
Chapter 17
Organisational Principles of Connectomes:
Changes During Evolution and Development

Roman Bauer and Marcus Kaiser

Abstract The set of neural connections in an organism is now called the con-
nectome. Using recent noninvasive techniques such as diffusion tensor imaging
and traditional invasive techniques for tract tracing has uncovered a wide range
of connectomes from Caenorhabditis elegans and Drosophila melanogaster to
cat, mouse, rat, macaque, and human. We can therefore start to look at organi-
sational changes during evolution. At the same time cell lineage information and
measurements at different time steps allow us to observe network changes during
individual, ontogenetic development. We find that the structure of a network is
closely linked to its function, with distinct functional components first leading
to network modules and, after the rise of further specialisation, to a hierarchical
architecture with modules at different levels of network organisation. We first
describe concepts that are used to characterize complex networks, then move on
to briefly discuss computational models for development and evolution, before
showing how network features change during the evolution and development of
brain networks. We conclude with future challenges in the field of connectome
development and evolution.
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17.1 Representing Brain Connectivity as a Network

The nodes of a neural network can be neurons, populations of neurons, or brain
regions, depending on the scale under examination. Synaptic connections between
such nodes can be of chemical or electrical nature. Neuronal activity is transmitted
in only one direction by chemical synapses (A–>B), whereas electrical synapses
allow for bidirectional communication (A<–>B). These networks or graphs can be
represented in an adjacency matrix (Fig. 17.1), based on which various measures
can be computed. Also, the network structure can be in weighted or binarized form,
depending on the knowledge of connection strength (e.g., the number of chemical
synapses between two neurons).

The synaptic connectivity reflects the structure of the neural network and
shapes its function. Also this functional aspect can be captured using the network
formalism, by establishing links between nodes that show similar activity patterns.
Such similarity could, for example, be measured in the correlation of the activity
patterns between two brain regions or two neurons. Again, the link could be a
continuous value of correlation strength, or could be binarized in that connection
weights are set to one if the corresponding correlation is above a certain threshold
and zero otherwise. Importantly, a functional connection might indicate that two
nodes are structurally connected, but it might also arise if both nodes are driven by
common input. In this chapter, we focus on the structural connectivity, that is, the
‘connectome’ (Sporns 2013).

17.2 Properties of Complex Networks

Before we describe the organisation of biological neural networks, we first need to
describe some concepts that are used to study complex networks. We only give a
brief overview; a more complete list of network measures can be found in (Costa
et al. 2007; Rubinov and Sporns 2010; Kaiser 2011).

Fig. 17.1 Network representations of neural networks. (a) Network with four nodes and
feedforward paths (A–>C, A–>B–>C) and feedback (A–>C–>D–>A) loops. (b) Representation
in an adjacency matrix where ‘1’ represents an existing connection and ‘0’ stands for a connection
that either has not been discovered yet or which is known to be absent. (c) For visualization,
such binary matrices can be represented with black squares for existing and white squares for
nonexisting connections
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17.2.1 Modularity

Networks often show topological modules, also called clusters or communities.
There is a relatively higher density of connections within modules than between
modules. This difference allows rapid flow and integration of information within
densely connected modules whereas information flow between modules can only
use fewer links that form a potential bottleneck for passing information.

The measure of modularity Q is a reflection of the segregation within a network
(Newman 2006), and serves as a tool in identifying the structural modules within.
It quantifies how well a parcellation into nonoverlapping modules or communities
represents the architecture of a network. Given two parcellations into distinct
modules for the same network, the parcellation with the higher value of Q would
be preferred.

From a biological aspect, modularity is an evolutionary beneficial network
property because it allows for robustness and evolvability (Hintze and Adami 2008).
Nonmodular network topologies entail strong interdependence among individual
sub-networks, and so local changes can have detrimental effects on a more global
level. It is therefore not surprising that modularity is a common feature of biological
networks.

17.2.2 Hierarchy

A pervasive property of most complex networks is a hierarchical structure among
nodes and/or modules. Usually, hierarchical networks are also modular, and the hier-
archical composition can involve different functional levels or temporal orders. For
example, a network might consist of several modules, where each module consists
of several sub-modules, which again consist of several sub-sub-modules, and so on.
A hierarchical structure has been shown to be a fundamental characteristic of many
complex systems (Ravasz and Barabási 2003).

