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Preface

The rapid development of computers has enabled us to design several industrial
products relying on detailed numerical simulation which is based on the Navier–
Stokes equation. This proves the reliability of the equation and one has become to be
able to manufacture those products without knowing the mathematical details of the
equation. The mathematical studies are, however, still crucial to invent completely
novel way to investigate unsolved problems, because the numerical simulation
does not suggest any new concepts. Moreover, even the governing equations have
not been known for complicated phenomena which include several different scales.
Multiphase flow is a typical and important example of such complicated multi-scale
phenomena. Mathematics can play an important role to construct formulation
and theory for the multiphase flows and other complex phenomena.

The research project titled A challenge to unsolved problems in fluid engineering
with modern mathematical analysis was pursued from 2009 to 2014 (five and half
years) as part of the CREST (Core Research for Evolutional Science and
Technology)–SBM (Search for Breakthrough by Mathematics). The aim of the
research was to tackle the above-mentioned problems enhancing the cooperation
between mathematics and engineering. On the occasion of the final year of the
project, the international conference was held during 11–14 November 2014 at
Waseda University in Tokyo in order to announce the results obtained through the
project as well as stimulate other related researches. This book is an outcome
of the conference which consists of original papers offered by invited speakers. The
contents range from the experimental study on cavitation jets to up-to-date math-
ematical analysis of the Navier–Stokes equations reflecting the feature of the
conference.

This book is divided into two parts: Multiphase Flows and Other Related Topics.
Both the parts contain articles on a wide range of studies from mathematics to
engineering. We hope that this contribution is attractive and useful for a wide range
of researchers and engineers as well.

Tokyo, Japan Yoshihiro Shibata
December 2015 Yukihito Suzuki
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Chapter 1
Nonconvergence of the Capillary Stress
Functional for Solutions of the Convective
Cahn-Hilliard Equation

Helmut Abels and Stefan Schaubeck

Abstract We show that the surface tension term −ε div(∇cε ⊗ ∇cε) of the “model
H” does generally not converge to the mean curvature functional of the interface as
ε ↘ 0, where cε is the solution to a convective Cahn-Hilliard equation with mobility
constant converging to 0 too fast as ε ↘ 0. In that case the motion of the interface is
dominated by the convection term v · ∇cε of the convective Cahn-Hilliard equation.

Keywords Two-phase flow · Diffuse interface model · Model H · Sharp interface
limit

Mathematics Subject Classification (2000): Primary 76T99 · Secondary:
35Q30 · 35Q35 · 35R35 · 76D05 · 76D45

1.1 Introduction

In this paper we consider the limit ε → 0, called sharp interface limit, for solutions
of the convective Cahn-Hilliard equation

∂t c
ε + v · ∇cε = m(ε)Δμε in Ω × (0,∞), (1.1)

με = ε−1 f (cε) − εΔcε in Ω × (0,∞), (1.2)
∂
∂n c

ε = ∂
∂nμ

ε = 0 on ∂Ω × (0,∞), (1.3)

cε|t=0 = cε
0 in Ω, (1.4)

where c : Ω × (0,∞) → R is the concentration difference of two fluids, μ : Ω ×
(0,∞) → R is the associated chemical potential difference, v : Ω × [0,∞) → R

d is
a given smooth velocity field, Ω ⊆ R

d is a bounded domain with smooth boundary,
d is the unit outer normal of ∂Ω , m(ε) is a mobility coefficient and ε > 0 is a

H. Abels (B) · S. Schaubeck
Fakultät Für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
e-mail: helmut.abels@mathematik.uni-regensburg.de
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Y. Shibata and Y. Suzuki (eds.), Mathematical Fluid Dynamics,
Present and Future, Springer Proceedings in Mathematics & Statistics 183,
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4 H. Abels and S. Schaubeck

parameter related to the “thickness” of the diffuse interface {x ∈ Ω|c(x, t)| < 1 − δ}
for δ ∈ (0, 1), and f = F ′, where F : R → R is a suitable double well potential e.g.
F(c) = (1 − c2)2.

The system (1.1) and (1.2) arises as part of the so-called “model H”, which leads
to system

∂tv
ε + vε · ∇vε − div(ν(cε)Dvε) + ∇ pε = −εdiv(∇cε ⊗ ∇cε) in Ω × (0,∞),

(1.5)

divvε = 0 in Ω × (0,∞),
(1.6)

∂t c
ε + vε · ∇cε = m(ε)Δμε in Ω × (0,∞),

(1.7)

με = −εΔcε + ε−1 f (cε) in Ω × (0,∞),
(1.8)

where vε : Ω × [0,∞) → R
d is the velocity field, Dvε = 1

2 (∇vε + (∇vε)T ), pε :
Ω × [0,∞) → R is the pressure, and ν(cε) > 0 is the viscosity of the mixture.

Using the method of formally matched asymptotic expansions, Abels et al. [4]
showed that the solutions to the “model H” converge of the solutions to the following
sharp interface models

∂tv + v · ∇v − div(ν±Dv) + ∇ p = 0 in Ω±(t), t > 0 ,

divv = 0 in Ω±(t), t > 0 ,

Δμ = 0 in Ω±(t), t > 0 ,

[v]Γ (t) = 0 on Γ (t), t > 0 ,

−[
νΓ (t) · (ν±Dv − pId)

]
Γ (t) = σκνΓ (t) on Γ (t), t > 0 ,

V − νΓ (t) · v = −m0
2

[
νΓ (t) · ∇μ

]
Γ (t) on Γ (t), t > 0 ,

μ = σκΓ (t) on Γ (t), t > 0 ,

when m(ε) = m0 > 0 and

∂tv + v · ∇v − div(ν±Dv) + ∇ p = 0 in Ω±(t), t > 0 ,

divv = 0 in Ω±(t), t > 0 ,

[v]Γ (t) = 0 on Γ (t), t > 0 ,

−[
νΓ (t) · (ν±Dv − pId)

]
Γ (t) = σκνΓ (t) on Γ (t), t > 0 , (1.9)

V − νΓ (t) · v = 0 on Γ (t), t > 0 ,

whenm(ε) = m0ε,m0 > 0. Hereν± > 0 are viscosity constants. Moreover,Ω±(t) ⊂
Ω are open and disjoint such that ∂Ω−(t) = Γ (t) = ∂Ω+(t) ∩ Ω . The outer normal
of ∂Ω−(t) is denoted by νΓ (t) and the normal velocity and the mean curvature of
Γ (t) are denoted by V and κ , respectively, taken with respect to νΓ (t). Furthermore,
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[ . ]Γ (t) denotes the jump of a quantity across the interface in the direction of νΓ (t), i.e.,
[ f ]Γ (t)(x) = limh→0( f (x + hνΓ (t)) − f (x − hνΓ (t))) for x ∈ Γ (t). To our knowl-
edge there are only two rigorous results known so far for the sharp interface limit.
These are due to Abels and Röger [6] and Abels and Lengeler [5], where convergence
in the sense of varifold solutions (cf. Chen [9]) is shown provided m(ε)−1ε → 0 as
ε → 0. A proof in a stronger sense is still open.

One of the main problem is to pass to the limit in the weak formulation of the
right-hand side of (1.5), which is

〈H ε, ϕ〉 := ε

∫

Ω

∇cε ⊗ ∇cε : ∇ϕ dx ϕ ∈ C1(Ω) .

Here cε is the solution to (1.1)–(1.4). This functional describes capillary stresses at the
diffuse interface and should converge to the right-hand side of the Young-Laplace
law (1.9). For θ = 0, 1 we expect for ϕ ∈ C∞

0,σ (Ω) = {
f ∈ C∞

0 (Ω)d : div f = 0
}

that

〈H ε, ϕ〉 −→ 2σ

∫

Γ (t)
νΓ (t) ⊗ νΓ (t) : ∇ϕ dH d−1 = −2σ

∫

Γ (t)
κνΓ (t) · ϕ dH d−1

(1.10)

as ε → 0. The last equality holds since νΓ (t) ⊗ νΓ (t) : ∇ϕ = −divΓ (t)ϕ due to divϕ =
0. Here and in the following σ ∈ R is defined as

σ = 1

2

∫

R

(
θ ′

0(z)
)

2dz

and θ0(x) is the “optimal diffuse interface profile”, that is the unique solution to

−θ ′′
0 + f (θ0) = 0 in R, θ0(0) = 0, lim

z→±∞ θ0(z) = ±1 . (1.11)

The formally matched asymptotic calculations in [4] show that the leading part of cε

is given by θ0(d(x, t)/ε) where d is the signed distance function to Γ (t). Then the
convergence of H ε can be shown in the same way as in Sect. 1.3.

In the following we will simplify the problem by considering the convective Cahn-
Hilliard equation (1.1) and (1.2). But we still ask, whether (1.10) holds true for the
solution of (1.1) and (1.2). It was shown in [13, Chap. 6] that in the case m(θ) = ε
the solutions cε of (1.1)–(1.4) with suitable well-prepared initial data cε

0 converge to
solutions of the geometric evolution equation

V = v · ν on Γ (t), t > 0,

Γ (0) = Γ0,

where Γ (t) ⊆ Ω , t ≥ 0, is an evolving smooth hypersurface with normal velocity
V and normal field ν. Moreover, one can prove (1.10) as follows: One replaces cε

A
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defined in Sect. 1.3 by the approximate solution cε
A defined in [13]. Since the leading

part of cε
A in [13] has the form θ0(d(x, t)/ε), the arguments in Sect. 1.3 show (1.10),

where one uses the convergence results for cε − cε
A proven in [13, Chap. 6].

The goal of the paper is to show that (1.10) is no longer valid if m(ε) tends to
zero too fast as ε → 0. More precisely, we will show nonconvergence in the case
m(ε) = εθ with θ > 3. Here we assume that the initial values cε

0 have a special form
defined in Sect. 1.2.

Finally, we comment on related results in the literature. Kwek [12] showed the
existence of classical solutions to the convective Cahn-Hilliard equation. For the
existence of weak solutions and strong solutions locally in time for the “model H”
we refer to the results of Abels [1–3] and references given there. The sharp interface
limit for the classical Cahn-Hilliard equation, i.e., (1.1) and (1.2) with v = 0 and
m(ε) = m0 > 0 was proved by Alikakos et al. [7] in a strong sense as long as the
limit Hele-Shaw problem possesses a smooth solution and by Chen [9] in the sense
of varifold solutions.

The structure of the article is as follows: In Sect. 1.2, we determine the notation
and summarize the basic assumptions. In Sect. 1.3, we consider the convective Cahn-
Hilliard equation with the mobility constantm(ε) = εθ for θ > 3. For θ > 3 we show
that the term −ε div(∇cε ⊗ ∇cε) in general does not converge to the mean curvature
of the interface, where cε is the solution for the convective Cahn-Hilliard equation.
The reason is that the convection term v · ∇cε dominates the motion of the interface
Γ (t). Therefore we can show that the approximate solutions do not have the form
θ0(d(x, t)/ε) as in [4] where d is the signed distance function to Γ (t) and θ0(x) is
the “optimal diffuse interface profile”.

1.2 Notation and Basic Assumptions

We denote a ⊗ b = (
aib j

)
d
i, j=1 for a, b ∈ R

d and A : B = ∑d
i, j=1 Ai j Bi j for A, B ∈

R
d×d . The cofactor matrix is denoted by cof(A) for A ∈ R

d×d . We assume that
Ω ⊂ R

d is a bounded domain with smooth boundary ∂Ω . For a time interval (0, T ),
T > 0, we define ΩT = Ω × (0, T ) and ∂TΩ = ∂Ω × (0, T ). Moreover, n denotes
the exterior unit normal on ∂Ω . For a hypersurface Γ (t) ⊂ Ω , t ∈ [0, T ], without
boundary such that Γ (t) = ∂Ω−(t) for a domain Ω−(t) ⊂⊂ Ω , the interior domain
is denoted by Ω−(t) and the exterior domain by Ω+(t) := Ω\(Ω−(t) ∪ Γ (t)), i.e.,
Γ (t) separates Ω into an interior and an exterior domain. The exterior unit normal
on ∂Ω−(t) = Γ (t) is denoted by νΓ (t). The mean curvature of Γ (t) is denoted by
κ = κ(t) with the sign convention that κ is positive, if Γ (t) is curved in the direction
of νΓ (t). For a signed distance function d with respect to Γ (t), we assume d < 0
in Ω−(t) and d > 0 in Ω+(t). By this convention we obtain ∇d = νΓ (t) on Γ (t).
Moreover, we use the definition Q± := {(x, t) ∈ ΩT : d(x, t) ≷ 0}. The “double-
well” potential F : R → R is a smooth function taking its global minimum 0 at ±1.
For its derivative f (c) = F ′(c) we assume
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f (±1) = 0, f ′(±1) > 0,

∫ u

−1
f (s) ds =

∫ u

1
f (s) ds > 0 ∀u ∈ (−1, 1).

(1.12)

Moreover, we assume that there exists some constant C0 ≥ 1 such that F(c) is
monotonically increasing for c ≥ C0 (i.e., f (c) ≥ 0) and monotonically decreas-
ing for c ≤ −C0 (i.e., f (c) ≤ 0). For example, this holds for F(c) = 1

8

(
1 − c2

)
2.

In Eq. (1.1) the given velocity field satisfies v ∈ C0
b (R;C4

b(Ω))d with div v = 0 and
v · n∂Ω = 0 on ∂Ω and the mobility constant m(ε) has the form m(ε) = εθ for some
θ ≥ 0. In Eq. (1.4) we choose the special initial value

cε|t=0 = ζ
(
d0

δ

)
θ0

(
d0

ε

)
+

(
1 − ζ

(
d0

δ

))(
2χ{d0≥0} − 1

)
in Ω , (1.13)

where we determine the constant δ > 0 later and where d0 is the signed distance
function to an initial smooth hypersurface Γ0 such that Γ0 = ∂Ω−

0 with Ω−
0 ⊂⊂ Ω .

Here ζ ∈ C∞
0 (R) is a cut-off function such that

ζ(z) = 1 if |z| <
1

2
, ζ(z) = 0 if |z| > 1, zζ ′(z) ≤ 0 in R , (1.14)

and θ0 is the unique solution to (1.11). This choice of the initial value is natural since
we can expect that cε ≈ θ0(d(x, t)/ε) for the model H with m(ε) = εθ , θ = 0, 1, see
[4]. Here d is the signed distance function to the interface Γ (t). In the following
lemma we show the existence of a unique solution to the problem (1.11).

Lemma 1.1 Let f ∈ C∞(R) be given such that the properties (1.12) hold. Then the
problem

−w′′ + f (w) = 0 in R, w(0) = 0, lim
z→±∞ w(z) = ±1 (1.15)

has a unique solution. In addition, the following properties hold

w′(z) > 0 ∀z ∈ R , (1.16)
∣
∣w2(z) − 1

∣
∣ + ∣

∣w(n)(z)
∣
∣ ≤ Cne

−α|z| ∀z ∈ R, n ∈ N\{0} (1.17)

for some constants Cn > 0, n ∈ N\{0}, and where α is a fixed constant such that

0 < α < min
{√

f ′(−1),
√

f ′(1)
}

.

Proof See Remark 3.1 in [7] or [13]. �
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1.3 Nonconvergence Result

First we investigate the flow of the velocity field v and prove some properties which
we will need later.

Lemma 1.2 Let v ∈ C0
b (R;C4

b (Ω))d be a given smooth velocity field such that
v · n|∂Ω = 0. Then there exists a unique global solution y to the problem

d

dt
y(t; y0) = v(y(t; y0), t), y(0; y0) = y0

for all y0 ∈ Ω . In particular, the flow X (., t) =: Xt : Ω → Ω defined by X (y0, t) =
y(t; y0) is a C4-diffeomorphism for all t ∈ R.

In addition, if div v = 0 in Ω , then it holds

det(DXt (x)) = 1 in ΩT (1.18)

and

∣∣DX−T
t ◦ Xt∇d0

∣∣2 = det(∂τi Xt · ∂τ j Xt )
d−1
i, j=1 on Γ0 , (1.19)

where {τ1(x), . . . , τd−1(x)} is an orthonormal basis of TxΓ0 and d0 is the signed
distance function of Γ0.

Proof Although the results are classical, we give a proof for the convenience of
the reader. By the Picard-Lindelöf theorem, there exists a unique solution y(.; y0) :
Imax → R

d for every y0 ∈ Ω where Imax is the maximal interval of existence. Since
v · n|∂Ω = 0, there exists a unique global solution y(.; y0) such that y(t; y0) ∈ ∂Ω
for all t ∈ R when y0 ∈ ∂Ω , cf. [8, Sect. 35. 4. Bemerkung]. By the uniqueness of
the solutions, it follows y(t; y0) ∈ Ω for all t ∈ Imax when y0 ∈ Ω . In particular,
every solution y(.; y0) is bounded for y0 ∈ Ω and therefore it holds Imax = R. Since
v(., t) ∈ C4(Ω)d for all t ∈ R, it follows from [14, III. Sect. 13 XI. Corollary] that
Xt ∈ C4(Ω)d . Let us show that Xt is invertible for all t ∈ R. Let t0 ∈ R be any time.
Define X−1

t0 : Ω → Ω by X−1
t0 (x) = ỹ(−t0; x) where ỹ(.; x) is the solution to

ỹ′(t) = v(ỹ(t), t + t0) in R , ỹ(0) = x .

Claim: Xt0(X
−1
t0 (x)) = x for all x ∈ Ω .

By definition of X−1
t0 , it holds

Xt0(X
−1
t0 (x)) = y(t0; ỹ(−t0; x)) .

Since y(. + t0; ỹ(−t0; x)) : R → R and ỹ are both solutions to
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y′(t) = v(y(t), t + t0) in R , y(−t0) = ỹ(−t0; x) ,

it follows ỹ(t; x) = y(t + t0; ỹ(−t0; x)) for all t ∈ R by uniqueness of the solution.
In particular, it follows y(t0; ỹ(−t0; x)) = ỹ(0; x) = x . This shows the claim.

Analogously, one can show X−1
t0 (Xt0(x)) = x for all x ∈ Ω . Hence X−1

t0 is the
inverse of Xt0 and X−1

t0 ∈ C4(Ω)d by the same arguments as for Xt0 . Due to [10, Satz
5.2], it holds

d

dt
det(DXt (x)) = divv(X, t)|X=Xt (x) det(DXt (x)) .

Since div v = 0 and X0 = Id, we obtain

det(DXt (x)) = 1 ∀(x, t) ∈ ΩT .

Using this property, we can verify the last assertion of the lemma. Since
X−1
t (Xt (x)) = x for all x ∈ Ω , it follows by differentiating with respect to x

Id = DX−1
t ◦ Xt DXt in Ω .

Due to Cramer’s rule and the last equation, it follows

DX−T
t ◦ Xt = 1

det(DXT
t )

cof(DXT
t )T = cof(DXt ) .

Therefore we get in a neighborhood of Γ (0)

∣∣DX−T
t ◦ Xt∇d0

∣∣2 = ∇d0 · (
cof(DXT

t )cof(DXt )
)∇d0

= ∇d0 · (
cof(DXT

t DXt )
)∇d0 .

Let Q be the change-of-basis matrix taking the orthonormal basis{
τ1, . . . , τd−1, νΓ0

}
to the standard basis {e1, . . . , ed} in R

d . Then Cramer’s rule
yields

QT = Q−1 = 1

det Q
cof QT = cof QT ,

and therefore it holds on Γ0

∇d0 · (
cof(DXT

t DXt )
)∇d0 = (Qed) · (

cof(DXT
t DXt )

)
(Qed)

= ed · (
cof QT cof(DXT

t DXt )cof Q
)
ed

= (
cof(QT DXT

t DXt Q)
)
dd

= det(∂τi Xt · ∂τ j Xt )
d−1
i, j=1 ,
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where the last equality follows due to the definition of the cofactor matrix. This
completes the proof of the lemma. �

Our main result is:

Theorem 1.1 Let Ω ⊂ R
d be a bounded domain with smooth boundary ∂Ω , Γ0 a

smooth hypersurface such that Γ0 = ∂Ω−
0 for a domain Ω−

0 ⊂⊂ Ω and let (cε, με)
be the solution to the convective Cahn-Hilliard equation (1.1)–(1.3) with initial
condition (1.13). Then, for every T > 0 and for all ϕ ∈ C∞([0, T ];D(Ω)d), it holds

∫ T

0
〈H ε, ϕ〉dt −→ 2σ

∫ T

0

∫

Γ (t)

∣∣∇(d0(X−1
t ))

∣∣νΓ (t) ⊗ νΓ (t) : ∇ϕ dH d−1 dt ,

as ε ↘ 0 and where the evolving hypersurface Γ (t) is the solution to the evolution
equation

V (x, t) = νΓ (t)(x, t) · v(x, t) for x ∈ Γ (t), t ∈ (0, T ), Γ (0) = Γ0,

where V is the normal velocity of Γ (t). Moreover, it holds

∥∥cε − (2χQ+ − 1)
∥∥2
L2(ΩT ) = O(ε) ,

as ε ↘ 0.

Remark 1.1 In general
∣∣∇(d0(X−1

t ))
∣∣ = ∣∣DX−T

t ∇d0 ◦ X−1
t

∣∣ �= 1. This can be shown
as follows. By choosing a suitable interface Γ0, it is sufficient to show that in general
DX−T

t is not length preserving. We show this by a counterexample. Let Ω ⊂ R
2

be the interior of the ellipse defined by the equation x2
1

2 + x2
2

4 = 1. For the veloc-
ity field v : Ω → R, we set v(x1, x2) := (x2,−2x1). Note that div v = 0 in Ω and
v · n∂Ω = 0 on ∂Ω since (2x1, x2) for (x1, x2) ∈ ∂Ω is a normal on ∂Ω . Then the

function y : R → Ω defined by y(t) =
(

sin(
√

2t),
√

2 cos(
√

2t)
)

is a solution to

y′(t) = v(y(t)) in R , y(0) = (0,
√

2) .

Since the velocity field v is independent of the time t , it follows X−1
t = X−t where

Xt is the flow of the ordinary differential equation y′ = v(y). Differentiating the
identity X−t ◦ Xt = Id with respect to t , yields

0 = DX−t (Xt (x)) v(Xt (x)) − v(x) ∀x ∈ Ω

since ∂t Xt = v(Xt ). Using our special solution above, we obtain X π

2
√

2
(0,

√
2) =

(1, 0). Hence we conclude

0 = DX− π

2
√

2
(1, 0) v(1, 0) − v(0,

√
2) = DX−1

π

2
√

2
(1, 0)

(
0

−2

)
−

(√
2

0

)
.
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Thus there exists a vector w ∈ R
2 and (x, t) ∈ Ω × R such that

∣∣DX−1
t (x)w

∣∣ �= |w|
and therefore DX−T

t (x) is also not length preserving.

The strategy of the proof of the theorem is the following: First we construct a
family of approximate solutions

{
cε
A

}
0<ε≤1 and estimate the difference ∇(cε − cε

A).
Then for an approximate functional H ε

A, we show that H ε − H ε
A → 0 as ε ↘ 0 when

θ > 3. Finally, we prove the assertion of the theorem for H ε
A.

We start with the observation that Γ (t) := Xt (Γ0) is the solution to the evolution
equation.

Lemma 1.3 Let Γ0 ⊂ Ω be a given smooth hypersurface such that Γ0 = ∂Ω−
0 for

a domain Ω−
0 ⊂⊂ Ω . Then the evolving hypersurface Γt := Γ (t) := Xt (Γ0) ⊂ Ω

is the solution to the problem

V (x, t) = νΓ (t)(x, t) · v(x, t) on Γt , t > 0, Γ (0) = Γ0,

where V is the normal velocity and νΓ (t) the unit outward normal to Γt .

Proof The initial condition Γ (0) = Γ0 is satisfied since Xt (x)|t=0 = x for all x ∈ Ω .
Let x0 ∈ Γt0 , t0 ∈ (0, T ), be arbitrary. Then there exists x̃0 ∈ Γ0 such that x0 =
Xt0(x̃0). By definition of the normal velocity, we obtain

V (x0, t0) = d

dt
Xt (x)

∣
∣∣∣(x,t)=(x̃0,t0) · ν(x0, t0) = v(Xt0(x̃0), t0) · ν(x0, t0)

= v(x0, t0) · νΓ (t)(x0, t0) .

This completes the proof. �

Let d : Ω × [0,∞) → R be the signed distance to (Γt )t∈[0,∞) satisfying d(., t) <
0 inside Γt and d(., t) > 0 outside Γt . Note that d0(x) = d(x, 0) for all x ∈ Ω . Let
S0(x) be the orthogonal projection of x on Γ0. Then there exists a constant δ >
0 such that Γ0(δ) := {

x ∈ Ω : ∣∣d0(x))
∣∣ < δ

} ⊂ Ω and τ0 : Γ0(δ) → (−δ, δ) × Γ0

defined by τ0(x) = (d0(x), S0(x)) is a smooth diffeomorphism, cf. [11, Kapi-
tel 4.6]. Furthermore, we define Γ := {(x, t) ∈ ΩT : d(x, t) = 0} and Γ (δ) :=
{(x, t) ∈ ΩT : |d(x, t)| < δ}.
Lemma 1.4 For e : ⋃

t∈[0,T ] Xt (Γ0(δ)) × {t} → R defined by e(x, t) :=
d0

(
X−1
t (x)

)
the following properties hold:

1. d
dt e(x, t) = −v(x, t) · ∇e(x, t) for all (x, t) ∈ ⋃

t∈[0,T ] Xt (Γ0(δ)) × {t}.
2. e(x, t) is a level set function for Γt , i.e., e(x, t) = 0 if and only if x ∈ Γt .

Proof By definition of δ, the function e is differentiable with respect to x in Xt (Γ0(δ))
for all t ∈ [0, T ].

To 1: It holds for all x ∈ Ω

Xt (X
−1
t (x)) = x .
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Differentiating with respect to t and x , we get the identities

0 = DXt (X
−1
t (x))∂t X

−1
t (x) + ∂t Xt (X

−1
t (x)) (1.20)

and Id = DXt (X
−1
t (x))DX−1

t (x). (1.21)

Hence we get by the definition of e

d

dt
e(x, t) = d

dt

(
d0(X−1

t (x))
) = ∇d0(X−1

t (x)) · ∂t X
−1
t (x)

= −∇d0(X−1
t (x)) · DX−1

t ∂t Xt (X
−1
t (x))

= −∇d0(X−1
t (x)) · DX−1

t v(Xt (X
−1
t (x)), t)

= −∇(
d0(X−1

t (x))
) · v(x, t)

= −∇e(x, t) · v(x, t) ,

where we have used (1.20) and (1.21) in the third equation.
To 2: The following equivalences hold since Xt : Ω → Ω is a diffeomorphism

d0(X−1
t (x)) = 0 ⇔ X−1

t (x) ∈ Γ0 ⇔ ∃y ∈ Γ0 s.t. X−1
t (x) = y

⇔ ∃y ∈ Γ0 s.t. x = Xt (y) ⇔ x ∈ Xt (Γ0) .

This shows that e is a level set function for Γt . �

As mentioned in Sect. 1.2, let θ0 be the solution to (1.11) and let ζ be a cut-off
function as in (1.14). Then we define

cε
A(x, t) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

±1 in Q± ∩ ⋃

t∈[0,T ]
Xt (Ω\Γ0(δ)) × {t} ,

ζ
(
e
δ

)
θ0

(
e
ε

) ± (1 − ζ
(
e
δ

)
) in Q± ∩ ⋃

t∈[0,T ]
Xt (Γ0(δ)\Γ0

(
δ
2

)
) × {t},

θ0
(
e
ε

)
in

⋃

t∈[0,T ]
Xt (Γ0

(
δ
2

)
) × {t} .

Note that cε
A(., 0) = cε(., 0) since e(., 0) = d0 and ∂t cε

A + v · ∇cε
A = 0 in ΩT since

∂t e + v · ∇e = 0. Moreover, cε
A and Δcε

A satisfy Neumann boundary conditions on
∂Ω since cε

A = 1 in a neighborhood of the boundary ∂Ω .
Furthermore, we define for all ϕ ∈ D(Ω)d the functional H ε

A : D(Ω)d → R by

〈
H ε

A, ϕ
〉 = ε

∫

Ω

∇cε
A ⊗ ∇cε

A : ∇ϕ dx .

Lemma 1.5 Let cε
A be defined as above. Then there exists some constant C > 0

independent of ε and ε0 ∈ (0, 1] such that the estimates
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∥∥Δcε
A(., t)

∥∥
L2(Ω) ≤ Cε− 3

2 , (1.22)
∥∥∇cε

A(., t)
∥∥
L2(Ω) ≤ Cε− 1

2 , (1.23)
∥∥ f (cε

A(., t))
∥∥
L2(Ω) ≤ Cε

1
2 , (1.24)

∥
∥cε

A(., t) − (2χQ+(., t) − 1)
∥
∥
L2(Ω) ≤ Cε

1
2 (1.25)

hold for all t ∈ [0, T ] and ε ∈ (0, ε0).

Proof We obtain for all (x, t) ∈ ⋃
t∈[0,T ] Xt (Γ0

(
δ
2

)
) × {t}

Δcε
A(x, t) = ε−2|∇e|2θ ′′

0

(
e
ε

) + ε−1Δe θ ′
0

(
e
ε

)
.

Hence there exists some constant C > 0 independent of ε and t ∈ [0, T ] such that

∥∥Δcε
A(., t)

∥∥
L2(Xt (Γ0(δ/2))) ≤ C

(
ε−2

∥∥θ ′′
0

(
e
ε

)∥∥
L2(Xt (Γ0(δ/2))) + ε−1) .

Using θ ′′
0 (z) ≤ Ce−α|z| (see Lemma 1.1) for all z ∈ R and for some C > 0, we con-

clude

∥
∥θ ′′

0 (e/ε)
∥
∥2
L2(Xt (Γ0(δ/2))) ≤ C

∫

Xt (Γ0(δ/2))

e−2α|d0(X−1
t (x))/ε| dx

= C
∫

Γ0(δ/2)

e−2α|d0(x)/ε| det|DXt (x)|dx

= C
∫

Γ0(δ/2)

e−2α|d0(x)/ε| dx ,

where we have used (1.18). Using the identity
∫
Γ0(δ/2) f (x) dx = ∫ δ/2

−δ/2∫
Γ r

0
f (x) dH n−1 dr for all integrable functions f where Γ r

0 = {x ∈ Ω : x = s+
r νΓ0(s), s ∈ Γ0

}
for r ∈ R (we will show this identity at the end of the proof), one

gets

∥∥θ ′′
0 (e/ε)

∥∥2
L2(Xt (Γ0(δ/2))) ≤ C

∫ δ/2

−δ/2

∫

Γ r
0

e−2α|d0/ε| dH n−1 dr

= C
∫ δ/2

−δ/2
e−2α|r/ε|

∫

Γ r
0

1 dH n−1 dr

≤ Cε

for some C = C(Γ0) > 0 independent of ε and t ∈ [0, T ]. Again using Lemma 1.1,
we obtain in

⋃
t∈[0,T ] Xt (Γ0(δ)\Γ0

(
δ
2

)
) × {t}
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Δcε
A(x, t) = ε−2|∇e|2θ ′′

0

(
e
ε

)
ζ
(
e
δ

) + ε−1Δe θ ′
0

(
e
ε

)
ζ
(
e
δ

) + 2ε−1θ ′
0

(
e
ε

)∇e · ∇(
ζ
(
e
δ

))

+(
θ0

(
e
ε

) − (2χQ+ − 1)
)
Δ

(
ζ
(
e
δ

))

= O(ε−2e− αδ
4ε ) .

Altogether, this shows (1.22) for all ε > 0 small enough.
The second estimate can be shown by the same arguments.
Using f (±1) = 0 and the Taylor expansion, it follows

f (cε
A) = f ′((2χQ+ − 1) + Θ(cε

A − 2χQ+ + 1))
(
cε
A − (2χQ+ − 1)

)

for someΘ = Θ(x, t) ∈ (0, 1). For all (x, t) ∈ ⋃
t∈[0,T ] Xt (Γ0(

δ
2 )) × {t}, there exists

some constant C > 0 independent of x and t such that

∣∣cε
A − (2χQ+ − 1)

∣∣ = ∣∣θ0
(
e
ε

) − (2χQ+ − 1)
∣∣ ≤ Ce− α|e|

2ε

due to Lemma 1.1. In
⋃

t∈[0,T ] Xt (Γ0(δ)\Γ0
(

δ
2

)
) × {t} we get due to the definition of

cε
A ∣∣cε

A − (2χQ+ − 1)
∣∣ ≤ Ce− αδ

4 .

