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Abstract This chapter investigates household time use behavior by especially 
focusing on timing decisions on interdependent daily activities. Timing decisions 
on various life choices have been unsatisfactorily presented in literature. At best, 
such timing decisions have been presented based on survival analysis, which has 
various attractive statistical features, however, ignores decision-making mecha-
nisms. This chapter argues that the utility of activity participation and trip-making 
behavior changes over time, and timing decisions within a given period of time 
interact across activities/trips and across household members. This study derives 
the optimal timing functions for both nonshared and shared activities/trips by dif-
ferent household members, where interdependencies among activities/trips over 
time and household’s coupling constraints are endogenously represented. The 
applicability of the developed model is empirically examined. Behavioral implica-
tions of analysis results are finally discussed.

Keywords Time use · Timing utility · Coupling constraints · Intrahousehold 
interaction · Interdependencies among activities/trips · Shared activities/
trips · Sequential correlation · Sequencing constraints

15.1  Introduction

Time use surveys usually include activities such as work, school, travel to/from 
work/school, housework, eating, shopping, childcare, reading, sleeping, sports, 
entertaining friends, hobbies, religious activities, and social activities at various 
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locations (e.g., home, workplace, school, restaurants, and hotels: but without geoc-
oding) throughout a period of one or several days. For example, 41 activities1 are 
coded in the Multinational Time Use Study (Gauthier et al. 2006). With the sup-
port of various data,2 time use has been studied in various disciplines3 to analyze 
topics such as economic activities, labor, gender, quality of life, leisure, and travel 
behavior (Michelson 2006; Pentland et al. 2013; Kimberly 2015).

Decision-making processes in daily activities (including relevant trips) involve 
the planning, execution, and adaptation of a number of interrelated choices across 
space and over time. Such choices include what to do (generation of activities) and 
when and how long to do it (time use, including timing), where to do it (destina-
tion), with whom (companion), and how to reach a destination (choice of travel 
mode and/or travel route). Understanding these choices over time and across space 
is essential for decisions on policies related to transportation, such as flexible or 
staggered working hours, transportation network planning, road pricing, and travel 
information provision. A good understanding of the above decisions is also crucial 
to provide a logical measurement of the value of time (VOT), which is extremely 
important in evaluating various urban policies. Time is limited and therefore valu-
able. As a result, the meaning (i.e., the value) of time in a certain time period may 
be different from that in other periods, even though the same activity is performed. 
People may choose to participate in a certain activity because of time (timing) 
constraints, or purposely choose the timing of a particular activity, even taking into 
account the influence of biological responses (e.g., sleeping habit and tiredness). 
In either case, it seems that logically quantifying the value of time in consideration 
of the above decision-making mechanisms and phenomena is needed.

When time use decisions are quantified, transportation researchers have done a 
better job within the framework of the activity-based approach, which argues that 
travel is derived from activity participation (e.g., Hensher and Stopper 1979; Jones 
1990; Gerike et al. 2015). The activity-based approach has played an extremely 
important role in understanding why people travel, and has also provided vari-
ous useful insights into decisions on transportation policies since its birth in the 
1980s. In fact, most transportation studies seek to devise ways to reduce traffic 
congestion during peak hours. In line with such considerations, understanding 
why people travel at a specific time, i.e., timing decisions, is crucial. However, 

1The 41 activities are: paid work; paid work at home; paid work, doing a second job; attending 
school; attending classes; traveling to/from work; cooking; washing up; doing housework; doing 
odd jobs; gardening; shopping; childcare; domestic travel; dressing/toilet; receiving personal ser-
vices; eating meals and snacks; sleeping; traveling for leisure; going on excursions; actively par-
ticipating in sports; passively participating in sports; walking; doing religious activities; doing 
civic duties; attending cinema or theatre; going to dances or parties; visiting social clubs, pubs, or 
restaurants; visiting friends; listening to the radio; watching the television or video; listening to 
records, tapes, or CDs; studying; reading books; reading papers or magazines; relaxing; convers-
ing; entertaining friends; knitting; sewing; or other hobbies, pastimes, or activities.
2http://timeuse-2009.nsms.ox.ac.uk/information/studies/ (accessed January 25, 2016).
3http://www.eijtur.org/ (accessed January 25, 2016).

http://timeuse-2009.nsms.ox.ac.uk/information/studies/
http://www.eijtur.org/
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existing insights are extremely limited. Since the 2000s, some relevant studies 
have emerged about the development of activity–travel scheduling models, which 
examine the underlying behavioral mechanisms that give rise to activity sequenc-
ing over a period of time (e.g., Garling et al. 1998; Arentze and Timmermans 
2000, 2005; Ettema and Timmermans 2003; Joh et al. 2003; Zhang et al. 2005a). 
In addition, recent changes in policy and forecasting needs have led to the devel-
opment of an emerging class of activity–trip scheduling process surveys (Doherty 
2004; Doherty and Papinski 2004). In essence, activity–trip scheduling behav-
ior concerns the organization of an activity agenda in space and over time, and 
thus involves decisions regarding destinations, timing, and duration. Destination 
choices have been widely studied, and nested choice models [e.g., the nested logit 
and generalized nested logit models (Koppelman and Wen 2000), the nested paired 
combinatorial logit model (Fujiwara and Zhang 2005)] have dominated the litera-
ture. With respect to duration of activity, two research streams have emerged: one 
applying proportional or accelerated hazard models (see Lee and Timmermans 
(2007) for a review of recent studies), and another that is mainly based on Becker’s 
(1965) time allocation model [e.g., the individual-based model by Kitamura and 
Fujii (1998), the household-based model by Zhang et al. (2002, 2005b), and Zhang 
and Fujiwara (2006)]. In addition, the introduction of temporal constraints makes 
it possible to simultaneously represent durations of various activities across the 
course of a given time period (e.g., a day). More recently, more appealing models 
and theories have been proposed (e.g., Joh et al. 2002, 2006).

Compared with destination choice and duration, research on timing decisions 
remains scarce. For activity–travel scheduling behavior, timing decisions are 
problematic because decision-makers must make various interdependent timing 
decisions (i.e., multidimensional decisions) in a given time period. If the focus 
of analysis shifts from an individual to a multiperson household, the problem 
becomes even more complicated because some timing decisions are influenced by 
intrahousehold interactions. Therefore, ideally, interdependencies must be system-
atically incorporated not only into timing decisions across activities but also when 
factoring household members into modeling timing decisions.