17.2.3 Small World (SW) Property

The small world phenomenon (Milgram 1967) refers to the property that two nodes
in complex networks often are separated by much fewer edges than what one would
expect. Small-world networks can be assessed using two network features (Watts
and Strogatz 1998). First, the clustering coefficient describes how well neighbours
of a node are connected where neighbours are all nodes that are directly connected
to a node. For small-world networks, this proportion of links between neighbours is
much higher than for randomly connected networks. Another more recent measure
for this local connectivity is local efficiency (Latora and Marchiori 2001). Second,
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the characteristic path length describes the average number of connections one has
to cross to go from one node to another node following the shortest possible path (the
one with the lowest number of connections). This measure is only slightly higher
than for a randomly organised network. Another more recent measure for this global
feature is global efficiency (Latora andMarchiori 2001). For a small-world network,
the clustering coefficient is thus much higher while the characteristic path length is
comparable to that of a randomly connected network.

To ensure a comparable characteristic path length, small-world networks contain
‘short-cuts’ that directly link different parts of the network. Using these long-
range connections, one can quickly reach different parts of the network over few
intermediate links.

Most complex networks are also small-world networks. One main advantage of
small-world networks is that they incorporate fast communication within functional
modules (i.e., high clustering coefficient), and still allow for reliable and efficient
signal propagation to nodes in different modules (i.e. short minimal path length).
They also enable easier synchronisation of network activity (Masuda and Aihara
2004).

17.2.4 Scale-Freeness

Many complex networks have been shown to be scale-free or scale-invariant, a
property of how the values for the number of connections of a node, its degree, are
distributed. For randomly connected networks, the degree of a node will be close
to the average degree of all nodes in the network, which means that the degree will
be on the same characteristic scale: if the average degree is 10, all network degrees
may be in the range of 0–99. On the other hand, scale-free networks do not show a
characteristic scale: even if the average degree is 10, some nodes may have a degree
of 100, 1000, or higher, thus reaching different orders of magnitude. For scale-free
networks, the degree distribution follows the form P.k/ � k�� , where P.k/ denotes
the probability that a node is linked to k other nodes, and � is the exponent of this
power law. The seminal work of Barabási and Albert (Barabási and Albert 1999) has
proposed an abstract model for the growth of such scale-free networks. Since then,
many artificial networks and some biological ones have been demonstrated to be
scale-free (Jeong et al. 2000). However, for structural neural networks usually only
aggregate networks with connections between brain regions rather than between
individual neurons have been reconstructed. The only organism for which the
complete neuronal network structure is known is the roundworm Caenorhabditis
elegans (White et al. 1986; Achacoso and Yamamoto 1992). However, a scale-free
distribution is not supported in this case (Amaral et al. 2000). It therefore remains
to be clarified whether whole-brain structural connectomes are scale-free or not.
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17.2.5 Hubs

Scale-free and also other complex networks can have ‘hubs,’ nodes that participate
in many more connections than one would expect. Because of their structural
significance, hubs are usually also interesting from a functional point of view (Jeong
et al. 2001; Goymer 2008). Studies show that such networks are very robust against
random lesions, while being vulnerable towards removal or knockout of hubs
(Newman 2003; Warren et al. 2014). This resilience is believed to be advantageous
from an evolutionary point of view, which is in accordance with the finding that
hubs have been observed in most biological networks.

17.2.6 Rich-Club Organization

Networks with hubs often incorporate rich-club organization, a bias for hubs to
connect with one another, rather than with other nodes. It has been suggested that
evolution favours both (hubs and rich-club organization) properties because they
increase the robustness of networks to random breakdowns (McAuley et al. 2007).
Along these lines, rich-club organization supports versatile information processing,
allows for the dynamic resource allocation in a context-dependent manner and the
collaborative integration of multisensory information (Zamora-Lopez et al. 2010;
Collin et al. 2013; Senden et al. 2014).

