter required for cytochrome assembly

[48]. CydDC overexpression conferred resistance to high extracellular L-cysteine

concentrations. However, CydDC was shown to have higher transport activity with

L-glutathione than with L-cysteine as the substrate [49].

In addition to these transporters, there are 37 open reading frames assumed to be

drug transporter genes on the basis of sequence similarities in E. coli, although the

transport abilities of most of them have not yet been established [50]. Five families

of drug extrusion translocases have been previously identified based on sequence

similarity, including the major facilitator (MF) family, the small multidrug resis-

tance (SMR) family, the resistance nodulation cell division (RND) family, the ABC

family, and the multidrug and toxic compound extrusion (MATE) family. Among

the 33 putative drug transporter genes tested, Yamada et al. [51] reported that the

multidrug transporter Bcr in the MF family is involved in the export in E. coli cells
(Fig. 5). Amino acid transport assays showed that Bcr overexpression conferring

bicyclomycin and tetracycline resistance specifically promotes L-cysteine export

driven by energy derived from the proton gradient.

Recently, the tolC gene encoding the outer membrane channel TolC was iden-

tified as a novel gene involved in L-cysteine export using a systematic and com-

prehensive collection of gene-disrupted E. coli K-12 mutants (the Keio collection)

(Fig. 5) [44]. Gene expression analysis revealed that the tolC gene is essential for

L-cysteine tolerance, which is not mediated by TolC-dependent drug efflux systems

such as AcrA and AcrB, in E. coli cells. It also appears that other outer membrane

porins including OmpA and OmpF do not participate in TolC-dependent L-cysteine

tolerance.
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6 Direct Fermentation of L-Cysteine from Glucose

6.1 Enhancement of L-Cysteine Biosynthesis

As described above, the reaction catalyzed by SAT is the rate-limiting step of

L-cysteine biosynthesis in many microorganisms. Due to feedback inhibition by L-

cysteine of SAT, a high level of production of L-cysteine from glucose has not yet

been successfully achieved in microorganisms. Thus, for the fermentative produc-

tion of L-cysteine, it is necessary to use feedback inhibition-insensitive SATs.

There have been two approaches to obtaining SAT that is less sensitive to

feedback inhibition: (1) the engineering of SAT from E. coli through site-directed

or random mutagenesis [52, 53] and (2) the use of the natural SAT, which is

desensitized to feedback inhibition, from higher plants [54, 55].

Denk and B€ock [56] first reported that a small amount of L-cysteine (30 mg/L)

was secreted by a revertant from an L-cysteine auxotroph of E. coli. In this

revertant, SAT was less sensitive to feedback inhibition, and the Met residue at

position 256 (Met256) in SAT was replaced with Ile. Because this residue was

supposedly part of the allosteric site for L-cysteine binding, the mutant cysE genes

encoding SAT variants, which were genetically desensitized to feedback inhibition,

were constructed by replacing Met256 with 19 other amino acid residues using site-

directed mutagenesis [52]. It was found that in the L-cysteine non-utilizing E. coli
cells expressing the mutant cysE gene, there was a marked production of L-cysteine

and that stable expression of feedback inhibition-insensitive SAT was necessary for

the overproduction of L-cysteine (at a maximum of 790 mg/L for the Met256Ala

variant). PCR random mutagenesis was introduced into the cysE gene to isolate the

variant SATs that cause overproduction of L-cysteine, due to a much lower level of

feedback inhibition [53]. The production test of L-cysteine and the enzymatic

analysis of SAT variants suggested that the C-terminal region of SAT plays an

important role in the desensitization to feedback inhibition and in the high level of

production of L-cysteine (at a maximum of 990 mg/L for the Met201Arg variant).

The alternative way to obtain feedback inhibition-insensitive SAT is to use the

natural SAT resources from higher plants. In Arabidopsis thaliana, three cDNA

clones encoding organelle-localized SAT have been isolated: SAT-c (a cytosolic

isoform), SAT-m (a mitochondrial isoform), and SAT-p (a plastidic isoform). Noji

et al. [57] found that SAT-m and SAT-p were feedback inhibition-insensitive

isozymes (not inhibited in the presence of up to 100 μM L-cysteine), whereas the

concentrations for 50% inhibition (IC50) of SAT-c and E. coli SAT under the

standard assay condition were 1.8 and 6.0 μM, respectively. As expected, the

expression of two cDNAs encoding SAT-m and SAT-p in the L-cysteine

non-utilizing E. coli cells significantly increased the productivity of L-cysteine

(1,590 and 1,660 mg/L, respectively) [54]. The application of cDNAs encoding

L-cysteine-insensitive SAT from Nicotiana tabacum has been also reported [55].

However, these SATs showed significant decreases in enzymatic activity rela-

tive to the E. coliwild-type enzyme. Further improvements in L-cysteine production
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are therefore expected to use an engineered SAT, which shows a higher level of

feedback desensitization and a higher catalytic activity. Previously, the three-

dimensional structure of SAT from E. coli with its inhibitor L-cysteine was deter-

mined by X-ray crystallography at a 2.2-Å resolution [58]. The crystal structure and

the reaction mechanism of SAT from E. coli have shown that SAT is a trimeric

structure, which is likely to interact with another SAT trimer at N-terminal ends,

and that the substrate L-serine and the inhibitor L-cysteine bind to the identical

region in SAT. To decrease the affinity for L-cysteine alone, Kai et al. [59] built the

first structure model of L-serine-binding SAT on the basis of the crystal structure

with bound L-cysteine and compared these two structures (L-serine- and L-cysteine-

binding SAT). The comparison showed that the Cα of Asp92 underwent a substan-

tial positional change upon the replacement of L-cysteine by L-serine. Then, various

amino acid substitutions at positions 89–96 around Asp92 were introduced by

randomized, fragment-directed mutagenesis to change the position of the Asp92.

As a result, SAT variants, which have both extreme insensitivity to inhibition by

L-cysteine (IC50¼ 1,100 μM) and extremely high enzymatic activities, were suc-

cessfully obtained [59]. Such structural information is a powerful tool for breeding

an L-cysteine overproducer.

In addition, further improvement in L-cysteine productivity might be possible

using SAT with high stability. Thus, a thermostable SAT of T. thermophilus HB8
[37] should be engineered to desensitize it to feedback inhibition based on our

previous reports [52–54].

6.2 Weakening of L-Cysteine Degradation

A decrease in the degradation activity for the desired amino acid is also a promising

approach to further improving amino acid production by means of fermentation.

The gene disruption for each protein (TNA, CBL, OSAA-A, OASS-B, and MalY)

was significantly effective for overproduction of L-cysteine. The single or quintet

gene mutants transformed with the plasmid containing the cysE gene for feedback-

insensitive SAT exhibited higher L-cysteine productivity than the wild-type strain

[39, 40]. The amounts of L-cysteine produced after 72 h of cultivation increased by

a factor of 1.8–2.3. However, L-cysteine productivity decreased significantly after

96 h of cultivation in all the strains, probably because of the remaining CD enzyme

(s). It is also noteworthy that the quintet gene-disrupted strain (ΔtnaA, ΔmetC,
ΔcysK, ΔcysM, and ΔmalY) in the presence of L-cysteine showed higher CD

activity than that observed in the absence of L-cysteine. It appears that other CDs,

in addition to the five proteins identified, could be induced by L-cysteine in

E. coli [40].
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6.3 Enhancement of L-Cysteine Transport

For effective amino acid production, not only the biosynthetic pathway of target

amino acid but also its efflux from the cell is important. For example, L-lysine

exporter, LysE, is reported to be essential for L-lysine production by C. glutamicum.
In the absence of LysE, L-lysine can reach an intracellular concentration of more

than 1,100 mM, which prevents cell growth [60]. High concentrations of L-cysteine

have been also reported to be inhibitory or even toxic to E. coli cells [61, 62]. To
produce such a toxic compound as L-cysteine by fermentation, the use of an

L-cysteine efflux system could be promising, as in the case of other amino acids

[63]. Yamada et al. [51] reported that the multidrug transporter Bcr is involved in

overproduction of L-cysteine in E. coli. When the bcr gene was overexpressed in

tnaA-disrupted cells expressing the cysE gene for feedback inhibition-insensitive

SAT, the L-cysteine level was approximately fivefold higher than that of the cells

harboring the vector only. It was also concluded that the outer membrane TolC

plays an important role in L-cysteine tolerance probably due to its export ability and

that TolC overexpression is effective for L-cysteine production in E. coli [44]. To
improve L-cysteine production, plasmid pDES carrying the wild-type ydeD gene

and mutant cysE and serA gene, which encodes feedback inhibition-insensitive

SAT and PGDH, respectively (personal communication), was introduced into tnaA-
disrupted cells. The transformant cells produced approximately 20% higher amount

of L-cysteine than cells carrying the vector only.

Although there is insufficient information for achieving L-cysteine fermentation,

two worldwide companies (Wacker Chemie AG, Germany and Ajinomoto Co.,

Inc., Japan) independently began to supply L-cysteine and its derivatives produced

by a microbial fermentation process developed in 2001 and 2014, respectively

(http://kyowa-usa.com/news/2001/06-25, http://www.ajinomoto-usa.com/Pr/Pdf/

Cysteine_Derivatives.pdf). These companies could successfully optimize the orig-

inal metabolism of their private bacterial strains. In particular, Wacker Chemie AG

announced that a large quantity of L-cysteine was secreted into the culture medium

from bacterial cells, as 90% of pure L-cysteine ends up in the final product, which

fulfills the quality standards for foods and pharmaceutical industries (Wacker [64]).

Of all the L-cysteine manufactured worldwide in 2004, only 12% were

fermentation-origin products. Annual growth rate for the market share for microbial

L-cysteine was estimated at 10% [5].
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7 Novel Pathways of L-Cysteine Metabolism in Escherichia
coli

7.1 Thioredoxin/Glutaredoxin-Mediated L-Cysteine
Biosynthesis from S-Sulfocysteine

E. coli has two enzymes which assimilate inorganic sulfur sources, OASS-A

(CysK) and OASS-B (CysM) (Fig. 5). While the former enzyme utilizes sulfide

(S2�) as a sulfur donor, the latter enzyme uses thiosulfate (S2O3
2�). CysK

synthesizes L-cysteine from OAS and sulfide, but the CysM protein differs in

that it can also utilize thiosulfate instead of sulfide. The product formed by the

CysM activity, SSC, is converted into L-cysteine and sulfite by an

uncharacterized reaction [65]. The E. coli sulfite reductase consists of the

alpha subunit protein (the cysJ gene product) and the beta subunit protein (the

cysI gene product). The “sulfate pathway” spends two molecules of ATP and

four molecules of NADPH as a reducing power to make one molecule of

L-cysteine from a sulfate and OAS molecule. On the other hand, the thiosulfate

pathway has the advantage that two molecules of L-cysteine can synthesize from

a thiosulfate molecule by consuming only four molecules of NADPH. As

thioredoxins (Trx1 and Trx2) and glutaredoxins (Grx1, Grx2, Grx3, Grx4, and

NrdH) are known as reductases of peptidyl disulfides [66], overexpression of

these reductases might contribute to improving L-cysteine production by accel-

erating the reduction of SSC.

To test whether these enzymes catalyze the reduction of SSC to L-cysteine, all

His-tagged recombinant enzymes, except for Grx4, efficiently convert SSC into

L-cysteine in vitro [19]. Overexpression of Grx1 and NrdH enhanced a 15%–40%

increase in L-cysteine production in E. coli. On the other hand, disruption of cysM
cancelled the effect caused by the overexpression of Grx1 and NrdH, suggesting

that its improvement was due to the efficient reduction of SSC. Moreover,

L-cysteine production in knockout mutants of the sulfite reductase genes (ΔcysI
and ΔcysJ) and the OASS-A gene (ΔcysK) each decreased to about 50% of that in

the wild-type strain. Interestingly, there was no significant difference in L-cysteine

production between wild-type strain and gene deletion mutant of the upstream

pathway of sulfite (ΔcysC or ΔcysH), indicating that sulfite generated from the

SSC reduction is available as the sulfur source to produce additional L-cysteine. It

was finally found that the E. coli L-cysteine producer that co-overexpresses Grx

(NrdH), sulfite reductase (CysI), and OASS-A (CysK) exhibited the highest amount

of L-cysteine produced per cell, proposing that the enhancement of Trx/Grx-

mediated L-cysteine synthesis from SSC is a novel method for improvement of

L-cysteine production [19].
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7.2 Involvement of the yciW Gene in L-Cysteine
and L-Methionine Metabolism

Transcription of the sulfate pathway genes is known to be upregulated during

cellular L-cysteine shortage by a transcriptional activator CysB (LysR family)

[67]. Using in silico analysis, which are MEME and FIMO program (http://

meme.nbcr.net/meme/), the yciW gene of E. coliwas identified as a novel L-cysteine
regulon that may be regulated by the transcriptional activator CysB for sulfur

metabolic genes [68]. To discover a novel CysB-binding motif on the E. coli
genome, the CysB-binding motif was first predicted from the upstream sequences

(300 bp from start codon) of already-known genes for CysB binding (cysD, cysJ,
cysK, and cysP) [69, 70] by the MEME program (Fig. 6). The isolated motif was

consistent with the already-known CysB-binding motif. Subsequently, the

predicted motif (42 bp) was searched for the E. coli W3110 genome (accession

No.: NC_007779.1) using the FIMO program. It was revealed the most plausible
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3 NADPH
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Fig. 6 The possible function of YciW in E. coli by sulfur metabolome [71]. YciW seems to

metabolize L-cysteine and O-succinyl-L-homoserine to L-homocysteine via L-cystathionine. The

graphs of the measured sulfur compound contents are shown in the metabolic pathway map. The

metabolites represented by inverted style are the targets of LC-MS/MS analysis. The content of

each metabolite in wild-type cells carrying the empty vector and overexpressing the yciW gene is

shown by open and closed bar, respectively

L-Cysteine Metabolism and Fermentation in Microorganisms 143

http://meme.nbcr.net/meme/
http://meme.nbcr.net/meme/


sequence for the CysB-binding motif in the upstream of the yciW gene, which is

suggested to be a new member of the CysB regulons.

Interestingly, yciW conferred tolerance to L-cysteine on E. coli cells, suggesting
that the yciW gene product (YciW) converts L-cysteine to L-methionine or L-gluta-

thione. Actually, the intracellular contents of all sulfur metabolites relatively

increased regardless of yciW overexpression, suggesting that excess L-cysteine

was degraded by enzyme such as L-cysteine desulfhydrases to protect E. coli cells
from L-cysteine toxicity. After 72 h of cultivation, ΔyciW strain carrying pDES

produced about 2.4-fold higher amount of L-cysteine per cell than wild-type strain,

when sulfate was used as sulfur source. Also, when thiosulfate was used, disruption

of yciW significantly increased L-cysteine production of E. coli. In contrast,

overexpression of yciW significantly decreased total amount of L-cysteine in wild-

type cells in the presence of sulfate and thiosulfate. From these results, disruption of

yciW, one of the CysB regulons, enhances L-cysteine production. In silico gene

screening is an effective method for improvement of L-cysteine production [68].

Kawano et al. [71] also analyzed a sulfur index of E. coli cells using LC-MS/MS

combined with thiol-specific derivatization by monobromobimane. The obtained

sulfur index was then applied to evaluate the L-cysteine producer. E. coli cells
overexpressing yciW accumulated L-homocysteine, suggesting that YciW is

involved in the biosynthesis of L-methionine rather than L-glutathione. From the

metabolome analysis of sulfur compounds in E. coli, YciW seems to metabolize

L-cysteine and O-succinyl-L-homoserine to L-homocysteine via L-cystathionine

(Fig. 6).

8 L-Cysteine/L-Cystine Shuttle System

Excessive reactive oxygen species (ROS) are cytotoxic molecules, which result in

the oxidation of DNA, proteins, and cellular membrane lipids [72]. Inside the cell, it

generates from their respiration chain and various redox reactions, which results in

the exchange of one or two electrons to molecular oxygen [73]. Most organisms

acquire various ROS-scavenging strategies for their survival and conservation of

the species. For example, E. coli possesses ROS-scavenging enzymes such as

superoxide dismutase (2O2
�+ 2H+!O2+H2O2), catalase (2H2O2!O2+ 2H2O),

and peroxidase (ROOR’+ 2e�+ 2H+!ROH+R’OH). Superoxide dismutases

exist both in the cytoplasm (SodA and SodB) and the periplasm (SodC), whereas

catalase is present only in the cytoplasm (KatE) but not in the periplasm. Unlike the

cytoplasm, the mechanism underlying the process for scavenging periplasmic H2O2

generated from the SodC reaction has remained unclear [44].

Recently, the E. coli mutants lacking the L-cysteine exporter YdeD or the

L-cystine-binding protein FliY increased sensitivity to H2O2 [2]. It was also

shown that FliY is involved in the uptake of L-cystine from the periplasm to the

cytoplasm. Moreover, the expressions of the ydeD and fliY genes were dramatically
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increased upon treatment of the cells with H2O2 [2]. From these findings, it was

proposed that E. coli removes the periplasmic H2O2 using L-cysteine supplied to the

periplasm from the cytoplasm by “L-cysteine/L-cystine shuttle system” (Fig. 7)

[2]. In this system, however, it remains questionable: (1) whether ΔydeD mutant

cells actually accumulate H2O2 in the periplasm, (2) what is the FliY-dependent

L-cystine importer, and (3) whether the L-cystine importer cooperatively operates

with YdeD. In addition to them, the question arises as to whether endogenous

L-cysteine de novo synthesized from inorganic sulfur source serves the function of

L-cysteine/L-cystine shuttle system.

Thus, not only L-cysteine exporter such as YdeD but also an L-cystine importer

such as the FliY-dependent protein is critical for protecting cells from oxidative

stress into the periplasm due to quality control of the membrane. Ohtsu et al. [74]

recently identified two different L-cystine importers, YecS and YdjN, which indeed

function against H2O2 stress in E. coli (Fig. 7). These L-cystine importers cooper-

atively function with the L-cysteine exporter YdeD to scavenge the periplasmic

H2O2. Furthermore, endogenous L-cysteine de novo synthesized from inorganic

sulfur source was shown to eliminate the periplasmic H2O2. Thus, it was proposed

that H2O2-inducible L-cysteine/L-cystine shuttle system has an important role for

quality control of the plasma membrane in E. coli. In addition, the yfiK gene

encoding another major L-cysteine transporter, YfiK, is induced by H2O2, although

both the genes encoding Bcr and CydDC are not upregulated.
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L-cysteine out

L-Cysteine/L-Cystine
shuttle system 

L-cystine out

GSH or Trx,  Grx ?
L-cysteine in L-cystine in

NADPH

YfiK YdeD YecS
FliY

YdjN
YecC

L-cysteine out

peroxidation

H2OH2O2
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Fig. 7 Proposed L-cysteine/L-cystine shuttle system [2, 74]. The L-cysteine/L-cystine shuttle

system participates in preventing membrane lipids or controlling the level of membrane peroxi-

dation products
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9 Conclusions and Future Perspective

Recent advancement in biochemical studies, genome sequencing, structural biol-

ogy, and metabolome analysis has enabled us to use various approaches to achieve

direct fermentation of L-cysteine from glucose. Table 1 summarizes the improved

productivity of L-cysteine fermentation by E. coli cells. In addition to a feedback

inhibition-insensitive SAT, low activity of L-cysteine degradation and high activity

of L-cysteine-export in the host cells are very important for efficient L-cysteine

fermentation. In conclusion, we believe that a combination of the three

abovementioned factors should be required for achieving L-cysteine fermentation:

that is, (1) overexpression of the feedback inhibition-insensitive SAT gene,

(2) knockout of the genes encoding CDs, and (3) overexpression of the gene

involved in L-cysteine export (Fig. 3).

Recently, we found that S. cerevisiae utilizes thiosulfate as a sole sulfur source.
The energetically favored thiosulfate rather than sulfate as sulfur sources is also

more effective for improving growth and ethanol-production rate in yeast cells due

to high levels of intracellular NADPH during thiosulfate utilization [75].

Table 1 L-Cysteine fermentative production in E. coli

Improvement of L-cysteine

production

E. coli host strain;
genotype

L-Cysteine

productivity

(mg/L) Reference

Enhancing biosynthesis JM240; cysEM256I ca. 30 [56]

Enhancing excretion W3110; pYdeD ca. 70 [45]

Enhancing excretion W3110; pYfiK ca. 150 [46]

Enhancing biosynthesis JM39; cysE51
+ pcysEM256X

130–280 [52]

Weakening degradation JM39-8; cysE51 260–490 [53]

Enhancing biosynthesis/Weakening

degradation

JM39; cysE51
+ pcysErandom

480–670 [53]

Enhancing biosynthesis and excre-

tion/Weakening degradation

MG1655; ΔtnaA
+ pDES

890–1,030 [44]

Enhancing biosynthesis and excre-

tion/Weakening degradation

MG1655; ΔtnaA
+ pDES+ pTolC

1,050–1,200

Enhancing biosynthesis and excretion BW25113; pDES 1,200–1,230 [19]

Enhancing biosynthesis and excre-

tion/Weakening degradation

BW25113; ΔyciW
+ pDES

1,480–1,720 [68]

Strain JM39 is a cysteine auxotroph. Strain JM39-8 has only 10% of the cysteine desulfhydrase

activity of JM39 [52]

Plasmid pEDS carries the altered serA (Thr410 to Stop codon) and cysE (Thr167Ala) genes and the

wild-type ydeD gene under the control of the ompA gene promoter

Plasmid pcysEM256X were constructed by site-directed mutagenesis to replace Met256 of serine O-
acetyltransferase with 19 other anino acids (X) [52]

Plsmid pcysErandom were constructed by PCR random mutagenesis to isolate serine O-
acetyltransferase variants [53]
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Thiosulfate is an advantageous sulfur source than sulfate for saving consumption

of NADPH and relating energy molecules. This is probably attributed to less

NADPH consumption for L-cysteine/L-methionine biosynthesis in thiosulfate com-

pared to sulfate. Because reducing balance of one of two sulfur atoms of thiosulfate

is equal to that of sulfide, thiosulfate is much more effective sulfur source than

sulfate for L-cysteine fermentative production in E. coli [19, 68, 71].
We thus propose that thiosulfate compared to commonly used sulfate is effective

sulfur source for biotechnological production of useful compounds other than

ethanol production in S. cerevisiae. According to this idea, we are going to try

production of other useful products using thiosulfate as sulfur source, and also to

elucidate molecular basis of the assimilation pathway and responsible

enzymes [75].
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Abstract L-Methionine has been used in various industrial applications such as the

production of feed and food additives and has been used as a raw material for

medical supplies and drugs. It functions not only as an essential amino acid but also

as a physiological effector, for example, by inhibiting fat accumulation and enhanc-

ing immune response. Producing methionine from fermentation is beneficial in that

microorganisms can produce L-methionine selectively using eco-sustainable pro-

cesses. Nevertheless, the fermentative method has not been used on an industrial

scale because it is not competitive economically compared with chemical synthesis

methods. Presented are efforts to develop suitable strains, engineered enzymes, and

alternative process of producing L-methionine that overcomes problems of conven-

tional fermentation methods. One of the alternative processes is a two-step process

in which the L-methionine precursor is produced by fermentation and then

converted to L-methionine by enzymes. Directed efforts toward strain development

and enhanced enzyme engineering will advance industrial production of L-methi-

onine based on fermentation.
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1 Introduction

Methionine is one of two sulfur-containing amino acids along with cysteine. As an

essential amino acid, intake of methionine from food is required for humans and

other animals [1]. Methionine is used primarily as a building block of proteins in the

body. Moreover, it plays a critical role in diverse methyl-transferring reactions as a

major source of methyl groups, particularly in the form of S-adenosylmethionine

(SAM). Methionine, like lysine, is a highly important feed additive and can be

added to poultry feed as the first limiting amino acid [2]. Recently, demands for

methionine in aqua feed have increased because it can be used as an alternative to

fish meal [3]. To use methionine for food and pharmaceuticals, DL-methionine

needs to be converted to L-methionine using acetylation and enzymatic processes

[4, 5]. However, the market size for methionine for food and pharmaceuticals is

significantly smaller than for feed additives.

Industrial production of methionine was first done by Degussa AG (Evonik) in

the 1950s. The amount of DL-methionine, produced chemically, reached to around

850,000 tons annually in 2013 [6], including methionine hydroxy analogue. DL-

methionine is synthesized using acrolein, methanethiol, hydrogen cyanide, and

other chemicals [7], and it is crucial to dispose hazardous intermediates appropri-

ately to prevent any harmful impacts to the environment. Also decreasing fossil

resources should be considered.

Efforts to produce methionine using microbial fermentation have been ongoing

for the last three decades [8–10]. From the 1990s to the 2000s, research efforts have

focused on developing suitable strains through classical mutagenesis [11, 12]. Since

the 2000s, extensive metabolic engineering [13] has been conducted on major hosts

such as Corynebacterium glutamicum and Escherichia coli. This review will

discuss the current status of fermentative synthesis of methionine. Then, charac-

teristics of key enzymes and achievements in strain development for industrial

production of methionine will be discussed.
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2 Methionine Biosynthetic Pathways

2.1 The Methionine Biosynthetic Pathway in C. glutamicum
and E. coli

Methionine, lysine, and threonine are biosynthesized using aspartate as a precursor

in C. glutamicum and E. coli. However, there are several differences in biosynthetic
intermediates and regulatory mechanisms for methionine synthesis depending on

the host microorganisms [9].

C. glutamicum converts aspartate to homoserine using aspartokinase (lysC;
henceforth, the gene name is indicated in parenthesis for the protein it is encoding

in a given microorganism) [14], aspartate-semialdehyde dehydrogenase (asd) [15],
and homoserine dehydrogenase (hom) [16] as shown in Fig. 1. To synthesize

methionine, acetylhomoserine transferase (metX) [17] activates homoserine to O-

acetyl homoserine (OAH) with acetyl-CoA as a donor of the acetyl group. Next, for

assimilation of sulfur, C. glutamicum has two alternative pathways. When using

cysteine as a sulfur source, the synthesis pathway uses cystathionine-γ-synthase
(metB) [18] and cystathionine-β-lyase (metC) [19], thus producing L-homocysteine
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from OAH. The other pathway uses O-acetyl homoserine sulfhydrylase (metY)
[20, 21] and produces L-homocysteine with hydrogen sulfide as a sulfur source.

The last step of methionine biosynthesis is completed by vitamin B12-dependent

methionine synthase (metH) or vitamin B12-independent methionine synthase

(metE) [22]. These enzymes add a methyl group to L-homocysteine with N5-

methyl-tetrahydrofolate (CH3-THF) as a methyl donor.

Methionine biosynthesis in C. glutamicum is regulated by two ways. At the

transcriptional level, it is repressed by McbR which is known to regulate the

expression of diverse genes related to the oxidative stress and the biosynthesis of

methionine and cysteine [23]. On the enzyme level, it is also regulated by the

end-product feedback inhibition. O-acetyl-homoserine sulfhydrylase MetY is under

tight feedback regulation by methionine [24].

In E. coli, enzymes involved in the conversion of aspartate to homoserine are

aspartokinase (lysC, thrA, metL) [25–27], aspartate-semialdehyde dehydrogenase

(asd) [28], and homoserine dehydrogenase (thrA, metL). Three types of

aspartokinase have their own mechanisms of regulation. LysC is inhibited alloste-

rically by lysine [29] and ThrA by threonine [30]. However, the negative feedback

on MetL has not been identified yet and MetL is instead regulated by the transcrip-

tional repressor, MetJ [31]. In addition to kinase activities, ThrA and MetL possess

oxidoreductase activities functioning as homoserine dehydrogenase. Activation of

homoserine is carried out by MetA [32] and results in O-succinylhomoserine

(OSH). This step distinguishes E. coli from C. glutamicum in which homoserine

is converted to OAH using acetyl-CoA and the enzyme, MetX. Differences from

C. glutamicum appear in sulfur assimilation as well. Unlike C. glutamicum, E. coli
has a single transsulfuration pathway using cysteine as a sulfur source and does not

have direct sulfur assimilation using sulfide as a sulfur source [33]. In this step,

MetB and MetC catalyze OSH to L-homocysteine using cysteine. The remaining

steps are in common with C. glutamicum.
The role of McbR in C. glutamicum is performed by MetJ in E. coli [31]. MetJ

represses the expression of a broad spectrum of genes in methionine biosynthesis

including metL, metA, metB, metC, and metH [34]. There is a counteracting

transcriptional regulator in E. coli, MetR [35], that upregulates metA, metE, and
metH. Feedback inhibition by the end products, methionine and SAM, occurs in

MetA [36, 37].

This section describes the metabolic pathways and regulation on methionine

synthesis in two widely used microorganisms. It is often useful to compare char-

acteristics of different strains to find ways for improvement. Therefore, we further

describe metabolic pathways that are different between the two species. Section 2.2

describes the steps that activate homoserine using MetA and MetX, and Sect. 2.3

discusses enzymes assimilating sulfur. Comparisons are made particularly in the

three-dimensional (3D) structures of the enzymes. To achieve industrial-scale

production, it would be valuable to revisit the structure–function relationship of

the key enzymes.
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2.2 Enzymes for Conversion of Homoserine
to O-Acylhomoserine and Their Structures

2.2.1 Homoserine Succinyltransferase

MetA (EC 2.3.1.46) carries out succinylation of homoserine using a ping–pong

kinetic mechanism [38–40]. First, succinyl-CoA binds near a Cys residue in the

catalytic site, which becomes more nucleophilic due to an interaction with the His

residue. The Cys residue takes the succinyl group, and then CoA leaves the active

site. While the succinylated intermediate is stabilized in the oxyanion hole,

homoserine enters, and the succinyl group is transferred to homoserine, which

completes the reaction. Activation of homoserine via succinylation is found in

many enteric bacteria such as E. coli [8].
At present, three X-ray crystal structures of MetA are known (PDB IDs: 2GHR,

2VDJ, 2H2W). Two are of Bacillus cereus [40, 41] and one is of Thermotoga
maritima (Tm0881) [42], which are 301 and 304 amino acids long, respectively.

MetA from the two species shows about 55% sequence identity and over 70%

similarity. However, the differences of the 3D backbone structures are less than 1 Å
of root mean square deviation (RMSD) when excluding the 32 N-terminal amino

acids. This indicates that the overall folds are highly conserved between the two

species and the conformation of the active site is almost identical. However, it

should be noted that MetA of T. maritima has dual activity as a succinyltransferase

and an acetyltransferase despite the sequence annotation of MetA [43]. MetA of

B. cereus is able to perform transacetylation exclusively by a single amino acid

substitution [40]. In wild-type MetA of T. maritima, acetyl-CoA shows a higher

turnover rate (~30-fold kcat) than succinyl-CoA while having similar binding

affinity. This indicates that subtle structural differences in substrate binding resi-

dues around the active site have a significant impact on the function of MetA. This

will be discussed in detail at the end of this section.

Figure 2 shows MetA of B. cereus bound to homoserine. MetA has a Rossmann-

type topology, and the catalytic triad consists of Cys142, His235, and Glu237

(nomenclature in MetA of B. cereus) [44–46]. Other key residues are Ala108 and

Trp143 comprising the oxyanion hole and Lys163, Glu246, and Arg249 interacting

with the N- and C-terminus of homoserine. The role of Lys45 and Lys46 in MetA of

E. coli was known to be important for activity [44]. The two residues are located

away from the catalytic site but adjacent to the highly flexible region (residues

75–86). MetA of B. cereus has disordered structure in this region, but MetA of

T. maritima has a defined structure (Fig. 2b). This region seems to be necessary for

binding of CoA or stabilizing the folds. Positions of the residues mentioned are

shown in Fig. S1 of the supporting information.

MetA exists physiologically as a homodimer [41, 47]. For B. cereus, the

16 N-terminal residues are disordered, and structural data has not been provided

by X-ray crystallography. Strikingly, residues 17–33 are well defined despite a long

extended structure away from the core of the enzyme. This region together with the
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unknown structure of the first 16 amino acids is important for dimerization and

thermostability. Unlike MetA of B. cereus, MetA of T. maritima shows ordered

structure in residues 1–16 and 17–26, and the regions interact with different

residues on the surface (Fig. 2b). These differences may prevent MetA of

T. maritima from forming an inclusion body at high temperatures [43], which has

been an intriguing feature of MetA of E. coli [48–51]. However, the effect of such
differences and the role of the N-terminal need to be further studied.

It should be noted that MetA is tightly regulated by feedback inhibition occur-

ring at the dimerization interface which includes the N- and C-terminal regions

[36, 37]. Major feedback inhibitors are D,L-methionine and SAM. A large number of

point mutations have been reported to decrease the feedback inhibition. Usuda and

Kurahashi [52] showed that mutations in Arg27, Ile296, and Pro298 lead to reduced

feedback regulations in MetA of E. coli. Bestel-corre et al. [53] expanded the

effective region for feedback-insensitivity to residues 24–30, 58–65, and

292–298. Independently, Leonhartsberger et al. [54] also found feedback-resistant

mutations in the Asp in the AspGlyXaaXaaXaaThrGlyAlaPro sequence of residues

between 90 and 115 and in the Tyr in the TyrGlnXaaThrPro sequence of residues

between 285 and 310. Both residues are involved in interactions near the N- and

C-terminal regions. Other known mutation sites in MetA of E. coli [55] are Asn290
and Tyr291, which are near residues discussed above. Asn79, Glu114, Phe140,

Lys163, Phe222, and Ala275 do not seem to have particular interactions with N- or

A B

Glu17

C’

Ser87

Ser74

Pro2

Ile33
Lys26

Fig. 2 Dimer of MetA and different structures of N-terminal region from MetA of B. cereus and
MetA of T. maritima. MetA of B. cereus is shown as a blue ribbon and MetA of T. maritima as a

red ribbon. Additionally residues 17–33, 175–186 and C-terminal helix of MetA of B. cereus are
shown in cyan in (a), 1–16 and 17–26 of MetA of T. maritima in orange and pink in (b),

respectively. Regions of missing residues in MetA of B. cereus are shown in blue solid curve
and those in MetA of T. maritima in red dotted curve
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C-terminal regions but show feedback resistance [55]. Residues for mutations listed

above are displayed in Fig. S2 in the supporting information.

In addition to N-terminal residues, surface residues of MetA are important

regarding thermostability and acid tolerance [56]. Perturbations of electrostatics

or rigidifying flexibility of surface residues are a useful strategy in enzyme engi-

neering [57, 58]. Mutations increasing the stability of enzymes, thus leading to

better cell growth, have been identified using random-mutagenesis (Ser61Thr,

Glu213Val, Ile229Thr, Asn267Asp, and Asn271Lys) [56] (Fig. S3). Each residue

is solvent exposed and capable of forming noncovalent interactions with nearby

residues. Detailed investigation of the structure–function relationship of MetA is

expected to help accelerate yields of methionine during fermentation by overcom-

ing sensitivity to temperatures and negative feedback inhibition by end products.

There have been studies showing some MetAs are able to function as an

acetyltransferase using acetyl-CoA as a substrate [8, 40, 43]. A single residue at

position 111 in MetA of B. cereus determines the preference between succinyl-CoA

and acetyl-CoA. When Gly is present at 111, the active site exclusively accommo-

dates succinyl-CoA. However, Glu at 111 enables MetA to use acetyl-CoA and

inhibits the succinyl-CoA binding by electrostatic repulsion with Glu111. This

shows an interesting example in which a single point mutation can change the

binding affinity of substrates and even switch the preference of substrates.

