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18.1 Introduction

Hybrid materials are composed of at least two constituents and structurally built at
the nanometer or molecular scale. The constituents may include molecules, func-
tional groups, molecular fragments, polymeric chains, nanosheets, nanotubes, or
other types of nanoparticles. Hybrid materials often exhibit multifunctional prop-
erties and have potential for various applications. Hybrids with organic dyes
adsorbed on the surface of nanosheets or embedded in the crystals of layered
compounds involve a very broad range of material types with variable structures,
functionalities, and properties. Probably, the oldest hybrid material of this type is
Maya blue, the pigment used by the Maya and Aztec civilizations in the era of
pre-Columbian America. Maya blue is composed from indigo dye from the plant
Indigofera suffruticosa intercalated in a clay mineral, palygorskite. The host par-
ticles of palygorskite do not contribute to the color of the pigment, but play an
active role in the chemical stabilization of the dye. It is remarkable how long Maya
blue paintings have lasted, despite the paints being exposed to harsh climatic
conditions, high temperature and humidity. The properties of Maya blue inspired
scientists, who tried to mimic its nature by developing similar types of materials [1–
3]. In the modern era, the paint industry was probably one of the first branches to
develop pigments based on composites of inorganic compounds with organic dyes.
Inorganic solids were often used as the carriers of dye molecules, fillers, or pigment
additives. Hybrid materials and nanomaterials incorporating organic dyes have only
been extensively developed over the last few decades. In numerous cases,
nanosheets and layered nanoparticles exhibit important functionalities and con-
tribute to the materials’ photophysical and photochemical properties. Examples
include graphene and related compounds, layered semiconductors (metal oxides,
hydroxides, sulfides), luminescent rare earth metal hydroxides, layered perovskites,
etc. This chapter focuses on hybrid materials based on organic dyes representing the
key components in terms of the materials’ functionality. The dyes play primary
roles in terms of the materials’ optical and photofunctional properties. The inor-
ganic components play mostly a passive role. On the other hand, inorganic layered
compounds are able to significantly affect the properties of dye molecules. The
inorganic layered compounds primarily include layered silicates (LSil), layered
double hydroxides (LDH), but also other types. Hybrid materials with active
organic dyes have been the focus of a lot of deserved attention for a few decades
now. One of the first breakthrough review articles dealing with the photochemistry
of such materials was published about 20 years ago [4]. This review was an
inspiration for many researchers, providing original and critical perspectives on
various aspects of materials of this type. Since then, thousands of papers, dozens of
reviews [5–15] and several monographs and chapters [16–18] analyzing current
knowledge of the topic have been published. This chapter emphasizes the
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importance of the inorganic constituents in the properties of adsorbed or embedded
organic dye molecules, analyzing primarily the latest knowledge published over the
last decade. This chapter also explains the principles of the routes for the synthesis
of active hybrid material and summarizes the phenomena occurring in these hybrid
systems. Last but not least, it highlights the current state and promise of potential
applications.

18.1.1 Basic Features of the Hybrids with Photoactive Dyes

Hybrids with photoactive nanosheets have received a lot of attention. However,
using inert layered substrates can be advantageous in many cases. The photoactive
inorganic compounds can initialize the photodecomposition of organic dyes. For
example, layered titanates (LTi) are more efficient photocatalysts than standard
commercial materials based on TiO2 [19]. Some organic dyes are efficiently pro-
tected by the inert particles of LSil, whereas they decompose in the presence of
photoactive layered niobates (LNb) [20]. Even mixtures of active and nonactive
layered nanoparticles can significantly improve the protection of dye molecules
compared to the pure semiconductor colloids. Examples are mixtures of exfoliated
particles of LNb or LTi with LSil [21, 22].

The parameters of both the dyes and nanoparticle components are important to
successfully design hybrid materials. The most important parameters of dye
molecules include their molecular geometry and shape, charge and the distribution
of functional and ionic groups, and hydrophobic or hydrophilic properties. The
parameters of nanoparticles are more complex, depending on the type of layered
compound, particle structure, surface reactivity, and topography. The presence of
particle surface charge creates an electrostatic field affecting the orientation of polar
molecules and controls the arrangement and distribution of charged ions. Ion
exchange reactions have been traditionally used for the synthesis of hybrid mate-
rials of LSil and LDH. Organic counterions are irreversibly adsorbed onto the
surface of nanoparticles. The binding coefficients of cationic organic dyes on the
surface of LSil are several orders of magnitude larger than those of inorganic
cations [23]. The dye adsorption often exceeds the cation exchange capacity (CEC).
Molecular orientation depends on the degree of dye loading, on the size and
molecular shape of dye molecules, and the presence of ionic groups. Anisotropy is
one of the most important properties which can be implemented for anisotropic
materials applicable in optical devices. Interesting properties can be expected based
on the specific host–guest interactions leading to significant changes in dye prop-
erties. This might result from dye molecular aggregation, or can relate to the
changes in dye geometry or electronic properties. Photophysical phenomena
occurring in hybrid systems, such as resonance energy transfer or nonlinear optical
(NLO) properties increase the attractiveness of such hybrid materials.
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18.2 Surface and Structural Parameters of Inorganic
Nanolayered Compounds

There is a large spectrum of inorganic layered compounds which are potential
sources for nanosheets or layered particles for hybrids with functional dyes. They
involve graphene, LSil, LDH, hydroxides, LTi, LNb, layered oxides, vanadates,
phosphates, phosphonates, sulfides, nitrides, and others. Some basic information on
these compounds is available in the literature (e.g. [24–26]). A typical example of
nanolayered compounds with chemically inert surfaces are expandable LSil. They
include smectites, which are expandable clay minerals such as montmorillonite
(Mmt), saponite (Sap), hectorite (Hec), and related synthetic materials, such as
Laponite (Lap). The particles of expandable LSil are about 0.96 nm thick, with
diameters ranging from several tens to several hundreds of nm, up to a few lm. The
individual layered particles of LSil are built from sheets of octahedrons and
tetrahedrons linked together by covalent bonds. The octahedral sheet is based
mostly on AlIII, FeIII, FeII, MgII or LiI central atoms, and OII-, OH-, F- ligands. The
occupancy in the octahedral sheets positions may lead to either a dioctahedral or
trioctahedral structure. Tetrahedrons are occupied by predominantly SiIV and AlIII

central atoms. One octahedral sheet is sandwiched between two covalently bound
sheets of tetrahedrons to form an individual layer. Nonequivalent isomorphous
substitutions and vacancies in both the octahedral or tetrahedral sheets create a net
negative charge, which is balanced by mobile exchangeable cations. The layer
charge controls the distribution of exchangeable cations and plays key roles in
various properties of the material. In the systems with cationic dyes, charge dis-
tribution sensitively controls the molecular aggregation [12, 27, 28] (see
Sect. 18.4.3) and orientation of dye cations [29, 30] (see Sect. 18.5.1). Whereas
LSil nanoparticles are built from three sheets of polyhedrons, LDH or layered
hydroxides are composed of single sheets of polyhedrons of individual particles
(Fig. 18.1). The topography of the particle surface at the atomic level and the
presence of functional groups at the surface are very important in terms of
adsorption and surface activity. One example is the specific orientation of rho-
damine (Rh) and oxazine dyes in LSil hybrid films, where the inclination angle of
the dyes with respect to the surface depends on the type of amine groups (–NH2, –
NHR, –NR2, where R=methyl or ethyl). The largest orientation angles were
observed for dye cations with –NHR groups (60–70°) [29–33]. It is assumed that
the interaction of –NHR groups carrying a positive charge is influenced by the
topography of the LSil basal surface: Probably the –NHR groups specifically
interact at the surface, rearranging themselves according to pseudohexagonal cav-
ities in the surface and causing molecules to be more inclined with respect to the
plane of the surface. The smaller –NH2 groups give more freedom of orientation,
whereas the bulkier –NR2 groups do not fit into the cavities at all. There have been
no systematic studies focused on dye orientation related to different topographies of
variable layered compounds.
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18.3 Material Types and Strategies for the Synthesis
of Hybrid Materials

18.3.1 Colloids

The majority of the synthesis routes leading to hybrid materials proceeds via colloid
systems with finely dispersed nanoparticles. The properties of the colloid precursors
may crucially affect the quality of solid hybrid materials. The main parameter
affecting the stability of colloidal systems is surface charge, which is compensated
by the counterions of either an inorganic or organic type. The properties of the ions
significantly affect swelling, interparticle associations, and particle exfoliation. LSil
with Na+ or Li+ counterions swell macroscopically, forming finely dispersed
individual nanoparticles [11]. Alkylammonium cations with short alkyl chains or
bulky shapes are efficient swelling agents for some layered compounds with larger
charge densities [20, 34]. LDH with the particles bearing a positive charge are
accessible in the form with CO3

−2 anions, which, however, do not form stable
colloids. The swelling of LDH can be achieved in organic polar solvents with NO3

-

or ClO4
- counterions [35, 36]. However, the replacement of CO3

−2 anions is not easy
[37, 38], and LDHs saturated with NO3

- or ClO4
- anions are unstable due to the

presence of CO2. The modification of LDH with organic anions of carboxylic acids,
amino acids, organic sulfates can improve the stability of colloids [37]. Colloid
properties are in general influenced by ionic strength, temperature, particle size,
shape, and surface modification. More complex nonaqueous ternary colloidal sys-
tems sometimes including polymers or ionic surfactants have attracted a lot of
attention. Premodification with large alkylammonium cations is an optimal step

nanosheets (e.g. layered 
double hydroxides)

nanolayers built from 
tetrahedral and octahedral 
sheets (layered silicates)

Fig. 18.1 Nanoparticles
based on nanosheets or
nanolayers composed from
three sheets of polyhedrons
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toward altering surface properties, thus enhancing the stability of the colloids in
organic solvents [39].

