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Abstract

Cone dysfunction syndromes (CDS) are a heterogeneous group of heredi-

tary retinal disorders characterized by impaired visual acuity, defective

color vision, nystagmus, and photophobia, which occur at birth or during

early infancy. In contrast to the cone or cone-rod dystrophies, CDS are

classified as stationary disorders, and which include congenital

achromatopsia (ACHM, also known as rod monochromacy) with an

autosomal recessive inheritance pattern. A total of six genes (CNGA3,

CNGB3, GNAT2, PDE6C, PDE6H, and ATF6) have been identified as

causes of ACHM. However, only the mutations CNGA3, CNGB3, and
PDE6C have been identified in the few cases of achromatopsia that have

been reported in Japanese patients. Thus, this chapter describes the

detailed clinical and molecular genetic findings for ACHM in Japanese

patients.
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12.1 Introduction

Cone dysfunction syndromes (CDS) are a hetero-

geneous group of hereditary retinal disorders

characterized by impaired visual acuity, defec-

tive color vision, nystagmus, and photophobia

which occur at birth or early infancy [1, 2]. In

contrast to cone or cone-rod dystrophies, CDS

are classified as stationary disorders, which

include congenital achromatopsia (ACHM, also

known as rod monochromacy) and blue-cone

monochromatism (BCM) [1, 2]. To date, the six

genes that have been identified as causes of

ACHM include cyclic nucleotide-gated channel

alpha-3 (CNGA3) [3], cyclic nucleotide-gated

channel beta-3 (CNGB3) [4, 5], guanine

nucleotide-binding protein, alpha-transducing
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activity polypeptide 2 (GNAT2) [6, 7], phospho-
diesterase 6C (PDE6C) [8], phosphodiesterase

6H (PDE6H) [9], and activating transcription

factor 6 (ATF6) [10, 11]. This chapter describes

genotype-phenotype associations found in

ACHM, especially in Japanese patients.

12.2 Epidemiology

ACHM is an autosomal recessive disorder with

an estimated frequency that ranges from

1:30,000 to 1:50,000 in the European descent

populations [1, 12]. However, little is known

about the prevalence of ACHM in the Asian

Pacific region, including Japan.

12.3 Clinical Features

ACHM is a congenital and basically stationary

disorder characterized by low visual acuity, pen-

dular nystagmus, photophobia, and severe color

vision defects. Although the fundus appearance is

usually normal, macular pigmentary changes and

macular atrophy have been described. Visual field

testing shows a small central scotoma in most

patients. Full-field electroretinography (ERG)

shows normal rod responses but severely reduced

cone responses. Spectral-domain optical coher-

ence tomography (SD-OCT) can detect an abnor-

mal structure of the outer retinal layer including

disruption of the inner segment ellipsoid line.

12.4 Molecular Genetic Aspects

To date, the six genes identified as the causes of

ACHM include CNGA3, CNGB3, GNAT2,

PDE6C,PDE6H, andATF6. The proteins encoded
by five of these genes (CNGA3, CNGB3, GNAT2,

PDE6C, PDE6H) are exclusively expressed in the

cone photoreceptors, where they are involved in

the cone phototransduction cascade. A previous

study found that CNGB3 mutations account for

half of the studied ACHM cases (48.2%), while

CNGA3 mutations account for 28.7%, GNAT2

mutations account for 2.2%, and PDE6C

mutations account for only 1.4% [13]. On the

other hand, other studies [8, 14, 15] have reported

that mutations in CNGB3 account for 87% of the

ACHM cases, with CNGA3 accounting for 5%,

and PDE6C for less than 1%. However, there

were no mutations found for GNAT2. Out of the
few cases of achromatopsia reported in Japan, only

the CNGA3, CNGB3, and PDE6Cmutations were

identified in these Japanese patients [16–

18]. Therefore, the mutation spectrum of ACHM

in the Japanese population remains unknown.

12.5 Clinical Aspects (Case Studies)

This study examined two Japanese families with

ACHM in whom the pathogenic mutations were

identified.