Switched substrate specificity is rare in MetX, and this phenomenon will be

further discussed in Sect. 2.2.2. Structural features of MetX will be reviewed

together with comparisons with MetA.

2.2.2 Homoserine Acetyltransferase

MetX (or Met2, EC 2.3.1.31) has a very similar catalytic function with MetA, but

they have no close relationship in either sequence or structure. The amino acid

sequence of MetX is longer than that of MetA ranging from 320 to 500 amino acids,

and MetX is found in a broader spectrum of species than MetA [8].

Four structures of MetX have been identified from X-ray crystallography; MetX

of Haemophilus influenzae (PDB ID: 2B61) [59], Leptospira interrogans (PDB ID:

2PL5) [60], Staphylococcus aureus (PDB ID: 4QLO) [61], and Bacillus anthracis
(PDB ID: 3I1I) [62]. They differ from each other within the backbone RMSD of

3.00 Å, and major differences are in the loops on the N- and C-termini and the

dimerization interface. Figure 3a highlights these regions.

MetX has a Rossmann fold in common with MetA, but its unique features

include an additional five helices inserted in the middle of the Rossmann fold.

This domain is called the cap or lid and was found in other enzymes containing the

Rossmann fold such as aminoacrylate hydrolase [63] and 3-oxoadipate-enol-

lactonase [64]. The capping domain contributes to forming not only dimers but

also active sites. Figure 3b shows structures of MetX of H. influenzae and MetA of

B. cereus superposed with respect to catalytic triads. Orientations of key residues
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agree well with the triads (Ser143, His337, Asp304 of MetX of H. influenzae versus
Cys148, His235, Glu237 of MetA of B. cereus) and two residues (Asp338, Arg212

of MetX of H. influenzae versus Glu246, Arg249 of MetA of B. cereus) interacting
with the amine and carboxyl groups of homoserine, respectively. However, overall

folds are still in large disagreement. MetX is different fromMetA in accessibility to

the active site and width of entrance. In particular, the presence of the capping

domain brings different dimerization interfaces as seen in Fig. 3b. In Fig. 3c, the

putative binding site of CoA is inferred from deacetylcephalosporin C

acetyltransferase (PDB ID: 2VAT) [65].

A

C

Capping
domain

C’

B

Fig. 3 Structures of MetX dimer and comparison with MetA. (a) MetX of H. influenzae is shown
in lime color with capping domain highlighted by dotted box. Represented by cyan, orange, and
pink are MetX of L. interrogans, MetX of S. aureus, and MetX of B. anthracis, respectively. One
protomer in dimer of MetX of H. influenzae is not shown here. (b) Superposition of MetA of

B. cereus (blue) on top of MetX of H. influenzae (lime) with respect to catalytic triads. Dimeriza-

tion interface of MetX is posed around dotted line and that of MetA around solid line. (c) Putative
binding site of CoA which is inferred using a structure of deacetylcephalosporin C

acetyltransferase (DCA) bound to CoA. Structure of DCA and MetX are homologous and well

superposed with 1.91 Å of Cα backbone RMSD
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Thus far, the only MetX that has been reported to have succinyltransferase

activities is MetX from the Pseudomonas aeruginosa strain PAO1 [8, 66]. MetX

of P. aeruginosa uses OSH instead of OAH and was complemented by MetA of

E. coli. However, the function of MetX of P. aeruginosa remains to be confirmed

with purified enzyme assays because its sequence is almost identical to those of

MetX of Pseudomonas putida (82.0%) and Pseudomonas syringae (82.3%) which

are acetyltransferases. Conversely, it will be necessary to investigate structures in

detail considering the case of MetA where a difference in a single amino acid can

change the function of enzymes.1

MetX does not show significant feedback inhibition by methionine or SAM.

MetX of Leptospira meyeri did not affected by methionine and SAM in concentra-

tions of 100 and 10 mM, respectively [67]. MetX of S. cerevisiae was inhibited by

S-adenosylhomocysteine, SAM, and cysteine, but not by methionine [68]. Our

in-house data (unpublished work, with Cargill) also showed that 10 mM OAH

inhibits MetX of L. meyeri up to 35%, while methionine showed no inhibition at

12 mM in agreement with the above.

To sum up, we reviewed two enzymes, MetA and MetX, which are essential in

biosynthesizing methionine precursor, O-acetylhomoserine from homoserine. The

two enzymes have significantly different sequences and structures, although they

share the same reaction mechanism. MetA is sensitive to temperature, easily

aggregates, and is regulated by the end product, methionine. These properties of

MetA have hampered the mass production of methionine. MetX has quite different

characteristics from MetA. The capping domain, which consists of five helices, is

unique in MetX and provides a dimerization interface. The location of the catalytic

triads matches those of MetA, but the surrounding residues confer the specificity of

the enzymes. MetX is relatively free from feedback regulation and structural

instabilities. Hence, diversifying substrates of these two enzymes or increasing

stabilities would be useful for industrial strain development.

2.3 Enzymatic Sulfur Incorporation in Methionine
Biosynthesis

Sulfur assimilation is also highly variable among strains. This section focuses on

recent studies exploring the structures of the sulfur-assimilating enzymes involved

in methionine biosynthesis.

1Throughout text, sequence alignment was performed using Clustal-O and structure superposition

with the FATCAT-server (rigid pairwise alignment). The VMD program was used to visualize the

alignments. IDs (Uniprot) of sequences used in this review are as follows: MetA (B. cereus):
Q72X44, MetA (T. maritima): Q9WZY3, MetA (E. coli): P07623, MetX (P. aeruginosa): P57714,
MetX (P. putida): Q88CT3, MetX (P. syringae): Q4ZZ78, MetX (H. influenzae): P45131, MetX

(S. cerevisiae): P08465, MetX (L. interrogans): Q8F4I0.
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2.3.1 Two Sulfur Assimilation Pathways

After activation of homoserine by acylation on a hydroxyl group, the next step is to

replace its acyl group with a thiol group, generating homocysteine. There are two

alternative pathways. The first is the transsulfuration pathway, in which cysteine is

the sulfur donor and is incorporated into the homoserine ester to form cystathionine.

The reaction is catalyzed byMetB (EC 4.2.99.9), an enzyme present in most species

of bacteria. This is followed by β-elimination, which cleaves cystathionine to form

homocysteine, in a reaction catalyzed by MetC (EC 4.4.1.8 [69]). The net result of

these two reactions is the transfer of the thiol group of cysteine to form homocys-

teine, through the intermediate cystathionine. Hence, this pathway is called

transsulfuration. In the other pathway, the sulfur donor is free sulfide, which is

incorporated into the homoserine ester in a single step by MetY (EC 2.5.1.49

O-acetylhomoserine sulfhydrylase) or MetZ (EC 2.5.1.- O-succinylhomoserine

sulfhydrylase) to form homocysteine. This route bypasses the transsulfuration

reaction and is therefore called direct sulfhydration.

All the enzymes involved are members of the Cys/Met metabolism pyridoxal-

50-phosphate (PLP)-dependent family, which is a subclass of the PLP-dependent

fold-type I proteins [70]. Therefore, these enzymes show sequence similarities, and

their 3D structural folds are highly similar.

Kim et al. [71] evaluated activities of MetB, MetY, and MetZ. The degree of

difference in these enzymes is not as dramatic as between MetA and MetX. Various

MetY and MetZs are able to utilize both OSH and OAH as their substrate. In

addition, many of these enzymes use cysteine, methanethiol, and sulfide as the

sulfur source, with different degrees of efficiency. Notably, despite the annotation

as MetZ, MetZ of H. neptunium showed higher specificity for OAH than for OSH.

These results also corroborate the previous findings that various organisms evolved

to produce just one of the homoserine-esterified substrates but that their enzymes

retain the ability to use other homoserine-esterified substrates as well [72]. None-

theless, it is important to point out structural elements that confer preferences in

substrates. Section 2.3.2 overviews common characteristics in MetB, MetY, and

MetZ, and Sect. 2.3.3 discusses structural analysis of the differences.

2.3.2 Cystathionine-γ-Synthase and O-Acylhomoserine Sulfhydrylases:

Members of the Same Superfamily

MetB, MetY, and MetZ are homologous and all require PLP for activity. These

enzymes are tetrameric proteins of the identical subunit with one PLP cofactor

bound per monomer via a Schiff base linkage to an active site lysine (Fig. 4a). Thus,

each monomer has an active site that requires an N-terminal domain of another

monomer via salt bridges to the phosphate group of PLP. In the resting state, PLP is

covalently bound to the amino group of an active site lysine, forming an internal

aldimine. Once the substrate O-acetylhomoserine interacts with the active site, a
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new Schiff base is generated commonly referred to as an external aldimine, thereby

allowing the acetyl or succinyl group to be eliminated. In this step, PLP acts as an

electron sink to stabilize carbanion intermediates. This results in a PLP-bound

intermediate with a vinyl side chain, which is then attacked by the second substrate

– cysteine, hydrogen sulfide, or methanethiol – to yield cystathionine, homocyste-

ine, or methionine, respectively. Each monomer is composed of three subdomains.

An N-terminal domain has an extended loop structure, which protrudes from the

bulk of the monomer, forming a clamp to the neighboring monomer. The large

PLP-binding domain with a mostly parallel seven-stranded β-sheet at its center

contains the active site. The C-terminal domain with a slightly twisted antiparallel

β-sheet is packed against the PLP-binding domain, contributing to the formation of

the compact monomer shape.

A

D
C

B

E144 Y101
M77

D173

T175

R361

Y199
N201

T197

R48*

Y46*

Fig. 4 Structures of MetB, MetY and MetZ. (a) Tetramers with PLPs bound to each monomer

(MetB of E. coli). PLP is represented as stick model. (b) Superposition of monomers from four

different enzymes; MetB of E. coli is shown in blue, MetB of M. ulcerans in cyan, MetZ of

M. tuberculosis in red and MetY of C. jejuni in orange. PLP in the active site is shown in yellow.
(c) Substrate access channel formed in dimerization interface (MetB of E. coli). (d) Highly

conserved active site residues in four enzymes. Residues indicated are from MetB of E. coli and
shown in the thick stick model while corresponding residues from other three enzymes are shown

in the thin stick model with the color scheme used in (b). * Indicates residues from the neighboring

monomer
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Figure 4b showed superposed MetB of E. coli with three other structures to

check the overall similarities. MetB of E. coli (PDB ID: 1CS1 [73]) was aligned to

MetB of Mycobacterium ulcerans (PDB ID: 3QI6, 3QHX [74]), MetY of Cam-
pylobacter jejuni (PDB ID:4OC9 [75]), and MetZ of Mycobacterium tuberculosis

(PDB ID: 3NDN [76]) with less than 1.8 Å of Cα backbone RMSD. All secondary

structural elements are well superposed with a few exceptions (Fig. 4b).

The active site appears as a relatively large cavity open to solvent in the

monomeric form, but an access channel for substrates is formed in the dimer

(Fig. 4c). PLP is covalently attached via a Schiff base linkage to Lys198 (nomen-

clature of MetB of E. coli). Besides the covalent bond, the cofactor is anchored

predominantly in the active site through its phosphate group, through which several

hydrogen bonds interact with protein residues, including the side chains of Tyr46*,

Arg48* by charge–charge interactions. The equivalent residues to Tyr101 of MetB

form π-stacking interactions with the pyridine ring of PLP. Together with Tyr101,

Thr175 and Ser195 sandwich PLP in the active site. The catalytically important

Asp173 forms a salt bridge to the PLP pyridine nitrogen (N1), thereby increasing

the electrophilic propensity of PLP. Besides Lys198 and Asp173, the conserved

Arg361 is assumed to interact with the α-carboxylate group of the incoming

substrate. The positions of key conserved residues mentioned above (Lys198,

Tyr101, Tyr46*, Arg48* and Asp173) are closely aligned (Fig. 4d). An inhibitor

and SO4
2� molecules bound to MetB of M. ulcerans suggest possible positions of

acyl groups in the substrates [74] (see Sect. 2.3.3).

2.3.3 Structure–Function Relationships

Despite having highly conserved active sites, there are regions of divergence within

the overall structures of the various enzymes. One of major difference is shown in

the substrate access channel. In MetB of E. coli, the regions consist of residues

339–358 from one monomer and residues 30–50 and 215–230 from an adjacent

monomer (Fig. 5a). A larger cavity is formed in MetB of E. coli than in MetY and

MetZ. This is due to the three regions being arranged farther from each other, and

residues 30–50 include coils in MetBs, while MetY and MetZ have an additional

helix protruding toward the active site. Usually MetY and MetZ have longer

sequences in this region based on sequence alignment (Fig. S5). MetY of C. jejuni
has longer structures near residues 215–230 of MetB of E. coli, and it causes an

even narrower channel to the active site. Interestingly, in MetZ positive charges are

found near the entrance to the active site (Fig. 5b). In MetZ, either Arg or His is

positioned toward the SO4
2� ion, which is considered to be the position of the

succinate group of OSH. It is the same in MetB of E. coli and M. ulcerans, which
use OSH as a substrate. MetY has an Asp or Gln on the corresponding position.

The differences observed above may determine preferences for substrates with

different sizes and electrostatics. However, comparative data on substrate specific-

ity in these four enzymes is required to establish detailed structure–function
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relationships. In summary, sulfur-assimilating enzymes have high structural simi-

larities but show different substrate preferences with flexibility on other substrates.

Engineered enzymes would make it possible to utilize diverse sulfur sources and

each O-acylhomoserine more efficiently. Examining structural elements responsi-

ble for feedback inhibition by methionine in MetY could be another target. Struc-

tural investigations comparing MetY with MetB and MetZ could be one solution

because MetZ has no or highly limited feedback regulation by methionine [71].

A

B

339-358

30-50*

215-230*

R116(MetB)

H352(MetB)

R248(MetZ)

R49*

R48*

H249(MetZ)

R106
Y101

Y101

R48*

Fig. 5 (a) Three regions showing variations of sequences and structures in MetB of E. coli, MetZ

of M. tuberculosis and MetY of C. jejuni. The same superposition and color scheme were used as

Fig. 4b. Left region covers residues 339–358 in monomer A. In upper right region are residues

215–230 in monomer B, and helix in orange (MetY of C. jejuni) is particularly tilted toward active
site. Region on the center of bottom indicates residues 30–50 in monomer B and it contrasts that

helical structures of MetY andMetZ and coiled structures of MetB. (b) Positively charged residues

around SO4
2� molecule which is presumed to be a binding site of succinyl moiety. While MetB

and MetZ utilizing OSH have His or Arg residues, MetY utilizing OAH does not show such

residues. With this lack of interactions it is possible that OAH binding more favorably. Arg

represented in orange stick is from MetY but it lies across the active site and with conformational

changes it can superpose with R248 (MetZ) and R49 (MetB of E. coli). SO4
2� ion and an inhibitor

4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid are shown in the ball-and-stick model. Res-

idues fromMetB ofM. ulcerans are indicated as MetB in parenthesis and MetZ ofM. tuberculosis
as MetZ. Otherwise residues are from MetB of E. coli
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Next, we shift our attention from individual enzymes to whole cells. Functions

and regulations of purified enzymes may behave in unexpected ways in specific

microbial strains where hundreds of metabolic pathways are signaling to one

another. Therefore, it is recommended that characterization of enzymes and strain

development are performed simultaneously.

3 Strain Development

For industrial production of methionine through fermentation, the process must be

as economical as chemical methods. Therefore, development of appropriate strains

is of the utmost importance. Diverse microorganisms have been studied and one of

the most common techniques is classical mutagenesis [77]. Microorganisms are

modified using mutagens such as methylnitronitrosoguanidine and ultraviolet radi-

ation and then selected by the resistance to a high concentration of amino acid

analogues. Currently, strains are primarily developed through genetic modifications

based on metabolic engineering [13], which is more specific and targeted than

classical mutagenesis. This section reviews methods used to develop microorgan-

isms producing methionine and how such efforts improve the yield of methionine

fermentation.

3.1 Strain Development for Methionine Production

3.1.1 Classical Mutagenesis

Traditionally, mutagenesis has been used for screening mutants that are resistant to

amino acid analogues. To find methionine-producing strains, classical mutagenesis

was applied using ethionine, selenomethionine, norleucine, and methionine

hydroxamate as analogues [78]. Mutants of Brevibacterium heali were screened

based on ethionine resistance and were reported to yield 4–25.5 g/L of methionine

[79]. Resistant mutants to multi-methionine analogues were also screened in Cory-
nebacterium lilium [80] and Bacillus megateria [81] and synthesized 2–4.5 g/L of

methionine. A strain of E. coli, generated among mutants resistant to threonine and

methionine analogues, was reported to produce 2 g/L of methionine [82, 83].

However, one study [84] called into question possible errors in the reported

concentrations of methionine. The study asserts that the amount of methionine

produced was higher than the theoretical yields that could be obtained from the

sulfur contained in the production media. Moreover, the amount of methionine,

even if it was reported correctly, is still far lower than required for mass production.

Classical mutagenesis methods paved the way for the methionine fermentation but

these techniques still have too many limitations.
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3.1.2 Metabolic Engineering

Strain development has recently evolved using rational design employing meta-

bolic engineering. E. coli and C. glutamicum are the best candidates for methionine

production since they have been successfully used for the industrial fermentation of

other amino acids.

Theoretical yields of methionine are 52 and 49.3% in E. coli and C. glutamicum,
respectively, using sulfate as a sulfur source [85]. Differences in the theoretical

yields are closely related to the NADPH production in the two species. When

reducing sulfate to sulfide, two ATP and four NADPH are consumed. Therefore,

methionine needs four additional NADPH molecules compared with lysine which

does not incorporate sulfur. In total, eight NADPH molecules are used to produce

methionine. E. coli generates NADPH by transhydrogenase [86], while

C. glutamicum depends on pentose phosphate pathways [87]. In the pentose phos-

phate pathway, CO2 loss is inevitable and leads to lower theoretical methionine

yields. However, the gap between the two species could be overcome by introduc-

ing key genes and should not be a problem during the strain development.

The theoretical yield of methionine is most affected by the sulfur source since

sulfur assimilation needs high energy and high reducing power [85, 88] (Fig. 6).

Sulfate and thiosulfate are oxidized sulfurs, which can be directly used for fermen-

tations, and the methionine yields could be 49.3 and 60.8%, respectively, in

C. glutamicum. As described in Fig. 6, thiosulfate saves more energy and reducing

power than sulfate, which increases the yield. The yields could be further improved

with reduced sulfur such as hydrogen sulfide (H2S) and methanethiol up to 67.8 and

90.0%, respectively. However, H2S and methanethiol are highly volatile, flamma-

ble, and toxic, which properties are not applicable to fermentation using large

amounts of air. Therefore, thiosulfate is regarded as the most optimal sulfur source

in the methionine fermentation. Table 1 summarizes calculated methionine yields

in E. coli and C. glutamicum with different sulfur sources.

Sulfate APS

APS : Adenosine 5’-phosphosulfate
PAS : 3’-phosphoadenylyl-sulfate
TRDRE : Reduced thioredoxin
TRDOX : Oxidized thioredoxin

PAS Sulfite H2S

ATP ADP

CysDN
Sulfateex

CysZ CysC CysH CysJI

ATP PPi ATP ADP TRDRE TRDOX

3’, 5’ ADP
3 NADPH
5 H+

3 NADP+

3 H2O

Cys
Met

CysZ : Sulfate transporter
CysPUW : Sulfate/thiosulfate transporter
CysDN : Sulfate adenylyltransferase
CysC : Adenylylsulfate kinase
CysH : PAS reductase
CysJI : Sulfite reductase

ThiosulfateThiosulfateex

HCN 2 H+

CysPUW

ATP ADP

Fig. 6 Sulfur assimilation pathway
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3.2 Methionine Production Yield in Previous Studies

3.2.1 E. coli Engineering

E. coli is certainly one of the most useful microorganisms because of the abundance

of genetic information and engineering tools. In this section, we list four examples

of strain developments performed with E. coli.
Nakamori et al. [89] achieved a yield of 0.236 g/L of methionine using the

following approach. In the E. coli W3110 strain, MetJ, methionine repressor and

ThrB, ThrC, which competes for homoserine, were removed. Furthermore, the

activity of MetK was reduced to prevent methionine degradation. Next, MetA

was overexpressed with mutations in Arg27Cys, Ile296Ser, and Pro298Leu to

suppress the feedback inhibition.

Another approach yielded 4.8 g/L of methionine by enhancing methionine efflux

through overexpression of the YjeH transporter in the E. coli W3110 strain, with a

feedback-resistant MetA (Tyr294Cys) expression and metJ deletion [90].

When starting from the threonine-producing mutant strain, E. coli TF4076,

6.6 g/L of methionine production was reported [55]. Similar to the prior two

examples, the metJ and the thrB genes were deleted, and feedback-resistant MetA

(Asn290His) was overexpressed. Additionally, MetF, which acts in the methyl-

THF pathway, and MetX and MetY, derived from L. meyeri, were overexpressed.
E. coli MG1655 was developed as well to produce 35 g/L of methionine

corresponding to a 20–24% of yield (gMet/gGlucose) [53]. The metJ gene was deleted
and metA was overexpressed with mutations abolishing feedback inhibition. thrA

Table 1 Theoretical yields of methionine with different sulfur sources [85]

Strain Genetic modification

Sulfur

sources

Additional C1

source

Theoretical

yield [%C]

E. coli – Sulfate – 52.0%

Lacking

transhydrogenase

Sulfate – 49.9%

Lacking glycine cleav-

age system

Sulfate – 45.5%

C. glutamicum – Sulfate – 49.3%

Active

transhydrogenase

Sulfate – 49.5%

Active glycine cleavage

system

Sulfate – 57.1%

– Thiosulfate – 60.8%

– Thiosulfate Formate 66.3%

– Sulfide – 67.8%

– Sulfide Formate 74.8%

– Sulfate Formate 52.1%

– Methanethiol – 90.9%
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was also overexpressed with reduced feedback inhibition by threonine. Other genes

with increased activities weremetF,metH, gcVTHP, and glyA in the C1 metabolism

pathways; cysE, serA, serB, and serC in the cysteine biosynthesis pathways; and

cysPUWAM and cysJIH in the sulfur assimilation pathways.

3.2.2 C. glutamicum Engineering

C. glutamicum is well known as a strain for glutamate and lysine fermentation and

several studies are ongoing for methionine production.

C. glutamicum DSM 5715 derived from an S-2-aminoethyl-cysteine-resistant

lysine producer was reported to produce 16 g/L of methionine by the

overexpression of metX and metY [91]. Another lysine producer, C. glutamicum
MH20-22B (leu�, lysCFBR) was modified to produce 2.9 g/L methionine by deleting

thrB and introducing homFBR [92].

Zelder et al. [93] used C. glutamicum ATCC13032 for enhanced methionine

production as well. lysC and hom with feedback resistance were introduced and

homoserine kinase (hsk) was weakened to suppress the competing pathway.

Overexpressed genes were metH, metY, and metX, which are related to methionine

biosynthesis, and metF in the methyl donor pathway. Deletions were made in a

transcriptional repressor (mcbR), a methionine uptaker (metQ), and the vitamin B12

uptake repressor (btuR2). As a result, the strain yielded 6.8 g/L of methionine.

Slightly different approaches were taken with C. glutamicum ATCC13032 to

achieve 6.3 g/L of methionine by fed-batch fermentation. In this strain, thrB and

mcbR were deleted, feedback-resistant lysC was introduced, and BrnFE was

overexpressed to efflux methionine [94].

In summary, the strain showing the best performance was E. coli MG1655 by

Bestel-corre et al. [53]. However, the production efficiency by this method is still

far behind the commercial production scale.

3.3 Semifusion or Fusion Process for Methionine Production

Major huddles in methionine biosynthesis are high energy demands, high require-

ment for the reducing power, and complexity of the methyl donor pathways

(C1 metabolism). Furthermore, intermediates such as homocysteine are toxic to

the host cells thereby causing cells to develop regulating mechanisms for self-

protection [95]. Thus, strain development still has a long way to go to catch up to

the chemical synthesis from an economic standpoint. However, there have been

several studies to narrow this gap using semifusion or fusion fermentation

processes.

The first attempt was the use of reduced sulfur in the fermentation to overcome

issues of ATP and NADPH [85, 88, 96–99]. The theoretical methionine yield is

90.9% with methanethiol, by the donation of methyl group and sulfur together. As
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an analogue of methanethiol, dimethyl disulfide (DMDS) was studied in

C. glutamicum [99]. After deleting metB, metF, metE (or metH), C. glutamicum
was still viable without external methionine when given DMDS. It was determined

that DMDS is able to act as a substrate of MetY and that DMDS could be another

sulfur source for methionine. DMDS was released to C. glutamicum slowly using

oils as a delivery system due to a high rate of evaporation. By this method, the

M2014 strain (homFBR, lysFBR, ethionineR, thrBreduced, metH, metY, metX
overexpression) produced 0.5–0.7 g/L of methionine. However, toxicity is still

unavoidable with reduced sulfur. This method showed the growth inhibition at

0.8% DMDS and It would be important to overcome the toxicity of reduced sulfur

in the future.

Another approach is a combination of fermentation and enzymatic conversion.

After synthesizing the methionine precursor, O-acylhomoserine by fermentation,

reduced sulfur can be assimilated through enzymatic conversion to produce methi-

onine [55]. O-acylhomoserine synthesis does not use sulfur assimilation pathways

or C1 metabolism. Thus, it costs less energy and reducing power and it can avoid

tight cellular regulation by methionine. Furthermore, enzymatic conversion is free

from sulfur toxicity because it is performed without living cells. Theoretical

yield of OAH is 80.3% (gOAH/gGlucose), and the enzymatic conversion yield is

92.5% (gMet/gOAH) by MetY with OAH and methanethiol as substrates. As

such, the overall theoretical yield of methionine becomes 74.3% (gMET/gGlucose).

This value is lower than using methanethiol directly during the fermentation

but it is a promising approach economically since byproducts acetate can

be recycled as a carbon source. When using OSH as a precursor, the yield is

81.2% (gOSH/gGlucose) for OSH and 68.0% (gMET/gOSH) for enzymatic conversion

and overall 55.2% (gMet/gGlucose) for methionine. In terms of methionine yield, it is

less productive than OAH but it is an attractive pathway in that 1 mol of methionine

produces 0.8 mol of succinate as a byproduct, which has potential as a bio-based C4

chemical. It is expected that the two methionine precursors – OSH and OAH –

could be used interchangeably according to economic trends (Fig. 7).

This two-step process was industrialized by CJ CheilJedang-Arkema with

80,000 tons per year production capacity in 2014 [6], which is the first L-methionine

industrial production by fermentation. Here is a brief description of the two-step

process based on Kim et al. [71]. E. coli strain producing OAH was prepared by the

deletion of metB, thrB, and metA to maximize the accumulation of homoserine with

the overexpression of metX. The strain yielded OAH greater than 55 g/L in a

fed-batch fermentor. In this step, MetA of E. coli with Gly111Glu point mutation

could be used instead. As previously mentioned, this mutation can change the

product from OSH to OAH, which can make a E. coli host strain without insertion

of foreign genes [100].

In second step, enzymes converting OAH to methionine were selected in two

criteria: substrate specificity and feedback resistance by methionine. Various

enzymes from microorganisms were analyzed in terms of OAH or OSH, using

methanethiol as a sulfur source. It was found that several enzymes were able to

utilize both OSH and OAH as substrates with different degrees of efficiencies.
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Notably, some enzymes annotated as MetZ have higher specificity for OAH than

for OSH. Then, feedback inhibition of these enzymes was analyzed in vitro. It was

found that the product inhibition of MetZs is relatively less than that of MetYs.

Residual activities of MetYs from P. aeruginosa and L. meyeri were approximately

50%, while MetZs from P. putida, C. violaceum, and H. neptunium showed over

90% of residual activities in the presence of 5 g/L methionine. Considering these

aspects, MetZ was the best candidate because it has less product inhibition and high

acceptability of methanethiol and OAH. Methionine could be produced with MetZ

derived from Hypomonas sp. with a yield of 40 g/L using OAH fermentation broth

and methanethiol, which was the highest concentration reported [71].

4 Conclusion

Since the 1950s, processes for synthesizing DL-methionine chemically have been

optimized and have become the most competitive commercial process. During the

last 30 years, research efforts toward improving L-methionine fermentation have

been made, but there still remains some gap between our understanding of micro-

organisms and amino acid mass production. Here, we briefly review the enzymes

related to the O-acylhomoserine production and sulfur assimilation. An interesting

point is that homoserine succinyltransferase (MetA) has tight feedback inhibition,
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while OSH sulfhydrylase (MetZ) has little feedback inhibition with broad substrate

specificity. However, homoserine acetyltransferase (MetX) has no feedback inhi-

bition while OAH sulfhydrylase (MetY) has strong feedback inhibition with tight

substrate specificity. Hence, at least one enzyme of each pathway – OAH or OSH –

retains tight regulation, which is one of the major hurdles in the methionine

production. However, these characteristics could be a good starting point for

avoiding methionine regulation by the combination of two enzymes of each path-

way. Two-step process using MetX and MetZ in OAH pathway could be one

example for this combination, and there might be more opportunities for this kind

of mixture.

There are still many aspects of these enzymes that have not yet been discovered.

With a sustained study on the structure–function relationships of these enzymes

accompanied by a metabolic engineering for host strains, it is anticipated that L-

methionine fermentation technologies will grow to be competitive with chemical

synthesis in the foreseeable future.
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2. Jankowski J, Kubińska M, Zduńczyk Z (2014) Nutritional and immunomodulatory function

of methionine in poultry diets – a review. Ann Anim Sci 14:17–31

3. Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35:83–108

4. Hummel W, Geueke B, Osswald S, Weckbecker C, Huthmacher K (2007) With recombinant

microorganism transformed with polynucleotides encoding the enzymes: D-amino acid

oxidase; L-amino acid dehydrogenase, and an enzyme that regenerates NADH;

overexpression. US7217544 B2, 15 May 2007

5. W€oltinger J, Karau A, Leuchtenberger W, Drauz K (2005) Membrane reactors at Degussa,

vol 92., Advances in Biochemical Engineering Biotechnology

6. FeedInfo (2014) Methionine: supply/demand overview 2014. www.feedinfo.com

7. Lussling T, Muller K-P, Schreyer G, Theissen F (1981) Process for the recovery of methi-

onine and potassium bicarbonate. US4303621 A, 1 Dec 1981

8. Ferla MP, Patrick WM (2014) Bacterial methionine biosynthesis. Microbiology

160:1571–1584

9. Figge R (2007) Methionine biosynthesis in Escherichia coli and Corynebacterium
glutamicum. In: Wendisch V (ed) Amino acid biosynthesis – pathways, regulation and

metabolic engineering, vol 5, Microbiology monographs. Springer, Berlin, pp 163–193

10. Ikeda M, Takeno S (2013) Amino acid production by Corynebacterium glutamicum. In:
Yukawa H, Inui M (eds) Corynebacterium glutamicum, vol 23, Springer. Springer, Berlin, pp
107–147

11. Adrio JL, Demain AL (2006) Genetic improvement of processes yielding microbial products.

FEMS Microbiol Rev 30:187–214

12. Tamano K (2014) Enhancing microbial metabolite and enzyme production: current strategies

and challenges. Front Microbiol 5:718

13. Nielsen J (2001) Metabolic engineering. Appl Microbiol Biotechnol 55:263–283

14. Shiio I, Miyajima R (1969) Concerted inhibition and its reversal by end products of aspartate

kinase in Brevibacterium flavum. J Biochem 65:849–859

172 J. Shim et al.

http://www.feedinfo.com/


15. Kalinowski J, Cremer J, Bachmann B, Eggeling L, Sahm H, Pühler A (1991) Genetic and

biochemical analysis of the aspartokinase from Corynebacterium glutamicum. Mol Microbiol

5:1197–1204

16. Peoples OP, Liebl W, Bodis M, Maeng PJ, Follettie MT, Archer JA, Sinskey AJ (1988)

Nucleotide sequence and fine structural analysis of the Corynebacterium glutamicum
hom-thrB operon. Mol Microbiol 2:63–72

17. Park SD, Lee JY, Kim Y, Kim JH, Lee HS (1998) Isolation and analysis of metA, a

methionine biosynthetic gene encoding homoserine acetyltransferase in Corynebacterium
glutamicum. Mol Cells 8:286–294

18. Hwang BJ, Kim Y, Kim HB, Hwang HJ, Kim JH, Lee HS (1999) Analysis of Corynebacte-
rium glutamicum methionine biosynthetic pathway: isolation and analysis of metB encoding

cystathionine gamma-synthase. Mol Cells 9:300–308

19. Rossol I, Pühler A (1992) The Corynebacterium glutamicum aecD gene encodes a C-S lyase

with alpha, beta-elimination activity that degrades aminoethylcysteine. J Bacteriol

174:2968–2977

20. Hwang BJ, Yeom HJ, Kim YH, Lee HS (2002) Corynebacterium glutamicum utilizes both

transsulfuration and direct sulfhydrylation pathways for methionine biosynthesis. J Bacteriol

184:1277–1286

21. Lee HS, Hwang BJ (2003) Methionine biosynthesis and its regulation in Corynebacterium
glutamicum: parallel pathways of transsulfuration and direct sulfhydrylation. Appl Microbiol

Biotechnol 62:459–467

22. Rückert C, Pühler A, Kalinowski J (2003) Genome-wide analysis of the L-methionine

biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homol-

ogous complementation. J Biotechnol 104:213–228

23. Rey DA, Nentwich SS, Koch DJ, Rückert C, Pühler A, Tauch A, Kalinowski J (2005) The

McbR repressor modulated by the effector substance S-adenosylhomocysteine controls

directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium
glutamicum ATCC 13032. Mol Microbiol 56:871–887

24. Ozaki H, Shiio I (1982) Methionine biosynthesis in Brevibacterium flavum: properties and
essential role of O-acetylhomoserine sulfhydrylase. J Biochem 91:1163–1171

25. Cassan M, Parsot C, Cohen GN, Patte JC (1986) Nucleotide sequence of lysC gene encoding

the lysine-sensitive aspartokinase III of Escherichia coli K12. Evolutionary pathway leading

to three isofunctional enzymes. J Biol Chem 261:1052–1057

26. Clark RB, Ogilvie JW (1972) Aspartokinase I-homoserine dehydrogenase I of Escherichia
coli K12. Subunit molecular weight and nicotinamide-adenine dinucleotide phosphate bind-

ing. Biochemistry (Mosc) 11:1278–1282

27. Zakin MM, Duchange N, Ferrara P, Cohen GN (1983) Nucleotide sequence of the metL gene

of Escherichia coli. Its product, the bifunctional aspartokinase ii-homoserine dehydrogenase

II, and the bifunctional product of the thrA gene, aspartokinase I-homoserine

dehydrogenase I, derive from a common ancestor. J Biol Chem 258:3028–3031

28. Cohen GN (1985) Aspartate-semialdehyde dehydrogenase from Escherichia coli. Methods

Enzymol 113:600–602

29. Kikuchi Y, Kojima H, Tanaka T (1999) Mutational analysis of the feedback sites of lysine-

sensitive aspartokinase of Escherichia coli. FEMS Microbiol Lett 173:211–215

30. Wright JK, Takahashi M (1977) Interaction of substrates and inhibitors with the homoserine

dehydrogenase of kinase-inactivated aspartokinase I. Biochemistry (Mosc) 16:1541–1548