18.3.2 Surface Modification of Inorganic Nanoparticles

Premodification of the nanoparticle surface is frequently applied. There are several
reasons why particle modification is performed:

• To improve colloid stability and alter particle surface properties
• To control or regulate dye adsorption
• To prevent or reduce dye molecular aggregation

Surface modification for the reduction of dye molecular aggregation is analyzed
in Sect. 18.4.5. Improvements in colloid stability are often related to the modifi-
cation of surface charge or the exchange of counterions. Surface grafting with
molecules bearing ionic groups attached to the surface via covalent bonding can
lead to significant changes in surface properties (see Sect. 18.3.4). In principle, dye
adsorption itself also leads to a modification of surface properties. Thus the
selection of an appropriate dye can be an alternative way to improve surface
properties and achieve high colloid stability. For example, the adsorption of
zwitterionic porphyrin, carrying both the cationic pyridinium and anionic carboxyl
groups in the molecule, led to a significant stabilization of Mmt colloids [40]. Even
the large-scale adsorption of this dye beyond the CEC value did not lead to particle
flocculation.

The adsorption of organic ions of the opposite charge to that of the surface is
often an irreversible process. However, the repulsive forces would prevent the
adsorption of dye ions with the same charge. In such cases, surface modification is
necessary and often realized by using ionic surfactants. The most typical examples
are LSil modified with alkylammonium cations. The formed materials exhibit
enhanced surface activity, and are able to absorb cations, neutral molecules as well
as anions. For example, such modifications applied to Mmt turned this material into
an efficient adsorbent of the anionic dye methyl orange [41]. Another type of
surface modification involves surface activation with polyelectrolytes. The
adsorption of organic polycations onto nanoparticles with a negative surface charge
can significantly reduce or even reverse the original charge to positive values, thus
creating an adsorption capacity for anionic organic dyes [42]. Applying the mod-
ification of Mmt surface with the polycation led to an increased adsorption of
anionic dyes, but also retained the properties for an efficient adsorption of cations
[43]. The efficient adsorption of anionic dyes on LSil can be achieved via modi-
fication with inorganic polycations or oligomeric cationic species, such as the
Keggin cation, Al13O4(OH)24(H2O)12

7+. The modification of smectites leads to
materials called pillared clays, which exhibit enhanced porosity and interesting
adsorption properties. AlIII-pillared clay (with Keggin cations) exhibited an

424 J. Bujdák



improved adsorption of Acid Turquoise Blue [44]. A similar trend was observed for
the adsorption of orange II on silane-activated AlIII-pillared Mmt [45]. Besides the
adsorption of anionic species, pillared clays are still able to also readily absorb
cationic dyes [46], which is a similar feature to the materials modified with organic
polyelectrolytes. There are some other interesting properties which have been
observed for these materials: The adsorption of the cationic dye methylene blue
(MB) on FeIII-pillared LSil could be controlled by an external magnetic field [46].
In another study, surface modification with oligomeric cationic species led to
enhanced fluorescence compared to non-pillared LSil [47].

18.3.3 Hybrids with Neutral, Insoluble, and Hydrophobic
Dyes

The poor solubility of neutral and hydrophobic dyes sometimes complicates their
application. Furthermore, organic nonpolar dyes which are poorly soluble in water
exhibit low photoactivity in aqueous solutions. As was mentioned above, the
modification of the particles with surfactants may significantly increase the
adsorption of neutral dye molecules. The synthesis of hybrid materials with
hydrophobic dyes must be often performed in organic solvents and/or under
specific conditions to enhance dye’s solubility. However, there were some recent
studies which applied layered nanoparticles for dye solubilization. For example,
synthetic LSil of a Lap type was used to solubilize the neutral dyes Nile red and
coumarin 153 (Fig. 18.2) [48]. The co-adsorption of organic quaternary ammonium

Fig. 18.2 Molecular formulas of neutral dyes used in hybrid materials
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ions further enhanced dye luminescence. The small size of Lap particles guaranteed
the high transparency of hybrid colloids. The stability of the hybrid dispersions
remained even at higher concentrations, which indicated this material to be appli-
cable in biophotonics [48]. The mechanism of dye solubilization in the presence of
nanoparticles has not been explained yet. Theoretically there could be two different
mechanisms:

1. The neutral molecule could hydrolyze, and ionized forms can be adsorbed onto
the surface of opposite charge. One possible example is the reaction of the dye
molecule as a Brønstedt base:

Dye sð ÞþH2O lð Þ�HDyeþ aqð ÞþOH� aqð Þ

The cations formed would be significantly more soluble than the neutral
molecules and would be selectively adsorbed on the particles with negative surface
charge (Surf-):

Surf� sð ÞþHDyeþ aqð Þ� Surf� � HDyeþ sð Þ

2. Poorly soluble dyes in their neutral molecular form can be stabilized in the
adsorbed state to reduce hydrophobic interactions with water molecules. Thus,
the stabilization of dye molecules by adsorption would be in principle the same
as the precipitation of the insoluble dye molecules. Besides van der Waals
forces, H-bond formation can be very important as was proven for indigo
bonding in the Maya blue pigment [49]. Inspired by Maya blue, an aqueous
colloid of synthetic Sap was used to dissolve the hydrophobic dye Pigment Red
31 (Fig. 18.2) [50]. The dye was bound onto the external surface via van der
Waals and H-bonds but also hydrophobic interactions between the dye mole-
cules were observed. Although no measurable intercalation of the dye was
detected, the hybrid pigments were highly dispersible in water, thermally stable,
and resistant to ultraviolet (UV) radiation [50]. For larger polymeric pigments, a
basic solubilization route may not be efficient and special methods had to be
developed. One example is a red pigment based on the large protein complex
naturally occurring in red algae, called phycoerythrin. Salt-assisted adsorption
promoted the fixation of phycoerythrin onto a Mmt surface [51]. In summary,
the solubilization by nanoparticles seems to be very efficient for common
hydrophobic dyes. This procedure can expand the use of the majority of dyes
based on neutral molecules for photonic applications [52].
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18.3.4 Sol–Gel Processes and Covalently
Attached Dye Molecules

Hybrid materials are mostly prepared starting from the systems of both the com-
ponents: Layered nanoparticles and organic dyes. However, in some cases, the
syntheses of hybrid material and the formation of nanoparticles is realized in a
single-step procedure. The accommodation of organic dye molecules proceeds at
the same time or immediately after the formation of nanoparticles. This can be
achieved relatively simply by including organic dye molecules in the mixture for
nanoparticle synthesis. The earliest work using this strategy reported the formation
of the hybrids based on Lap and LDH [53]. The hybrid materials with Lap particles
were prepared in the course of Lap hydrothermal synthesis starting with SiO2, Mg
(OH)2, LiF, and including either cationic dye alcian blue or neutral molecules of
15-crown-5-tetra-substituted phthalocyanine. The hybrids with LDHs were pre-
pared via the hydrolysis of solutions containing Al(NO3)3, Mg(NO3)2, and NaOH,
together with CuII-phthalocyanine anions. The syntheses of hybrid intercalation
compounds were successful and the properties of the products were similar to those
prepared by the conventional method based on ion exchange reactions [53]. The
sol-gel processes are suitable routes for the incorporation of reactive dye species in
hybrid materials. The dye moieties can be directly incorporated in the hybrid
structure or linked via covalent bonds to nanoparticles. Trioctahedral synthetic LSil
was synthesized from SiO2, Mg(OH)2, and LiF solutions together with a reactive
silane molecule, carrying a coumarin dye moiety [54]. The incorporation of the
coumarin fluorophores was proved by spectroscopy methods. In a similar approach,
palygorskite modified with 3-aminopropyl triethoxysilane was applied as an effi-
cient substrate, binding to specific reactive dyes [55]. In another study, a hybrid
material carried two different dyes; each dye component was bound in a different
way [56]. One was incorporated into the silicate matrix by hydrothermal synthesis
as described in a previous work [54], and the second dye was additionally inte-
grated by an ion exchange reaction. Förster resonance energy transfer (FRET)
between these two dyes indicated a homogeneous distribution of the fluorophores in
the matrix of the hybrid material [56, 57].

LSil are a typical example of the materials based on inert and chemically very
stable particles. The particles edges represent a very small fraction, but with rela-
tively reactive sites of hydrolyzed broken bonds. The high reactivity of the edge
sites was utilized in another strategy for hybrid materials’ preparation. The edges of
LSil particles were selectively modified with reactive silane molecules bearing
fluorophoric groups (Fig. 18.3) [58]. Since the particle edges represent only a minor
fraction of the total surface, their modification did not significantly influence the
colloid properties of the materials. On the other hand, the modification of the edges
led to solid materials exhibiting relatively strong luminescence. Specific localiza-
tion of the fluorophoric groups could be observed by confocal fluorescence spec-
troscopy only with the hybrids derived from LSi with relatively large-diameter
particles [58]. Kaolinite is an LSil which neither swells nor forms stable colloids in
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water. Its particles do not carry any charge, so modification via ion exchange
reaction cannot be applied. Therefore, hybrid materials based on kaolinite and
organic dyes are rather very rare. It was reported that the microwave activation of
kaolinite led to a material which exhibited better adsorption for tartrazine dye [59].
However, modification with reactive organic dyes seems to be the most affordable
way [60]. After the pre-expansion of kaolinite with an organic polar solvent, the
luminescent silane molecules reacted with surface OH groups leading to a unique
photoactive material [60]. A very interesting but structurally complex type of
hybrid material was synthesized from spherical silica particles of a submicrometer
size [61]. Hydrothermal treatment with LiF and MgCl2 created LSil particles
attached by their edges to the silica surface. Extraordinary colloidal properties were
controlled rather by the properties of silica spheres, but their adsorption properties
were significantly influenced by the attached LSil particles. The modified spheres
were active in the adsorption of cationic surfactant and organic dye, MB
(Fig. 18.4). The colloidal stability was kept unchanged even under conditions of
complete saturation with the dye cations. Under identical conditions basic hybrid
MB/LSil colloids would be very unstable and completely flocculated [61].