17.3 Developmental and Evolutionary Patterns

As for other aspects of biology, it is useful to look at connectomes in terms
of their evolutionary origins and developmental trajectories. Indeed, evolutionary
mechanisms have been linked to topological network properties (Ebbesson 1980,
1984), and a number of complex network growth models have been proposed
(Barabási and Albert 1999; Ravasz and Barabási 2003; Louf et al. 2013). Such
models are usually framed on a rather abstract level, and it is ongoing work to
elucidate how certain complex network properties arise using growth mechanisms
based on local information exchange only (Sporns et al. 2004). Along these
lines, Kaiser and Hilgetag (2004a, b) and Nisbach and Kaiser (2007) propose
a local, spatial growth rule for the self-organization of network topologies with
similar clustering coefficients and characteristic path lengths as for structural brain
connectivity.

Advances in computing performance have led to the generation of novel research
tools (Stanley and Miikkulainen 2002; Torben-Nielsen and De Schutter 2014;
Zubler and Douglas 2009; Koene et al. 2009), paving the way for detailed
computational models of neural network evolution (Verbancsics and Stanley 2011;
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Fig. 17.2 Neuronal network morphology after simulated development (Bauer et al. 2014). The
network is composed of differentiated neurons (grey). For better visualization, examples of neurons
are coloured in red. Synapses (black rectangles) form at appositions between axons and dendrites

Gauci and Stanley 2010) and development (Bauer et al. 2012, 2014) (Fig. 17.2).
In the future, such models will likely allow for a more extensive comparison to
biological data across different spatial scales and developmental stages.

In the following, we give a short review of connectome patterns observed across
different species and developmental stages.

One of the simplest species possessing a neural network is Cnidaria. These
animals show a diffuse two-dimensional nerve net for the polyp stage, which, in
terms of network science, is called a regular or lattice network (Fig. 17.3a). In such
networks, neighbours are well connected (high clustering coefficient) but there are
no long-distance connections. We therefore do not have a small-world network yet.
Such lattice networks are an important part of neural systems such as the retina, as
well as some cortical and subcortical layered structures.

For functionally specialized circuits, however, a regular organization is unsuit-
able. The connectomes of evolutionary higher progressed species therefore have
modular topology (Kaiser 2015). Starting with the formation of sensory organs and
motor units, neurons aggregate in ganglia. Such ganglia are often not only spatially
clustered but also are modular in terms of connectivity (Fig. 17.3b). In this way,
ganglia can process one modality without interference from neurons processing
different kinds of information. A well-studied example of a modular network is the
neuronal network of C. elegans (White et al. 1986; Achacoso and Yamamoto 1992),
the first organism in which the complete set of neural connections or ‘connectome’
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Fig. 17.3 Examples of different types of neural networks (From Kaiser and Varier 2011). (a)
Regular or lattice network. (b) Modular network with two modules. (c) Hierarchical network with
two modules consisting of two sub-modules each. (d–f) Matrices represent the circular network
topologies. (g–i) Species possessing the afore detailed network architectures. (g) Polyp stage of
Hydra (phylum Cnidaria) shows a nerve net. (h) Nematode C. elegans shows a modular network.
(i) Global human neural network traced by diffusion tensor imaging

(Sporns et al. 2005) is known. In addition, the connectome of the fruit flyDrosophila
melanogaster has been investigated in this respect (Cardona et al. 2010; Ito et al.
2013). Indeed, a high modularity in terms of both spatial proximity as well as
topology are observed. However, with increasing complexity of neural processing,
a single module for one modality or function is not sufficient; an example is the
visual system in the rhesus monkey (macaque) where the visual module consists
of two network components: the dorsal pathway for processing object movement
and the ventral pathway for processing object features such as colour and form
(Young 1992). These networks are hierarchical, because smaller sub-modules are
nested within modules (Fig. 17.3c). A hierarchical structure has been observed
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in most modular brain connectomes (Chatterjee and Sinha 2008; Bassett et al.
2008; Felleman and van Essen 1991; Hilgetag et al. 2000). It has been argued that
hierarchical topology embeds a rich dynamic and functional repertoire based on an
economical wiring diagram (Meunier et al. 2010; Kaiser et al. 2010; Hilgetag and
Hutt 2014).