31. Saint-Girons I, Duchange N, Cohen GN, Zakin MM (1984) Structure and autoregulation of

the metJ regulatory gene in Escherichia coli. J Biol Chem 259:14282–14285

32. Duclos B, Cortay JC, Bleicher F, Ron EZ, Richaud C, Saint Girons I, Cozzone AJ (1989)

Nucleotide sequence of the metA gene encoding homoserine trans-succinylase in Escherichia
coli. Nucleic Acids Res 17:2856

33. Belfaiza J, Parsot C, Martel A, de la Tour CB, Margarita D, Cohen GN, Saint-Girons I (1986)

Evolution in biosynthetic pathways: two enzymes catalyzing consecutive steps in methionine

L-Methionine Production 173



biosynthesis originate from a common ancestor and possess a similar regulatory region. Proc

Natl Acad Sci U S A 83:867–871

34. Banerjee RV, Johnston NL, Sobeski JK, Datta P, Matthews RG (1989) Cloning and sequence

analysis of the Escherichia coli metH gene encoding cobalamin-dependent methionine

synthase and isolation of a tryptic fragment containing the cobalamin-binding domain. J

Biol Chem 264:13888–13895

35. Maxon ME, Wigboldus J, Brot N, Weissbach H (1990) Structure-function studies on

Escherichia coli MetR protein, a putative prokaryotic leucine zipper protein. Proc Natl

Acad Sci U S A 87:7076–7079

36. Lee LW, Ravel JM, Shive W (1966) Multimetabolite control of a biosynthetic pathway by

sequential metabolites. J Biol Chem 241(22):5479–5480

37. Mondal S, Das YB, Chatterjee SP (1996) Methionine production by microorganisms. Folia

Microbiol 41(6):465–472

38. Born TL, Blanchard JS (1999) Enzyme-catalyzed acylation of homoserine: mechanistic

characterization of the Escherichia coli metA-encoded homoserine transsuccinylase. Bio-

chemistry (Mosc) 38(43):14416–14423

39. Born TL, Franklin M, Blanchard JS (2000) Enzyme-catalyzed acylation of homoserine:

mechanistic characterization of the Haemophilus influenzae met2-encoded homoserine

transacetylase. Biochemistry (Mosc) 39(29):8556–8564

40. Zubieta C, Arkus KAJ, Cahoon RE, Jez JM (2008) A single amino acid change is responsible

for evolution of acyltransferase specificity in bacterial methionine biosynthesis. J Biol Chem

283(12):7561–7567

41. Zubieta C, Krishna S, McMullan D, Miller MD, Abdubek P, Agarwalla S, Ambing E,

Astakhova T, Axelrod HL, Carlton D et al (2007) Crystal structure of homoserine

O-succinyltransferase from Bacillus cereus at 2.4 Å resolution. Proteins 68(4):999–1005

42. Crystal structure of Homoserine O-succinyltransferase (EC 2.3.1.46) (Homoserine

O-transsuccinylase) (HTS) (tm0881) from THERMOTOGA MARITIMA at 2.52 A resolu-

tion (2006) Joint Center for Structural Genomics

43. Goudarzi M, Born TL (2006) Purification and characterization of Thermotoga maritima
homoserine transsuccinylase indicates it is a transacetylase. Extremophiles 10(5):469–478

44. Coe DM, Viola RE (2007) Assessing the roles of essential functional groups in the mecha-

nism of homoserine succinyltransferase. Arch Biochem Biophys 461(2):211–218

45. Ziegler K, Noble SM, Mutumanje E, Bishop B, Huddler DP, Born TL (2007) Identification of

catalytic cysteine, histidine, and lysine residues in Escherichia coli homoserine

transsuccinylase. Biochemistry (Mosc) 46(10):2674–2683

46. Ziegler K, Yusupov M, Bishop B, Born TL (2007) Substrate analysis of homoserine

acyltransferase from Bacillus cereus. Biochem Biophys Res Commun 361(2):510–515

47. Michaeli S, Ron EZ (1984) Expression of the metA gene of Escherichia coli K-12 in

recombinant plasmids. FEMS Microbiol Lett 23(2–3):125–129

48. Gur E, Biran D, Gazit E, Ron EZ (2002) In vivo aggregation of a single enzyme limits growth

of Escherichia coli at elevated temperatures. Mol Microbiol 46(5):1391–1397

49. Mordukhova EA, Pan JG (2014) Stabilization of homoserine-O-succinyltransferase (MetA)

decreases the frequency of persisters in Escherichia coli under stressful conditions. PLoS One

9(10):e110504

50. Ron EZ, Davis BD (1971) Growth rate of Escherichia coli at elevated temperatures: limita-

tion by methionine. J Bacteriol 107(2):391–396

51. Ron EZ, Shani M (1971) Growth rate of Escherichia coli at elevated temperatures: reversible

inhibition of homoserine trans-succinylase. J Bacteriol 107(2):397–400

52. Usuda Y, Kurahashi O (2009) Method for producing L-methionine by fermentation. United

States Patent US7611873 B1, 3 Nov 2009

53. Bestel-corre G, Chateau M, Figge R, Raynaud C, Soucaille P (2014) Recombinant enzyme

with altered feedback sensitivity. United States Patent US8795990 B2, 5 Aug 2014

174 J. Shim et al.



54. Leonhartsberger S, Winterhalter C, Pfeiffer K, Bauer B (2007) Feedback-resistant

homoserine transsuccinylases having a modified c-terminus. United States Patent

US7195897 B2, 27 Mar 2007

55. Brazeau B, Chang JS, Cho KM, Cho YW, Desouza M, Jessen HJ, Kim SY, Niu W, Sanchez-

Riera FA, Shin YU, Um HW (2013) Compositions and methods of producing methionine.

United States Patent US8551742 B2, 8 Oct 2013

56. Mordukhova EA, Lee HS, Pan JG (2008) Improved thermostability and acetic acid tolerance

of Escherichia coli via directed evolution of homoserine o-succinyltransferase. Appl Environ

Microbiol 74(24):7660–7668
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Boosting Anaplerotic Reactions by Pyruvate

Kinase Gene Deletion

and Phosphoenolpyruvate Carboxylase

Desensitization for Glutamic Acid and Lysine

Production in Corynebacterium glutamicum

Atsushi Yokota, Kazunori Sawada, and Masaru Wada

Abstract In the 1980s, Shiio and coworkers demonstrated using random mutagen-

esis that the following three phenotypes were effective for boosting lysine produc-

tion by Corynebacterium glutamicum: (1) low-activity-level citrate synthase (CSL),
(2) phosphoenolpyruvate carboxylase (PEPC) resistant to feedback inhibition by

aspartic acid (PEPCR), and (3) pyruvate kinase (PYK) deficiency. Here, we

reevaluated these phenotypes and their interrelationship in lysine production

using recombinant DNA techniques.

The pyk deletion and PEPCR (D299N in ppc) independently showed marginal

effects on lysine production, but both phenotypes synergistically increased lysine

yield, demonstrating the importance of PEPC as an anaplerotic enzyme in lysine

production. Similar effects were also found for glutamic acid production. CSL

(S252C in gltA) further increased lysine yield. Thus, using molecular techniques,

the combination of these three phenotypes was reconfirmed to be effective for

lysine production. However, a simple CSL mutant showed instabilities in growth

and lysine yield.

Surprisingly, the pyk deletion was found to increase biomass production in wild-

type C. glutamicum ATCC13032 under biotin-sufficient conditions. The mutant

showed a 37% increase in growth (based on OD660) compared with the

ATCC13032 strain in a complex medium containing 100 g/L glucose. Metabolome

analysis revealed the intracellular accumulation of excess precursor metabolites.

Thus, their conversion into biomass was considered to relieve the metabolic
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distortion in the pyk-deleted mutant. Detailed physiological studies of various pyk-
deleted mutants also suggested that malate:quinone oxidoreductase (MQO) is

important to control both the intracellular oxaloacetic acid (OAA) level and respi-

ration rate. These findings may facilitate the rational use of C. glutamicum in

fermentation industries.

Keywords Anaplerotic pathway, Citrate synthase, Corynebacterium glutamicum,
Feedback inhibition, Glutamic acid, Lysine, Malate:quinone oxidoreductase,

Phosphoenolpyruvate carboxylase, Pyruvate kinase, Respiration
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1 Contribution of Anaplerotic Reactions to Lysine Yield:

Phosphoenolpyruvate Carboxylase vs. Pyruvate

Carboxylase

1.1 Introduction

The anaplerotic reaction that replenishes oxaloacetic acid (OAA) is important for

fermentative production of lysine because OAA, a precursor metabolite for lysine

biosynthesis, is continuously withdrawn from the tricarboxylic acid (TCA) cycle

during lysine production. In other words, an efficient anaplerotic reaction is

required to increase lysine yield. Two anaplerotic reactions operate in Corynebac-
terium glutamicum: the formation of OAA from phosphoenolpyruvate (PEP) by

phosphoenolpyruvate carboxylase (PEPC) and that from pyruvic acid by pyruvate

carboxylase (PC). The contributions of these two reactions to lysine production

have been investigated in detail for over 3 decades. Here, a brief history of these

studies is provided.

1.2 Phosphoenolpyruvate Carboxylase Reaction for Lysine
Production

In the 1980s, Shiio and coworkers were the first to shed light on the PEPC reaction

for lysine production [1]. Using repeated random mutagenesis induced by N-
methyl-N0-nitro-N-nitrosoguanidine (NTG) treatment, they demonstrated enhanced

lysine yields in Brevibacterium flavum (later reclassified as C. glutamicum) mutants

having three distinct phenotypes: (1) low-activity-level citrate synthase (CSL),

(2) PEPC that is resistant to feedback inhibition by aspartic acid (PEPCR), and

(3) a pyruvate kinase (PYK) defect, in either a feedback-inhibition-resistant

aspartokinase (AKR) background or a null-activity homoserine dehydrogenase

background, suggesting the contribution of PEPC to catalyzing an anaplerotic

reaction in lysine production. A PYK-defective mutant, KL-18, derived from an

AKR-type lysine producer, No. 2-190, exhibiting both CSL and PEPCR, is a

representative example of the importance of PEPC as an anaplerotic enzyme for

lysine production ([2], Table 1). As shown in Fig. 1, PEPCR may contribute to

improved lysine production, presumably through a smooth supply of OAA from

PEP. A mutation causing PYK deficiency may block the metabolism of PEP to

pyruvic acid, thereby directing the conversion of PEP into OAA by PEPCR. On the

other hand, CSL is expected to decrease the consumption of OAA, enabling more

OAA and pyruvic acid to be used for lysine biosynthesis. However, as these studies

were conducted using mutants derived randomly by repeated NTG treatment, the

precise contribution of each mutation to lysine production and the interrelationship

among these mutations remain to be elucidated.
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1.3 Pyruvate Carboxylase as an Important Anaplerotic
Enzyme for Lysine Production

From the early 1990s, the development of genetic engineering enabled more precise

metabolic analysis in C. glutamicum. Moreover in 1997, the activity of PC, another

anaplerotic enzyme, was detected for the first time in this species using a

permeabilized cell preparation [3]. This promoted identification of the anaplerotic

reaction that contributes to lysine production in this bacterium. Specifically, for

lysine production, PC but not PEPC was found to be important as a major

anaplerotic enzyme supplying OAA; knockout of the PEPC gene did not affect

lysine production [4], overexpression of the PC gene enhanced it, while inactivation

of the PC gene led to a decrease in lysine yield [5]. Moreover, the positive effects of

PYK-defective mutation on lysine production as reported by Shiio and coworkers

[2, 6] were not observed, and even negative effects were detected in three indepen-

dent studies in which pyk-gene knockout mutants were generated by genetic

engineering [7–9]. As listed in Table 1, introduction of a pyk knockout mutation

to various lysine producers having either AKR or homoserine auxotrophy led to

decreased lysine productivity, to approximately 50% of those of the corresponding

Table 1 Effects of PYK mutation on lysine production in various C. glutamicum strains

Strain Relevant mutation Lys productivity Reference

Brevibacterium flavum

No. 2-190 CSL, PEPCR, AKR 38 g/L (as Lys�HCl) Shiio

et al. [2]

KL-18 PK-defective mutant of

No. 2-190a
43 g/L (as Lys�HCl)

Corynebacterium lactofermentum

ATCC21799 Lys producer, AECR b 26.3 g/L Gubler

et al. [7]

L124 pyk-gene disruptant of
ATCC21799

15.0 g/L

Corynebacterium glutamicum

ATCC21253 Lys producer, hom, leuc 20 g/L Park

et al. [8]

SM575 pyk-gene disruptant of
ATCC21253

14 g/L

Corynebacterium glutamicum

ATCC13032 lysCfbr lysCfbr d 10 mM (from 80 mM

Glc.)

Becker

et al. [9]

ATCC13032 lysCfbr

ΔPYK
pyk-gene deletion of

ATCC13032 lysCfbr
6 mM

aDerived by N-methyl-N0-nitro-N-nitrosoguanidine treatment
bAECR, S-(2-aminoethyl)-L-cysteine resistance
chom, leu, auxotrophic for homoserine and leucine, respectively
dlysCfbr, feedback-desensitized aspartokinase gene with T311I mutation
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parents. Under these conditions, PC has generally been recognized as an important

anaplerotic enzyme for lysine production; the P458S mutation in pyc (enhanced PC
activity) [10] has often been employed to construct lysine producers. Until recently,

these contradictions concerning the effect of PYK mutation on lysine production

were ignored. However, these discrepancies strongly suggested the importance of

the coexistence of PYK defect and PEPCR for the enhancement of lysine produc-

tion, as reported by Shiio and coworkers in their work using random mutagenesis

[2, 6].

1.4 Refocusing on Phosphoenolpyruvate Carboxylase
for Lysine Production

Although the PEPC reaction had been overlooked regarding lysine production,

recently, PEPC was again demonstrated to be important for lysine production by

a study in which its feedback inhibition by aspartic acid was deregulated [11]. Inci-

dentally, a recent molecular technique study also demonstrated the effectiveness of
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Pyruvate

Acetyl-CoA
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PEPCK
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PYK

Malate

MDHMQO
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chain
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e-
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Fig. 1 Metabolic pathways focusing on anaplerotic reactions and respiration-related reactions in

Corynebacterium glutamicum. PEP phosphoenolpyruvate, PYK pyruvate kinase, PEPC phospho-

enolpyruvate carboxylase, PEPCK phosphoenolpyruvate carboxykinase, PC pyruvate carboxyl-

ase, AAT aspartate aminotransferase, CS citrate synthase, LdhA lactate dehydrogenase, LldD
quinone-dependent lactate dehydrogenase, MQO malate:quinone oxidoreductase, MDH malate

dehydrogenase, NDH-II, NADH dehydrogenase-II, e- electron. The dashed line denotes feedback
inhibition

Boosting Anaplerotic Reactions by Pyruvate Kinase Gene Deletion and. . . 185



decreased CS activities on lysine production in C. glutamicum [12]. Therefore, the

interrelationships among mutations conferring the aforementioned phenotypes

described by Shiio and coworkers, namely, CSL, PEPCR, and PYK defect, on lysine

production need to be reevaluated using modern recombinant DNA techniques.

2 Effects of Pyruvate Kinase Mutation on Glutamic Acid

and Lysine Production in the Presence or Absence

of Phosphoenolpyruvate Carboxylase-Desensitizing

Mutation

2.1 Introduction

As described in the previous section, pyk knockout or deletion [7–9] and PEPCR

[11] generated by recombinant DNA techniques were independently identified to

have negative and positive effects on lysine production, respectively. However, the

combined effect of these mutations on lysine production had not been clarified. In

addition, no reports have described the effect of either pyk deletion or PEPCR on

glutamic acid production. Thus, we have investigated the effects of pyk deletion on

glutamic acid and lysine production in the presence or absence of the PEPCR

mutation. In addition, the impact of CSL on lysine production, which Shiio and

coworkers [13] suggested to have a promoting effect, was also evaluated using

recombinant DNA techniques.

2.2 Effects of pyk Deletion and Phosphoenolpyruvate
Carboxylase Desensitization on Glutamic Acid
Production

We derived a pyk-deleted mutant (strain D1) from wild-type C. glutamicum
ATCC13032 using the double-crossover chromosome replacement technique and

investigated its glutamic acid productivity under biotin-limited conditions

[14]. When cultured in a 2-L jar fermentor using Medium F4 (complex medium

with 100 g/L glucose and 3 μg/L biotin), strain D1 produced 25%more glutamic acid

(32.0 g/L) than did ATCC 13032 (25.6 g/L) (Table 2). This was the first demonstra-

tion of the primary effects of pyk deletion in a defined C. glutamicum mutant.

An amino acid residue involved in PEPCR in C. glutamicum ATCC13032 was

next identified based on the PEPC sequence information of C. glutamicum
No. 70 [15]. A single amino acid substitution in PEPC, D299N, was found to

relieve the feedback inhibition by aspartic acid. A simple mutant, strain R1, having

this D299N substitution in PEPC was constructed from ATCC13032 using the same

double-crossover chromosome replacement technique as in the case of strain D1.
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Strain R1 produced significantly more (21% more) glutamic acid (31.0 g/L) than

did ATCC13032 in a jar fermentor culture under biotin-limited conditions in

Medium F4 (Table 2), indicating a positive effect of PEPCR on glutamic acid

production. This effect was also investigated in combination with pyk deletion

[16]. For this purpose, strain DR1, having both a pyk deletion and PEPCR, was

constructed using strain D1 as the parent. Glutamic acid production by strain DR1

was elevated up to 36.9 g/L (Table 2), which was 44% higher than that by

ATCC13032 and significantly higher than those by D1 and R1. Thus, these two

mutations were found to exhibit a synergistic effect on glutamic acid production in

C. glutamicum.

2.3 Effects of pyk Deletion and Phosphoenolpyruvate
Carboxylase Desensitization on Lysine Production

To clarify the effects of pyk deletion and PEPCR on lysine production, these

mutations were introduced into lysine-producing C. glutamicum singly or in com-

bination [17]. The C. glutamicum ATCC13032 mutant having AKR conferred by

T311I amino acid substitution [10] was used as the parent strain (strain P). Strain P

produced 9.36 g/L lysine from 100 g/L glucose in a jar fermentor culture. Under

Table 2 Effects of pyk deletion on glutamic acid and lysine production in C. glutamicum

Strain Relevant mutation

Glutamic

acid (g/L)

Aspartic

acid (g/L)

Lysine

(g/L) Reference

Glutamic acid producer

ATCC13032 Wild-type 25.6 0.44 –a Sawada

et al. [14]

D1 Δpyk 32.0 2.3 –

R1 PEPCR 31.0 1.2 – Wada

et al. [16]

DR1 Δpyk, PEPCR 36.9 4.4 –

Lysine producer

P AKR – – 9.36 Yanase

et al.[17]

D2 AKR, Δpyk – – 10.1

R2 AKR, PEPCR – – 10.8

DR2 AKR, Δpyk, PEPCR – – 12.9b

DRL2 AKR, Δpyk, PEPCR,

CSL
– – 15.7b

PEPCR, desensitized phosphoenolpyruvate carboxylase resulting from the D299N mutation in the

ppc gene
AKR, desensitized aspartokinase resulting from the T311I mutation in the lysC gene

CSL, reduced-activity citrate synthase resulting from the S252C mutation in the gltA gene
aNot applicable
bSignificant differences (P< 0.05) compared with strain P by t-test
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these conditions, while the simple mutant D2 with pyk deletion or R2 with PEPCR

(D299N) showed marginally increased lysine yields (10.1 and 10.8 g/L, respec-

tively; Table 2), the mutant strain DR2 having both mutations showed a synergistic

increase in lysine production (38% higher, 12.9 g/L; Table 2).

2.4 Effect of Citrate Synthase Mutation on Lysine
Production

The importance of CSL in lysine production was previously suggested by Shiio and

coworkers [13]. However, no defined CS-defective mutant had been reported until

recently, when C. glutamicum mutants with CSL created by a molecular approach

were demonstrated to be effective for boosting lysine production [12]. We also

identified a single amino acid substitution (S252C) responsible for CSL in

C. glutamicum No. 70 [15]. This mutation was then introduced into the lysine-

producing mutant strain DR2 having both pyk deletion and PEPCR mutations. The

resulting strain, DRL2, showed a greater increase in lysine yield than did strain

DR2 (22% higher, 15.7 g/L; Table 2). Thus, the CSL mutation was confirmed to be

effective for lysine production, and these three mutations, pyk deletion, PEPCR, and

CSL, were found to enhance lysine yield coordinately in C. glutamicum [17].

2.5 Decreased Phosphoenolpyruvate Carboxykinase Activity
Associated with pyk Deletion

In both glutamic acid-producing and lysine-producing strains, alterations of the

enzyme activities of the anaplerotic pathway were measured. In all of the pyk-
deleted strains evaluated, D1, DR1, D2, and DR2, an increase in PEPC and a

significant decrease in phosphoenolpyruvate carboxykinase (PEPCK) activities

were detected compared with those in the corresponding pyk wild-type strains. As
an example, changes in enzyme activities in strain D1 during culture for glutamic

acid production inMedium F4 under biotin-limited conditions are shown in Table 3.

The strain C1, whose pyk had been complemented by plasmid, showed similar

PEPC and PEPCK activities to those in the wild-type strain, suggesting that the

observed enzyme activity changes were caused by the pyk deletion. PEPCK activ-

ities in strains D2 and DR2 were 17% and 54% of those in the parental strain P and

strain R2, respectively [17].

Since the enhanced PEPC activity and reduced PEPCK activity may boost

anaplerotic flux from PEP to OAA, the pyk-deleted strains seemed to avoid PEP

overaccumulation resulting from the absence of the PYK reaction. Aspartic acid

formation in the culture medium under biotin-limited conditions (Table 2) also

indicated increased OAA availability in the pyk-deleted mutants, as aspartic acid is

synthesized via a one-step aminotransferase reaction from OAA (Fig. 1); the pyk-
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deleted mutants, strains D1 and DR1, produced 2.3 and 4.4 g/L aspartic acid,

respectively, while the wild-type strain produced only 0.44 g/L.

2.6 Interrelationship Among pyk Deletion,
Phosphoenolpyruvate Carboxylase Resistant to Feedback
Inhibition by Aspartic Acid, and Low-Activity-Level
Citrate Synthase

Notably, CSL and PEPCR mutations were simultaneously introduced when a proto-

trophic revertant, No. 15, was derived from a CS-defective glutamic acid auxotroph,

B. flavum No. 214, by Shiio and coworkers [18]. Furthermore, the PYK-defective

mutation was also simultaneously introduced when an S-(2-aminoethyl)-L-cysteine

(AEC)-resistant lysine-producing mutant, No. 1-231, was derived from strain No.

15 harboring both CSL and PEPCR [1]. These findings suggested causal relationships

between these mutations as the probability of two mutations occurring simulta-

neously is extremely low.

It was speculated that PEPCR may relieve the stress caused by CSL, such as the

possible accumulation of PEP. In addition, the PYK-defective mutation seemed to

be necessary to increase the intracellular lysine concentration by an enhanced OAA

Table 3 Activities of enzymes involved in phosphoenolpyruvate/oxaloacetate metabolism and

electron transfer to the respiratory chain

Enzyme

Specific activity [nmol min–1 (mg protein)–1]a

Ratio (D1/wild-type)Wild-type Strain D1 Strain C1

Medium F4b

PYK 872� 56 <10 1209� 220 –c

PEPC 143� 15 175� 1.0 132� 3.0 1.22d

PEPCK 53.5� 4.5 22.6� 4.7 52.9� 9.0 0.422d

MQO 384� 55 417� 89 303� 63 1.09

MDH 638 672 650 1.05

Medium F5e

PYK 931� 197 <10 1057� 199 –

PEPC 103� 7.6 157� 7.9 136� 33 1.52d

PEPCK 186� 14 22.5� 2.9 156� 5.0 0.121d

MQO 698� 99 260� 39 770� 75 0.372d

MDH 1743� 360 1713� 162 1684� 236 0.983

LldD 61.5� 14 35.4� 17 53.9� 22 0.576

SDH 64.0� 6.0 53.7� 16 53.8� 8.7 0.839

NDH-II 451� 35 252� 44 467� 10 0.559d

aValues are mean� SD (n¼ 3) except for MDH (n¼ 2)
bComplex medium containing 3 μg/L biotin. Data from a report by Sawada et al. [14]
cNot applicable
dSignificant differences (P< 0.05) by t-test
eComplex medium containing 60 μg/L biotin. Data from a report by Sawada et al. [20]
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supply to competitively cancel out the toxic effect of a high concentration of AEC, a

lysine analogue. PEPCR may also stabilize the effects of PYK-defective mutation

by enabling the smooth conversion of PEP into OAA, thus avoiding the accumu-

lation of toxic PEP.

The fact that the previously reported CSL mutants [12] were derived from a

strain harboring the P458S mutation in pyc (enhanced PC activity, [10]) supported

our speculation, as this mutation may relieve the metabolic constraints, for exam-

ple, the possible accumulation of pyruvic acid, caused by CSL. We also experienced

difficulty in introducing the CSL mutation (S252C) into strain P to obtain the simple

CSL mutant (unpublished results). The obtained CSL mutant exhibited unstable

growth and lysine productivity (lower than or comparable to that of strain P).

Although this issue was not examined, it is possible that the CSL was compensated

for by the expression of another enzyme possessing CS activity (e.g., methylcitrate

synthase) [19], possibly leading to the observed instability. These findings suggest

that the CSL mutant strains are stable only under conditions in which the anaplerotic

reactions (PEPC or PC) have been enhanced.

2.7 Conclusion

All three mutations focused on by Shiio and coworkers during the 1980s in random

mutagenesis studies, pyk deletion, PEPCR, and CSL, have been shown to have

positive effects on lysine production using modern recombinant DNA techniques

as well. The positive effect of pyk deletion on lysine production was more evident

against a PEPCR background. Under lysine-producing (biotin-sufficient) condi-

tions, PC (Fig. 1), but not PEPC, was regarded as the major anaplerotic enzyme

supplying OAA. However, our results also showed the importance of the PEPC

reaction as an alternative anaplerotic reaction when its feedback inhibition is

deregulated. Thus, our results highlight the potential for pyk deletion in combina-

tion with PEPCR to enhance the anaplerotic reaction to improve lysine and glutamic

acid production in C. glutamicum.

3 Enhanced Biomass Production in a pyk-Deleted Mutant

of Corynebacterium glutamicum Cultured Under Biotin-

Sufficient Conditions

3.1 Introduction

The previous section described evaluation of the fermentation characteristics of a

simple pyk-deleted mutant, strain D1, under biotin-limited conditions, which

revealed 25% higher glutamic acid yield than that in the wild-type strain
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[14]. This section summarizes the results of evaluating strain D1 under biotin-

sufficient conditions. Surprisingly, strain D1 showed increased biomass production,

which has not been described as a phenotype of C. glutamicum mutants during the

long history of studies on this species.

3.2 Enhanced Biomass Production in a pyk-Deleted Mutant
Under Biotin-Sufficient Conditions

Enhanced biomass production in a pyk-deleted mutant under biotin-sufficient

conditions was evaluated in both complex Medium F5 and minimal CGXII

medium, each containing 60 μg/L biotin [20]. Interestingly, strain D1 showed a

37% increase in growth in Medium F5 (based on OD660; Fig. 2A) compared with

the wild-type ATCC13032. An increased rate of specific glucose consumption

(consumed glucose (g) [dry cell weight (g)]�1 h�1) was also observed (Fig. 2B)

(35% higher than that in the parent). In addition, increased biomass production was

observed in the minimal CGXII medium, although the increase (16%, based on

OD660) was smaller than that observed in Medium F5. The pyk-complemented

strain, C1, showed the same growth level and glucose consumption rate as those of

ATCC13032 (Figs. 2A, B), indicating that the observed phenotypes had been

caused by the pyk deletion.
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Fig. 2 Profiles of growth and glucose consumption of the wild-type C. glutamicum ATCC13032

strain, pyk-deleted mutant (D1), and pyk-complemented strain (C1) cultured in Medium F5.

Reproduction of (A) and (B) from the report by Sawada et al. [20]. (A) Growth and (B) glucose

consumption. Symbols: circle, wild-type strain; triangle, D1 strain; square, C1 strain. Values are

means of three independent experiments. Bars represent the standard deviations
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3.3 Measurements of Anaplerotic Enzyme Activities
in a pyk-Deleted Mutant

Both PEPC and PEPCK activities were measured in cells cultured in Medium F5

under biotin-sufficient conditions (Table 3). Strain D1 showed a 52% increase in

PEPC activity and an 88% decrease in PEPCK activity compared with

ATCC13032, which were similar to the changes observed in Medium F4 under

biotin-limited conditions, although the changes were more pronounced in Medium

F5 than in Medium F4. These simultaneous changes in PEPC and PEPCK activities

seemed to represent an important strategy to avoid PEP overaccumulation caused

by pyk deletion, irrespective of the biotin concentration. The pyk-complemented

strain C1 also showed enzyme activities similar to those of the wild-type strain

(Table 3).

3.4 Metabolome Analysis

Clarification of the mechanism underlying the increased biomass production

appeared to be difficult. Eventually, we implemented a metabolome analysis

using cells cultured in CGXII medium, which provided valuable information to

explain the enhanced growth in the mutant [20]. As shown in Table 4, there was

accumulation of many intermediate metabolites located upstream of the PYK

reaction, in both the glycolytic pathway and the pentose phosphate pathway,

some of which were precursor metabolites for biomass production. On the other

hand, the levels of intermediate metabolites located downstream of the PYK

reaction, including the TCA cycle metabolites, were decreased. The intermediate

concentration ratios of D1 to ATCC13032 tended to increase at 11 h (early

stationary phase) compared with those at 6 h (logarithmic growth phase) (Table 4),

suggesting increased metabolic distortion toward early stationary phase culture in

strain D1. The accumulated precursor metabolites seemed to be converted into

biomass, which probably relieved the metabolic distortion in strain D1. Metabolic

changes in strain D1 under biotin-sufficient conditions, deduced from the glucose

consumption rate, changes in enzyme activity, transcriptional analysis, and

metabolome analysis, are summarized in Fig. 3 [20].

3.5 Excretion of Glycolytic Intermediates in pyk-Deleted
Lysine Producers

Notably, previously reported simple pyk-deleted lysine producers (Table 1) not only
showed lower lysine yields than those of their parents, but also produced glycolytic

intermediate-related compounds such as dihydroxyacetone in combination with
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either glycerol or glyceraldehyde [7–9]. These C3 metabolites may be derived from

dihydroxyacetone phosphate or glyceraldehyde phosphate. For example, pyk-gene-
disrupted Corynebacterium lactofermentum L124 produced both 3.5 g/L dihy-

droxyacetone and 14.7 g/L glyceraldehyde along with 15 g/L lysine, while its

parent strain C. lactofermentum ATCC21799 produced 26.3 g/L lysine, without

these C3 metabolites arising as by-products [7].

Under these conditions, our metabolome analysis strongly suggested that, in

simple pyk-deleted lysine-producing mutants, the accumulation of glycolytic inter-

mediates induced C3 metabolites as by-products, which reduced the lysine yield.

On the other hand, in lysine producers such as strain DR2, having both pyk deletion
and PEPCR, glycolytic intermediates seemed to be smoothly converted to OAA by

the deregulated PEPC, leading to improved lysine production without C3 metabo-

lites arising as by-products.

Table 4 Ratios of metabolite concentrations in D1 strain cells to those in wild-type strain cells

cultured in CGXII medium

Metabolite

Ratio

(D6h/W6h)a (D11h/W11h)b

Glycolytic pathway

Glucose 6-phosphatec 2.63 2.59

Fructose 6-phosphatec 2.28 1.79

Fructose 1,6-diphosphate 1.58 1.41

Dihydroxyacetone phosphatec 1.22 1.70

3-Phosphoglyceric acidc 1.93 3.27

Phosphoenolpyruvatec 2.11 5.59

Pyruvic acidc 0.899 0.214

TCA cycle

Acetyl CoAc 0.663 0.542

Citric acid 0.523 0.676

2-Oxoglutaric acidc 1.17 0.816

Succinic acid 0.708 0.522

Fumaric acid 1.03 0.719

Malic acid 0.844 0.656

Pentose phosphate pathway

6-Phosphogluconic acid 1.83 8.23

Ribulose 5-phosphate 1.79 4.32

Ribose 5-phosphatec 1.55 2.57

Sedoheptulose 7-phosphate 2.51 6.31

The data are from Table 5 in the report by Sawada et al. [20]
aRatio of metabolite concentrations in strain D1 cultured for 6 h to those in the wild-type strain

cultured for 6 h
bRatio of metabolite concentrations in strain D1 cultured for 11 h to those in the wild-type strain

cultured for 11 h
cPrecursor metabolites essential for biomass synthesis
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Fig. 3 Schematic model of carbon flux in C. glutamicum strain D1. The cross represents pyk
deletion. Reproduction of Fig. 3 from the report by Sawada et al. [20]. The thick arrow line
indicates increased flux and the dotted arrow line decreased flux, as deduced from enzyme activity

measurements, transcriptional analysis, or rate analysis. Metabolites that increased in abundance

as detected by metabolome analysis of strain D1 are shown in boldface. Asterisk indicates a

precursor metabolite for biomass synthesis. Glucose 6-P glucose 6-phosphate, PTS, PEP carbo-

hydrate phosphotransferase system, fructose 6-P fructose 6-phosphate, fructose1,6-BP
fructose1,6-bisphosphate, GA3-P glyceraldehyde 3-phosphate, DHAP dihydroxyacetone phos-

phate, 3-PG glycerate 3-phosphate, 6-PGL 6-phosphogluconolactone, 6-PG
6-phosphogluconate, Ru5-P ribulose 5-phosphate, R5-P ribose 5-phosphate, S7-P sedoheptulose

7-phosphate, E4-P erythrose 4-phosphate. Other abbreviations are the same as shown in the legend

of Fig. 1

Table 5 Fold changes in the activities of MDH, MQO, and respiration in ATPase and pykmutants

of C. glutamicum compared with those in their respective parental strain

Fold change mutant strain/parent strain

C. glutamicum A-1 C. glutamicum D1 C. glutamicum D2

ATPase-defect Δpyk AKR, Δpyk
Medium G3a Medium F4 Medium F5 Medium L1b

MDH 2.0 " 1.05 ! 0.98 ! 0.96 !
MQO 2.6 " 1.09 ! 0.37 # 0.38 #
Respiration 1.4 " 1.00 ! 0.43# 0.65#
Symbols: upward arrow, increased; rightward arrow, no change; down ward arrow, decreased
aSemisynthetic medium containing 60 μg/L biotin [22]
bLysine production medium containing 300 μg/L biotin [17]
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4 Alterations of Malate:Quinone Oxidoreductase Activity

in a pyk-Deleted Mutant and Elucidation of its

Physiological Roles

4.1 Introduction

Malate:quinone oxidoreductase (MQO) is a unique TCA cycle enzyme that cata-

lyzes the conversion of malate to OAA with concomitant electron transfer to

menaquinone in the respiratory chain [21]. During the characterization of pyk-
deleted mutants, we found another interesting role of MQO in the regulation of

carbon metabolism in C. glutamicum, which is described in this section.