In household decision-making, different members may need to adjust their 
schedules to meet various household needs, especially when participation in allo-
cated or shared activities is required. An allocated activity such as daily shop-
ping is an activity performed by one or more household members, and it involves 
a household task. Because the “products” of participation in allocated activities 
are usually consumed later, timing constraints may occur with respect to the end 
time. For example, to prepare a dinner with fresh vegetables, a household member 
may need to buy these vegetables and this trip needs to be completed before prep-
aration of dinner starts. In contrast to allocated activities, participation in shared 
activities usually involves a negotiation process, because different members need 
to agree about the start and end times. Such coupling constraints reflect the fact 
that one has to be with particular people at the same location at (approximately) 
the same time. As a result, decisions about the timing of shared activities are more 
complicated than those of other activities.



426 J. Zhang and H. Timmermans

Existing models have at best treated coupling constraints exogenously. In con-
trast, this study attempts to develop a multidimensional timing decision model 
of household activity–travel behavior with endogenous coupling constraints. The 
model is developed according to the principle of random utility maximization, 
which assumes that a household tries to maximize its utility. Household utility is 
defined as an additive-type function, which is the sum of the household members’ 
utilities. The utility of a member is further specified using a similar additive-type 
function, which is the sum of utilities of activities/trips. In turn, the utility of an 
activity/trip is defined as an integral of its timing utility, i.e., the utility of perform-
ing the activity/trip at a specific point of time. From the concept of timing utility, 
the influence of timing constraints and sequential correlation can easily be incor-
porated. Multidimensional timing is emphasized to take into account the interde-
pendencies of timing decisions related to different activities/trips over the course 
of a day. The proposed model can also be applied to represent the sequence of 
activity–travel behavior endogenously. Representing timing endogenously makes 
it possible to clarify when and why an activity/trip is conducted during a calendar 
unit of time, and derives a meaningful value for time.

This chapter is organized as follows. Section 15.2 discusses some conceptual 
issues related to household scheduling behavior, especially from the perspective 
of timing decisions. Section 15.3 derives a multidimensional household timing 
decision model. Section 15.4 first describes the data used in this study, and then 
explains the model estimation, which is followed by a discussion of the implica-
tions of the estimation results. Finally, this case study concludes with a discussion 
of important future research issues.

15.2  Conceptual Issues

15.2.1  Definition of Scheduling Behavior

Scheduling decisions usually involve the following four major choice facets: (1) 
schedule content, (2) time, (3) space, and (4) agent. “Content” describes what the 
decision is about. In this study, content refers to all possible activities and trips. 
Time is concerned with when the content is executed. This is the central concern 
of this study. “Space” refers to where the activity is executed. Spatial concerns 
are especially important from the perspective of urban/regional and transportation 
planning. However, a study of spatial choices is beyond this study. “Agent” refers 
to the person(s) and/or organization(s) involved in a scheduling decision. An agent 
can be an independent individual, or several interdependent group members (e.g., 
household members, colleagues in the same office, a businessperson and his/her 
clients, friends, or organizations). This study examines scheduling behavior, focus-
ing on an endogenous representation of multidimensional timing in the context of 
multiperson households.
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15.2.2  Group Behavior, Activity Classification, and Sequence

Existing research has shown that decisions made by different members of a house-
hold are not independent, suggesting the existence of intrahousehold interaction 
(Timmermans et al. 1992; Borgers and Timmermans 1993; Molin et al. 1997; 
Vovsha et al. 2004; Zhang et al. 2005b). The nature of such intrahousehold interac-
tion is strongly influenced by the nature of the activity. Studies of family decision-
making show that the involvement of household members varies with decision 
type (Davis 1976). This is also true for activity–travel behavior. A compulsory 
activity is by definition constrained to a particular household member, and is often 
also constrained by time, location, and duration. This means that such activities 
are likely to be given a high priority and leave the household member less flex-
ibility to perform them. In turn, this may affect the allocation of other activities. 
However, allocated activities will also be influenced by role patterns within the 
household.

Activity scheduling involves interdependent choices of what activities to con-
duct, where and when to conduct them, coupled with mode and route choices. 
Although individuals and households may decide on these various choice facets in 
a variety of ways, existing models have typically assumed that decisions concern-
ing activity type, the people involved, location, timing, and travel are made in a 
fixed sequence in an attempt to reduce the complexity of the problem.

15.2.3  Timing: Multidimensional Considerations

Some activities and trips may be performed by an individual at any time. For oth-
ers, start and/or end times may be designated a priori. In such cases, individual 
decisions about timing are constrained. For example, a businessperson has to be 
on time for a meeting with his/her clients at a designated time and place. Airline 
passengers face strict departure times for flights. In this sense, timing decisions 
vary according to types of activities/trips and may be influenced by timing con-
straints. Participation in an activity reduces the available remaining time and con-
sequently places time pressure on performing other activities scheduled later that 
day. The existence of such time constraints forces individuals to decide how to 
make effective use of their limited available time. For example, the more time they 
spend on one activity, the less they can spend on another; the later they leave a 
place, the later they start performing another activity. In this sense, it seems unre-
alistic to assume that activity timing can be determined independently. Decisions 
about various duration/timing episodes interact. Needless to say, utility of activ-
ity participation may depend on when the activity is performed. Traditional 
unidimensional timing models, such as hazard models, cannot reflect such interde-
pendent timing behavior in a satisfactory manner. Multispell competing risk mod-
els (e.g., Popkowski Leszczyc and Timmermans 2002) can be used to represent 



428 J. Zhang and H. Timmermans

multidimensional timing decisions from a statistical perspective. In contrast, 
simultaneous representations of timing decisions based on utility theory may be a 
better alternative from a behavioral perspective.

15.3  Model Development

15.3.1  Specification of Timing Utility

Previous studies have suggested that the utility of activity participation or travel 
is dependent upon its timing (Arentze and Timmermans 2000; Ashiru et al. 2003; 
Zhang et al. 2005a). The concept of timing utility is useful in the study of tim-
ing decisions. Because decision-makers may exhibit heterogeneous timing pref-
erences, it is necessary to adopt some general utility functions with operational 
forms. In theory, a timing function could have either a continuous or a discrete 
form. These two forms have both advantages and disadvantages. By assum-
ing the discrete form of timing utility, one can adopt the widely applied discrete 
choice modeling approaches to represent timing decisions (e.g., Zhang et al. 
2004); however, categorizing continuous time into the appropriate number of time 
slots is problematic. For example, Fujiwara et al. (2001) attempted to solve such 
problems partially by using a paired combinatorial logit (PCL) model; however, 
such a categorization inevitably involves arbitrary and subjective judgments. Too 
many categories could result in a nonoperational model specification. To avoid 
such arbitrariness in model specification, the continuous form is adopted for the 
timing utility function in this study. Two major timing utility functions seem 
worthy of further investigation. One is the gamma probability density (GPD) 
function [Eq. (15.1)], the effectiveness of which has been examined by Zhang 
et al. (2005a). Another is the bell-shaped function proposed by Joh et al. (2003). 
Because the bell-shaped function has a much more complex form with more 
unknown parameters than the GPD function, this study adopts the following GPD 
function.