In
⋃

t∈[0,T ] Xt (Ω\Γ0(δ)) × {t} we have cε
A = 2χQ+ − 1. Then we can apply the same

estimates as above to prove the third and also the forth assertion.
It remains to show the integral identity

∫
Γ0(δ/2) f (x) dx = ∫ δ/2

−δ/2

∫
Γ r

0
f (x) dH n−1 dr .

To this end we choose an relatively open set U ⊂ Γ0 such that U can be described
as a graph, i.e., (possibly after rotation) there exists an open set D ⊂ R

d−1 and a
function g : D → R such that U = {(y, g(y)) : y ∈ D}. Define the sets U (δ) and
Ur , r ∈ (−δ, δ), by

U (δ) = {
x + rνΓ0(x) : x ∈ U, r ∈ (−δ, δ)

}
, Ur = {

x + rνΓ0(x) : x ∈ U
}
.

Then the function Φ : (−δ, δ) × D → U (δ) defined by Φ(r, y) = (y, g(y)) +
rνΓ0(y, g(y)) is a smooth diffeomorphism. Let f : Rd → R be an arbitrary inte-
grable function. By coordinate transformation, we obtain

∫

U (δ)

f (x) dx =
∫ δ

−δ

∫

D
( f ◦ Φ)(r, y)|det(DΦ(r, y))|dy dr

=
∫ δ

−δ

∫

D
( f ◦ Φ)(r, y)

∣∣det(DΦ(r, y)T DΦ(r, y))
∣∣ 1

2 dy dr .

We continue with calculating det(DΦ(r, y)T DΦ(r, y)). For all i ∈ {1, . . . d − 1},
it follows

∂rΦ(r, y) · ∂yi Φ(r, y) = νΓ0(y, g(y)) · [
(ei , ∂i g(y)) + r∂i (νΓ0(y, g(y)))

] = 0 ,
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where ei ∈ R
d−1 is the i-th standard unit vector. Here we have used that

νΓ0(y, g(y)) · (ei , ∂i g(y)) = 1√
|∇g|2+1

(−∇g

1

)
·
(
ei
∂i g

)
= 0

and νΓ0(y, g(y)) · ∂i (νΓ0(y, g(y))) = 0. Hence we get

det(DΦ(r, y)T DΦ(r, y)) = det

(
1 0
0 DyΦ

T DyΦ

)
= det(DyΦ

T (r, y)DyΦ(r, y)) .

Therefore we obtain the identity

∫

U (δ)

f (x) dx =
∫ δ

−δ

∫

D
( f ◦ Φ)(r, y)

∣∣det(DyΦ(r, y)T DyΦ(r, y))
∣∣ 1

2 dy dr

=
∫ δ

−δ

∫

Ur

f (x) dH d−1 dr

where the last equality follows from Φ(r, D) = Ur for all r ∈ (−δ, δ), that is,
Φ(r, .) : D → Ur is a chart forUr . Using partition of the unity, the assertion follows.
This completes the proof of the lemma. �

Lemma 1.6 Let cAε be defined as above and let cε be the unique solution to (1.1)–
(1.3) with initial condition (1.13). Then, for θ > 3, there exists some constant C > 0
independent of ε and ε0 > 0 such that

ε
∥∥∇(cε − cε

A)
∥∥2
L2(ΩT ) ≤ Cε

θ−3
2 , (1.26)

and
∥∥cε − cε

A

∥∥2
L2(ΩT ) ≤ Cεθ−2 (1.27)

for all ε ∈ (0, ε0].
Proof Let R = cε − cε

A be the remainder. Since ∂t cε
A + v · ∇cε

A = 0 in ΩT , it holds

∫

Ω

R(., t) dx =
∫ t

0

∫

Ω

∂t R dx dt = −
∫ t

0

∫

Ω

v · ∇R dx dt + εθ

∫ t

0

∫

Ω

Δμε dx dt

=
∫ t

0

∫

Ω

divv R dx dt −
∫ t

0

∫

∂Ω

v · nR dH d−1 dt

+
∫ t

0

∫

∂Ω

∂

∂n
με dH d−1 dt = 0

for all t ∈ [0, T ]. Hence we can find a unique solution Ψ : ΩT → R to the problem

−ΔΨ (., t) = R(., t) in Ω ,
∂

∂n
Ψ (., t) = 0 on ∂Ω ,

∫

Ω

Ψ (., t) = 0
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for every t ∈ [0, T ]. We multiply the difference of the differential equations for cε and
cε
A by Ψ and integrate the resulting equation over Ω . Then we get for all t ∈ (0, T )

0 =
∫

Ω

Ψ
[
∂t R + v · ∇R + εθ+1Δ2R + εθ+1Δ2cε

A − εθ−1Δ f (cε)
]
dx

=
∫

Ω

Ψ (−Δ∂tΨ ) − ∇Ψ · vR + εθ+1ΔΨ ΔR dx

+
∫

Ω

εθ+1ΔΨ Δcε
A − εθ−1ΔΨ f (cε) dx

= 1

2

d

dt

∫

Ω

|∇Ψ |2dx +
∫

Ω

−∇Ψ · vR + εθ+1|∇R|2dx

+
∫

Ω

−εθ+1RΔcε
A + εθ−1R f (cε) dx ,

where we have used the Neumann boundary conditions ∂
∂nΔcε

A = ∂
∂nΨ = ∂

∂n f (cε) =
0, v · n = 0 and ∂

∂nΔcε = −ε−1 ∂
∂nμ

ε + ε−2 ∂
∂n f (cε) = 0 on ∂Ω as well as div v = 0

in Ω .

By the assumptions f (cε) ≥ 0 for cε ≥ C0 ≥ 1 ≥ cε
A and f (cε) ≤ 0 for cε ≤

−C0 ≤ −1 ≤ cε
A, we obtain

∫

{x∈Ω : |cε(x,t)|≥C0}
f (cε)R dx ≥ 0 .

Hence Hölder’s and Young’s inequalities yield

1

2

d

dt

∫

Ω

|∇Ψ |2dx + εθ+1
∫

Ω

|∇R|2dx + εθ−1
∫

{x∈Ω : |cε(x,t)|≥C0}
f (cε)R dx

≤
∣∣∣∣

∫

Ω

∇Ψ · vR dx

∣∣∣∣ + εθ+1‖R‖L2(Ω)

∥∥Δcε
A

∥∥
L2(Ω)

+ εθ−1

∣∣
∣∣

∫

{x∈Ω : |cε(x,t)|<C0}
f (cε)R dx

∣∣
∣∣. (1.28)

We estimate the right-hand side. By integration by parts and due to v · n = 0 on ∂Ω ,
the identity

∫

Ω
∂i jΨ v j ∂iΨ dx = −

∫

Ω
∂iΨ ∂ j v j ∂iΨ dx −

∫

Ω
∂iΨ v j ∂i jΨ dx = −

∫

Ω
∂iΨ v j ∂i jΨ dx

yields

∫

Ω

∇Ψ · (
D2Ψ v

)
dx = 0 .
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Therefore we obtain the following estimate for the first term in (1.28) on the right-
hand side

∣
∣
∣∣

∫

Ω
∇Ψ · vR dx

∣
∣
∣∣ =

∣
∣
∣∣

∫

Ω
∇Ψ · vΔΨ dx

∣
∣
∣∣ =

∣
∣
∣∣

∫

Ω
∇Ψ ·

(
D2Ψ v

)
+ ∇v : (∇Ψ ⊗ ∇Ψ ) dx

∣
∣
∣∣

=
∣
∣∣
∣

∫

Ω
∇v : (∇Ψ ⊗ ∇Ψ ) dx

∣
∣∣
∣ ≤ ‖∇v‖L∞(ΩT )‖∇Ψ ‖2

L2(Ω)
, (1.29)

for all t ∈ [0, T ] and where we have used the boundary condition ∂
∂nΨ = 0 on ∂Ω .

Using Taylor series expansion for the last term in (1.28) on the right-hand side, we
get for all ε ∈ (0, ε0)

∫

{x∈Ω : |cε(x,t)|<C0}
f (cε)R dx =

∫

{x∈Ω : |cε(x,t)|<C0}
f (cε

A)R + f ′(cε
A + ΘR)R2 dx

≤ ∥∥ f (cε
A)

∥∥
L2(Ω)‖R‖L2(Ω) + C‖R‖2

L2(Ω)

≤ Cε
1
2 ‖R‖L2(Ω) + C‖R‖2

L2(Ω) (1.30)

for some Θ = Θ(x, t) ∈ (0, 1) and some constant C > 0 independent of ε and t ∈
[0, T ]. Here we have used inequality (1.24) with the same constant ε0 > 0. Therefore
estimate (1.28) turns with (1.29), (1.30), and (1.22) into

1

2

d

dt

∫

Ω

|∇Ψ |2dx + εθ+1

2

∫

Ω

|∇R|2dx

≤ C1

(
‖∇Ψ ‖2

L2(Ω) + εθ− 1
2 ‖R‖L2(Ω) + εθ− 1

2 ‖R‖L2(Ω) + εθ−1‖R‖2
L2(Ω)

)

for some C1 > 0 independent of ε and t ∈ [0, T ]. Since

‖R‖2
L2(Ω) = −

∫

Ω

RΔΨ dx =
∫

Ω

∇R · ∇Ψ dx ≤ ‖∇R‖L2(Ω)‖∇Ψ ‖L2(Ω) ,

we obtain by Young’s inequality

εθ− 1
2 ‖R‖L2(Ω) ≤ ε

3θ−3
2 + C‖∇Ψ ‖2

L2(Ω) + εθ+1

16C1
‖∇R‖2

L2(Ω)

and

εθ−1‖R‖2
L2(Ω) ≤ εθ+1

8C1
‖∇R‖2

L2(Ω) + Cεθ−3‖∇Ψ ‖2
L2(Ω) .

Using the last two inequalities and θ > 3, we get

1

2

d

dt

∫

Ω

|∇Ψ |2dx + εθ+1

4

∫

Ω

|∇R|2dx ≤ C
(
‖∇Ψ ‖2

L2(Ω) + ε
3θ−3

2

)
(1.31)
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for some C > 0 independent of ε. Since R(., 0) = 0, it follows Ψ (., 0) = 0. Then
the Gronwall inequality yields

sup
0≤t≤T

‖∇Ψ (., t)‖2
L2(Ω) ≤ Cε

3θ−3
2

for some C = C(T ) > 0 independent of ε. Integrating (1.31) over (0, T ), yields

εθ+1‖∇R‖2
L2(ΩT ) ≤ C

(
‖∇Ψ ‖2

L2(ΩT ) + ε
3θ−3

2

)
≤ Cε

3θ−3
2

for some C > 0 independent of ε. Furthermore, it follows

‖R‖2
L2(ΩT ) ≤ ‖∇Ψ ‖L2(ΩT )‖∇R‖L2(ΩT ) ≤ Cε

3θ−3
4 ε

θ−5
4 = Cεθ−2 .

Hence the assertions of the lemma follow. �

Now we can show that H ε − H ε
A converges to 0 as ε goes to zero.

Lemma 1.7 Let H ε and H ε
A be defined as above and let θ > 3. Then it holds for all

ϕ ∈ C∞([0, T ];D(Ω)d)

∣∣∣
∣

∫ T

0

〈
H ε − H ε

A, ϕ
〉
dt

∣∣∣
∣ −→ 0 ,

as ε ↘ 0.

Proof We choose any ϕ ∈ C∞([0, T ];D(Ω)d) and set R = cε − cε
A. Then it holds

by the triangle inequality

ε

∣
∣∣∣

∫

ΩT

(∇cε ⊗ ∇cε − ∇cε
A ⊗ ∇cε

A

) : ∇ϕ dx

∣
∣∣∣

≤ ε

∣∣
∣∣

∫

ΩT

(∇cε ⊗ ∇R) : ∇ϕ dx

∣∣
∣∣ + ε

∣∣
∣∣

∫

ΩT

(∇R ⊗ ∇cε
A

) : ∇ϕ dx

∣∣
∣∣

≤ ε‖∇ϕ‖L∞(ΩT )‖∇R‖L2(ΩT )

(‖∇cε‖L2(ΩT ) + ∥∥∇cε
A

∥∥
L2(ΩT )

)
.

Due to Lemma 1.5, we have

∥∥∇cε
A

∥∥2
L2(ΩT ) ≤ Cε−1

for some C > 0 independent of ε. Since

‖∇cε‖L2(ΩT ) ≤ ∥∥∇cε
A

∥∥
L2(ΩT ) + ‖∇R‖L2(ΩT )
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and due to Lemma 1.6, it follows

∣∣∣∣

∫ T

0

〈
H ε − H ε

A, ϕ
〉
dt

∣∣∣∣ ≤ Cε
θ−3

4

(
1 + ε

θ−3
4

)

for some constant C = C(ϕ) > 0 and for all ε small enough. Since θ > 3 the asser-
tion follows. �
Lemma 1.8 Let H ε

A and cε
A be defined as above. Then it holds for all ϕ ∈ D(Ω)d

and t ∈ [0, T ]
〈
H ε

A, ϕ
〉 −→ 2σ

∫

Γ (t)

∣∣∇(d0(X−1
t ))

∣∣νΓ (t) ⊗ νΓ (t) : ∇ϕ dH d−1,

as ε ↘ 0.

Proof Let ϕ ∈ D(Ω)d and t ∈ [0, T ] be arbitrary. Observe that

∣∣∇cε
A

∣∣ = ∣∣ε−1ζ
(
e
δ

)
θ ′

0

(
e
ε

)∇e + (
θ0

(
e
ε

) − (
2χQ+ − 1

))∇(
ζ
(
e
δ

))∣∣ ≤ Cε−1e− αδ
4ε

in
⋃

t∈[0,T ] Xt (Γ0(δ)\Γ0
(

δ
2

)
) × {t} and ∇cε

A = 0 in
⋃

t∈[0,T ] Xt (Ω\Γ0(δ)) × {t}.

Hence we can replace cε
A by θ0(

e
ε
) in the whole domain ΩT since the remainder

decays exponentially as ε → 0.
Since Xt : Ω → Ω is a diffeomorphism, we obtain by coordinate transformation

〈
H ε

A, ϕ
〉 = ε

∫

Ω

∇cε
A ⊗ ∇cε

A : ∇ϕ dx + O(ε)

= ε

∫

Ω

∇cε
A ◦ Xt ⊗ ∇cε

A ◦ Xt : ∇ϕ ◦ Xt |det(DXt )|dx + O(ε) .

Due to Lemma 1.2, it holds

det(DXt (x)) = 1 ∀(x, t) ∈ ΩT , (1.32)

and the identity (1.21) yields

∇cε
A ◦ Xt = DX−T

t ◦ Xt ∇(cε
A ◦ Xt ) . (1.33)

By Eqs. (1.32) and (1.33), we conclude

〈
H ε

A, ϕ
〉 = ε

∫

Ω

M ∇(cε
A ◦ Xt ) ⊗ M ∇(cε

A ◦ Xt ) : ∇ϕ ◦ Xt dx + O(ε) ,

where M = M(x, t) := (DX−T
t ◦ Xt )(x). Using cε

A = θ0(d0 ◦ X−1
t /ε) in Xt (Γ ( δ

2 ))
yields



20 H. Abels and S. Schaubeck

〈
H ε

A, ϕ
〉 = ε−1

∫

Ω

(
θ ′

0

(
d0

ε

))
2M ∇d0 ⊗ M ∇d0 : ∇ϕ ◦ Xt dx + O(ε) . (1.34)

Now we consider the limit ε ↘ 0.

Claim: Let f ∈ C1(Ω) be an arbitrary function. Then it holds

ε−1
∫

Ω

(
θ ′

0

(
d0

ε

))
2 f dx −→ 2σ

∫

Γ0

f dH d−1 , (1.35)

as ε ↘ 0.

Proof of the claim: Since there exists some constant C > 0 such that

∣
∣∣θ ′

0

(
d0(x)

ε

)∣
∣∣ ≤ Ce− α|d0(x)|

ε ∀x ∈ Ω ,

it is sufficient to consider the domain Γ0(δ) instead of Ω . Hence we have the identity

ε−1
∫

Γ0(δ)

(
θ ′

0

(
d0

ε

))
2 f dx = ε−1

∫ δ

−δ

(
θ ′

0

(
r
ε

))2
∫

Γ r
0

f dH d−1 dr ,

where Γ r
0 = {

x ∈ Ω : x = s + rνΓ0(s), s ∈ Γ0
}
, cf. the end of the proof of Lemma

1.5. Define Ψ f : R → R by

Ψ f (r) =
{∫

Γ r
0
f dH d−1 if r ∈ (−δ, δ)

0 if r ∈ R\(−δ, δ) ,

ϕ : R → R by

ϕ(r) = 1

2σ

(
θ ′

0(r)
)

2 for all r ∈ R

and ϕε : R → R by

ϕε(r) = ε−1ϕ
(r
ε

)
for all r ∈ R

for ε ∈ (0, 1]. Then ϕ is a one-dimensional mollifier. Therefore we obtain

ε−1
∫

Γ0(δ)

(
θ ′

0

(
d0

ε

))
2 f dx = 2σ

∫

R

ϕε(r)Ψ f (r) dr

= 2σ

∫

R

ϕε(r)Ψ f (−(0 − r)) dr

= 2σϕε ∗ Ψ̃ f (0) ,

where Ψ̃ f (r) = Ψ f (−r) and ϕε ∗ Ψ̃ f denotes convolution of ϕε and Ψ̃ f . To show the
convergence, it is necessary to estimate

∣
∣Ψ f (r) − Ψ f (0)

∣
∣ for r ≤ δ. By definition of

Ψ f , we obtain
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∣
∣Ψ f (r) − Ψ f (0)

∣
∣ =

∣∣
∣∣∣

∫

Γ r
0

f dH d−1 −
∫

Γ0

f dH d−1

∣∣
∣∣∣

=
∣∣∣∣

∫

Γ0

f ◦ τr

∣∣∣det(∂τi τr · ∂τ j τr )
d−1
i, j=1

∣∣∣
1
2 − f dH d−1

∣∣∣∣

≤
∣∣∣∣

∫

Γ0

( f ◦ τr − f )
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣
1
2 dH d−1

∣∣∣∣

+
∣∣∣∣

∫

Γ0

f
(

1 −
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣
1
2

)
dH d−1

∣∣∣∣,

where we have used the transformation τr : Γ0 → Γ r
0 defined by τr (x) = x +

rνΓ0(x) and where {τ1(x), . . . , τd−1(x)} is an orthonormal basis of TxΓ0. We esti-
mate the two terms on the right-hand side separately. The fundamental theorem of
calculus yields

∣∣∣∣

∫

Γ0

( f ◦ τr − f )
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣
1
2 dH d−1

∣∣∣∣

=
∣∣∣∣

∫

Γ0

(∫ r

0
∇ f (x + sνΓ0) · νΓ0 ds

)∣∣∣det(∂τi τr · ∂τ j τr )
d−1
i, j=1

∣∣∣
1
2 dH d−1

∣∣∣∣

≤ C |r |‖ f ‖C1(Ω)

for some C = C(Γ0) > 0 independent of r . We continue with the second term. Note
that

∂τi τr · ∂τ j τr = δi j + r
(
τi · ∂τ j νΓ0 + τ j · ∂τi νΓ0 + r∂τi νΓ0 · ∂τ j νΓ0

)
.

Hence we can conclude
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣ = 1 + O(r) ,

and therefore it follows

1 −
∣
∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣
∣∣

1
2 =

1 −
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣

1 +
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣
1
2

= O(r) .

Thus we get the following estimate

∣∣∣∣

∫

Γ0

f
(

1 −
∣∣∣det(∂τi τr · ∂τ j τr )

d−1
i, j=1

∣∣∣
1
2

)
dH d−1

∣∣∣∣ ≤ C |r |‖ f ‖C0(Ω)

for some C = C(Γ0) > 0 independent of r . Hence we obtain

∣∣Ψ f (r) − Ψ f (0)
∣∣ ≤ C |r |‖ f ‖C1(Ω) .
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Applying this estimate, we can prove the assertion

∣∣
∣
∣ε

−1
∫

Γ0(δ)

(
θ ′

0

(
d0

ε

))
2 f dx − 2σ

∫

Γ0

f dH d−1
∣∣
∣
∣

= 2σ
∣
∣
∣ϕε ∗ Ψ̃ f (0) − Ψ̃ f (0)

∣
∣
∣

= 2σ

∣
∣
∣
∣

∫

R

ϕε(y)Ψ̃ f (−y) dy − Ψ̃ f (0)

∣
∣
∣
∣

= 2σ

∣
∣
∣∣

∫

R

ϕε(y)
(
Ψ̃ f (−y) − Ψ̃ f (0)

)
dy

∣
∣
∣∣

≤ 2σ

∫ √
ε

−√
ε
ϕε(y)

∣
∣
∣Ψ̃ f (−y) − Ψ̃ f (0)

∣
∣
∣dy + 2σ

∫

R\(−√
ε,

√
ε)

ϕε(y)
∣
∣
∣Ψ̃ f (−y) − Ψ̃ f (0)

∣
∣
∣dy

≤ Cε
1
2 ‖ f ‖C1(Ω)

∫

R

ϕε(y) dy + C‖ f ‖C0(Ω)

∫

R\(−√
ε,

√
ε)

ϕε(y) dy

≤ Cε
1
2 ‖ f ‖C1(Ω) + C‖ f ‖C0(Ω)

∫

R\(−√
ε,

√
ε)

ε−1e−
2α|y|

ε dy

≤ Cε
1
2 ‖ f ‖C1(Ω) + C‖ f ‖C0(Ω)ε

−1e
− 2α√

ε

for some C = C(Γ0) > 0 independent of ε and where we have used
∫
R

ϕε(z) dz = 1
for all ε ∈ (0, 1]. Hence the claim follows.

The relation (1.34) and the property (1.35) yield

〈
H ε

A, ϕ
〉 −→ 2σ

∫

Γ0

M∇d0 ⊗ M∇d0 : (∇ϕ) ◦ Xt dH
d−1

as ε ↘ 0.
We apply coordinate transformation to the right-hand side. Note that due to Lemma

1.2, it holds

|M |2 = ∣∣DX−T
t ◦ Xt∇d0

∣∣2 = det(∂τi Xt · ∂τ j Xt )
d−1
i, j=1 on Γ0 .

Then we obtain

2σ

∫

Γ0

DX−T
t ◦ Xt∇d0 ⊗ DX−T

t ◦ Xt∇d0 : (∇ϕ) ◦ Xt dH
d−1

= 2σ

∫

Γ (t)

∣
∣∣det(∂τi Xt · ∂τ j Xt )

d−1
i, j=1 ◦ X−1

t

∣
∣∣

1
2

∇e

|∇e| ⊗ ∇e

|∇e| : ∇ϕ dH d−1
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since Xt (Γ0) = Γ (t) and DX−T
t ∇d0 ◦ X−1

t = ∇e. Because of ∇e/|∇e| = νΓ (t) and

∣∣∣det(∂τi Xt · ∂τ j Xt )
d−1
i, j=1 ◦ X−1

t

∣∣∣
1
2 = ∣∣DX−T

t ∇d0 ◦ X−1
t

∣∣ = ∣∣∇(
d0(X−1

t )
)∣∣,

the assertion of the lemma follows.

Proof of Theorem 1.1: The first assertion of the theorem immediately follows by
Lemmas 1.7 and 1.8.

The second assertion is a consequence of Lemmas 1.5 and 1.6 since θ > 3. �
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Chapter 2
On the Interface Formation Model
for Dynamic Triple Lines

Dieter Bothe and Jan Prüss

Abstract This paper revisits the theory of Y. Shikhmurzaev on forming interfaces
as a continuum thermodynamical model for dynamic triple lines. We start with the
derivation of the balances for mass, momentum, energy and entropy in a three-phase
fluid system with full interfacial physics, including a brief review of the relevant
transport theorems on interfaces and triple lines. Employing the entropy principle in
the form given in (Bothe and Dreyer (2015) Continuum thermodynamics of chem-
ically reacting fluid mixtures. Acta Mech. 226, 1757–1805, [1]), but extended to
this more general case, we arrive at the entropy production and perform a linear
closure, except for a nonlinear closure for the sorption processes. Specialized to the
isothermal case, we obtain a thermodynamically consistent mathematical model for
dynamic triple lines and show that the total available energy is a strict Lyapunov
function for this system.

Keywords Continuum thermodynamics ·Dynamic contact line · Interfacial mass ·
Dynamic surface tension · Free energy Lyapunov functional

2.1 Introduction

The line at which three phases meet is called a triple line; cf. Fig. 2.1. If the phases
which touch each other are all fluid phases, i.e. two immiscible liquids are in contact
with another liquid or a gas, this triple line is freely deformable in space, while it
is bound to move on a given surface, if one of the phases is a solid. In the latter
case, one usually speaks about a dynamic contact line, while the notion of a triple
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Fig. 2.1 Configuration of the phases and interfaces at the contact line

line is typically used in the former setting. Both cases share many similarities and
their modeling and analysis is closely related. In applications, wetting more often
appears on a solid wall, i.e. the case of a contact line is more often considered. Hence,
the main body of the literature is devoted to this case. The present paper deals with
dynamics triple lines, but in such a generality, that analogous results are valid for the
contact line situation. Nevertheless, due to the more frequent encounter of wetting
of solid supports, the brief literature survey to follow necessarily focuses on contact
line dynamics.

The modeling and computation of dynamic contact lines is an active field due to
the enormous relevance of wetting and dewetting phenomena in various technical
and industrial applications; see [2–4] for recent surveys on the field, containing
also references to experimental work. Different modeling approaches are employed,
containing in particular so-called molecular-kinetic theory (MKT; see, e.g., [5, 6])
and continuum physical theories. The latter is often subsumed under the heading
“hydrodynamic theory” and is mostly based on sharp-interface models, while phase
field models have also been extended to cover contact lines as in [7]. The sharp-
interface hydrodynamic theory started essentially with the seminal paper by Huh
and Scriven [8] in which the fundamental problem of the inconsistency between
a moving contact line and a no-slip condition at the fixed wall has been analyzed
and shown to lead to a non-integrable stress singularity; cf. also [9] and, for a more
rigorous mathematical treatment, [10, 11]. Consequently, subsequent models always
rely on some “relaxation” at the contact line, and themost commonway to remove the
stress singularity, as already proposed in [8], is to introduce Navier-type slip close
to the contact line. Besides this complication, the main extension of the standard
two-phase Navier-Stokes system consists of the prescription of the dynamic contact
angle θd , i.e. the angle which is formed between the fluid interface and the solid
support, as a function of the contact line speed. At this point it is to be noted that
the contact angle changes its value under dynamic conditions, while the equilibrium
contact angle θe is usually assumed to be governed by Young’s law, i.e.
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σ gl cos(θe) = σ gs − σ ls (2.1)

in case of a liquid wetting a solid surrounded by a gas phase, where the superscripts
stand for gas (g), liquid (l) and solid (s) and σ denotes the interfacial tension of the
respective interface. Based on the classical experimental studies in [12], the general
form of the relation between θd and the contact line speed is given by the heuristic
relation

θd = fHoff
(
Ca + f −1

Hoff(θe)
)
, (2.2)

where Ca denotes the Capillary number given as Ca = ηU/σ gl with η the dynamic
liquid viscosity and U the contact line speed. Several concrete correlations have
been established for different materials and certain wetting scenarios like “Tanner’s
law” [13] or the correlation of Jiang et al. [14]. Theoretical investigations using the
hydrodynamic theory identified three length-scales near the contact line: an inner
region in which the fluid interface is essentially planar and touches the solid support
at the equilibrium angle; a mesoscopic region in which a significant bending of the
interface can occur; an outer (macroscopic) region in which the contact angle attains
a different value, the so-called apparent contact angle. The hydrodynamic theory
provides relations for the dependence of the contact angle on the distance from the
contact line especially in the mesoscopic region; see [15–17]. Knowledge of this
dependence is very useful for numerical purpose, both as a subgrid-scale model to
reduce the necessary resolution at the contact-line and in order to neutralize the
inherent mesh dependence of numerical solutions due to the typical under-resolution
of the smallest length scales in the contact line region; for the latter, see [18, 19].

While the hydrodynamic model can describe many wetting processes at least
qualitatively, in particular concerning the observed dynamical shapes of attached
dropletsmovingon awall, say, it does not capture the full physics of a dynamic contact
line. One important deviation is the internal flow field in the wetting liquid close to
an advancing contact line, which experimentally is known to be a rolling motion
([9, 20]), but is a sliding motion in numerical simulations using the above model.
Moreover, there is experimental evidence that the relation between the dynamic
contact angle and the contact line speed is more complicated and not of such a simple
local nature; cf. [21]. For further discrepancies between experimental observations
and the hydrodynamic model see [22]. A very interesting approach to overcome
these short-comings has been introduced by Shikhmurzaev in [23]; see also [22].
The approach there also employs continuum physics, but accounts for the aspect
of interface formation and disappearance at the contact line. A crucial point for the
model development then is to include enough interfacial thermodynamics to allow
for a non-constant interfacial tension, governed by a surface equations of state on
all involved interfaces. For this purpose, the mass contained in the interfacial layer
has to be balanced separately, since it encounters different forces compared to within
the bulk phases and it is this mass density which determines the surface pressure,
i.e. the surface tension. In the considered sharp interface/sharp contact line model,
the interfacial mass is lumped into an area-specific mass density and the model is
extended to cover the evolution of this interfacialmass density by appropriate balance
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equations on the moving surfaces. This model has proven a great potential to explain
several physical phenomena like wetting, coalescence, cusp formation and the break-
up of liquid threads; cf. [2, 22] and the introduction in [24]. The interface formation
model of Shikhmurzaev has been based on the continuum thermodynamics of fluid
interfaces developed in [25, 26], but with the sensible aim to formulate the most
simple model which is able to describe the wetting process with dynamic contact
angle and rollingmotion close to the contact linewith thematerial propertiesmodeled
via bulk and surface free energies but without a heuristic relation between contact
angle and contact line speed. Several years after the fundamental paper [23] appeared,
Billingham in [24] pointed out that one further condition at the contact line has to be
added, and he employed a condition provided by Bedeaux in [27] which relates the
rate of mass transfer from one surface into the other to the difference of the surface
chemical potentials. We will come back to this point in the final remarks at the end
of this paper.

In the brief survey above, the topic called “contact angle hysteresis”, referring
to the appearance of a full interval of possible contact angles in the static case
which spans the range from the angles observed for (infinitely slowly) advancing
and receding contact lines, has not been touched. This phenomenon seems to be
similar to dry friction between solids and, in fact, the notion of contact line friction
is also present in the literature on the molecular kinetic theory of contact lines. For
this topic, we refer to [3, 4] and the references given there.

2.2 Integral Balances

We consider a region G ⊂ R
3 filled with three bulk phases Ωk(t) (k = 1, 2, 3),

separated by interfacesΣk(t) (k = 1, 2, 3) which meet at a common triple line C (t).
As an example, imagine a liquid phase Ω1 in the form of a water droplet sitting on
another liquid, say oil, which forms bulk phase Ω2, and being surrounded by phase
Ω3 composed of air. Then, for instance, Σ1 denotes the oil-water interface, Σ2 the
interface between the air and the oil and Σ3 the air-water interface. The deformable
and free bounding curve at which all three interfaces meet is the so-called triple line
C . As a related but somewhat different case, consider again a liquid phase Ω1 in the
form of a droplet, but now sitting on a solid support, which forms bulk phase Ω2,
and being surrounded by gas phaseΩ3. Then two out of the three interfaces are fixed
and the triple line is the set of all points where the gas-liquid interface meets the solid
support. In this case, one usually calls C the contact line which now has reduced
degrees of freedom due to the solid support. We focus on three-phase fluid systems
with a common triple line and assume that the interfaces meet at angles different
from 0 and π ; we shall refer to this as the non-degenerate case.

We start with the integral balance of a generic extensive quantity which is present
in the bulk phases with specific density φ, on the interfaces with specific density
φΣ and on the triple line with specific density φC . Hence ρφ, ρΣφΣ and ρCφC ,
respectively, are the volume-, area- and line-specific densities, where ρ, ρΣ and ρC
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are the mass densities. If a specific bulk phase or interface is considered, we write
ρkφk or ρΣ

k φΣ
k , respectively, for the respective density.With this notation, the generic

integral balance for a fixed control volume V ⊂ G reads as

d

dt

[∫

ΩV

ρφ dx +
∫

ΣV

ρΣφΣ do +
∫

CV

ρCφC dl

]
= −

∫

∂ΩV

(ρφv + j) · n do

−
∫

∂ΣV

(ρΣφΣvΣ + jΣ) · N dl −
∫

∂CV

(ρCφC vC + jC ) · ν dP (2.3)

+
∫

ΩV

f dx +
∫

ΣV

f Σ do +
∫

CV

f C dl.