4.2 Malate:Quinone Oxidoreductase as the Main Site
of Entry for Electrons into the Respiratory Chain
in Corynebacterium glutamicum

In C. glutamicum, it has been reported that MQO constitutes an NADH reoxidation

system in coupling with malate dehydrogenase (MDH) that catalyzes the reverse

reaction with concomitant oxidation of NADH. In our previous study [22], mea-

surements of the activities of known enzymes involved in NADH reoxidation other

than MQO and MDH, quinone-dependent lactate dehydrogenase (LldD) and lactate

dehydrogenase (LdhA), both constituting a similar coupling system to MQO/MDH,

and NADH dehydrogenase-II (NDH-II), identified the MQO/MDH coupling sys-

tem as a major gate of electron transfer from NADH to the respiratory chain,

judging from the far higher MQO activity than those of LldD and NDH-II. In line

with these observations, an H+-ATPase-defective mutant of C. glutamicum, strain
A-1, which showed enhanced glucose consumption and respiration, exhibited

elevations in both MQO/MDH activities and their gene expression levels compared

with those in the parent strain, ATCC13032 ([22]; Table 5).

4.3 Malate:Quinone Oxidoreductase as a Controller
of the Respiration Rate in Corynebacterium

glutamicum

The finding that MQO is involved in OAA metabolism prompted us to measure

MQO activity in the simple pyk-deleted mutant, strain D1, during culture under

biotin-sufficient conditions in Medium F5 [20]. In terms of the results, a dramatic

decrease in MQO activity down to 37% of that in the parent ATCC13032 was

found, with a concomitant decrease in the respiration rate to 43% of that in the
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parent (Tables 3 and 5). These changes recovered to the parental levels in the pyk-
complemented strain C1 (Table 3). The decreased MQO activity was regulated at

the transcriptional level [20]. Similar simultaneous decreases in both MQO activity

and the respiration rate were also observed in the pyk-deleted lysine producer strain
D2 (38% MQO activity/65% respiration rate compared with the parent strain P,

Table 5; [17]). In both cases, no significant change in activity was observed in MDH

(Tables 3 and 5). These positive correlations between MQO activities and respira-

tion rates observed in both of the pyk-deleted mutants (strains D1 and D2) and the

aforementioned H+-ATPase-defective mutant (strain A1) led us to conclude that

MQO may be involved in respiration control in C. glutamicum. Measurements of

respiration-related enzymes, namely MQO, LldD, SDH, and NDH-II, in the wild-

type ATCC13032 cultured in Medium F5 again confirmed MQO as the major

enzyme contributing to respiration (Table 3).

4.4 Malate:Quinone Oxidoreductase as a Fine-tuner
of Oxaloacetic Acid Concentration

Apart from the roles played by MQO in respiration control in C. glutamicum, its
possible role in carbon metabolism as a TCA cycle enzyme needs to be considered.

Our study revealed that, in contrast to the case under biotin-sufficient conditions,

such coordinated decreases in MQO activity and respiration rate were not observed

in strain D1 when cultured under biotin-limited conditions in Medium F4 during

glutamic acid production [20]. In pyk-deleted mutants, strains D1 and D2, cultured

under biotin-sufficient conditions, development of an excessive OAA supply was

apparent, which probably led to the decreased MQO activity to relieve OAA

overaccumulation (Fig. 1). However, under biotin-limited conditions in Medium

F4, OAA overaccumulation did not seem to take place as TCA cycle intermediates

including OAA were consumed as precursors of glutamic acid biosynthesis, thereby

probably rendering a decrease in MQO activity unnecessary. These observations

led us to propose an additional role of MQO in carbon metabolism as a modulator or

safety valve to fine-tune the OAA concentration, as well as its role in controlling the

respiration rate (redox balance) in C. glutamicum [20]. The regulation of MQO

gene expression in response to these metabolic constraints needs to be clarified in

the future to obtain a clearer understanding of the roles of MQO.

5 Conclusions

Our studies on pyk-deleted mutants clarified the conditions under which the PEPC

reaction is a useful anaplerotic reaction to supply OAA for lysine and glutamic acid

production in C. glutamicum. Furthermore, detailed physiological studies suggested
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MQO to be important in controlling both carbon flow at the OAA node and

respiration rate/redox balance. These findings may contribute to the rational use

of this bacterium in fermentation industries.
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Exporters for Production of Amino Acids

and Other Small Molecules

Lothar Eggeling

Abstract Microbes are talented catalysts to synthesize valuable small molecules in

their cytosol. However, to make full use of their skills – and that of metabolic

engineers – the export of intracellularly synthesized molecules to the culture

medium has to be considered. This step is as essential as is each step for the

synthesis of the favorite molecule of the metabolic engineer, but is frequently not

taken into account. To export small molecules via the microbial cell envelope, a

range of different types of carrier proteins is recognized to be involved, which are

primary active carriers, secondary active carriers, or proteins increasing diffusion.

Relevant export may require just one carrier as is the case with L-lysine export by

Corynebacterium glutamicum or involve up to four carriers as known for L-cysteine

excretion by Escherichia coli. Meanwhile carriers for a number of small molecules

of biotechnological interest are recognized, like for production of peptides, nucle-

osides, diamines, organic acids, or biofuels. In addition to carriers involved in

amino acid excretion, such carriers and their impact on product formation are

described, as well as the relatedness of export carriers which may serve as a hint

to identify further carriers required to improve product formation by engineering

export.
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1 Introduction

It is standard practice to perform pathway engineering in order to increase product

formation. However, this is much less frequently the case in engineering the export

process. It is now accepted that the export of the product from the cell is just as

important as its synthesis in the cell, but nevertheless there are as yet few examples

of the targeted engineering of export processes. This is due, among other things, to

the fact that with living cells (1) the quantification of export parameters such as

diffusion and active export is laborious, (2) export takes place via various cell

envelope components, (3) the exporter for a specific product may be unknown, and

(4) it may not even exist. Selectively increasing export performance is therefore

relatively laborious especially since it is known that the simple overexpression of

membrane proteins, as takes place with plasmid-encoded carrier genes, can be

detrimental for the cell [1].

Extensive information in particular on the export of small and biotechnologi-

cally relevant molecules is available for the amino acids. Reviews have already

been published on the subject [2–4]. A good overview of the mechanism of all

carriers present in E. coli, respectively, C. glutamicum, as well as their known or

derived functions, can be found [5, 6]. A list comparing all the transporters of

C. glutamicum and Corynebacterium efficiens as deduced from genome sequences

is also available [7]. The present chapter focuses on the export of a specific amino

acid or export of another small molecule or a specific transporter family with
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functionally identified examples of carriers, depending on the information avail-

able. First of all, a very brief overview of transport proteins and how they can be

accessed will be given.

2 Overview on Exporters and Their Isolation

The various proteins involved in the transport of amino acids and other small

solutes can be categorized on the basis of their structural, phylogenetic, and

functional properties. Extensive information can be found in databases and in recent

monographs [8–10]. Figure 1 gives a schematic overview of the efflux of the

proteins involved. Most amino acid export carriers are secondary active carriers.

They use the electrochemical H+ or Na+ potential across the cytoplasmic membrane

as a driving force, whereas primary active carriers use the free energy of ATP

binding and hydrolysis to catalyze export [12]. Only one primary active carrier is

known to be involved in amino acid export which is CydDC of E. coli exporting L-

cysteine to the periplasmic space. Interestingly, most of the exporters improving

fuel tolerance are primary active carriers (Table 1). A special case is tripartite

carriers, where the carrier is linked to a third protein anchored in the outer

Fig. 1 A gallery of proteins involved in small molecule export. E. coli and also C. glutamicum
possess an inner membrane (IM) and an outer membrane (OM) [11]. A large diversity of solute

exporters use the H+ or Na+ potential as the solute driving force (A, B). Tripartite carriers bridge
the inner and the outer membrane (B). So far they are only known from Gram-negative bacteria,

and they export solutes present in the outer leaflet of the IM or present in the periplasmic space.

ABC proteins use ATP to transport solutes across the inner membrane (C). Mechanosensitive

channels operate in an energy-independent manner, usually in response to mechanical stress (D).
This type of export is the major reason for the L-glutamate efflux of C. glutamicum and is not

known to operate for the export of other amino acids, fuels, or antibiotics. Porins are located in the

outer membrane; these are channels and enable the passive diffusion of solutes (E)
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Table 1 Overview on genes relevant for small molecule export

Gene Known function (reference) Origin Category

lysE Export of basic amino [13–15] C. glutamicum LysE

argO Export of Arg and canavanine [16] E. coli LysE

msiA Export of canavanine [17] Mesorhizobium
tianshanense

LysE

rhtA Export of Thr and homoserine [18, 19]. Export of

5-aminolevulinic acid [20]

E. coli DMT

rhtB Export of Thr [21]. Resistance toward Thr,

homoserine, homoserine lactone [22, 23]

E. coli LysE

rhtC Resistance toward Thr [22, 23] E. coli LysE

yeaS
(leuE)

Export of Leu [24]. Resistance toward Thr,

homoserine, homoserine lactone [22]

E. coli LysE

thrE Export of Thr, Ser [25, 26] C. glutamicum ThrE

yddg Export of aromatic amino acids [27] E. coli DMT

ydeD
(eamA)

Export of O-acetylserine and Cys [28]. Export of

dipeptides [29]

E. coli DMT

bcr Export of Cys [30]. Export of dipeptides [29] E. coli MFS

yfiK
(eamB)

Export of O-acetylserine and Cys [31]. Resistance

against Thr [22]

E. coli LysE

ybjE Export of L-lysine [32] E. coli CaCA

cydDC Export of Cys [33] E. coli ABC

yijE Resistance against cystine [34] E. coli DMT

tolC Supports Cys accumulation [35] E. coli OMF

brnFE Export of Met, Leu, Ile, Val [36, 37] C. glutamicum LIV-E

ygaZH Export of Ile [38] E. coli LIV-E

leuE Export of Leu, Val [39] Gluconacetobacter
europaeus

LIV-E

ygaW
(alaE)

Export of Ala [40] E. coli AlaE

ytfF Export of Ala [40] E. coli LysE

mscCG
(YggB)

Efflux of Glu [41, 42] C. glutamicum MscS

cadE Export of cadaverine [43] C. glutamicum MFS

sucE Export of succinate [9, 44] C. glutamicum AAEx

pbuE
(ydhL)

Export of purine base and purine nucleosides [45] B. subtilis MFS

YicM
(Nepl)

Export of purine nucleosides [46] E. coli MFS

cepA Resistance against purine analogues [47] C. glutamicum MFS

acrAB Improvement of limonene accumulation [48] Alcanivorax
borkumensis

ABC

algE Export of neutral lipids [49] Alcanivorax
borkumensis

OM

setA Export of sugars [50] E. coli MFS

FpOAR Export of oxalate [51] Fomitopsis
palustris

DedA

(continued)
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membrane via an auxiliary protein. In this manner, an exit duct is formed releasing

the solute directly into the surroundings of the cell. Components of tripartite

carriers are of relevance for L-cysteine formation and fuel tolerance.

Mechanosensitive channels are energy independent. They are located in the cyto-

plasmic membrane and open in cases of emergency for the fast release of small

internal solutes. The recently discovered significance of a mechanosensitive chan-

nel for L-glutamate export in C. glutamicum was a great surprise. The pore-forming

outer membrane proteins are also energy independent [58], and they may play a role

in small solute formation, too (see below).

The genes involved in export can be isolated in various ways. It is often

necessary to have more extensive knowledge or to perform preceding work in

order to enable increased export of the respective metabolite. Key ways and

means for carrier identification include the following:

• The use of export-negative mutants and isolation of complementing fragments,

as was done for LysE of C. glutamicum [13, 59].

• Isolation of mutants with increased sensitivity to peptides containing the amino

acid of interest and their analysis or complementation. Examples are BrnFE [36]

of C. glutamicum and AlaE of E. coli [60]. A special case is the use of the Keio

collection which was advantageously employed to identify mutants with hyper-

sensitivity to L-cysteine due to the absence of TolC [35].

• Increased resistance to the amino acid or its analogue. rhtA23 of E. coli was
identified in this manner [61].

Table 1 (continued)

Gene Known function (reference) Origin Category

Pdr12p Export of aromatic and branched-chain organic

acids [52]

S. cerevisiae ABC

mdlB Improvement of isopentenol accumulation [53] E. coli ABC

msbA Improvement of canthaxanthin accumulation [54] E. coli ABC

Snq2p Improvement of decane, undecane accumulation

[55]

S. cerevisiae ABC

Pdr5p Improvement of decane, undecane accumulation

[55]

S. cerevisiae ABC

ABC2 Increased tolerance against decane, undecane [56] Yarrowia lipolytica ABC

ABC3 Increased tolerance against decane, undecane [56] Yarrowia lipolytica ABC

ADP1 Increased tolerance against ethanol [57] S. cerevisiae ABC

The categorization was done according to www.tcdb.org/

The abbreviations represent the following families, respectively, superfamilies: LysE L-lysine

exporter, DMT drug/metabolite transporter, ThrE threonine/serine exporter,MFSmajor facilitator,

ABC ATP-binding cassette, OMF outer membrane factor (porin), LIV-E branched-chain amino

acid exporter, AlaE L-alanine exporter, MscS small conductance mechanosensitive ion channel,

AAEx aspartate:alanine exchanger
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• Screening of chromosomal fragments for increased product accumulation. This

was done for ydeD of E. coli [28].
• Identification of genes with increased transcription in response to increased

metabolite concentration, as was used to isolate YddG of E. coli [62], the

diaminopentane exporter [43], and SucE of C. glutamicum [44].

• Screening panels of carrier genes derived from bioinformatic approaches for

increased production. Examples are screening for cysteine exporters [30] or

biofuel exporters [48].

3 L-Lysine Export by C. glutamicum

L-Lysine is one of the amino acids with the strongest growth rate of about 5–7% per

year. Currently, 2.2� 106 tonnes are produced each year, most of which is produced

using C. glutamicum [63]. Pioneering work by Krämer showed that an understand-

ing of the transport processes is absolutely indispensable for product formation

[64]. On this basis, it proved possible to clone the L-lysine exporter of

C. glutamicum [13]. This very first exporter for a biotechnologically relevant

amino acid showed that L-lysine formation with C. glutamicum was completely

dependent on the carrier. This motivated further work on amino acid export carriers,

especially at the Ajinomoto-Genetika Research Institute in Moscow. The transcrip-

tion of lysE is controlled by LysG which displays the characteristic structural

features of an autoregulatory transcriptional regulator from the large group of

LysR-type transcriptional regulators (LTTR) [14]. The L-lysine export process is

very efficient. Two excellent L-lysine producers of C. glutamicum, strain MH20-

22B [65] and strain B-6 [66], both obtained by a series of undirected mutagenesis do

not have a mutation in lysE nor in lysG. A second lysE copy in a molecularly

defined strain leads to an increased L-lysine export rate under certain experimental

conditions, but does not yield increased L-lysine accumulation in fermentations

[67]. The export process requires the transcription of lysE. This only takes place at

an increased cytosolic concentration of about 20 mM L-lysine [14]. As already

mentioned, the transcription is controlled by LysG, whereby LysG cannot only

interact with L-lysine as a coinducer but also with the basic amino acids L-arginine,

L-citrulline, and L-histidine. However, L-citrulline and L-histidine do not serve as

substrates for LysE. L-Lysine and L-arginine are exported at comparable rates of

about 0.75 nmol/min/(mg dry wt) [14].

The exporter LysE is apparently promiscuous with respect to the chirality of

lysine. This is indicated by the fact that after expression of the racemase ArgR from

Pseudomonas taetrolens, C. glutamicum excretes D- and L-lysine. However, no

excretion takes place after the deletion of lysE, but rather the internal accumulation

of the racemate [68]. In contrast, diaminopimelate [14] and diaminopentane [43]

are not exported by LysE.
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4 LysE Use in Methylobacillus

Methanol can be obtained from carbon dioxide and has the potential to be used as a

carbon and energy source in biotechnological processes. It represents an alternative

to sugar utilization since the largest contribution to the variable costs in

fermentation-based large-scale amino acid processes is the substrate. It has been

possible to engineer the nonmethylotrophic and L-lysine-excreting C. glutamicum
toward the utilization of methanol as an auxiliary carbon source in a sugar-based

medium, but the engineered bacterium is still unable to grow with methanol as sole

carbon and energy source [69]. On the other hand,Methylophilus methylotrophus is
able to grow rapidly on methanol and with a good yield [70]. However,

M. methylotrophus lacks a specific export system for L-lysine [71]. Initial attempts

to introduce LysE of C. glutamicum into M. methylotrophus failed, and this was

found to be due to lysE instabilities. However, one particular lysE-24 mutation was

obtained which resulted in a roughly tenfold increase in L-lysine accumulation with

M. methylotrophus [15]. With lysE-24 together with an L-lysine biosynthesis gene

from E. coli (dapA24), up to 11.3 g/L L-lysine was achieved in fermentations, with

an even further increase when the Entner–Doudoroff pathway was established in

addition to the ribulose monophosphate pathway [70]. Also with Methylobacillus
glycogenes, export of L-lysine was obtained with lysE-24 illustrating the suitability

of the export carrier of C. glutamicum to overcome export limitations [15]. The

lysE-24 mutation is a very specific one. It is a point mutation in the long cytosolic

loop of the carrier connecting the two halves of the protein between helix 3 and

4 [15, 72]. The mutation results in a chain termination, but the evidence suggests

that two separate polypeptides are synthesized due to reinitiation of translation

utilizing an existing start codon beyond the mutation site. The loop region itself is

not of relevance for export. The reason is that individual deletions in the long

cytosolic loop of 52 amino acyl residues, irrespective of where they are located,

only weakly influence the export rate in C. glutamicum [73] (Haier B., Massow M.,

Eggeling L., Krämer R, unpublished results). This also agrees with the notion that

orthologous LysE proteins exist without a long loop region, as is, for instance, the

case with ArgO of E. coli.

5 Export by Members of the LysE Family and LysE

Superfamily

LysE is the paradigm of the LysE family of export carriers. In fact, it is the first

representative of a larger group of transporters categorized as the LysE superfamily

[74]. All members are small proteins consisting of about 220–250 amino acyl

residues. By analogy with other small transporter proteins, and due to known

translocator structures, LysE superfamily members probably have six

transmembrane-spanning helices and function as a dimer. Constituent members
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of the LysE superfamily are the LysE, the RhtB, and the CadD family [74]. The

functionally characterized members of the individual families export small solutes.

This confirms the notion that members of a single transporter family frequently

catalyze the transport of structurally related types of compounds (i.e., amino acids

or sugars) and, moreover, function with a strongly preferential polarity of the

transport direction (i.e., outward or inward) [10]. Members of the CadD family

export cadmium and possibly quaternary amines [74, 75]. Members of the RhtB

family relevant for amino acid export are RhtB and RhtC, as well as LeuE and YfiK

which are treated further below (see also Table 1).

A functionally characterized member of the LysE family is ArgO of E. coli
[16]. Similar to LysE of C. glutamicum, argO is controlled by an LTTR, called

ArgP. ArgP can interact with L-arginine or L-lysine, but a final promoter clearance

step enables argO transcription only by L-arginine [76]. The carrier exports L-

arginine as well as canavanine. The carrier YbjE (LysO) mediates export of L-

lysine [32]. Canavanine is a structural analogue of L-arginine exuded by some

legumes such as lupins where this toxic non-proteinogenic amino acid serves as

an anti-herbivore defense. Canavanine is also toxic for microorganisms. It is

therefore probably not surprising that inMesorhizobium tianshanense, a rhizobium
that forms nodules on licorice (Glycyrrhiza uralensis) plants, genes encoding a

LysE carrier and an adjacent LTTR are present, here called MsiA and MsiR

[17]. MsiA serves as a canavanine exporter that is indispensable for canavanine

resistance in M. tianshanense and is activated by MsiR together with canavanine.

Also in other rhizobial species, MsiA homologues are present whose expression is

induced by canavanine and is critical for canavanine resistance. There is functional

evidence of a further LysE-type transporter, which is AttX of the phytopathogen

Rhodococcus fascians. AttX is present in the att locus, and the entire locus is

relevant for synthesis and virulence due to an unidentified compound made by the

att genes [77]. Since the attA, attB, and attH biosynthesis genes share identities with

L-arginine biosynthesis genes, a possible scenario is that the LysE homologue AttX

excretes a structural analogue to arginine as the virulence-inducing factor.

6 L-Threonine Export by E. coli

The global demand for L-threonine has experienced double-digit growth rates since

the commercial application took off in the mid-1990s. Excellent L-threonine pro-

ducers from E. coli have been developed using undirected mutagenesis and con-

secutive screening steps [61]. One of these strains was found to be sensitive to 5 mg/

mL L-threonine on minimal medium M9, but spontaneous mutants resistant to this

inhibitory concentration were observed. The characterization of one of them, strain

VNIIgenetika-472T23, resulted in the isolation of rhtA23 [18]. The exporter gene

rhtA23 in E. coli VNIIgenetika-472T23 carries an “A” for “G” substitution in the

promoter region, which causes a tenfold increase in the expression of rhtA23 as

compared to rhtA. The rhtA gene confers resistance to L-threonine, L-homoserine,
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and further selected amino acids as well as amino acid analogues. In an L-threonine

producer of E. coli, inactivation of rhtA results in a slightly decreased export rate,

but rhtA23 overexpression increases the L-threonine export rate about twofold. In

fermenters, rhtA23 overexpression resulted in 36.3 g/L L-threonine accumulation,

whereas 18.4 g/L was obtained with the control.

In addition to rhtA, E. coli also possesses the rhtB, rhtC, and yeaS genes involved
in L-threonine export [21, 22, 78]. Data for comparing the capacity of these trans-

porters are scarce, but rhtA and rhtC can be regarded as most effective [78]. The

deletion of rhtB together with rhtC resulted in a slightly reduced maximal specific

excretion rate in L-threonine production [23]. A global gene expression analysis of a

defined L-threonine producer revealed increased expression of rhtC [79]. The

subsequent construction of a strain with amplified rhtC produced a 50.2% higher

L-threonine concentration than that obtained with the control, thus reinforcing the

relevance of L-threonine export for production. The additional amplification of the

rhtA and rhtB genes only resulted in a slightly further increased L-threonine

formation. Patent literature discloses further transport genes increasing L-threonine

export such as yedA, ychE, ygaZH, and eamB without detailed evaluation of their

relevance [78]. As far as is known, most of the abovementioned transporters do not

only accept L-threonine as substrate but also other metabolites, often with a higher

affinity than L-threonine. In this way, rhtB provides primary resistance to L-

homoserine, L-homoserine lactone, and further amino acid derivatives (Table 1).

With rhtB overexpressed, an L-homoserine producer accumulated 10.6 g/L L-

homoserine, whereas without rhtB present, only 0.35 g/L was found, and the

increased export was accompanied by a reduced intracellular L-homoserine con-

centration [21]. With rhtA overexpressed both L-threonine and L-homoserine export

is improved. Whereas rhtA23 enabled a twofold increase in threonine accumulation

from 18.4 to 36.3 g/L, the effect with homoserine accumulation was much more

dramatic with an increase from 9.0 to 56.0 g/L [18]. The unspecificity of the

transporters can lead to the export of undesirable by-products, which is detrimental

for the purification and the financial balance of the production process.

7 L-Threonine Export by C. glutamicum

L-Threonine is required as a feed additive and is currently added in the form of a

crystalline product made by E. coli. An economic advantage would be usage of the

entire concentrated fermentation broth as a feed additive, as is the case with Biolys,

which contains L-lysine together with the biomass of C. glutamicum [63]. It there-

fore almost goes without saying that there have been a number of attempts to use the

excellent biosynthetic capacities of C. glutamicum for L-threonine production as

well. However, strain constructions done by pathway engineering were not suc-

cessful due to plasmid instabilities [80, 81], which were ultimately found to be

caused by limiting export activity [82]. Driven by these findings, the exporter gene

thrE was isolated from C. glutamicum [25]. However, upon overexpression of thrE,
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and further engineering of the cellular metabolism [83], only limited success with

model strains was observed. This shows that ThrE is possibly not natively designed

to export L-threonine. Due to its scarce but widespread occurrence, it is regarded as

an ancient genomic relict using a still unknown compound as substrate [26].

In a different approach, exporters of E. coli were assayed for their use in

C. glutamicum [84]. Among RhtA, RhtB, RhtC, and YeaS which were assayed,

RhtA and RhtC proved to be very effective with respect to extracellular L-threonine

accumulation (Fig. 2). RhtA in C. glutamicum is unspecific since together with L-

threonine it also excretes L-homoserine, and this reflects the situation in E. coli
[18]. However, with RhtC only L-threonine accumulation was observed. In addi-

tion, the use of threonine-tripeptide added extracellularly to the wild type resulted

in intracellular accumulation of 140 mM L-threonine, but upon rhtC
overexpression, under otherwise identical conditions, only an accumulation of

11 mM L-threonine was found. This is a strong indication that RhtC was not yet

saturated with substrate, meaning that intracellular L-threonine availability was

limiting and providing further room for engineering the central metabolism. Due

to rhtC expression, the maximal excretion rate of L-threonine in a small-scale

fermentation was 11.2 nmol min�1 mg (dry weight)�1 as compared to 2.3 nmol min
�1 mg (dry weight)�1 obtained without rhtC expression. The examples of RhtC use

in C. glutamicum, LysE use in M. methylotrophus, as well as use of the different

biofuel efflux pumps (see below) provide confidence in the applicability of

exporters in heterologous hosts once an export limitation is recognized.

Fig. 2 Production of L-threonine by C. glutamicum due to heterologous exporters from E. coli.
The background strain contained empty vector pEKEx and accumulated mainly glycine which is

the degradation product of L-threonine [83]. The genes rhtA, rhtB, rhtC, and yeaS were individ-

ually overexpressed in the same strain using pEKEx. Overexpression of rhtA resulted in improved

L-threonine accumulation but in addition also in a considerable accumulation of L-homoserine,

whereas with overexpressed rhtC almost exclusively L-threonine was formed [84]
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8 Export by Members of the RhtA Family

RhtA of E. coli is a membrane protein with ten transmembrane-spanning helices. It

is the paradigm of the RhtA family which is part of the large drug/metabolite

transporter (DMT) superfamily [21]. In addition to L-threonine and L-homoserine

export, RhtA of E. coli also participates in the export of 5-aminolevulinic acid

[20]. This five-carbon amino acid is a native intermediate of tetrapyrrole synthesis

and has attracted attention for potential application in specific tumor therapies

[85]. After engineering of the biosynthesis pathway and expression of rhtA, the
5-aminolevulinic acid accumulation in E. coli increased from 1.95 to 2.89 g L�1

enabling, under optimized conditions, the accumulation of 4.13 g L�1

5-aminolevulinic acid. E. coli contains at least ten paralogues of RhtA

[18]. Among them is YdeD catalyzing L-cysteine export [28] and Yddg catalyzing

the export of aromatic amino acids [27]. Paralogues of RhtA are present in other

bacteria, such as PecM in Erwinia chrysanthemi involved in the efflux of the blue

pigment indigoidine [86]. In addition, in a number of plant- and insect-associated

bacteria, such as Bacillus thuringiensis, Pseudomonas syringae, and Pseudomonas
savastanoi, small operons are present with genes encoding an RhtA efflux carrier

[87], together with dioxygenases hydroxylating free L-isoleucine or L-leucine

[88]. This scenario leads to the assumption that peptide-like substances are synthe-

sized and exported, although these substances are as yet unknown.

9 L-Tryptophan Export by E. coli

The E. coli exporter for aromatic amino acids, YddG, was identified via homology

comparisons with drug/metabolite exporters [27]. The carrier is expressed at a low

level, but is induced twofold under salt stress conditions or at an elevated extracel-

lular L-phenylalanine concentration [62]. Its overexpression provides resistance to

inhibiting concentrations of L-phenylalanine and the aromatic amino acid ana-

logues, D,L-p-fluorophenylalanine, D,L-o-fluorophenylalanine, and D,L-5-

fluorotryptophan [27]. Overexpression of yddG in model strains resulted in a 1.5-

to 3-fold increase in L-tyrosine, L-phenylalanine, and L-tryptophan accumulation.

With a production strain and yddG overexpressed, 48.7 g L�1
L-tryptophan was

obtained, which represented an increase of 15.9% as compared to the parental

strain [89].

Besides excretion also uptake may influence the final accumulation of the

product, since the total flux over the membrane is made up of active export, active

import, and diffusion [5]. The relevance of the individual components varies from

amino acid to amino acid and from the physiology and genetic regulation of the cell.

To obtain good amino acid production, also reducing import of the amino acids

might improve the performance of strains and their accumulation properties. This

finding is underpinned by the observation that the presence of multicopies of aroP,
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responsible for the aromatic amino acid uptake, in an L-tryptophan-producing

C. glutamicum strain, resulted in a drastic decrease in L-tryptophan formation

[90]. Mutants of C. glutamicum that were impaired in their uptake of L-tyrosine

and L-phenylalanine were shown to accumulate 10–20% more L-tryptophan than

their parent in fed-batch fermentations [91]. The same strategy was applied to an

E. coli model strain producing 1.84 g L�1
L-tryptophan [92]. Deletion of the

aromatic amino acid importer gene tnaB resulted in an increased accumulation of

2.05 g L�1
L-tryptophan and the additional deletion of aroP in that of 2.44 g L�1.

The relevance of reduced import is also known for L-threonine accumulation with

E. coli. A classical producer strain was found to be impaired in its L-threonine

uptake [93], and an increase of 15.6% in L-threonine accumulation was observed

when the L-threonine uptake system tdcC was inactivated in a well-defined L-

threonine producer [79].

10 L-Cysteine Export by E. coli

The major proportion of L-cysteine is still produced from hair hydrolysate. How-

ever, this process is being replaced by synthesis with E. coli. This increases

acceptance in the pharmaceutical and food sector and also makes it possible for

the product to be used in kosher and halal applications. At least four membrane-

embedded exporters as well as one outer membrane protein contribute to the L-

cysteine efflux in E. coli. The exporters YdeD [28] and YfiK [31] both enable

increased accumulation of extracellular L-cysteine and the intermediate

O-acetylserine. YdeD also transports L-asparagine and L-glutamine to some extent

and probably also 2-methyl-2,4-thiazolidinedicarboxylic acid which is a

nonenzymatically formed condensation product of cysteine and pyruvic acid.

Both YdeD and YfiK are, furthermore, similarly effective in reducing the growth

inhibition due to externally added O-acetylserine, but they differ slightly with

respect to their cellular characteristics, such as their growth-phase-dependent activ-

ity. The unspecificity of YdeD was also used as a basis for making an O-acetyl-L-

serine accumulating strain. With such a strain, accumulation of 9 g/L O-acetyl-L-

serine was achieved, which was then used in enzymatic conversions to produce an

array of unnatural sulfur-containing L-amino acids of interest as building blocks in

the chemical synthesis of pharmaceutical compounds [94]. In further work on L-

cysteine export with E. coli, 33 putative drug transporter genes were assayed, and of
these overexpression of acrD, acrEF, bcr, cusA, emrAB, emrKY, ybjYZ, and yojIH
was found to partially reverse growth inhibition by added L-cysteine [30]. As

expected, also the intracellular L-cysteine concentrations were reduced upon

expression of these carriers. Of particular relevance was Bcr, which is known

from prior work to confer resistance to bicyclomycin or sulfathiazole.

Overexpression of bcr resulted in a roughly fivefold increase in L-cysteine accu-

mulation as compared to the control [30]. Comparisons of YdeD and Bcr showed

that in some of the systems studied, Bcr is more effective than YdeD.
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Besides YdeD, YfiK, and Bcr, a fourth carrier contributes to L-cysteine export

[33]. This is CydDC, which belongs to the ATP-binding cassette (ABC) family of

transporters, but does not interact with a cognate periplasmic binding protein as is

typical of ABC transporters exporting molecules from the cytoplasm [95]. Assays

with inverted vesicles demonstrated that CydDC transports glutathione and, to a

lesser extent, cysteine from the cytoplasm to the periplasmic space in an

ATP-dependent manner [33, 96]. The exporter is necessary in E. coli for the

assembly of cytochrome bd and periplasmic cytochromes and is important for

maintenance of the optimum redox balance in the periplasm. In line with the export

function, an increased resistance to cytotoxic levels of L-cysteine by strains that

overexpress cydDC was observed [33].

Since L-cysteine readily oxidizes to cystine, also the influence of cystine on the

physiology of E. coli may be of relevance for L-cysteine formation. As a putative

carrier involved in cystine export, YijE has been identified [34], which belongs to

the drug/metabolite transporter (DMT) superfamily of carriers (Table 1). The yijE
gene is upregulated upon cystine addition. Its overexpression suppressed the slow

growth of E. coli in the presence of high concentrations of cystine, whereas the

inactivation of yijE increased sensitivity to cystine.

11 Involvement of Outer Membrane Proteins in Export

E. coli has inner and outer membranes with an intervening periplasmic space.

Whereas the four transporters, YdeD, YfiK, CydDC, and Bcr, export L-cysteine

from the cytoplasm via the inner membrane into the periplasmic space, tripartite

carriers allow the export of molecules to the extracellular environment (Fig. 1).

These tripartite pumps include an inner membrane transporter, an outer membrane

protein, and a periplasmic adapter protein. The inner membrane transporter binds

and translocates the export substrate. In cooperation with the periplasmic adaptor

protein, the transporter recruits an outer membrane protein to form an exit duct, thus

spanning the entire bacterial cell envelope [8]. TolC is such an outer membrane

protein of E. coli, and a mutant with tolC inactivated showed hypersensitivity to L-

cysteine [35]. Overexpression of tolC in a cellular background with enhanced

biosynthesis led to reduced degradation of L-cysteine, and increased extracellular

accumulation to 1.13 g L�1 as compared to 0.96 g L�1 for the control, thus

demonstrating the relevance to expelling L-cysteine from the cell. However, the

inner membrane transporter and the periplasmic adapter protein involved in TolC-

dependent L-cysteine export are unknown. TolC of E. coli can work with different

export carriers including ATP-binding cassette transporters (e.g., MacB),

resistance-nodulation-division transporters (e.g., AcrB), and transporters belonging

to the major facilitator superfamily (e.g., EmrB). However, individual deletion

mutants for macB, acrB, and emrB, as well as that of macA, acrA, and emrA
encoding the respective periplasmic adaptor proteins, did not exhibit increased L-

cysteine sensitivity [35], thus supporting the idea that either still unknown
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transporters and periplasmic adapter proteins are involved in reducing the high

cytosolic L-cysteine by direct export via the cell envelope or that TolC helps to

reduce a high periplasmic L-cysteine concentration by diffusible transport. Other

examples where TolC is involved in small molecule synthesis are the production of

free fatty acids [97] and of geraniol with E. coli [98]. In both cases the tripartite

carrier AcrAB–TolC is responsible for most of the efflux.

Also the outer membrane represents a diffusion barrier, and porins enable the

flux of metabolites over this membrane [58]. The trimeric proteins form water-filled

open channels that allow the passive penetration of hydrophilic molecules. E. coli
produces more than ten outer membrane proteins, and it is not surprising that such

proteins were also studied with respect to their influence in overcoming the outer

membrane as the diffusion barrier for production purposes. Thus, there is an

indication that overexpression of ompW influences L-threonine production [78],

and ompW was also demonstrated to participate in small drug resistance

[99]. Phenylpropanoids such as resveratrol are of interest as food additives and in

health care products. Limited natural sources have promoted studies on their

synthesis with E. coli [100]. Using proteomic studies as well as overexpression

and gene silencing, the outer membrane proteins OmpA and FadL are likely to play

a role in the transmembrane export of phenylpropanoids in E. coli [101].