18.3.5 Thin Solid Films

Films of hybrid materials can be used as the components in optical devices or for
other numerous applications and therefore have received a lot of attention. The
films based on the layered nanoparticles with organic dyes can be prepared in
various ways. The simplest method is based on casting the colloids of nanoparticles
on some sort of flat substrate and let the solvent evaporate out. The particles can be

layered silicate 

reactive molecules 
(silanes) with
luminescent moieties 

exfoliation in 
organic solvent

dispersed particles 

particles with modified
edges 

+

Fig. 18.3 Selective modification of particle edges with luminescent molecules. (According to
reference [58])
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modified with dye molecules either already in the colloids, or in the latter step via
the intercalation into the film. The most important properties which are usually
required for hybrid optical films are optical homogeneity and transparency. These
requirements initiated the development of various more sophisticated techniques.
A spin coating and film formation via a vacuum filtration method [62] can be used
for the preparation of relatively thick, but optically homogeneous and transparent
films. In these cases particle size plays a significant role. Special types of films have
been developed in order to precisely control composition, film thickness, structure,
arrangement, and order of the discrete layers and components. These include
Langmuir–Blodgett (LB) films and layer-by-layer (LbL) assemblies. Thin layers of
monomolecular assemblies of amphiphilic molecules with well-defined structure
and composition are basic building blocks for LB films. The assemblies are formed
at an air/solution interface, from where they are deposited onto the substrate by dip
coating. It is relatively simple to incorporate layered nanoparticles into LB films.
Most frequently nanoparticles are modified with amphiphilic surfactant counteri-
ons; the same surfactants which are used for common LB films. The incorporation
of organic dyes into LB films can be achieved in two different ways (Fig. 18.5): 1.
Dye molecules are adsorbed onto the active surface of modified nanoparticles [63].
2. Another way is to incorporate dyes molecules or ions with long alkyl chains
instead of a fraction of the surfactant molecules during LB assembly. Octadecyl-Rh
B or 3,3′-dioctadecyl oxacarbocyanine dye are examples of amphiphilic cations
having chromophoric cationic groups, which have been applied in the production of
LB films with LSil [64]. The structure of surfactant assemblies and the orientation
of surfactant molecules in a hybrid LB film are similar to the films built from
surfactant molecules alone (Fig. 18.5). The self-assembly of surfactant molecules
and formation of dye molecular aggregates play significant roles, affecting the

+ LiF
MgCl2

spheres with grown
layered particles

methylene blue cationssilica spheres

Fig. 18.4 Particles of layered silicate attached to silica spheres and methylene blue adsorption.
(According to reference [61])
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optical properties of the films [65]. The influence of the surface charge density of
LSil on the properties of hybrid LB films was also reported [64].

The LbL assemblies consisting of multilayers with alternating charge were
discovered relatively recently. They are built via a step-by-step routine, through the
deposition of a single monomolecular layer in each deposition step. The new layer
with the opposite charge to the outer layer of the substrate is deposited from
solution and the excess of molecules or particles is washed out after each deposition
step. Coulombic forces play a key role, but other types of chemical bonds can also
take a part. LbL assemblies are built by full control over the composition and order
of the layers. Although the LbL technique was originally developed for the
deposition of electrolytes, charged layered nanoparticles are ideal components for
the multilayers of this type. The choice of the components can significantly affect
the photoactivity of embedded dye molecules. For example, the dimerization of
acridine orange incorporated in LbL films was significantly reduced when Lap was
included in the films [66]. A detailed study utilizing chemometric analysis of the
spectral data recorded after each deposition step could identify variable phenomena
occurring during LbL assembly formation [67]. The outer surface with the adsorbed
dye molecules exhibited significant changes upon the formation of a new layer.
There was a partial desorption and conversion of dye molecules to an aggregated
form. Complex and specifically designed LbL films were prepared for the purpose
of investigating FRET between layers [67]. In another study, chromophoric groups
were part of the polyelectrolyte chains used as the components in LbL assemblies
[68]. They formed the J-aggregates exhibiting the properties of light-harvesting and
excitation energy transfer systems.

surfactant molecules
with luminescent
headgroups

nanosheet

luminescent
molecules

Hydrophobic
chains

flat substrate

Fig. 18.5 Types of Langmuir–Blodgett films with organic dyes
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18.3.6 Nanocomposites with Polymers
and Other Complex Systems

More complex hybrid materials including industrial polymers were also developed.
Nanocomposites of LSil particles with poly(styrene) and Rh 6G were synthesized in
a two-step process [69]: First, the dye and radical initiator
2,2,6,6-tetramethyl-1-piperidyloxy (TEMPO) were intercalated in LSil. The addi-
tion of styrene and TEMPO-initiated polymerization led to polymeric nanocom-
posites that stabilized incorporated Rh molecules [69]. Spherical particles of poly
(N-isopropylactylamide) hydrogels containing layered particles of Sap were used
for the immobilization of various cationic species, including organic dyes [70].
Oligomeric silsesquioxane with a covalently attached chromophoric group of
luminescent cyanine dye was intercalated in synthetic Sap. The hybrid material
exhibited a high luminescence quantum yield and improved thermal and photo-
chemical stability. The hybrid exhibited superior properties with respect to the
luminescent oligomer or dye molecule alone [71]. In another study, hybrid meso-
porous materials with high surface area were synthesized from LSil and poly
(ethylene glycol) grafted sol–gel silica. The aerogel formed by evaporating the
solvent exhibited hydrophobic properties, but with high capacities for the adsorp-
tion of ionic organic dyes, MB and malachite green [72]. Very interesting optical
materials were developed when incorporating gold nanoparticles in LDH,
exhibiting superior properties to adsorb methyl orange [73].

18.4 Molecular Aggregation and Photoactivity
of Hybrid Materials

18.4.1 Metachromasy and Dye Molecular Aggregation

The discovery of dye molecular aggregation represents one of the most important
milestones in the physical chemistry of organic dyes. The molecular aggregation of
some organic dyes causes metachromasy, which was originally defined as signifi-
cant color change induced by changing conditions, such as temperature, ionic
strength, concentration, adsorption, etc. For the first time metachromasy was
visually observed by optical microscopy in biological tissues stained with
metachromatic dyes. The spectral changes often cover the complete range of the
visible spectrum, sometimes representing spectral shifts of several thousand cm−1.
Exciton theory describes the spectral changes as the result of the electrostatic
coupling between transition dipoles of dye molecules. It significantly alters the
electronic properties of the dye molecules, namely the energies of their excited
states. The dipole coupling depends significantly on the geometry of the aggregates
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(Fig. 18.6). The H-aggregates with the geometry characterized with a
sandwich-type arrangement exhibit absorption bands shifted to lower wavelengths.
The H-aggregates are mostly nonluminescent and nonactive species and often
exhibit the properties of fluorescence quenchers. J-aggregates represent the type of
molecular assemblies with a head-to-tail intermolecular association. They are
characterized by light absorption at longer wavelengths, narrow absorption bands,
and exhibit relatively small Stokes shifts. The J-aggregates represent interesting
supramolecular systems with a broad spectrum of potential applications [74]. The
formation of dye molecular aggregates on layered nanoparticles is a relatively
common phenomenon. Probably one of the first papers reporting dye molecular
aggregation in such systems was on MB in Mmt colloids [75]. The main driving
force for dye aggregation is hydrophobic effect and enhanced concentration at
liquid/solid interface. There are two main types of sites for dye aggregation: 1. The
zones of the diffuse electric double layer surrounding colloid particles. 2. Sites at
the particle surface. The zones with enhanced electrolyte concentration and ionic
strength promote initial dye aggregation. The thickness of the zones and electric
field characteristics depend on the charge of the particles and electrolyte type and
concentration. Particle edges do not seem to play a significant role in dye adsorption
and molecular aggregation, since they are a minor part of the total surface. The
chemical modification of LSil particle edges with reactive silanes did not produce
different tendencies in MB aggregation, although the properties of the colloids were
significantly altered [76]. The planar surfaces of layered particles can exhibit
variable properties, specific charge, topography, and chemical activity. Therefore
the mechanism of dye aggregation is relatively complex, including fast adsorption
and slow processes of the transformation of initially formed metastable dye
aggregates [27, 77–79].
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Fig. 18.6 Exciton splitting of
the electronic excited states of
dye molecular aggregates
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18.4.2 Molecular Aggregation and Photoactivity