Here, αni and βni indicate the shape and scale parameters of utility uni(t) that indi-
vidual n derives from performing activity or trip i, respectively, and Γ (·) is the 
gamma function.

(15.1)uni(t) =
β
αni
ni t

αni−1

Γ (αni)
· exp(−βnit)

(15.2)Γ (αni) =

∞̂

0

yαni−1e−y dy

(15.3)αni > 0, βni > 0
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Different values of αni and βni result in different timing distributions, and the 
shape of the utility function can be either skewed or symmetric (see Fig. 15.1). 
As a result, the GPD function can include various forms of distribution as spe-
cial cases, such as the exponential function or the normal distribution function. 
Adoption of the GPD function implicitly assumes that for each activity or trip, the 
timing utility follows a one-peak distribution, i.e., the timing utility first increases 
and starts to decrease after reaching a certain point in time. It should be recog-
nized that this is also a limitation of the GPD function. In other words, if a timing 
distribution has two or more peaks, it is necessary to introduce additional rational 
logics into the model specification. This paper only examines the applicability of 
the GPD function to the representation of household timing decisions. Exploring 
other forms of timing functions is left as a future research issue.

15.3.2  Modeling Observed Interdependency: The Individual 
Level

Because each individual’s available time is limited (here, 24 h in a day), conduct-
ing an activity for a longer period of time implies that another activity needs to 
be either shortened or canceled. In this sense, interdependencies among activi-
ties/trips over the course of a day need to be introduced into the model of activity 
participation, including timing decisions. Taking this into account, it is assumed 
here that utility is time-additive and time-separable, and that an individual deter-
mines the timing of an activity or a trip by maximizing his/her total utility over a 
given period of time. Individual n’s total utility Un is defined as the sum of utilities 
of all activities and trips over the target period of time [Eq. (15.4)]. Note that the 
start time of the ith activity or trip is also the end time of the i − 1th activity or 
trip. Start and end times are the dependent variables in this study. Optimal tim-
ing can be obtained by solving the following optimization problem consisting of 
Eqs. (15.4) and (15.5), where Eq. (15.5) indicates the available time constraint.

=α =β

=β
=β

=β

=β

=α
=α

=α

=α

Fig. 15.1  Special cases of gamma probability density function
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Maximize

Subject to

where,

n, i   individual and activity/trip, respectively,
Uni   individual n’s utility from performing the ith activity/trip,
uni(s)   individual n’s timing utility from performing the ith activity/trip at time s,
tni−1   the start or departure time when individual n performs the ith activity/trip,
tni   the end or arrival time when individual n performs the ith activity/trip,
τni   the duration that individual n performs the ith activity/trip, and
Tn   the time available to individual n.

15.3.3  Modeling Observed Interdependency: The Household 
Level

In household decisions, interactions among household members with respect to 
multidimensional timing decisions take place because of participation in joint or 
shared activities and trips, which result in coupling constraints. To incorporate 
such coupling constraints into the model, the activities/trips should be properly 
classified. In this study, activities are first classified into in-home activities and 
out-of-home activities. The out-of-home activities are further divided into inde-
pendent, allocated, and shared (joint) activities. An independent activity is an 
activity that does not involve a household task and is performed by a single house-
hold member. Shared activities are those activities that require the presence of all 
or a subset of household members. An allocated activity is usually a household 
task that is assigned to a specific household member. The shared activities may 
be synchronized or unsynchronized. In the former case, household members con-
duct the shared activity together from beginning to end. In the latter case, house-
hold members share parts of the activity. This study only deals with synchronized 
activities. The classification described above assumes that decisions on activities 
in each category are homogeneous. However, this may not be true in the sense that 
task allocation mechanisms may differ between activities. If such heterogeneity is 
a concern, a finer classification involving more detailed categories of activities is 
required.

(15.4)Un =
∑

i

Uni =
∑

i

tni
ˆ

tni−1

uni(s) ds

(15.5)

∑

i

τni =
∑

i

(tni − tni−1) = Tn
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Applying this classification, the modeling framework defined in Eqs. (15.4) and 
(15.5) can be rewritten for the context of household decisions as follows:

Maximize

Subject to

where,

h, n, i   household, individual member, and activity/trip, respectively,
Uhni   the utility of individual n of household h performing the ith activity or 

trip,
uhni(s)   timing utility of individual n of household h performing the ith activity or 

trip at time s,
thni−1   start or departure time of individual n of household h performing the ith 

activity or trip (equal to the end time of i − 1th activity/trip),
thni   end or arrival time of individual n belonging to household h performing 

the ith activity or trip (equal to start time of i + 1th activity/trip),
τhni   duration of the ith activity or trip performed by individual n of household 

h, and
Thn   the time available to individual n of household h.

It may be seen that household utility takes an additive type of utility function, 
which consists of the members’ utilities. Such a specification assumes that the 
final decision-maker is the household rather than an individual household mem-
ber. However, to reach a final decision, the household takes each member’s pref-
erences into account. Decisions about shared activities first require such a model 
specification because the resultant timing needs to reflect the preferences of all the 
members involved. Each member must take such shared activities into account to 
determine the timing of his/her nonshared activities. In other words, members may 
need to adjust the schedules of their activities/trips. Thus, the abovementioned 
additive type of household utility function is adopted here to incorporate the pref-
erences of all the household members involved in the decision-making process. Of 
course, there are other possible household utility functions including multilinear 
and isoelastic types (see Zhang et al. 2005b; Zhang and Fujiwara 2006). Because 
introducing those types of function results in nonoperational model structures, 
such as the first attempt to examine household multidimensional timing deci-
sions from the perspective of group decision-making, this paper only examines the 
effectiveness of the additive type of household utility function. In line with our 
previous research about household decisions (see Zhang et al. 2005b; Zhang and 
Fujiwara 2006), the principle of household utility maximization is applied.

(15.6)Uh =
∑

n

∑

i

Uhni =
∑

n

∑

i

thni
ˆ

thni−1

uhni(s) ds

(15.7)

∑

i

τhni =
∑

i

(thni − thni−1) = Thn
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15.3.4  Deriving the Household Timing Decision Model

In Eqs. (15.6) and (15.7), the dependent variable is timing (start time or end time) 
thni at which individual n belonging to household h performs activity i or makes 
a trip i. Maximization of Eq. (15.6) subject to Eq. (15.7) leads to the household 
timing decision model. To derive this model, the first derivative is calculated with 
respect to each timing variable thni. The timing variable of the shared activity/trip 
is included in all the household members’ utility functions, but that of a nonshared 
activity/trip is only related to the member of interest. Therefore, to derive the opti-
mal timing, it is necessary to distinguish between shared and nonshared activities/
trips.

15.3.4.1  Timing Function of a Nonshared Activity/Trip

The first-order derivative for the timing of nonshared activity/trips is given below.