12 Export of Branched-Chain Amino Acids

and L-Methionine

In C. glutamicum, the export of branched-chain amino acids (BCAAs) and L-

methionine is mediated by BrnFE [36, 37]. The exporter is a two-component

permease where both transmembrane proteins act together as the carrier. A mutant

deleted of both genes exhibits reduced L-isoleucine excretion, whereas an

overexpressing strain exports this amino acid at an increased rate. As judged

from internal amino acid concentrations and excretion rates, the exporter uses L-

isoleucine, L-leucine, and also L-methionine at comparable rates, whereas the rate of

L-valine is reduced. The expression of the brnFE operon is transcriptionally acti-

vated by the leucine-responsive protein Lrp, whose expression is controlled by

autoregulation [36, 37, 102]. Interestingly, in an engineered L-leucine producer, the

expression of the brnFE genes is upregulated, apparently as a consequence of the

increased cytosolic L-leucine concentration [103]. Native control of brnFE expres-

sion and of BrnFE activity is apparently sufficient for effective L-leucine formation

since brnFE overexpression in a high-level producer did not further increase its

accumulation. As already mentioned, also L-methionine is exported by BrnFE, and

under conditions where cytoplasmic L-methionine does not exceed a concentration

of 50 mM, BrnFE is the dominant export system for this amino acid [37]. Also L-

methionine acts as a coinducer of Lrp-dependent brnFE expression. Indeed, L-

methionine is a better coinducer than L-isoleucine, indicating that methionine rather
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than isoleucine might be the native substrate of BrnFE. In classically obtained L-

isoleucine producers of C. glutamicum, the consequences of engineered L-isoleu-

cine transport were studied. A strain with deleted uptake carrier brnQ and

overexpressed brnFE accumulated 221 mML-isoleucine [104], and a strain with

lrp and brnFE overexpressed accumulated 205 mM L-isoleucine [105].

In E. coli, YgaZH is homologous to BrnFE. The minimal inhibitory concentra-

tion (MIC) of the L-valine analogue D,L-norvaline is dependent on the presence and

copy number of ygaZH [106], as is the MIC of the L-isoleucine analogue D,L-4-

thiaisoleucine. In a model strain, the final L-isoleucine concentration obtained was

1.11 g/L as compared to 0.32 g/L obtained without ygaZH amplification, and the

strain engineered to produce L-isoleucine and expressing ygaZH was able to

produce 9.46 g/L of L-isoleucine [38]. YgaZH is also beneficial for L-valine

formation. The accumulation of a strain forming 2.38 g/L L-valine was almost

doubled to 5.25 g/L due to ygaZH overexpression [106].

There is strong evidence that the carrier YeaS (LeuE) of E. coli, demonstrated to

use L-threonine [19], is also involved in L-leucine excretion [24]. In expression

control of yeaS, the global regulator Lrp is involved together with L-leucine,

α-aminobutyric acid, and several other amino acids acting as coinducers. The

BCAAs are not only of interest as a feed additive but also for human health. In

this regard, the content of BCAAs in vinegar is of concern. Vinegar made by

Gluconacetobacter europaeus contains 0.13 mM L-valine and no L-leucine

[39]. In an effort to increase the BCAA content, lrp was deleted in G. europaeus.
Comparative transcriptome analysis verified increased expression of BCAA bio-

synthesis genes and also that of leuE. This approach resulted in 0.48 mM L-valine

and 0.11 mM leucine accumulation and is an indication that the exporter LeuE is

involved in the export process of BCAAs in this Alphaproteobacterium.

13 Alanine Export by E. coli

Inducible L-alanine export was demonstrated using an E. coli strain unable to

degrade L-alanine and using Ala-Ala dipeptide supply [60]. A mutant with

increased Ala-Ala sensitivity enabled the isolation of four complementing chromo-

somal fragments [40]. Two uncharacterized carrier genes, ygaW and ytfF, and two

characterized genes, yddG and yeaS, were identified. YeaS is able to accept small

molecules such as L-threonine or L-leucine, and YddG is known to accept various

aromatic compounds (Table 1). Individual overexpression of each of the four genes

resulted in a decrease of the intracellular L-alanine level and an increase of the L-

alanine export rate, demonstrating that the four carriers accept L-alanine at the high

cytosolic concentration of up to 120 mM prevailing in the dipeptide assay. Among

the four genes identified, YgaW exhibited the most striking impact on both the

intra- and the extracellular L-alanine concentrations. Expression of the gene is

induced at elevated concentrations of L-alanine, and even at low concentrations of

this amino acid, the overexpression of ygaW causes L-alanine excretion. The gene
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was therefore named alaE. Its use in a model strain caused a 22.5% increase in L-

alanine accumulation without influencing growth or glucose consumption.

14 Glutamate Export by C. glutamicum and E. coli

L-Glutamate is traditionally produced by C. glutamicum. The excretion of this

product was associated from the very beginning with membrane permeability

[72]. Pioneering studies using mutants with inactivated oxoglutarate dehydrogenase

activity and exhibiting constant L-glutamate efflux eventually led to the identifica-

tion of the mechanosensitive channel encoded by NCgl1221 which is necessary for

L-glutamate efflux [41]. Details on L-glutamate production depending on this

channel are described in Chapter “Glutamate Fermentation Mechanism of

Overproduction in Corynebacterium” of this book. Also the interplay of the unique

pyruvate–oxoglutarate dehydrogenase supercomplex and the small autoinhibitory

protein OdhI influences L-glutamate excretion [107]. Interestingly, the enterobac-

terium Pantoea ananatis is able to grow at acidic pH and is resistant to saturating

concentrations of L-glutamic acid, both traits being advantageous for large-scale

production. P. ananatis has been engineered to excrete L-glutamate in high con-

centrations dependent on the native carrier YhfK, and this is described in detail in

Chapter “New Functions and Possible Applications of Amino Acids” of this book.

15 Diaminopentane Export by C. glutamicum

1,5-Diaminopentane is of interest as a component required for the synthesis of

polyamides made from a diamine plus a dicarboxylic acid. The best known member

of this class of polyamides is nylon, which is made from hexamethylene diamine

plus adipic acid. Currently, about 6,000,000 tonnes of nylon and its related poly-

amides are produced annually. All this is derived from oil-based material, and the

easy-to-produce diaminopentane with microbes opens up the opportunity of also

producing the specific polyamide-containing diaminopentane by a bio-based pro-

cess [108]. Since L-lysine production by C. glutamicum is well established, and L-

lysine can be decarboxylated simply by expression of heterologous L-lysine decar-

boxylase, strains were engineered to generate 1,5-diaminopentane [43]. Up to

88 g L�1 of diaminopentane accumulation is reported [109]. The L-lysine exporter

LysE is not involved in the export of diaminopentane. Instead, export is catalyzed

via a carrier encoded by cg2893 identified by genome-wide transcription analysis

and which was upregulated in a diaminopentane producer. The permease belongs to

the major facilitator superfamily of transporters with great similarity to small

metabolite efflux pumps. Its deletion resulted in a 90% reduced diaminopentane

accumulation, and its overexpression revealed a 20% increased yield [43]. The

carrier gene is apparently controlled by the adjacent gene cg2894 encoding a

transcriptional regulator of the TetR type whose deletion also caused increased
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diaminopentane accumulation. Further candidate carriers contributing to

diaminopentane efflux are encoded by cg2181, cg2184, and cg2941 [43]. In

E. coli, the carrier CadB is part of the lysine-dependent acid resistance system. It

functions as a lysine/cadaverine antiporter, importing L-lysine and exporting

diaminopentane. In C. glutamicum, expression of cadB together with L-lysine

decarboxylase improved diaminopentane formation at the expense of L-lysine

accumulation [110]. Not unexpectedly, the cg2893 encoded exporter also increases

1,4-diaminobutane accumulation by 24% up to a final concentration of 4 mM [111].

16 Export of Dipeptides

L-Glutamine is a nutritionally important amino acid for humans, but has low

solubility and is unstable in solution. This can be solved by the use of the dipeptide

L-alanyl-L-glutamine (Ala-Gln), which is a highly soluble and stable glutamine

source [112]. Expression of an L-amino acid α-ligase of Bacillus subtilis in E. coli
together with additional engineering to increase L-alanine and L-glutamine supply,

as well as inactivation of a dipeptide-degrading activity, yielded a strain producing

more than 100 mM Ala-Gln in a 5-L jar fed-batch cultivation [113]. However,

growth of the peptide-producing strains was inhibited, and inhibition was also

observed by addition of some dipeptides, including Ala-Gln, which was due to

the peptides themselves and not their component amino acids. To identify the

expected carrier, 34 putative exporter genes were overexpressed [29]. Of these,

bcr, norE, ydeE, and yeeO conferred resistance to Ala-Gln or Gly-Tyr. The indi-

vidual overexpression of each of these genes caused a 1.4- to 3.0-fold increase in

Ala-Gln production, with ydeE and bcr being most effective. The four carriers

isolated also utilize Ala-Val, Ala-Leu, and Ala-Ile as substrates. In addition to

dipeptide export, YeeO also catalyzes the export of flavins [114], and Bcr also that

of L-cysteine [30], sulfathiazole [115], and the peptide antibiotic

bicyclomycin [116].

17 Export of Succinate

The diester of succinic acid, diethyl succinate, is of interest as an environmentally

friendly solvent and as a raw material for biodegradable plastics [117]. Potent

production strains are anaerobes such as Anaerobiospirillum succiniciproducens
and Mannheimia succiniciproducens, as well as engineered E. coli strains. Also
C. glutamicum can form succinate in the absence of oxygen from sugars via the

reductive TCA cycle [118]. Two different approaches, one using a comparative

transcriptome analysis [44] and the other a comparative genome analysis [9],

resulted in the export carrier SucE of C. glutamicum, which participates in succinate
efflux. The gene is threefold upregulated under microaerobic conditions [44], and
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its deletion reduces in part succinate accumulation [9]. In a strain with deleted

lactate dehydrogenase, overexpression of sucE increases the succinate concentra-

tion from 174 mM to 274 mM [44]. SucE belongs to the aspartate:alanine

exchanger (AAEx) family transporters (Table 1).With an engineeredC. glutamicum
strain, 1.13 M of succinate with a yield of 1.67 mol mol (glucose)�1 is obtained

[119]. However, this was achieved without sucE overexpression, suggesting that

the native regulation of this gene and SucE activity is sufficient for high extracel-

lular accumulation of succinate or indicating that further carriers are involved.

18 Export of Nucleosides

Sodium salts of inosine monophosphate (IMP) and guanosine monophosphate

(GMP) are potent flavor enhancers. They are widely used as food additives in

combination with monosodium glutamate to synergistically increase umami flavor.

They are made industrially starting from the corresponding nucleosides produced

by engineered microorganisms such as Bacillus amyloliquefaciens, Bacillus
subtilis, and E. coli [120]. Two carrier genes are known so far to be of relevance

for production purposes. One is pbuE (ydhL) present in B. subtilis and

B. amyloliquefaciens which encodes a purine base and purine nucleoside efflux

pump [121]. Its expression is controlled by an adenine-dependent riboswitch with

the control mechanism also retained when expressed in E. coli. Overexpression of

pbuE enhanced inosine production by a B. amyloliquefaciens nucleoside-producing
strain. pbuE overexpression was also found to increase 5-aminoimidazole-4-

carboxamide (AICA) ribonucleoside accumulation, indicating that the substrate

specificity of the PbuE pump extends to this nucleoside [45]. Whereas PbuE accepts

both purine base and purine nucleosides as substrate, the second exporter, YicM

(Nepl) of E. coli, accepts purine nucleosides only and not the free bases [46]. It was
found that selection for resistance to 6-mercaptopurine and its overexpression led to

an enhanced rate of inosine excretion by an inosine-producing E. coli strain. Also
heterologous overexpression of the nepl gene led to increased product formation in

a B. amyloliquefaciens strain, which again confirms the functionality of Nepl as a
nucleoside efflux permease [45]. In C. glutamicum an efflux permease with struc-

tural similarity to nepl is present and is designated cepA [47]. Its overexpression

increased resistance of C. glutamicum to the purine analogues 6-mercaptopurine

and 6-mercaptoguanine. Interestingly, this strain also showed a slightly increased

resistance to the antibiotics nalidixic acid and ampicillin, which once again raises

the question of the natural function of such an exporter.
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19 Export of Biofuels

Whereas to date export has largely been described from the aspect of increased

external accumulations, another aspect is preventing the internal accumulation of

the biosynthesis product in order to counteract cytotoxic effects. Overcoming the

toxicity of biofuels poses a great challenge. As convincingly demonstrated in the

past few years, such fuels can also be synthesized by microorganisms [122]. Fuels

are inherently toxic due to their solvent-like properties, but bacteria such as

Pseudomonas putida are able to grow in the presence of 90% (v/v) toluene and

other solvents due to solvent efflux pumps being present [123]. The efflux carriers

of P. putida include the tripartite carriers TtgABC, TtgDEF, and TtgGHI (Fig. 1).

Using a bioinformatic approach, a set of 43 potential tripartite efflux pumps was

selected, and genes were overexpressed in E. coli and assayed for survival in

representative biofuels [48]. In addition to AcrAB from E. coli, a carrier from

Alcanivorax borkumensis resulted in increased resistance to limonene which is of

interest as a precursor for jet fuel. E. coli strains overexpressing the carrier of

A. borkumensis improved limonene accumulation significantly [48]. In addition,

using directed evolution, AcrB muteins were isolated, which improved the excre-

tion rate for n-octane 1.5-fold and for α-pinene 4.0-fold [124]. Isopentenol is

another interesting biofuel. The carrier gene mdlB was identified in the search for

genes of E. coli overexpressed in the presence of this alcohol [53]. MdlB is the

ATP-binding component of the ABC carrier involved in lipid A export. Its

overexpression resulted in a 12% improvement in isopentenol production. ABC

transporters were also assayed for improvement of isoprenoid-producing E. coli in a
system where cultures were grown with an overlay of decane. A panel of 16 ABC

carriers was assayed for increased secretion or partitioning into the biocompatible

decane phase [54]. With MsbA of E. coli, a 4.4-fold canthaxanthin accumulation

was achieved; and with MsbA of Salmonella enterica ser. typhimurium, a 2.4-fold
zeaxanthin accumulation was achieved.

Also in Saccharomyces cerevisiae, ABC exporters are identified as being related

to fuel tolerance. The overexpression of the two efflux pumps Snq2p and Pdr5p

increases the tolerance of the yeast for decane and undecane by reducing the

intracellular levels of these alkanes [55]. This is similarly the case with the efflux

pumps ABC2 and ABC3 of Yarrowia lipolytica when expressed in S. cerevisiae
[56]. Increased expression of another ABC export carrier present in S. cerevisiae,
ADP1, prevented growth inhibition by adding up to 7.5% (v/v) ethanol, and the

ethanol productivity was approx. 20% higher in the presence of ethanol [57].
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20 Outlook

Microorganisms can be used to produce a wide range of small molecules such as

antibiotics, amino acids, and fuels. In all these cases, it is essential to remove the

molecule from the cytosol and transport it outside the cell in order to maintain low

concentrations of this product which is toxic for the cell and to obtain high

extracellular product concentrations. The proteins involved in transport can natu-

rally serve to export the molecule and can be directly assigned to the molecule by

means of genome information. This is, for example, often the case with antibiotics,

where the synthesis genes in the operon may be present together with the

corresponding transport gene [125], and can thus influence product formation

[98, 126]. The situation is different with biofuels. In this case, it is first necessary

to establish a metabolic pathway, frequently by using heterologous genes, and the

specific exporters are generally unknown.

The significance of exporters for the formation of amino acids has been con-

vincingly demonstrated. The exporters are frequently unspecific, and most of them

are probably not designed as specific amino acid exporters. This could also be the

case for LysE from C. glutamicum, which may originally have functioned as a

canavanine exporter and may have been acquired by gene transfer. Since no

conclusions can be drawn about the specificity of an exporter for a particular

amino acid on the basis of the genome organization, further efforts are necessary

to identify carriers, their specificity, and to verify their significance for amino acid

export.
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methionine export in Corynebacterium glutamicum. J Bacteriol 187:3786–3794
38. Park JH, Oh JE, Lee KH, Kim JY, Lee SY (2012) Rational design of Escherichia coli for L-

isoleucine production. ACS Synth Biol 1:532–540

39. Akasaka N, Ishii Y, Hidese R, Sakoda H, Fujiwara S (2014) Enhanced production of

branched-chain amino acids by Gluconacetobacter europaeus with a specific regional dele-

tion in a leucine responsive regulator. J Biosci Bioeng 118:607–615

40. Hori H, Yoneyama H, Tobe R, Ando T, Isogai E, Katsumata R (2011) Inducible L-alanine

exporter encoded by the novel gene ygaW (alaE) in Escherichia coli. Appl Environ Microbiol

77:4027–4034

41. Nakamura J, Hirano S, Ito H,Wachi M (2007) Mutations of theCorynebacterium glutamicum
NCgl1221 gene, encoding a mechanosensitive channel homolog, induce L-glutamic acid

production. Appl Environ Microbiol 73:4491–4498

42. Becker M, Borngen K, Nomura T, Battle AR, Marin K, Martinac B, Krämer R (2013)
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Novel Technologies for Optimal Strain

Breeding

Michael Bott and Lothar Eggeling

Abstract The implementation of a knowledge-based bioeconomy requires the

rapid development of highly efficient microbial production strains that are able to

convert renewable carbon sources to value-added products, such as bulk and fine

chemicals, pharmaceuticals, or proteins at industrial scale. Starting from classical

strain breeding by random mutagenesis and screening in the 1950s via rational

design by metabolic engineering initiated in the 1970s, a range of powerful new

technologies have been developed in the past two decades that can revolutionize

future strain engineering. In particular, next-generation sequencing technologies

combined with new methods of genome engineering and high-throughput screening

based on genetically encoded biosensors have allowed for new concepts. In this

chapter, selected new technologies relevant for breeding microbial production

strains with a special emphasis on amino acid producers will be summarized.

Keywords Conjugation, CRISPR-Cas9, FACS, Genetically encoded biosensors,

Metabolism, Recombineering, Regulation, Transcriptional regulators
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1 Introduction

The rapid development and improvement of microbial production strains capable of

converting renewable carbon sources into value-added products is an important

aspect in the establishment of a knowledge-based bioeconomy [1]. In the field of

amino acid fermentation, efficient producer strains for a number of amino acids

have already been developed by classical strain breeding and/or rational engineer-

ing. Nevertheless, there is still room for improvement of these strains and there are

some amino acids for which efficient producer strains are not yet available. Fur-

thermore, our molecular understanding of overproduction is still unsatisfactory in

many aspects.

The breeding of optimal producer strains is a complex process, involving

random mutagenesis and screening, rational engineering, or reconstruction by

introduction of a defined set of “productive” mutations. Despite the huge progress

of metabolic engineering in the past decades, random approaches of strain devel-

opment are still sometimes superior to rational approaches. This is known, e.g., for

L-lysine [2] and L-threonine producers [3] but also for other small molecule pro-

ducers, e.g., for artemisinin [4]. For L-threonine production with Escherichia coli, it
is known that inactivation of 56 genes led to increased production although they are

not involved in L-threonine synthesis [3]. Furthermore, genetic traits of

overproducers are known without an understanding of their molecular basis. For

example, in the L-lysine producer strain Corynebacterium glutamicum B-6 that was

obtained by random mutagenesis, the genes of the L-lysine, L-arginine, and

L-histidine biosynthesis pathways are overexpressed at the same time [5], and in

the L-arginine producer C. glutamicum strain A-27, the cluster of arginine bio-

synthesis genes is extremely upregulated to a level not achievable by plasmid-based

overexpression [6].

Against that background, a number of areas can be defined for which new

technologies are desirable:

• Fast transfer of known mutations or DNA fragments into a desired genome in

order to improve classically derived strains or construct novel producers from

scratch, i.e., starting with a wild-type strain

• Rapid analysis of strains whose properties are not yet (completely) understood

by omics methods (genomics, transcriptomics, proteomics, metabolomics) in

order to decode favorable genomic alterations derived from random approaches

• Generation of new strains and of novel mutations by directed or random muta-

genesis in order to continuously improve strains
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In the era of systems and synthetic biology, novel tools have been established

which allow to address the areas mentioned above and thus can contribute to an

acceleration of strain development and to the generation of new knowledge for

understanding the fundamentals and details of microbial metabolite

overproduction. In this article, a number of new methods and technologies will be

described that can be exploited for breeding producer strains for amino acids but

also other small molecules. In addition, tools will be mentioned that would be

desirable for strain development but are not yet available.

2 Recombineering and Its Advantages

Recombineering is a versatile and proven method for rapid transfer of mutations

generating either insertions, deletions, or point mutations on chromosomal or

episomal targets. It is a technique that replaces the tedious standard recombinant

DNA techniques such as cutting DNA with restriction endonucleases, purifying

DNA fragments, ligating DNA fragments, and transferring DNA into competent

cells. It does not require any known recombination function of the host but utilizes

bacteriophage recombination proteins to perform homologous recombination [7–

9]. Recombineering is based on the phage λ recombination proteins Exo (Redα) and
Beta (Redβ) or, alternatively, on the homologous proteins RecE and RecT of the

prophage Rac [10–12]. Exo and RecE are double-stranded DNA (dsDNA)-

dependent 50-30 exonucleases leaving 30ssDNA overhangs. Beta and RecT are

single-stranded DNA (ssDNA)-annealing proteins. Either ssDNA or dsDNA can

be used as substrates for recombineering. According to the current model of the

mechanism of λ Red recombination (Fig. 1), Beta binds to ssDNA and catalyzes its

annealing to the lagging strand of the replication fork, where it is incorporated into

the newly synthesized strand as part of an Okazaki fragment

[13, 14]. Recombineering is used in Escherichia coli and other bacteria of biotech-

nological relevance, such as C. glutamicum [15], Bacillus subtilis [16], Pantoea
ananatis [17], or Lactococcus lactis [18]. It is done with the phage λ or prophage

Rac proteins mentioned above or homologous proteins which show favorable

functionality in selected bacteria [15, 19, 20].

Since recombineering requires only ssDNA and the phage ssDNA-annealing

protein (Beta/RecT) [21], synthetic oligonucleotides are most widely used, which

carry in the middle the desired mutation and sequences on either side that are

homologous to the chromosomal target region. With 90 bp oligonucleotides,

mismatch mutations or exogenous sequences, each up to 30 bp, were introduced

into the E. coli chromosome, with the efficiency correlating to the length of

homologous sequence between the oligonucleotide and its chromosomal target

[22]. Similarly, up to 45 kb of chromosomal sequence could be deleted with the

efficiency of producing a deletion correlating to the size of the deletion. These

results were obtained with special E. coli strains having defects in the methyl-
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directed mismatch repair system [9] and easily recognizable phenotypes as possible

with the LacZ or GalK system [23].

For a sizeable insertion, such as a new gene, a linear dsDNA substrate is

necessary as well as the function of both the ssDNA-annealing protein (Beta/

RecT) and the 50-30 exonuclease (Exo/RecE). The dsDNA can be generated as

PCR product that contains 40–50 bp of flanking DNA at each end homologous to

the chromosomal insertion site. These homologous regions are provided at the

50-end of each synthetic primer. In this manner a successful and reliable integration

of fragments up to 3.5 kb could be achieved [24, 25]. However, for large fragments,

it becomes increasingly difficult to generate PCR product in sufficient quantity, and

the increased size of these fragments makes transformation and integration signif-

icantly less efficient. To overcome this problem, “gene gorging” has been devel-

oped, where dsDNA fragments are generated in vivo by digestion of a donor

plasmid with a nuclease (I-SceI) that does not cleave the host genome [26]. This

allows the transfer of large fragments into the chromosome and yields recombinants

with sufficient high frequency (1–15%) of even not easily accessible E. coli strains,
when coupled to suitable selection strategies [27]. Such methods can be of interest

for larger genome alterations of producer strains. When dsDNA recombineering is

used to transfer fragments from the chromosome to a plasmid, the fragment size

isolated can be up to 50 kb in length [28]. Recombineering with dsDNA to

introduce larger fragments into targets has been established, for instance, for

E. coli and Pantoea ananatis [17].
A major issue is of course the frequency of recombination. In general, ssDNA

recombineering is more efficient than dsDNA recombineering. Efficiencies are in

the range of 0.01% and can approach 1% [29, 30]. They vary largely in dependence

of the host and the experimental conditions. If host mismatch repair is inactivated or

Fig. 1 The current model for recombineering. Editing DNA fragments may be either double-

stranded (dsDNA) or single-stranded (ssDNA). If the editing DNA is double stranded, then one

strand is digested by the λ Red Exo exonuclease. The Beta protein from λ Red binds the ssDNA

and protects it while being escorted to a replication fork of the chromosome. The editing ssDNA

anneals to the lagging strand, acting as an Okazaki fragment. The genomic location for integration

is determined by complementary sequences flanking the mutation site. After DNA replication and

chromosome segregation, some cells eventually carry the desired mutation
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reduced, either by mutation or by using an oligonucleotide that creates a C–C

mismatch, even a 20% recombination frequency is achievable [31]. Therefore,

although simply performed in a single step, recombineering usually requires a

screening or selection step. Useful methods for screening involve PCR amplifica-

tions, such as the mismatch amplification mutation assay-PCR (MAMA-PCR).

MAMA-PCR is capable of identifying single base changes by screening colonies.

It is also helpful if the mutation to be inserted creates a restriction site change that

can be monitored by a diagnostic cut of the PCR-amplified fragment. As these

methods still require a sufficiently high frequency of recombination,

counterselection has been developed to avoid screening or to restrict screening to

a confirmatory analysis. In this two-step procedure, first, a cat-sacB cassette

(or another counter-selectable cassette) is placed on the DNA, and successful

recombinants are retrieved as chloramphenicol resistant [7]. The cassette is then

replaced with the desired alteration in a second recombineering event, and success-

ful recombinants are identified by their sucrose resistance caused by the loss of

sacB. The final construct will carry the desired alteration and have no drug marker.

Other counter-selectable markers than sacB are available [12]. A recently presented

technology uses the incorporation of an added nonnatural nucleoside into DNA due

to Herpes simplex virus thymidine kinase (hsvTK) activity [32], with the conse-

quent death of non-recombinants which have not lost hsvTK. The elegant procedure

developed uses liquid handling only, without the need for a manual procedure for

identifying the right recombinants by colony picking and conducting multiple PCR

reactions for each colony. The virtually complete absence of false-positives in this

procedure made it possible to introduce mutations at four different loci in subse-

quent rounds of recombineering without any need for colony isolation or genotype

confirmation. Because the entire process is conducted via liquid handling only, it is

adaptable for full automation, and different recombineering projects can be

conducted in parallel in multi-well formats.

Due to its simplicity and speed, recombineering is an established tool to develop

E. coli producers by introducing single mutations. In a further development,

multiplex automated genome engineering (MAGE) was introduced as an evolu-

tionary strategy for strain development, which targets many locations on the

chromosome for modification across a population of cells [22]. MAGE takes

advantage of the ultrahigh efficiency of ssDNA recombineering with mutS strains

to achieve simultaneous editing of multiple targets in a selection-free format. It was

applied to tune the ribosome-binding site of 24 genes documented to increase

lycopene yield. A pool of 4.7� 105 90-mer oligos was used containing degenerate

ribosome-binding sites to simultaneously maximize lycopene production. Screen-

ing of variants that produced intense red pigmented colonies yielded clones which

produced up to 1 mg lycopene per g cells and which carried up to five mutations.

MAGE was also used for the simultaneous incorporation of T7 promoters into

12 genes associated with the synthesis of aromatic amino acids [33]. Up to 9 mg

product per gram cells quantified as tryptophan-derived indigo was achieved.

Although the product yields for both lycopene and tryptophan are far from being

of industrial relevance, site-directed genomic diversity as feasible by
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recombineering and MAGE might be useful to obtain variants and to optimize

metabolic flux through biosynthesis pathways.

Among the variety of Gram-negative bacteria for which recombineering has

been established, Pantoea ananatis is of particular interest since it has specific traits
useful for small molecule production, such as growth at acidic pH and resistance to

saturating concentrations of glutamic acid [34]. It has been observed that expression

of the λ Red genes is highly toxic for P. ananatis wild type. However, a screening

yielded a mutant resistant to the toxic effects of λ Red. Using this strain, procedures
for fast introduction of multiple rearrangements to the P. ananatis genome based on

the λ Red-dependent integration of ssDNA or short dsDNA fragments have been

demonstrated [17].

Recombineering has also been established and applied for C. glutamicum
[15, 35]. To assay for ssDNA recombineering in this bacterium, λ Beta and RecT

as well as homologous proteins of Corynebacterium aurimucosum and of the

mycobacteriophages Che9c and Halo were used (Table 1). The latter two proteins

were chosen since both Mycobacterium and Corynebacterium belong to the order

Corynebacteriales, and genes of M. tuberculosis show functionality in

C. glutamicum [36]. With the exception of λ Beta, all proteins exhibited function-

ality. Kanamycin sensitivity due to a frameshift mutation in a chromosomally

integrated kanamycin resistance gene was cured by the use of 1 μg of a “healing”

50-mer oligonucleotide in electroporation assays. The highest recombineering

activity was obtained with RecT of the E. coli Rac prophage. Under optimized

conditions, RecT enabled recombination frequencies in the wild type of

C. glutamicum exceeding 106 recombinants per assay, which contained about 109

viable cells after electroporation. This is only about one order of magnitude away

from that obtained with Beta in E. coli strains specifically engineered for high

Table 1 Comparison of recombinase efficiencies in a C. glutamicum test strain carrying the

chromosomally integrated kanamycin resistance gene with an inactivating point mutation

Plasmid Kanamycin-resistant cells per 109 viable cells

+

Oligonucleotidea
�
Oligonucleotide

pJC1 control plasmid with kanamycin

resistance

pCLTON2-

bet

8 0 2.2� 105

pCLTON2-

recT

1.3� 104 31 5.0� 105

pCLTON2-

gp43

9.7� 101 57 4.3� 105

pCLTON2-

gp61

3.1� 102 1 3.4� 105

pCLTON2-

rCau

2.5� 103 7 2.9� 105

Adapted from Binder et al. [15]
a1 μg of a 50-mer oligonucleotide repairing the inactivating point mutation in the kanamycin

resistance gene was used. The indicated values are averages from at least three biological

replicates
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mutation frequency like a decreased activity of the methyl-directed mismatch repair

system [9, 22]. This example illustrates the broad applicability of Beta/RecT

homologs in bacteria for the efficient introduction of genomic mutations making

it a versatile tool for rapid strain development.

In summary, recombineering is the method of choice for the rapid transfer of

mutations and the delivery of new strains by aiding the creation of point mutations,

deletions, or small insertions in the chromosome. The technique is most advanced

and also commercialized for its application in E. coli [7] but emerging for various

bacteria of biotechnological relevance [15, 17, 37]. The ideal system is plasmid

based, does not cause background mutations, and works without screening.

3 The CRISPR-Cas System and Its Perspectives

Key component of the CRISPR-Cas system is an RNA-guided nuclease introducing

double-strand breaks (DSBs) into DNA [38]. The system is extremely attractive for

the engineering of DNA at any given site and established for a plethora of

organisms including yeast, zebra fish, mosquito, or plants and already used to

correct monogenic disorders in mouse and human cell lines [39, 40]. In eukaryotes,

it is the leading genome-editing tool which facilitates engineering of a cell’s
genome at a level of efficiency and/or precision previously unattainable with

other systems, such as zinc finger nucleases [41, 42] or transcription activator-

like (TAL) effector nucleases [43–45]. The systems in use are built on components

from clustered, regularly interspaced, short palindromic repeat (CRISPR)-

associated Cas (CRISPR-associated) systems evolved in Bacteria and Archaea as

immune systems against foreign nucleic acids. The most commonly used

RNA-guided nuclease is based on the type II CRISPR-Cas9 system from Strepto-
coccus pyogenes [39]. In the native system Cas9 is guided to its target sequence by

an RNA hybrid derived from two processed RNAs, crRNA (CRISPR RNA) and

tracrRNA (trans-activating crRNA). However, a single chimeric small-guide RNA

(sgRNA) was constructed combining tracrRNA and crRNA features and addressing

the nuclease Cas9 as a ribonucleoprotein complex to the target site [46]. The target

site consists of a nucleotide stretch matching the 50-terminal sgRNA sequence

(usually 20 bp in length) followed by a short nucleotide sequence called protospacer

adjacent motif (PAM), which is NGG in the case of S. pyogenes Cas9 (Fig. 2). The

fact that target sequence specificity of the RNA-guided nuclease is governed by

RNA–DNA hybridization confers the versatility to the system. Only the nuclease

and an sgRNA is required with 20 bp nucleotide sequence complementary to the

target site with three nucleotides NGG adjacent (the PAM). In addition to native

Cas9 introducing a DSB at the target locus, engineered Cas9-derivatives are

available, like Cas9n introducing a single-strand “nick,” or dCas9, which has

maintained its sequence-specific dsDNA-binding capability but which is catalyti-

cally inactive, and a fusion of dCas9 with the omega subunit of E. coli RNA
polymerase suitable to activate gene expression [47]. The recent advances in
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Fig. 2 Application of the CRISPR-Cas9 system for efficient genome editing. The template

carrying the mutant allele is either double-stranded DNA (dsDNA) or single-stranded DNA

(ssDNA). Their integration into the genome is assisted by recombineering using the λ Red system

or by Cas9-cleavage activity. The endonuclease Cas9 requires a small-guide RNA (sgRNA) which

is composed of a “scaffold” sequence necessary for Cas9 binding and a user-defined �20

nucleotide “spacer” or “targeting” sequence which defines the genomic target to be modified.

Juxtaposed to the DNA complementary region is the protospacer with the protospacer adjacent

motif (PAM) immediately upstream. The PAM sequence is absolutely necessary for target binding

and consists in the case of Cas9 of Streptococcus pyogenes of the short motif 50-NGG-30. With the

sgRNA designed to target the “unedited” genome, the Cas9-sgRNA complex cuts unedited target

DNA, resulting in a double-strand break, while edited DNA is immune to cleavage by the Cas9-

sgRNA complex. As a consequence, the double-strand breaks result in death of cells, whereas

edited cells survive
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CRISPR-Cas technology herald beneficial opportunities in bacterial strain devel-

opment. The current advantages demonstrated are (1) access to engineer recalci-

trant strains, (2) use as an extremely efficient counterselection system, (3) use in

gene regulation, (4) advantageous reduction in genome manipulation time, and

(5) the possibility of multiplex genome editing and regulation.

The lethal DSB at the target locus effectively acts as a selection against wild-

type sequences during genome editing and increases at the same time the rate of

recombination at this locus when homologous DNA is supplied. This enables the

use of CRISPR-Cas genome editing even without phage recombinases expressed

and gives access to genome editing in bacteria that were previously recalcitrant to

specific genome manipulation. In the landmark work by Jiang et al. [48], Strepto-
coccus pneumoniae targets were engineered by co-transformation with both the

targeting and editing templates, which led to a recovery of close to a 100% of edited

cells. Clostridium species are of much biotechnological interest, but genetic tools

are still limited. Clostridium beijerinckii is a prominent solvent producer, and the

use of CRISPR-Cas technology enabled to introduce a 262 bp chromosomal

deletion into the chromosome [49]. The plasmid used encoded the targeting

CRISPR-Cas nucleoprotein components together with a genomic fragment

containing the deletion. Its application resulted in clones all carrying the attempted

chromosomal deletion.