In (2.3) we let dx, do and dl denote the volume, area and line measure, respectively.
Moreover, dP denotes the point (i.e., counting) measure.

Here, as well as throughout the paper, we use the following condensed notation.
First,

ΩV :=
3⋃

k=1

Ωk
V , ΣV :=

3⋃

k=1

Σk
V with Ωk

V := Ωk ∩ V , Σk
V := Σk ∩ V ,

which are all time-dependent sets. We assume a single triple line, hence CV :=
C ∩ V . The detailed version of (2.3) then reads as

d

dt

[
3∑

k=1

∫

Ωk
V

ρkφk dx +
3∑

k=1

∫

Σk
V

ρΣ
k φΣ

k do +
∫

CV

ρCφC dl

]

=

−
3∑

k=1

∫

∂Ωk
V

(ρkφkvk + jk) · nk do −
3∑

k=1

∫

∂Σk
V

(ρΣ
k φΣ

k vΣ
k + jΣk ) · Nk dl

−
∫

∂CV

(ρCφC vC + jC ) · ν dP +
3∑

k=1

∫

Ωk
V

fk dx +
3∑

k=1

∫

Σk
V

f Σ
k do +

∫

CV

f C dl.

For better readability, we use the condensed notation whenever this is reasonable.
We apply this balancing to the extensive quantities mass, momentum, energy and

entropy. The corresponding integral balances read as follows.

Mass Balance.

d

dt

[∫

ΩV

ρ dx +
∫

ΣV

ρΣ do +
∫

CV

ρC dl

]
= (2.4)

−
∫

∂ΩV

ρv · n do −
∫

∂ΣV

ρΣvΣ · N dl −
∫

∂CV

ρC vC · ν dP.
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Momentum Balance.

d

dt

[∫

ΩV

ρv dx +
∫

ΣV

ρΣvΣ do +
∫

CV

ρC vC dl

]
=

−
∫

∂ΩV

ρv(v · n) do −
∫

∂ΣV

ρΣvΣ(vΣ · N) dl −
∫

∂CV

ρC vC (vC · ν) dP (2.5)

+
∫

∂ΩV

S · n do +
∫

∂ΣV

SΣ · N dl +
∫

∂CV

SC · ν dP

+
∫

ΩV

ρb dx +
∫

ΣV

ρΣbΣ do +
∫

CV

ρC bC dl.

Here S, SΣ and SC denote the stress tensor in the bulk phases, on the interfaces and
on the triple line, respectively, and b, bΣ and bC are the specific body forces.

Energy Balance.

d

dt

[∫

ΩV

ρ(e + v2

2
) dx +

∫

ΣV

ρΣ(eΣ + (vΣ)2

2
) do +

∫

CV

ρC (eC + (vC )2

2
) dl

]

=

−
∫

∂ΩV

ρ(e + v2

2
)v · n do −

∫

∂ΣV

ρΣ(eΣ + (vΣ)2

2
)vΣ · N dl

−
∫

∂CV

ρC (eC + (vC )2

2
)vC · ν dP (2.6)

+
∫

∂ΩV

(v · S − q) · n do +
∫

∂ΣV

(vΣ · SΣ − qΣ) · N dl +
∫

∂CV

(vC · SC − qC ) · ν dP

+
∫

ΩV

ρv · b dx +
∫

ΣV

ρΣvΣ · bΣ do +
∫

CV

ρC vC · bC dl.

Here q, qΣ and qC denote the heat flux in the bulk phases, on the interfaces and
on the triple line, respectively. Note that energy sources due to radiation have been
omitted in (2.6).

Entropy Balance.

d

dt

[∫

ΩV

ρs dx +
∫

ΣV

ρΣsΣ do +
∫

CV

ρC sC dl

]
= −

∫

∂ΩV

(ρsv + Φ) · n do

−
∫

∂ΣV

(ρΣsΣvΣ + ΦΣ) · N dl −
∫

∂CV

(ρC sC vC + ΦC ) · ν dP (2.7)

+
∫

ΩV

ζ dx +
∫

ΣV

ζΣ do +
∫

CV

ζC dl.
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HereΦ,ΦΣ andΦC denote the entropy flux in the bulk phases, on the interfaces and
on the triple line, respectively, while ζ , ζΣ and ζC are the corresponding entropy
productions.

Remark Note that the internal energy density as well as the entropy density can be
positive even if the area- or line-specific mass densities are considered to be zero.
In other words, in the limit as ρΣ → 0+ or ρC → 0+, products such as ρΣeΣ or
ρC sC may converge to strictly positive limit densities, i.e.

ρΣeΣ → uΣ, ρΣsΣ → ηΣ, ρC eC → uC , ρC sC → ηC

with non-vanishing densities uΣ, ηΣ, uC , ηC has to be allowed for. Otherwise, for
instance, the surface tension for a fluid interfacewith zero surfacemass densitywould
automatically vanish.

2.3 Transport Theorems

The derivation of local versions of the balance equations follow by application of
appropriate transport theorems and subsequent localization. The following transport
theorems will be employed; see [28] as a general reference.

Volume Transport. In the general setting described above, let V ⊂ R
3 be a fixed

control volume in G, let Σ be short for
⋃3

k=1 Σk with the time-dependent interfaces
Σk(t) and nΣ = nΣk the unit normal field onΣk(t)with an arbitrary fixed orientation.
Let VΣ denote the speed of normal displacement of Σk(·). The latter is a purely
kinematic quantity, but it is related to the barycentric velocity of the interfacial mass
via VΣ = vΣ · nΣ . Moreover, given any bulk field φ, the jump of φ at Σ is defined
by the jump bracket [[·]] according to

[[φ]](t, x) := lim
h→0+

(
φ(t, x + hnΣ) − φ(t, x − hnΣ)

)
. (2.8)

With these notations and for the specific control volumes mentioned, as well as for
sufficiently smooth fields, it holds that

d

dt

∫

V
φ dx =

∫

V\Σ
∂tφ dx −

∫

ΣV

[[φ]]VΣ do, (2.9)

where ΣV (t) := Σ(t) ∩ V .

Surface Transport. In the general setting described above, let V ⊂ R
3 be a fixed

control volume in G. Then, for sufficiently smooth fields, it holds that

d

dt

∫

ΣV

φΣ do =
∫

ΣV

(
∂Σ
t φΣ − φΣκΣVΣ

)
do +

∫

∂ΣV

φΣ V∂ΣV dl. (2.10)
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Here ∂Σ
t denotes the time derivative along a path that follows the normal motion

of Σ(·), sometimes called Thomas-derivative, and κΣ := div Σ(−nΣ) is twice the
mean curvature. Furthermore, V∂ΣV is the normal (relative to the boundary of ΣV )
speed of displacement of ∂ΣV (·) (in the plane tangential to Σ).

Let us note in passing that the derivation of the local balance equations can be
done with special control volumes such that the outer normal nV satisfies nV ⊥ nΣ

on ∂V ∩ Σ . For such control volumes the boundary contribution, i.e. the last term in
(2.10), vanishes.

Line Transport. For sufficiently smooth fields, it holds that

d

dt

∫

CV

φC dl =
∫

CV

(DCφC

Dt
+ φC div C v

C
)
dl +

∫

∂CV

φC
(
V∂CV − vC · ν

)
dP.

(2.11)

Here DC

Dt denotes the Lagrangian derivative, following the triple line along a path
with velocity vC and V∂CV is the normal (relative to the end points of CV ) speed of
displacement of ∂CV . Recall that ν is the outer normal to the curve CV in its end
points (cf. Fig. 2.1) and that dP denotes the point (i.e., counting) measure.

Remarks 1. The transport theorems above appear rather different. Actually, they can
all be brought into the same form as the line transport theorem. In case of surface
transport, this follows directly from the relation

DΣφΣ

Dt
= ∂Σ

t φΣ + vΣ · ∇ΣφΣ

for the surface Lagrangian derivative. Note that div ΣvΣ = div ΣvΣ
|| − κΣVΣ , hence

∂Σ
t φΣ − φΣκΣVΣ = DΣφΣ

Dt
− div Σ(φΣvΣ

|| ) + φΣdiv Σv
Σ

and then, by the surface divergence theorem, Eq. (2.10) implies

d

dt

∫

ΣV

φΣ do =
∫

ΣV

(DΣφΣ

Dt
+ φΣdiv Σv

Σ
)
do +

∫

∂ΣV

φΣ
(
V∂ΣV − vΣ · N)

dl.

(2.12)
To bring the volume transport formula (2.9) into the same form, one first observes
that (2.9) combines the transport formulas for both bulk phases which meet at the
considered interface. If two bulk phases Ω±(t) are separated by an interface Σ(t),
then a simple variant of the Reynolds transport theorem yields

d

dt

∫

Ω±
V

φ dx =
∫

Ω±
V

(Dφ

Dt
+ φ div v

)
dx +

∫

∂Ω±
V

φ
(
V∂Ω±

V
− v · n) do, (2.13)
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where n is the outer unit normal toΩ±
V ; note that the latter coincideswith±nΣ onΣV .

2. An equivalent form of (2.12) reads as

d

dt

∫

ΣV

φΣ do =
∫

ΣV

(DΣφΣ

Dt
+ φΣdiv Σv

Σ
)
do −

∫

∂ΣV

φΣ vΣ · nV√
1 − (nΣ · nV )2

dl,

(2.14)

where nV is the outer unit normal to V . For this purpose, one first uses elementary
geometry to computeV∂ΣV = −VΣ

nΣ ·nV√
1−(nΣ ·nV )2

. Since
√
1 − (nΣ · nV )2 = N · nV and

{N, nΣ, τ } with τ a unit vector tangential to ∂ΣV (hence also to ∂V ) is a local
orthonormal basis, the Eq. (2.14) follows from

vΣ · N − V∂ΣV = 1
√
1 − (nΣ · nV )2

(
(vΣ · N) (N · nV ) + (vΣ · nΣ) (nΣ · nV )

)
.

The relation from (2.12) has been given in [29], while the variant (2.14) can be found
in Chap.3 in [30]; see also the appendix in [31].

3. Below, we will also use variants of the above transport theorems with built-in
mass balance. These read as

d

dt

∫

V
ρφ dx =

∫

V\Σ
ρ
Dφ

Dt
dx +

∫

ΣV

[[ṁφ]] do −
∫

∂V
ρφv · n do (2.15)

with ṁ± := ρ±(v± − vΣ) · nΣ on Σ , and

d

dt

∫

ΣV

ρΣφΣ do = (2.16)

∫

ΣV

(
ρΣ DΣφΣ

Dt
− [[ṁφΣ ]]) do +

∫

∂ΣV

ρΣφΣ
(
V∂ΣV − vΣ · N)

dl.

2.4 Local Balances

Application of the transport theorems and localization yields the following local
balance equations.

Bulk Phase.

∂tρ + div (ρv) = 0, (2.17)

∂t(ρv) + div (ρv ⊗ v − S) = ρb, (2.18)

∂t(ρe) + div (ρev + q) = S : ∇v, (2.19)

∂t(ρs) + div (ρsv + Φ) = ζ. (2.20)
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These are the well-known balance equations in a bulk phase.

Interface.

∂Σ
t ρΣ + divΣ(ρΣvΣ) + [[ρ(v − vΣ) · nΣ ]] = 0, (2.21)

∂Σ
t (ρΣvΣ) + divΣ(ρΣvΣ ⊗ vΣ − SΣ) + [[(ρv ⊗ (v − vΣ) − S

) · nΣ ]] = ρΣbΣ,

(2.22)

∂Σ
t (ρΣeΣ) + divΣ(ρΣeΣvΣ + qΣ)

+ [[
(
ρ(e + (v − vΣ)2

2
)(v − vΣ) − (v − vΣ) · S + q

)
· nΣ ]] = SΣ : ∇ΣvΣ,

(2.23)

∂Σ
t (ρΣ sΣ) + divΣ(ρΣ sΣvΣ + ΦΣ) + [[(ρs(v − vΣ) + Φ

) · nΣ ]] = ζΣ . (2.24)

Observe that the jump terms always appear with nΣ as a factor. Therefore, these
terms are invariant under re-orientation of the interfaces. Actually, the notion of a
“jump condition” for these terms can be rather misleading. Note that [[f · nΣ ]] =
−f + · n+ − f − · n− if the interface separates two bulk phases Ω± with outer unit
normals n±. Hence, if f denotes a bulk flux, the term −[[f · nΣ ]] describes the total
rate of transfer from the bulk phases to the interfaces due to these fluxes. For the
derivation of closure rates below, the explicit form of this term is to be used since
two binary products are involved.

Triple Line.

∂C
t ρC + divC (ρC vC ) + [[[ρΣ(vΣ − vC ) · N]]] = 0, (2.25)

∂C
t (ρC vC ) + divC (ρC vC ⊗ vC − SC ) (2.26)

+ [[[(ρΣvΣ ⊗ (vΣ − vC ) − SΣ
) · N]]] = ρC bC ,

∂C
t (ρC eC ) + divC (ρC eC vC + qC ) (2.27)

+ [[[
(
ρΣ(eΣ + (vΣ − vC )2

2
)(vΣ − vC ) − (vΣ − vC ) · SΣ + qΣ

)
· N]]] = SC : ∇C vC ,

∂C
t (ρC sC ) + divC (ρC sC vC + ΦC ) + [[[(ρΣ sΣ(vΣ − vC ) + ΦΣ

) · N]]] = ζC . (2.28)

Here the triple bracket [[[·]]] is defined exclusively for quantities of the form f Σ · N
by means of

[[[f Σ · N]]] = −
3∑

k=1

f Σ
k · Nk on C , (2.29)

where the sum runs over all interfaces which meet at the triple line and f Σ
k := f|Σk .

Let us briefly explain the appearance of such terms, e.g., for the mass balance (2.25).
The transport relation (2.16) for φΣ ≡ 1 yields the boundary contribution of the
interfacial mass balance as
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∫

∂ΣV

ρΣ
(
V∂ΣV − vΣ · N)

dl =
3∑

k=1

∫

∂Σk
V

ρΣ
k

(
V∂Σk

V
− vΣ

k · Nk
)
dl.

The boundary of Σk
V is (Σk ∩ ∂V) ∪ CV , hence

∫

∂ΣV

ρΣ
(
V∂ΣV − vΣ · N)

dl =
3∑

k=1

∫

Σk∩∂V
ρΣ
k

(
V∂Σk

V
− vΣ

k · Nk
)
dl +

∫

CV

3∑

k=1

ρΣ
k

(
vC − vΣ

k

) · Nk dl.

Employing the condensed notation, this becomes

∫

∂ΣV

ρΣ
(
V∂ΣV − vΣ · N)

dl =
∫

Σ∩∂V
ρΣ

(
V∂ΣV − vΣ · N)

dl −
∫

CV

[[[ρΣ
(
vC − vΣ

) · N]]] dl.

2.5 Entropy Production and Closure Relations

The entropy principle states that every admissible closure for the entropy flux is
such that the remaining entropy production is a sum, running over all dissipative
mechanisms, of binary products. The entropy production is non-negative for any
thermodynamic process, i.e. the entropy inequality holds. The system is in equilib-
rium, if and only if the entropy production vanishes. For more information about the
employed entropy principle see [1]. We are going to apply this for bulk, interface and
triple line in a fully analogous manner; the details will only be explained for the bulk
case. We consider the simplest class of bulk, interface and contact line materials for
which the entropy density is assumed to be a concave function of temperature and
mass density, only. We hence employ constitutive relations of the form

ρs = h(ρe, ρ), ρΣsΣ = hΣ(ρΣeΣ, ρΣ), ρC sC = hC (ρC eC , ρC ) (2.30)

with concave functions h, hΣ and hC . We furthermore define the (absolute) temper-
ature and the chemical potential in the respective phase as

1

T
= ∂h

∂(ρe)
,

1

TΣ
= ∂hΣ

∂(ρΣeΣ)
,

1

TC
= ∂hC

∂(ρC eC )
(2.31)

and

− μ

T
= ∂h

∂ρ
, −μΣ

TΣ
= ∂hΣ

∂ρΣ
, −μC

TC
= ∂hC

∂ρC
. (2.32)
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We insert the constitutive relation (2.30) for the entropy density into the respective
entropy balance, use the chain rule employing the definitions (2.31) and (2.32) and
eliminate all partial time derivatives by means of the other balance equations. The
resulting terms are grouped in such a way that only a single full divergence appears,
which contains in particular the entropy flux, all terms with the velocity divergence
as a factor are collected and all remaining terms are grouped to form a sum of binary
products.

Bulk Phase. The procedure above yields

ζ = div (Φ − q

T
) − 1

T
(ρe + P − ρsT − ρμ) div v + q · ∇ 1

T
+ 1

T
S◦ : ∇v, (2.33)

where P := − 1
3 tr S is the mechanical pressure and S◦ := S + P I , with I denoting

the identity tensor, is the traceless part of S. We will assume throughout this paper
that the material in all phases does not support local densities for angular momentum
(so-called couples). Hence the balance for angular momentum implies that all stress
tensors which appear are symmetric; note that all stress tensors are formulated in the
embedding three-dimensional Euclidean space, i.e. are symmetric 3 × 3-tensors.

Evidently, the simplest closure for the entropy flux in order to fulfill the entropy
principle is Φ := q

T , which is the standard choice for single component materials.
This leads to the reduced entropy production, being the desired sum of binary prod-
ucts. Exploiting the symmetry of S, we obtain

ζ = − 1

T
(ρe + P − ρsT − ρμ) div v + q · ∇ 1

T
+ 1

T
S◦ : D◦, (2.34)

where D := 1
2 (∇v + (∇v)T) is the symmetric part of the velocity gradient and D◦

its traceless part. The dissipative mechanisms associated with these binary products
are “volume variations”, “heat conduction” and “viscous shear”, in the order of their
appearance in (2.34). The simplest linear (in the co-factor) closure without cross-
effects leads to the relations

ρe + P − ρsT − ρμ = −λ div v with λ ≥ 0, (2.35)

q = α∇ 1

T
with α ≥ 0, (2.36)

S◦ = 2ηD◦ with η ≥ 0. (2.37)

Note that the closure parameters λ, α, η are allowed to depend on the basic variables,
say (ρ,T). Hence, in particular, the heat flux closure is equivalent to Fourier’s law.
For consistencywith standard notation,we use 2η instead ofη, above.At this point, an
explanation concerning (2.35) is at order: The only quantity which requires a closure
is P = − 1

3 tr S. For a stagnant fluid, Eq. (2.35) reduces to ρe + p − ρsT − ρμ = 0,
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where p denotes the pressure at equilibrium. We therefore let the thermodynamic
pressure p be defined by the Gibbs-Duhem relation, i.e. by

ρe + p − ρsT = ρμ. (2.38)

Then P = p + π with the non-equilibrium pressure contribution π and (2.35)
becomes

π = −λ div v. (2.39)

The irreversible pressure contribution π is due to volume variations and the linear
closure to model it reads as π = −λ div v. Let us note that the thermodynamic pres-
sure p from (2.38) satisfies the Maxwell relation p = ρ2 ∂ψ

∂ρ
with the free energy

ψ = ψ(T , ρ) := e − sT . Alternatively, one can define p by the latter relation and
obtain the Gibbs-Duhem relation (2.38) as a consequence. Note also that the entropy
production (2.34) can now be written more concisely as

ζ = q · ∇ 1

T
+ 1

T
Sirr : D, (2.40)

where the irreversible stress part is defined as Sirr = −π I + S◦, but it is important to
notice that the last term represents two independent binary products.

Interface. The same line of arguments leads to

ΦΣ = qΣ

TΣ
and ρΣeΣ + pΣ − ρΣsΣTΣ = ρΣμΣ (2.41)

as well as

ζΣ = qΣ · ∇Σ

1

TΣ
− 1

TΣ
πΣ div Σv

Σ + 1

TΣ
SΣ,◦ : DΣ,◦

+ 1

TΣ
[[(v − vΣ)|| · (S · nΣ)||]] + [[

( 1

T
− 1

TΣ

)(
ṁ(e + p

ρ
) + q · nΣ

)
]] (2.42)

− [[
(μ

T
− μΣ

TΣ
+ 1

TΣ

( (v − vΣ)2

2
− nΣ · S

irr

ρ
· nΣ

))
ṁ]];

recall that ṁ = ρ(v − vΣ) · nΣ . Here πΣ is the irreversible part of the interface pres-
sure defined via πΣ + pΣ = − 1

2 tr S
Σ with the thermodynamic interface pressure pΣ

from (2.41)2. Moreover, DΣ = 1
2 IΣ

(∇ΣvΣ + (∇ΣvΣ)T
)
IΣ is the symmetric inter-

face velocity gradient, DΣ,◦ its traceless part and IΣ = I − nΣ ⊗ nΣ denotes the
surface projector, also called surface identity.

The dissipative processes associated with the binary products in (2.42) are, in
the order of their appearance, interfacial heat conduction, area variation, interfacial
shear, one-sided slip between the interface and a bulk phase, heat transfer to and
from the interface and, finally, mass transfer to and from the interface. The following
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closure relations result by assuming linear relations between the corresponding co-
factors with one exception: the mass transfer to or from the interface, i.e. the ad- and
desorption processes ṁ = ṁad − ṁde, will bemodeled using a non-linear relationship
in analogy to the modeling of chemical reactions; cf. [1].

qΣ = αΣ∇Σ

1

TΣ
with αΣ ≥ 0,

(2.43)

πΣ = −λΣ div Σv
Σ with λΣ ≥ 0,

(2.44)

SΣ,◦ = 2ηΣDΣ,◦ with ηΣ ≥ 0,
(2.45)

βΣ(v − vΣ)|| + (SnΣ)|| = 0 with βΣ ≥ 0,
(2.46)

1

T
− 1

TΣ
+ δΣ

(
ρ(e + p

ρ
)(v − vΣ) + q

) · nΣ = 0 with δΣ ≥ 0,

(2.47)

aΣ ln
ṁad

ṁde
= μ

T
− μΣ

TΣ
+ 1

TΣ

( (v − vΣ)2

2
− nΣ · S

irr

ρ
· nΣ

)
with aΣ ≥ 0.

(2.48)

The closure relation (2.48) employs the decomposition ṁ = ṁad − ṁde. Note that
(2.48) only fixes the ratio of ad- and desorption, while one of the rates needs to be
modeled based on experimental knowledge or a micro-theory. The simplest choice is
to assume a desorption rate according to ṁde = kdeρΣ with kde > 0.Observe also that
(2.48) is an implicit equation regarding ṁ, since v± − vΣ = (v± − vΣ)|| + ṁ±/ρ±.

At this point it should be noted that the closure relations above are given in a
condensed notation: relations (2.43)–(2.45) are employed for every interface Σk

(k = 1, 2, 3) separately with respective transport coefficients, while the transmission
relations (2.46)–(2.48) apply to each interface in combination with any of the two
adjacent bulk phases. In total, the closure relations hence yield nine conditions at
each of the three interfaces.

Triple Line. Since the triple line is one-dimensional, the contact line stress tensor
satisfies SC = −PC IC with the mechanical line pressure PC := −tr SC and the line
projector defined by ICw = 〈w, τ 〉τ with τ a unit tangent field on C . By the same
procedure as above, we obtain the following identities, where PC = pC + πC , and
ṁΣ = ρΣ(vΣ − vC ) · N , i.e. ṁΣ

k = ρΣ
k (vΣ

k − vC ) · Nk for k = 1, 2, 3.

ΦC = qC

TC
and ρC eC + pC − ρC sCTC = ρCμC (2.49)
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as well as

ζC = qC · ∇C
1

TC
− 1

TC
πC div C v

C + 1

TC
[[[(vΣ − vC )||| · (SΣ · N)|||]]]

+ [[[
( 1

TΣ
− 1

TC

)(
ρΣ(eΣ + pΣ

ρΣ
)(vΣ − vC ) + qΣ

)
· N]]] (2.50)

− [[[
(μΣ

TΣ
− μC

TC
+ 1

TC

( (vΣ − vC )2

2
− N · S

Σ,irr

ρΣ
· N))

ṁΣ ]]].

Above, the notation (·)||| denotes the component tangential to the triple line and
SΣ,irr := −πΣ IΣ + SΣ,◦. In analogy to the interface we obtain the following closure
relations for the dissipative processes on the triple line.

qC = αC∇C
1

TC
with αC ≥ 0,

(2.51)

πC = −λC div C v
C with λC ≥ 0,

(2.52)

βC (vΣ − vC )||| + (SΣN)||| = 0 with βC ≥ 0,
(2.53)

1

TΣ
− 1

TC
+ δC

(
ρΣ(eΣ + pΣ

ρΣ
)(vΣ − vC ) + qΣ

) · N = 0 with δC ≥ 0,

(2.54)

aC ln
ṁΣ,ad

ṁΣ,de
= μΣ

TΣ
− μC

TC
+ 1

TC

( (vΣ − vC )2

2
− N · S

Σ,irr

ρ
· N)

with aC ≥ 0.

(2.55)

As in the interface case, in (2.55) the decomposition of ṁΣ = ρΣ(vΣ − vC ) · N as
ṁΣ = ṁΣ,ad − ṁΣ,de is employed. The relation (2.55) governs the ratio of ad- and
desorption at the triple line, while one of the rates needs to be modeled based on
experimental knowledge or a micro-theory. Below, we assume the desorption rate to
be given by ṁΣ,de = kΣ,deρC with kΣ,de > 0. The transfer relations (2.53)–(2.55)
exist for every combination of the triple line with one of the interfaces, of course
with individual transfer coefficients.

To complete the model it remains to fix free energy functions for the bulk phases,
the interfaces and the triple line. This will only be done for a reduced model below.

2.6 Isothermal Case with Vanishing Triple Line Mass

We consider the limiting case of isothermal conditions, i.e. the internal energy bal-
ances are replaced by a known constant temperature field; in particular, we have
T|Σ = TΣ and TΣ

|C = TC . We also reduce the model complexity by neglecting the
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mass and inertia on the triple line.Moreover, we neglect any irreversible stress contri-
butions both on the interfaces and on the triple line. For consistency with the notation
in interfacial science, we do not employ the surface and line pressure, but rather let
SΣ = γ Σ IΣ and SC = γC IC with the interface tensions γ Σ and the line tension γC .
Observe that this means SΣ,irr = 0. Because of zero triple line mass and isothermal
conditions, we assume the line tension to be constant.

Bulk Phase.

∂tρ + div (ρv) = 0, (2.56)

∂t(ρv) + div (ρv ⊗ v) = div S + ρb, (2.57)

where the stress is given by S = (−p + λdiv v)I + 2ηD◦ according to (2.37) and
(2.39). In the compressible case, an equation of state in the form p = p(ρ) (with a
strictly increasing function p(·)) is to be added according to the specific fluid under
consideration.

Interface. We again use the abbreviation ṁ = ρ(v − vΣ) · nΣ . Then

∂Σ
t ρΣ + div Σ(ρΣvΣ) + [[ṁ]] = 0, (2.58)

∂Σ
t (ρΣvΣ) + div Σ(ρΣvΣ ⊗ vΣ) + [[v ṁ]] = [[S · nΣ ]] + div ΣS

Σ + ρΣbΣ.

(2.59)

Note that

div ΣS
Σ = γ ΣκΣnΣ + ∇Σγ Σ (2.60)

in the considered case without surface viscosities.
This is complemented by the constitutive transmission conditions

βΣ(v − vΣ)|| + (SnΣ)|| = 0, (2.61)

aΣ ln
ṁad

ṁde
= μ − μΣ + (v − vΣ)2

2
− nΣ · S

irr

ρ
· nΣ, (2.62)

where aΣ, βΣ ≥ 0. In addition, thematerial dependent interface free energy function
is required. The latter determines especially the interfacial equation of state γ Σ =
γ Σ(ρΣ) and we assume that γ Σ is a strictly decreasing function (i.e., the interface
pressure depends strictly increasing on the interface mass density).

Triple Line. In analogy with the interface-related notation, we use as before the
abbreviation

ṁΣ := ρΣ(vΣ − vC ) · N,

i.e. ṁΣ
k = ρΣ

k (vΣ
k − vC ) · Nk for k = 1, 2, 3. Due to ρC ≡ 0, the triple line mass and

momentum balances become
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[[[ṁΣ ]]] = 0, (2.63)

[[[vΣ ṁΣ ]]] = [[[γ ΣN]]] + γC div C IC . (2.64)

This is complemented by the constitutive transmission conditions

vΣ
1,||| = vΣ

2,||| = vΣ
3,||| =: vC||| , (2.65)

μΣ
k − μC + ((vΣ

k − vC ) · Nk)2/2 = 0 (k = 1, 2, 3). (2.66)

A few comments are at order: for simplicity, we consider the no-slip condition (vΣ −
vC )||| = 0, but note that the barycentric triple line velocity vC is undefined for a triple
line with zero mass. We consider vC as the kinematic velocity of the contact line
C . The chemical potential μC is determined by one of the equations in (2.66), so
actually only two equations remain there. Also, observe that vΣ − vC ⊥ τ, nΣ , hence

vΣ − vC = (vΣ − vC |N)N, (2.67)

as C (t) ⊂ Σk(t) for all times.

2.7 Thermodynamical Consistency and Equilibria

For this reduced isothermal model we show that the total available energy, i.e. the
sum of the total kinetic energy and the total free energy is a strict Lyapunov function
in case of vanishing body forces. We hence let

Ea(t) =
∫

G
ρ(

v2

2
+ ψ) dx +

∫

Σ

ρΣ(
(vΣ)2

2
+ ψΣ) do +

∫

C
γC dl, (2.68)

where G is the total domain. We are going to show

Theorem 2.1 Let (ρ, v, ρΣ, vΣ,Σ,C ) be a classical solution of the model from
Sect.2.6, i.e. a classical solution to (2.56), (2.57) with S = (−p + λ div v)I + 2ηD◦,
where p(ρ) is strictly increasing in ρ, λ, η > 0 and b = 0, (2.58), (2.59) with SΣ =
γ Σ IΣ , where γ Σ(ρΣ) > 0 is strictly decreasing in ρΣ , and bΣ = 0, (2.61) with
βΣ > 0, (2.62) with aΣ > 0, (2.63), (2.64) with γC a positive constant, (2.65) and
(2.66). We also assume that this solution is non-degenerate at the contact line, i.e.
the interfaces meet at angles different from 0 or π . At the outer boundary, we assume
v · n = 0, v · Sn = 0 on ∂G and vΣ · N = 0 on Σ ∩ ∂G.

Then the total available energy Ea from (2.68) is a strict Lyapunov function.

Proof (i) Let (ρ, v, ρΣ, vΣ,Σ,C ) be a classical solution of themodel fromSect. 2.6.
For the bulk contribution, we first apply the transport relation (2.15) and use the
momentumbalance (2.18) to eliminateρ Dv

Dt .We then exploitψ = ψ(ρ)withψ ′(ρ) =
p/ρ2 and use the mass balance (2.17) to eliminate Dρ

Dt . Application of the two-phase
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divergence theorem for partial integration in the form

∫

G
v · divS dx =

∫

∂G
v · Sn do −

∫

G
S : ∇v dx −

∫

Σ

[[v · SnΣ ]] do

yields

d

dt

∫

G
ρ(

v2

2
+ ψ) dx = −

∫

∂G
ρ(

v2

2
+ ψ)v · n do +

∫

∂G
v · Sn do

−
∫

G
Sirr : ∇v dx −

∫

Σ

[[v · SnΣ ]] do +
∫

Σ

[[ṁ(ψ + v2

2
)]] do.
(2.69)

For the interface contribution, we first apply the transport relation (2.16) and use the
momentum balance in the non-conservative form

ρΣ DΣvΣ

Dt
+ [[(v − vΣ)ṁ]] = [[S · nΣ ]] + div ΣS

Σ,

which follows from (2.22) and (2.21), to eliminate ρΣ DΣ vΣ

Dt . Next, we apply
the surface divergence theorem for partial integration of vΣ · div ΣSΣ , employ
ψΣ = ψΣ(ρΣ) with (ψΣ)′(ρΣ) = pΣ/(ρΣ)2 = −γ Σ/(ρΣ)2, (2.21) and the inter-
face Gibbs-Duhem relation (2.41)2 to obtain

d

dt

∫

Σ

ρΣ(
(vΣ)2

2
+ ψΣ) do =

∫

∂Σ

ρΣ(
(vΣ)2

2
+ ψΣ)(V∂Σ − vΣ · N) dl +

∫

∂Σ

vΣSΣ · N dl

−
∫

Σ

SΣ,irr : DΣ do +
∫

Σ

vΣ · [[SnΣ ]] do +
∫

Σ

[[( (vΣ)2

2
− vΣ · v − μΣ)ṁ]] do. (2.70)

For the triple line contribution, we apply the transport relation (2.11). For constant
γC , this yields

d

dt

∫

C
γC dl =

∫

C
γC divC vC dl =

∫

C
γC IC : ∇C vC dl = −γC

∫

C
vC · divC IC dl.