Substituting Eq. (15.1) into Eq. (15.8) and setting Eq. (15.8) to equal zero, the fol-
lowing equation, including the optimal timing t̂hni, can be obtained.

To obtain an explicit function of optimal timing, Eq. (15.9) is rewritten below 
based on a logarithm transformation.

Further transformation of Eq. (15.10) results in the following timing function for 
nonshared activities/trips.

15.3.4.2  Timing Function of a Shared Activity/Trip

Similarly, the first-order derivative condition for the timing of shared activities/
trips can be derived as below.

(15.8)

∂Uhn

∂thni
=

∂

∂thni





thni
ˆ

thni−1

uhni(s) ds+

thni+1
ˆ

thni

uhni+1(s) ds





= uhni(thni)− uhni+1(thni)

(15.9)t̂
αhni+1−αhni
hni · exp

{

−(βhni+1 − βhni) t̂hni
}

=
Γ (αhni)

Γ (αhni+1)
·
β
αhni+1

hni+1

β
αhni
hni

(15.10)(αhni+1 − αhni) ln
(

t̂hni
)

− (βhni+1 − βhni)t̂hni = ln

(

Γ (αhni)

Γ (αhni+1)
·
β
αhni+1

hni+1

β
αhni
hni

)

(15.11)
t̂hni =

(αhni+1 − αhni) ln
(

t̂hni
)

− ln

(

Γ (αhni+1)
Γ (αhni)

β
αhni
hni

β
αhni+1
hni+1

)

(βhni+1 − βhni)
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where t̂jhni is the jth timing variable of household h’s shared activity/trip, but the ith 
timing variable of individual n’s activity/trip.

As a result, transformation of Eq. (15.12) leads to the following optimal timing 
function t̂jhni for the shared activity/trip.

15.3.5  Simplifying Household Timing Decision  
Model Structure

Observing Fig. 15.1, it is obvious that as the value of positive shape parameter 
αni increases, both mean and variance of timing distribution increase, resulting in 
a flatter timing distribution and change in the shape of the distribution from left 
skewed toward the normal distribution. In contrast, the scale parameter βni shows 
the opposite trend. In other words, if the explanatory variable for αni and βni has 
different signs for shape and scale parameters, the timing distribution changes in 
a consistent way. Otherwise, the timing distribution varies with the values of the 
same explanatory variable for scale/shape parameters. On the other hand, allow-
ing the coexistence of activity/trip-specific shape and scale parameters not only 
makes the estimation of Eqs. (15.11) and (15.13) very complicated, but also makes 
the parameter interpretations very confusing, especially from a policy perspec-
tive. Therefore, this study attempts to simplify the model structure without loss of 
generality by assuming that the shape parameter differs across individual house-
hold members, but is invariant across activities/trips. Based on this assumption, 
Eqs. (15.11) and (15.13) can be rewritten as below.

(15.12)

∂Uh

∂t
j
hni

=
�

n

∂Uhni

∂t
j
hni

=
�

n

∂

∂t
j
hni















t
j
hni
ˆ

thni−1

uhni(s) ds+

thni+1
ˆ

t
j
hni

uhni+1(s) ds















=
�

n

�

uhni

�

t
j
hni

�

− uhni+1

�

t
j
hni

��

= 0

(15.13)t
j
hni =

∑

n

(

β
α hni+1
hni+1 (t

j
hni)

αhni+1

Γ (αhni+1)
· exp

(

−βhni+1t
j
hni

)

)

∑

n

(

β
α hni
hni (t

j
hni)

αhni−1

Γ (αhni)
· exp

(

−βhnit
j
hni

)

)

(15.14)thni =
αhn(ln(βhni+1)− ln(βhni))

(βhni+1 − βhni)

(15.15)
t̂
j
hni =

∑

n

(

β
α hn
hni+1(t̂

j
hni)

α hn

Γ (αhn)
· exp

(

−βhni+1 t̂
j
hni

)

)

∑

n

(

β
αhn
hni (t̂

j
hni)

α hn−1

Γ (αhn)
· exp

(

−βhnit̂
j
hni

)

)
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15.3.6  Behavioral Implications of Timing Functions

As described above, the timing function for each activity/trip is derived based 
on the principle of household random utility maximization. This assumption 
is made because it is expected that the proposed model could be useful for eco-
nomic evaluations of transportation policies. Moreover, because of the differing 
levels of involvement of household members, different forms of timing functions 
are derived with respect to shared and nonshared activities/trips. It is obvious that 
there is no structural difference in the timing functions for an activity and a trip in 
the same position in the schedule, or within each type of activity/trip. To capture 
the differences between activity and trip, activity-specific and trip-specific attrib-
utes could be introduced into the timing function. This will be explained below. 
If the homogeneity of each type of activity/trip were a problem, one could simply 
make a finer classification of activities and trips. Some major behavioral features 
of the derived timing functions are summarized below.

15.3.6.1  Modeling Interdependencies Among Activities/Trips

Endogenous representation of observed interdependencies

As shown in Eqs. (15.11) and (15.13), each timing variable is derived as a function 
not only of its own shape and scale parameters, but also of the parameters of the 
next activity or trip. In this sense, the derived timing functions can represent such 
observed interdependencies among activities and/or trips over the course of a day 
endogenously. Because the timing decision of an activity or a trip is influenced 
by that of the subsequent one, it is first-order interdependence that is incorporated 
into the model. As described below, the scale and shape parameters are defined 
as a function of the attributes of the household and its members, so the observed 
heterogeneity existing in the aforementioned interdependencies may be properly 
captured.

Endogenous representation of unobserved interdependencies

In addition to observed interdependencies among activities/trips, interdepend-
encies may also be caused by the influence of unobserved factors. Because the 
parameters αhn and βhni are both positive, we propose to meet these two conditions 
and incorporate heterogeneity into timing decisions by defining these two param-
eters using the following functions.

(15.16)αhn = exp
(

∆hn + eαhn
)

(15.17)βhni = exp
(

∆hni + e
β
hni

)
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where, ∆hn, ∆hni are deterministic terms consisting of the observed factors influ-
encing the shape parameter αhn and the scale parameter βhni, respectively, and 
eαhn, e

β
hni are stochastic terms reflecting the influence of unobserved factors on αhn 

and βhni.