In broader use is CRISPR-Cas genome editing in combination with

recombineering where it is used as an efficient counterselection system (Fig. 2). It

was used for Lactobacillus reuteri and ssDNA recombineering [50]. Introduction of

up to five adjacent base changes into the chromosome were recovered at efficiencies

of more than 90%. However, CRISPR-Cas enabled to introduce deletions at

different loci of up to 702 bp with oligonucleotides and efficiencies of up to 10%.

The general use of CRISPR-Cas has been demonstrated for E. coli and ssDNA

recombineering by allelic exchange of a plasmid-encoded mutation [48]. The use of

CRISPR-Cas and dsDNA recombineering increases the efficiency of genome

editing significantly. To introduce an 804 bp deletion in cadA of an E. coli strain
equipped with Cas9 and the λ recombination proteins, an appropriate PCR fragment

was co-transferred with a plasmid encoding the targeting sgRNA [51]. The muta-

tion efficiency obtained was 69%, enabling the easy recognition of the deletion by

PCR analysis. When the same cadA deletion was done by delivering the mutated

allele on a plasmid, the mutation efficiency was increased to 86%. This high

efficiency is likely due to the fact that multiple copies of the allelic DNA are

present in the cell increasing the number of recombination events, as known for

“gene gorging” [26]. Thus, CRISPR-Cas allows dsDNA recombineering with a

very high efficiency, which without CRISPR-Cas application is below 0.01%

[52]. More importantly, it operates with this high efficiency also in E. coli wild-
type strains not carrying mutations in the methyl-directed mismatch repair system

to increase recombineering frequencies [53].

Since the native CRISPR-Cas system is designed to synthesize several targeting

RNAs at the same time, it offers the opportunity to edit in one host cell several loci

in a single experiment (multiplexing). For a single-step double deletion of srtA and
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bgaA in S. pneumoniae, a targeting construct was used matching srtA and bgaA as

present in the wild type [48]. Co-transformation with both editing templates at the

same time showed that editing at the two different loci occurred in 6 out of 8 cases.

In E. coli MG1655, a double deletion was introduced with a plasmid-encoded

editing template at a frequency of 97% [51]. Even a triple deletion was possible

in E. coli MG1655 at a frequency of 47%, and a mixed gene deletion plus a gene

insertion occurred at a frequency of 78%. CRISPR-Cas has been used for single

gene editing and multiplexing also in Streptomyces. Streptomyces species are well-
studied producers of diverse secondary metabolites. Genomic deletions can be

made via homologous recombination, which is labor and time intensive and

requires several screening steps. Using a conjugative plasmid encoding Cas9

together with the targeting and editing templates, a 12 kb region could be deleted

in S. albus in two of three exconjugants analyzed [54]. By multiplexing two

different loci in S. lividans, 4 out of 8 exconjugants were correctly edited. In a

similar approach, the genomic regions of actinorhodin and undecylprodigiosin

synthesis in S. coelicolor were targeted by multiplexing. The corresponding simul-

taneous deletion of the 21.3 kb and 31.6 kb region occurred with an efficiency of

45% [55]. Notably, the total time required for one round of genome engineering in

Streptomyces was decreased to at least one-half of that of conventional methods.

A catalytically dead Cas9 (dCas9) lacking endonuclease activity, when

co-expressed with an sgRNA, generates a ribonucleoprotein complex that can

specifically interfere with transcription factor binding, RNA polymerase binding,

or transcriptional elongation and therefore used to control gene expression [46]. By

directing dCas9 to the promoter region of bgaA in Streptococcus pneumoniae, an up
to 14-fold reduction in β-galactosidase activity was obtained depending on the

targeted position [47]. In E. coli a greater than 100-fold reduction in GFP fluores-

cence was observed by targeting of gfp promoter regions overlapping or adjacent to

the�35 and�10 promoter elements and to the Shine–Dalgarno sequence [47]. Tar-

gets on both strands showed similar repression levels, suggesting that the binding of

dCas9 to any position within the promoter region prevents transcription initiation.

With the red fluorescent protein (mRFP)-based reporter system inserted into the

E. coli genome, a 10- to 300-fold repression was demonstrated with sgRNAs

targeting the non-template DNA strand of the mRFP-coding region [56] illustrating

blocking of transcription [53]. The functionality of dCas9 to control gene expres-

sion has also been shown for S. coelicolor by reducing expression of actIORF1,
thus preventing formation of the blue-pigmented polyketide antibiotic actinorhodin

[57]. In Corynebacterium glutamicum, CRISPR interference with dCas9 was used

to reduce expression of pgi (phosphoglucose isomerase) to increase L-lysine pro-

duction and of pck (PEP carboxykinase) and pyk (pyruvate kinase) to enhance L-

glutamate synthesis [58]. Interestingly, the CRISPR-Cas system was also used for

activation of gene expression in E. coli [47]. To convert dCas9 into a transcriptional
activator, it was fused to the ω-subunit of RNA polymerase and directed toward gfp-
mut2 under control of a weak synthetic promoter. The dCas9-ω fusion located 80 or

96 nucleotide upstream of the transcriptional start site provided a 7.2- and 23-fold
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induction, respectively. This is a tool of interest to study consequences of increased

gene expression on product formation.

In conclusion, CRISPR-Cas increases the efficiency of genome editing dramati-

cally. Bacteria recalcitrant to specific genome manipulation can be modified with

this technique, and in combination with recombineering, very high efficiencies are

obtained. Further developments of this new and promising editing system are

required to make it available for various bacteria of biotechnological interest and

in particular to enable its comfortable use in consecutive rounds of strain

development.

4 Think Big: Large Genome Alterations

Besides technologies for rapid site-specific introduction of small genome changes

like point mutations or small deletions or insertions, the era of genomics and

synthetic biology also has motivated studies aiming to explore the influence of

large genome alterations on growth physiology and product formation. There are

three major directions in this field: (1) bottom-up synthesis of designed genomes

and transfer into a suitable host, (2) top-down reduction of the genome size to

reduce complexity and discard unnecessary or disturbing genes, and (3) transfer and

exchange of larger DNA fragments between genomes and episomes. These will be

described below.

4.1 Maximal Output with Minimal Genome

The concept of the minimal cell has fascinated scientists for a long time. There is

interest in minimal genomes from basic science to reduce or redesign genomes of

selected microbial model species. This has culminated in the total synthesis of the

1.08 Mbp Mycoplasma mycoides JCVI-syn1.0 genome starting from digitized

genome sequence information and its transplantation into a Mycoplasma
capricolum recipient cell to create new M. mycoides cells that are controlled only

by the synthetic chromosome [59]. This bottom-up approach of genome synthesis

obviously represents the most straightforward procedure to design and implement

producer cells from scratch. However, the difficulties in transferring large DNA

fragments >500 Mbp into recipient cells have prevented the application of this

approach in strain development hitherto. The top-down approach involves the

reduction of genome size motivated by the assumption that a strain with a mini-

mized genome harboring only the necessary functions for growth and product

formation will strongly improve modeling, predictability, and engineering,

allowing the construction of producer strains with superior properties [60].

In approaches to systematically reduce the genome size of E. coli, single

deletions were introduced with the largest one exceeding 300 kb [61]. Suitable
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techniques include the FLP/FRT, the Cre/loxP, or the λ Red system, all three of

them using two recombinase recognition sites on the same DNA molecule

[62]. Also the simultaneous deletion of a non-contiguous region of 54 kb using

large synthetic DNA was achieved in this manner [63]. Serial combination of single

deletions enabled to delete 38.9% of the chromosome of E. coli K-12 [61]. The

deletions cause a number of unpredictable effects influencing growth, transforma-

tion efficiency, morphology, and other properties [64]. Frequently, the impact on

fitness is negative, but it can also be positive. Single-gene deletions could activate

cellular metabolism [65, 66], and the synergistic effect of multiple deletions could

enhance transformation frequency [64] or improve production of proteins as shown

for B. subtilis [67] and C. glutamicum [68]. E. coli DGF-298 with 35.2% of the

genome deleted and a 2.98 Mbp genome showed a better cell yield in a rich medium

than the wild-type K-12 strain and was not auxotrophic [69]. The downregulation of

genes encoding chaperones and proteases has been discussed as one reason for the

better cell yield of this strain. However, it is difficult to rationally find gene deletion

combinations that produce synergistic effects supporting or activating cellular

functions, especially production of a small molecule. Growth, productivity, and

yield are the results of a functional network of hundreds of genes, and this network

is still difficult to elucidate or to design in view of our incomplete knowledge of

gene functions and regulatory effects.

In two independent studies, the genome reduction approach was assessed in

relation to L-threonine formation with E. coli K-12 derivatives [70, 71]. In one of

them growth of mutants carrying single and stepwise combined deletions was

judged in M9 minimal medium to maintain robust cell growth [71]. The genome

of the final strain MGF-01 was reduced by 1.03 Mbp (22% genome reduction), and

it grew as well as the wild type in the exponential phase and continued growing

after the wild type had entered the stationary phase. The final cell density of

MGF-01 was 1.5 times greater than that of the original W3110 strain, which was

attributed to reduced acetate formation. Removing feedback control of aspartate

kinase, which controls flux toward L-threonine, by introducing the mutation

thrA345 and preventing flux toward L-methionine by deleting metA resulted in a

strain that accumulated 10.6 g/L L-threonine, whereas the non-genome-reduced

strain carrying the same two mutations produced 4.4 g/L L-threonine [71]. In

another study strain MDS42 was constructed with the genome reduced by

0.66 Mb (14%) [64]. The focus of this latter study was to obtain a genetically stable

strain by removing mobile DNA elements that mediate recombination events such

as transposition and horizontal gene transfer, including insertion sequence

(IS) elements, transposases, defective phages, integrases, and site-specific

recombinases. Growth in minimal medium and protein production of strain

MDS42 was similar to that of the wild-type MG1655, and as unanticipated bene-

ficial properties, the electroporation efficiency was increased and recombinant

genes and plasmids were more stable than in other strains. MDS42 also served as

a basis to construct an L-threonine producer [72]. The mutations introduced

included in this case the overexpression of a feedback-resistant threonine operon

(thrA*BC) under the control of a recombinant tac promoter, the deletion of the
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genes that encode threonine dehydrogenase (tdh) and threonine uptake proteins

(tdcC and sstT), as well as the introduction of a mutant threonine exporter gene

(rhtA23). The strain was reported to produce 40.1 g/L L-threonine, which corre-

sponds to an increase of 83% compared to the wild-type strain MG1655 that had

been engineered to carry the same threonine-specific modifications [72, 73]. In

separate studies, the consequences of individual deletions or inactivations of genes

and operons on L-threonine synthesis were evaluated [3]. In total, 56 genes and

operons were identified, which are not involved in L-threonine synthesis but which

upon deletion or inactivation led to an increase in L-threonine production. Among

the regions deleted are IS elements, toxin–antitoxin pairs, toxins, surface structures,

small RNAs, and others. The reason for increased production upon deletion of these

genes is unclear. In general, three explanations are possible:

• Genome reduction leads to a decrease in the metabolic burden and the surplus of

metabolic power and carbon source is used for product formation.

• Genome reduction has a favorable regulatory influence on the metabolic

network.

• Genome reduction including the deletion of IS elements reduces genomic

alterations with a negative impact on productivity.

The first two arguments are difficult to assess, in particular since they are mixed.

It is well known that even the deletion of single genes can have complex regulatory

consequences [74, 75]. Whether there is a correlation between a reduced genome

size and increased metabolic power or productivity requires further studies. On

more solid grounds is the argument that the absence of IS elements can improve the

production properties. In metabolic engineering, producer strains are constructed in

a stepwise manner involving genetic manipulations, with each step within this

process being prone to the acquisition of unwanted mutations. Since IS elements

cause many of the spontaneous mutations occurring in E. coli [76], their removal

helps to reduce the occurrence of such mutations. Moreover, under producing

conditions, a number of factors stress the cells, like osmotic effects, temperature

and substrate fluctuations, or oxygen deprivation [2, 77], meaning that in the final

high-level producer, again the occurrence of mutations is favored which reduce

productivity and thereby also stress. Eliminating stress-inducible error-prone DNA

polymerases in an IS element-free strain of E. coli showed a close to 50% decrease

in the spontaneous mutation rate [76].

First approaches to reduce the genome size in C. glutamicum focused on the

deletion of strain-specific islands in C. glutamicum strain R [78]. Eleven islands

representing 250 kb (7.5% of the genome) not present in C. glutamicum
ATCC13032 were individually deleted, with the resulting strains not influenced

in growth. Deletion of genomic fragments of up to 186 kb in C. glutamicum R had

variable effects on growth [79]. Mutant RMD(190) of C. glutamicum R combines

deletions corresponding to a total of 190 kb with 188 genes and exhibits no growth

defect in minimal medium [78, 80]. C. glutamicum ATCC13032 contains three

prophages which have been deleted to reduce the genome size by 6% [68]. The

resulting strain MB001 did not show any unfavorable properties during extensive
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phenotypic characterization under various standard and stress conditions but had an

increased transformation efficiency and increased model protein production. The

latter property is caused by the deletion of a restriction modification system located

on prophage CGP3 [68]. On the basis of strain MB001, 36 individual deletions of up

to 50 kb were introduced of which 26 did not affect either the growth rate or the

biomass yield in glucose minimal medium [81]. The growth defects caused by some

of the ten deletions could be abolished by supplementation of the minimal medium

with yeast extract, L-threonine, and vitamins, suggesting defects in anabolism. As a

first step toward further genome reduction, five strains were constructed in which

two of the deletions without effect on growth in minimal medium were combined.

Of these double-deletion strains, three exhibited growth characteristics on minimal

medium still comparable to that of the wild type, whereas two showed impaired

growth, illustrating that the interactions within the metabolic and regulatory net-

works of the cell are still unpredictable to a large extent [81].

4.2 Large DNA Fragment Swapping of Useful Traits

In microbial strain development, there is an increasing need to exchange large DNA

fragments between genomes and episomes to combine required or desired biolog-

ical functions of strains or plasmids. For example, the transfer of long biosynthesis

pathways from a donor species not suitable for large-scale production to an

industrially established microbial host can require such techniques [82]. Manipula-

tion of large fragments within genomes also helps to understand the genome

architecture and global gene regulation and consequently growth and production

properties [83].

A clear disadvantage of producer strains is reduced sugar consumption and

reduced growth. This is frequently the case for strains derived classically by

random mutagenesis and screening and a consequence of accumulating mutations

during the successive steps of strain development. For example, lysine producer

strains of C. glutamicum derived in this way are known to contain up to or even

more than 1,000 mutations. In an early approach, the genetic properties leading to

good L-lysine yields of a C. glutamicum strain showing low sugar consumption

were combined with a strain showing no productivity but high sugar consumption

[84]. This was achieved by protoplast fusion and use of resistance markers charac-

teristic for each strain, leading to a fusion strain with threefold increased glucose

uptake and L-lysine production rates. Although a less defined genetic technique was

used, this example illustrates well the need to optimize strain properties by novel

methods. The efficiency of sugar uptake is also of concern for E. coli strains, where
rational design was employed for improvement [85]. Strain MG1655 is a popular

K-12 strain in use for metabolic engineering but carries ilvG and rph-1 mutations

which have a negative impact on growth under certain conditions. Removal of these

mutations increased the growth rate substantially from 0.56 to 0.73 h�1
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recommending this novel strain as more suitable for small molecule

production [86].

The main approaches to integrate fragments into the E. coli chromosome involve

recombineering [7, 87] and phage-derived methods [88, 89]. However, as men-

tioned above, recombineering suffers from the size limitation of the DNA fragment

when provided as a PCR product, and the risk of unwanted mutations is increased

upon the use of larger PCR fragments. To achieve efficient integration of fragments

up to 7 kb, a method has been described where the fragment is supplied from a

plasmid and the recombineering efficiency is increased by the use of the

meganuclease I-SceI, which produces double-strand breaks at a unique 18 bp

recognition sequence [24]. The cells contained a helper plasmid harboring genes

encoding the λ Red enzymes and the I-SceI endonuclease. In the first step, the λ Red
enzymes expressed from the helper plasmid are used to recombineer a small

(1.3 kb) “landing pad” into the desired location in the chromosome, consisting of

a tetracycline resistance gene flanked on each site by I-SceI endonuclease recogni-

tion sites and a defined 25-bp random sequence not present in the E. coli genome. In

the second step, the cell containing the “landing pad” is transformed with the donor

plasmid carrying the desired insertion fragment similarly flanked by I-SceI recog-

nition sites and the same 25-bp random sequences as the “landing pad” region.

Induction of I-SceI expression led to cleavage of both the donor plasmid and the

chromosome and the successful targeted integration of the 7 kb fragment into the

chromosome. The integration is highly efficient, and different fragments can be

targeted into the chromosome at separate locations via the repeated use of the

universal system developed. The method bears some resemblance to the ALFIRE

method for BAC (bacterial artificial chromosome) subcloning [90], which was

shown to allow the transfer between BACs of large fragments up to 55 kb in size.

It is therefore likely that the use of DSBs generated by I-SceI and the activity of the

Red/ET recombinases will allow for the insertion of similarly large fragments into

the chromosome using a donor BAC.

An additional approach to the use of I-SceI and recombineering makes use of

phage-integration systems to facilitate the insertion of synthetic constructs into the

chromosome [88, 89]. Again “landing pads” are used, in this case well known as

phage attachment sites att. The donor DNA contains a phage-specific attachment

site (attP), which, when transformed into a host cell expressing the appropriate

phage integrase enzyme, is integrated into a complementary phage attB attachment

site in the chromosome [91]. These systems have the advantage that either the

delivery of fragments from plasmids or by transduction is possible and that there is

effectively no limit to the size of the fragment that can be inserted at the attachment

site. When additionally the appropriate phage Xis enzyme is expressed, the back-

bone of the donor plasmid can also be easily removed [17, 89]. In one such

application, the attB attachment site of phage φ80 was integrated at several

locations in the E. coli chromosome via λ Red recombineering, representing the

“landing pad” [92]. Using plasmids carrying the φ80-attP site, chromosomal 8 kb

fragments excised by the use of their flanking I-SceI sites were successfully

integrated by this procedure [93]. Because large chromosomal fragments can be
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flanked by I-SceI sites and cloned into vectors [24], significantly larger fragments

may be integrated by the use of such a procedure.

One experiment demonstrated the use of large fragment integration to convert

the alginate of brown seaweed by E. coli into ethanol. The alginate catabolic

pathway is present on a 34 kb fragment in Vibrio splendidus [94]. In the first

engineering step, the “landing pad” was introduced at the desired location into

the E. coli genome using λ Red recombination. The “landing pad” consisted in this

case of lox sites flanking an antibiotic marker [95]. The 31 bp lox sequence is

recognized by the site-specific Cre recombinase of the Cre/lox system derived from

phage P1. In the second step, the similarly lox-flanked 34 kb fragment was deliv-

ered from a single-copy plasmid previously transferred into the recipient strain.

Selection for the presence of an antibiotic marker previously introduced into the

34 kb fragment and the absence of the antibiotic marker present on the “landing

pad” yielded the desired strain [95]. The additional integration of pyruvate decarbo-

xylase and alcohol dehydrogenase genes enabled E. coli BAL 1075 to produce

more than 20 g/L ethanol with a productivity of 0.43 g/L/h from brown seaweed

demonstrating its use as feedstock for production of biofuels and commodity

chemical compounds.

The Cre/lox system operates in a number of biotechnologically relevant organ-

isms like C. glutamicum [96, 97], Lactococcus lactis [98], or Bacillus subtilis
[99]. The lox attachment site is usually placed into the genome with λ Red, but

this can also be done by the use of engineered mobile group II introns, a recently

introduced procedure which does not require selectable markers [100]. Such mobile

group II introns delivering lox sites were developed for E. coli, Staphylococcus
aureus, B. subtilis, and Shewanella oneidensis [100]. Among other manipulations,

the system was used to deliver a 12-kb polyketide synthase operon to the genome of

E. coli, to move 100 kb of the E. coli genome to another locus 1.5 Mb away, and to

invert approximately one-third of the B. subtilis genome. As expected, not all of

these genome rearrangements were stable because the structure of the chromosome

limits genome plasticity [83], but the development of tools is in progress which

offer new options for analyzing and engineering entire genomes and to assay their

usefulness for small molecule production.

Another important whole-genome scale tool is conjugation, which allows the

transfer of very large genomic fragments from one strain to another. Together with

transduction, it is one of the earliest systems used in E. coli for moving genes and

genome fragments between strains [7]. In a recent work, 32 different genomic

regions (each about 143 kb) in individual E. coli strains, together covering the entire
genome, were engineered by MAGE to replace all 314 TAG stop codons with TAA

stop codons [101]. With the aim to combine all 314 mutations in one single strain, a

method termed “conjugative assembly genome engineering” (CAGE) was devel-

oped based on conjugative transfer. For this purpose, the mutated region of the

donor strain was flanked with the origin of transfer, oriT, on one side and a

selectable marker on the other side. The mutated region of the recipient strain

was flanked by another selectable marker on one side and a positive–negative

selection marker (such a tolC or galK) on the other side. The other transfer
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functions were maintained episomally on the F0 factor. The conjugative transfer

was done in parallel in a hierarchical process involving five steps. In the first step,

16 strains were generated with two neighboring 143 kb genomic fragments com-

bined, leading to mutated regions with an average size of 267 kb. In the next step,

eight strains were produced with a reengineered genome of an average size of

575 kb. This required additional efforts, due to marker instability and the known

exponential decrease of marker transfer with increase in its distance from oriT
[102]. Finally, a strain was obtained in which all 314 TAG stop codons were

exchanged and in addition the release factor 1 gene deleted, thus allowing

reassignment of the TAG translation function [103]. Conjugation permits the

exploration of vast genetic landscapes. It is one step forward in the direction to

understand mutations in a classically derived strain which only result in increased

strain performance when present in combination.

5 Genetically Encoded Biosensors Have Bright Prospects

for Strain Development

According to IUPAC, a biosensor is a device that uses specific biochemical

reactions mediated by isolated enzymes, immune system, tissues, organelles, or

whole cells to detect chemical compounds usually by electrical, thermal, or optical

signals. Of particular interest in strain development are genetically encoded bio-

sensors based on transcriptional regulators (TRs), which in dependence of a certain

stimulus control expression of a reporter gene encoding a fluorescent protein.

Biosensor-based techniques enable the use of single-cell analysis via

fluorescence-activated cell sorting (FACS) and thus ultrahigh-throughput screen-

ings. They provide a new tool for accelerated strain development [1, 104–107] and

can be used advantageously to (1) identify new profitable genomic mutations,

(2) generate enzyme variants decisive to overcome flux control, (3) generate –

combined with recombineering – productive variants at a specific genomic locus,

(4) isolate transcription factors with altered specificity, (5) isolate enzyme variants

with altered specificity, and (6) detect population heterogeneity.

Metabolic engineering approaches focus mostly on known genes and known

mutations. This approach misses the many unknowns involved in the development

of excellent production properties, like functions of the host or the interplay of

genes introduced. Therefore, screening approaches are still a highly valuable tool in

strain development. In fact, also for such a classical product like L-lysine, there is an

ongoing effort for strain improvement involving rounds of mutagenesis and screen-

ings [2]. Biosensors operating at the single-cell level offer unique opportunities for

accelerated strain engineering. A prominent example of a TR-based biosensor and

its purposeful use together with FACS is LysG of C. glutamicum (Fig. 3). LysG is a

LysR-type TR that activates expression of its target gene lysE (encoding a lysine

exporter) in response to elevated intracellular concentrations of L-lysine, L-arginine,
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Fig. 3 A Basic principle of a metabolite sensor based on a transcriptional regulator. LysG of

C. glutamicum activates expression of its target promoter PlysE when the cytoplasmic L-lysine

concentration surpasses the regular concentration of about 5 mM. This is true, for example, in

lysine production strains. On plasmid pSenLys, PlysE controls expression of the reporter gene eyfp
encoding yellow fluorescent protein. Whereas wild-type cells carrying pSenLys are not fluores-

cent, lysine producer cells with pSenLys are fluorescent. B Correlation between intracellular and

extracellular L-lysine concentrations in C. glutamicumwild type and a series of genetically defined

L-lysine producer strains all carrying plasmid pSenLys. C Correlation between intracellular L-

lysine concentration and specific fluorescence of the C. glutamicum strains shown on the left panel.

The increased fluorescence is also visible at the single-cell level. D Application of metabolite

sensors for strain development. Cells equipped with a sensor plasmid for a suitable target

metabolite are subjected to mutagenesis either genome wide or gene specific or site specific.
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and L-histidine [108]. LysG requires binding of L-lysine, L-arginine, or L-histidine

as coactivators in order to activate expression of lysE and thus functions as a sensor

for the intracellular concentration of basic amino acids with Kd values in the low

millimolar range. Using a plasmid containing eyfp (encoding enhanced yellow

fluorescent protein) as reporter gene under the control of the PlysE promoter, the

intracellular L-lysine concentration can be converted into a fluorescence signal.

Importantly, increased intracellular concentrations correlate with increased extra-

cellular concentrations [109]. Using the L-lysine responsiveness of LysG, a library

of seven million individual cells of C. glutamicum obtained by random chemical

mutagenesis was subjected to FACS and within 1 h yielded more than 100 L-lysine

producers. Their analysis led to the identification of novel productive mutations in

previously known target genes, such as lysC encoding aspartate kinase. More

importantly, whole-genome sequencing identified a novel mutation improving

lysine production in a previously unknown target gene, murE, encoding an enzyme

involved in murein biosynthesis, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-

2,6-diaminopimelate ligase. Introduction of the identified mutation murE-G81E
into the C. glutamicum wild type triggered significant L-lysine excretion, and its

introduction into an existing L-lysine producer increased L-lysine accumulation by

15% [109]. In a similar study, the TR Lrp of C. glutamicum was used to success-

fully screen for genomic mutants synthesizing increased concentrations of the

branched-chain amino acids or of L-methionine [110]. More recently, the

Lrp-based biosensor was employed for adaptive laboratory evolution to isolate

C. glutamicum ΔaceE variants with increased growth rates, increased valine titers,

and reduced by-product formation. Genome re-sequencing led to the identification

of mutations that are responsible for the improved traits [111].

Besides FACS-based screening of cell libraries for productive genomic muta-

tions increasing lysine synthesis, the LysG-based biosensor was also used in a

targeted approach to isolate feedback-resistant variants of the key enzymes of

L-lysine, L-arginine, and L-histidine biosynthesis. The N-acetyl-L-glutamate kinase,

ArgB, of C. glutamicum exerts flux control over the long L-arginine biosynthesis

pathway due to allosteric inhibition of its activity by elevated L-arginine concen-

trations. A plasmid-based argB mutant library was introduced into C. glutamicum
carrying the LysG sensor, and about 22� 106 cells of the mutant library were

screened via FACS. Ninety-six single cells exhibiting increased fluorescence

were selected. Downstream analyses revealed that 41 clonal cultures accumulated

up to 18 mM L-arginine and that this was due to ArgB variants which are no longer

feedback inhibited by L-arginine [112]. A similar approach was used to obtain

collections of feedback-resistant variants of aspartate kinase and ATP

⁄�

Fig. 3 (continued) The resulting libraries are screened by FACS and highly fluorescent cells are

sorted out. These are characterized further with respect to growth, target metabolite

overproduction in the medium, and genome sequence. Productive mutations identified by com-

parative analysis of the genome sequence and further analyses are combined in one strain to obtain

a superior producer strain. MNNG 1-methyl-3-nitro-1-nitrosoguanidine, epPCR error-prone PCR
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phosphoribosyltransferase, which are the key enzymes of L-lysine and L-histidine

synthesis, respectively [112]. The mutations identified can be assembled with

further productive mutations for rapid development of producer strains.

An even further advanced application of biosensor-based FACS screening is its

combination with recombineering, a technology called RecFACS [15]. RecFACS

enables the high-throughput identification via FACS of productive mutants in a

population obtained directly from recombineering assays. Using a mixture of

19 different oligonucleotides to target the codon murE-G81 in the chromosome of

C. glutamicum, in a single RecFACS experiment, a set of mutants was isolated

covering 12 different amino acid exchanges at murE-G81 all leading to different

L-lysine production titers [15]. Thus, RecFACS allowed introduction of genetic

diversity and screening for productive mutations in one single step.

In synthetic biology frequently entire new pathways are established which have

to be improved. This may require the adjustment of a variety of plasmid-encoded

functions as well as functions of the host chromosome. An example where a

ribosome-binding site was targeted by the use of a biosensor is mevalonate synthe-

sis with E. coli [113]. To achieve this, first a mevalonate-responsive derivative of

the arabinose-sensing TR AraC was isolated. The gfpuv reporter gene encoding

green fluorescent protein (GFPuv) was placed downstream of the AraC-controlled

promoter PBAD, and E. coli clones expressing an AraC library were screened via

FACS for mevalonate responsiveness. After several rounds of screening, AraC-mev

became available carrying four amino acid substitutions. AraC-mev exhibited an

almost linear response to exogenous mevalonate concentrations in the range of

10–100 mM. An AraC-mev-based biosensor coupled to β-galactosidase expression
was used in an E. coli strain producing mevalonate due to plasmid-encoded

hydroxymethylglutaryl-CoA reductase and two further genes [113]. Libraries of

variant ribosome-binding sites in front of the hydroxymethylglutaryl-CoA reduc-

tase coding region were successfully screened by colony color for increased

mevalonate formation, and a variant responsible for a fourfold increase in the

mevalonate titer was isolated. In addition to AraC-mev also AraC-TAL was

developed [114]. The latter TR is responsive to triacetic acid lactone (TAL),

which is the product of 2-pyrone synthase activity of Gerbera hybrida and an

intermediate of polyketide synthesis. Plasmid-based libraries of 2-pyrone synthase

were introduced into E. coli equipped with AraC-TAL coupled to lacZ as reporter

gene. Two rounds of mutagenesis and visual screening on plates for colony color

yielded a variant conferring �20-fold increased TAL production due to an

increased catalytic efficiency of the mutated 2-pyrone synthase. Another biosensor

used the TR BmoR of Thauera butanivorans to couple butanol production by

E. coli to increased tetracycline resistance [115]. A limited 96-well plate screen

for variant ribosome-binding sites yielded a pathway variant with 35% increased

specific productivity.

As described above, biosensors can be employed for enzyme development by

sensing either the direct product of the enzyme or a product further downstream in a

pathway whose synthesis is dependent on the enzymatic activity in question

[107]. A somewhat different type of biosensor monitors the NADPH demand of
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the E. coli cell and is consequently a generalizable system enabling screening for

high NADPH oxidation activity by enzymes [116]. It circumvents the problem that

for each new enzyme development, a new biosensor has to be constructed. The

NADPH biosensor is based on the [2Fe–2S] cluster-containing TR SoxR of E. coli
that activates expression of soxS in the oxidized but not in the reduced state

[117, 118]. As SoxR is retained in the cell in its reduced state by NADPH-

dependent reductases [119], an increased NADPH demand counteracts SoxR

reduction and increases soxS expression [120]. For measuring transcriptional acti-

vation of the soxS promoter, it was fused to the reporter gene eyfp. When testing this

system with an NADPH-dependent alcohol dehydrogenase, which reduces methyl

acetoacetate to (R)-methyl 3-hydroxybutyrate, a correlation between cellular fluo-

rescence and alcohol dehydrogenase enzyme activity was observed. Therefore, this

type of biosensor is suitable for evolving NADPH-dependent dehydrogenases by

FACS screening of mutant libraries. The sensor was successfully used to screen an

alcohol dehydrogenase library for variants showing improved activity with the

substrate 4-methyl-2-pentanone [116].

The examples described above demonstrate the power of biosensor-based FACS

screenings for strain and enzyme development. This technology expands the

genome engineering techniques substantially. For instance, the fact that they

directly deliver producing bacteria will enable to isolate cohorts of strains with

similar phenotypic production properties, which together with whole-genome

sequencing might unravel so far unknown hot spots in the genome relevant for

increased production. Depending on the application, biosensors with high specific-

ity and also with different sensitivities for the same small molecule might be of

interest, thus requiring the further development of TRs.

6 Outlook

The approaches described above open up new avenues for microbial strain breed-

ing. Obviously, they need to be integrated with a range of other technologies, such

as next-generation sequencing, bioinformatics, and high-throughput phenotyping.

The multiplicity of strains generated by the methods described above needs to be

characterized and compared for growth and production, requiring automation of

bioprocess development [121]. Furthermore, high-throughput analysis of strains by

genomics, transcriptomics, proteomics, metabolomics, and fluxomics would be

highly desirable to allow a global functional characterization of strains and novel

insights into the metabolic and regulatory networks. Suitable bioinformatics tools

that intelligently link the results of multi-omics experiments are crucial for evalu-

ation. Another topic closely related to strain breeding is enzyme development. The

prediction of the effect of mutations on enzyme activity is still usually impossible,

and improved technologies for enzyme development would strongly contribute also

to strain development. Although many of the listed technologies still have to be

developed or are not yet state of the art, it is likely that microbial strain breeding
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will become much faster and more efficient in the near future and thus contribute to

the establishment of a sustainable bioeconomy.
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Abstract Corynebacterium glutamicum is the workhorse of the production of

proteinogenic amino acids used in food and feed biotechnology. After more than

50 years of safe amino acid production, C. glutamicum has recently also been

engineered for the production of amino acid-derived compounds, which find var-

ious applications, e.g., as synthons for the chemical industry in several markets

including the polymer market. The amino acid-derived compounds such as

non-proteinogenic ω-amino acids, α,ω-diamines, and cyclic or hydroxylated

amino acids have similar carbon backbones and functional groups as their amino

acid precursors. Decarboxylation of amino acids may yield ω-amino acids such as

β-alanine, γ-aminobutyrate, and δ-aminovalerate as well as α,ω-diamines such as

putrescine and cadaverine. Since transamination is the final step in several amino

acid biosynthesis pathways, 2-keto acids as immediate amino acid precursors are

also amenable to production using recombinant C. glutamicum strains. Approaches

for metabolic engineering of C. glutamicum for production of amino acid-derived

compounds will be described, and where applicable, production from alternative

carbon sources or use of genome streamline will be referred to. The excellent large-

scale fermentation experience with C. glutamicum offers the possibility that these

amino acid-derived speciality products may enter large-volume markets.
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1 Introduction

As it is used in million-ton-scale amino acid production, C. glutamicum has been

studied intensely by classical strain improvement [1, 2], traditional metabolic

engineering [3–5], systems biology approaches [6, 7], and by synthetic biology

approaches [8, 9] aimed at enlarging its substrate [10] and product range [9, 11]. In

this chapter, metabolic engineering of C. glutamicum for the production of α,-
ω-diamines, ω-amino acids [12], 2-keto acids, and other non-proteinogenic amino

acids is in the focus of the following four sections, while traditional products like

endogenous amino acids and organic acids will not be covered.