(2.71)

Employing the identities (2.69), (2.70) and (2.71), we obtain

Ėa =
∫

∂Σ

ρΣ(
(vΣ)2

2
+ ψΣ)(V∂Σ − vΣ · N) dl +

∫

∂Σ

vΣSΣ · N dl

−
∫

G
Sirr : Ddx −

∫

Σ

SΣ,irr : DΣ do −
∫

Σ

[[(v − vΣ)|| · (SirrnΣ)||]] do (2.72)

+
∫

Σ

[[(μ − μΣ + (v − vΣ)2

2
− nΣ · S

irr

ρ
· nΣ) ṁ]] do − γC

∫

C
vC · div C IC dl.
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Inserting the constitutive relation SΣ = γ Σ IΣ and exploiting the assumptions v · n =
0, v · Sn = 0 on ∂G and vΣ · N = 0 on Σ ∩ ∂G, we get

Ėa = −
∫

G
Sirr : Ddx −

∫

Σ

[[(v − vΣ)|| · (SirrnΣ)||]] do

+
∫

Σ

[[(μ − μΣ + (v − vΣ)2

2
− nΣ · S

irr

ρ
· nΣ) ṁ]] do (2.73)

+
∫

C
[[[( (v

Σ)2

2
+ ψΣ)ṁΣ ]]] dl −

∫

C
[[[γ ΣvΣ · N]]] dl − γC

∫

C
vC · div C IC dl.

Expanding [[[γ ΣvΣ · N]]] as [[[γ Σ(vΣ − vC + vC ) · N]]], exploitation of (2.64)
allows to rewrite the triple line contribution as

∫

C
[[[( (v

Σ)2

2
+ μΣ)ṁΣ ]]] dl −

∫

C
vC · [[[vΣ ṁΣ ]]] dl.

Using (vC )2[[[ṁΣ ]]] = 0 due to (2.63), where vC||| is given as the well-defined tangen-
tial part vΣ

||| by (2.65), we see that (2.73) implies

Ėa = −
∫

G
Sirr : Ddx −

∫

Σ

[[(v − vΣ)|| · (SirrnΣ)||]] do

+
∫

Σ

[[(μ − μΣ + (v − vΣ)2

2
− nΣ · S

irr

ρ
· nΣ) ṁ]] do (2.74)

+
∫

C
[[[(μΣ + (vΣ − vC )2

2
)ṁΣ ]]] dl.

To come to the final representation of Ėa, we have to write out the jump brackets [[·]]
and [[[·]]]. We start with the triple line contribution and have, by (2.63),

[[[(μΣ + (vΣ − vC )2

2
)ṁΣ ]]] = −

3∑

k=1

(
μΣ
k − μC + (vΣ

k − vC )2

2

)
ṁΣ

k .

Since (vΣ
k − vC )2 = ((vΣ

k − vC ) · Nk)2 by (2.67), the triple line contribution van-
ishes due to the constitutive assumption (2.66). Insertion of the other constitutive
relations, i.e. (2.37), (2.39), (2.61) and (2.62), finally leads to



44 D. Bothe and J. Prüss

Ėa = −
∫

G
λ(div v)2 dx −

∫

G
2ηD◦ : D◦ dx

−
∫

Σ

βΣ,+(v+ − vΣ)2|| do −
∫

Σ

βΣ,−(v− − vΣ)2|| do (2.75)

−
∫

Σ

aΣ,+(
log ṁ+,ad − log ṁ+,de

)(
ṁ+,ad − ṁ+,de

)
do

−
∫

Σ

aΣ,−(
log ṁ−,ad − log ṁ−,de

)(
ṁ−,ad − ṁ−,de

)
do.

Notice that, according to our condensed notation, the integrals overΣ are to be taken
over the three interfaces and the notation (·)± then denotes the respective one-sided
bulk limits. Evidently, (2.75) shows that Ea is decreasing along classical solutions,
i.e. Ea is a Lyapunov function.

Next we want to characterize the equilibria of the problem, proving at the same
time that the total available energy Ea is a strict Lyapunov functional for the system.
To this end assume that we have a solution where Ea is not strictly decreasing at all
times. Then there is an interval J = (t1, t2) where Ea is constant, hence dEa/dt = 0
in J . This implies, by (2.75),

div v = 0, D◦ = 0, v+
|| = vΣ

|| = v−
|| , ṁ+ = ṁ− = 0,

as λ, η, βΣ,±, aΣ,± > 0 by assumption. This yields D = 0, as well as [[v]] = 0 on
Σ , which by Lemma 1.2.1 of the monograph [32] implies v = vΣ

|| = 0. Next, inves-
tigating the equations for the bulk, we see that ∂tρ = 0 and ∇p = 0, which implies
that ρ is constant in the phases, as pk is by assumption a strictly increasing function
of ρk .

In the next step, we look at the equations on the interfaces. By the definition of
ṁ±, we obtain

0 = ṁ± = ρ±(v± − vΣ) · nΣ = −ρ±vΣ · nΣ,

hence vΣ · nΣ = 0 which yields vΣ = 0. Then the mass balance on Σ implies
∂Σ
t ρΣ = 0 on J . Furthermore, v = 0 and ρ constant yield μ± constant, hence

μ± = μΣ is constant by (2.62). This shows that ρΣ is constant, as μΣ is strictly
increasing with ρΣ . To see the latter, recall that μΣ = ψΣ + pΣ/ρΣ and, hence,
(μΣ)′(ρΣ) = (pΣ)′(ρΣ)/ρΣ > 0. This shows further that γ Σ is constant. Looking
at the stress transmission condition this further yields κΣ constant on each of the
surfaces Σk ; more precisely we obtain κΣ = [[p]], i.e. the Young-Laplace law holds
on each of the surfaces Σk .

In the final step, we consider the equations on the contact line. Here we have
vC||| = 0 by (2.65), as well as

vC = (vC |Nk)Nk, k = 1, 2, 3,
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hence vC = 0 if dim span{Nk}3k=1 = 2, i.e. in the non-degenerate case which is
assumed to hold. This further yieldsμC constant, and there remains the force balance
resembling Young’s equation:

3∑

k=1

γ kNk = γC κC ,

where κC = −divC IC = ∇C τ denotes the curvature vector of the contact line C .
So, Ėa = 0 on (t1, t2) implies the following:

1. The densities are constant, and all velocities vanish.
2. The curvatures κΣk of the hypersurfaces Σk are constant.
3.

∑3
k=1 γ kNk = γC κC , where the coefficients γ j are positive constants.

But this implies that the classical solution coincideswith an equilibriumof the system
at any t ∈ (t1, t2), hence remains at a fixed equilibrium for all t > t1. Consequently,
it holds that for any classical solution, Ea is strictly decreasing outside of equilibria,
i.e. Ea is actually a strict Lyapunov function. �

To identify all possible equilibrium configurations is a purely geometrical problem.
It appears to be a challenging problem and will not be analyzed any further, here.

Final Remarks. 1. The proof that Ea is non-increasing along classical solutions
requires all interfacial and triple line conditions, in particular the condition (2.66).
This confirms that the original interface formation model of Shikhmurzaev misses
one contact line condition. The origin of this transmission condition is the fact that
transfer of mass, here from one interface across the contact line to another interface,
is a dissipative process which requires a closure relation. This is similar to the case of
mass transfer across a fluid interface: even without interfacial mass, a fluid interface
carries interfacial energy and, in general, entropy can be produced at the interface.
In order to avoid entropy production, the condition which guarantees zero interfacial
entropy production has to be added, leading in the simplest case to continuity of
the chemical bulk potentials. The triple line analog is Eq. (2.66) above. In the more
general case of non-trivial entropy production, thermodynamically consistent closure
leads to a condition like (2.55).

2. The molecular kinetic theory of dynamic contact lines supports a friction-like
dissipation term at the contact line, modeled as being proportional to the square of
the contact line speed. If, instead of the non-linear closure (2.55), a linear relation is
imposed, the rate of entropy production due to transfer of interfacial mass across the
contact line becomes proportional to the contact line speed squared. In an isothermal
setting, this entropy production is proportional to the dissipation of available energy.
Hence, the so-called contact line friction can be identified with the interfacial mass
transfer dissipation mechanism.
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Chapter 3
Global Solvability of the Problem
on Two-Phase Capillary Fluid Motion
in the Oberbeck–Boussinesq Approximation

Irina Vlad. Denisova

Abstract Unsteady motion of a drop in another incompressible fluid bounded by a
rigid surface is considered in the Oberbeck–Boussinesq approximation. The liquids
are separated by a closed unknown interface �t where surface tension is taken into
account. Global existence theorem for the problem is stated in Hölder classes of
functions provided that the data have small norms and the initial configuration of
the drop is close to a ball with the center in drop’s barycenter. It is shown that
velocity vector field and temperature deviation decay exponentially as t → ∞, the
interface between the liquids tending to a sphere {|x − h∞| = R0} with a center h∞,
the limiting position of drop’s barycenter. It is established that if the initial data are
small enough, the inner liquid will remain strictly inside the other one during all the
time. The proof is based on the exponential estimate of a generalized energy and on
a local existence theorem of the problem in anisotropic Hölder spaces.

Keywords Two-phase problem with unknown interface · Incompressible capillary
fluid · Navier–Stokes system · Lagrangian coordinates · Hölder spaces

3.1 Statement of the Problem and the Main Result

In this paper we study unsteady motion of a drop of one viscous incompressible
fluid inside another one in the Oberbeck–Boussinesq approximation. The liquids are
located in a container with solid boundary � where the nonslip condition holds.
On the unknown interface �t , we take surface tension into account. Mass forces are
assumed to decrease at infinity with respect to time. We prove that the Oberbeck–
Boussinesq approximation gives only a small perturbation of the rest state which
is damped in time. Steady fall (or uprising) of a drop in a liquid medium under
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gravity force was analyzed by V.A. Solonnikov in the isothermal case [11]. There
fluid densities were considered to be close to each other.

We give a mathematical formulation of this two-phase problem.
Let, at the initial moment t = 0, a fluid with viscosity ν+ > 0 and density ρ+ >

0 fill a bounded domain �+
0 ⊂ R

3. Let a fluid with viscosity ν− > 0 and density
ρ− > 0 fill a domain �−

0 surrounding �+
0 . We denote ∂�+

0 by �0. The boundary
� ≡ ∂(�+

0 ∪ �0 ∪ �−
0 ) is a given closed surface, � ∩ �0 = ∅.

For every t > 0, it is necessary to find the interface �t between the domains �+
t

and �−
t , as well as the velocity vector field v(x, t) = (v1, v2, v3), the function p,

that is the deviation from the hydrostatic pressure, and the function θ , the deviation
from the average temperature value, for both fluids which satisfy the initial-boundary
value problem:

Dtv + (v · ∇)v − ν±∇2v + 1

ρ± ∇ p = f(x, t) − β±gθ, ∇ · v = 0,

Dtθ + (v · ∇)θ − k±∇2θ = 0 in �−
t ∪ �+

t , t > 0,

v|t=0 = v0, θ |t=0 = θ0 in �−
0 ∪ �+

0 , (3.1)

v|� = 0, θ |� = a,

[v]∣∣
�t

≡ lim
x→x0∈�t ,

x∈�+
t

v(x) − lim
x→x0∈�t ,

x∈�−
t

v(x) = 0, [θ ]|�t = 0,
[
k± ∂θ

∂n

]∣∣∣
�t

= 0,

[Tn]|�t = σHn on �t . (3.2)

HereDt = ∂/∂t ,∇ = (∂/∂x1, ∂/∂x2, ∂/∂x3), ν±, ρ± are step functions of viscosity
and density, respectively, f is a given vector of mass forces, β± > 0 is a step function
of temperature expansion coefficient, g = g(0, 0, 1), g being the acceleration of free
fall, v0 is the initial velocity, and θ0 is the initial distribution of temperature deviation,
k± is a step function of thermal conductivity, a is a given deviation of the temperature
on the solid boundary, T is the stress tensor:

T(v, p) ≡ −pI + μ±S(v),

where S(v) is the tensor with the elements Sik = ∂vi/∂xk + ∂vk/∂xi , i, k = 1, 2, 3;
μ± = ν±ρ±, I is the unitmatrix,σ > 0 is surface tension coefficient,n is the outward
normal to �+

t , H(x, t) is twice the mean curvature of �t (H < 0 at the points where
�t is convex toward �−

t ). We suppose that a Cartesian coordinate system {x} is
introduced in R

3. The centered dot denotes the Cartesian scalar product. Summation
from 1 to 3 over the repeated indices is implied. We mark the vectors and the vector
spaces by boldface letters.

Moreover, to exclude the mass transportation through �t , we assume that the
liquid particles do not leave �t . This means that �t consists of points x(ξ, t) such
that the corresponding vector x(ξ, t) solves the Cauchy problem

Dtx = v(x(ξ, t)) , x
∣∣
t=0 = ξ , ξ ∈ �0, t > 0 . (3.3)
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Hence �t = {x(ξ, t)| ξ ∈ �0}, �±
t = {x(ξ, t)| ξ ∈ �±

0 }.
Condition (3.3) is equivalent to the equality

Vn = v · n∣∣
�t

,

where Vn is the speed of the boundary �t in the direction of its outward normal.
We suppose that the drop �+

0 at an initial moment is close to the ball BR0 whose
volume equals the volume of the drop. The incompressibility of the fluids implies
that the domains �±

t conserve their volumes for all t > 0. In particularly, for the
drop we have

|�+
t | = |�+

0 | = 4

3
πR3

0 .

In order to simplify estimates,we introduce a newpressure function: p1 = p in�+
t

and p1 = p + σ 2
R0

in �−
t . Then in the interface problem, only boundary condition

(3.2) changes:

[T(v, p1)n]∣∣
�t

= σ
(
H + 2

R0

)
n. (3.4)

To exclude the intersection between the interface �t and the outer boundary �,
we need to control the position of the barycenter of the inner fluid �+

t :

h(t) = 1

|�+
t |

∫

�+
t

x dx .

We denote by r(�, t) deviation function of�t from the sphere SR0(t) ≡ SR0(h(t)) =
{|x − h(t)| = R0}. Next, we assume (without restriction of generality) that h(0) = 0
and that � ≡ �0 is defined by the equation

|x | = R0 + r0

(
x

|x |
)

(3.5)

on the unit sphere S1.
We prove for problem(3.1), (3.4), (3.3) unique solvability in anisotropic Hölder

classes of functions for all t > 0, provided that the initial data are smooth and small
enough. The same result for a problemgoverning themotion of single incompressible
capillary fluid bounded by a free surface in the isothermal case was obtained by
V.A. Solonnikov in [12]. In our proof, we follow a similar scheme. We developed
this technique together with V.A. Solonnikov for proving global solvability of the
problem for two incompressible capillary fluids without including mass forces [8].
The same problem with mass forces was studied in [4]. Local existence theorem for
the problem in the Oberbeck–Boussinesq approximation was established in [5].
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The main idea of the proof is to demonstrate an uniform exponential L2-estimate
for fluid velocity and temperature deviation from the mean value. Next, we prove
step by step that they decay exponentially in the Hölder norms, pressure function
tending to a step-function and the interface between the liquids doing to a sphere
with the radius R0.

We denote the anisotropic Hölder spaces of functions by Ck+α,(k+α)/2(QT ), k ∈
N ∪ {0}, QT = � × (0, T ), where � is a domain in R

n , n ∈ N; T > 0, α ∈ (0, 1).
The fist exponent means the smoothness with respect to the spatial variables, the
second one does the time regularity.

So, let D |r|
x = ∂(r)/∂xr11 . . . ∂xrnn , r = (r1, . . . rn), ri ∈ N ∪ {0}, |r| = r1 + · · · +

rn,D s
t = ∂s/∂t s, s ∈ N ∪ {0}, and k ∈ N. The space Ck+α, k+α

2 (QT ) consists of the
functions with finite norm

| f |(k+α, k+α
2 )

QT
=

∑

|r|+2s�k

|D r
xD

s
t f |QT + 〈 f 〉(k+α, k+α

2 )

QT
,

where |g|QT = sup(x,t)∈QT
|g(x, t)|,

〈 f 〉(k+α, k+α
2 )

QT
=

∑

|r|+2s=k

〈D r
xD

s
t f 〉(α,α/2)

QT
+

∑

|r|+2s=k−1

〈D r
xD

s
t f 〉(

1+α
2 )

t,QT
,

〈g〉(α,α/2)
QT

= 〈g〉(α)
x,QT

+ 〈g〉(α/2)
t,QT

Hölder’s semi-norms with respect one variable are defined as follows:

〈 f 〉(α)
x,QT

= sup
t∈(0,T )

sup
x,y∈�

| f (x, t) − f (y, t)||x − y|−α,

〈 f 〉(μ)
t,QT

= sup
x∈�

sup
t,τ∈(0,T )

| f (x, t) − f (x, τ )||t − τ |−μ, μ ∈ (0, 1).

By Ck+α(Ω), k ∈ N ∪ {0}, we denote the space of functions f (x), x ∈ Ω , with
the norm

| f |(k+α)
Ω =

∑

|r|�k

|D r
x f |Ω + 〈 f 〉(k+α)

Ω ,

where |g|Ω = supx∈Ω |g(x)|,

〈 f 〉(k+α)
Ω =

∑

|r|=k

〈D r
x f 〉(α)

Ω ≡ sup
x,y∈Ω

∑

|r|=k

|D r
x f (x) − D r

y f (y)||x − y|−α.

We also need the following semi-norm with α, γ ∈ (0, 1):

||| f |||(γ,1+α)

QT
= 〈〈〈 f 〉〉〉(γ,1+α)

QT
+ 〈 f 〉(

1+α−γ

2 )

t,QT
,



3 Global Solvability of the Problem on Two-Phase Capillary Fluid Motion … 53

where

〈〈〈 f 〉〉〉(γ,1+α)

QT
= sup

t,τ∈(0,T )

sup
x,y∈�

| f (x, t) − f (y, t) − f (x, τ ) + f (y, τ )|
|x − y|γ |t − τ |(1+α−γ )/2

.

The estimate
〈〈〈 f 〉〉〉(γ,1+α)

QT
� c1〈 f 〉(1+α, 1+α

2 )

QT

is known [10].
By definition, f ∈ C (γ,1+α)(QT ) if

||| f |||(γ,1+α)

QT
< ∞.

Finally, if a function f has finite norm

| f |(γ,μ)

QT
≡ 〈 f 〉(γ )

x,QT
+ | f |(μ)

t,QT
, γ ∈ (0, 1), μ ∈ [0, 1),

where

| f |(μ)
t,QT

=
{

| f |QT + 〈 f 〉(μ)
t,QT

if μ > 0,

| f |QT if μ = 0,

then this function belongs to the Hölder space Cγ,μ(QT ).
A vector-valued function is an element of a Hölder space if all of its components

belong to this space, and its norm is defined as the maximal norm of the components.
So is a tensor-valued function.

In order to arrive at a fixed interface, we apply passing to the Lagrangian coordi-
nates by the formula

x = ξ +
t∫

0

u(ξ, τ ) dτ ≡ Xu(ξ, t) (3.6)

(here u(ξ, t) is the velocity vector field in the Lagrangian coordinates). Next, we
apply the well-known relation

Hn = �(t)x ≡ �(t)Xu(ξ, t), (3.7)

where �(t) denotes the Beltrami-Laplace operator on �t .
We denote:

Q±
T ≡ �±

0 × (0, T ), DT ≡ Q+
T ∪ Q−

T , GT ≡ � × (0, T ), ϒT ≡ � × (0, T ).



54 I.V. Denisova

As a result of transformation (3.6) and of projecting boundary condition (3.4),
(3.7) onto the tangent planes first to �t , then to �, we arrive at the problem for u,
q = p1(Xu, t), θ̂ = θ(Xu, t) with the given interface � ≡ �0. If the angle between
n and the exterior normal n0 to � is acute, this system is equivalent to the following
one:

Dtu − ν±∇2
uu + 1

ρ± ∇uq = f(Xu, t) − β±θ̂g(Xu), ∇u · u = 0,

Dt θ̂ − k±∇2
u θ̂ = 0 in Q±

T ,

u|t=0 = v0, θ̂ |t=0 = θ0 in ∪ �±
0 , u|� = 0, θ̂ |� = a, (3.8)

[u]∣∣GT
= 0, [θ̂ ]∣∣GT

= 0, [k±n · ∇uθ̂ ]∣∣GT
= 0,

[μ±�0�Su(u)n]∣∣GT
= 0,

[n0 · Tu(u, q)n]∣∣GT
− σn0 · �(t)

t∫

0

u|� d τ = σH0 + 2σ

R0
+ σn0 ·

t∫

0

�̇(τ )ξ
∣
∣
�
d τ on GT .

Here we have used the notation: ∇u = A∇, A is the matrix of co-factors Ai j to the
elements

ai j (ξ, t) = δ
j
i +

∫ t

0

∂ui
∂ξ j

dt ′

of the Jacobianmatrix of transformation (3.6), δki is the Kronecker symbol, the vector
n is connected with n0 by the relation:

n = An0
|An0| ;

�ω = ω − n(n · ω), �0ω = ω − n0(n0 · ω) are projections of a vector ω onto the
tangent planes to �t and �, respectively; Su(w) is the tensor with the elements

(Su(w))i j = Aik∂w j/∂ξk + A jk∂wi/∂ξk;

Tu(w, q) = −qI + μ±Su(w), H0(ξ) = n0 · �(0)ξ is twice the mean curvature of�;
�̇(t) is the operator obtained from the Beltrami–Laplace operator upon differentia-
tion of the coefficients of the latter with respect to t .

Let be T ∈ (0,∞], t, τ > 0. We set:

� = �−
0 ∪ �+

0 ≡ �−
t ∪ �+

t , QT = � × (0, T );

Q±
(t, t+τ) = �±

t × (t, t + τ), D(t, t+τ) = ∪Q±
(t,t+τ);
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and let us denote the norm ‖ · ‖L2(�) by ‖ · ‖�; ‖a‖W1
2(S1)

≡ ‖a‖S1 + ‖∇a‖S1 .
In addition, we put

| f |(k+α, k+α
2 )

DT
≡ | f |(k+α, k+α

2 )

Q−
T

+ | f |(k+α, k+α
2 )

Q+
T

,

| f |(k+α)

∪�± ≡ | f |(k+α)

�− + | f |(k+α)

�+ .

In the case of absence of the term σ 2
R0
n0 · n in the last boundary condition,

existence and uniqueness theorem for system (3.8) was proved in a bounded time
interval whose value is defined by the norms of v0, the right-hand side functions and
the curvature of the interface � [5, Theorem 1.1].

The term σ 2
R0
n0 · n in the last boundary condition is weak with respect to the

left-hand side of the equality, that is why it is easily seen that the above-mentioned
Theorem1.1 from [5] remains valid in the presence of this term.

Now we state existence theorem obtained.

Theorem 3.1 (Local existence theorem) Suppose that � ∈ C3+α , � ∈ C2+α ,
f, Dx f ∈ Cα,

1+α−γ

2 (R3 × (0, T )), v0 ∈ C2+α(∪�±
0 ), a ∈ C2+α,1+α/2(ϒT ), θ0 ∈

C2+α(∪�±
0 ) with some α ∈ (0, 1), γ ∈ (0, α), 0 < T < ∞. Moreover, let the

compatibility conditions are satisfied:

∇ · v0 = 0, [v0]|� = 0, [θ0]|� = 0, v0|� = 0, θ0|� = a|t=0,

[μ±�0S(v0)n0]|� = 0,

[�0(ν
±∇2v0 − 1

ρ± ∇q0)]|� = −[β±θ0�0g]|�, k−∇2θ0|� = Dt a
∣
∣
t=0, (3.9)

��(ν− ∂2v0
∂n2�

− 1

ρ− ∇q0)
∣∣
�

= ��(f − β−ag)
∣∣
�, t=0,

[k±∇2θ0]|� = [ f ]|�, t=0,

[
k± ∂θ0

∂n0

]∣
∣
∣∣
�

= 0 (
∂

∂n0
= n0 · ∇),

where q0(ξ) ≡ q(ξ, 0) is a solution of the diffraction problem

1

ρ± ∇2q0(ξ) = ∇ · (f(ξ, 0) − β±θ0g − DtB∗∣∣
t=0v0(ξ)), ξ ∈ �±

0 ,

[q0]|� =
[
2μ± ∂v0

∂n0
· n0

]∣
∣∣∣
�

− σ
(
H0 + 2

R0

)
,

[
1

ρ±
∂q0
∂n0

]∣∣∣∣
�

= [
ν±n0 · ∇2v0

]∣∣
�

− [
n0 · β±θ0g

]∣∣
�
,

1

ρ−
∂q0
∂n�

∣∣∣∣
�

= ν−n� · ∇2v0
∣∣
�

+ n� · (f − β−ag)
∣∣
�, t=0 (

∂

∂n�

= n� · ∇).

Here B = A − I, I is the identity matrix, B∗ is the transpose to B, n� is the outward
normal to �, ��ω ≡ ω − n�(n� · ω).
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Then there exists a positive constant T∗ � T such that problem (3.8) has a
unique solution (u, q, θ̂ ) with the following properties: u ∈ C2+α,1+α/2(DT∗), q ∈
C (γ,1+α)(DT∗) , ∇q ∈ Cα,α/2(DT∗), θ̂ ∈ C2+α,1+α/2(DT∗), the functions u, θ̂ being
defined in a unique way, while q being done up to a bounded time dependent function.
The value of T∗ depends on the data norms and on the curvature of �.

The solution (u, q, θ̂ ) is subjected to the inequality

|u|(2+α,1+α/2)
DT∗ + |∇q|(α,α/2)

DT∗ + |q|(
1+α−γ

2 )

t,DT∗ + 〈q〉(1+α,γ )

DT∗ + |θ̂ |(2+α,1+ α
2 )

DT∗

� c4(T∗)
{
|f|(α, α

2 )

DT∗ + |f |(
1+α−γ

2 )

t,DT∗ + |H0 + 2

R0
|(1+α)
� + |a|(2+α,1+ α

2 )

ϒT∗

+ c
(
T

1−γ

2∗ , |v0|(1+α)

∪�±
0

)(|v0|(2+α)

∪�±
0

+ |θ0|(2+α)

∪�±
0

)}
, (3.10)

|θ̂ |(2+α,1+ α
2 )

DT∗ � c5(T∗)
{
|a|(2+α,1+ α

2 )

ϒT∗ + (
c + T

1−γ

2∗ |v0|(1)∪�±
0

)|θ0|(2+α)

∪�±
0

}
,

where c4(T ), c5(T ) are increasing functions of T .

Remark 3.1 Although theorem statement in [5] does not have estimate (3.10), one
can easily see in the proof that it follows by passage to the limit from the solution
estimates for linearized problems like (3.21), (3.23). The complete estimate was
obtained in [5] as inequality (4.22).

We state now the main result of the paper.

Theorem 3.2 (Global existence theorem) Let the hypotheses of Theorem3.1 hold.
Assume, in addition, that for t = 0 interface � is given by (3.5) on the unit sphere,
and the initial data are small enough, i.e.,

|eb1t f |(α,
1+α−γ

2 )

Q∞ + |eb1t∇f |(α,
1+α−γ

2 )

Q∞ + ‖eb1t f‖Q∞ + ∥∥eb1t a
∥∥
W3/2,3/4

2 (ϒ∞)

+ |eb1t a|(2+α,1+α/2)
ϒ∞ + |v0|(2+α)

∪�±
0

+ |θ0|(2+α)

∪�±
0

+ |r0|(3+α)
S1 � ε � 1. (3.11)

Then problem (3.1), (3.4), (3.3) is uniquely solvable for all t > 0, and the
solution (v, p1) has the properties: v ∈ C2+α,1+α/2, p1 ∈ C (γ,1+α), ∇ p1 ∈ Cα,α/2,
θ ∈ C2+α,1+α/2, the function p1 being defined up to a bounded time dependent func-
tion. The interface �t is given for ∀t by a function of C3+α:

|x − h(t)| = R0 + r

(
x − h

|x − h| , t
)

,

(where h(t) is a position of the barycenter of �+
t at the moment t), and tending to a

sphere of the radius R0 with center in a certain point h∞; r0(ω) ≡ r(ω, 0). It means
that for any t0 ∈ (0,∞), the solution (u, q, θ̂ ) and its derivatives in local Lagrangian
coordinates belong to respective Hölder spaces for a sufficiently small time interval
(t0, t0 + τ); it is subjected to the estimate

http://dx.doi.org/10.1007/978-4-431-56457-7_4
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|u|(2+α,1+α/2)
D(t0 ,t0+τ)

+ |∇q|(α,α/2)
D(t0 ,t0+τ)

+ |||q|||(γ,1+α)

D(t0 ,t0+τ)
+ |θ̂ |(2+α,1+α/2)

D(t0 ,t0+τ)
+ sup
t∈(t0,t0+τ)

|r(·, t)|(3+α)
S1

� ce−b1t0
{
|eb1t f |(α,

1+α−γ

2 )

Q∞ + |eb1t∇f |(α,
1+α−γ

2 )

Q∞ + ‖eb1t f‖Q∞ + ∥∥eb1t a
∥∥
W

3
2 , 34
2 (ϒ∞)

+|eb1t a|(2+α,1+α/2)
ϒ∞ + |v0|(2+α)

∪�±
0

+ |θ0|(2+α)

∪�±
0

+ |r0|(3+α)
S1

}
, (3.12)

where the values τ , b1, c are independent of t0.

One can conclude from this theorem that the stability of this solution takes place
in the sense that the solution is close to zero under a small deviation of the data from
zero. However, the center of the limit sphere SR0(h∞) may be displaced with respect
to the initial barycenter of �+

0 for no matter how small an initial velocity v0 is. This
displacement is evaluated in inequality (3.48) at the end of the paper. We also give
there an estimate from below of the distance between the outer boundary and the
initial fluid interface which guarantees the absence of the intersection between these
surfaces.

Remark 3.2 We note that global solvability of a similar problem governing the
motion of two fluids in the Oberbeck–Boussinesq approximation without includ-
ing surface tension may obtained on the base of the results in [2, 3, 5]. In this case,
one can reduce the necessary smoothness of the initial interface and take � ∈ C2+α .

3.2 An Energy Estimate of the Solution

In this section we prove an exponential estimate for the solution of the nonlinear
problem (3.1), (3.4), (3.3) in L2.

We will use the proposition proved in [8] for system (3.1), (3.4) in the isothermal
case. We developed there the idea of constructing a function of generalized energy
for the fluids proposed by Padula [9].

We suppose that the L2-norm of mass forces decreases with respect to time in
exponential way with the certain constant b and �t is close to a shere.

Proposition 3.1 Assume that a solution of problem (3.1) with θ = 0, (3.4), (3.3) is
defined on [0, T ] and v0 satisfies compatibility conditions (3.9). Let r be such that

|r(ω, t)|S1×(0,T ) + |∇S1r(ω, t)|S1×(0,T ) � δ1R0 � 1 (3.13)

and
f(·, τ ) ∈ L2(�), ‖ebτ f‖QT < ∞ (3.14)

with a big enough constant b.
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Then for ∀t ∈ (0, T ]

‖v(·, t)‖� + ‖r(·, t)‖W1
2(S1)

� c1e
−bt

{
‖ebτ f‖Qt + ‖v0‖�+‖r0‖W1

2(S1)

}
. (3.15)

Proposition 3.2 Assume that a solution of problem (3.1), (3.4), (3.3) is defined in
[0, T ]. Let, in addition, r satisfies smallness condition (3.13) and f does (3.14).