Dye aggregation significantly affects the photoactivity of the molecules. As was
mentioned above, most common aggregates are sandwich-type assemblies exhibiting
low photoactivities. Therefore, the adsorption of dye molecules onto layered particles
often leads to a decline in their photophysical properties. This phenomenon has been
described in numerous articles and reviews [9, 12, 15, 80, 81]. However, there have
been a few reports of an opposite trend. This may occur if the dye adsorption does not
lead to molecular aggregation. Rarely dye adsorption can even suppress the forma-
tion of dye aggregates. This phenomenon occurs for organic dyes of specific
molecular structure and the distribution of ionic groups in their molecules. For
example, the aggregation of SbV-porphyrin was suppressed and fluorescence
increased in the complexes with LSil. This effect was observed even at high loadings
of the porphyrin dye [82]. In a few cases, the formed aggregates can be photoactive
(e.g., J-aggregates or other specific types) (see Sect. 18.4.4). For example, the
aggregation of cationic p-phenylene ethynylenes on Lap particles led to an enhanced
fluorescence. The effect of the layered particles was to minimize the interactions of
the dye molecules with water [83]. In some cases, the bonding between the adsorbed
dye molecules and particle surface suppresses the mobility of dye molecules, thus
reducing their quenching via collision frequency and other unfavorable relaxation
pathways [84]. For example, the adsorption of cationic porphyrazine dye on inor-
ganic nanosheets with negative charge led to a strong enhancement of their
fluorescence quantum yields and lifetimes of their excited states. The phenomenon
was named “Surface-Fixation Induced Emission” [85]. Another example is diaryl-
methane dye, auramine O, which exhibited enhanced fluorescence in Mmt colloids.
The adsorption of this dye led to minimizing relaxation pathways via restriction of the
torsional molecular motion [86, 87]. In the strategy to reduce molecular aggregation,
layered particles were compared with other substrates. Nanosheets, being more rigid
substrates, in some cases exhibit better properties for reducing dye aggregation than
polymeric compounds [88]: Cyanine dye exhibited strong aggregation on negatively
charged polymeric templates such as substituted amylose and cellulose. Substantially
less aggregation was observed in the systems with lower negatively charged tem-
plates such as hyaluronic acid. Adsorption on Lap particles did not lead to dye
aggregation, thus exhibiting optimal properties [88]. In rare cases, H-aggregates
exhibit strong luminescence. One example is the H-aggregates of 3,3-dioctadecyl
oxacarbocyanine dye formed in Lap colloids. The dye aggregates exhibited high
activity in energy transfer processes [89]. The adsorption taking place in aqueous
colloids of layered nanoparticles often leads to increasing solubility of poorly sol-
uble, hydrophobic and nonionic dyes as has been discussed above (see Sect. 18.3.3).
Neutral dye adsorption also leads to the reduction of dye molecular aggregation
[48, 90, 91].
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18.4.3 Effect of Layer Charge

The molecular aggregation of organic dyes significantly depends on the charge
distribution on the nanoparticle surface [12]. For the first time, the effect of the layer
charge was observed for MB using reduced-charge montmorillonites (RCMs) [27].
The series of RCMs was prepared from a single parent material saturated with Li+

cations. The charge was reduced upon the fixation of Li+ cations in layers by
heating. The extent of the charge reduction was proportional to the temperature
used in the thermal treatment. The samples of RCMs in a single series are very
similar in structure, composition, and particle size and shape, but different in the
layer charge and related properties. It is interesting that only very small, almost
negligible changes in the layer charge led to significant changes in molecular
aggregation [27, 92, 93]. With decreasing layer charge, H-aggregation decreases in
favor of monomers, H-dimers and J-aggregates. There could be two interpretations
of this phenomenon:

1. Low charge density on the particle surface induces larger distances between the
adsorbed neighboring dye cations. This would suppress dye aggregation.
High-charge density is reflected in small distances between adsorbed dye cations
balancing the surface charge. This would promote the formation of
H-aggregates.

2. Layer charge affects the electric double layer in the vicinity of the particle
surface. High-charge density induces a high concentration of ions on the sur-
face, and a high ionic strength which contributes to the increase in electric field.
The increase in the ionic strength and high concentration of electrolyte ions
would support the formation of dye molecular assemblies. The effect of ionic
strength was proved in MB aggregation in Mmt and Lap aqueous colloids [94],
and has also been observed for the dye aggregation in solutions.

The trend of the effect of the layer charge observed with the series of RCM
samples was later confirmed with a series of various LSil, including samples of both
natural origin and synthetic materials, of di- and trioctahedral structure, with the
location of the charge due to substitutions in the octahedral or tetrahedral sheets [12,
28, 87, 95, 96]. The high sensitivity of the dye molecular aggregation to the layer
charge was taken advantage of in layer charge probing. The method was suc-
cessfully used to measure charge reduction due to cation fixation or induced by acid
treatment [28, 97]. The effect of the layer charge is a general phenomenon,
regardless the type of organic dye. It has been observed for the aggregation of MB,
other phenothiazines, triphenylmethane and xanthene dyes, and oxazines. There is
no simple model to describe the effect of the layer charge on the formation of
J-aggregates [98]. These assemblies are structurally relatively variable and their
formation is predominantly influenced by the dye molecular structure. J-aggregates
are preferentially formed with dyes with a complex molecular shape, nonsymmetric
position of the charged and polar groups, etc. (see Sect. 18.4.4).
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An appropriate selection of layered templates, preferably with a low layer
charge, is a basic precondition to avoid or at least to reduce dye molecular
aggregation in hybrid materials. The appropriate choice of organic dye without
metachromatic properties is another strategy being widely applied. Takagi and his
coworkers elaborated on the optimal selection of suitable porphyrin dye/LSil pairs
to obtain materials with optimal photophysical properties and high photoactivity.
Both the dye and LSil templates were selected to match the charge distribution in
both the components, so that the dye molecules would form a dense occupation on
the host surface, but avoiding any molecular aggregation. There are specific
guidelines which can be useful for selecting appropriate components and designing
the composition of active and functional hybrid materials. These guidelines are
called the Size-matching rules [40, 99–101] and reflect the matching the structural
properties of both the dye and layered substrate.

18.4.4 J-Aggregates

A lot of attention has been devoted to J-aggregates due to their unique properties
[74]. Their formation is not as rare and depends greatly on the conditions and dye
molecular structure. The J-aggregation of cationic dyes has been studied more
frequently, but it has been also observed for anionic dyes (e.g., [102]). As was
mentioned above, J-aggregates are recognized by light absorption at lower energies.
However, the adsorption of organic dye molecules itself is frequently accompanied
by the same spectral shift [103]. Also conformational isomerization in the mole-
cules occurring upon dye adsorption causes the same spectral changes [104] (see
Sect. 18.5.2). J-aggregation was frequently also confused with the protonation of
dye molecules [12]. Therefore, it is sometimes difficult to recognize if the spectral
changes are due to J-aggregation. Rh dyes are a typical example [79], since there is
only a small energy difference between the transitions of the monomeric form and
J-dimers. Nevertheless, there is clear evidence of the formation of J-aggregates in
numerous hybrid systems. J-aggregates are easily formed with dyes which have
molecular shapes inappropriate for the formation of sandwich-type molecular
assemblies. These mostly include cyanine dyes with side chains near the molecular
center or porphyrins with a specific molecular shape and distribution of ionic
groups [98, 105–107]. There are two types of J-aggregates. Ideal J-aggregates with
a perfect head-to-tail association exhibit light absorption at lower energies, whereas
so-called oblique aggregates are characterized by both H- and J- spectral bands.
Both types of J-aggregates can coexist in some systems. An example is the two
types of J-aggregates of pseudoisocyanine dye recognized in LSil films [107].
J-aggregation can be easily achieved for dyes whose molecules bear both positively
and negatively charged groups. The charge distribution in zwitterionic molecules
prevents a sandwich-type stacking. Examples are porphyrins with cationic pyri-
dinium and anionic carboxyl groups in their molecules [40]. The formation of
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J-aggregates can be significantly influenced by the third components in more
complex systems, such as in LbL assemblies [67] or in systems with polymers
[108].