12.6 Family 1

A 22-year-old female patient was referred for

evaluation of photophobia and visual loss in

both eyes [17]. Childhood history included nys-

tagmus and low visual acuity. Decimal best-

corrected visual acuity (BCVA) was 0.1 in both

eyes, with refractions of �2.75 cylinder 10 deg.

in the right eye and +1.25 sphere,�3.00 cylinder

270 deg. in the left eye. Ophthalmoscopy showed

no specific findings in the optic disks or maculae

(Fig. 12.1). Time-domain OCT assessment by

retinal mapping disclosed a 20% thinner

parafoveal thickness compared to a normal indi-

vidual, even though the foveal thickness was

normal (Fig. 12.1). Goldmann visual field tests

showed bilateral 5-deg. central scotomas with the

I-2e isopters, while the visual fields with the

V-4e, I-4e, I-3e, I-2e, and I-2c targets were

within normal limits in both eyes. This patient

was only able to identify the first plate in the

Ishihara test. The Farnsworth Panel D-15 showed

there was confusion close to the scotopic axis.

Although full-field ERG showed normal

responses in the rod and maximal (mixed

rod-plus-cone) responses, there was an extreme

reduction in the cone and 30-Hz flicker responses

(Fig. 12.2). Spectral sensitivity on a white
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Fig. 12.1 Ophthalmoscopy in the patient of Family 1 found no specific findings in the optic disks or the maculae (a).
Time-domain OCT assessment by retinal mapping disclosed a 20% thinner parafoveal thickness compared to a normal

individual, even though the foveal thickness was normal (b)

Fig. 12.2 Full-field electroretinography in the patient of Family 1 demonstrated there were normal responses for the

rod and maximal (mixed rod-plus-cone) responses, but extremely reduced responses for the cone and 30-Hz flicker

responses
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background was measured in the patient and in

two individuals who exhibited normal color

vision using a three-channel Maxwellian view

optical system as previously described [19]. The

spectral sensitivity measurements for the two

individuals with normal color vision showed

curves with three peaks that consisted of short

wavelength-sensitive (S), middle wavelength-

sensitive (M), and long wavelength-sensitive

(L) cones. However, the patient’s curve revealed

only one peak at around 500 nm (Fig. 12.3),

which was comparable to the spectral luminous

efficiency function V0(λ) for scotopic vision that

fits the absorption spectrum of human rhodopsin.

The patient’s parents and sister reported no ocu-

lar complaints.

The mutation analysis using Sanger sequenc-

ing identified compound heterozygous CNGA3

mutations (c.1306C>T; p. R436W, c.1898T>C;

p. L633P) in the patient (Fig. 12.4) [17]. In the

familial analysis, her father and sister carried the

p. R436W mutation, while her mother carried the

p. L633P mutation. The L633 is not only a

phylogenetically conserved amino acid residue

among mammalian orthologs, but it is also one

of the most important hydrophobic residues in

the CLZ domain downstream of the cGMP-

binding site.