15.3.6.2  Representation of Activity/Trip Sequence in an Indirect 
Manner

It is not difficult to observe that to derive the timing function, it is only necessary 
to know where the relevant activity or trip is located in the overall schedule for 
a given time period. It is not necessary to identify the content of the activity/trip 
beforehand. In other words, index i in Eqs. (15.11) and (15.13) refers to the ith 
event in the overall schedule, and it can be either an activity or a trip. Note that 
∆hn, ∆hni in Eqs. (15.16) and (15.17) can include any kind of observed factors that 
influence the shape and scale parameters. If a dummy variable about activity type 
or trip type is introduced as one of the influential factors, then one can obtain all 
the timing utilities with respect to both activities and trips corresponding to each 
optimal timing variable. In other words, as long as the number of activities and 
trips performed in a day is given, it is possible to calculate the timing utilities for 
both activity and trip at each ordered location of the schedule over the course of a 
day. For example, it is expected that a household member may decide whether to 
participate in an activity or to make a trip by comparing the utilities of the activ-
ity and the trip. Thus, the calculated timing utilities could be used to represent the 
activity/trip sequence indirectly in theory.

15.3.6.3  Endogenous Representation of Coupling Constraints

A coupling constraint means that two or more people have to be together in a 
specific time period and at a specific place. Such coupling can involve either an 
activity or a trip. In this paper, a synchronized shared activity/trip is classified to 
represent such coupling constraints in household scheduling behavior. The pres-
ence of coupling constraints may force household members to adjust their sched-
ules. It can also be expected that each member’s timing decisions concerning the 
nonshared activities/trips may influence the timing when household members 
undertake them. Thus, the timings of shared and nonshared activities/trips interact, 
and it is difficult to assume that either a one-way or a two-way influence is more 
realistic. Therefore, instead of making such an assumption, this paper proposes 
to derive each timing function by defining each member’s utility as a function of 
the utilities obtained from performing all the possible activities/trips in a choice 
set. As a result, the timing functions for both shared and nonshared activities/trips 
are derived simultaneously in an endogenous way. The influence of coupling con-
straints is explicitly incorporated into the relevant timing function(s), as shown in 
Eqs. (15.14) and (15.15).
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15.3.7  Model Estimation Method

As Eqs. (15.18) and (15.19) show, each timing variable is derived as a function 
not only of its own information, but also of information from the next activity/
trip. This means that the derived optimal timing variables interact and may both 
be influenced by the same set of unobserved attributes of the household and its 
members, suggesting that it is necessary to represent the statistical correlation in 
the model. Because of the error terms eαhn, e

β
hni in Eqs. (15.16) and (15.17), it is 

quite difficult to estimate the timing functions shown in Eqs. (15.14) and (15.15) 
directly. To estimate the timing functions based on an operational method, it is 
assumed that Eqs. (15.14) and (15.15) can be transformed as follows:

where εhni, ε
j
hni are the transformed error terms.

15.3.7.1  Introduction of the First-Order Sequential Correlation

The above transformation has some positive features for representing timing deci-
sions. First, the unobserved interdependencies among activities/trips can be incor-
porated into the model by assuming that the error terms εhni, ε

j
hni are correlated. 

One can define such correlations in various ways. The multivariate normal dis-
tribution may be the most desirable in the sense that it can flexibly represent the 
correlations between error terms. However, one of the difficulties in applying the 
multivariate normal distribution is the calculation of the multidimensional integral. 
Even though some advanced methods have recently been proposed to overcome 
such calculation issues, the calculation itself is still very complicated and time 
consuming. In this study, to overcome this computational problem and make the 

(15.18)t̂hni = vhni + εhni =
α̃hn

(

ln
(

β̃hni+1

)

− ln
(

β̃hni

))

(

β̃hni+1 − β̃hni

) + εhni

(15.19)t̂
j
hni = v

j
hni + ε

j
hni =

∑

n

(

β̃
α̃hn
hni+1(t̂

j
hni)

α̃hn

Γ (α̃hn)
· exp

(

−β̃hni+1 t̂
j
hni

)

)

∑

n

(

β̃
α̃hn
hni (t̂

j
hni)

α̃hn−1

Γ (α̃hn)
· exp

(

−β̃hnit̂
j
hni

)

) + ε
j
hni

(15.20)α̃hn = exp(∆hn)

(15.21)β̃hni = exp(∆hni)
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estimation of the timing function more practical, a concept of first-order sequential 
correlation is introduced. The sequential correlation is defined as the correlation 
between error terms of neighboring activities/trips (i.e., εni and εni+1). It is further 
assumed that these two error terms follow a bivariate normal distribution.

where ρ is correlation between error terms εni and εni+1, and σi, σi+1 are the corre-
sponding standard deviations.

15.3.7.2  Representing Nonnegative Timing and Sequencing 
Constraints

In this study, the timing of each activity or trip is defined as the length of time 
from a predefined reference time (referred to as 0:00 here). Therefore, the 
derived optimal timing variable should first meet this nonnegative condition. In 
addition, because of activity/trip sequences, the timing (start time in this study) 
of the ith activity/trip should occur before the timing of the i + 1th activity/
trip (i.e., sequencing constraint). Such conditions are described in the following 
Eqs. (15.23)–(15.25).

As a result, the probability that describes the nonnegativity and sequencing con-
straints is given below.

Equation (15.26), with a double integral, can be further transformed into the follow-
ing equation with a single integral based on coordinate rotation (Zhang et al. 2004).

(15.22)

f (εni, εni+1) =
1

2πσiσi+1

�

1− ρ2
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(15.23)t̂ni > 0, t̂ni+1 > t̂ni

(15.24)t̂ni > 0 ⇒ t̂ni = vni + εni > 0 ⇒ εni > −vni

(15.25)t̂ni+1 > t̂ni ⇒ t̂ni+1 = vni+1 + εni+1 > t̂ni ⇒ εni+1 > t̂ni − vni+1

(15.26)

Prob
(

t̂ni > 0, t̂ni+1 > t̂ni
)

= Prob
(

εni > −vni, εni+1 > t̂i − vni+1

)

=

∞̂

−vi

∞̂

t̂i−vi+1

f (εni, εni+1)dεni dεni+1

(15.27)

Prob
(

t̂ni > 0, t̂ni+1 > t̂ni
)

=

{

1−Φ

(

t̂ni − vni+1

σi+1

√

1− ρ2

)}{

1−Φ

(

vni

σi
√

1− ρ2

)}
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Equation (15.27) represents the nonshared activity/trip. In the case of a shared 
activity/trip, because its timing may influence all members’ timing decisions about 
consecutive activities/trips, Eq. (15.27) needs to be revised to reflect intrahouse-
hold decision-making mechanisms. Instead of t̂ni in Eq. (15.23), the shared activ-
ity/trip timing t̂jhni is introduced. Then the following conditions need to be met 
with respect to each household member.

For each member, the relevant probability related to Eq. (15.28) can be written as 
follows:

Because the shared activity timing t̂jhni is included in Eq. (15.29) for each mem-
ber, it is necessary to estimate these equations simultaneously. Note that t̂hni+1 may 
also be the timing of a shared activity/trip.