2 C. glutamicum Strains Overproducing 2-Keto Acids

The 2-keto acids pyruvic acid, 2-ketoglutaric acid, 2-ketoisovaleric acid, and

2-ketoisocaproic acid (Fig. 1) are aminated to the amino acids L-alanine, L-gluta-

mate, L-valine, and L-leucine, respectively. C. glutamicum strains engineered to

overproduce one of these amino acids can be converted to the respective 2-keto

acid-producing strains by eliminating or reducing transamination and/or reductive
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amination reactions. Fermentative production of the 2-keto acid oxaloacetic acid,

precursor of L-aspartate, has not yet been demonstrated. Similarly, fermentative

production of the 2-keto acid glyoxylic acid, precursor of L-glycine in some

bacteria, has not yet been reported; however, C. glutamicum has been engineered

to overproduce glycolate [13], which is formed by reduction of glyoxylic acid.

2.1 Pyruvate

Pyruvic acid is one of the central intermediates of carbon metabolism. Pyruvic acid

is used in food, cosmetic, and pharmaceutical industries. Compounds derived from

pyruvate are often excreted, but pyruvic acid itself typically is not excreted under

these overflow conditions. Under oxygen-deprivation conditions, for example,

pyruvate is reduced to lactic acid, which is excreted. Pyruvate can be converted

to acetate, which is excreted. Since in these reactions either NAD+ is regenerated by

lactate dehydrogenase or ATP is formed by acetate kinase, lactate and acetate

excretions are favored over pyruvate excretion. To convert C. glutamicum to an

efficient pyruvate producer, the genes for pyruvate dehydrogenase (aceE), pyru-
vate: quinone oxidoreductase (pqo), lactate dehydrogenase (ldhA), alanine amino-

transferase (alaT), and valine-pyruvate aminotransferase (avtA) as well as part of
acetohydroxyacid synthase (AHAS) gene (ΔC-T ilvN) were deleted to avoid
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conversion to acetyl-CoA, acetic acid, lactic acid, and alanine. Titers of more than

45 g/l pyruvic acid were achieved using this strain [14].

2.2 2-Ketoglutarate

2-Ketoglutaric acid finds applications in the pharmaceutical and food industries.

2-Ketoglutarate is a branch point metabolite of the tricarboxylic acid (TCA) cycle

and immediate precursor of L-glutamate. To prevent amination of 2-ketoglutaric

acid to L-glutamate, two pathways had to be deleted. On the one hand, glutamate

dehydrogenase catalyzes NADPH-dependent reductive amination of

2-ketoglutarate, and, on the other hand, the combined reactions of glutamine-2-

oxoglutarate aminotransferase (GOGAT) and glutamine synthetase convert

2-ketoglutarate to L-glutamate requiring ATP and NADPH. Deletions of the respec-

tive genes, gdh and gltB, resulted in secretion of 2-ketoglutaric acid into the

medium [15]. Degradation of isocitrate, the direct precursor of 2-ketoglutaric

acid, was decreased by deletion of aceA, which encodes the key enzyme of the

glyoxylate bypass shunt, isocitrate lyase. The resulting strain was auxotrophic for L-

glutamate and accumulated 2-ketoglutarate to titers of about 12 g/l [15].

2.3 2-Ketoisovalerate

2-Ketoisovaleric acid is a precursor for drugs used as treatment against kidney

disease. L-Valine is synthesized from pyruvic acid via acetohydroxyacid synthase

(AHAS, encoded by ilvBN), acetohydroxyacid isomeroreductase (AHAIR, encoded

by ilvC), dihydroxy-acid dehydratase (DHAD encoded by ilvD) and transaminase B

(encoded by ilvE). To prevent L-valine formation, ilvE was deleted. Efficient

excretion of 2-ketoisovalerate required ilvBNCD overexpression and prevention

of acetate formation from pyruvate by deletion of pqo (encoding pyruvate quinone

oxidoreductase) and aceE (encoding a subunit of pyruvate dehydrogenase)

[16]. Subsequently, it was shown that instead of deleting aceE, leaky aceE expres-

sion from a weak promoter resulted in 2-ketoisovalerate titer of 35 g/l, a product

yield of 0.24 mol per mol of glucose and a volumetric productivity of 0.8 g/(l h),

when also ppc gene encoding PEP carboxylase was deleted [17]. The conversion of

strains optimized for L-valine production under oxygen-deprivation conditions [18]

has not yet been described.
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2.4 2-Ketoisocaproate

2-Ketoisocaproate has industrial and medical applications including its use as

therapeutic against of chronic kidney disease and to modulate insulin and glucagon

release. C. glutamicum strains accumulated 2-ketoisocaproate as consequence of

deletion or reduced expression of the ilvE gene for transaminase B [19, 20], deletion

of lbtR encoding the leucine and tryptophan biosynthesis repressor [21] and

overexpression of isoleucine and leucine biosynthesis genes as well as employing

feedback-resistant 2-isopropylmalate synthase and acetohydroxyacid synthase.

Moreover, deletion of the regulatory gene iolR [22] or methylcitrate synthase

genes [23] combined with leaky expression of citrate synthase gene gltA [24]

improved 2-ketoisocaproate production [19, 20]. The engineered strains accumu-

lated up to about 9 g/l 2-ketoisocaproate and product yields of 0.20 mol per mole of

glucose and 0.24 mol carbon in 2-ketoisocaproate per mole carbon in a glucose-

acetate mixture were achieved. Investigation of the activities of the native

isopropylmalate synthase revealed that this enzyme is not only feedback inhibited

by leucine (Ki of around 0.05 mM) but also by 2-ketoisocaproate in a competitive

manner (Ki of around 8 mM) [19]. Moreover, isopropylmalate dehydratase was

shown to be noncompetitively inhibited by 2-ketoisocaproate (Ki of around 5 mM),

while leucine did not affect isopropylmalate dehydratase activity [19].

2.5 Conversion of 2-Keto Acids to Alcohols

A number of higher alcohols are accessible by decarboxylation and subsequent

reduction of 2-keto acids [25, 26]. These alcohols are superior to ethanol since they

exhibit higher energy density, lower corrosiveness, vapor pressure, and hygroscop-

icity and are compatible with existing fuel infrastructure [27]. Decarboxylation of

2-keto acids such as 2-ketoisovalerate or 2-ketoisocaproate may be catalyzed by

broad-range, 2-ketoacid decarboxylases such as KivD from Lactococcus lactis
[28]. Alcohol dehydrogenase 2 of S. cerevisiae may be used for the subsequent

reduction to the respective alcohols [28]. Also C. glutamicum has been engineered

for isobutanol production by decarboxylation and reduction of 2-ketoisovalerate

[29, 30]. Besides heterologous expression of kivD from Lactococcus lactis, the gene
for the native alcohol dehydrogenase gene (adhA) was overexpressed [29]. Strain

improvements included improved NADPH generation by overexpression of pntAB
from E. coli encoding transhydrogenase and by deletion of fermentative

NAD-dependent, L-lactate dehydrogenase gene ldhA. The achieved titer of about

13 g/l isobutanol [29] was in the same range as those obtained using recombinant

E. coli and B. subtilis [31]. C. glutamicum has not yet been engineered for

production of other alcohols derived from 2-keto acids except ethanol [32] and

isobutanol.
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2.6 Whole Cell Biotransformation Yielding
Oxo-Functionalized Long Chain Fatty Acids

Keto-functionalized fatty acids find application in the plasticizers, lubricants,

detergents, cosmetics, and surfactants industries. Recently, whole-cell biotransfor-

mation processes using permeabilized C. glutamicum cells were described. A

C. glutamicum strain expressing a secondary alcohol dehydrogenase gene from

Micrococcus luteus WIUJH20 converted 5 mM ricinoleic acid to 12-ketooleic acid

with a molar yield of 70% conversion efficiency [33]. As a follow-up, a derived

C. glutamicum strain additionally expressing gene ohyA encoding oleate hydratase

from Stenotrophomonas maltophilia, 9 mM oleic acid, were converted to

10-ketostearic acid with about a molar yield of 74% conversion efficiency [34].

3 C. glutamicum Strains Overproducing α,ω-Diamines

C. glutamicum has been engineered for the production of α,ω-diamines with carbon

chain lengths of 4 and 5, respectively (Fig. 1). These diamines are named putrescine

or 1,4-diaminobutane and cadaverine or 1,5-diaminopentane, and they may be used

as monomeric precursors of polyamides in condensation reactions with α,-
ω-dicarboxylic acids [35]. Thus, sustainable production of polyamides is feasible

when α,ω-dicarboxylic acids and α,ω-diamines are produced from renewables and

provided as drop-in compounds for the established polyamide condensation

chemistry.

3.1 Putrescine

The biogenic polyamide precursor putrescine is synthesized either by decarboxyl-

ation and deamination of arginine or by direct decarboxylation of ornithine

[35]. C. glutamicum has been engineered for the production of putrescine from

[36] glucose and from alternative carbon sources including pentoses,

hemicellulosic hydrolysates [12], hexuronic acids [37], crude glycerol [38], glu-

cosamine [39], and N-acetylglucosamine [40]. Putrescine production by decarbox-

ylation of L-ornithine using E. coli ornithine decarboxylase gene speC was superior

to putrescine production by decarboxylation and deamination of arginine. Dere-

pression of L-arginine biosynthesis by deletion of argR combined with leaky

expression of argF from an addiction plasmid, overexpression of argB encoding

feedback-resistant N-acetylglutamate kinase ensured efficient and growth-

decoupled putrescine production [41]. The use of an addiction plasmid made the

addition of antibiotics to the fermentation broth dispensable [41]. Diamines includ-

ing putrescine [42] and cadaverine [43] were shown to be acetylated by SnaA, a
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spermi(di)ne N-acetyltransferase identified in a systematic genetic screen. SnaA

showed the highest catalytic efficiency for acylation of the triamine spermidine and

the tetraamine spermine with the donors acetyl-CoA or propionyl-CoA [42]. Dele-

tion of snaA prevented acetylputrescine formation and improved putrescine pro-

duction. Overexpression of the putative transport gene cgmA increased putrescine

production except in strains lacking snaA [42]. This gene was identified in a

transcriptomics approach, and subsequently the TetR-family transcriptional repres-

sor CgmR that is encoded in an operon with cgmA was shown to regulate transcrip-

tion of cgmAR in response to putrescine and other diamines at physiologically

relevant concentrations [42]. Based on findings from genome-scale stoichiometric

modeling, glycolysis and anaplerosis were enhanced by plasmid-borne

overexpression of the genes for glyceraldehyde 3-phosphate dehydrogenase and

pyruvate carboxylase [44]. Moreover, 2-ketoglutarate dehydrogenase activity was

attenuated by changing the translational start codon of the chromosomal gene for

2-oxoglutarate dehydrogenase subunit E1o to the less preferred TTG and by

changing threonine 15 of OdhI to alanine. Currently, the most advanced

C. glutamicum strain obtained by systems metabolic engineering produces

58.1� 0.2 mM with a specific productivity of 0.045 g/(g h) and a yield on glucose

of 0.26 g/g [44].

3.2 Cadaverine

Cadaverine is derived of L-lysine by decarboxylation. Mimitsuka et al. were the first

to show that cadaverine production resulted when the L-lysine decarboxylase gene

cadA from E. coli was expressed in an L-lysine-producing C. glutamicum strain

[45]. Since the cadaverine market is potentially large, also E. coli [46, 47] and
Bacillus methanolicus [48] have been engineered for cadaverine production. More-

over, cadaverine can be produced from alternative carbon sources like pentoses

[49], starch [50], and methanol [48]. Acetylation of cadaverine was abrogated by

deletion of snaA [43], which encodes spermi(di)ne N-acetyltransferase [42]. Trans-

port engineering improved cadaverine production when the cadaverine-lysine

antiporter gene cadB from E. coli [51] or endogenous cgmA were overexpressed

[8]. The most advanced strain produced cadaverine with a molar yield of 50%, a

productivity of 2.2 g/(l h) and a final titer of 88 g/l [8]. Pure diaminopentane

(99.8%) could be isolated and used for polycondensation with sebacic acid to

yield PA5.10. Mechanical properties of this polyamide were at least comparable

to the petrochemical polymers, PA6 and PA6.6 [8].
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4 C. glutamicum Strains Overproducing ω-Amino Acids

Besides the proteinogenic α-amino acids, several ω-amino acids occur as interme-

diates of cellular metabolism. The ω-amino acids β-alanine and γ-aminobutyric

acid (GABA) are derived from L-aspartate and L-glutamate, respectively, by decar-

boxylation (Fig. 1). L-Lysine can be converted to δ-aminovalerate involving a

monooxygenase and a transaminase reaction.

4.1 β-Alanine

β-Alanine is used as synthon in pharmaceutical industry. In C. glutamicum, the
ω-amino acid β-alanine is synthesized by decarboxylation of L-aspartate and is an

intermediate of pantothenic acid biosynthesis. Whereas pantothenate production by

recombinant C. glutamicum strains has been shown [52], fermentative production

of β-alanine has not yet been described. However, the C. glutamicum L-aspartate

α-decarboxylase gene panD [53] has been employed in whole-cell biotransforma-

tion of L-aspartate to β-alanine using recombinant E. coli [54].

4.2 GABA (γ-Aminobutyric Acid)

The non-proteinogenic ω-amino acid GABA is of relevance in the pharmaceutical

industry as it is an inhibitory neurotransmitter of the mammalian nervous system.

GABA is also used in functional foods and can be used to produce polyamide 4 by

ring-opening polycondensation after conversion to the respective lactam. Heterol-

ogous expression of glutamate decarboxylase genes from E. coli or lactobacilli
resulted in GABA production [55–57]. Since GABA is a carbon source for

C. glutamicum [58], deletion of the GABA uptake gene prevented GABA reuptake

[56–58]. The small inhibitory protein OdhI specifically inhibits 2-ketoglutarate

dehydrogenase [59] unless it is phosphorylated by a protein kinase such as PknG

[60]. Disruption of pknG resulted in reduced 2-ketoglutarate dehydrogenase activ-

ity and, thus, improved supply of L-glutamate for GABA production [61].

4.3 δ-Aminovalerate

δ-Aminovalerate is a monomeric precursor of nylon 5. Via the intermediate

valerolactam, the polyamide nylon 5 is produced in a ring-opening polycondensa-

tion reaction. In cellular metabolism, δ-aminovalerate can be derived from L-lysine

via two enzymatic reactions. While the production of δ-aminovalerate has not yet
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been shown for C. glutamicum, recombinant E. coli strains have been engineered

for δ-aminovalerate production. L-Lysine-overproducing strains that carried

feedback-resistant versions of aspartate kinase III and dihydrodipicolinate synthase

and did not produce cadaverine as by-product due to deletion of lysine decarbox-

ylase genes cadA and ldcC produced δ-aminovalerate when Pseudomonas putida
genes davAB encoding δ-aminovaleramidase and lysine 2-monooxygenase were

expressed [62, 63]. As an extension to this concept, the production of glutarate, an

α,ω-dicarboxylic acid used as a monomeric precursor of polyamines in condensa-

tion reactions with α,ω-diamines, could be established by additional heterologous

expression of P. putida gabTD genes encoding δ-aminovalerate aminotransferase

and glutarate semialdehyde dehydrogenase. For the conversion of lysine to

glutarate, the external addition of stoichiometric concentrations of 2-ketoglutarate

was required since the latter is substrate of the δ-aminovalerate aminotransferase

reaction. While the proof of concept was achieved, titers for δ-aminovaleric and

glutarate did not exceed 2 g/l [62, 63].

5 C. glutamicum Strains Overproducing Further
Non-Proteinogenic Amino Acids

Strains for the production of the non-proteinogenic amino acids L-ornithine and L-

citrulline, which are intermediates of L-arginine biosynthesis, of hydroxylated

amino acids such as trans-4-hydroxyproline, of cyclic amino acids such as ectoine,

and of the D-isomers of a number of amino acids, have been engineered.

5.1 L-Ornithine

L-Ornithine is a potential treatment of liver diseases [64], and as an intermediate of

L-arginine biosynthesis, L-arginine-producing strains can be engineered for L-orni-

thine production. Deletion of argF avoided conversion of L-ornithine toward L-

arginine by L-ornithine carbamoyltransferase and resulted in about 25 g/l L-orni-

thine produced from glucose in 72 h using glucose [65]. Increased L-glutamate

availability improved L-ornithine production [66]. L-Ornithine can be produced

from glycerol [38], pentoses [67], and sucrose [68]. A number of overexpression

targets have been identified: ppnK [69], which encodes polyphosphate-dependent

NAD kinase [70]; Clostridium acetobutylicum gapC, which encodes NADP-

dependent glyceraldehyde-3-phosphate dehydrogenase [71]; pgk, which encodes

endogenous 3-phosphoglycerate kinase [72]; Bacillus subtilis rocG, which encodes
NAD-dependent glutamate dehydrogenase [71]; pentose phosphate pathway genes

pgi, zwf, and tkt [73]; and NCgl0462 encoding a putative aminotransferase

[74]. Moreover, besides deletion of argR, deletion of proB, argF [73], and of
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three genes (NCgl0281, NCgl2582, and NCgl2053) encoding putative NADP+-

dependent oxidoreductases [75] improved L-ornithine production.

5.2 L-Citrulline

L-Citrulline can be used as pharmaconutrient since in mammalians it is transferred

to the blood stream after ingestion and, thus, can be used as a precursor of L-

arginine after conversion to L-arginine in the kidney. L-Citrulline is an intermediate

of L-arginine biosynthesis, and an L-arginine-producing C. glutamicum strain was

engineered to produce L-citrulline as a major product [76]. Deletion of the

argininosuccinate synthetase gene argG blocked conversion of L-citrulline to L-

arginine. The pathway leading to L-citrulline was derepressed by deletion of the

arginine repressor gene argR and by overexpression of argF, encoding L-ornithine

carbamoylphosphate transferase, and argBfbr, encoding a feedback-resistant variant

of N-acetyl L-glutamate kinase. L-Citrulline production from glucose with a yield of

0.38� 0.01 g/g and a volumetric productivity of 0.32� 0.01 g/(l h) was achieved,

and L-citrulline production from starch, xylose, and glucosamine could also be

shown [76].

5.3 Hydroxylated Amino Acids

Hydroxylation of L-proline by 2-ketoglutarate-dependent L-proline oxygenase

yields trans-4-hydroxyproline, a component of collagen, e.g., used to enhance

procollagen synthesis or as chiral synthon for anti-inflammatory drugs. The pre-

cursor L-proline, which is used in animal feed and as chemical synthon, can be

synthesized from L-glutamate or alternatively from L-ornithine by ornithine

cyclodeaminase, which is found in plants, animals, and bacteria such as Pseudo-
monas putida. Upon heterologous expression of the P. putida ornithine

cyclodeaminase gene, an L-ornithine-producing strain was converted to an L-pro-

line-producing strain accumulating L-proline with a yield of 0.36 g L-proline per g

glucose [77]. When in E. coli or C. glutamicum a gene for L-proline-4-hydroxylase,

e.g., from Dactylosporangium sp., was expressed, production of trans-4-hydroxy-

proline resulted without the requirement to add its substrates L-proline or

2-ketoglutarate to the medium [78, 79]. However, much higher titers (up to 7 g/l)

were achieved when an L-isoleucine bradytrophic L-proline-overproducing

C. glutamicum strain was used, and feeding of the carbon substrate glucose and

the supplement L-isoleucine was optimized [78]. For hydroxylation of L-isoleucine

to yield 4-hydroxyisoleucine, which is used as insulinotropic drug, the gene

encoding L-isoleucine dioxygenase from Bacillus thuringiensis was heterologously
expressed in an L-isoleucine-producing C. glutamicum strain [79].
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5.4 Cyclic Amino Acids

The cyclic amino acid ectoine ((S)-2-methyl-3,4,5,6-tetrahydropyrimidine-4-car-

boxylic acid) is an osmo-compatible solute used as cell-protective agent in allergic

rhinitis and conjunctivitis or atopic dermatitis. Expression of the ectoine biosyn-

thesis operon ectABCD from Pseudomonas stutzeri in an L-lysine-producing strain

and disrupting genes encoding diaminopimelate dehydrogenase and the L-lysine

exporter resulted in ectoine production 4.5 g/l [80].

5.5 D-Amino Acids

Besides the proteinogenic L-amino acids, D-amino acids are also found in nature,

e.g., in bacterial cell walls or in antibiotics. D-Amino acids may be used as building

blocks in the pharmaceutical industry. C. glutamicum, which was found to be

relatively insensitive to D-amino acids, produced mixtures of D- and L-amino

acids when the amino acid racemase gene from Pseudomonas taetrolens was

overexpressed in the respective L-amino acid-producer strains [81].
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New Functions and Potential Applications

of Amino Acids

Hisayuki Uneyama, Hisamine Kobayashi, and Naoto Tonouchi

Abstract Currently, several types of amino acids are being produced and used

worldwide. Nevertheless, several new functions of amino acids have been recently

discovered that could result in other applications. For example, oral stimulation by

glutamate triggers the cephalic phase response to prepare for food digestion.

Further, the stomach and intestines have specific glutamate-recognizing systems

in their epithelial mucosa. Regarding clinical applications, addition of monosodium

glutamate to the medicinal diet has been shown to markedly enhance gastric

secretion in a vagus-dependent manner. Branched-chain amino acids (BCAAs)

are the major components of muscles, and ingestion of BCAAs has been found to

be effective for decreasing muscle pain. BCAAs are expected to be a solution for

the serious issue of aging. Further, ingestion of specific amino acids could be

beneficial. Glycine can be ingested for good night’s sleep: glycine ingestion before

bedtime significantly improved subjective sleep quality. Ingestion of alanine and

glutamine effectively accelerates alcohol metabolism, and ingestion of cystine and

theanine effectively prevents colds. Finally, amino acids could be used in a novel

clinical diagnostic method: the balance of amino acids in the blood could be an
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indicator of the risk of diseases such as cancer. These newly discovered functions of

amino acids are expected to contribute to the resolution of various issues.

Keywords Alcohol metabolism, Branched-chain amino acids (BCAAs),

Diagnostic indication, Good night’s sleep, Prevent cold, Protein digestion,

Sarcopenia
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1 Introduction

Amino acid fermentation began with the production of glutamate for use in

seasonings. Nevertheless, investigation of the properties of amino acids has resulted

in the discovery of several functions that are useful for various fields, such as

animal nutrition, human health, and the discovery of substrates for sweeteners or

other compounds. Currently, several types of amino acids are being produced in

large amounts by fermentation and used worldwide.

Recent research on the function of amino acids has revealed various possible

applications and potential demands in the future. For example, glutamate was

simply thought to be a compound with taste; however, it has now been revealed

that glutamate is sensed in the taste receptors of the gastrointestinal system and the

tongue, and it modulates protein digestion. In addition, branched-chain amino acids

(BCAAs) have recently received much attention in the healthcare field; they are the

major components of muscles. Ingestion of BCAAs has been found to be effective

for decreasing muscle pain. Furthermore, BCAAs are expected to be a solution for
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the serious issue of “aging” by preventing the degradation of motor skills in the

elderly. In this chapter, several topics including newly discovered functions and

potential fields for the use of amino acids are described.

2 Glutamate: Umami Is More Than Just a Taste

In 1866, German chemist Ritthausen discovered a new amino acid in wheat gluten

hydrolysates and named this amino acid glutamic acid. Glutamate is the most

abundant amino acid in nature. Interestingly, it is abundant in human breast milk

[1]. So, it is suggested that glutamate must be involved in a wide variety of

functions essential for life.

The physiological functions of dietary free glutamate and its nutritional charac-

teristics have been recently discovered. The physiological actions of glutamate are

summarized in Fig. 1 [2, 3]. First, glutamate is sensed by the tongue (taste sense), and

this triggers preparations for the digestion of protein-containing foods via cephalic

phase responses from the oral cavity to the gut (taste-vagal reflex). Then, after

swallowing, the glutamate is sensed again in the gut, where it enhances additional

gut digestive processes through the visceral sense (vago-vagal reflex). This mech-

anism could explain the traditional observation that laboratory rats fed on protein-

rich diets preferred monosodium glutamate (MSG)-containing solutions [4].

Fig. 1 Mechanism of the physiological role of dietary glutamate in food digestion. Dietary

glutamate is sensed throughout the gastrointestinal tract, from the oral cavity to the intestine.

These glutamate perception mechanisms might ensure the optimal digestion of dietary protein
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2.1 Nutritional Characteristics

Glutamate is one of the nonessential (dispensable) amino acids, but it is expected to

have high nutritional efficacy during animal growth. Its nutritional value is higher

than that of other nonessential amino acids [5].

The characteristics of glutamate absorption in the intestine are unique. It has

been reported that uptake of dietary free glutamate in the pig portal vein is less than

5%; most of the luminal glutamate is metabolized to other amino acids, such as

alanine, and utilized as a source of energy within intestinal epithelial cells

[6]. Approximately 35% of the total energy consumption of intestinal mucosal

cells is derived from dietary glutamate in foods. Thus, glutamate is very important

nutrient in the maintenance of intestinal mucosal activity. In addition, glutamate

intake has been shown to enhance gut immunity after chemotherapy in rats [7], and

enteral nutrition with glutamate effectively enhances the maintenance of intestinal

mucosal functions, compared with glutamine [8]. The nutritional benefits of gluta-

mate as a gut essential nutrient should be reconsidered for a healthier life. From this

point of view, the nutritional aspects of glutamate are well documented in available

reviews [9, 10].

2.2 Taste (Oral Sensation)

The first action of dietary glutamate is the induction of taste (umami) in the oral

cavity. Taste is an important sense for the selection of nutritional quality. The sense

of taste is thought to have a nutritional and physiological meaning for life. Sweet

taste is the signal for energy intake (glucose); salty and bitter tastes are markers of

minerals (NaCl) and organic acids, respectively. Umami taste is the signal for

protein intake to recruit amino acids essential for life. Recent studies indicate that

umami taste substances are food-derived factors that modulate protein digestion.

Binding of glutamate to the oral umami taste receptor induces the sense of the taste

of glutamate, called umami. Metabotropic glutamate receptors (mGluR1/mGluR3)

and amino acid taste receptors (T1R1/T1R3) are now candidates for the umami

taste receptor [11].

Oral stimulation of the umami taste also triggers the cephalic phase response, a

series of autonomic reflexes, such as salivation related to food mastication/

swallowing, to prepare for food digestion [12]. For instance, MSG aqueous solution

induces long-lasting and synergic enhancement, with the nucleotide umami taste

substance 50-inosine monophosphate (IMP), of human salivation [13]. In the case of

the cephalic phase response, it has already been reported that application of MSG to

the oral cavity increases the efferent nerve activities of the abdominal vagus

(gastric, celiac, and pancreatic branches) in rats and induces gastric, pancreatic

exocrine, and insulin secretions in dogs [14, 15]. Thus, the sense of taste (umami

taste) contributes to preparations for food digestion in the gut, as well as efficient

276 H. Uneyama et al.



food mastication/swallowing in the oral cavity by initiating exocrine reflexes

(saliva, gastric, and pancreatic juices).

2.3 Visceral Sensation

After gastric and intestinal digestion, dietary protein is absorbed by enterocytes as

peptides and amino acids. Food digestion proceeds efficiently through neuronal (the

vagus nerve) and hormonal (gastrointestinal hormones) regulation. Recently, some

reports have indicated the possible involvement of gastrointestinal taste receptors in

food digestion and nutrient metabolism in the body [16].

The stomach and intestine have specific glutamate recognizing systems in the

epithelial mucosa [2, 17]. Umami receptors exist in the stomach and intestine and

on the tongue. This physiological aspect is important. Some patients who have

undergone throat operations cannot eat food via their mouths. A tube is placed in

the throat or stomach, and nutrients are fed directly into the stomach or intestine.

Actually, intragastric and duodenal injections activate the afferent nerve activities

of the abdominal vagus (Fig. 2).

Interestingly, animal studies have suggested that the ability of the stomach to

sense proteogenic amino acids by vagus recognition is different than that of the

intestine. The intestine could sense all of the proteogenic amino acids, but the

stomach’s sensory ability was relatively selective for glutamate [18, 19]. In addition

Fig. 2 The effect of

monosodium glutamate

(MSG) administration on

the afferent activities of

vagal gastric, intestinal, and

hepatoportal glutamate

sensors. When food with

umami taste was added,

neural signals were

observed. Modified

from [19]
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to its neuronal action, the ability of glutamate to stimulate hormones, such as

somatostatin, has been preliminarily reported [20].

Because glutamate typically exerts its physiological functions in the gut, regu-

lation of gut exocrine function and motility has been investigated. These investi-

gations have revealed that MSG addition to a glutamate-free medicinal diet

(Elental™) markedly enhanced gastric secretions (gastric acid, pepsinogen, and

gastric fluid) in dogs in a vagus-dependent manner [21]. Furthermore, MSG fortifi-

cation of dog food also enhances gastrointestinal movements in dogs [22]. Interest-

ingly, the gastrointestinal actions of MSGmight be influenced by the coexistence of

macronutrients. A protein diet more effectively supports the MSG effect than a

carbohydrate diet [23]. At the same time, the secretion of gut mucosal protective

factors (mucin and bicarbonate) is also enhanced by glutamate in rats [24]. Gluta-

mate might maintain the optimal balance between attacking and protective factors.

This evidence supports the hypothesis that glutamate in the gut may enhance the

digestion of dietary protein by triggering the visceral sense, leading to improved

amino acid absorption and utilization.

2.4 Clinical Applications of Glutamic Acid

Several clinical trials have been registered based on the nutritional and physiolog-

ical actions of glutamate. The oral action of glutamate (umami taste sensation) has

the potential to treat oral disorders such as taste disorders and hyposalivation and

to improve taste quality, pleasantness, and mastication/swallowing during eating

[25–27].

Concerning the visceral sense of glutamate, medicinal diets containing gluta-

mate have been developed for percutaneous endoscopic gastrostomy (PEG) patients

in Japan [28]. Chronic gastritis in elderly inpatients is one of problems that reduce

appetite and cause protein-energy malnutrition (PEM) through poor gastric diges-

tion. MSG fortification of hospital meals is expected to improve the nutritional

status and quality of life (QOL) of elderly inpatients [27]. Adequate usage of

glutamate in medicinal/nursing care diets might be a powerful tool to improve the

management of inpatient nutrition through stimulating gut functions that lead to

optimal protein digestion.

2.5 Functions of Intrinsic Glutamate

In addition to its dietary functions, glutamate has other physiological functions as

an intrinsic substance. The most famous physiological function of intrinsic gluta-

mate is its action as an excitatory neurotransmitter in the brain. In particular, more

than 80% of excitatory synapses communicate using glutamate. These synapses
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participate in basic brain functions such as recognition, learning, and memory

formation. In addition to its action in the brain, glutamatergic communication exists

in peripheral organs, such as the alimentary tract, the pancreas, and the bone

[29, 30].

In clinical applications targeting the actions of intrinsic glutamate, various

pharmaceutical approaches focusing mainly on brain glutamate receptors as thera-

peutic targets have been tried in memory- and psychiatric-related diseases [31].

Glutamate itself was used as an active ingredient of new medicines targeting

diseases such as functional dyspepsia and myocardial infarction [32, 33].

3 Branched-Chain Amino Acids: Maintenance

of the Muscle and Stamina During Exercise

Leucine, valine, and isoleucine, which contain branched-side chains in their mole-

cular structure, are called branched-chain amino acids (BCAAs). BCAAs are

essential amino acids, and their intake improves the nutritional status. Nevertheless,

BCAAs, particularly leucine, have functions beyond the role of essential amino

acids, i.e., promotion of protein synthesis.

3.1 Sports and Branched-Chain Amino Acids

When strenuous exercise is performed, the body begins to break down proteins and

utilize BCAA reserves to compensate for insufficient energy sources. In fact, after

engaging in strenuous sports, such as running a marathon and cross-country skiing,

the post-competition blood level of BCAA levels may be decreased by 20%

because of intramuscular BCAA consumption. This fact highlights that during

strenuous exercise, the body breaks down muscle tissues, resulting in their damage.

However, muscle damage can be reduced, and lowering of muscular strength can

be inhibited by timely replenishment of BCAAs before or during the sport activity.

The sufficiently supplied BCAAs are used as an energy source during exercise and

create room for energy sources, allowing maintenance of stamina for a long period.

Further, if BCAAs are immediately replenished after the sport activity, the dam-

aged muscles will recover promptly, and symptoms such as muscle soreness can be

prevented.

In a randomized controlled trial [34], women between 20 and 25 years did

squats, specifically seven sets of 20 reps/set. Half of the participants took some

BCAAs before working out. The group that took BCAAs experienced lesser muscle

pain than the group that did not take BCAAs (Fig. 3). Therefore, muscle pain was

reduced by taking BCAAs before the workout.
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BCAA supplementation before or after exercise improves recovery of damaged

muscles.

3.2 Branched-Chain Amino Acids as Regulatory Molecules

The three BCAAs are dietary essential amino acids that play a variety of roles in the

body. However, BCAAs are not just nutrient materials but play a role as regulatory

(signaling) molecules.

One of the unusual features of BCAAs is that they are primarily catabolized in

muscles, whereas other essential amino acids are mainly catabolized in the liver.

Half of the total activity of BCAA catabolic enzymes (branched-chain amino acid

transferase (BCAT) and branched-chain keto acid dehydrogenase (BCKD)) is

observed in the skeletal muscle [35]. BCAA catabolism is promoted by exercise.

The increase in circulating BCAA levels after a protein-containing meal is

“sensed” by a number of different tissues, and it has important effects in these

particular tissues. Thus, BCAAs serve as important signals to other tissues. A

protein kinase, known as mTOR (mammalian target of rapamycin), is the intra-

cellular target during stimulation of protein synthesis [36]. It is also the target for

insulin, but the precise mechanism is still to be revealed.

Fig. 3 BCAA intake alleviates post-workout muscle pain. Methodology: The subjects were

women with normal health (ages 20–25 years). Amino acid consumption was 100 mg per kg

bodyweight. The exercise performed was squats (seven sets of 20 reps/set). Muscle pain was

measured pre- and post-workout as labeled on the graph. Modified from [34]
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BCAAs also function to suppress the production of lactic acid, a fatigue-causing

substance. With continued exercise, lactic acid levels in the blood increase. Thus,

the pH in the muscle decreases, leading to difficulty in muscle contraction and

subsequent muscle fatigue. However, replenishment of BCAAs inhibits the eleva-

tion of lactic acid levels in the blood and prevents muscle fatigue.

3.3 Branched-Chain Amino Acids for the Elderly

Sarcopenia is the degenerative loss of skeletal muscle mass, quality, and strength

associated with aging. It is considered a major issue related to the aging population.

In some countries such as Japan, average life spans are increasing, and the overall

population is aging. Patients with sarcopenia lose muscle mass because of imbal-

anced protein synthesis, and the muscle is broken down as they age.

The leucine-enriched essential amino acid supplementation, particularly coupled

with exercise, effectively enhanced the muscle mass, muscle strength, and walking

speed in women with sarcopenia [37]. In this study, four groups of 39 women, over

75 years, were monitored to observe the effect of amino acid intake and exercise on

muscle growth and strength (Fig. 4). Amino acid intake remarkably improved the

effectiveness of workouts, and physical exercise in turn increased the muscle mass

and strength. The results show that amino acid intake could reverse the loss in

muscle mass and strength observed with aging. BCAA supplementation is highly

encouraged for allowing people to lead healthier lives in an aging society.

One study evaluated the effect of high-leucine intake on muscle protein meta-

bolism in the elderly and young individuals. They revealed that increasing the

Fig. 4 BCAAs prevent the degradation of motor skills in the elderly. Methodology: The subjects

were women with declining muscle mass/muscle strength (ages over 75 years). Each subjects’
amino acid intake was 3 g twice a day. Each exercise program lasted for 60 min and was repeated

twice a week for 3 months. Modified from [37]
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proportion of leucine intake can reverse an attenuated response of muscle protein

synthesis in the elderly, but it does not result in further stimulation of muscle

protein synthesis in young individuals [38].