From a developmental perspective, it is notable that certain poly-sensory and
high-order association areas of cortex, which are the most complex areas in terms of
their laminar architecture, also exhibit the most complex developmental trajectories
(Shaw et al. 2008). Hence, structural and functional hierarchy is reflected also
developmentally during brain ontogenesis.

Although there is a trend for spatial neighbours to be in the same module, it is not
necessarily always true (da Fontoura et al. 2007). For the visual cortex in primates,
for example, the frontal eye field is most closely linked to the topological module
related to vision while being in the frontal lobe it is spatially distant from the other
visual regions that are part of the occipital lobe.

On a smaller scale, a connectivity pattern composed of modules is the superficial
patch system or daisy architecture, a patchy motive of clustered axonal projections
in the superficial layers of cortex (Rockland and Lund 1983, 1982; Gilbert and
Wiesel 1983). Interestingly, this connectivity pattern has been observed in mam-
malian species except rodents (Van Hooser et al. 2006). Different hypotheses exist
for how it arises during development (Mitchison and Crick 1982; Buzas et al. 2006;
Bauer et al. 2012). On the macroscale, modularity has been shown to develop early
on during human development (van den Heuvel et al. 2014).

Modular systems (Fig. 17.4) usually have, in addition to the strong intramodular
connectivity, sparse links between modules. These intermodular connections can

Fig. 17.4 Modules. (a) Schematic hierarchical modular network with modules at two levels,
cortical regions (large circles) including columns (smaller circles) that include individual neurons.
For modules, there are more connections within the same module than to other modules. (b)
Modular organization of human corticocortical connectivity (Hagmann et al. 2008). Cortical areas
were arranged around a circle by evolutionary optimization so that highly interlinked areas were
placed close to each other. Note that nodes in the same cluster, having a high structural similarity,
also have a similar function. (c) Dendrogram of the same network using hierarchical clustering.
A dendrogram running from the root to the leaves (here, from left to right) consists of branches
connecting objects in the tree. The distance of the branching point on the x-axis is the rescaled
distance when clusters are combined
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serve as shortcuts, hence rendering the average path length between any two to
be short. A short path length supports global brain functions, as the distributed
entities can efficiently be integrated (Sporns and Zwi 2004). Commonly, it has
been shown that many neural networks possess a small-world organization, as, for
example, C. elegans (Watts and Strogatz 1998), Drosophila (Ito et al. 2013), the
fibre tract networks between brain regions in the cat (Scannell et al. 1995), the
macaque (Hilgetag and Kaiser 2004; Sporns and Zwi 2004), and human brain (He
et al. 2007; Hagmann et al. 2008). Recent work using injections of an anterograde
tracer yielded the mouse connectome at the mesoscale resolution (between single-
neuron and whole-brain imaging resolution) (Oh et al. 2014). Also in this case, a
high clustering coefficient and the presence of hubs indicate small-world topology
(Sporns and Bullmore 2014). The incorporation of the small-world property across
many different species underlines its significance in promoting efficient and fast
communication between any two nodes, while keeping the total wiring length
comparably small (Karbowski 2001). However, these shortcuts come at rather high
metabolic costs, as they require the development of (spatial) long-range connections.
Interestingly, (Varier and Kaiser 2011) found that inC. elegans the majority of nodes
connected via long-range connections are born around the same time. This finding
suggests that developmental trajectories could allow for the efficient establishment
of neuronal connections, by forming these long-range projections early during
development, without the need for energetically expensive guidance cues. Related
to this, a recent study on the C. elegans and human connectome found that the
characteristic path length is longer than what one would expect based on the
modularity alone (Kim and Kaiser 2014). Entropy-based considerations indicate that
this discrepancy originates from evolutionary pressure towards efficient encoding of
developmental processes.

Overall, in modular networks there is a multidimensional trade-off between
saving axons, communication costs, and genetic efficacy. As for modularity, small-
world organization has been shown to arise early during human brain development
(van den Heuvel et al. 2014), and remain stable during brain maturation (Lim et al.
2013).