Needless to say, timing decisions may be influenced by timing constraints 
(e.g., the designated time of a meeting and departure time of a flight). In addi-
tion, because an activity–travel survey is usually conducted within a predesignated 
time period, it cannot be expected that each respondent started the first activity/trip 
precisely at the beginning of the time period, and/or ended the last one at the end 
of the survey period. Therefore, it is necessary to represent this censored timing 
properly in the model. Zhang et al. (2005a) discussed such issues in the context 
of individual decision-making. However, their approach can be directly applied to 
the context of household decision-making, which is the main focus of this study. 
Because this case study does not deal with these issues, detailed model specifica-
tions will not be shown here, and readers are recommended to refer to Zhang et al. 
(2005a).

15.3.7.3  Applying a Maximum Likelihood Method for Model 
Estimation

Because only nonnegative timing and activity/trip sequencing constraints are rel-
evant in this case study, the resultant household activity–travel timing decision 
model can be specified by Eqs. (15.30)–(15.33). The model can be estimated using 
the conventional maximum likelihood method.

(15.28)t̂
j
hni > 0, t̂hni+1 > t̂

j
hni

(15.29)

Prob
(

t̂
j
hni > 0, t̂ni+1 > t̂

j
hni

)

=

{

1−Φ

(

t̂
j
hni − vhni+1

σi+1

√

1− ρ2

)}{

1−Φ

(

v
j
hni

σi
√

1− ρ2

)}

(15.30)log L =

H
∑

h=1

N
∑

n=1

I
∑

i=1

ln(phni)
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where phni indicates the probability with respect to the ith (nonshared or shared) 
activity/trip performed by individual n, belonging to household h, and δ is a 
dummy variable to indicate whether an activity/trip is shared (1: Yes, 0: No).

15.4  Model Estimation Results

15.4.1  Data

The proposed model was estimated using the activity diary data originally col-
lected for the Albatross model (Arentze and Timmermans 2005), which was devel-
oped to explore the potential of a new generation of rule-based transport demand 
models. Albatross predicts the schedule of a maximum of two adult members of a 
given household on a given day. Because this study attempts to represent house-
hold activity–travel timing decision behavior, data from single-member house-
holds and the households with missing attributes were excluded from this study. 
To simplify the discussion of the proposed household timing decision model, the 
original 48 types of activities were first recategorized into two major types: shared 
and nonshared activities. Shared activities are distinguished only for out-of-home 
activities. To avoid inconsistencies in the reported timing data, activities here are 
considered to be shared if both the husband and wife have the same start and end 
times. The nonshared activities are further classified into in-home activities and 
out-of-home independent and allocated activities, even though they have the same 
form of timing function.

In total, 3075 households provided their activity data. Figures 15.2, 15.3 and 
15.4 show the distribution of the numbers of nonshared and shared activities. It is 
clear that females perform more activities than their spouses (on average, 16 activ-
ities/day versus 14 activities/day) both on weekdays and weekends (t values of 
tests of the differences between husband and wife are 14.30 for activities overall, 
13.64 on weekdays and 4.39 on weekends). Irrespective of whether it is a week-
day or weekends, each household performs about one shared activity on average. 
There are significant differences between weekdays and weekends with respect to 
females’ activities and shared activities (t values of tests of the differences between 
weekdays and weekends are 4.43 for the female’s activities and 5.74 for the shared 

(15.31)phni =

{

1−Φ

(

Θhni+1

σi+1

√

1− ρ2

)}{

1−Φ

(

Θhni

σi
√

1− ρ2

)}

(15.32)Θhni = δ
j
hniv

j
hni + δhnivhni

(15.33)Θhni+1 = (δ
j
hnit̂

j
hni + δhnit̂hni)− (δhni+1vhni+1 + δ

j+1
hni+1v

j+1
hni+1)
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activities), but no difference is observed concerning the husband’s activities (the 
relevant t value is just 0.09).

Even though each member conducts many activities every day, because it is the 
first attempt to apply the proposed household timing decision model, this paper 

Fig. 15.2  Distribution of number of activities performed by husband

Fig. 15.3  Distribution of number of activities performed by wife

Fig. 15.4  Distribution of number of shared activities by husband and wife
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deals with only two successive activities (the fifth and sixth activities in the day of 
the survey) on weekdays. In other words, trip-making behavior is excluded from 
this case study. The resulting sample includes 593 households. The timing distri-
butions related to the fifth and sixth activities are shown in Fig. 15.5. A trial using 
the full data set is left for future research.

15.4.2  Explanatory Variables

Factors influencing household timing decision behavior are introduced into the 
model via the scale and shape parameters of the derived timing utility functions. 
For that purpose, ∆hn, ∆hni in Eqs. (15.17) and (15.18) are rewritten as follows:

(15.34)∆hn = πα
n + θαn Ωh + µα

n Ψhn

(15.35)∆hni = π
β
ni + θ

β
ni Ωh + µ

β
ni Ψhn +

∑

k
γkXhnik

(15.36)
Ωh =

∑

p

ρpZhp

(15.37)
Ψhn =

∑

q

κqYhnq

Fig. 15.5  Timing distributions of nonshared and shared activities (upper part: husband, middle 
part: wife, lower part: shared activity)
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where the variables are as follows:

Xhnik   the kth activity-specific variable used to explain scale parameter βhni,

Yhnq   the qth individual attribute used to explain both αhn and βhni, Zhp the 
pth household attribute used to explain both αhn and βhni,

θαn    the influence of household attributes on shape parameter αhn; the 
parameter for one household member needs to be fixed at unity,

θ
β
ni   the influence of household attributes on scale parameter βhni of the 

ith activity; one activity parameter needs to be fixed at unity for each 
member,

µα
n   the influence of individual attributes on shape parameter αhn; the 

parameter for one household member needs to be fixed at unity,
µ
β
ni   the influence of individual attributes on scale parameter βhni of the 

ith activity; one activity parameter needs to be fixed at unity for each 
member,

γk , ρp, κq   the parameters of relevant variables, and
πα
n ,π

β
ni   constant terms.

Individual and household attributes may have different influences on a deci-
sion about the timing of each activity. Because these two types of attributes are 
common to all activities, their direct introduction to each timing function will 
considerably reduce the degree of freedom in the model estimation. To overcome 
this problem, as shown in the above equations, individual attributes are combined 
into one composite variable, and household attributes into another. These are then 
introduced into Eqs. (15.34) and (15.35). Table 15.1 shows household and individ-
ual attributes, and activity-specific attributes.

15.4.3  Model Estimation

15.4.3.1  Effectiveness of the Proposed Model

Estimation results are shown in Table 15.2. MacFadden’s Rho-squared is 0.4952. 
Most of the explanatory variables are statistically significant at the 99 % level, 
 suggesting observed heterogeneity in household timing decisions. Most of the cor-
relations and standard deviations related to sequential correlation are statistically 
significant. This supports the adoption of the bivariate normal distribution to repre-
sent sequential correlations. All these results suggest that the proposed model is good 
enough to represent household activity timing decision behavior in this case study.