Then for ∀t ∈ (0, T ]

‖v(·, t)‖� + ‖r(·, t)‖W1
2(S1)

� c2e
−b1t

{
‖v0‖� + ‖θ0‖� + ‖r0‖W1

2(S1)

+ ∥∥ebτ f
∥∥
Qt

+ ∥∥eb2τa
∥∥
W3/2,3/4

2 (ϒt )

}
, (3.16)

‖θ(·, t)‖� � c3e
−b2t

{
‖θ0‖� + ∥∥eb2τa

∥∥
W3/2,3/4

2 (ϒt )

}
(3.17)

with constants b1, b2, c2 and c3 independent of t; b1 = min{b, b2}; b2 is the constant
from (3.19).

Proof In order to apply Proposition3.1 to system (3.1), (3.4), we should be sure that
the L2-norm of θ decays exponentially in the certain way.

We extend the function a with preservation of class into the domain � so that the
extension a∗ = 0 in a neighborhood of�+

t and inside it. Let’s consider the difference
θ̃ = θ − a∗. It solves the problem

Dt θ̃ + (v · ∇)θ̃ − k±∇2θ̃ = da∗

dt
− k−∇2a∗ in �−

t ∪ �+
t , t > 0,

θ̃ |t=0 = θ̃0 − a∗|t=0 in �−
0 ∪ �+

0 , (3.18)

[θ̃ ]|�t = 0,
[
k± ∂θ̃

∂n

]∣∣∣
�t

= 0, θ̃ |� = 0.

To obtain an exponential estimate for θ̃ , we multiply the heat equation in (3.18)
by θ̃ and integrate by parts over �−

t ∪ �+
t :

1

2

d

dt
‖θ̃‖2∪�±

t
+ ‖√k±∇ θ̃‖2∪�±

t
=

∫

�−
t

( da∗

dt
− k−∇2a∗

)
θ̃ dx .

And since [θ̃ ]|�t = 0, we have ‖∇ θ̃‖2∪�±
t

= ‖∇ θ̃‖2�, � = �−
t ∪ �+

t , and

1

2

d

dt
‖θ̃‖2� + min{k±}‖∇ θ̃‖2� �

∥∥
∥
da∗

dt
− k−∇2a∗

∥∥
∥

�−
t

‖θ̃‖�−
t
.

We apply the Poincaré inequality to the norm of ∇ θ̃ in view of θ̃ |� = 0, then

d

dt
‖θ̃‖2� + 2b2‖θ̃‖2� � c

∥∥∥
da∗

dt
− k−∇2a∗

∥∥∥
2

�−
t

(3.19)
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which, due to the Gronwall lemma, gives

‖θ̃ (·, t)‖2� � e−2b2t‖θ0‖2� + c
∫ t

0
e−2b2(t−τ)

∥∥∥
da∗

dt
− k−∇2a∗

∥∥∥
2

�
dτ

� ce−2b2t
(
‖θ0‖2� + ∥

∥eb2τa∗∥∥2
W2,1

2 (Qt )

)

� ce−2b2t
(
‖θ0‖2� + ∥∥eb2τa

∥∥2
W3/2,3/4

2 (ϒt )

)
.

Finally,

‖θ(·, t)‖� � ‖θ̃ (·, t)‖� + ‖a∗(·, t)‖� � e−b2t
(
‖θ0‖� + ‖a(·, 0)‖� + ∥∥eb2τa

∥∥
W3/2,3/4

2 (ϒt )

)
.

Then inequality (3.16) follows from (3.17) and (3.15) for the first equation in (3.1).

�

Corollary 3.1 The coordinates of the barycenter of �+
t satisfy the inequality

|h(t)| � c
{
‖eb1τ f‖QT + ∥∥eb1τa

∥∥
W3/2,3/4

2 (ϒt )
+ ‖v0‖� + ‖θ0‖� + ‖r0‖W1

2(S1)

}
(3.20)

for ∀t ∈ [0, T ].
Proof Sincewehave the solution in the interval [0, T ], we knowbarycenter trajectory
of the drop �+

t : h(t) = 1
|�+

t |
∫

�+
t

x dx . Moreover,

h′
t (t) = |�+

t |−1
∫

�+
t

v(x, t) dx .

We have assumed that h(0) = 0. Inequality (3.20) follows from (3.16) and the esti-
mate

|h(t)| � 1

|�+
0 |1/2

∫ t

0
‖v(·, τ )‖�+

t
dτ.

�

3.3 Linearized Problems

Let us consider a linear problem with a given vector field u:

Dtw − ν±∇2
uw + 1

ρ± ∇us = f, ∇u · w = r in DT ,
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w
∣∣
t=0 = w0 in �−

0 ∪ �+
0 , (3.21)

[w]∣∣GT
= 0, w|� = 0, [μ±�0�Su(w)n]∣∣GT

= �0b,

[n0 · Tu(w, s)n]∣∣GT
− σn0 · �(t)

t∫

0

w
∣∣
�
dτ = b +

t∫

0

B dτ on GT .

The functions in the right-hand sides of all the equations, initial and boundary con-
ditions are given.

The problem (3.21) was studied in [1, 6, 7], where the unique solvability of the
problem was proved in an arbitrary finite time interval, when the surface � was
absent and the domain �−

0 ∪ �+
0 was the whole space R

3. This result was obtained
in the Hölder spaces with a power weight at infinity, however it is valid also in our
case.

We give the formulation of the existence theorem for the problem (3.21).

Theorem 3.3 Assume that for certain α, γ ∈ (0, 1), γ < α, 0 < T < ∞, the
surfaces �, � ∈ C2+α , σ > 0, and the vector field u ∈ C2+α,1+α/2(DT ) satisfies
[u]∣∣GT

= 0 and the inequality

(T + T γ /2)|u|(2+α,1+α/2)
DT

� δ (3.22)

with sufficiently small δ > 0.
Moreover, we assume that the following four sets of conditions are satisfied
(1) f ∈ Cα, α

2 (DT ), r ∈ C1+α, 1+α
2 (DT ),w0 ∈ C2+α(�−

0 ∪ �+
0 ),b ∈ C1+α, 1+α

2 (GT ),
b ∈ C (γ,1+α)(GT ), B ∈ Cα, α

2 (GT );
(2) The compatibility conditions

∇ · w0(ξ) = r(ξ, 0) = 0, [w0]
∣∣
�

= 0, w0|� = 0,

[μ±�0S(w0(ξ))n0]
∣∣
ξ∈�

= �0b(ξ, 0), ξ ∈ �,

[
�0

(
f(ξ, 0) − 1

ρ± ∇s(ξ, 0) + ν±∇2w0(ξ)

)]∣∣
∣∣
ξ∈�

= 0,

��

(
f(ξ, 0) − 1

ρ− ∇s(ξ, 0) + ν−∇2w0(ξ)

)∣∣
∣∣
ξ∈�

= 0;

are satisfied;
(3) There exist a vector field g ∈ Cα,α/2(DT ) and a tensor G = {Gik}3i,k=1, Gik ∈

C (γ,1+α)(DT ) ∩ Cγ,0(DT ) such that the representation formulas

Dt r − ∇u · f = ∇ · g, g = ∇ · G (gi = ∂Gik/∂ξk, i = 1, 2, 3),
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hold (in a generalized sense) and, in addition,

[(g + AT f) · n0]
∣∣
GT

= 0;

(4) s0(ξ) = s(ξ, 0) is a solution to the problem

1

ρ± ∇2s0(ξ) = ∇ · (DtBT
∣
∣
t=0w0(ξ) − g(ξ, 0)

) ≡ ∇ · d in �−
0 ∪ �+

0 ,

[s0]
∣
∣
�

=
[
2μ± ∂w0

∂n0
· n0

]∣∣
∣∣
�

− b
∣
∣
t=0,

[
1

ρ±
∂s0
∂n0

]∣∣∣∣
�

= [
n0 · (

f
∣∣
t=0 + ν±∇2w0

)]∣∣
�
,

1

ρ−
∂s0
∂n�

∣
∣∣
�

= ν−n� · ∇2w0|� + n� · f∣∣
�, t=0.

Under these assumptions, the problem (3.21) has a unique solution (w, s), w ∈
C2+α,1+α/2(DT ), s ∈ C (γ,1+α)(DT ), ∇s ∈ Cα,α/2(DT ) (the pressure is defined up to
a bounded function of time), and for arbitrary t ′ ∈ (0, T ] the inequality

Nt ′ [w, s] ≡ |w|(2+α,1+α/2)
Dt ′ + |∇s|(α,α/2)

Dt ′ + |||s|||(γ,1+α)

Dt ′

� c1(t
′)
{
|f |(α,α/2)

Dt ′ + |r |(1+α, 1+α
2 )

Dt ′ + |w0|(2+α)

∪�±
0

+ |g|(α,α/2)
Dt ′

+ |||G|||(γ,1+α)

Dt ′ + |G|(γ,0)
Dt ′ + |b|(1+α, 1+α

2 )

Gt ′ + |b|Gt ′ + |||b|||(γ,1+α)

Gt ′

+ |∇�b|(α,α/2)
Gt ′ + |B|(α,α/2)

Gt ′ + Pt ′ [u]|w0|(1)∪�±
0

}

holds, where c1(t ′) is a non-decreasing function of t ′ � T , ∇� = �0∇, and

Pt [u] = t
1−α
2 |∇u|Dt + |∇u|(α,α/2)

Dt
.

Now let us consider the problem with the unknown temperature function ψ :

Dtψ − k±∇2
uψ = f in DT ,

ψ |t=0 = ψ0 in �−
0 ∪ �+

0 ,

[ψ]|GT = 0, ψ |ϒT = ϕ, (3.23)

[k±n · ∇uψ]|GT = d on GT .

This problem was analyzed in [5] where the following theorem was obtained for it.
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Theorem 3.4 Assume that the surfaces �,� ∈ C2+α, and that a vector-valued
function u ∈ C2+α,1+α/2(DT ), [u]|� = 0, and satisfies inequality (3.22).
Then for arbitrary f ∈ Cα,α/2(DT ), ψ0 ∈ C2+α(�−

0 ∪ �+
0 ), ϕ∈C2+α,1+α/2(ϒT ), d ∈

C1+α,(1+α)/2(GT ) which are subject to the compatibility conditions

[ψ0]|� = 0, ψ0|� = ϕ|t=0, −[k±∇2ψ0]|� = [ f |t=0]|�,

[k± ∂ψ0

∂n0
]|� = d(ξ, 0), ξ ∈ �, Dtϕ|t=0 − k−∇2ψ0|� = f |�, t=0, (3.24)

problem (3.23) has a unique solution ψ ∈ C2+α,1+α/2(DT ) and the estimate

|ψ |(2+α,1+α/2)
DT

� c2(T )
{| f |(α,α/2)

DT
+ |ψ0|(2+α)

∪�±
0

+ |ϕ|(2+α,1+α/2)
ϒT

+ |d|(1+α, 1+α
2 )

GT
+ T

1−α
2 |∇u|DT |ψ0|(1)∪�±

0

}
(3.25)

holds. Here c2 is a nondecreasing function of T .

3.4 Global Solvability of the Problem (3.1), (3.4), (3.3)

The aim of this section is to prove global solvability of the problem (3.1), (3.4), (3.3)
in the whole time interval {t > 0}.

In the proof we use the following lemma proved in [3].

Lemma 3.1 Let u ∈ C0, 1+α
2 (DT0), T0 > 0, 0 < κ < T 1/2

0 . Then the function u is
subject to the inequality

〈u〉(
1+α−γ

2 )

t,DT0
� 2κ

γ 〈u〉( 1+α
2 )

t,DT0
+ cκ

γ−α− 9
2

T0∫

0

‖u(·, τ )‖� dτ.

In a similar way, it is possible to prove the statement.

Lemma 3.2 For arbitrary function

u ∈ C2+α,1+ α
2 (DT0) and 0 < κ1, κ2 < min

{
diam {�}, T 1/2

0

}
,

the inequalities

〈u〉(α, α
2 )

DT0
� 2κ

2
1〈u〉(2+α,1+ α

2 )

DT0
+ cκ

−α− 7
2

1

T0∫

0

‖u(·, τ )‖�dτ, (3.26)
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|u|DT0
� c

{
κ

1+α
2 〈u〉( 1+α

2 )

t,DT0
+ κ

− 7
2

2

T0∫

0

‖u(·, τ )‖� dτ

}
(3.27)

hold.
The following proposition was proved in [4].

Proposition 3.3 Let a solution (v, p) of problem (3.1), (3.4), (3.3) with θ = 0 exist
on the interval (0, T ] and the inequality

N(0,T )[v, p] ≡ |u|(2+α,1+α/2)
DT

+ |∇q|(α,α/2)
DT

+ |||q|||(γ,1+α)

DT
� μ

hold. Here (u, q) is the solution of the problem in the Lagrangian coordinates.
Then

N(t0−τ0,t0)[v, p1, r ] ≡ N(t0−τ0,t0)[v, p1] + sup
t0−τ0<τ<t0

|r(·, τ )|(3+α)
S1 (3.28)

� c1(δ, τ0)

{
|f |(α,

1+α−γ

2 )

D(t0−2τ0 ,t0)
+ |∇f |(α,

1+α−γ

2 )

D(t0−2τ0 ,t0)

+
∫ t0

t0−2τ0

(‖v(·, τ )‖� + ‖r(·, τ )‖W1
2(S1)

)
dτ

}
,

where δ is the value from (3.22), τ0 ∈ (0, t0/2), τ0 depends on μ:

(2τ0 + (2τ0)
γ/2)μ � δ, (3.29)

c(δ, τ0) is a non-decreasing function.

We use Proposition3.3 to prove the statement as follows:

Proposition 3.4 Assume that a solution of problem (3.1), (3.4), (3.3) is defined on
the interval (0, T ] and the estimate

N(0,T )[v, p1, θ ] ≡ |u|(2+α,1+α/2)
DT

+ |∇q|(α,α/2)
DT

+ |||q|||(γ,1+α)

DT
+ |θ̂ |(2+α,1+α/2)

DT
� μ1

holds. Here the triple (u, q, θ̂ ) means the solution written as a function of the
Lagrangian coordinates.

Then

N(t0−τ0/2,t0)[v, p1, θ, r ] ≡ N(t0−τ0/2,t0)[v, p1, θ ] + sup
t0−τ0/2<τ<t0

|r(·, τ )|(3+α)
S1

� c(δ, τ0)

{
|f |(α,

1+α−γ

2 )

D′
0

+ |∇f|(α,
1+α−γ

2 )

D′
0

+ |a|(2+α,1+α/2)
ϒ ′

0

+
t0∫

t0−2τ0

(‖v(·, τ )‖� + ‖θ(·, τ )‖� + ‖r(·, τ )‖W1
2(S1)

)
dτ

}
, (3.30)
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where t0 ∈ (0, T ], τ0 ∈ (0, t0/2), τ0 depends on μ and on the constant δ in (3.22).
Moreover, we have used the notation: D′

β =D(t0−2τ0+β,t0), ϒ ′
β = � × (t0 − 2τ0 +

β, t0) with β ∈ [0, 2τ0).
Proof Wefix an arbitrary t0 ∈ (0, T ]. For τ0 ∈ (0, t0/2)we denote by ηλ(t) a smooth
monotone function of t such that

ηλ(t) =
{
0 if t � t0 − 2τ0 + λ/2,

1 if t � t0 − 2τ0 + λ,

λ ∈ (0, τ0], and ∣
∣η̇λ(t)

∣
∣
R

� cλ−1,
〈
η̇λ(t)

〉(α/2)
R

� cλ−1−α/2,

where η̇λ ≡ dηλ(t)/dt .
We consider the triple w = vηλ, s = p1ηλ, ϑ = θηλ. It satisfies the system

Dtw + (v · ∇)w − ν±∇2w + 1

ρ± ∇s = fηλ + vη̇λ − β±gϑ,

Dtϑ + (v · ∇)ϑ − k±∇2ϑ = θη̇λ,

∇ · w = 0 in �−
t ∪ �+

t , t > t0 − 2τ0,

w|t=t0−2τ0 = 0, ϑ |t=t0−2τ0 = 0 in ∪ �′
± ≡ ∪�±

t0−2τ0 , (3.31)

w|� = 0, ϑ |� = aηλ,

[ϑ]∣∣
�t

= 0,
[
k± ∂ϑ

∂n

]∣∣∣
�t

= 0,

[w]∣∣
�t

= 0, [T(w, s)n]∣∣
�t

= σ
(
H + 2

R0

)
nηλ

∣∣
�t

.

We introduce the Lagrangian coordinates according to the formula

x = ξ ′ +
t∫

t0−2τ0

u(ξ ′, τ ) dτ ≡ X(ξ ′, t), ξ ′ ∈ ∪�′
±, t > t0 − 2τ0, (3.32)

where u(ξ ′, t) = v(X (ξ ′, t), t). We transform problem (3.31) by (3.32). The func-
tions w, s and ϑ written in the Lagrangian coordinates will be denoted by the same
symbols.

The function ϑ solves the system

Dtϑ − k±∇2
uϑ = θ̂ η̇λ in ∪ �′

±, t > t0 − 2τ0,

ϑ |t=t0−2τ0 = 0 in ∪ �′
±, [ϑ]∣∣

�′ = 0, (3.33)
[
k±n′ · ∇uϑ

]∣∣∣
�′

= 0, ϑ |� = aηλ.
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Here �′ = �t0−2τ0 , all the notation, say ∇u, correspond to transformation (3.32).
We verify the assumptions of Theorem3.4 to apply it to problem (3.33). First, we

choose τ0 so small that the inequality (3.22) is satisfied. It suffices to take it such that

(2τ0 + (2τ0)
γ/2)μ1 � δ. (3.34)

Next, compatibility conditions (3.24) are fulfilled due to (3.9). Hence, for ϑ ,
estimate (3.25) holds. All functions in (3.33) are equal to zero at t = t0 − 2τ0. Thus,

|θ̂ |(2+α,1+α/2)
D′

λ
� |ϑ |(2+α,1+α/2)

D′
τ0

� c2(2τ0)
{|θ̂ η̇λ|(α,α/2)

D′
τ0

+ |aηλ|(2+α,1+α/2)
ϒ ′

0

}
. (3.35)

Hence for λ � τ0 < 1 inequality (3.35) can be extended as follows:

|θ̂ |(2+α,1+α/2)
D′

λ
� c2(2τ0)

{
1

λ
|θ̂ |(α,α/2)

D′
λ/2

+ 1

λ1+ α
2
|θ̂ |D′

λ/2

+ 1

λ1+ α
2
|a|(2+α,1+α/2)

ϒ ′
λ/2

}
. (3.36)

We estimate the lower order norms of θ̂ in (3.36) by Lemma3.2, setting κ1 =
(ελ)1/2 in (3.26). Next, we evaluate |θ̂ |D′

λ/2
by the inequality (3.27) with κ2 =

(ελ1+ α
2 )

1
1+α .

As a result, we deduce the inequality

|θ̂ |(2+α,1+α/2)
D′

λ
� c3(δ)

{
ε|θ̂ |(2+α,1+α/2)

D′
λ/2

+ c(ε)λ−κ

t0∫

t0−2τ0

‖θ̂ (·, τ )‖� dτ

+ 1

λ1+ α
2
|a|(2+α,1+α/2)

ϒ ′
λ/2

}
(3.37)

with κ = max

{
11
4 + α

2 ,
(
1 + α

2

)(
1 + 7

2(1+α)

)}
.

We introduce the function Φ(λ) = λκ |θ̂ |(2+α,1+α/2)
D′

λ
. Since κ > 1 + α

2 , we can
write (3.37) in the following way:

Φ(λ) � c4εΦ(λ/2) + K , (3.38)

where c4 = c3(δ)2κ ,

K = c3(δ)

{
c(ε)

t0∫

t0−2τ0

‖θ̂ (·, τ )‖� dτ + |a|(2+α,1+α/2)
ϒ ′

0

}
.
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Setting ε = 1
2c4

, we deduce from (3.38) by iterations with λ/2, ..., λ/2k and by
taking the limit as k → ∞, that

Φ(λ) � 2K .

This estimate with λ = τ0 implies the inequality

|θ̂ |(2+α,1+α/2)
D′

τ0
� c5(δ)

{ t0∫

t0−2τ0

‖θ̂‖� dτ + |a|(2+α,1+α/2)
ϒ ′

0

}
. (3.39)

We apply Proposition3.3 with τ1 = τ0/2 to the part of problem (3.1), (3.4) con-
cerning v, p1 and consider θ as a known function in the right-hand side of the first
equation in (3.1).We choose τ0 so small that (3.29) is satisfied for τ1. Then, by (3.28),
we have

N(t0−τ1,t0)[v, p1, r ] � c2(δ, τ0)

{
|f|(α,

1+α−γ

2 )

D′
τ0

+ |∇f |(α,
1+α−γ

2 )

D′
τ0

+ |θ̂ |(α,
1+α−γ

2 )

D′
τ0

+ |∇ θ̂ |(α,
1+α−γ

2 )

D′
τ0

+
∫ t0

t0−2τ1

(‖v(·, τ )‖� + ‖r(·, τ )‖W1
2(S1)

)
dτ

}
, (3.40)

In view of (3.39), we deduce from (3.40) the inequality

N(t0−τ1,t0)[v, p1, r ] � c2(δ, τ0)

{
|f |(α,

1+α−γ

2 )

D′
τ0

+ |∇f|(α,
1+α−γ

2 )

D′
τ0

+ |a|(2+α,1+α/2)
ϒ ′

0

+
t0∫

t0−2τ0

‖θ̂ (·, τ )‖� dτ +
t0∫

t0−2τ1

(‖v(·, τ )‖� + ‖r(·, τ )‖W1
2(S1)

)
dτ

}

and estimate (3.30).

�

Lemma 3.3 Let r0 ∈ C1+α(S1) and u ∈ C1+α,0(DT0), α ∈ (0, 1). Then r(·, t) ∈
C1+α(S1) for arbitrary t ∈ (0, T0) and the inequality

|r(·, t)|(1+α)
S1 � c5

(|r0|(1+α)
S1 + t |u|(1+α)

ξ,Dt

)
, (3.41)

holds, if the norms r0 and u are small.

This proposition was proved in [8] by the passage to the Lagrangian coordinates.
Now we can prove Theorem3.2.

Proof By Theorem3.1, there exists a local solution (v, p1, θ) on an interval (0, T∗],
T∗ > 1, when ε in (3.11) is small enough (inequality (4.23) in [5]). For the norm of
the solution (v, p1, θ), estimate (3.10) holds, therefore
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N(0,T∗)[v, p1, θ ] � c
(
|f|(α,

1+α−γ

2 )

QT∗ + |Dx f |(α,
1+α−γ

2 )

QT∗ + |v0|(2+α)

∪�±
0

+ |θ0|(2+α)

∪�±
0

+ |a|(2+α,1+ α
2 )

ϒT∗ + |r0|(3+α)
S1

)
� c3ε ≡ μ1

(3.42)

with a small μ1 > 0. In the last inequality we have taken account of the estimate

|H0 + 2

R0
|(1+α)
� � c|r0|(3+α)

S1 .

By Proposition3.4, there exists τ0 < T∗/2 such that (3.34) is satisfied and for
(v, p1, θ), T∗ estimate (3.30) holds. Lemma3.3 guarantees the inequality

|r |(1+α,0)
S1×(0,T∗) � c2

(|r0|(1+α)
S1 + c3εT∗

)
� δ1R0

(|r |(1+α,0)
S1×(0,T∗) ≡ sup0<τ<T∗ |r(·, τ )|(1+α)

S1 ), when ε is sufficiently small. This allows us
to apply Proposition3.2. Inequality (3.30) combined with (3.16), (3.17) leads to the
estimate

N(t0−τ0/2,t0)[v, p1, θ, r ] � c4 e
−b1(t0−2τ0)

{
|eb1t f |(α,

1+α−γ

2 )

D′
0

+ |eb1t∇f |(α,
1+α−γ

2 )

D′
0

+ |eb1t a|(2+α,1+ α
2 )

ϒ ′
0

+ ‖v0‖� + ‖θ0‖� + ‖r0‖W1
2(S1)

}

� c5(τ0)e
−b1t0

(|�| 1
2 + 1

)
ε, (3.43)

where |�| is the measure of �, and t0 ∈ (2τ0, T∗].
For t0 = T∗, estimate (3.42) implies that

|v(·, T∗)|(2+α)

∪�±
T∗

+ |θ(·, T∗)|(2+α)

∪�±
T∗

+ |r(·, T∗)|(3+α)
S1 � μ1. (3.44)

Next, we use Theorem3.1 again to obtain solution in (T∗, T∗ + T1] for the initial
data v(·, T∗), θ(·, T∗), r(·, T∗). The norm of the solution is bounded:

N(T∗,T∗+T1)[v, p1, θ ] � μ2. (3.45)

Due to Proposition3.4, we can find 0 < τ1 < T1/2 such that satisfies (3.34) and

N(T∗+T1−τ1/2,T∗+T1)[v, p1, θ, r ]�c(δ, τ1)

{
|f|(α,

1+α−γ
2 )

Q(T∗+T1−2τ1,T∗+T1)
+ |∇f|(α,

1+α−γ
2 )

Q(T∗+T1−2τ1,T∗+T1)

+|a|(2+α,1+α/2)
ϒ(T∗+T1−2τ1,T∗+T1)

+
T∗+T1∫

T∗+T1−2τ1

(‖v(·, τ )‖�+‖θ(·, τ )‖�+‖r(·, τ )‖W1
2(S1)

)
dτ

}
. (3.46)
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Let us use again (3.41). Then in view of (3.44) and (3.45), we conclude:

|r |(1+α,0)
S1×(T∗,T∗+T1)

� c2
(|r(·, T∗)|(1+α)

S1 + T1|u|(1+α)
ξ,D(T∗ ,T∗+T1)

)
� c2(μ1 + T1μ2),

We can make μ1 and T1 so small that

c2(μ1 + T1μ2) � δ1R0.

Consequently, similarly to (3.43), relation (3.46) may be continued by virtue of
Proposition3.2 as follows

N(T∗+T1−τ1,T∗+T1)[v, p1, θ, r ] � c6(δ, τ1)e
−b1T1

(
1 + |�|1/2)ε.

Choose ε so small that c6(δ, τ1)
(
1 + |�|1/2)ε � μ1.

Hence,

|v(·, T∗ + T1)|(2+α)

∪�±
T∗+T1

+ |θ(·, T∗ + T1)|(2+α)

∪�±
T∗+T1

+ |r(·, T∗ + T1)|(3+α)
S1 � μ1e

−b1T1 .

Thus, the norms of the initial data do not increase. Therefore we can extend the
solution in the interval (T∗ + T1, T∗ + 2T1]. This procedure may be repeated again
and again as long as we like.

By repeating our argument, we should pass to the Lagrangian coordinates accord-
ing to the formula

X = ξ (1) +
∫ t

T∗
ũ(ξ (1), τ ) dτ, ξ (1) ∈ ∪�±

T∗ , t ∈ (T∗, T∗ + T1). (3.47)

In fact, due to the additivity of the integral, (3.47) coincides with (3.12):

X(ξ, t) = ξ +
∫ T∗

0
u(ξ, τ ) dτ +

∫ t

T∗
u(ξ, τ ) dτ, ξ ∈ ∪�±

0 , t ∈ (T∗, T∗ + T1),

because ũ(ξ (1), τ ) = u(ξ, τ ).
The same remark is true for the coordinates of inner fluid barycenter, since the

volume of the fluid is conserved:

h(t) = h(T∗) +
∫ t

T∗

1

|�+
t |

∫

�+
t

v(x, τ ) dx dτ =
∫ T∗

0

1

|�+
t |

∫

�+
t

v(x, τ ) dx dτ

+
∫ t

T∗

1

|�+
t |

∫

�+
t

v(x, τ ) dx dτ = 3

4πR3
0

∫ t

0

∫

�+
t

v(x, τ ) dx dτ, t > T∗.
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The solution of the system (3.1), (3.4), (3.3) can be extended in this way with
respect to t as far as necessary. After that, inequality (3.12) follows for any finite
time interval from Propositions3.2 and 3.4.

The limiting position of the barycenter is evaluated from Corollary3.1:

|h∞| � d � c7ε (3.48)

where

d = c8
|�+

0 |1/2b1
{
‖eb1t f‖Q∞ + ∥

∥eb1t a
∥
∥2
W3/2,3/4

2 (ϒ∞)
+ ‖v0‖� + ‖θ0‖� + ‖r0‖W1

2(S1)

}
.

Inequality (3.48) implies an estimate concerning the distance between the surfaces
� and � at initial moment. It is clear that, in order to exclude the intersection of �t

and � in the future, the data should be taken so small that the sum d + δ1R0 with
δ1, R0 from (3.13) would be strictly less than this initial distance.

Solution uniqueness follows from the uniqueness of local solutions. �

3.4.1 Conclusions

Thus, unsteady motion of a viscous incompressible two-phase fluid has been consid-
ered in a container Σ in the Oberbeck–Boussinesq approximation. The phases have
been separated by a closed unknown interface �t where surface tension has been
taken into account. The initial interface �0 has been close to a sphere with the center
in drop’s barycenter.

The exponential L2–estimate for a solution has been obtained to prove global
solvability of the problem. It has been noted that there holds a similar estimate for a
solution to the problem without surface tension.

Global existence theorem for the problem has been stated in Hölder classes of
functions provided that the data have had small norms. It has been shown that the
solution in theOberbeck–Boussinesq approximation is a small perturbation of the rest
state and damped in time; the Hölder norms of velocity vector field and temperature
deviation decay exponentially as t → ∞, interface form tends to the sphere {|x −
h∞| = R0}, the limiting position of the barycenter of the inner fluid h∞ may be
displaced from initial drop’s center of gravity. It has been obtained a condition under
that the drop remains strictly inside the other fluid during all the time.
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Chapter 4
Stability of Steady Flow Past a Rotating Body

Giovanni Paolo Galdi and Jiří Neustupa

Abstract We study stability of a steady solution of the mathematical model describ-
ing the flow of a viscous incompressible fluid past a rotating body. We derive a suffi-
cient condition for stability, which requires the L1– and L2–integrability on the time
interval (0,∞) of the semigroup generated by the relevant linear operator, applied
to a finite family of suitable functions, in a norm restricted to a “sufficiently large”
bounded region around the body. No assumption on the smallness of the steady
solution is required.

Keywords Navier–Stokes equations · Rotation · Stability
AMS math. classification (2010): 35Q30 · 35B35 · 76D05 · 76E07

4.1 Motivation and Introduction

Assume that a compact body B moves in a viscous Newtonian incompressible fluid
so that the fluid in infinity is in the rest state and the body rotates about the x1–axis
with a constant angular velocity ω and translates in the direction of the x1–axis with
a constant velocity u∞. (Both motions are considered with respect to the rest state
in infinity.) Denoting by by Ω(t) the exterior of B at time t , the flow of the fluid in
Q := {(x, t); x ∈ Ω(t), t > 0} is described by the Navier–Stokes equations

∂tu − νΔu + u · ∇u + ∇ p = f, (4.1)

div u = 0, (4.2)
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where u and p denote the unknown velocity and the pressure, ν is the coefficient
of kinematic viscosity, and f is an external specific body force. We assume that u
satisfies the no–slip boundary condition on the surface of body B, namely,

u(x, t) = u∞e1 + ω × x for (x, t) ∈ ∂Ω(t) × {t}. (4.3)

The assumption that the fluid is at rest in infinity means that

u(x, t) → 0 for |x| → ∞. (4.4)

The disadvantage of thismodel is that the domainΩ(t) occupied by the fluid depends
on time. This is why it is often convenient to use the transformation

x′ = O(t) · x − u∞e1t, u′(x′, t) = O(t) · u(x, t), p′(x, t) = p(x, t), (4.5)

where O(t) is the unitary matrix of the rotation:

O(t) =
⎛

⎝
1 0 0
0 cosωt sinωt
0 − sinωt cosωt

⎞

⎠ .

Employing these transformations into (4.1), (4.2), we obtain the equations for u′, p′
in the x′, t coordinates:

∂tu′ − (ω × x′ + u∞e1) · ∇′u′ + ω × u′ + u′ · ∇′u′

= −∇′ p′ + νΔ′u′ + f ′, (4.6)

div′ u′ = 0. (4.7)

Here, ω := ωe1 and ∇′, Δ′ and div′ are the operators acting in the x′–space. Due
to the first equation in (4.5), (x, t) ∈ Ω(t) × {t} if and only if (x′, t) ∈ Ω(0) × {t}.
Thus, the system (4.6), (4.7) can be treated for x′ in a fixed domainΩ(0). Conditions
(4.3) and (4.4) transform to

u′(x′, t) = u∞e1 + ω × x′ for x′ ∈ ∂Ω(0), (4.8)

u′(x′, t) → 0 for |x′| → ∞. (4.9)

Of many works studying qualitative properties of the equations (4.6), (4.7), we
mention e.g. the papers [4] (by Cumsille and Tucsnak), [9] (by Farwig, Hishida and
Müller), [7, 8] (by Farwig), [10–12] (by Farwig and Neustupa), [13] (by Farwig,
Nečasová and Neustupa), [15, 16], (by Galdi), [20, 21] (by Galdi and Silvestre),
[22] (by Geissert, Heck and Hieber), [26, 27] (by Hishida) and [28] (by Hishida and
Shibata).