18.4.5 Reduction of Dye Molecular Aggregation by Using
Surfactants

The purpose of using surfactants is to dilute the adsorbed dye molecules and thus to
achieve the suppression of dye molecular aggregation. There are several works
providing evidence on the important role of ionic surfactants in improving the pho-
tophysical properties of hybrid materials. Cationic surfactants are used for nanopar-
ticles with a surface negative charge [33, 109]. For the modification of nanoparticles
with a positive charge, anionic surfactants are used [110, 111]. A series of materials
based on LDH, anionic dye (1-anilinonaphthalene-8-sulfonate), and alkylsulfonate
surfactants with variable length of alkyl chains were prepared and characterized
[111]. Their luminescence depended on the structure of the formed assemblies, which
sensitively reflected the properties of the surfactant used. Optimal conditions were
found by combining the appropriate dye loading and proper selection of surfactant.
Under optimal conditions, no apparent quenching took place for dye loading up to
20% of the anion exchange capacity of LDH [111]. Much lower dye concentrations
were needed to completely avoid dye aggregation in the hybrid materials of Mmt
modified with cationic alkylammonium surfactants. Optimal Rh dye loadings were
only 0.1-0.5% ofCEC, but fluorescence quantum yields achieved up to 80%under the
optimal conditions [112, 113]. The properties of the molecular aggregates formed at
higher dye loadings were also improved. They exhibited significant luminescence, in
contrast to the aggregates formed in the absence of the cationic surfactants [114, 115].
The use of the surfactants does not always guarantee improved properties. In some
cases, the modification with surfactants leads to an increase in molecular aggregation.
For example, the interactions of anionic Merocyanine 540 in bentonite premodified
with cetyltrimethylammonium cations led to the formation of H-aggregates with
reduced photoactivity [116]. In another study, a higher fluorescence of hybrid films
was achieved without a surfactant [117]. On the other hand, aqueous colloids of the
same components exhibited an opposite trend. The effect of the surfactants probably
depends significantly on the procedure used for hybrid material synthesis and on the
type of material. There are several possible explanations for the opposite effect of
alkylammonium cations. One is based on the phenomenon of molecular segregation.
The formation of a segregated phase of alkylammonium cations reduces the surface
available for the segregated dyemolecules. As a consequence, the segregation leads to
a locally increased concentration of dye molecules, thus promoting their aggregation
[118]. This segregation was also proven for systems based on a mixture of different
organic dyes. An example is a mixture of porphyrin and viologen dye co-adsorbed on
Sap particles [119]. The fractions of each dye formed segregated phases, each
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composed of a single type of molecules. The different structures of porphyrin and
viologen molecules contributed to the increased stabilities of the segregated phases
and prevented the formation of the mixed phase. The segregation was proven by
energy transfer experiments. Part of the segregated porphyrin molecules remained
luminescent and could not participate in the FRET process that would quenched their
fluorescence with viologen [119]. The segregation can also be induced by reaction
conditions affecting the properties of hybrid systems with ionic surfactants. For
example, the effect of alkylammonium cations in solid hybrid systems depends sig-
nificantly on the ambient humidity, as was observed for Rh 3B intercalated in LTi
[120]. Water adsorption leads to the formation of dye molecular aggregates and
significantly reduces the material’s luminescence. The effect of humidity can be
explained by a hydrophobic effect which arises with increasing water content. The
presence of water molecules contributed to the self-assembly of alkyl chains forming
a compact, isolated phase, thus pressuring the dye molecules to segregate from the
alkylammonium phase.

18.4.6 Molecular Aggregation in Other Systems

Another strategy to prevent molecular aggregation was based on using a type of
organic compound with ‘container-shaped’ molecules, called cavitands. Cavitand
molecules have cavities which can accommodate single dye molecules inside, thus
preventing their association. Dye/cavitand complexes could be adsorbed onto lay-
ered nanoparticles in similar ways to dye molecules alone. The effectiveness of the
strategy to minimize molecular aggregation has already been proved. Cationic ZnII-
porphyrin, and 2-acetylanthracene encapsulated within a cationic organic cavitand
were adsorbed on LSil particles. The hybrid exhibited high photoactivity, and the
FRET efficiency between the dye components reached almost 100%. It proved a
uniform and nonsegregated distribution of porphyrin cations and cavitand complexes
[121]. In a similar way, cyclodextrine molecules with cavities which can accom-
modate luminescent dye molecules were also applied in hybrid films to prevent
molecular aggregation [122]. There are several papers reporting the influence of
polymeric substances on dye molecular aggregation. For example, interesting
materials were prepared from oxazine 1 and in situ formed poly(norbornane) and
fluoromica nanoparticles [108]. The co-adsorption of polar copolymers of poly
(ethylene oxide) and poly(propylene oxide) on Lap led to enhanced dye aggregation.
It is likely that segregation occurred between the polymer molecules and dye cations.
Interestingly, the dye adsorption on Lap without polymers led to lower dye aggre-
gation [123]. However, an opposite trend was observed for the particles modified
with water-soluble chitosan. The presence of the polymer changed the dielectric
properties near the adsorption sites, thus reducing molecular aggregation and
increasing the fluorescence of the hybrid material [124]. Enhanced fluorescence was
also achieved in the hybrid materials modified with the cationic polyelectrolyte [125].
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18.5 Phenomena and Properties of Hybrid Materials

18.5.1 Optical Anisotropy and Dye Molecular Orientation

The term anisotropy refers to material’s properties which are directionally depen-
dent. Optical anisotropy defines the optical property of a substance that depends on
the direction of light propagation or polarization. Nanosheets or nanolayers are
anisotropic materials which result directly from the structure and shape of the
particles. The aspect ratio of these materials is a parameter which quantifies the
geometric shape of the nanoparticles, and is defined as the ratio of the particles’
diameter to the thickness of an individual particle. The layer thickness is mostly
well defined, resulting from the structure of a specific compound and generally does
not exceed a few nm. There is a large variation in the diameter of the particles,
being in the range from tens to hundreds of nm. Nevertheless, the aspect ratios of
the particles of layered compounds is mostly well above 10, which significantly
affects the association of the particles in colloids or in the solid state. Face-to-face
assemblies with the particles aligned in a parallel fashion are preferentially formed
in the solid state. The nanoparticles forming films are oriented in a parallel fashion
with respect to the substrate surface plane. Such an orientation has a high impact on
the material’s optical anisotropy. The molecular orientation of dye cations depends
on many parameters and conditions, such as molecular shape and the distribution of
ionic and polar groups [126, 127], concentration [33, 126], and molecular aggre-
gation [12, 93], which is controlled by the surface properties of the nanoparticles
[30]. The probability of the absorption of electromagnetic radiation by chro-
mophoric groups depends on the orientation between the electric vector of the light
and the transition dipole moment of the chromophore. The orientation of the
transition dipole moment in molecules is determined by the electronic structure of
the chromophores. The direction of the electric vector is perpendicular to the
propagation direction of the light. Polarization can be achieved using polarizers.
Optical anisotropy can be characterized by combining polarized light and control of
the orientation of the film with respect to the light’s propagation. In principle, the
two-dimensional character of nanosheets and layers do not allow a perfect prefer-
ential orientation of the dye molecules in all three space directions. However,
three-dimensional anisotropy can be achieved using a monocrystal of layered host
material with an ordered structure in all directions, such as K4Nb6O17 [128].

There have been several attempts to characterize the molecular orientation of dye
molecules in layered compounds. A parallel molecular orientation of dye molecules
on the surfaces was most frequently considered, since it would contribute to the
highest interaction area between the particle surface and dye molecules (see ref-
erences in [12]). However, the Coulombic interaction between the surface and dye
ions controlling dye molecular orientation depends greatly on the distribution of
electron density in the molecule. Optical anisotropy obtained with X-ray photo-
electron spectroscopy on well-defined systems based on mica and MB [129] and
triphenylmethane dyes, crystal violet, and malachite green [130] determined an
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inclined, almost perpendicular orientation of the molecules. The molecular orien-
tation significantly depends on dye loading [126]: At low dye loadings the dye
molecules lay flat on the surface. With increasing concentration there was a con-
tinuous change in the average molecular tilt angles to larger values. The perpen-
dicular orientation of cationic laser dyes Rh 6G and oxazine 4, incorporated in an
oriented film of synthetic fluoromica, was observed by polarized IR and UV-VIS
absorption spectra [32]. A significant proportion of the dye cations assigned to
aggregates were tilted, with the longest axis of the heteroaromatic ring nearly
perpendicular to the host layer, and exhibited a positive optical dichroism. The
spectral properties of ionic phthalocyanines intercalated into Hec and LDHs using
various synthetic routes were compared [53]. The dye molecules were oriented
parallel to the surface of Hec but exhibited a perpendicular orientation in LDH
hybrid materials. The different orientation was assigned to the much higher layer
charge of LDH, and higher density of intercalated dye anions in the interlayer
spaces [53]. The orientation of tetracationic porphyrins in a-zirconium hydrogen
phosphate with high layer charge was relatively inclined [131], although the parallel
orientation was observed for the same dyes in the hybrids with LSil [132]. Large
planar CuII-phthalocyanine tetraanions intercalated in layered Cu2(OH)3CH3CO2

were arranged with the orientation of the molecular planes perpendicular to the
surface of Cu2(OH)3

+ layers [133]. The effect of the layer charge on dye molecular
orientation was proved for Rh 6G cations in the films of RCMs: [29]. In contrast to
the H-aggregates, the molecules forming J-aggregates were oriented more or less in
parallel and had no tendency for perpendicular orientation [107]. On the other hand,
the J-aggregates formed on layered particles exhibit negative dichroism [106–108,
117, 134]. Several studies found the hybrid systems to exhibit fluorescence ani-
sotropy [15, 135, 136], although fluorescence cannot detect inactive species, such
as H-aggregates. No significant depolarization due to the rotational relaxation of the
fluorophores was observed in the solid hybrid films. Fluorescence anisotropy of the
material proved a rigid association of the fluorophore molecules with the host
surface [137–140]. However, some phenomena such as resonance energy transfer
can lead to a partial or complete light depolarization [117, 140].

Whereby the orientation of layered particles in the films is achievable relatively
easily, colloids are relatively isotropic systems with a random orientation of particles.
On the other hand, the orientation of the chromophores in colloids can sensitively
reflect the properties of the solvents, which can be important in various applications,
such as for optical sensors or switches [141]. Electric linear dichroism is a phe-
nomenon characterized by the anisotropic absorption of light under an externally
applied electric field. The effect of the electric field is to induce a preferential ori-
entation of the colloidal particles with respect to the direction of the field.
Electro-optical properties have only been described for a few hybrid colloids
[135, 142].

Optical anisotropy, birefringence, and linear dichroism are very important
optical parameters. However, in some cases they can influence other properties.
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One of the most interesting examples is the light-induced deformation of poly-(N-
isopropylacrylamide) gels, which was mediated by LSil particles with adsorbed
porphyrin molecules [143]. The alignment of the nanosheets in the gel was
achieved by an electric field applied during polymerization to form optically ani-
sotropic materials. When the gel was irradiated with light, only the colored part was
photothermally deformed, which was followed by anisotropic shrinkage. The
direction of the shrinkage was dependent on the orientation of the layered particles
[143].