15.4.3.2  Effect of the Shape Parameter on Timing Utility

Because the gamma probability density function is adopted as the timing utility 
function, an increase in the value of the shape parameter results in an increasing 
mean and variance of the timing distribution, and consequently the left-skewed 
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timing distribution becomes flatter and moves toward the right-hand side of the 
time axis. In contrast, the scale parameter shows the opposite trend. In other 
words, if an explanatory variable has different signs for the shape and scale param-
eters, the timing distribution changes in a consistent way. If the signs of these 
parameters differ, the timing distribution varies with the difference in the scale/
shape parameters of the same explanatory variable. Therefore, by interpreting the 
signs of the shape and scale parameters, the influences of various factors on tim-
ing distribution can be captured. Because the influences of the scale and shape 
parameters on timing distribution go in different directions, the meaning of each 
variable under study must be interpreted carefully. Note that the shape parameter 
is assumed to vary with household and member, but to be invariant across activi-
ties. The explanatory variables for the shape parameter are simply each member’s 
attributes, including car availability, bicycle availability, and official work hours 
per week. All these variables are statistically significant and have positive param-
eters. This means that when the scale parameter is fixed, the high availability 

Table 15.1  Explanatory variables

Household attributes (1) Socio-economic class
    1: minimum
    2: low
    3: medium
    4: high
(2) Age of oldest member
    1: 25 years old or younger
    2: 26–45 years old
    3: 46–65 years old
    4: older than 65 years old
(3) Household type
    1: single, no work
    2: single, work
    3: double, one work
    4: double, two work
    5: double, no work
(4) Number of cars
(5) Number of bikes

Individual attributes (1) Working hours
(2) Car availability
(3) Bike availability

Activity-specific attributes (1) Type of activity
    – In-home activity
    – Out-of-home independent activity
    – Out-of-home allocated activity
    – Out-of-home shared activities
(2) Travel party
    1: Alone
    2: Travel with household member
    3: Travel with other outside household
    4: Travel with household member and other outside 
household



444 J. Zhang and H. Timmermans

Table 15.2  Model estimation resultsa

Explanatory variable Estimated 
parameter

t-score

Constant term (πα
n ,π

β
ni)

Shape parameter: wife’s timing utility function −1.2318 −8.381 **

Scale parameter: the 2nd Nonshared activity

    (1) Husband’s timing utility function −10.9348 −10.670 **

    (2) Wife’s timing utility function 21.6476 12.267 **

Scale parameter: the 2nd shared activity

    (1) Husband’s timing utility function −3.2945 −6.165 **

    (2) Wife’s timing utility function 4.6698 7.828 **

Household attribute (Ωh =
∑

p ρpZhp)

Household type - Single member with job −1.5420 −1.530

- Two-member with one job 9.4992 9.037 **

- Two-member with two jobs 2.5906 3.600 **

- Two-member with no job 19.1237 10.539 **

Socio-economic class −0.3987 −1.667 *

Age of the oldest member 2.5525 6.662 **

Number of cars 0.1672 0.409

Number of bikes −0.2196 −2.622 **

Individual attribute (Ψhn =
∑

q κqYhnq)

Car availability (1: Yes, 0: No) 0.2212 3.376 **

Bike availability (1: Yes, 0: No) 0.8594 9.166 **

Official work hours per week 0.1982 6.887 **

Activity-specific attribute (
∑

k γkXhnik)

In-home activity (1: Yes, 0: No) −11.9426 −18.151 **

Out-of-home independent activity (1: Yes, 0: No) −2.0864 −3.172 **

Out-of-home allocated activity (1: Yes, 0: No) 3.7604 3.453 **

Influence of household composite attribute on shape parameter of each member’s timing utility 
function: Nonshared activity (θαn )

(1) Influence on husband’s timing utility function

    The 1st activity 2.5865 18.253 **

    The 2nd activity −0.5901 −5.324 **

(2) Influence on wife’s timing utility function

    The 1st activity 0.6000 2.664 **

    The 2nd activity −5.6987 −13.296 **

Influence of individual composite attribute on scale parameter of timing utility function:
Nonshared activity (µβ

ni)

(1) Husband The 1st activity 4.4449 9.176 **

The 2nd activity −1.4351 −2.708 **

(2) Wife The 1st activity 12.0598 11.519 **

The 2nd activity −16.3063 −10.760 **

(continued)
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aTiming is calculated as the time difference (in minute) from the midnight (0:00). It is further 
divided by 1000 in order to guarantee the model estimation, because of the software requirement
bInitial logarithm likelihood is calculated by setting the constant terms and standard deviations to 
the estimated values
*Significant at 90 % level; **Significant at 99 % level

Table 15.2  (continued)

Explanatory variable Estimated 
parameter

t-score

Influence of individual composite attribute on scale parameter of timing utility function:
Shared activity (µβ

ni)

(1) Husband The 1st activity 8.2242 8.188 **

The 2nd activity 0.6979 1.760 *

(2) Wife The 1st activity 1.3205 14.844 **

The 2nd activity −3.5896 −10.115 **

Influence of subsequent missing activity on scale parameter (β̃hni : i > I)

(1) Nonshared activity Husband’s timing utility 
function

3.9896 27.487 **

Wife’s timing utility function 3.2843 15.143 **

(2) Shared activity Husband’s timing utility 
function

2.4435 17.503 **

Wife’s timing utility function 0.3171 5.557 **

Influence of subsequent missing activity on activity timing (vhni : i > I)

Husband’s timing: Nonshared activity 44.5896 32.573 **

Wife’s timing: Nonshared activity 70.7712 32.011 **

Timing of shared activity 29.7925 18.727 **

Parameter related to sequential correlation

(1) Husband Standard deviation of the 5th 
activity (σ5)

75.9615 21.006 **

Standard deviation of the 6th 
activity (σ6)

0.0403 0.992

Correlation (ρ) 0.0219 0.321

(2) Wife Standard deviation of the 5th 
activity (σ5)

95.2358 20.895 **

Standard deviation of the 6th 
activity (σ6)

0.3702 4.269 **

Correlation (ρ) −0.6199 −24.484 **

Initial logarithm likelihoodb −3342.20

Converged logarithm likelihood −1687.17

McFadden’s Rho-squared 0.4952

Sample size 593
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of cars or bicycles and longer working hours result in a left-skewed timing util-
ity function tending toward the right-hand side of the time axis. In other words, 
households with a high availability of cars or bicycles and longer working hours 
prefer to start activities later. On the other hand, the constant term for the scale 
parameter of the female timing utility function is significantly negative, implying 
that women prefer an early start to each activity.