The existence of strong solutions on a “short” time interval (0, T0)has been studied
by Hishida [26], Galdi and Silvestre [20] and Cumsille and Tucsnak [4]. In [26], the
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author assumes that the body force is zero and the initial velocity is in D(A1/4),
where A is the Stokes operator, and he proves the existence of a solution in the class
C([0, T0]; D(A1/4)) ∩ C((0, T0]; D(A)). Galdi and Silvestre [20] also deal with the
case of the zero body force, they assume that the initial velocity u′

0 ∈ W2,2(Ω) and
they obtain a solution in C([0, T0]; W1,2(Ω)) ∩ C((0, T0); W2,2(Ω))). Cumsille
and Tucsnak [4] formulate the result not in terms of solution u′ of the transformed
problem, but in terms of solution u of the original Navier–Stokes problem (4.1),
(4.2) in the time–varying domain Ω(t). They consider a body force f locally square
integrable from (0,∞) toW1,∞(R3), the no–slip boundary condition for the velocity
on ∂Ω(t) and show that if the initial velocity u0 ∈ W1,2(Ω(0)) there exists T0 > 0
and a unique strong solution u such that

u ∈ L2
(
0, T0; W2,2(Ω(t))

) ∩ C
([0, T0]; W1,2(Ω(t))

)
,

∂tu ∈ L2
(
0, T0; L2(Ω(t))

)
.

Moreover, either T0 can be extended up to infinity or the norm of u in W1,2(Ω(t))
tends to infinity for t → T0−. Using the relation (4.5) between the solutions u and u′,
we can reformulate the result of Cumsille and Tucsnak [4] in terms of u′ as follows:
given u′

0 ∈ L2
σ(Ω) ∩ W1,2

0,σ(Ω), there exists T0 > 0 and a unique solution u′ of the
problem (4.6)–(4.9) such that

u′ ∈ L2
(
0, T0; W2,2(Ω(0))

) ∩ C
([0, T0]; W1,2(Ω(0))

)
,

∂tu′ − (ω × x′ + u∞e1) · ∇′u′ + ω × u′ ∈ L2
(
(0, T0; L2(Ω(0))

)
.

(4.10)

We further suppose that Ω(0) is an exterior domain in R
3 with a C1,1 boundary

∂Ω(0) and U′ (the velocity), Π ′ (the pressure) is a steady solution of the problem
(4.6)–(4.9) such that

U′ ∈ L3(Ω(0)), ∇′U′ ∈ L3(Ω(0))3×3 ∩ L3/2(Ω(0))3×3 (4.11)

and there exists c1 > 0 such that

|∇′U′(x′)| ≤ c1
|x′| for x′ ∈ Ω(0). (4.12)

The existence of a steady solution with these properties for a large class of body
forces f is known, see e.g. [14], provided that u∞ 	= 0.

As we are interested in behavior of solutions u′, p′ to the problem (4.6)–(4.9)
in the neighbourhood of the solution U′, Π ′, it is useful to write the solutions in
the form u′ = U′ + v′, p′ = Π ′ + q ′, where v′ are q ′ are “small” perturbations. The
perturbations satisfy the equations
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∂tv′ − (ω × x′ + u∞e1) · ∇′v′ + ω × v′ + U′ · ∇′v′ + v′ · ∇′U′ + v′ · ∇′v′

= −∇′q ′ + Δ′v′ + f, (4.13)

div′ v′ = 0 (4.14)

in Ω(0) × (0,∞), and the conditions

v′(x′, t) = 0 for x′ ∈ ∂Ω(0), (4.15)

v′(x′, t) → 0 for |x′| → ∞. (4.16)

Lemma 1 Each solution v′ to the problem (4.13)–(4.16), fulfilling (4.10), satisfies
the identities

∫

Ω(0)

[
∂tv′ − (ω × x′ + u∞e1) · ∇′v′ + ω × v′] · v′ dx′

= d

dt

1

2

∫

Ω(0)
|v′|2 dx′, (4.17)

∫

Ω(0)

[
∂tv′ − (ω × x′ + u∞e1) · ∇′v′ + ω × v′] · Δ′v′ dx′

= − d

dt

1

2

∫

Ω(0)
|∇′v′|2 dx′ (4.18)

for a.a. t ∈ (0, T0).

Proof. We focus only on (4.18), because the proof of (4.17) is even simpler. By
analogy with (4.5), we denote

v(x, t) := O(−t) v′(x′, t) = O(−t) · v′(O(t)x − u∞ e1t, t
)

and let oi j (t) be the entries of the matrix O(t) and vi , v′
i be the components of v and

v′, respectively As Δ′v′(x′, t) = O(t) · Δv(x, t), we have

∫

Ω(0)

[
∂tv′ − (ω × x′ + u∞e1) · ∇′v′ + ω × v′] · Δ′v′ dx′

=
∫

Ω(0)

(
O(t) · d

dt
v
(
O(−t)x′ + u∞ e1t, t

))

·
(

O(t) · Δv
(
O(−t)x′ + u∞ e1t, t

))
dx′

=
∫

Ω(0)

( d

dt
v
(
O(−t)x′ + u∞ e1t, t

)) ·
(
Δv

(
O(−t)x′ + u∞ e1t, t

))
dx′

=
∫

Ω(t)
∂tv(x, t) · Δv(x, t) dx = −

∫

Ω(t)
∂t∇v(x, t) : ∇v(x, t) dx

= −
∫

Ω(t)

d

dt
∂ j

[
oik(−t) v′

k

(
O(t)x − u∞ e1t, t

)]
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∂ j
[
oir (−t) v′

r

(
O(t)x − u∞ e1t, t

)]
dx

= −1

2

∫

Ω(t)

d

dt

(
∂ j

[
oik(−t) v′

k

(
O(t)x − u∞ e1t, t

)]

∂ j
[
oir (−t) v′

r

(
O(t)x − u∞ e1t, t

)])
dx

= −1

2

∫

Ω(t)

d

dt

(
∂ j

[
v′

k

(
O(t)x − u∞ e1t, t

)]

∂ j
[
v′

k

(
O(t)x − u∞ e1t, t

)])
dx

= −1

2

∫

Ω(t)

d

dt

([
∂′

lv
′
k

(
O(t)x − u∞ e1t, t

)
ol j (t)

]

[
∂sv

′
k

(
O(t)x − u∞ e1t, t

)
osj (t)

])
dx

= −1

2

∫

Ω(t)

d

dt

(
∂′

lv
′
k

(
O(t)x − u∞ e1t, t

)
∂′

lv
′
k

(
O(t)x − u∞ e1t, t

))
dx

= −1

2

∫

Ω(0)

d

dt

(
∂′

lv
′
k(x

′, t) ∂′
lv

′
k(x

′, t)
)
dx′

= − d

dt

1

2

∫

Ω(0)
|∇′v′|2 dx′.

�
In what follows, in order to simplify the notation, we shall further omit the primes

and write x, v and U instead of x′, v′ and U′, respectively. We also write only Ω

instead of Ω(0).

Notation. We denote by C a generic constant, i.e. a constant whose values may vary
from term to term. Constants with the values fixed throughout the whole paper are
denoted c1, c2, etc.

• ΩR := Ω ∩ BR(0) and Ω R := Ω � BR(0) (for R > 0)
• Vector functions and spaces of vector functions are denoted by boldface letters.
• C∞

0,σ(Ω) is the space of infinitely differentiable divergence–free vector functions
with a compact support in Ω .

• L2
σ(Ω) is the closure of C∞

0,σ(Ω) in L2(Ω). The orthogonal projection of L2(Ω)

onto L2
σ(Ω) is denoted by Pσ .

• ‖ . ‖q and ‖ . ‖q,m denote the norms of scalar– or vector– or tensor–valued functions
with components in Lq(Ω) and W q,m(Ω), respectively. If we considerΩR instead
of Ω , we denote the Lq–norm by ‖ . ‖q; ΩR .

• ( . , . )2 is the scalar product in L2
σ(Ω).

• W1,2
0,σ(Ω) and D1,2

0,σ(Ω) are the completions of C∞
0,σ(Ω) in the norms ‖ . ‖1,2 and

‖∇. ‖2, respectively.
• Wedenote Av := PσνΔv for v ∈ D(A) := W1,2

0,σ(Ω) ∩ W2,2(Ω). Operator A (the
so called Stokes operator) is a non–positive selfadjoint operator in L2

σ(Ω), whose
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spectrum Sp(A) is purely continuous and coincides with the interval (−∞, 0].
(See e.g. [10].) Moreover, A generates an analytic semigroup eAt in L2

σ(Ω).
• For v ∈ D(A), we set

B0v = (ω × x) · ∇v − ω × v

B1v = u∞ ∂1v,

B2v = −Pσ

[
U · ∇v + v · ∇U

]
.

The symmetric part of B2 is

B2
s v := −Pσ

[
v · (∇U)s

]
,

while the skew–symmetric (= anti–symmetric) part, labeled by subscript a, is given
by B2

av = −Pσ

[
U · ∇v + v · (∇U)a

]
.

• Finally, we denote by N the nonlinear operator associated with the nonlinear term
in (4.13): N (v) := −Pσ(v · ∇v) for v ∈ D(A).

Lemma 2 If v is a solution to the problem (4.6)–(4.9) in the class (4.10), then
∂tv − B0v − B1v ∈ L2

σ(Ω) for a.a. t ∈ [0, T0].
Proof One can calculate that ∂tv − B0v − B1v is divergence–free in the sense of
distributions. It belongs to L2(Ω) for a.a. t ∈ [0, T0] due to (4.10). Moreover, it is
shown e.g. in [10, 41] that the normal component of B0v + B1v is zero on ∂Ω (in
the sense of traces). Since ∂tv(x, t) = 0 for x ∈ ∂Ω , the proof is completed.

Note that the identities (4.17) and (4.18) can now be rewritten:

∫

Ω

(dv
dt

− B0v − B1v
)

· v dx = d

dt

1

2
‖v‖22, (4.19)

∫

Ω

(dv
dt

− B0v − B1v
)

· Av dx = − d

dt

1

2
‖∇v‖22. (4.20)

An operator form of system (4.13), (4.14). The system of equations (4.13), (4.14)
can be written as an operator equation

dv
dt

− B0v − B1v = ν Av + B2v + N (v) (4.21)

in L2
σ(Ω). By a solution to equation (4.21) (and other equations of this type) on a

time interval [0, T ) (where 0 < T ≤ ∞), we mean a function v satisfying equation
(4.21) a.e. in (0, T ) and such that
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v ∈ L2(J ; D(A)
) ∩ C

(
J ; W1,2

0,σ(Ω)
)
,

dv
dt

− B0v − B1v ∈ L2
(
J ; L2

σ(Ω)
) (4.22)

for each bounded interval J ⊂ [0, T ). This definition of strong solutions is in good
agreement with (4.10).
Goals of this paper and their relation to previous results. We formulate sufficient
conditions for stability of the steady solution U of the problem (4.6)–(4.9) without
assumption on smallness of any quantity associatedwithU. Obviously, stability of the
solution U is equivalent to stability of the zero solution of equation (4.21). Note that
if the operator B2 is in an appropriate sense “sufficiently small” in comparison to ν A
then both the operators ν A + B1 + B2 and ν A + B0 + B1 + B2 are dissipative or
even essentially dissipative. (We define later what we exactly mean by this property.)
Consequently, the zero solution of the equation (4.21) is stable. The condition of
“sufficient smallness” of B2 expresses the requirement that the steady flow U is in
suitable norm small. This condition has been used e.g. in the paper [28]. Moreover,
there exists a long list of papers where the authors consider just the translational
motion of body B in a viscous incompressible fluid (which corresponds to ω = 0)
and prove the stability of solution U under various assumptions on the smallness of
U. Of these papers, we can cite e.g. Heywood [23–25], Masuda [37], Maremonti
[36], Galdi and Rionero [17], Galdi and Padula [18], Borchers and Miyakawa [2,
3], Kozono and Ogawa [31], Kozono and Yamazaki [32, 33], Galdi, Heywood and
Shibata [19], Miyakawa [38] and Shibata [45].

Another approach to the question of stability of solutions to the differential equa-
tions of the type (4.21), based on the spectral properties of the operator L := ν A + B2

(the operators B0 and B1 not being considered), is presented e.g. in the papers [29],
[30] (by Kielhöfer) and [43] (by Sattinger). Here, the authors show that the condition
s(L) < 0 (where s(L) := sup{Re λ; λ ∈ Sp(L)} is the so called spectral bound of
operator L) implies stability of the zero solution. In this case, operator L need not be
dissipative. However, the condition s(L) < 0 can never be satisfied if the operator
equation (4.21) models a flow in an exterior domain, and this holds independently of
the angular velocity of rotationω, the translational velocity u∞e1 and the steady solu-
tionU. The reason is that the spectrum of L := ν A + B0 + B1 + B2 has a nonempty
intersection with the imaginary axis. a) In the irrotational case ω = 0, Babenko [1]
provided the description of the spectrum of the so called Oseen operator ν A + B1:

Sp(ν A + B1) = Spess(ν A + B1)

=
{ {

λ ∈ C; Re λ ≤ 0, Im λ = 0
}
, if u∞ = 0,{

λ ∈ C; Re λ ≤ −ν (Im λ)2/u2∞
}

if u∞ 	= 0;

see also Farwig and Neustupa [10]. (Spess denotes the essential spectrum.) Thus,
Spess(ν A + B1) coincides with the non–positive part of the real axis in the case u∞ =
0, and it coincides with the parabolic regionP := {λ ∈ C; Re λ ≤ −ν (Im λ)2/u2∞}
if u∞ 	= 0. As the operator B2 is relatively (ν A + B1)–compact (see Lemma3 in
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Sect. 2), the operator L has the same essential spectrum as ν A + B1. b) In the
rotational case ω 	= 0, Farwig and Neustupa [10–12], and Farwig, Nečasová and
Neustupa [13] studied the spectrum of the operator ν A + B0 + B1 and they have
shown that Spess(ν A + B0 + B1) consists of a system of infinitely many parallel
half–lines {λ ∈ C; Re λ ≤ 0, Im λ = ωki, k ∈ Z} in the case u∞ = 0, and infinitely
many parabolic regions of the type P , equidistantly shifted by kωi (where k ∈ Z) if
u∞ 	= 0. Again, as the operator B2 is relatively (ν A + B0 + B1)–compact (Lemma3
in Sect. 2), the operator ν A + B0 + B1 + B2 has the same essential spectrum as
ν A + B0 + B1.

The requirement s(L) < 0 is avoided in [41], where the stability of a steady
flow around a translating body is studied. (Thus, the case considered in [41] cor-
responds to the problem studied in this paper if ω = 0.) Instead of the inequal-
ity s(L) < 0, the author in [41] assumes that for some “sufficiently large” R > 0,
‖eLtφ‖2; ΩR ≤ ϕ(t) ‖φ‖2 (or alternatively ‖∇eLtφ‖2; ΩR ≤ ϕ(t) ‖φ‖2) for all eigen-
functionsφ of the symmetric operator ν A + (1 + κ)B2

s (for some 0 < κ ≤ 1), asso-
ciated with positive eigenvalues. (It is shown that the number of positive eigenvalues
is finite.) Function ϕ is supposed to be in L1(0,∞) ∩ L2(0,∞). Applying these
assumptions, the author proves the stability of the zero solution of equation (4.21)
with respect to the norm (‖ . ‖2 + ‖∇. ‖2)1/2 and the asymptotic decay of “small”
solutions to zero in the norm ‖∇. ‖2. Furthermore, in the case Ω = R

3, Deuring
and Neustupa [5] have shown that the sufficient condition for stability formulated in
[41] is satisfied if all the eigenvalues of operator L have negative real parts and the
perturbed steady Oseen equation

ν Au + B1u + B2u = g (4.23)

has a unique weak solution for each g ∈ D−1,2
σ,0 (R3) (the dual to D1,2

0,σ(R3). Note that
similar ideas as in [41] have already been applied to a general parabolic equation in
a Hilbert space or to a parabolic system in an exterior domain in [39, 40], and to the
linearized equation (4.21) in [42].

Let us finally mention the paper [44] by Sazonov. Here, the author also studies
stability of a steady flow around a translating body (the case of ω = 0). He shows
asymptotic stability of the zero solution of equation (4.11) in the norm of L3(Ω)3,
provided all eigenvalues of the operator ν A + B1 + B2 (with the domainW2,3(Ω) ∩
D1,3

0,σ(Ω)) have negative real parts. The used arguments are based on estimates of the
semigroup, generated by Oseen’s operator ν A + B1. However, we could not follow
the derivation of one of the crucial estimates (Theorem 3.1 in [44]), because the
author, representing the semigroup by certain line integral, uses a path crossing the
essential spectrum of L . This has also been pointed out by Kobayashi and Shibata in
[34].

In this paper, we assume ω 	= 0, do not use any assumption on smallness of
solution U, and prove a result analogous to [41]. More precisely, we denote by L the
operator ν A + B0 + B1 + B2 and we assume that φ is any of the eigenfunctions φ
of ν A + (1 + κ)B2

s , for some 0 < κ ≤ 1, associated with positive eigenvalues. (The
number of positive eigenvalues is finite.) We show that the L1– and L2–integrability
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of ‖eLtφ‖2; ΩR (for a “sufficiently large” R > 0) implies the stability of the zero
solution of equation (4.21) with respect to the norm (‖ . ‖2 + ‖∇. ‖2)1/2 and the
asymptotic decay of a “small” solutions to zero in the norm ‖∇. ‖2. The main result,
formulated in Theorem1, also shows that the stability of the zero solution of equation
(4.21) is not affected by the nonlinear operator N .

4.2 Auxiliary Results

Recall at first that the assumptions ∇U ∈ L3(Ω)3×3 and ∇U ∈ L3/2(Ω)3×3 and
Sobolev’s inequality

‖φ‖r ≤ c16(q) ‖∇φ‖q; 1 ≤ q < 3, r = 3q

3 − q
, (4.24)

see [14, p. 54], imply that U ∈ La(Ω) for all 3 ≤ a < ∞.

Some basic estimates. The operators B1 and B2 satisfy these inequalities, proved
in [41]:

‖B1φ‖2 ≤ u∞ ‖∇φ‖2, (4.25)

‖B2
s φ‖2 + ‖B2

aφ‖2 ≤ ‖∇U‖3 ‖φ‖6 ≤ c3 ‖∇φ‖2, (4.26)

|(B2
s φ,ψ)2| ≤ ‖∇U‖3 ‖φ‖2 ‖ψ‖6 ≤ c4 ‖φ‖2 ‖∇ψ‖2 (4.27)

for all φ, ψ ∈ L2
σ(Ω) ∩ D1,2

0,σ(Ω). The positive constants c3, c4 depend only on Ω

and U. The nonlinear operator N satisfies

‖N (φ)‖2 ≤ c5 Y[φ], (4.28)

‖N (φ)‖22 ≤ c6 ‖∇φ‖22 Y[φ], (4.29)

where
Y[φ] := ‖Aφ‖22 + ‖∇φ‖22. (4.30)

Estimates (4.28) and (4.29) hold for φ ∈ D(A).

Lemma 3 The operator B2 is relatively A–compact, relatively (ν A + B0)–compact
and relatively (ν A + B0 + B1)–compact in space L2

σ(Ω).

The relative compactness of B2 with respect to A and ν A + B1 is proven in [41],
the statement on the relative compactness of B2 with respect to ν A + B0 + B1 is
proven in [42].

Lemma 4 (i) Both operators ν A + B0 + B1 and ν A + B0 + B1 + B2 are closed
and densely defined in L2

σ(Ω).
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(ii) The essential spectrum of the operator ν A + B0 + B1 has the form

Spess(ν A + B0 + B1)

=
{
λ = α + iβ + ikω ∈ C; α,β ∈ R, k ∈ Z, α ≤ −νβ2

u2∞

}
.

(iii) Sp(ν A + B0 + B1) = Spess(ν A + B0 + B1) ∪ Γ , where Γ is either empty, or
contains isolated eigenvalues of ν A + B0 + B1. All the eigenvalues have nega-
tive real parts, finite algebraic multiplicities, and they can possibly cluster only
at points on the boundary of Spess(ν A + B1

a + B2
a ).

(iv) If the body B (and therefore also the domain Ω) is axially symmetric about the
x1–axis, then Γ = ∅.

(v) The operator ν A + B0 + B1 + B2 has the same essential spectrum as ν A +
B0 + B1.

(vi) Sp(ν A + B0 + B1 + B2) = Spess(ν A + B0 + B1 + B2) ∪ Γ ′ where set Γ ′ is
either empty or it consists of isolated eigenvalues ofν A + B0 + B1 + B2, which
can possibly cluster only at points on the boundary of Spess(ν A + B0 + B1 +
B2). Each of the eigenvalues from Γ ′ has a finite algebraic multiplicity.

Lemma4 follows from [11, Theorem 1.1, Lemma 2.4] and [12, Theorem 1.2].

Lemma 5 The operator ν A + B0 + B1 + B2 generates a C0–semigroup inL2
σ(Ω).

Proof The fact that ν A + B0 + B1 generates a C0–semigroup has already been
proven by Hishida [26] (in L2

σ(Ω) with u∞ = 0), Geisert, Heck and Hieber [22] (in
Lq

σ(Ω) for 1 < q < ∞, with u∞ = 0) and Shibata [46] (in Lq
σ(Ω) for 1 < q < ∞).

In [22], the authors also consider the operator ν A + B0 + B1 perturbed by B2. How-
ever, they assume that U ∈ C∞

0 (Ω). Nevertheless, the arguments used in [22] also
hold in the case where U satisfies assumptions (4.11): since ν A + B0 + B1 + B2

is closed and densely defined in L2
σ(Ω) then, due to Lemma4 and the Lumer–

Phillips theorem (see e.g. [6, p. 83]), to prove the lemma it is sufficient to show
that ν A + B0 + B1 + B2 + ξ I is dissipative for some ξ > 0. This is, however, clear
because

(
(ν A + B0 + B1 + B2)u − ξu,u

)
2 = −ν ‖∇u‖22 + (B2

s u,u)2 − ξ ‖u‖22
and the dissipativeness of ν A + B0 + B1 + B2 − ξ I now follows from estimate
(4.27) and [6, Proposition 3.23].

Lemma 6 Let γ ∈ R. Then the operator ν A + γB2
s is selfadjoint in L2

σ(Ω). Its
spectrum consists of Spess(ν A + γB2

s ) = (−∞, 0] and at most a finite number of
positive eigenvalues, each of whose has a finite multiplicity.

This lemma is taken from [41, Lemma 3]. The algebraic and geometric multiplicities
of the positive eigenvalues of ν A + γB2

s coincide due to the symmetry of ν A + γB2
s .

Note that there exists an interesting analogy between the operator ν A + γB2
s and the
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Schrödinger operator Δ − g(x) in L2(R3). The so called Cwikel–Lieb–Rosenblum
estimate says that the number of non–negative eigenvalues of Δ − g(x) is less than
or equal to C ‖g−‖3/23/2;R3 where g− denotes the negative part of g. (See e.g. Lieb
[35].) Based on this analogy, there arises a question of whether the number of the
nonnegative eigenvalues of ν A + γB2

s can also be estimated byC ‖∇U‖3/23/2/ν, where
C is independent of ν and U.

Decomposition of the space L2
σ(Ω). Let 0 < κ ≤ 1 be fixed. (The assumption

κ ≤ 1 is used just for technical reasons.) We denote the positive eigenvalues of
the operator ν A + (1 + κ)B2

s by λ1 ≤ λ2 ≤ · · · ≤ λN , each of them being repeated
as many times as is its multiplicity. Let φ1, . . . ,φN be associated eigenfunctions.
We can assume that the eigenfunctions have been chosen so that they constitute an
orthonormal system in L2

σ(Ω). Denote by L2
σ(Ω)′ the linear hull of φ1, . . . ,φN and

by P ′ the orthogonal projection ofL2
σ(Ω) ontoL2

σ(Ω)′. The orthogonal complement
to L2

σ(Ω)′ in L2
σ(Ω) is denoted by L2

σ(Ω)′′ and the orthogonal projection of L2
σ(Ω)

onto L2
σ(Ω)′′ is denoted by P ′′. Then we have

L2
σ(Ω) = L2

σ(Ω)′ ⊕ L2
σ(Ω)′′

and the operator ν A + (1 + κ)B2
s is reduced on each of the subspaces L2

σ(Ω)′ and
L2

σ(Ω)′′.
The projections P ′ and P ′′ are bounded operators not only in L2

σ(Ω), but also in
W1,2

0,σ(Ω), see [41]. Furthermore, using the negative definiteness of ν A + (1 + κ)B2
s

in L2
σ(Ω)′′, one can easily derive that

(
(ν A + B2

s )φ,φ
)
2 ≤ κ

1 + κ
(ν Aφ,φ)2 = −c7 ‖∇φ‖22 (4.31)

for allφ ∈ L2
σ(Ω)′′ ∩ D(A), where c7 = κν/(1 + κ), see [41]. We call this property

of ν A + B2
s in space L2

σ(Ω)′′ the “essential dissipativity”.

Lemma 7 There exists c10 > 0 such that

∫

Ω

|x|2 |Δφk |2 dx +
∫

Ω

|x|2 |∇φk |2 dx ≤ c10 (4.32)

for all k = 1, . . . , N.

Proof Assume at first that ϕ is an infinitely differentiable function on [0,∞) such
that ϕ(s) = 1 for 0 ≤ s ≤ 1, ϕ is decreasing and |ϕ′(s)| ≤ 1, |ϕ′′(s)| ≤ 2 for
1 ≤ s ≤ 4, and ϕ(s) = 0 for s ≥ 4. Put ϕr (s) := ϕ(s/r2). Then ϕr (s) = 0 for 0 ≤
s ≤ r2, |ϕ′

r (s)| ≤ r−2, |ϕ′′
r (s)| ≤ 2r−4 for r2 ≤ s ≤ 4r2, andϕr (s) = 0 for s ≥ 4r2.

Function ϕr satisfies the estimates

∣∣∇(|x|2ϕr (|x|2)
)∣∣ ≤ c8 |x| and

∣∣∇2
(|x|2ϕr (|x|2)

)∣∣ ≤ c9. (4.33)
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The equation [ν A + (1 + κ)B2
s ]φk = λkφk (for k ∈ {1, . . . , N }) means that

νΔφk − (1 + κ)φk · (∇U)s + ∇ pk = λkφk, divφk = 0 (4.34)

inΩ , with an appropriate function pk ∈ W 1,2
loc (Ω) such that∇ pk ∈ L2(Ω). Multiply-

ing the first equation in (4.34) by |x|2 ϕr (|x|2)Δφk and integrating over Ω , we get

ν

∫

Ω

|x|2ϕr (|x|2) |Δφ|2 dx − (1 + κ)

∫

Ω

φk · (∇U)s |x|2ϕr (|x|2)Δφk dx

+
∫

Ω

∇ pk · |x|2ϕr (|x|2)Δφk dx = λk

∫

Ω

φk · |x|2ϕr (|x|2)Δφk dx. (4.35)

The right hand side is equal to

−λk

∫

Ω

∇φk : |x|2ϕr (|x|2)∇φk dx − λk

∫

Ω

∇(|x|2ϕr (|x|2)
) · (∇φk · φk) dx

= −λk

∫

Ω

|x|2 |∇φk |2ϕr (|x|2) dx + λk

2

∫

Ω

|φk |2 Δ
(|x|2ϕr (|x|2)

)
dx

≤ −λk

∫

Ω

|x|2 |∇φk |2ϕr (|x|2) dx + c9λk

2
‖φk‖22. (4.36)

Due to (4.12), the modulus of the second term on the left hand side of (4.35) is less
than or equal to

C(1 + κ)

∫

Ω

|φk | |x| ϕr (|x|2) |Δφk | dx

≤ ε

∫

Ω

|x|2ϕr (|x|2) |Δφk |2 dx + C(ε,κ) ‖φk‖22. (4.37)

Finally, the third term on the left hand side of (4.35) equals

−
∫

Ω

pk ∇(|x|2ϕr (|x|2)
) · Δφk dx

=
∫

Ω

(∂ j pk)∇(|x|2ϕr (|x|2)
) · (∂ jφk) dx +

∫

Ω

pk ∇2(|x|2ϕr (|x|2)
) : ∇φk dx

= −
∫

Ω

Δpk ∇(|x|2ϕr (|x|2)
) · φk dx − 2

∫

Ω

∇ pk · ∇2
(|x|2ϕr (|x|2)

) · φk dx

−
∫

Ω

pk ∇Δ
(|x|2ϕr (|x|2)

) · φk dx. (4.38)

The modulus of the first term on the right hand side is

(1 + κ)

∣∣∣∣

∫

Ω

div
(
φk · (∇U)s

) ∇(|x|2ϕr (|x|2)
) · φk dx

∣∣∣∣
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≤ (1 + κ)

∣∣
∣∣

∫

Ω

φk · (∇U)s · ∇2
(|x|2ϕr (|x|2)

) · φk dx

∣∣
∣∣

+ (1 + κ)

∣∣∣∣

∫

Ω

[(φk · (∇U)s) ⊗ ∇(|x|2ϕr (|x|2)
)] : ∇φk dx

∣∣∣∣

≤ c9

∫

Ω

|φk |2 |(∇U)s | dx + c8

∫

Ω

|φk | |(∇U)s | |x| |∇φk | dx
≤ c9 ‖φk‖6 ‖(∇U)s‖3/2 + c1c8 ‖φk‖2 ‖∇φk‖2. (4.39)

Applying (4.33), we can estimate the second and the third term on the right hand
side of (4.38):

∣
∣∣∣2

∫

Ω

∇ pk · ∇2
(|x|2ϕr (|x|2)

) · φk dx

∣
∣∣∣ ≤ 2c9 ‖∇ pk‖2 ‖φk‖2 < ∞, (4.40)

∣∣∣∣

∫

Ω

pk ∇Δ
(|x|2ϕr (|x|2)

) · φk dx

∣∣∣∣ =
∣∣∣∣

∫

Ω

∇ pk Δ
(|x|2ϕr (|x|2)

) · φk dx

∣∣∣∣

≤ c9 ‖∇ pk‖2 ‖φk‖2 < ∞. (4.41)

Substituting now the estimates (4.36)–(4.41) to (4.35), we obtain

(ν − ε)

∫

Ω

|x|2 ϕr (|x|2) |Δφk |2 dx + λk

∫

Ω

|x|2ϕr (|x|2) |∇φk |2 dx ≤ C,

where C depends on ε, κ, c1, c8, c9, ‖(∇U)s‖3/2, ‖∇φk‖2 and ‖∇ pk‖2, but it is inde-
pendent of r . Choosing ε sufficiently small and letting r → ∞,we complete theproof.

Lemma 8 There exists c11 > 0 such that

‖P ′ B0u‖2 + ‖P ′ B1u‖2 + ‖P ′ B2u‖2 ≤ c11 ‖∇u‖2 (4.42)

for all u ∈ D(A).

Proof Applying (4.12) and Lemma7, we estimate ‖P ′ B0u‖2 as follows:

‖P ′ B0u‖22 =
N∑

k=1

∣∣(B0u,φk)2
∣∣2 =

N∑

k=1

1

λ2
k

∣∣(B0u, ν Aφk + (1 + κ)B2
s φk)2

∣∣2

=
N∑

k=1

1

λ2
k

∣∣∣
∣

∫

Ω

[
(ω × x) · ∇u − ω × u

] · [
νΔφk − (1 + κ)φk · (∇U )s

]
dx

∣∣∣
∣

2

≤
N∑

k=1

1

λ2
k

(
ων ‖∇u‖2 ‖|x| Δφk‖2 + ω(1 + κ) c1 ‖∇u‖2 ‖φk‖2

+ ων ‖∇u‖2 ‖∇φk‖2 + ω(1 + κ) ‖u‖6 ‖(∇U)s‖3/2 ‖φk‖6
)2
. (4.43)
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The right hand side is less than or equal to C ‖∇u‖22 due to Sobolev’s inequality
(4.24) and Lemma7. Analogous estimates of ‖P ′ B1φ‖2 and ‖P ′ B2φ‖2 directly
follow from the estimates

∣∣(B1u,φk)2
∣∣ ≤ |u∞| ‖∇u‖2 ‖φk‖2,∣∣(u · ∇U, φk

)
2

∣∣ ≤ ‖u‖6 ‖∇U‖3/2 ‖φk‖6. �

Obviously, D(A) is dense in L2
σ(Ω). The next lemma states a finer result:

Lemma 9 D(A) ∩ L2
σ(Ω)′′ is dense in L2

σ(Ω)′′.