18.5.2 Structural Changes and Photochromic Properties

Conformational changes in molecules are realized by rotations around single bonds
and do not require much energy. Dye molecules in the adsorbed state may have
geometries different from those in solution. A typical example is the adsorption of
porphyrin derivatives having cationic N-methylpyridinium substituents [104]. In
solutions, the pyridinium groups in the molecules are inclined with respect to the
plane of porphyrin ring. However, the inclined groups would not efficiently bind to
the surface in the adsorbed state. Therefore, rotation of the pyridinium groups often
occurs depending on the location of the methyl substituent and positive charge.
Porphyrin with N-methyl-4-pyridinium groups (ortho substitution) have to rotate to
an almost completely parallel orientation. Such conformational change leads to an
overall flattening of the porphyrin molecule [144]. The extended conjugation of the
p electron system in the planar molecule contributes to a reduction in the energies
of both light absorption and emission. Spectral changes are significant and com-
parable to those induced by molecular aggregation. The combination of chemical
modification, reaction conditions, molecular aggregation and conformational
changes together can be applied to design materials with variable optical properties,
but based on a single porphyrin dye [145–147]. The possible applications of such
systems have been demonstrated in several papers [100, 148–150]. Recently,
conformational changes were also described for the natural, luminescent dye ber-
berine [151]. A positively charged, quaternary ammonium group is part of the dye’s
molecular skeleton. Partial planarization of the skeleton takes place upon dye
adsorption to arrive at a more efficient electrostatic bonding, as has been proven by
the systems with Sap [151].

Photochromism is the phenomenon of a reversible photochemical transformation
between two isomers. The hybrid materials exhibiting photochromic properties are
based on spirooxazines, spiropyrans, diarylethene, and azo dyes [14]. Photochromic
materials can be used for various types of devices and industrial applications, such
as optical switches, filters, light protection and photoresponsive coatings, optical
data storage materials, etc. Photochromism has a reversible character; its limitations
are related to the slow decomposition of the photochromic dye with the number of
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applied cycles. Dye stabilization can be achieved using surfactant molecules.
However, the chemical environment of the hydrophobic phase of surfactant chains
can play a role in the chromophore response to photoactivation as well as in thermal
relaxation of the excited molecules. Dye molecular aggregation significantly affects
photochromic properties. It alters the parameters of photoactivation, but also new
deactivation pathways may occur in the aggregated state. The effect of the
molecular aggregation on reaction kinetics was also observed. An example is the
slower formation of merocyanin from spiropyran intercalated in MnPS3, due to the
formation of spiropyran J-aggregates [152]. However, there are some cases where
the aggregation does not significantly influence photochromic reactions. Examples
are the aggregates of azo dyes exhibiting highly efficient and reversible trans-cis
isomerization in hybrid materials [153–155]. The variable impact of molecular
aggregation could be due to a large variation in the activation energies of pho-
tochromic reactions. For example, the formation of new constitutional isomers with
new bonds and functional groups has much higher activation energies than
stereoisomerization. In the former, the reactants can be stabilized in the form of
molecular aggregates. On the other hand, stereoizomerization keeping bonds and
functional groups unchanged have lower activation energies and could be easier to
achieve regardless the occurrence of molecular aggregation. There are several
reports on highly reversible photochromic hybrid materials based on nanosheets or
nanolayered materials and photochromic dyes. For example, films of
diarylethene/LSil hybrid materials exhibited a highly reversible decoloration of the
dye. In contrast, the reaction of a dicationic derivative of azobenzene was effec-
tively suppressed in both the colloids and films of LSil [155, 156]. Probably ionic
fixation of the two cationic groups prevented dye photoisomerization. Anchoring
ionic groups onto molecules and binding them on negatively charged surfaces could
be utilized for the stabilization of some photolabile compounds [155]. In some
cases, photochromic reactions also affect other properties. Small changes in basal
spacing detected by X-ray diffraction were assigned to different arrangements and
spaces occupied by different photoisomers [152, 153, 157, 158]. Another example
is the reaction of spiropyran affecting the magnetic properties of the MnPS3 host
[152]. Interesting phenomena relate to the influence on the properties of other
molecules coexisting in hybrid material. For example, the photoisomerization of
diarylethene affected the molecular aggregation of cyanine dye co-intercalated into
the same material [159]. The photoisomerization of azobenzene dye molecules in
zirconium phosphonate, ZrF(O3PCH2)2NHC8H17, led to their irreversible deinter-
calation [160]. Selective adsorption induced by the photoisomerization of azo dyes
was also reported [161, 162]. The reversible cycles of adsorption or release of
phenol substances could be controlled by repeated photoreaction applying UV and
visible light irradiation cycles. Such materials can be used as recoverable sub-
stances for the purification of chemical wastes.
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18.5.3 Nonlinear Optics

NLO properties strongly depend not only on the structure of dye molecules, but also
on their bonding in the matrix of the inorganic host [163–165]. A random molecular
orientation is not favorable. Optical anisotropy and preferential orientation may
play a significant role in the improvement of NLO properties [166–170]. The
stabilization of dye molecules in a hybrid system can also play a positive role. An
essential role of dye molecular aggregation in NLO properties has also been
reported. Concentration and orientation are the key factors affecting dipole-dipole
interactions. For example, stilbazolium dye intercalated into layered chalkogenide
MPS3 exhibited second harmonic generation; however, this was only when in the
form of J-aggregates [171]. In some cases, the structural changes to dye molecules
contribute to the improvement of NLO properties in hybrid systems [168]. For
example, increased molecular planarity upon the intercalation of some cationic
porphyrins (see Sect. 18.5.2) can improve NLO properties [167]. An increasing
concentration of hemicyanine dye in the hybrid materials with Lap altered the
mechanism of the photoinduced charge-transfer process. The intramolecular
mechanism taking place at low concentrations changed to the intermolecular
pathway, which was reflected in a change in the NLO properties of the dye [170].
For practical use, NLO materials for optical devices must be in the form of either a
single crystal or thin film. For the solid materials in the form of thin films, low light
scattering is a crucial condition for successful applications [168, 172]. There are
numerous examples of the construction of hybrid materials exhibiting second
harmonic generation [171, 173] or two-photon absorption [62, 169]. Besides these,
there are also other types, such as Langmuir monolayers or LB films [173, 174],
LbL assemblies [166, 175] and nanocomposites with polymers [176, 177].

18.5.4 Resonance Energy Transfer

FRET is a phenomenon of light energy transfer taking place between two dye
molecules. It can be described in two steps: 1. The dye molecule acting as the
energy donor (ED) absorbs a photon and is lifted into its electronic excited state. 2.
The excited molecule of ED transfers its energy to the second dye molecule, which
plays the role of energy acceptor (EA). FRET is a nonradiative deactivation pro-
cess, which is based on resonant electrostatic coupling between the transition dipole
moments of the interacting molecules. The spectral overlap of the ED emission and
EA absorption spectra is a basic condition for the resonance to take place. FRET
efficiency is extremely sensitive to the intermolecular distance (1–10 nm), but also
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depends on molecular orientation. Highly efficient FRET occurs in photosynthetic
systems in green plants, and this phenomenon will likely play a key role in future
solar cells performing at a molecular level.

Various hybrid systems exhibiting efficient FRET have been developed. The
chief role of the layered particles is to concentrate the dye molecules to reach
resonance. Unfortunately, an enhanced concentration of dye molecules often leads
to a concurrent phenomenon - the loss of photoactivity due to molecular aggre-
gation (see Sect. 18.4). Examples of hybrid systems exhibiting efficient FRET are
LDH systems with anionic porphyrin and pyrene dye [178], or hybrids with cationic
porphyrins and LSil [179]. In numerous cases, FRET efficiency achieved almost
100% [101, 150, 180]. High efficiencies were observed even with a large excess of
ED molecules [180, 181]. Whereas the formation of H-aggregates is not desired,
photoactive J-aggregates may play a positive role in FRET [68]. Exciton delocal-
ization in the molecular aggregate would favor energy migration and very efficient
excitation energy delivery to the EA molecules. An interesting type of molecular
aggregates are mixed J-aggregates based on different dye molecules of similar
structure. In such systems, very efficient superquenchers can accept the energy
from a severalfold larger number of ED molecules. Such systems with layered
nanoparticles have been only rarely investigated [182]. FRET is significantly more
efficient in solid films than in colloids. In the solid phase, the process proceeds in all
three dimensions, whereby in the colloids with dispersed individual layered parti-
cles, FRET is limited to two dimensions. [180]. The segregation of dye molecules
can significantly reduce FRET efficiency [99]. The effect of molecular orientation
has also been observed. The orientation of some porphyrin molecules intercalated in
LSil responds to the solvent type. The changes in the molecular orientation
responding to the presence of specific solvents makes it possible to control the
FRET process by changing the chemical environment. Such systems can be used as
sensors or in photofunctional devices [101, 183]. FRET in hybrid systems does not
need to be limited to a single-step process. Energy migration, or two-step FRET in
systems with three different dyes [140] or a multistep FRET [117] have already
been reported. Besides the most common systems based on simple colloids or solid
films, FRET in other types of materials have also been observed. Noteworthy
examples are LB films [184–186], LbL assemblies [67, 68, 187] and others [188].
Besides the possible applications described above, FRET was found to be an
extremely sensitive tool for the characterization of competitive dye adsorption on
the surface of layered nanoparticles [180]. Some materials exhibiting FRET sen-
sitively respond to pH or concentrations of various analytes [187, 189, 190].
Another type of application, which has been widely investigated, is the photopro-
tection of sensitive agricultural chemicals such as pesticides or insecticides.
Photolabile compounds undergo easy and rapid photochemical decomposition upon
solar irradiation, but FRET has been applied to slow down these processes [191–
193].
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18.5.5 Dye Reactions and Photosensitization