15.4.3.3  Influential Factors of Coupling Constraints

This study derives the timing utility function for shared activities. This includes 
information on all the household members involved. Focusing on synchronized 
shared activities allows the endogenous representation of coupling constraints in 
the model. The influence of coupling constraints on each member’s activity tim-
ing decision is incorporated into the model with the aid of sequential correlations. 
In this case study, percentages of the shared activities are 3 and 3.5 % of the total 
sample for the fifth and sixth activities. Of course, such a small sample is insuf-
ficient to reveal the general decision-making mechanisms related to the timing of 
shared activities, but it is still useful to explore the influential factors of such deci-
sion-making mechanisms. The variables introduced to explain the shared activity 
timing decisions are simply each member’s attributes, because it is assumed that 
each member has a different preference for shared activities. The scale parameter 
is assumed to vary across household members.

The parameter (βhni), representing the influence of individual attributes on the 
scale parameter, shows positive values except for the wife’s sixth activity. This 
means that households with a greater availability of cars or bicycles and longer 
working hours prefer an earlier start for each activity. Because the shape and scale 
parameters play contrary roles in determining the timing utility, in general the 
actual preferences of each household can be only calculated by comparing shape 
and scale parameters. However, in this case, the wife’s sixth activity timing shows 
a consistent direction of variation for both parameters.

15.4.3.4  Influential Factors of Timing Decisions About  
the Nonshared Activity

Activity-specific attributes are activity types: in-home activities, out-of-home inde-
pendent activities, and out-of-home allocated activities. The model estimates neg-
ative parameters for the first two types of activities, and positive parameters for 
the last activity. Negative scale parameters mean that household members prefer 
a later start for in-home activities and out-of-home independent activities. In con-
trast, a positive parameter pulls the timing distribution curve back from the right- 
to the left-hand side along the time axis.
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Household attributes

Household attributes show a similar influence on the timing of both the husband 
and the wife: a positive parameter for the fifth activity and a negative parameter 
for the sixth activity. Because the parameters for single members with jobs, socio-
economic class and number of bicycles are negative, and the other parameters are 
all positive, these results show that households with a single employed member, 
higher socioeconomic class, and more bicycles tend to start the fifth activity later 
and the sixth activity earlier than do others. The degree of influence is stronger for 
the fifth activity of the husband, and for the sixth activity of the wife. Other attrib-
utes show the opposite influence.

Individual attributes

The estimated parameters of husband and wife attributes are positive for the fifth 
activity and negative for the sixth activity. Because all individual attributes, includ-
ing car and bicycle availability and official work hours have positive parameters, 
households with greater availability of cars and bicycles and longer working hours 
tend to start the fifth activity earlier and the sixth activity later.

15.5  Conclusions and Future Research Issues

The utility of performing an activity or making a trip changes over time. When 
an individual makes decisions about the timings of activities/trips, he/she usually 
faces various constraints, for example, the existence of designated start (departure) 
and/or end (arrival) times (i.e., authority constraints). Timing decisions within 
a given period of time (e.g., a day) also interact across activities/trips. These 
mechanisms become much more complicated in the context of household deci-
sions, where household members usually share a certain period of time to con-
duct some activities jointly and/or take trips together, and/or some members must 
take responsibility for household maintenance tasks such as shopping, and pick-
ing up and dropping off children. Coupling constraints are especially problematic 
in modeling household timing decisions because it is necessary to incorporate 
the preferences of all the members involved in decisions. Conventional modeling 
approaches have typically incorporated such coupling constraints exogenously, 
i.e., by treating the constraints as explanatory variables for decision-making. From 
the behavioral perspective, timing not only constrains other decision(s), but also 
involves decisions, just as other choices do. Therefore, it is necessary to represent 
the abovementioned mechanisms related to timing endogenously.

As a case study focusing on daily time use, this study first adopts a gamma 
probability density function to represent timing utility. Two types of timing func-
tions are successfully derived: one for nonshared activities/trips and the other for 
shared activities/trips. The function for a nonshared activity/trip performed by a 
household member only includes information about a member, while that for a 



448 J. Zhang and H. Timmermans

shared activity/trip includes information of all the household members involved. 
To incorporate interdependencies among activities/trips over a day, this study 
further introduces the concept of the first-order sequential correlation between 
error terms of timing functions of neighboring activities/trips based on a bivari-
ate normal distribution. In theory, all the nonnegative conditions of timing vari-
ables, activity/trip sequencing, timing constraints, and censored timings can be 
endogenously represented based on the same bivariate normal distribution. Timing 
functions for shared activities/trips are used to represent a household’s coupling 
constraints endogenously by using sequential correlations related to all relevant 
members. The resulting household timing decision model can be estimated using 
the conventional maximum likelihood method.

The estimation results of the household timing model show that husbands and 
wives do not have homogeneous preferences for timing decisions. The factors 
explaining the shape and scale parameters of the gamma distribution reveal incon-
sistent influences of coupling constraints on the timing distribution. This not only 
reflects the complexities of household timing decisions, but also raises the ques-
tion of how to justify the derived influences. However, it is not sufficient to justify 
this conclusion based on the data/model adopted in this study (i.e., internal valid-
ity). External validity is also required. In other words, the justification should also 
be based on external information.

Because the results obtained from this study are based on a limited sample 
size with only two successive activities on weekdays, future research must first 
estimate the model by collecting data from more people. Second, it is necessary 
to investigate how to select more suitable variables to explain timing decisions. 
In this study, we adopted a very limited set of variables including household and 
individual attributes and activity attributes. The explanatory power is insuffi-
cient. Selection of explanatory variables should be based on theoretical reasoning, 
rather than the availability of data. Third, different people may prefer to partici-
pate in different activities at different points in time, so a finer classification of 
activities may be helpful. A change in preferences may be also caused by space–
time settings, such as a wish to avoid congestion on roads or at activity locations. 
Incorporating factors related to space–time settings seems important. There may 
exist various types of timing distributions. Even though the gamma probability 
density function has a general form of distribution, to reflect the actual timing dis-
tributions more properly it may be necessary to explore the possibility of apply-
ing other types of distributions such as the bell-shaped function (Joh et al. 2003). 
Because representing various timing constraints is one good feature of the derived 
household timing model, this should be examined in the future. This study adopted 
an additive-type utility function to represent timing decisions without weight-
ing any activities/trips. In reality, people attach different levels of importance to 
each activity/trip, suggesting the necessity of introducing such weight parameters 
into the model. This study assumes one form of timing distribution. Depending 
on the types of activities/trips and their spatial–temporal constraints, the timing 
distributions may yield curves that are considerably different. The simultaneous 
representation of different timing distributions in the same modeling framework 
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clearly generates new difficulties for model estimation. Therefore, a methodologi-
cal breakthrough is expected to overcome the tradeoff between model complexity 
and operationalization. Finally, incorporating budget constraints could contribute 
to the improved measurement of the value of time over time, which is very impor-
tant in the evaluation of transportation policy.
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