Proof Due to the density of C∞
0,σ(Ω) in L2

σ(Ω), we can find functions ϕ1, . . . , ϕN

in C∞
0,σ(Ω) so that they satisfy (ϕi ,φ j )2 = δi j for i, j = 1, . . . , N .

Let ε > 0 be given. Let u be an arbitrary function fromL2
σ(Ω)′′. There exists u′′ ∈

C∞
0,σ(Ω) such that ‖u − u′′‖2 < ε/2 and the numbers εi := (u′′ − u,φi )2 satisfy

|εi | ‖ϕi‖2 < ε/(2N ) for all i = 1, . . . , N . Now we put

v := u′′ − ε1ϕ1 − . . . − εN ϕN .

Then, obviously, v ∈ C∞
0,σ(Ω). Using the identities (u,φi )2 = 0 (for i = 1, . . . , N )

following from the inclusion u ∈ L2
σ(Ω)′′ ≡ (L2

σ(Ω)′)⊥, we obtain

(v,φi )2 = εi − εi = 0 for i = 1, . . . , N ,

‖u − v‖2 ≤ ‖u − u′′‖2 +
N∑

i=1

|εi | ‖ϕi‖2 ≤ ε

2
+

N∑

i=1

ε

2N
= ε.

This completes the proof.

4.3 The Main Theorem on Stability

Let us fix number R > 0 so large that B ⊂ BR(0) and

c22(2) ‖∇U‖3/2; Ω R ≤ ν

8
. (4.44)

(Recall the c2(2) is the constant from Sobolev’s inequality (4.24).) We denote

L := ν A + B0 + B1 + B2.

We impose the following condition:

(A) there exists a function ϕ ∈ L1(0,∞) ∩ L2(0,∞) such that
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∥∥eLtφ
∥∥
2; ΩR

≤ ϕ(t) ‖φ‖2 (4.45)

for all φ ∈ L2
σ(Ω)′ and t > 0.

Observe that (A), in fact, concerns only a finite family of functions, i.e. the functions
φ1, . . . ,φN . The next theorem presents the main result of this paper.

Theorem 1 Let U be a steady solution of the problem (4.6)–(4.9), satisfying con-
ditions (4.11) and (4.12). Suppose that the operator L satisfies condition (A). Then
there exist positive constants δ, c12, c13 such that if v0 ∈ W1,2

0,σ(Ω) and

‖v0‖1,2 ≤ δ (4.46)

then the problem defined by the equation (4.21) with the initial condition v(0) = v0
has a unique solution v on the time interval [0,∞). This solution satisfies the estimate

‖v(t)‖21,2 + c11

∫ t

0

(‖∇v(s)‖22 + ‖Av(s)‖22
)
ds ≤ c12 ‖v0‖21,2 (4.47)

for all t > 0. Moreover,
lim

t→∞ ‖∇v(t)‖2 = 0. (4.48)

The proof of Theorem1will be given later, after the next lemma and several auxiliary
estimates.

Lemma 10 Let T > 0. Function v is a solution of the equation (4.21) on the time
interval [0, T ) if and only if v can be expressed as a sum w + z, where the functions
w, z satisfy the system

dw
dt

− B0w − B1w = ν Aw + (1 + κ)B2
s w − κP ′′ B2

s w − P ′ B0w − P ′ B1w

+ P ′′ B2
aw + P ′′N (v), (4.49)

dz
dt

− B0z − B1z = ν Az + B2z − κP ′ B2
s w + P ′ B0w + P ′ B1w

+ P ′ B2
aw + P ′N (v) (4.50)

on the same interval [0, T ) and the initial conditions

w(0) = P ′′v(0), z(0) = P ′v(0). (4.51)

Proof If functions w, z satisfy (4.49)–(4.51) then summing equations (4.49) and
(4.50), we verify that v satisfies equation (4.11).

On the other hand, if v is a solution of the equation (4.11) on the interval [0, T ),
then we at first solve the equation (4.49) with the initial condition w(0) = P ′′v(0)
as a linear problem for one unknown functionw. Since the “leading” terms B0w and
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ν Aw act in this equation in the same manner as in Eq. (4.6), and all other terms are of
a “lower order”, the existence of a strong solution can be proven in the same way as
in [4]. (The information that P ′ B0w is a “lower order” term follows from Lemma8.)
Moreover, as (4.49) is just a linear equation for the unknown function w, we are not
restricted to a “small” time interval (0, T0), and we obtain the solution on the same
time interval (0, T ) where solution v does exist. Having w, we may put z := v − w
and we verify that z is a solution to the equation (4.50) on (0, T ).

Suppose, for a while, that the pair w, z is a solution of the system (4.49), (4.50)
on an interval [0, T ). We derive estimates of w, z, valid on the same interval [0, T ).

Estimate 1 The function w satisfies the inequality

‖w(t)‖22 + 2c7

∫ t

0
‖∇w(s)‖22 ds

≤ ‖w(0)‖22 +
∫ t

0
2
√

c5 Y[v(s)] ‖w(s)‖2 ds (4.52)

where Y[v(s)] is defined by (4.30).

Proof As the operator ν A + (1 + κ)B2
s is reduced in L2

σ(Ω)′′, (4.49) is the equation
in L2

σ(Ω)′′. Consequently, since w(0) is also in L2
σ(Ω)′′, w(t) stays in L2

σ(Ω)′′ for
t > 0. If we multiply this equation by w, integrate over Ω , apply the identity (4.19)
and the inequalities (4.31) and (4.28), we obtain

d

dt

1

2
‖w‖22 = (

ν Aw + (1 + κ)B2
s w − κP ′′ B2

s w,w
)
2 + (

N (v),w
)
2

= (ν Aw + B2
s w,w)2 + (

N (v),w
)
2

≤ −c7 ‖∇w‖22 + √
c5 Y[v] ‖w‖2.

Integrating this estimate with respect to t , we obtain (4.52).

Estimate 2 There exist constants c14, c15 > 0 such that w satisfies the inequality

‖∇w(t)‖22 + ν

∫ t

0
‖Aw(s)‖22 ds ≤ ‖∇w(0)‖22 + c14

∫ t

0
‖∇w(s)‖22 ds

+ c15

∫ t

0
‖∇v(s)‖22 Y[v(s)] ds. (4.53)

Proof Ifwemultiply equation (4.49) by (−Aw), integrate overΩ and use the identity
(4.20) and the inequalities (4.25), (4.26), (4.29) and (4.42), we obtain

d

dt

1

2
‖∇w‖22 = −ν ‖Aw‖22 − (B2

s w + κP ′ B2
s w, Aw)2 + (P ′ B0w, Aw)2

+ (P ′ B1w, Aw)2 − (P ′′ B2
aw, Aw)2 − (

P ′′N (v), Aw
)
2
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≤ −ν ‖Aw‖22 + C ‖∇w‖2 ‖Aw‖2 + ‖N (v)‖2 ‖Aw‖2
≤ −ν

2
‖Aw‖22 + c14

2
‖∇w‖22 + c15

2
‖∇v‖2 Y[v]. (4.54)

Integrating this with respect to time from 0 to t , we get (4.53).

Estimate 3 Set c16 := ∫ ∞
0 ϕ2(s) ds, c17 := (∫ ∞

0 ϕ(s) ds
)2

,
c18 := 3c17c217(κ + 3)2 and c19 := 3c28c16. Then

∫ t

0
‖z(ϑ)‖22; ΩR

dϑ

≤ 3c16 ‖z(0)‖22 + c18

∫ t

0
‖∇w(s)‖22 ds + c19

(∫ t

0
Y[v(s)] ds

)2

. (4.55)

Proof The solution z of (4.50) satisfies the integral equation

z(ϑ) = eLϑz(0)

+
∫ ϑ

0
eL(ϑ−s)

[
P ′(−κB2

s + B0 + B1 + B2
a )w(s) + P ′N (v(s))

]
ds.

Using the inequalities (4.45) and (4.28), we obtain

‖z(ϑ)‖2; ΩR ≤ ‖eLϑz(0)‖2; ΩR

+
∫ ϑ

0

∥∥eL(ϑ−s)
[
P ′(−κB2

s + B0 + B1 + B2
a )w(s) + P ′N (v(s))

]∥∥
2; ΩR

ds

≤ ϕ(ϑ) ‖z(0)‖2 +
∫ ϑ

0
ϕ(ϑ − s)

∥∥P ′(−κB2
s + B0 + B1 + B2

a )w(s)
∥∥
2 ds

+ c8

∫ ϑ

0
ϕ(ϑ − s)Y[v(s)] ds. (4.56)

The first integral on the right hand side is the convolution of the functions ϕ and
‖P ′(−κB2

s + B0 + B1 + B2
a )w(s)‖2. Due to the L1–integrability of ϕ on (0, t), we

can estimate the L2–norm of this integral on (0, t) by the product of the L1–norm
of ϕ and the L2–norm of ‖P ′(−κB2

s + B0 + B1 + B2
a )w(s)‖2. (See [14, Theorem

II.11.1].) Thus, using (4.42), we get

∫ t

0

( ∫ ϑ

0
ϕ(ϑ − s)

∥
∥P ′(−κB2

s + B0 + B1 + B2
a )w

∥
∥
2 ds

)2

dϑ

≤ c17

∫ t

0

∥∥P ′(−κB2
s + B0 + B1 + B2

a )w(s)
∥∥2
2 ds

≤ c17c29(κ + 3)2
∫ t

0
‖∇w‖22 ds.
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The second integral on the right hand side of (4.56) is the convolution of ϕ with
Y[v]. Using the L2–integrability of ϕ on (0, t) and applying again Theorem II.11.1
in [14], we obtain

∫ t

0

(∫ ϑ

0
ϕ(ϑ − s)Y[v](s) ds

)2

dϑ ≤ c16

(∫ t

0
Y[v](s) ds

)2

.

Substituting these estimates to (4.56), we obtain (4.55).

Estimate 4 There exist positive constants c20, c21 and c22 such that

‖z(t)‖22 + ν

∫ t

0
‖∇z(s)‖22 ds ≤ c20 ‖z(0)‖22 + c21

∫ t

0
Y[w(s)] ds

+ c22

(∫ t

0
Y[v(s)] ds

)2

+ 2c8

∫ t

0
Y[v(s)] ‖z(s)‖2 ds. (4.57)

Proof Multiplying equation (4.50) by z, integrating over Ω and using (4.19), we get

d

dt

1

2
‖z‖22 + ν ‖∇z‖22 = (

P ′[−κB2
s + B0 + B1 + B2

a ]w, z
)
2

+ (B2z, z)2 + (
P ′N (v), z

)
2. (4.58)

The first term on the right hand side is equal to

N∑

k=1

([−κB2
s + B0 + B1 + B2

a ]w,φk

)
2 (z,φk)2

≤
( N∑

k=1

([−κB2
s + B0 + B1 + B2

a ]w,φk

)2
2

)1/2 ( N∑

k=1

(z,φk)
2
2

)1/2

.

Applying the same approach as in the proof of Lemma8, one can show that the first
factor on the right hand side is less than or equal to C ‖∇w‖2 and the second factor
is less than or equal to C ‖∇z‖2. Hence

(
P ′[−κB2

s + B0 + B1 + B2
a ]w, z

)
2 ≤ C ‖∇w‖2 ‖∇z‖2

≤ ε ‖∇z‖22 + C(ε) ‖w‖22. (4.59)

Applying inequalities (4.24) and (4.44) and using the fact that ‖∇U‖3 < ∞, we can
estimate the second term on the right hand side of (4.58) as follows:

(B2z, z)2 = (B2
s z, z)2 =

(∫

ΩR

+
∫

Ω R

)
z · (∇U)s · z dx

≤ ‖z‖2; ΩR ‖∇U‖3; ΩR ‖z‖6; ΩR + ‖z‖26; Ω R ‖∇U‖3/2; Ω R

≤ ε ‖∇z‖22 + C(ε) ‖z‖22; ΩR
+ c22(2) ‖∇z‖22 ‖∇U‖3/2; Ω R
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≤ ε ‖∇z‖22 + C(ε) ‖z‖22; ΩR
+ ν

8
‖∇z‖22. (4.60)

Finally, (4.28) yields (
P ′N (v), z

)
2 ≤ c5 Y[v] ‖z‖2. (4.61)

Estimating now the right hand side of (4.58) by means of (4.59)–(4.61), choosing
ε > 0 “sufficiently small”, multiplying the whole inequality by 2, integrating with
respect to time from 0 to t , and estimating the integral of ‖z‖22; ΩR

by means of (4.55),
we obtain (4.57).

Estimate 5 There exist positive constants c23, c24 and c25 such that

‖∇z(t)‖22 + ν

∫ t

0
‖Az(s)‖22 ds ≤ ‖∇z(0)‖22 + c23

∫ t

0
‖∇z(s)‖22 ds

+ c24

∫ t

0
Y[w(s)] ds + c25

∫ t

0
‖∇v(s)‖22 Y[v(s)] ds (4.62)

Proof Multiplying equation (4.50) by (−Az), integrating over Ω and using (4.20),
(4.26), (4.29) and (4.42), we get

d

dt

1

2
‖∇z‖22
= −ν ‖Az‖22 − (B2z, Az)2 + (

P ′[κB2
s − B0 − B1 − B2

a ]w, Az
)
2

− (
P ′N (v), Az

)
2

≤ −ν ‖Aw‖22 + ‖B2z‖2 ‖Az‖2 + 4c11 ‖∇w‖2 ‖Az‖2 + ‖N (v)‖2 ‖Az‖2
≤ −ν

2
‖Az‖22 + c23 Y[z]2 + c24 ‖∇w‖22 + c25 ‖∇v‖22 Y[v], (4.63)

where the constants c23–c25 depend on ν. Now we obtain (4.62) by multiplying this
inequality by 2 and integrating with respect to time from 0 to t .

Proof of Theorem 1. We can deduce from the inequality ‖v0‖1,2 < δ and from
[4] that there exists T > 0 such that the equation (4.21), with the initial condition
v(0) = v0, has a unique solution v on the interval [0, T ). Moreover, either T = ∞
or ‖v(t)‖1,2 → ∞ for t → T −. Assume, in the next considerations, that t ∈ (0, T ).

If we sum the estimate (4.52) with (4.53) multiplied by α, (4.57) multiplied by β
and (4.62) multiplied by γ, we obtain

‖w(t)‖22 + α ‖∇w(t)‖22 + β ‖z(t)‖22 + γ ‖∇z(t)‖22
+

∫ t

0

(
2c7 ‖∇w(s)‖22 + αν‖Aw(s)‖22 + βν‖∇z(s)‖22 + γν‖Az(s)‖22

)
ds

≤ ‖w(0)‖22 + α ‖∇w(0)‖22 + βc20 ‖z(0)‖22 + γ ‖∇z(0)‖22
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+
∫ t

0

[
αc14 ‖∇w(s)‖22 +

(
βc26 + γc24

)
Y[w(s)] + γc23 ‖∇z(s)‖22

]
ds

+
∫ t

0
Y[v(s)] (2√c5 ‖w(s)‖2 + 2βc8 ‖z(s)‖2

)
ds

+ βc22

(∫ t

0
Y[v(s)] ds

)2

. (4.64)

Let us now successively choose the coefficients α, β and γ so that they satisfy the
inequalities

α : α ≤ 1, αc14 ≤ 1
2c7,

β : βc20 ≤ 1, βc26 ≤ 3
8c7 + 1

4αν,

γ : γ ≤ 1, γc23 ≤ 1
2βν, γc24 ≤ 3

8 c7 + 1
4αν.

Then the terms on the right hand side of (4.64), quadratic in the norms of w and z,
are absorbed by the left hand side, and (4.64) yields

‖w(t)‖22 + α ‖∇w(t)‖22 + β ‖z(t)‖22 + γ ‖∇z(t)‖22
+

∫ t

0

(3c7
4

‖∇w(s)‖22 + αν

2
‖Aw(s)‖22 + βν

2
‖∇z(s)‖22 + γν ‖Az(s)‖22

)
ds

≤ ‖w(0)‖22 + α ‖∇w(0)‖22 + βc20 ‖z(0)‖22 + γ ‖∇z(0)‖22
+

∫ t

0
Y[u(s)] (2√c5 ‖w(s)‖2 + βc8 ‖z(s)‖2

)
ds

+
∫ t

0
(αc15 + γc25) ‖∇v(s)‖22 Y[v(s)] ds + βc22

(∫ t

0
Y[v(s)] ds

)2

. (4.65)

Obviously, if we denote for simplicity by c27 one half of the minimum of 3
4c7,

1
2αν, 1

2βν and γν, the integral on the left hand side is greater than or equal to
c27

∫ t
0 Y[v(s)] ds. Denote

y(t) :=
∫ t

0
Y[v(s)] ds, z(t) := ‖w‖22 + α ‖∇w‖22 + β ‖z‖22 + γ ‖∇z‖22.

Then (4.65) yields

z(t) + c27 y(t) ≤ z(0) +
∫ t

0
y′(s)

[
c28 z(s)1/2 + c29 z(s)

]
ds

+ βc22 y2(t). (4.66)

Suppose that z(0) is so small that c28 z(0)1/2 + c29 z(0) < 1
4c27. This inequality is

equivalent to
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z(0) < z1 :=
(−c28 +

√
c228 + c27c29

2c29

)2

. (4.67)

Denote by T ′ the maximum number in [0, T ] such that

c28 z(s)1/2 + c29 z(s) ≤ c27
2

(4.68)

holds for all s ∈ [0, T ′). Then (4.66) implies that

z(t) + c27
2

y(t) ≤ z(0) + βc22 y2(t) (4.69)

for 0 ≤ t < T ′. Consequently,

βc22 y2(t) − c27
2

y(t) + z(0) ≥ 0 (4.70)

for 0 ≤ t < T ′. The discriminant of this quadratic inequality is 1
4c227 − 4βc22 z(0).

Assume, in addition to (4.67), that z(0) is so small that

z(0) <
c272

32βc22
. (4.71)

Then the discriminant is greater than 1
8c227 and inequality (4.69) yields:

y(t) <
c27 −

√
c227 − 16βc22 z(0)

4βc22
or y(t) >

c27 +
√

c227 − 16βc22 z(0)

4βc22
.

(4.72)
If y(0) satisfies the first of these two inequalities, i.e.

y(0) <
c27 −

√
c227 − 16βc22 z(0)

4βc22
= 4z(0)

c27 +
√

c227 − 16βc22 z(0)
, (4.73)

then, due to the continuity of y(t),

y(t) <
4z(0)

c27 +
√

c227 − 16βc22 z(0)
<

4z(0)

c27 +
√

1
2c227

= 4
√
2 z(0)

c27 (
√
2 + 1)

(4.74)

for all 0 ≤ t < T ′. We can now use this inequality in (4.69) in order to estimate z(t):

z(t) ≤ z(0) +
(

4
√
2

c27 (
√
2 + 1)

)2

z2(0). (4.75)
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Finally, if z(0) is chosen to be less than or equal to one and so small that it also
satisfies

z(0) +
(

4
√
2

c27 (
√
2 + 1)

)2

z2(0) ≤ z(0) +
(

4
√
2

c27 (
√
2 + 1)

)2

z(0) <
z1
2

(4.76)

where z1 is defined in (4.67), then (4.75) yields z(t) < 1
2 z1 for all t ∈ [0, T ′). This

implies that T ′ = T . (Otherwise, using the continuity of z(t), we can derive a con-
tradiction with the definition of T ′.) Hence the estimates (4.74) and (4.75) hold for
all t ∈ [0, T ). Summing (4.74) and (4.75), and taking into account that z(0) ≤ 1, we
obtain

z(t) + y(t) ≤ 4
√
2 z(0)

c27 (
√
2 + 1)

+ z(0) +
(

4
√
2

c27 (
√
2 + 1)

)2

z(0) (4.77)

for t ∈ [0, T ).
We observe from this inequality and from the relation between ‖v(t)‖1,2 and z(t)

that ‖v(t)‖1,2 does not tend to infinity for t → T −. Consequently, the solution v
can be continued, as a solution of the equation (4.21), onto the whole time interval
[0,∞) and the estimate (4.77) holds for all t ∈ (0,∞).

The positive number δ, used in (4.46), must be chosen so small that ‖v(0)‖1,2 < δ
implies z(0) ≤ 1, z(0) < 1

2 z1, z(0) also satisfies (4.71), and y(0) satisfies (4.73).
Summing the estimates (4.54) and (4.63), multiplied by 2, and applying the

inequality (4.77), we deduce that

d

dt
‖∇w(t)‖22 + d

dt
‖∇z(t)‖22 + ν ‖Aw(t)‖22 + ν ‖Az(t)‖22 ≤ C < ∞

for a.a. t ∈ (0,∞), where C is independent of t . This information, together with
the information on the integrability of ‖∇w(t)‖22 + ‖∇z(t)‖22 on the interval (0,∞),
implies (4.48). The proof of Theorem1 is completed. �

Remark 1 Obviously, as eLtφ is a function with values in W1,2
0,σ(Ω), the condi-

tion (4.45) in Assumption (A) is satisfied if there exists a function ϕ̃ ∈ L1(0,∞) ∩
L2(0,∞) such that ∥∥∇eLtφ

∥∥
2; ΩR

≤ ϕ̃(t) ‖φ‖2

for all φ ∈ L2
σ(Ω)′ and t > 0.
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Chapter 5
Asymptotic Structure of Steady Stokes Flow
Around a Rotating Obstacle in Two
Dimensions

Toshiaki Hishida

Abstract This paper provides asymptotic structure at spatial infinity of plane steady
Stokes flow in exterior domains when the obstacle is rotating with constant angular
velocity. The result shows that there is no longer Stokes’ paradox due to the rotating
effect.

Keywords Plane Stokes flow · Rotating obstacle · Asymptotic representation ·
Stokes paradox

5.1 Introduction

LetΩ be an exterior domain in the planeR2 with smooth boundary ∂Ω , and consider
the motion of a viscous incompressible fluid around an obstacle (rigid body) R2 \
Ω . As compared with 3D problem, we have less knowledge about exterior steady
flows in 2D despite efforts of several authors mentioned below. The difficulty is to
analyze the asymptotic behavior of the flow at infinity. This is related to the following
hydrodynamical paradox found by Stokes [33]: The problem

− Δu + ∇p = 0, div u = 0 inΩ, (5.1)

u|∂Ω = 0, u → u∞ as |x| → ∞ (5.2)

admits no solution unless u∞ = 0, where u(x) = (u1, u2)T and p(x) denote the veloc-
ity and pressure, respectively, of the fluid. Throughout this paper, all vectors are
column ones and (·)T denotes the transpose of vectors or matrices. Later on, Chang
and Finn [6] made it clear that the Stokes paradox is interpreted in terms of the total
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net force exerted by the fluid to the obstacle

N :=
∫

∂Ω

T(u, p)ν dσ, (5.3)

where T(u, p) is the Cauchy stress tensor given by

T(u, p) := (
Tjk(u, p)

) = Du − pI, Du := ∇u + (∇u)T , I = (
δjk
)
, (5.4)

and ν denotes the outward unit normal to ∂Ω; in fact, they proved that the flow
satisfying (5.1) can be bounded at infinity only if the net force (5.3) vanishes. This
is an immediate consequence of asymptotic representation at infinity of solutions
to (5.1) due to themselves [6], see (5.17). The original form of the Stokes paradox
mentioned above follows from the result of Chang and Finn as a corollary because
the net force (5.3) never vanishes provided that {u, p} is nontrivial and satisfies (5.1)
together with u|∂Ω = 0. There are some other forms of the Stokes paradox, see Galdi
[19, V.7], Kozono and Sohr [28, Theorem A].

For the case in which a constant velocity u∞ ∈ R
2 \ {0} is prescribed at infinity

or, equivalently, the obstacle is translating with velocity −u∞ (while the flow is at
rest at infinity), Oseen [30] proposed his linearization of the Navier-Stokes system
around u∞ to get around the Stokes paradox. This works well because the funda-
mental solution of the Oseen operator −Δu + u∞ · ∇u + ∇p possesses some decay
structure with wake, while the Stokes fundamental solution grows logarithmically at
infinity, see (5.18). Finn and Smith [13, 14], Smith [32] actually adopted the Oseen
linearization to succeed in construction of the Navier-Stokes flow when u∞ is not
zero but small enough (and the external force is small, too, unless it is absent). Later
on, Galdi [15] refined the result by means of Lq-estimates, see also [19, Sect. 12.5].
The similar existence theorem for the case u∞ = 0 is still an open question even
for small external force. Even before the results mentioned above, Leray [29] con-
structed at least one Navier-Stokes flow with finite Dirichlet integral without any
smallness condition, however, the asymptotic behavior at infinity of his solution is
still unclear and all the related results obtained so far are partial answers (Gilbarg and
Weinberger [21, 22] and Amick [1, 2]). For details, see Galdi [16, 18, 19]. It should
be noted that symmetry helps to attain the boundary condition u → 0 at infinity, see
[18, 31, 34] and the references therein. Among them, Yamazaki [34] employed a
linearization method to construct a small Navier-Stokes flow decaying like |x|−1 at
infinity under a sort of symmetry; indeed, the symmetry he adopted enables us to
avoid the Stokes paradox since the net force vanishes.

In this paper it is shown that, instead of the translation mentioned above, the
rotation of the obstacle leads to the resolution of the Stokes paradox in the sense
that: (i) The flow can be bounded (and even goes to a constant vector at the rate
|x|−1) at infinity even if the net force (5.3) does not vanish (Theorem 5.2.1); (ii) Given
external force decaying sufficiently fast, there exists a linear flowwhich enjoysu(x) =
O(|x|−1) as |x| → ∞ (Theorem 5.2.2). We also provide a remarkable asymptotic
representation of the flow at infinity, in which the leading term involves the rotational
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profile x⊥/|x|2 whose coefficient is given by the torque, where x⊥ = (−x2, x1)T , see
(5.15) and (5.21). Here, the linear system arising from the flow around a rotating
obstacle with constant angular velocity a ∈ R \ {0} is described as

− Δu − a
(
x⊥ · ∇u − u⊥)+ ∇p = f , div u = 0 inΩ (5.5)

in the reference frame attached to the obstacle. We recall the derivation of (5.5) in
the next section.

The essential reason why there is no longer Stokes’ paradox is asymptotic struc-
ture of the fundamental solution of the system (5.5) in the whole plane R2. Roughly
speaking, the oscillation caused by rotation yields better decay structure of the fun-
damental solution, from which combined with some cut-off techniques we obtain
the main results. It is worth while comparing with the result [9] by Farwig and the
present author on the 3D Stokes flow around a rotating obstacle, in which the axis of
rotation (e3-axis without loss, where e3 = (0, 0, 1)T ) plays an important role; in fact,
e3 · N controls the rate of decay. The result would suggest better decay studied in this
paper since we do not have the axis of rotation in 2D, however, there are some diffi-
culties compared with 3D case. Look at (5.28) below, which would be heuristically a
fundamental solution, but this is by no means trivial because of lack of absolute con-
vergence unlike 3D case. We thus employ the centering technique due to Guenther
and Thomann [23], that is, we subtract the worst part, whose time-integral converges
on account of oscillation, from the integrand of (5.28) such that the remaining part
converges absolutely and can be treated in a usual way. This technique is also needed
to justify some estimates of the fundamental solution, see Lemma 5.3.3. Asymptotic
analysis of the fundamental solution to find the asymptotic representation (5.60) is
similar to the argumant adopted for 3D [9], in which, however, the external force f
is assumed to have a compact support. In this paper we will derive further properties
of the fundamental solution and the corresponding volume potential (5.91) to deal
with the external force decaying sufficiently fast for |x| → ∞, see (5.11) and (5.14).

This paper is a step toward analysis of the Navier-Stokes flow around a rotating
obstacle in the plane. To proceed to the nonlinear case, it is reasonable to consider the
external force f = divF with F(x) = O(|x|−2) in view of the nonlinear structure u ·
∇u = div (u ⊗ u), see Remark 5.3.2. This will be discussed in a forthcoming paper.
As for asymptotic structure of the Navier-Stokes flow around a rotating obstacle in
3D, the leading term at infinity was found first by [10] and then the estimate of the
remainder was refined by [8].

When the rotating obstacle is the two-dimensional disk and the external force is
absent, the Navier-Stokes system subject to the no-slip boundary condition (5.24)
admits an explicit solution (5.25) in the original frame, see Galdi [19, p. 302].
Recently, Hillairet andWittwer [25] considered small perturbation from this solution
with large angular velocity |a| to find the Navier-Stokes flow decaying like |y|−1 at
infinity, whose leading profile is given by y⊥/|y|2. See also Guillod andWittwer [24,
Sect. 4], who provided among others numerical simulations of the related issue.

This paper is organized as follows. In the next section, after recalling the equations
in the reference frame, we present the main theorems. Section5.3 is essentially the
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central part of this paper and we carry out a detailed analysis of several asymptotic
properties of the fundamental solution of (5.5) in the whole plane R2. Section5.4 is
devoted to decay structure of the system (5.5) to prove Theorem 5.2.1. In the final
section we show the existence of a unique linear flowwhich goes to zero as |x| → ∞
to prove Theorem 5.2.2.

5.2 Results

We begin with introducing notation. Set Bρ(x0) = {x ∈ R
2; |x − x0| < ρ}, where

x0 ∈ R
2 and ρ > 0. Given exterior domain Ω with smooth boundary ∂Ω , we fix

R � 1 such that R2 \ Ω ⊂ BR(0). For ρ � R we set Ωρ = Ω ∩ Bρ(0). Let D be one
ofΩ,R2 andΩρ , and let 1 � q � ∞. We denote by Lq(D) the usual Lebesgue space
with norm ‖ · ‖Lq(D). It is also convenient to introduce the weak-L2 space L2,∞(D)

(one of the Lorentz spaces, see [3]) by L2,∞(D) = (
L1(D),L∞(D)

)
1/2,∞ with norm

‖ · ‖L2,∞(D), where (·, ·)1/2,∞ stands for the real interpolation functor. The measurable
function f belongs to L2,∞(D) if and only if supτ>0 τ |{x ∈ D; |f (x)| > τ }|1/2 < ∞,
where | · | denotes the Lebesgue measure. Note that L2(D) ⊂ L2,∞(D); indeed,
|x|−1 ∈ L2,∞(D). ByHk(D) andH1

0 (D)we respectively denote the L2-Sobolev space
of k-th order (k � 1) with norm ‖ · ‖Hk(D) and the completion of C∞

0 (D) (consisting
of smooth functions with compact support) in H1(D). We use the same symbol for
denoting the spaces of scalar, vector and tensor valued functions.

Before stating our results, we briefly explain the derivation of the system (5.5) for
the readers’ convenience although that is the same as in 3D case [17, 26]. Suppose
a compact obstacle (rigid body) R2 \ Ω is rotating about the origin in the plane
with constant angular velocity a ∈ R \ {0}, and let us start with the nonstationary
Navier-Stokes system

∂tv + v · ∇v = Δv − ∇q + g, div v = 0

in the time-dependent exterior domain Ω(t) = {y = O(at)x; x ∈ Ω} with

O(t) =
(
cos t − sin t
sin t cos t

)
,

where v(y, t) and q(y, t) are unknowns, while g(y, t) is a given external force. The
fluid velocity is assumed to attain the rotational velocity of the rigid body on the
boundary ∂Ω(t) (no-slip condition), while it is at rest at infinity, that is,

v|∂Ω(t) = ay⊥, v → 0 as |y| → ∞.