A further common hallmark of brain networks is the presence of hubs. For
mammals such as macaques, subcortical regions such as the hippocampus and
amygdala are the most highly connected nodes (Kaiser et al. 2007). The structural
centrality of these nodes goes usually hand in hand with functional significance.
Additionally, computational studies demonstrate that networks with hubs are more
resilient towards random node removal or knockout (Kaiser et al. 2007; Newman
2003; Warren et al. 2014). It is therefore not surprising that many brain diseases
usually involve malfunction of hub brain regions (Crossley et al. 2014). Interest-
ingly, hubs are usually in the centre of the brain, forming early during development
(Hwang et al. 2012; Varier and Kaiser 2011), and presumably originating earlier
during evolution. It has been suggested that the time that is available for connection
establishment, from node formation to brain maturation, has a crucial role in the
developmentally efficient establishment of hubs in vertebrates as well as in C.
elegans (Varier and Kaiser 2011).



396 R. Bauer and M. Kaiser

Interestingly, most brain networks with hubs have been shown to exhibit a rich-
club connectivity, for example, in the C. elegans (Towlson et al. 2013), cat (de
Reus and van den Heuvel 2013), macaque (Harriger et al. 2012), and human brain
(van den Heuvel and Sporns 2011). As for hubs, rich-club organization has been
shown to arise early during development (Ball et al. 2014; van den Heuvel et al.
2014). Such a developmental priority points towards this connectivity pattern to
serve as a developmental scaffold, and to confer several advantages to the network
as a whole (Collin et al. 2013; van den Heuvel et al. 2012). This central role in
the network is in accordance with pathological rich-club organization observed in
neurodevelopmental and other brain diseases (Grayson et al. 2014; Ray et al. 2014;
Daianu et al. 2013).

17.4 Conclusion

In summary, complex neural networks become less homogeneous during evolution
in line with their increasingly varied functional tasks. Neural systems in species
above a certain evolutionary stage show a modular, hierarchical and typically small-
world topology with rich-club organization. This shift in structural complexity goes
hand in hand with the (functional) specialization of the tasks that the organism
performs. This relationship between structure and function is reflected in evolution
(Sherwood et al. 2008; Semendeferi et al. 2011), as well as development (Hill et al.
2010). In addition to this functional perspective, certain network features emerged as
a consequence of the network topology itself: as brain networks evolved to become
more complex, there was the inherent pressure for greater resilience in the face of
injury. For example, although hubs and rich-club organization entail the formation
of additional axons, they are evolutionarily beneficial as they support such improved
resilience towards lesions. Simpler, regular networks seen in primitive life forms
have a higher degree of redundancy and are therefore less sensitive (Kaiser and
Varier 2011).

Multiple studies have shown that the topology of biological neural networks
satisfies a nontrivial ‘fitness function,’ that is, a combination of multiple natural
requirements. Aspects such as wiring economy, fast information flow, richness of
dynamics, functional specialization, integrative communication, robustness, and
developmental efficiency (Bullmore and Sporns 2012; Kim and Kaiser 2014)
influence connectome topologies. Hence, network science serves as a way of
understanding the structure and function of neural networks in light of evolutionary
pressure. Knowledge of how such multidimensional trade-offs can be satisfied will
also likely help in the improved design and planning of many artificial networks.

The early (temporal) formation of many complex network properties underlines
their significance and points to a genetically encoded blueprint. Possibly, these
initial properties support the reliable unfolding of the developmental process.
Interestingly, such characteristic network features are often disrupted in neurodevel-
opmental and neurodegenerative brain diseases, suggesting a better understanding
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of the connectome to be valuable from a clinical perspective (Stam 2014; Collin and
van den Heuvel 2013). State-of-the-art computational models have been proposed
to account for many real-world network characteristics (Barabási and Albert 1999;
Ravasz and Barabási 2003). However, these models are usually phrased on a
rather abstract level, and not directly relatable to biological mechanisms. The
detailed modelling of connectome development will have a major part in the better
understanding of the connectomes themselves.

Finally, elucidating the link between topological characteristics and functional
processing (e.g., does consciousness structurally correlate with the top level of
a hierarchical neural network and where is this ‘top’ level?) remains one of the
main challenges of the field. Because the structure and function of neural networks
are mutually influencing each other, insights into their dynamic interaction will
constitute a crucial part of this endeavour.
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