12.7 Family 2

A 7-year-old sister (patient 1) and her 5-year-old

brother (patient 2) were referred to our depart-

ment because of poor visual acuity [19]. Their

parents had a consanguineous marriage. Since

infancy, both patients have had hemeralopia,

photophobia, and pendular nystagmus. At the

time of their first visit to our hospital, the

BCVA was OD, 0.1, and OS, 0.1; refractions

were OD, +3.00, 0.5 X 180, and OS, +2.50,

�0.75 X 180 (patient 1), and +7.00, �0.5 X

180 in both eyes (patient 2). Goldmann visual

field testing that was done several years after

their first visit showed there similar findings

between the patients. Both patients 1 and 2 had

bilateral relative central (5 deg) scotomas of the

I-3c and I-2e isopters, respectively, while the

peripheral visual fields with V-4e, III-4e, and

I-4e isopters were normal. Both patients were

only able to recognize the first plate in the

Ishihara color vision test. The Farnsworth Panel

D-15 indicated that both patients exhibited con-

fusion close to a scotopic axis. The Nagel model

I anomaloscope examination showed color

matches along the rod line of the Rayleigh equa-

tion. Ophthalmoscopy showed that while patient

1 had atrophic-appearing macular lesions, patient

2 had no specific retinal findings. Full-field ERG

showed normal rod and maximal responses, but

there was an absent 30-Hz flicker response in

both eyes. On the other hand, the cone ERGs

differed, with the responses absent in patient

Fig. 12.3 Spectral sensitivity on a white background was

measured in the patient of Family 1 and in two individuals

with normal color vision using a three-channel

Maxwellian view optical system. The two individuals

with normal color vision showed curves with three

peaks that consisted of short wavelength-sensitive (S),

middle wavelength-sensitive (M), and long wavelength-

sensitive (L) cones. However, the patient’s curve revealed

only one peak at around 500 nm, which is comparable to

the spectral luminous efficiency function V0(λ) for scoto-
pic vision that fits the absorption spectrum of human

rhodopsin
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1, while the amplitude of the a- and b-waves

were reduced in patient 2. Therefore, patients

1 and 2 were diagnosed with complete and

incomplete ACHM, respectively. Subsequently,

both patients have undergone longitudinal fol-

low-ups.

At the age of 30, the BCVA for patient 1 was

0.2 (with moderate myopia) in her right eye and

0.1 (with moderate myopia) in her left eye.

Funduscopy showed atrophic chorioretinal mac-

ular scarring in the right eye and macular atrophy

in the left eye. FAI revealed complete loss of

autofluorescence in the macular lesions of both

eyes. SD-OCT revealed severe macular thinning

of all layers in both eyes and retinal and choroi-

dal excavation in the right eye. Visual field test-

ing showed there were bilateral central scotomas

(5–10 deg) of the I-3e or I-2e isopters, even

though the peripheral visual fields of the I-5e

and I-4e isopters were normal. There was a slight

broadening of the central scotomas relative to

that seen at 11 years of age. At the age of

26, the BCVA for patient 2 was 0.2 (with high

hyperopia) in each eye. Fundus autofluorescence

imaging revealed hyper-autofluorescent areas of

the maculae in both eyes. SD-OCT revealed
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patient of Family

1 detected compound

heterozygous CNGA3
mutations (c.1306C>T;

p. R436W, c.1898T>C;

p. L633P)

Fig. 12.5 Spectral-

domain optical coherence

tomography performed in

patient 2 of Family

2 revealed retinal thinning

with a loss of the outer

retinal layer in each macula
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retinal thinning with loss of the outer retinal layer

in each macula (Fig. 12.5).

In order to identify disease-causing variants in

the mutation analysis, whole-exome sequencing

was performed in each of the family members

(patient 1, patient 2, and their parents). In each

patient, we identified a novel homozygous muta-

tion (c.1771G>A, p. E591K) in exon 14 of the

PDE6C gene (Fig. 12.6) [18]. There were no

pathogenic variants detected in the CNGA3,
CNGB3, GNAT2, PDE6H, or ATF6 genes. Inter-

estingly, there was one known disease-causing

mutation (p. G79R) in OPN1SW, which is

associated with congenital tritan color vision

deficiencies. The father and patient 1 each had

the p. G79R mutation heterozygously, while the

mother and patient 2 had neither mutation

[18]. Since spectral ERG indicated that the father

exhibited blue-yellow color vision deficiencies

and no S-cone response, he was diagnosed with

congenital tritan deficiencies [18]. The different

phenotypes (complete and incomplete ACHM)

between the patients might be explained by a

“direct effect” or “possible modifier effect”

related to the OPN1SW mutation (p. G79R) that

was found in patient 1, who had complete ACHM.

12.8 Summary and Perspective

This chapter summarized the detailed clinical and

molecular genetic findings for Japanese ACHM

patients [17, 18]. However, there have been only

three reports in which mutations (CNGA3,

CNGB3, and PDE6C) were identified in Japanese

ACHM patients [16–18]. Unlike ACHM patients

ofEuropeandescent, themutation spectrumhas yet

to be clarified in the Japanese population. There-

fore, a large cohort that investigates the genotype-

phenotype correlations in ACHM in the Japanese

population will need to be undertaken in the future.
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