One of the major problems occurring with the applications of some organic dyes is
their low photochemical stability. The stabilization of organic chromophores by the
formation of hybrid systems was successfully achieved a long time ago: It was
Maya blue which inspired the development of similar materials [1]. The stabi-
lization of natural dyes can be very important in their use in the food industry and
cosmetics [194]. However, the adsorption of organic dyes on layered nanoparticles
does not always lead to their stabilization. For example, MB is stabilized on par-
ticles of some silicates, such as palygorskite and Mmt, but others, such as sepiolite,
vermiculite and zeolite, accelerated its photodegradation [195]. It is sometimes
difficult to determine which properties play a dominant role in a dye’s stabilization.
The stabilizing effects have been assigned to polar and ionic interactions [196], p-p
interactions [194] and molecular aggregation [195]. Examples of stabilized organic
dyes in hybrid systems include anthocyanin in Mmt [197], beta-carotene, and
annatto dye in organically modified LDHs [194], natural anionic dyes, carmine
yellow, and carthamus yellow in LDHs [196], 1,1′-diethyl-2,2′-cyanine and tris
(2,2′-bipyridine)ruthenium(II)) in Sap [198], etc.

The photodecomposition of some organic dyes catalyzed by inorganic hosts has
also been observed. Lap induced only a de-ethylation reaction of Rh cations,
whereas the reaction with Mmt continued with the decomposition of the chro-
mophore [199]. Photosensitization with FeIII present in Mmt particles can play a
role. Different pH of the colloids, layer charge, formation of reactive oxygen spe-
cies (ROS), efficiency of light source; all these factors can influence dye decom-
position [103, 200]. Labile dyes can be stabilized in more complex systems. For
example, Rh B was unstable in polypropylene, but was stabilized in the polymer
nanocomposites with Mmt particles [201]. Larger reactivity of the dyes is expected
in the systems with layered semiconductors. For example, LNb played a role in the
electron transfer from photoexcited Rh molecules, thus catalyzing their decompo-
sition [202]. Therefore, using inert layered nanomaterials can be advantageous in
dye stabilization.

Various dyes exhibiting properties of photosensitizers form stable triplet states
upon their excitation with visible light. They are able to efficiently activate O2 to its
singlet form (1Dg), which can secondarily convert to other ROS. Their formation
was observed in the systems based on LDH [203]. Formed 1Dg and ROS can
efficiently accelerate the oxidative decomposition of organic compounds. The
involvement of ROS in the fading of triphenylmethane dyes was observed [204].
The stabilizing effect of molecular aggregation can relate to the lower activity of
dye aggregates to form triplet states [195, 205]. Another effect could be reduced
diffusion rates of O2 molecules in intercalated compounds. The hybrids with
photosensitizers can be applied as disinfection materials due to their harmful
activity to microorganisms. MB in the colloids of LSil exhibited high antimicrobial
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activity, although dye photoactivity was significantly reduced [205]. Layered par-
ticles improved the antimicrobial effect by concentrating the photosensitizer on their
surface and delivering active molecules to microbe cells. Similar materials based on
LDH with porphyrin dyes were also investigated, and the formation of 1Dg was
proven [110, 206–208]. 1Dg can be used as a specific oxidation agent in organic
synthesis. The light-induced oxidation of electron-rich compounds, such as quinol,
1-naphthol and anthracene were mediated by hybrids with MB and Rose Bengal
[209]. Some organic dyes are also reactive compounds under dark conditions, and
their reactions can be initiated or catalyzed upon adsorption onto layered particles
[98, 210, 211]. The bleaching of cyanine dyes in colloids was very fast with LSil
with a high layer charge. The same dyes were stabilized at the surfaces of LSil with
a low layer charge.

In a few cases, the reactions of organic dyes can lead to novel materials. For
example, anionic azo dyes adsorbed on LDH formed highly luminescent and
photostable compounds [212]. It was assumed that the reaction led to the breaking
of –N=N– bond and a reactive product was chemisorbed onto the LDH surface
[212]. In a similar way, UV irradiation was applied to initiate the reaction of
2-hydroxychalcones, yielding colored flavylium compounds. The products were
stabilized in the matrix of Mmt modified with cationic surfactants [213]. Unique
reactions of excimers or exciplex formation can be suppressed in hybrid systems
[214]. Organic radicals are another type of interesting substances, having unpaired
valence electrons. They are mostly unstable, but the stabilizing effect of inorganic
layered hosts has been observed in numerous cases. Most often radicals or
ion-radicals derived from viologen ions have been investigated. The hosts can
initiate radical formation by the intercalation of reactant molecules. The inorganic
matrix may also play a protective role to prevent the diffusion of O2, which would
reoxidize the formed radicals. Semiconductors such as LNb or LTi can play the role
of electron donors. For example, viologen in hybrids with LTi changed to a blue
radical product [215]. In other system, Na2Ti3O7 modified with alkylammonium
cations and intercalated with two cyanine dyes exhibited an electron transfer
reaction. Electron spin resonance proved the formation of radical dications
exhibiting high stability [216]. However, chemically inert particles of LSil were
also able to promote and stabilize radical formation. Methylviologen intercalated in
Lap samples converted to radicals, which initiated dimethylaniline polymerization.
The polymeric product of a purple color was formed on the samples with low layer
charge, whereas only oligomers occurred on the surface of high-charge Lap
nanoparticles [217]. Another example is radical formation from the cationic dye
safranin and its involvement in radical polymerization [218]. The photoinduced
electron transfer between different organic dye molecules can be potentially applied
in organic solar cells. Such reactions were reported between pyronine and SbV-
porphyrine dye in hybrid films with Sap [219] or between [Ru(2,2-bipy)2]

2+ and
methylviologen [220].
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18.6 Applications in Research and Industry

18.6.1 Sensors

Numerous hybrid materials are based on organic molecules with sensing properties,
which can be applied in various branches of analytical chemistry. They include
sensors for pH, solvents, photochemical, and redox properties. The involvement of
molecular probes and sensors in hybrid systems offers various advantages. They are
relatively easy to prepare and the dye properties can be slightly tuned via the effect
of host particles. Hybrid materials often provide improved stability and thermal
resistance of the molecular probes. The photoactive molecules anchored on
nanoparticles can be manipulated in similar ways, as pure nanoparticle systems,
which can be easier than isolating or manipulating dye molecules in solutions. For
example, hybrid colloids can undergo cyclic flocculation/peptization, could be
isolated or purified by filtration, centrifugation, or dialysis. Layered particles can be
incorporated into multicomponent films with well-defined molecular layers, such as
LB films and LbL assemblies. MB and other phenothiazine dyes are well-known
redox indicators changing to their colorless (leuco) form under reductive condi-
tions. Electrochemistry of MB in the hybrid films with Mmt has been studied in
detail [221]. MB performs in a similar way as in solutions. Furthermore, the
electrochemistry of intercalated MB cations retains similar parameters at variable
pH [222]. There are several examples of using MB as a sensor: The electrodes or
sensors based on MB intercalated in layered compounds were developed for the
analysis of ascorbic acid in commercial samples [223]. An MB hybrid with barium
phosphate was used for the detection of the reduced form of nicotinamide adenine
dinucleotide, NADH [224]. Sap modified with cationic surfactant and intercalated
with the mixture of MB and reducing agent (either ascorbic acid or sugar) exhibited
the properties of a sensitive O2 sensor under anoxic conditions (<0.1% O2) [225].
An amperometric biosensor using similar phenothiazine dye, azure B, intercalated
in Lap was used for the detection of phenolic compounds. The dye acted as an
electron shuttle with polyphenol oxidase reaching the detection limits in the range
of nM concentrations [226]. Also other types of dyes were used as probes and
sensors performing on various chemical reactions and phenomena. An interesting
example is the solvatochromic properties of intercalated porphyrin dyes [101] (see
Sect. 18.5.4). Another example is the detection of methanol, a highly toxic sub-
stance, which is very difficult to differentiate from other alcohols. It could be
selectively detected by a composite film sensor prepared from oxoporphyrinogen
and LDH [227]. Another example is sensing permanent water hardness based on
FRET between two laser dyes, acriflavine and Rh B. The sensitivity was signifi-
cantly increased when the dyes were incorporated in a Lap film [228]. The
fluorescence quenching of photosensitizers with O2 is another phenomenon which
has been frequently applied in oxygen sensing [110]. The hybrid materials for
multianalyte detection have not been significantly developed yet. In particular LbL
assembly formation would be highly suitable for this purpose. Relatively new
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applications use dye molecules as in situ probes of the processes occurring in the
manufacture of polymers and their nanocomposites. Mmt modified with surfactants
was doped with various fluorescent dyes for the real-time monitoring of polymer
intercalation during nanocomposite processing [229]. In a similar study, Nile blue
probe was used to monitor the compounding of nylon nanocomposites. The hybrid
precursor was inactive due to the formation of dye aggregates, and luminescence
appeared with the exfoliation of the layered particles in the polymer phase [230]. In
another work, dye sensors were also used to inspect the morphology of
polypropylene nanocomposites [231]. Dyes can also be used as in situ sensors for
detecting the processes in colloids, to monitor transport in subsoils and aquifers
[232].