Furthermore, ingestion of extra leucine may be particularly important for the

stimulation of skeletal muscle protein synthesis.

3.4 Therapeutic Nutrients for Hepatic Failure

BCAAs constitute approximately 40% of the free essential amino acids in the blood

plasma, and they are used as an energy source. In patients with liver cirrhosis, a

significant decrease in BCAA levels in the plasma may lead to malnutrition or

severe hepatic encephalopathy. It was found that BCAA supplementation to such

patients improved the nutritional status and lengthened patient survival time.

4 Glycine: For a Good Night’s Sleep

Glycine, a nonessential amino acid, is synthesized endogenously and plays an

essential role in the peripheral and central nervous systems. It had been reported

that orally administered glycine shows beneficial effects on memory and attention

in health volunteers, without the pharmacological effect on subjective mood

observed during administration of a central nervous system (CNS) stimulant [39].

Recently, it was found that glycine ingestion before bedtime significantly

improved subjective sleep quality in human volunteers who had been continuously

experiencing unsatisfactory sleep.

Discovery of the effect began with a preliminary observation in healthy volun-

teers, who ingested placebo and experienced an improvement in sleep quality.

Glycine is often considered a biologically neutral molecule, and it is used as a

placebo control in amino acid supplementation studies. The effect was examined

and confirmed in a randomized, double-blinded, crossover trial [40].

The effects of glycine on subjective sleep quality were assessed using the St

Mary’s Hospital (SMH) Sleep Questionnaire [41]. For questions such as Q11 “How

satisfied were you with last night’s sleep?” significant beneficial effects of glycine
were revealed. This result meant that these individuals were more satisfied with

their sleep.

Possible mechanisms for this effect of glycine were investigated [42]. Oral

administration of glycine to rats was found to induce a significant decrease in the

core body temperature (CBT) associated with an increase in cutaneous blood flow.

The onset of sleep is known to involve a decrease in the CBT.

A “good night’s sleep” is no doubt important for most people. It was reported

that approximately 30% of the general population suffer from symptoms of insom-

nia [43]. The use of hypnotics, such as benzodiazepines, is widespread. However,
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these hypnotics alter sleep architecture and have well-known problems such as the

induction of daytime sleepiness and a reduction of daytime cognitive function.

Glycine’s mode of action is unique and very different from that of hypnotics.

Glycine does not modify the sleep architecture itself. It is a safe and reliable

sleep regulator for occasions when sleep is disturbed. It improves sleep quality,

leading to a natural sleep pattern.

5 Alanine and Glutamine: Acceleration of Alcohol

Metabolism

It has been reported that rats fed an ethanol-containing diet tend to select alanine or

glutamine and that intake of the alanine–glycine (ala–gln) combination accelerates

the metabolism of ethanol in rats [44]. It is supposed that this effect is caused by the

consumption of NADH that is generated during the oxidation of ethanol through

glycogenesis from the ala–gln combination. The effect of alanine and glutamine

supplementation on human ethanol metabolism has been evaluated [45].

This test was performed as follows: after intake of alcohol (white wine),

22 healthy adult males were fed a diet containing ala–gln or a placebo (sugar).

The amount of alcohol in the breath was measured. The group fed the ala–gln diet

showed quicker degradation of alcohol (Fig. 5). It was concluded that the combi-

nation of alanine and glutamine accelerates the metabolism of alcohol in the liver.
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Fig. 5 Acceleration of

alcohol metabolism by

alanine and glutamine. This

test was performed after

intake of alcohol (white

wine); 22 healthy adult

males consumed diets

containing alanine–

glutamine or placebo

(sugar). Then, the amount of

alcohol in the breath was

measured. It was observed

that ingesting alanine and

glutamine results in quicker

degradation of alcohol.

Alanine and glutamine

accelerate the processing of

alcohol in the liver.

Modified from [45]
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6 Cystine and Theanine: Prevention of Cold

Cystine is a precursor of glutathione (GSH), which is responsible for antioxidant

activity in the body. The supply of cystine is the rate-limiting step of GSH

synthesis. On the other hand, theanine (γ-glutamylethylamide) is contained in

green tea and is known to be metabolized in the gut or liver into glutamate and

ethylamine. It had been reported that the addition of cystine and theanine leads to

increased amounts of GSH in macrophages [46].

In the experiments in mice, oral administration of L-cystine and L-theanine

(CT) reinforced antigen-specific antibody production after antigen stimulation;

these effects may have been caused by the reinforcement of glutathione (GSH)

synthesis and the humoral immune response [47, 48]. It was suggested from these

results that cystine and theanine may improve immunity.

Then, a randomized, placebo-controlled, 5-week trial with 176 volunteers was

carried out to evaluate the effects of CT against common cold in humans (Fig. 6,

[49]). The results indicated that CT supplementation significantly reduced the

incidence of colds. The percentage of subjects who caught colds was lower

among those who ingested CT. These results suggest that CT supplementation

may be useful for the prevention of the common cold.

People with a cold
(Incidence rate during the test period)

Cystine
and 

Theanine

None

（％）
４０

３０

２０

１０

Fig. 6 Effect of L-cystine

and L-theanine to prevent

colds. The percentage of

people with a cold in winter

was measured. Intake of

cystine and theanine

resulted in a decreased rate.

Cystine and theanine may

improve immunity
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7 Application as a Diagnostic Indicator for Cancers

Finally, amino acids are used as indicators in new clinical diagnostic methods.

The free amino acid composition of human blood plasma is constant. However, it

was recently found that the composition changes when one contracts a disease, such as

various cancers and diabetes. It was also found that the pattern of free amino acid

composition changes depending on the type of cancer. Since the pattern of the change

in free amino acid composition changes with differences in the kind of cancer, the

pattern of change is useful for the evaluation of the risk of various cancers.

Therefore, the risk of various cancers can be estimated by measuring the free

amino acid composition of blood plasma. Most of the present diagnostic tools

assess the risk of only one type of cancer or damage the body. But in this method,

the risks of several types of cancers are assessed by measuring only the amino acid

composition in a small portion of a blood sample. This method was established in

2011 and is now receiving much attention as a robust tool for health assessment.

8 Conclusion

Amino acids has contributed to resolve issues in various fields such as food, infu-

sions, clinical diets, pharmaceuticals, cosmetics, feed, and fertilizer. However, there

still remain a lot of issues for humans, such as malnutrition, obesity, cancers, aging,

and stress, as well as pollution of the air, water, and soil. The functions of amino acids

being discovered must realistically contribute to the resolution of issues.
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Abstract Because the global amino acid production industry has been growing

steadily and is expected to grow even more in the future, efficient production by

fermentation is of great importance from economic and sustainability viewpoints.

Many systems biology technologies, such as genome breeding, omics analysis,

metabolic flux analysis, and metabolic simulation, have been employed for the

improvement of amino acid-producing strains of bacteria. Synthetic biological

approaches have recently been applied to strain development. It is also important

to use sustainable carbon sources, such as glycerol or pyrolytic sugars from

cellulosic biomass, instead of conventional carbon sources, such as glucose or

sucrose, which can be used as food. Furthermore, reduction of sub-raw substrates

has been shown to lead to reduction of environmental burdens and cost. Recently, a

new fermentation system for glutamate production under acidic pH was developed

to decrease the amount of one sub-raw material, ammonium, for maintenance of

culture pH. At the same time, the utilization of fermentation coproducts, such as

cells, ammonium sulfate, and fermentation broth, is a useful approach to decrease

waste. In this chapter, further perspectives for future amino acid fermentation from

one-carbon compounds are described.
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1 Systems Biology and Synthetic Biological Approaches

Since the genome sequence of the model and industrial organism Escherichia coli
has been determined by Blattner et al. [1], the genome sequences of Corynebacte-
rium glutamicum ATCC 13032 [2, 3]; C. efficiens, a near relative of C. glutamicum
with different optimal growth temperatures [4]; C. glutamicum strain R [5];

C. glutamicum ATCC 14067 [formerly Brevibacterium flavum] [6]; and

C. glutamicum AJ 1511 [formerly Brevibacterium lactofermentum] [7] have been

determined. On the basis of genomic information, systems biology approaches have

been applied to maximize the efficiency of amino acid production [8]. Genome

breeding consisting of characterization and reconstitution of a mutation set essential

for high-level production of amino acids was proposed by identifying mutations in

the L-lysine-producer of C. glutamicum [9]. Omics analyses, such as transcriptomic,

proteomic, and metabolomic analyses, have been extensively applied for improve-

ment of amino acid producers [10, 11].

Metabolic flux analysis (MFA) using 13C labeling is a powerful method for

quantifying intracellular reaction rates within a metabolic network. In this

approach, intracellular flux is calculated using a stoichiometric model for the

major intracellular reactions and applying mass balances around intracellular

metabolites using a set of measured extracellular fluxes, typically uptake rates of

substrates and secretion rates of metabolites, as input for the calculations

[12]. Since the first report on analysis of L-lysine production [13], MFA has been

used for elucidating the in vivo metabolic state of cells during fermentation

[14]. Recently, the development of MFA and its application to improvement of

C. glutamicum amino acid producers has been reviewed in detail [15]. Integration

of MFA data from different mutants and/or different cultural environments with

different levels of omics analysis information using a systems biology approach is

expected to reveal the roles of global regulators, which are quite important for

metabolic regulation during amino acid fermentation [16]. Genome-scale metabolic

models for E. coli [17] and C. glutamicum [18] have been developed and widely
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used for estimation of, among other parameters, growth capability and amino acid

production, using flux balance analysis.

Kinetic modeling is also valuable to industrial biotechnology and is able to assist

in the rational design of cell factory properties or production processes in which

they are utilized because kinetic models are capable of representing the complex

biochemistry of cells more completely than most other types of models. However,

several challenges must be overcome before kinetic modeling can reach the degree

of maturity required for routine application in industry [19]. One of the targets of

kinetic modeling has been the phosphotransferase system of E. coli, which is quite

important for material production because it defines substrate uptake rates

[20, 21]. Large-scale kinetic modeling and dynamic simulation, including the

phosphotransferase system, glycolysis, and the pentose phosphate pathway but

excluding the regulatory network of E. coli, has been reported [22]. Dynamic

simulation of glutamate fermentation with large-scale kinetic modeling, including

the central metabolic pathway regulatory network, has been reported [23], and

extensive sensitivity analysis and validation have been performed [24].

Recently, synthetic biological approaches have been applied to strain develop-

ment [25]. A successful example wherein a new pathway was introduced to

improve amino acid yield involves phosphoketolase (PKT). PKT catalyzes the

following reactions:

Fructose 6-phosphate þ Pi ! Acetyl phosphate þ Erythrose 4-phosphate ð1Þ
Xylulose 5-phosphateþ Pi ! Acetyl phosphate

þ Glyceraldehyde 3-phosphate ð2Þ

PKT can increase the maximum theoretical yield of L-glutamate from glucose up

to 98.0% by weight (120% mol/mol L-glutamate produced/glucose consumed) by

bypassing the CO2-releasing pyruvate dehydrogenase reaction (Fig. 1). The xfp
gene encoding PKT was cloned from Bifidobacterium animalis and overexpressed

under a strong cspB promoter in the L-glutamate-producing strain of C. glutamicum
(ΔodhA mutant). When cells of this producer strain with and without the xfp gene

were cultivated in a controlled fermentation system, L-glutamate production from

the xfp-expressing strain was much higher than that of the original strain coupled

with suppressed CO2 emission [26]. Recently, nonoxidative glycolysis has been

suggested in which the PKT pathway enables complete carbon conservation in

sugar catabolism to acetyl coenzyme A [27]. The enzyme mixture, PKT from

Bifidobacterium adolescentis, transaldolase, transketolase, fructose

1,6-bisphosphate, ribulose 5-phosphate epimerase, ribose 5-phosphate isomerase,

fructose 1,6-bisphosphate aldolase, and triose phosphate isomerase and ATP have

been shown to convert one fructose 6-phosphate molecule to three acetyl phosphate

molecules in vitro. Xylose was converted to acetate and other products under

anaerobic conditions. The JCL118 strain (ΔldhA ΔadhE ΔfrdBC ΔpflB), which
overexpresses PKT from Bifidobacterium adolescentis and fructose

1,6-bisphosphate from E. coli, produced acetate from xylose with a near theoretical
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ratio of acetate/xylose in vivo [27]. Utilization of the PKT pathway enables

complete carbon conservation in sugar catabolism to acetyl coenzyme A and is

expected to be used in conjunction with CO2 fixation and other one-carbon

(C1) assimilation pathways to achieve a 100% carbon yield from various

substances.

Glucose  (x1)   

Fructose 6-P  (x1) 

Glucose (x5)  

Glyceraldehyde 3-phosphate (x2)   

Pyruvate (x1)   

L-Glutamate (x6)  

2-Oxoglutarate (x1)  

Acetyl-CoA (x1) Oxaloacetate (x1)  

Fructose 6-P (x5)   

Acetyl-P (x2)   

GAP (x2)   

GAP (x4)   

Erythrose 4-P (x2)   

Xylulose 5-P (x4)   

Citrate (x6)   

Pyruvate (x1)   

Pyruvate (x6)   

Citrate (x1)   Oxaloacetate (x6)   

L-Glutamate (x1) 

CO2
CO2

CO2

Acetyl-P (x4)   

Acetyl-CoA (x6)   

2-Oxoglutarate (x6)  

CO2

(x6)   

CO2 (x6)  

(x1)   (x2)   

(x2)   

PDH   

a b 

PYC  

GDH  

PYC  

GDH  

PTA  

ICDH  

ICDH  

PPP  

Fig. 1 The phosphoketolase (PKT) pathway. Biosynthesis of L-glutamate from glucose (modified

from Chinen et al. [26]). Glycolysis and the oxidative branch of the tricarboxylic acid cycle are

enclosed by dotted line and solid line, respectively. The number of compounds involved in each

metabolic reaction under ideal conditions is shown in parentheses. (a) Metabolic pathway of wild-

type Corynebacterium glutamicum showing maximum theoretical yield of L-glutamate from

glucose. Emission of CO2 induced by pyruvate dehydrogenase (PDH) is indicated by the panel.
(b) Metabolic pathway engineered by introduction of phosphoketolase (indicated and enclosed by

double line) to bypass CO2 emission. PPP pentose phosphate pathway, PTA
phosphotransacetylase. This pathway produces 6 mol of L-glutamate from 5 mol of glucose

without the loss of carbon via CO2 release
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2 Alternative Raw Materials

Currently, most amino acids are produced mainly from sugars, such as glucose or

sucrose, which are also used as foods. From a sustainability viewpoint, raw

materials used for amino acid fermentation should avoid competition with food

resources. The candidates for nonfood raw materials are glycerol, a valuable

by-product in biodiesel production, and glucose and C5 sugars from cellulosic

biomass by enzymatic hydrolysis.

Glycerol, also known as glycerin, is a by-product of a transesterification reaction

used in biodiesel factories. Glycerol produced from biodiesel factories is crude and

contains various impurities. Crude glycerol obtained from biodiesel factories con-

sists of glycerol, water, organic and inorganic salts, soap, alcohol, and traces of

glycerides. However, crude glycerol could be used as an organic carbon substrate

for the production of value-added chemicals, such as 1,3-propanediol, organic

acids, or polyols, by microorganisms [28].

C. glutamicum, which cannot utilize glycerol naturally, was engineered for

glycerol utilization by heterologous expression of E. coli aerobic glycerol utiliza-

tion genes encoding a glycerol facilitator (glpF), glycerol kinase (glpK), and

glycerol-3-phosphate dehydrogenase (glpD). C. glutamicum strains expressing

these genes show fast growth with glycerol as the sole carbon source and similar

L-glutamate and L-lysine production properties to those of glucose [29]. Meiswinkel

et al. [30] reported growth of recombinant strains expressing glpF, glpK, and glpD
from E. coli fed crude glycerol from biodiesel factories. Besides growth, production

of the amino acids L-glutamate, L-lysine, and L-arginine was shown to be dependent

on the quality of crude glycerol from biodiesel factories [30]. Because E. coli has
been known to utilize glycerol, many amino acids produced by E. coli can also be

produced from glycerol.

Lignocellulosic materials containing cellulose, hemicellulose, and lignin are the

most abundant renewable organic resource on earth. Conversion of both cellulose

(glucose) and hemicellulose (hexose and pentose) in the production of ethanol has

been studied intensively with the aim of developing a technically and economically

viable bioprocess for fuel production. Thus, utilization of lignocellulosic materials

as a renewable resource for energy and various chemicals is expected to increase.

Xylose and arabinose are the major pentose constituents in hemicellulose.

However, wild-type C. glutamicum strains cannot utilize the pentose fractions of

lignocellulosic hydrolysates. Previously, introduction of the xylose operon from

E. coli was shown to enable growth of C. glutamicum on xylose [31], and imple-

mentation of the E. coli araABD gene cluster enabled growth and production of

amino acids on this carbon source [32]. Meiswinkel et al. [33] found that introduc-

tion of the Xanthomonas campestris xylose isomerase gene and C. glutamicum
xylulokinase gene doubled the growth rate and increased glutamate productivity of

C. glutamicum from that of the strain solely expressing the E. coli xylose isomerase

gene. Furthermore, Gopinath et al. [34] reported that recombinant pentose-utilizing
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strains derived from an L-lysine-producing C. glutamicum strain utilized arabinose

and/or xylose, which were present in acid hydrolysates of rice straw or wheat bran.

In contrast to the commonly known isomerase pathway that leads to significant

carbon loss in the form of CO2, the Weimberg pathway (Fig. 2), first discovered in

Pseudomonas fragi and later in Haloferax volcanii and Caulobacter crescentus
[35–37], is an attractive alternative for xylose assimilation. In this five-step oxida-

tive pathway, xylose is exclusively oxidized to the C5 compound α-ketoglutarate
without carbon loss (Fig. 2). Previously, the Weimberg pathway encoded by the

xylXABCD operon from Caulobacter crescentuswas introduced into C. glutamicum
and enabled a recombinant C. glutamicum strain to utilize xylose where it is the sole

carbon source and in xylose/glucose mixtures [38]. The recombinant strain effi-

ciently produced L-glutamate from xylose, and its L-glutamate productivity was

higher than that of a strain carrying a gene encoding xylose isomerase by which

C. glutamicum could assimilate xylose (Yamada et al. unpublished).

Direct utilization of cellulose or hemicellulose is one major goal. Adham

et al. [39] expressed xylanase Xys1 and the cellulase Cel1 from the straw-

decomposing Streptomyces halstedii JM8 in C. glutamicum ATCC 13869. Hyeon

et al. [40] reported development of a C. glutamicum strain expressing functional

minicellulosomes containing chimeric endoglucanase E consisting of the

endoglucanase E catalytic backbone of Clostridium thermocellum fused with the

endoglucanase B dockerin domain of Clostridium cellulovorans. The engineered

Oxaloacetate

Acetyl-CoA
Citrate

Isocitarate

Pyruvate

Glyceraldehyde
3-phosphate

Fructose-
bisphosphate

Fructose 
6-phosphate Ribose 

5-phosphate
Xylulose
5-phosphate

Ribulose 5-phosphate

Xylulose

α-KG

L-Glutamate

CO2

CO2

CO2

Xylose

Isomerase
pathway

Xylose 
isomerase

x

Xylonolactone

Xylonate

2-Keto-3-deoxy-
xylonate

α-Ketoglutaric
semialdehyde

Weimberg
pathway

XylB XylC

XylD

XylX

XylA

Xylose

Xylulokinase

Fig. 2 Xylose utilization pathways. Biosynthesis of L-glutamate from xylose. The isomerase

pathway is accompanied by carbon loss (left). The Weimberg pathway encoded by the xylXABCD
operon produces 1 mol of L-glutamate from 1 mol of xylose without the loss of carbon via CO2

release
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strain degraded carboxymethyl cellulose efficiently by substrate targeting via the

carbohydrate-binding module [40]. Tsuchidate et al. [41] expressed endoglucanase

from Clostridium cellulovorans 743B in C. glutamicum using the E. coli torA signal

sequence. The secreted endoglucanase produced 123 mg of reducing sugar from 5 g

of β-glucan after 72 h at 30�C. Moreover, L-glutamate fermentation from β-glucan
with the addition of Aspergillus aculeatus β-glucosidase produced by recombinant

Aspergillus oryzae resulted in 178 mg/L of L-glutamate from 15 g of β-glucan
[41]. Recently, Kim et al. [42] reported that cellulase complexes containing two

cellulolytic enzymes, endoglucanase E and β-glucosidase A from Clostridium
thermocellum, anchored to the surface of C. glutamicum by a mechanosensitive

channel synergistically lead to a 3.1- to 6.0-fold increase in the direct conversion of

biomass (rice straw and Miscanthus and rape stem pretreated under high tempera-

ture with alkaline chemicals) to reducing sugars relative to conversion by secreted

cellulase complexes.

Furthermore, fatty acids represent an alternative carbon source derived from

biodiesel production or cooking oil wastes or produced by microalgae. Doi

et al. [43] reported that fatty acids can be used as raw materials for L-lysine

fermentation and that reduction of hydrogen peroxide stress derived from fatty

acid β-oxidation improved fatty acid utilization in E. coli. Acetate and ethanol are

also expected to be alternative carbon sources because C. glutamicum can grow on

these substances [44, 45].

3 Reduction of Sub-raw Materials by a New Fermentation

System

3.1 Concept of the New Fermentation System

Because L-glutamate is an acidic amino acid, the bacterial growth medium is

acidified in accordance with L-glutamate accumulation during fermentation. Gen-

erally, L-glutamate fermentation in C. glutamicum is performed at a neutral

pH. Therefore, addition of a large amount of alkali, usually ammonia, is necessary

to maintain the pH of the medium. L-Glutamate in the culture medium is stored as

ammonium salt. After fermentation, L-glutamate is crystallized by addition of acid,

usually sulfuric acid or hydrochloric acid, utilizing the low solubility of this amino

acid in acidic conditions (Fig. 3). The final product, monosodium glutamate, is

produced by neutralizing L-glutamate with sodium hydroxide. In this traditional

manufacturing process, large amounts of alkali and acid are used in the fermenta-

tion and crystal isolation steps, respectively, and a large amount of by-product salt,

such as ammonium sulfate, is produced.

In recent years, production of L-glutamate by integrating fermentation and

isolation steps has been called “L-glutamate crystallization fermentation.” In this

novel method, crystallization of L-glutamate occurs during the fermentation
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process. L-Glutamate has two carboxyl groups and one amino group, and its

theoretical isoelectric point is pH 3.22. Due to its acidity, the solubility of L-

glutamate in acidic conditions is low. If L-glutamate fermentation is performed

under acidic conditions, a large portion of the L-glutamate would lose its electrical

charge and precipitate as crystals. Thus, much of the counter ion ammonia, as well

as the acid added and salt produced in the purification step, would be reduced. For

example, when fermentation is performed at pH 4.5 and 7, the amount of ammonia

and acid needed for fermentation and crystallization would be decreased by 40%

and 80%, respectively.

3.2 Isolation of the Host Strain

Because L-glutamate crystallization fermentation requires acidic fermentation con-

ditions, it is essential that the host be able to grow at a low pH and resist high

concentrations of glutamate. After screening various strains for these properties,

Pantoea ananatis strain AJ13355 isolated from the soil of a tea plantation was

selected. In the current study, the complete genomic sequence of P. ananatis
AJ13355 was determined and found to consist of a single, circular chromosome

consisting of 4,555,536 bp (DDBJ: AP012032) and a circular plasmid (pEA320)

with 321,744 bp (DDBJ: AP012033). After automated annotation, 4,071 protein-

coding sequences were identified in the P. ananatis AJ13355 genome [46].

pH 7.1
ammonia

HCl

Present System

pH3.2

pH 4.7
ammonia

HCl

New System

pH3.2

P. anana�s

Crystal of 
Glutamate

C. glutamicum

Fig. 3 New fermentation system for reduction of sub-raw materials. Fermentation under acidic

conditions leads a decreased input of ammonia and hydrochloric acid. In addition, because the

solubility of glutamate is low in acidic conditions, a large amount of glutamate accumulates as

crystals in the fermentation tank
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3.3 Construction of Glutamate-Producing Bacteria

Although P. ananatis AJ13355 possesses all of the genes needed for biosynthesis of
glutamate, L-glutamate accumulation was not induced by penicillin or surfactants,

unlike in C. glutamicum. Therefore, a strain which overproduces glutamate by

modifying the L-glutamate biosynthetic pathway in P. ananatis AJ13355 was

bred. To do so, enhancement of the biosynthetic pathway and knock out of

degradation pathway genes of the target substance were used. Then, the L-glutamate

producer was constructed through the following steps: (1) decreased extracellular

polysaccharide production, (2) weakened 2-oxoglutarate dehydrogenase complex

activity, and (3) enhanced activity of key enzymes in glutamate biosynthesis, such

as citrate synthase, phosphoenolpyruvate carboxylase, and glutamate dehydroge-

nase. However, glutamate production deteriorated, and accumulation of

by-products, such as acetoin and 2,3-butanediol, was observed, especially when

cultured at an acidic pH. L-Glutamate loses its electrical charge under acidic

conditions and can easily pass through the hydrophobic cell membrane. When the

cellular pH was maintained at near 7, L-glutamate flowed into the cell and reionized,

making it unable to cross the membrane again. Consequently, L-glutamate was

concentrated inside the cell, which led to feedback inhibition of L-glutamate

biosynthesis.

There are two types of citrate synthase enzymes. Type I enzymes are found in

C. glutamicum and other Gram-positive bacteria, and type II enzymes are found in

Gram-negative bacteria. Type II enzyme activity is inhibited by NADH allosteri-

cally and α-ketoglutarate. In a recent study, type II citrate synthases were found to

be inhibited by high concentrations of glutamate, while type I enzymes were not,

and introduction of type I citrate synthase from C. glutamicum effectively increased

glutamate production.

3.4 Glutamate Production with Crystallization

L-glutamate production was improved by enhancement of type I citrate synthase

activity. However, an extremely high concentration of L-glutamate in the medium

still had a negative effect on cell growth and sugar consumption. Therefore, a

mutant P. ananatis AJ13601 strain with glutamate resistance was isolated. This

mutant strain produced 82 g/L of glutamate at pH 4.5 with glucose as the carbon

source. Because the solubility of glutamate at that pH is 41 g/L, a large amount

accumulated as crystals. This is the first example of L-glutamate crystallization

fermentation. L-glutamate crystallization fermentation not only decreases the cost

of acid and alkali but also the burden on the environment. Thus, this new process is

a promising method of sustainable amino acid production.
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4 Utilization of Coproducts

Amino acid manufacturing processes generate waste, atmospheric emissions, and

drainage water. To minimize the environmental impact and ensure production

sustainability, utilization of by-products of amino acid fermentation is critically

important. These by-products are nutrient-rich and used as coproducts in agricul-

tural, animal, and aquatic products industries around the world. The examples sold

by Ajinomoto Co., Inc., described below were also shown in the Ajinomoto Group

Sustainability Report 2012 [47]. A schematic representation of by-product forma-

tion in the amino acid production process, as well as the ratio of solid (7%) and

liquid (93%) content in coproducts, is shown in Fig. 4. By-products are generated

during purification and isolation after fermentation. Approximately 90% of the

by-products are transformed into coproducts which are mainly used in slow-release

solid fertilizer, foliar fertilizer, dried bacterial cells, and silage modifying agents.

Solid by-products contain salts, waste activated carbon, excess sludge, and waste

filter aids. These can be used in, for example, animal and fish feeds, raw material for

solid fertilizers, soil conditioners, raw material for cement, and fuels. AJIFOL®

foliar fertilizer enables plants to effectively absorb nutrients through their leaves

and is a prime example of a value-added coproduct. AJIFOL® liquid fertilizers are

produced from the fermentation of L-glutamate and contain macro- and

micronutrients, nitrogen and potassium, as well as several additional amino acids.

These fertilizers were first launched in 1988 in Brazil and have since been used in

many countries, including Brazil, Peru, the United States, Thailand, Vietnam,

Producing strain

Main raw materials
(sugarcane, corn, 

or beet)

Amino acids
Nucleic acids

for Umami-seasoning

Amino acids
for feed addi�ve

Purifica�on
and 

drying

Cul�va�on

Raw materials Fermenta�on Isola�on and 
Purifica�on

Products

Cell
separa�on

and
crystalliza�onSub raw materials

(acids, ammonium, 
minerals, etc.)

7
5

88

Solid byproduct

Liquid feed

Liquid fertilizer

Byproducts

Fig. 4 Utilization of amino acid fermentation coproducts. Amino acid by-products are generated

during the purification and isolation process. Coproducts are typically distributed as solid

by-products (7%), liquid feeds (5%), and liquid fertilizers (88%)
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Indonesia, and Japan. The benefits of AJIFOL® include (1) increased plant growth

and development, as well as improved crop production and quality, especially

under stressful conditions, by effectively providing macro- and micronutrients

required by plants, and (2) increased resistance to diseases due to the elicitor

activity of amino acids.

In Japan, the liquid fertilizer AMIHEART®, derived from the fermentation of

inosine using natto bacteria (Bacillus amyloliquefaciens), was launched in 2011.

This fertilizer is rich in inosine and has been proven effective in fostering the

rooting of plants, promoting rapid growth, and increasing crop yields. It is mainly

used for melons, strawberries, tomatoes, bell peppers, eggplant, and tea cultivation

and is now beginning to be used in rice nursery production.

AJITEIN®, high value-added protein feeds containing bacterial cells by using

protein-rich bacterial cells separated from coproducts that are often used as liquid

fertilizers and feeds (Fig. 3), is distributed throughout Indonesia as an alternative to

fish and soybean meal. One of the advantages that AJITEIN® possesses over the

other protein sources is that it contains β-glucan, which can stimulate and enhance

the immune system of livestock. The liquid fertilizers AMI-AMI® and AMINAR®

are representative coproducts of Ajinomoto group companies in Thailand, Vietnam,

and Indonesia. These fertilizers are mainly utilized for cultivation of major crops,

such as rice, corn, soybeans, and sugar cane, as well as vegetables and fruits. They

derive from the liquid coproducts of monosodium glutamate production, which are

rich in protein and free amino acids. Thus, they can be applied as an alternative

source of protein in the manufacture of animal and fish feed.

5 Toward Further Sustainable Amino Acid Fermentation

For more than 50 years, the fermentation of amino acids has continuously

improved. However, most amino acids are still mainly produced from sugars,

such as glucose or sucrose, which are food raw materials. The candidates for

nonfood raw materials are glycerol, a valuable by-product in biodiesel production

by transesterification, as well as glucose and C5 sugars from cellulosic biomass

(Sect. 2).

C1 compounds occur abundantly in nature. Methane and methanol are two of the

most important C1 compounds from a biotechnological and bulk chemical view-

point. The possibility of utilizing the C1 substrates methane and methanol as

alternative nonfood feedstocks has attracted high scientific interest. This interest

is largely based on economic considerations (i.e., low methanol costs and increased

capacity for methanol production worldwide) and technological advances, which

allow for production of important industrial chemicals from methanol as a feed-

stock using microbes. Generally, methanol is prepared by reaction of a mixture of

carbon oxides (CO and CO2) with hydrogen; the CO/CO2 mixture, in turn, derives

from methane generally obtained from natural gas (e.g., shale gas). Methanol is

being increasingly produced from renewable sources. The biomass is gasified, and
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the resulting gas, a mixture of CO, H2, and CO2, satisfies the quality requirements of

methanol synthesis. In the long term, more renewable/bio-based methanol use in,

for example, shipping and transportation fuels is envisioned. However, methane

and methanol utilization has not yet been commercialized because the price of

methanol still makes it a more expensive substrate than sugar for bulk amino acid

production.

Methylotrophs comprise a large number of both aerobic and anaerobic micro-

organisms that can grow in methane and methanol. Obligate methylotrophs can

exclusively utilize C1 compounds as a sole carbon and energy source, while

facultative methylotrophs can utilize both C1 and multicarbon compounds. Genetic

tools for many methylotrophs have been established, and engineering of

methylotrophs leading to overproduction of different amino acids has been reported

[48]. For example, the Gram-negative obligate methylotroph Methylophilus
methylotrophus synthesized 1 g/L of L-lysine at 37�C through expression of a

mutant gene encoding dihydrodipicolinate synthase that is deregulated by L-lysine

inhibition [49]. By coexpressing a mutant gene encoding an L-lysine transporter,

LysE from recombinant C. glutamicum accumulated 11.3 g/L of L-lysine from

methanol [50]. A recombinant mutant of the Gram-negative obligate methylotroph

Methylobacillus glycogenes overexpressing a dihydrodipicolinate synthase that is

partly desensitized to inhibition by L-lysine was reported to produce approximately

8 g/L of L-lysine and 37 g/L of L-glutamate from methanol at 37�C [51].

Bacillus methanolicus is a Gram-positive, facultative methylotrophic and ther-

mophilic bacterium considered to be one of the few candidates with the potential to

convert methanol to value-added products and amino acids at high temperatures

[48, 52]. The Bacillus methanolicus classical mutant with homoserine auxotrophy

and resistance to amino acid analogs derived from strain NOA2 has been reported

to secrete 37 g/L of L-lysine in fed-batch bioreactors [53]. Bacillus methanolicus
MGA3 (ATCC 53907) has been shown to secrete 55 g/L of L-glutamate at 50�C
with methanol as a carbon source in fed-batch bioreactors [54]. Considering its

ability to produce high concentrations of L-glutamate and L-lysine at 50�C, Bacillus
methanolicus represents a promising microorganism for industrial-scale production

processes.

As an alternative approach to engineering methylotrophs for production of

amino acids from methanol, it may be possible to exploit the ability to utilize

methanol as a carbon source in naturally nonmethylotrophic, amino acid-producing

bacteria by introducing suitable heterologous pathways, such as the ribulose

monophosphate or serine pathway. Witthoff et al. [55] showed the capability of

C. glutamicum to oxidize methanol to CO2 and identified the key enzymes involved

in this endogenous pathway as a first step toward making C. glutamicum a

methylotroph.

Direct conversion of CO2 to amino acids is one of ultimate methods from an

environmental viewpoint. Matsunaga et al. [56] reported the production of L-

glutamate from CO2 by the marine cyanobacterium Synechococcus
sp. NKBG040607A using a biosolar reactor; the maximum CO2-to-glutamate

conversion ratio was 28% at a cell density of 3� 108 cells/mL. L-glutamate
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productivity using the biosolar reactor has been reported to be 15 μmol/L/h.

Furthermore, Ryu et al. [57] reported a new type of artificial photosynthetic system

that integrally and efficiently couples biocatalytic redox reactions with

photocatalytic water splitting. Efficient coupling is achieved using tetracobalt

polyoxometalate and a rhodium-based organometallic compound as hole and elec-

tron scavengers, respectively, for photoexcited [Ru(bpy)3]
2+ that successively pho-

tosynthesize L-glutamate as a model compound using a model redox enzyme (L-

glutamate dehydrogenase) upon in situ photoregeneration of cofactors. By

unlocking new, beneficial amino acid functions, usage of amino acids has prevailed

and is expected to expand in the future. Thus, efficient production of amino acids

will continue to be explored further to help conserve and improve the global

environment and maintain sustainable production.
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