18.6.2 Hybrids with Natural Dyes

Natural dyes have found their applications in various industrial fields. They are
easily available, mostly at an affordable price, harmless enough to be used as food
industry additives, in medicine or in cosmetics. Some natural dyes exhibit very
interesting properties, such as biological activity, photosensitization, radical scav-
engers, luminescence, etc. There are several interesting examples of hybrid systems
with natural dyes. Phycoerythrin, a natural pigment extracted from seaweed, was
used for the synthesis of hybrid materials with Hec and Mmt. Bright fluorescence
and higher stability against bleaching were achieved for the hybrid materials [51].
New hybrid materials were synthesized using a series of LDH samples and the
natural pigment chlorophyll a. The extent of dye adsorption and the stability of the
hybrid pigments depended on the type of inorganic host. The hybrid materials were
more stable if LDH of Mg/Al-type were used, while catalytic decomposition
occurred on the surface of Ni/Al-type LDH [233]. Low stability of carotenoids
under irradiation limits their broader application in industry. An improvement in
their stability was reported for beta-carotene and annatto dye intercalated in LDH.
The host material had to be premodified with anionic surfactants to match the
lipophilic properties of these dyes [194]. An improvement in thermal stability was
reported for the hybrids of anthocyanins extracted from the acai fruit Euterpe
oleracea. These dyes intercalated in Mmt or Sap exhibited the properties of efficient
radical scavengers [234]. Nanohybrids with edible dyes used in the food industry
were also investigated [235]. Natural red cabbage dye was used in electrodes
combining Mmt and TiO2 particles and tested in natural dye solar cells [236].
Abiogenic flavin and riboflavin-type chromophores prepared via the thermolysis of
amino acid mixtures were adsorbed onto the particles of LSil. In this type of dyes,
the adsorption significantly reduced their photosensitization properties [237].
Intercalation of the luminescent alkaloid berberine in Sap, altered its optical
properties but did not reduce its photoactivity [151].

18 Hybrids with Functional Dyes 447



18.6.3 Hybrids Used in Biology, Medicine, and Agriculture

There is a limited number of hybrid systems applied in biology or medicine. Active
dyes in the hybrid materials can actively participate in the interaction with living
cells or play the role of biocides and photosensitizers. In some cases, antimicrobial
properties can be reduced by the incorporation of active species into the hybrid
material. An example is cationic p-phenylene ethynylenes intercalated in Lap [83].
On the other hand, the antimicrobial properties of MB adsorbed on Mmt colloid
particles were significantly improved. The hybrid colloids were efficient against the
sporulation of Aspergilus niger and Penicillium sp., reduced the growth of the
bacteria Escherichia coli and Streptococus aureus, and the yeast Candida albicans.
The role of LSil particles was most likely to mediate the interaction between the
microorganism cells and the photoactive MB [205, 238].

Staining is a technique using organic dyes to enhance contrast and highlight
structures in microscopic images. In a few cases hybrid nanomaterials have been
used for this purpose. The hybrids composed from quaternary tetraphenylethene
probe intercalated in layered a-zirconium phosphate was developed as an effective
fluorescence label for HeLa cells [239]. In another study, LDH nanoparticles were
used as carriers to transport various organic biologically active substances to
specific targets. In order to control their distribution, a near-infrared fluorescent
probe (Cy5.5) was also incorporated. The functionalized particles acted as highly
efficient contrast agents, since Cy5.5 probe molecules were stabilized by layered
particles [240]. Nile red is a polarity probe, which is almost insoluble and
non-emissive in water. It was stabilized and became photoactive in the hybrids with
Lap. The hybrid materials have potential as optical probes for tumor imaging [90].

There are numerous examples of applying of dye/LSil hybrid systems in the
stabilization of photolabile pesticides. The mechanism of the stabilization was
assigned to FRET (see Sect. 18.5.4). The dye molecules playing the role of EA
were carefully selected to match the energies of the excited states of the photolabile
pesticide. Examples are bioresmethrin in Mmt co-adsorbed with cationic dye,
methyl green [191], insecticide tetrahydro-2-(nitromethylene)-2H-1,3-thiazine with
acriflavine [191] or 3,6-diamino-10-methylacridinium [241], microbial insecticides,
such as the Bacillus thuringiensis toxin with various types of chromophores [191],
insecticide tetrahydro-2-(nitromethylene)-2H-1,3-thiazine with cationic dye
3,6-diamino-10-methylacridinium [241], insecticide quinalphos with crystal violet
[242], etc. In some cases other phenomena also played roles. For example, the steric
stabilization of organic molecules on the particle surface, or photoquenching by
FeIII occurring in the matrix of some LSil [191].
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18.6.4 Polymer Nanocomposites and Other Applications

Photofunctional materials based on industrial polymers can be prepared by the
chemical modificiation of polymers with photoactive groups or directly during
polymerization by incorporating the chromophoric units in polymer chains. The
strategy via polymer nanocomposites is another, alternative way. Nanoparticles
dispersed in the polymer matrix can play the role of carriers of photoactive dye
molecules. Inorganic layered nanomaterials are not compatible with the
hydrophobic nature of most industrial polymers, and their chemical premodification
is mostly required. The most common way is based on modification with ionic
surfactants. The organically modified layered particles are excellent sorbents
forming stable colloids in organic solvents. Their complexes with organic dyes
often exhibit high photoactivity [39]. The organically modified layered materials
with adsorbed organic dyes are suitable precursors for polymer nanocomposites.
Processing the polymer composite often requires an enhanced temperature and
thermal stability of the hybrid precursors. There are a few works reporting an
improvement in dye thermal stability in hybrid materials (see Sect. 18.5.5). One
example is a nanopigment based on Basic Blue 41 intercalated in Na+-Mmt [243].
The nanocomposites based on MB, Mmt, and poly(ethylene vinyl acetate) exhibited
superior optical as well as mechanical properties [244]. Similar nanocomposites
were reported in other studies [245, 246]. The superior properties of organically
modified LSil were confirmed in the studies using laser dyes. An example is Rh
B/organically modified Mmt composites with polypropylene [247]. Complexes of
Rh 6G and nonmodified Mmt were also incorporated into polyethylene [248].
UV-exposure tests on colored Rh B/Mmt/polypropylene composites showed sig-
nificant improvements in dye photostability [201]. LDH and hydroxide nanosheets
bearing organic dyes were also applied: Layered Zn(OH)2 with anionic orange azo
dyes (methyl orange or methyl orange II) were used as the fillers for high-density
polyethylene [249]. Composites of poly(vinyl alcohol) containing LDH particles
with adsorbed anionic azo dyes were also investigated [250, 251]. Nanocomposites
exhibiting nonlinear optical properties were prepared from dibenzilidene
acetone-type chromophores intercalated in LSil. Active J-aggregates were pre-
served in the composite with poly(propylene) [176]. Nanoparticles can significantly
affect the optical properties of polymers with chromophoric groups. LSil
nanocomposites with poly(styrene) carrying fluorescent terfluorene side chains
were used for the fabrication of transparent films with a controlled morphology. The
films exhibited the properties of efficient emitters which has potential for their
application in light-emitting devices [252]. Polyurethane with azo dye moieties was
used for the preparation of nanocomposites containing various amounts of organ-
ically modified Mmt. Mmt layers were completely exfoliated in the polymer matrix,
and the nanocomposites exhibited some mechanical properties that were superior to
the pure polymer [253].

Besides the polymer industry, there are further technical branches of potential
hybrid material applications which are worth mentioning. Some hybrid systems
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have been tested as an alternative approach for dyeing industrial textiles [254, 255].
Another example are pigments applied for thermal dye transfer printing. The
studied systems included organically modified LSil with fluoran [256], Rh 6G
[257], and other dyes [258]. The adsorption improved dye stability in some cases
[259]. The hybrids with triphenylmethane dyes were investigated for their appli-
cation in commercial carbonless copying paper [204]. Fluoran dye intercalated in
organically modified LSil exhibited the properties of a reversible color change via
electrochemical activation. Such materials could be used in rewritable recording
media controlled by electrostatic potential [260]. Rather chemical properties of MB
immobilized in LSil was used for an efficient extraction of Hg2+ from waste waters.
The sorbent could be quantitatively recovered by a controlled Hg2+release via
treatment with NH3 [261].

18.7 Conclusions

Knowledge on hybrid materials has increased significantly over the last few dec-
ades. Numerous applications in the field have emerged by the combination of
various constituents including molecules, polymeric substances, nanoparticles,
compounds of biological origin into a single material. The combination of various
substances at a molecular level provides extraordinary properties and various
functionalities, and quantitatively an almost infinite number of new material types.
With the development of novel fields in nanosciences, there are new demands in
terms of material properties. The development of hybrids of layered nanoparticles
with organic dyes has also spread into new areas of materials science. Interest in old
types of materials has decreased and the emphasis is aimed on bioactive, bio-
compatible, electronic, optical, optoelectronic, and magnetic materials. These novel
hybrid materials could be used in biochemistry, medicine, environmental sciences,
electronics, optics, etc. The rapid development of these hybrid materials is being
accelerated by modern research methods, such as high resolution microscopy or
single-molecule spectroscopy methods. Modern technologies have developed new
techniques for precisely organizing nanoscale building blocks and other con-
stituents and to precisely tuning the material’s structure to achieve the formation of
the desired complex and multifunctional systems. Modern physicochemical meth-
ods combined with the latest knowledge are opening up new prospects in chemistry,
such as the field of molecular and nanomaterial engineering for configuring novel
material designs.
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