We take the frame attached to the obstacle by making change of variables

y = O(at)x, u(x, t) = O(at)Tv(y, t), p(x, t) = q(y, t),

f (x, t) = O(at)T g(y, t),
(5.6)



5 Asymptotic Structure of Steady Stokes Flow Around … 99

so that the equation of momentum is reduced to

∂tu = O(at)T∂tv + O(at)T
(
a Ȯ(at)x

) · ∇yv + a Ȯ(at)Tv

= O(at)T (−v · ∇yv + Δyv − ∇yq + g) + a
(
x⊥ · ∇xu − u⊥)

= −u · ∇xu + Δxu − ∇xp + f + a
(
x⊥ · ∇xu − u⊥)

inΩ , where Ȯ(t) = d
dt O(t). If f is independent of t, then one can consider the steady

problem

− Δu − a
(
x⊥ · ∇u − u⊥)+ ∇p + u · ∇u = f , div u = 0 inΩ (5.7)

subject to
u|∂Ω = ax⊥, u → 0 as |x| → ∞. (5.8)

It is sometimes convenient to write the LHS of (5.7)1 as divergence form

Δu + a
(
x⊥ · ∇u − u⊥)− ∇p − u · ∇u

= div
(
S(u, p) − u ⊗ u

) =
(

2∑

k=1

∂k
{
Sjk(u, p) − ujuk

}
)

j=1,2

with
S(u, p) = (

Sjk(u, p)
) = T(u, p) + a

(
u ⊗ x⊥ − x⊥ ⊗ u

)
(5.9)

where T(u, p) is given by (5.4), u ⊗ v = (ujvk) stands for the matrix for given vector
fields u and v, and ∂k = ∂xk .

The only problemwe intend to address in this paper is the associated linear system
(5.5). On account of the relation

∫

Ω

[
(x⊥ · ∇u − u⊥) · v + u · (x⊥ · ∇v − v⊥)

]
dx =

∫

∂Ω

(ν · x⊥)(u · v) dσ (5.10)

for vector fields u and v (so long as the calculation (5.129) in Sect. 5.4 makes sense),
the operator u �→ x⊥ · ∇u − u⊥ is skew-symmetric under the homogeneous bound-
ary condition. Also, by using the auxiliary function (5.130) below, our problem with
boundary condition (5.8)1 can be reduced to the problemwith the homogeneous one.
Hence, it is not hard to find at least one solution with ∇u ∈ L2(Ω) for (5.5) (even
for the Navier-Stokes system (5.7) without restriction on the size of |a|) subject to
the boundary condition u|∂Ω = ax⊥ (only (5.8)1) along the same procedure as in
Leray [29] provided f = divF with F ∈ L2(Ω), however, we do not know whether
the behavior (5.8)2 at infinity is verified. The asymptotic structure of this solution for
f decaying sufficiently fast at infinity and, more generally, that of {u, p} satisfying
(5.5) without assuming any boundary condition on ∂Ω are given by the following
theorem. For simplicity we are concerned with smooth solutions although the result
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can be extended to less regular solutions (in view of Proposition 5.3.2 for the whole
plane problem).

Theorem 5.2.1 Let a ∈ R \ {0}. Suppose that {u, p} ∈ H1
loc(Ω) × L2

loc(Ω) is a
smooth solution to the system (5.5) with f ∈ C∞(Ω) satisfying

∫

Ω

|x||f (x)| dx < ∞, |f (x)| � C

(1 + |x|3)( log (e + |x|)) (5.11)

where the constant C > 0 is independent of x ∈ Ω . Assume either
(i) ∇u ∈ Lr(Ω \ BR(0)) for some r ∈ (1,∞)

or
(ii) u(x) = o(|x|) as |x| → ∞.

Then there are constants u∞ ∈ R
2 and p∞ ∈ R such that:

1. (asymptotic behavior)

{
u(x) = u∞ + (1 + |a|−1)O(|x|−1),

p(x) = −a u⊥
∞ · x + p∞ + O(|x|−1),

(5.12)

as |x| → ∞.
2. (energy balance)

We have ∇u ∈ L2(Ω) (even if we do not assume (i) with r = 2) and

1

2

∫

Ω

|Du|2dx =
∫

∂Ω

[(
T̃(u, p)ν

) · (u − u∞) + a (ν · x⊥)

2
|u − u∞|2

]
dσ

+
∫

Ω

f · (u − u∞) dx

(5.13)
with T̃(u, p) := T(u, p + a u⊥∞ · x − p∞), where Du and T(·, ·) are as in (5.4).

3. (asymptotic representation)
If in addition

f (x) = o(|x|−3(log |x|)−1) as |x| → ∞, (5.14)

then

u(x) − u∞ = αx⊥ − 2βx

4π |x|2 + (1 + |a|−1) o(|x|−1) as |x| → ∞, (5.15)

where

α =
∫

∂Ω

y⊥ · {(T(u, p) + a u ⊗ y⊥) ν
}
dσy +

∫

Ω

y⊥ · f dy,

β =
∫

∂Ω

ν · u dσ.

(5.16)
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If in particular f ∈ C∞
0 (Ω), that is, the support of f is compact in R

2, then the
remainder decays like O(|x|−2) in (5.15).

Note that T(u, p)ν belongs toH−1/2(∂Ω) := H1/2(∂Ω)∗ by the normal trace the-
orem since T(u, p) ∈ L2(ΩR) and div T(u, p) = −a

(
x⊥ · ∇u − u⊥)− f ∈ L2(ΩR).

Therefore, the boundary integral
∫
∂Ω

y⊥ · (T(u, p)ν
)
dσy can be understood as

H1/2(∂Ω)〈y⊥,T(u, p)ν〉H−1/2(∂Ω) in (5.16). Since u ∈ H1/2(∂Ω), the same reasoning
as above justifies

∫
∂Ω

(
T̃(u, p)ν

) · (u − u∞) dσ in (5.13). All the other integrals in
(5.13) and (5.16) also make sense.

For the usual Stokes system (5.1), under the same growth condition on u(x) as in
Theorem5.2.1, there is a constantu∞ ∈ R

2 such that (Chang andFinn [6,Theorem1])

u(x) = u∞ + E(x)N + O(|x|−1) (5.17)

as |x| → ∞, where

E(x) = 1

4π

[(
log

1

|x|
)
I + x ⊗ x

|x|2
]

(5.18)

is the Stokes fundamental solution and N denotes the net force (5.3). We observe
the remarkable difference between (5.12)1 and (5.17); in fact, the flow is bounded in
Theorem 5.2.1 even though the net force N does not vanish. We would say that this
is the resolution of the Stokes paradox.

The leading term of (5.15) is of interest since it contains the rotational profile
x⊥/|x|2, which comes from the leading term of the fundamental solution of (5.5),
see (5.60). The other profile −x/(2π |x|2) is called the flux carrier. If in particular
the flux β at the boundary vanishes, then the leading term is purely rotational and
that is just the case in the next theorem. Look at the coefficient (5.16) of x⊥/|x|2,
where the integral

∫
∂Ω

y⊥ · (T(u, p)ν
)
dσy stands for the torque exerted by the fluid

to the obstacle. It is worth while noting that, in three dimensions, one finds the
rotational profile (e3 × x)/|x|3, whose coefficient involves the torque, in the second
term after the leading one. For details, see Farwig and Hishida [9, Theorem 1.1]. It
is reasonable that both x⊥/|x|2 = ∇⊥ log |x| and x/|x|2 = ∇ log |x| are solutions to
(5.5) with f = 0 in R2 \ {0} together with the constant pressure and, therefore, so is
the leading term of (5.15). In fact, we observe

Δ
x⊥

|x|2 = 0, x⊥ · ∇ x⊥

|x|2 = (x⊥)⊥

|x|2 , div
x⊥

|x|2 = 0 inR2 \ {0}

as well as (5.118) (with x0 = 0) below.
In Theorem 5.2.1 it is also possible to find the asymptotic representation of the

pressure p(x) without assuming any growth condition on p(x) itself since it can
be controlled by the growth of u(x) via the Eq. (5.5)1. The leading profile of p(x) +
a u⊥∞ · x − p∞ in (5.12)2 is just the fundamental solutionQ(x) = x

2π |x|2 of the pressure
to the Stokes system. This is because
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div
(
x⊥ · ∇u − u⊥) = x⊥ · ∇div u = 0 (5.19)

so that the pressure part of the fundamental solution is independent of a ∈ R. Thus
we are not interested in the asymptotic representation of the pressure, which the
rotation of the obstacle does not affect so much. The coefficient of the leading profile
Q(x) is rather complicated in Theorem 5.2.1, but it becomes just the force in the next
theorem, see (5.22).

The next question is whether one can actually construct a solution to (5.5) when
zero velocity is prescribed at infinity as in (5.8). The following theorem gives an
affirmative answer.

Theorem 5.2.2 Let a ∈ R \ {0}. Suppose that f = div F ∈ C∞(Ω), withF ∈ L2(Ω),
satisfies (5.11). Then the system (5.5) subject to (5.8) admits a smooth solution {u, p},
which is of class u ∈ L2,∞(Ω) ∩ H1

loc(Ω), p ∈ L2
loc(Ω) as well as ∇u ∈ L2(Ω) and

fulfills

‖u‖L2,∞(Ω) � C
[
1 + |a| + (1 + |a|−1)

(
‖F‖L2(Ω)

+
∫

Ω

|x||f (x)| dx + sup
x∈Ω

|x|3( log (e + |x|))|f (x)|
)]

,

‖∇u‖L2(Ω) � ‖F‖L2(Ω) + C|a|,

(5.20)

with someC > 0 independent of f anda ∈ R \ {0}, and {u, p} enjoys all the assertions
in Theorem 5.2.1 with {u∞, p∞} = {0, 0}. In particular, we have

u(x) =
(∫

∂Ω

y⊥ · (T(u, p)ν
)
dσy +

∫

Ω

y⊥ · f dy
)

x⊥

4π |x|2 + (1 + |a|−1) o(|x|−1),

(5.21)

p(x) =
(∫

∂Ω

T(u, p)ν dσ +
∫

Ω

f dy

)
· x

2π |x|2 + O(|x|−2), (5.22)

as |x| → ∞ under the additional condition (5.14) (which is needed only for (5.21)).
This is the only solution in the class ∇u ∈ L2(Ω), {u, p} ∈ L2

loc(Ω) with {u, p} →
{0, 0} as |x| → ∞.

Note that, when a = 0, the problem is not always solvable for given external force
f = divF even if F ∈ C∞

0 (Ω), that may be also regarded as the Stokes paradox. The
L∞-norm of |x||u(x)| away from the boundary can be also estimated by the RHS of
(5.20)1 (see (5.135) for an approximate solution). In order to control the L∞-norm
of u(x) near the boundary ∂Ω , the class H1

loc(Ω) is not enough. We put the term
x⊥ · ∇u − u⊥ in the RHS and use the regularity theory of the usual Stokes system
up to the boundary to show that u ∈ H2

loc(Ω) ⊂ L∞
loc(Ω) together with a certain

estimate, which enables us to obtain the similar estimate of supx∈Ω(1 + |x|)|u(x)| to
(5.20)1.
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We conclude this section with the following exact solutions of both the Stokes
and Navier-Stokes boundary value problems without external force. The Stokes flow
(5.26) seems to be well known since it is found in some old literature. The Navier-
Stokes flow (5.25) is found in the second edition of [19, p. 302] (I learned it from
Professor Masao Yamazaki around 2008). Suppose the unit disk (rigid body) B1(0)
is rotating about the origin with constant angular velocity a ∈ R \ {0}. Then the
Navier-Stokes flow in the exterior Ω = R

2 \ B1(0) obeys

− Δv + ∇q + v · ∇v = 0, div v = 0 inΩ (5.23)

subject to
v|∂Ω = ay⊥, v → 0 as |y| → ∞ (5.24)

and this problem has a solution

v(y) = ay⊥

|y|2 , q(y) = −a2

2|y|2 + constant. (5.25)

Also, the associated Stokes problem

−Δv + ∇q = 0, div v = 0 inΩ,

subject to (5.24) admits a solution

v(y) = ay⊥

|y|2 , q(y) = constant. (5.26)

Note that the Stokes flow (5.26) does not contradict the Stokes paradox because∫
∂Ω

T(v, q)ν dσ = 0 due to symmetry. When the obstacle is a disk, we do not neces-
sarily have to make the change of variables (5.6), nevertheless, we can do so and this
case is not excluded in the present paper. Steady flows in the original frame corre-
spond to time-periodic flows and are not steady in general in the reference frame via
(5.6). But the Stokes flow (5.26) becomes the steady one u(x) = ax⊥/|x|2, p(x) =
constant in the reference frame as well and this may be regarded as a special case in
Theorems 5.2.1 and 5.2.2 (when we take p = 0 in the latter theorem); indeed, one
can verify ∫

∂Ω

y⊥ · (T(u, p)ν
)
dσy = 4πa

in (5.21). Recently, Hillairet andWittwer [25] proved that if the boundary value v|∂Ω

is sufficiently close to ay⊥ with |a| >
√
48 in a sense and

∫
∂Ω

ν · v dσ = 0, then
the Navier-Stokes system (5.23) in the exterior Ω = R

2 \ B1(0) of the disk subject
to this boundary condition admits at least one smooth solution, which decays like
|y|−1 as |y| → ∞. The leading profile of their solution is given by y⊥/|y|2 with some
coefficient close to a.



104 T. Hishida

5.3 Fundamental Solution

In this section we derive the decay structure of the fundamental solution of the linear
system (5.5) in the whole planeR2 when a ∈ R \ {0}. Because of (5.19) the pressure
part of the fundamental solution is

Q(x − y) = x − y

2π |x − y|2 , (5.27)

while the velocity part is given by

Γa(x, y) =
∫ ∞

0
O(at)T K(O(at)x − y, t) dt, (5.28)

where
K(x, t) = G(x, t)I + H(x, t)

is the fundamental solution of unsteady Stokes system (a = 0), and it consists of the
2D heat kernel

G(x, t) = 1

4π t
e−|x|2/4t

and 2 × 2 matrix

H(x, t) =
∫ ∞

t
∇2G(x, s) ds =

∫ ∞

t
G(x, s)

(
x ⊗ x

4s2
− I

2s

)
ds. (5.29)

In 2D case one can write (5.29) in terms of elementary functions

H(x, t) = −(x ⊗ x)

|x|2 G(x, t) +
(
x ⊗ x

|x|2 − I

2

)
1 − e−|x|2/4t

π |x|2 , (5.30)

while one cannot in 3D, see [9]. One needs more careful argument than 3D case [9]
to prove that (5.28) is actually the fundamental solution, see Proposition 5.3.2.

Indeed the integral representation (5.28) does not absolutely converge, but it is
convergent due to oscillation O(at)T with a ∈ R \ {0}, see Lemma 5.3.2. This is
a contrast to the case a = 0, in which (5.28) is not convergent. In this case one
needs the centering technique to recover the convergence, which leads to the Stokes
fundamental solution E(x) given by (5.18) as follows:

∫ ∞

0

(
K(x, t) − e−e/4t

8π t
I

)
dt = E(x). (5.31)
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This was clarified by Guenther and Thomann [23, Proposition 2.2]. As a part of this
technique (5.31), the fundamental solution of the Laplace operator in two dimensions
is recovered exactly as

∫ ∞

0

(
G(x, t) − e−1/4t

4π t

)
dt = 1

2π
log

1

|x| (5.32)

in terms of the heat kernel, see [23, Lemma 2.1]. Although we do not need the
centering technique in the representation (5.28) itself, we will use this technique to
justify some formulae in this section.

Remark 5.3.1 In [11, p. 301] Farwig, Hishida andMüller mentioned that the integral
kernel

∫∞
0 O(t)TG(O(t)x − y, t) dt should be modified to recover the convergence

in two dimensions. But this is redundant as we will see in Lemma 5.3.2 by making
use of the oscillation.

For convenience we will collect a few elementary foumulae, which will be used
several times. We omit the proof that is nothing but integration by parts. In the first
assertion below it is possible to derive even faster decay r−{2(m−1)+2k} for every k ∈ N

by k-times integration by parts, but (5.33) and (5.34) are enough for later use. Note
that they are not absolutely convergent for m � 1 (the only case we need is m = 1).

Lemma 5.3.1 Let r > 0.

1. Let a ∈ R \ {0} and m > 0. Then

∣∣∣∣

∫ ∞

0
eiate−r2/t dt

tm

∣∣∣∣ � C

|a|r2m , (5.33)

∣∣∣∣

∫ ∞

0
eiat

∫ ∞

t
e−r2/s ds

sm+1
dt

∣∣∣∣ � C

|a|r2m , (5.34)

with some C = C(m) > 0 independent of r > 0 and a ∈ R \ {0}, where i =√−1.
2. Let m > 1. Then

∫ ∞

0
e−r2/t dt

tm
= γ (m − 1)

r2(m−1)
, (5.35)

∫ ∞

0

∫ ∞

t
e−r2/s ds

sm+1
dt = γ (m − 1)

r2(m−1)
, (5.36)

where γ (·) denotes the Euler gamma function.

We begin with the following lemma, from which the function (5.28) is well-
defined.
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Lemma 5.3.2 Let a ∈ R \ {0}. Then the integral Γa(x, y) given by (5.28) converges
for every (x, y) ∈ R

2 × R
2 with x �= y.

Proof We decompose Γa(x, y) as

Γa(x, y) = Γ 0
a (x, y) + Γ 1

a (x, y), Γ 1
a (x, y) = Γ 11

a (x, y) + Γ 12
a (x, y)

with

Γ 0
a (x, y) =

∫ ∞

0
O(at)TG(O(at)x − y, t) dt,

Γ 11
a (x, y) =

∫ ∞

0
O(at)T

∫ ∞

t
G(O(at)x − y, s)

(O(at)x − y) ⊗ (O(at)x − y)

4s2
ds dt,

Γ 12
a (x, y) =

∫ ∞

0
O(at)T

∫ ∞

t
G(O(at)x − y, s)

−1

2s
ds dt.

(5.37)

We start with the convergence of Γ 0
a (x, y) by using the centering technique as in

(5.32). By (5.33) we know that

∣∣
∣∣

∫ ∞

0
O(at)Te−1/4t dt

t

∣∣
∣∣ � C

|a| . (5.38)

Hence, it suffices to show the convergence of

∫ ∞

0
O(at)T

(
e−|O(at)x−y|2/4t − e−1/4t

) dt

t
. (5.39)

As we will see, this is absolutely convergent. For large t, we have

∫ ∞

1

∣∣∣e−|O(at)x−y|2/4t − e−1/4t
∣∣∣
dt

t
�
∫ ∞

1

∣∣|O(at)x − y|2 − 1
∣∣ dt

4t2

� (|x| + |y|)2 + 1

4
.

For small t, we use the relation

|O(at)x − y|2 = |x − y|2 + 2at
(
Ȯ(aθ t)x

) · (O(aθ t)x − y) (5.40)

for some θ = θ(a, t, x, y) ∈ (0, 1), where Ȯ(t) = d
dt O(t). Then we have

∫ 1

0

∣∣
∣e−|O(at)x−y|2/4t − e−1/4t

∣∣
∣
dt

t
�
∫ 1

0

(
e−|x−y|2/4t e|a||x|(|x|+|y|)/2 + e−1/4t

) dt

t
(5.41)
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with

∫ 1

0
e−|x−y|2/4t dt

t
=
(∫ 1

0
+
∫ 1/|x−y|2

1

)

e−1/4t dt

t

� 4 +
∫ 1/|x−y|2

1

dt

t
= 4 + 2 log

1

|x − y| (0 < |x − y| < 1),

(5.42)

while

∫ 1

0
e−|x−y|2/4t dt

t
� 4 (|x − y| � 1).

This concludes that (5.39) is absolutely convergent.
The next integral Γ 11

a (x, y) is absolutely convergent without centering as above.
Given (x, y) with x �= y, there is δ = δ(a, x, y) > 0 such that

0 <
|x − y|2

2
� |O(at)x − y|2 � 3|x − y|2

2
, 0 � ∀ t � δ, (5.43)

on account of lim
t→0

|O(at)x − y|2 = |x − y|2. This together with (5.36) implies that

∫ ∞

0

∫ ∞

t
e−|O(at)x−y|2/4s |O(at)x − y|2

s3
ds dt

�
∫ δ

0

∫ ∞

t
e−|x−y|2/8s 3|x − y|2

2s3
ds dt +

∫ ∞

δ

∫ ∞

t

(|x| + |y|)2
s3

ds dt

� 3|x − y|2
2

∫ ∞

0

∫ ∞

t
e−|x−y|2/8s ds

s3
dt + (|x| + |y|)2

2

∫ ∞

δ

dt

t2

= C + (|x| + |y|)2
2δ

.

(5.44)

Finally, similarly to the argument of convergence of Γ 0
a (x, y), we can discuss

Γ 12
a (x, y). From (5.34) it follows that

∣∣∣
∣

∫ ∞

0
O(at)T

∫ ∞

t
e−1/4s ds

s2
dt

∣∣∣
∣ � C

|a| . (5.45)

It thus remains to show the convergence of

∫ ∞

0
O(at)T

∫ ∞

t

(
e−|O(at)x−y|2/4s − e−1/4s

) ds

s2
dt. (5.46)
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For large t, we have

∫ ∞

1

∫ ∞

t

∣∣∣e−|O(at)x−y|2/4s − e−1/4s
∣∣∣
ds

s2
dt �

∫ ∞

1

∫ ∞

t

∣∣|O(at)x − y|2 − 1
∣∣ ds

4s3
dt

� (|x| + |y|)2 + 1

8
.

For small t, as in (5.41), we use (5.40) to find

∫ 1

0

∫ ∞

t

∣∣
∣e−|O(at)x−y|2/4s − e−1/4s

∣∣
∣
ds

s2
dt

�
∫ 1

0

∫ ∞

t

(
e−|x−y|2/4s e|a||x|t(|x|+|y|)/2s + e−1/4s

) ds

s2
dt

� e|a||x|(|x|+|y|)/2
∫ 1

0

∫ ∞

t
e−|x−y|2/4s ds

s2
dt + 4

(5.47)

with

∫ 1

0

∫ ∞

t
e−|x−y|2/4s ds

s2
dt =

(∫ 1

0
+
∫ 1/|x−y|2

1

)∫ ∞

t
e−1/4s ds

s2
dt

� 4 + 4
∫ 1/|x−y|2

1
(1 − e−1/4s) ds � 4 +

∫ 1/|x−y|2

1

ds

s

= 4 + 2 log
1

|x − y| (0 < |x − y| < 1),

(5.48)

while ∫ 1

0

∫ ∞

t
e−|x−y|2/4s ds

s2
dt � 4 (|x − y| � 1).

This implies the absolute convergence of (5.46). We have completed the proof. �

We have concentrated ourselves only on the convergence of the integral (5.28). So
the estimates appeared in the proof above are not related to the asymptotic behavior
with respect to (x, y) at large distance, which will be discussed in a different way in
Proposition 5.3.1, but we have tried to derive the singular behavior for |x − y| → 0
as less as possible, see (5.42), (5.44) and (5.48). This behavior should be logarithmic,
otherwise (5.28) cannot be the fundamental solution, but the behavior (5.44) is not
clear since δ depends on x, y (probably, the part Γ 11

a (x, y) would be bounded for
|x − y| → 0 as in the second term of the Stokes fundamental solution (5.18)). In
order to ensure that the volume potential (5.91) below is well-defined, we will show
the following lemma. The growth rate (5.49) with ρ = 2|x|will be also used to show
asymptotic representation (5.96) below.
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Lemma 5.3.3 Let a ∈ R \ {0}There is a constaneC > 0 independent of a ∈ R \ {0}
such that ∫

|y|�ρ

|Γa(x, y)| dy � C|a|−1ρ2 + Cρ2 log ρ, (5.49)

∫

|y|�ρ

|∇xΓa(x, y)| dy � Cρ, (5.50)

for every x ∈ R
2 and ρ � |x| + e.

Proof To this end, it is convenient to use another representation (5.30) of H(x, t)
together with the centering technique (5.31) due to Guenther and Thomann [23]. But
we subtract

(
e−1/4t/8π t

)
I instead of

(
e−e/4t/8π t

)
I since there is no need to derive

E(x). First of all, it follows from (5.33) that

∣∣
∣∣

∫ ∞

0
O(at)T

e−1/4t

8π t
dt

∣∣
∣∣ � C

|a| . (5.51)

We set

Γ̃a(x, y) :=
∫ ∞

0
O(at)T

(
K(O(at)x − y, t) − e−1/4t

8π t
I

)
dt. (5.52)

We will see that the integral of this integrand over (0,∞) × Bρ(0) with respect to
(t, y) is absolutely convergent. By the transformation y = O(at)z we have

∫ ∞

0

∫

|y|�ρ

∣∣∣∣K(O(at)x − y, t) − e−1/4t

8π t
I

∣∣∣∣ dy dt

=
∫ ∞

0

∫

|z|�ρ

∣∣∣
∣K(x − z, t) − e−1/4t

8π t
I

∣∣∣
∣ dz dt.

(5.53)

The useful decomposition discovered by [23] is

K(x, t) − e−1/4t

8π t
I

= e−|x|2/4t − e−1/4t

8π t
I +

(
e−|x|2/4t

8π t
− 1 − e−|x|2/4t

2π |x|2
)(

I − 2x ⊗ x

|x|2
)

=: A + B

8π
.

(5.54)

Then we find
∫ ∞

0
|A| dt = C

∣∣ log |x|∣∣, (5.55)
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while we see from the transformation τ = |x|2/4t that
∫ ∞

0
|B| dt =

∣∣∣∣I − 2x ⊗ x

|x|2
∣∣∣∣

∫ ∞

0

−τe−τ + 1 − e−τ

τ 2
dτ =

∣∣∣∣I − 2x ⊗ x

|x|2
∣∣∣∣ � C

(5.56)
since

0 <
−τe−τ + 1 − e−τ

τ 2
= d

dτ

(
e−τ − 1

τ

)

for every τ > 0. By the Fubini theorem we obtain

∫

|y|�ρ

|Γ̃a(x, y)| dy � C
∫

|y|�ρ

(
1 + ∣∣ log |x − y|∣∣) dy

� Cρ2 + C
∫

|y−x|�ρ+|x|

∣∣ log |x − y|∣∣ dy

� Cρ2 + Cρ2 log ρ

for ρ � |x| + e. This together with (5.51) concludes (5.49).
For the estimate of ∇xΓa(x, y), we first need to justify

∇xΓa(x, y) =
∫ ∞

0
O(at)T∇x

[
K(O(at)x − y, t)

]
dt (5.57)

with the aid of Γ̃a(x, y) given by (5.52). Given ϕ ∈ C∞
0 (R2) arbitrarily, we have

〈Γ̃a(·, y), divϕ〉 =
∫ ∞

0

〈
O(at)T

(
K(O(at)x − y, t) − e−1/4t

8π t
I

)
, divϕ

〉
dt

because this integral over (0,∞) × BL(0) with respect to (t, x) is absolutely conver-
gent by the same reasoning as in the proof of (5.49), where L > 0 is taken in such a
way that Suppϕ ⊂ BL(0). We then use

|(∇K)(x, t)| � Ct−3/2e−|x|2/16t + C
∫ ∞

t
s−5/2e−|x|2/16s ds (5.58)

together with (5.35)–(5.36) to get the absolute convergence

∫ ∞

0

∫

|x|�L

∣∣∇x
[
K(O(at)x − y, t)

]∣∣ dx dt � C
∫ ∞

0

∫

|x|�L
|(∇K)(O(at)x − y, t)| dx dt

= C
∫ ∞

0

∫

|x|�L
|(∇K)(x − y, t)| dx dt

� C
∫

|x|�L

dx

|x − y|
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as in (5.53). Hence we obtain

〈Γ̃a(·, y), div ϕ〉 = −
∫ ∞

0

〈
O(at)T∇x

[
K(O(at)x − y, t)

]
, ϕ
〉
dt

= −
〈∫ ∞

0
O(at)T∇x

[
K(O(at)x − y, t)

]
dt, ϕ

〉

for all ϕ ∈ C∞
0 (R2), which implies (5.57) since ∇xΓ̃a(x, y) = ∇xΓa(x, y). Once we

have that, by the same reasoning as above we get

∫

|y|�ρ

|∇xΓa(x, y)| dy � C
∫

|y|�ρ

∫ ∞

0
|(∇K)(O(at)x − y, t)| dt dy � C

∫

|y|�ρ

dy

|x − y|

which leads to (5.50) for ρ � |x| + e. �

The following estimate provides the decay structure ofΓa(x, y) and plays a crucial
role in this paper.

Proposition 5.3.1 Let a ∈ R \ {0}.
1. There is a constant C > 0 independent of a ∈ R \ {0} such that

∣∣∣∣Γa(x, y) − x⊥ ⊗ y⊥

4π |x|2
∣∣∣∣ � C(|a|−1 + |y|2)

|x|2 (5.59)

for all (x, y) ∈ R
2 × R

2 with |x| > 2|y|. In particular, we have

Γa(x, y) = x⊥ ⊗ y⊥

4π |x|2 + O(|x|−2), (5.60)

as |x| → ∞ so long as |y| � ρ, where ρ > 0 is fixed.
2. Similarly, there is a constant C > 0 independent of a ∈ R \ {0} such that

∣∣∣∣Γa(x, y) − x⊥ ⊗ y⊥

4π |y|2
∣∣∣∣ � C(|a|−1 + |x|2)

|y|2 (5.61)

for all (x, y) ∈ R
2 × R

2 with |y| > 2|x|.

Proof Tha latter assertion follows from the former onebecauseΓa(x, y) = Γ−a(y, x)T

and (y⊥ ⊗ x⊥)T = x⊥ ⊗ y⊥.Wewill show (5.59), which immediately implies (5.60).
Let us start with Γ 0

a (x, y) given by (5.37). We use the Taylor formula with respect to
y around y = 0 to see that there is θ = θ(a, t, x, y) ∈ (0, 1) satisfying
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e−|O(at)x−y|2/4t

= e−|x|2/4t + e−|x|2/4t (O(at)x) · y
2t

+ 1

2
e−|O(at)x−θy|2/4t yT

(O(at)x − θy) ⊗ (O(at)x − θy) − 2t I

4t2
y.

(5.62)

According to this formula, we decompose Γ 0
a (x, y) as

Γ 0
a (x, y) = Γ 01

a (x) + Γ 02
a (x, y) + Γ 03

a (x, y).

It follows from (5.33) that

|Γ 01
a (x)| =

∣∣∣∣
1

4π

∫ ∞

0
O(at)Te−|x|2/4t dt

t

∣∣∣∣ � C

|a||x|2 . (5.63)

Since
(O(at)x) · y = (x · y) cos at + (x⊥ · y) sin at (5.64)

and, thereby,

{(O(at)x) · y}O(at)T = 1

2

(
x · y x⊥ · y

−x⊥ · y x · y
)

+ cos 2at

2

(
x · y −x⊥ · y
x⊥ · y x · y

)

+ sin 2at

2

(
x⊥ · y x · y
−x · y x⊥ · y

)
,

(5.65)

we have

Γ 02
a (x, y) = 1

16π

∫ ∞

0
e−|x|2/4t dt

t2

(
x · y x⊥ · y

−x⊥ · y x · y
)

+ M02
a (x, y)

= 1

4π |x|2
(

x · y x⊥ · y
−x⊥ · y x · y

)
+ M02

a (x, y)

(5.66)

with

|M02
a (x, y)| � C|y|

|a||x|3 � C

|a||x|2 (5.67)

for |x| > 2|y|, which follows from (5.33). Since e−|O(at)x−θy|2/4t � e−|x|2/16t for |y| <

|x|/2, it is easily seen that

|Γ 03
a (x, y)| � C|y|2

∫ ∞

0

(|x|2t−3 + t−2
)
e−|x|2/16t dt = C|y|2

|x|2 (5.68)

without using oscillation. Then (5.63), (5.66), (5.67) and (5.68) imply that
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∣∣
∣∣Γ

0
a (x, y) − 1

4π |x|2
(

x · y x⊥ · y
−x⊥ · y x · y

)∣∣
∣∣ � C(|a|−1 + |y|2)|x|−2 (5.69)

for |x| > 2|y|.
We proceed to the decay structure of Γ 1

a (x, y) given by (5.37). Similarly to (5.62),
we have the formula

e−|O(at)x−y|2/4s

= e−|x|2/4s + e−|x|2/4s (O(at)x) · y
2s

+ 1

2
e−|O(at)x−θy|2/4s yT

(O(at)x − θy) ⊗ (O(at)x − θy) − 2s I

4s2
y

(5.70)

with some θ = θ(a, t, s, x, y) ∈ (0, 1) and, correspondingly,wedecomposeΓ 11
a (x, y)

given by (5.37) as

Γ 11
a (x, y) = Γ 111

a (x, y) + Γ 112
a (x, y) + Γ 113

a (x, y).

We write

O(at)T [(O(at)x − y) ⊗ (O(at)x − y)]
= (x − O(at)Ty) ⊗ (O(at)x − y)

= A0 + (cos at)Ac + (sin at)As + cos 2at

2
Ãc + sin 2at

2
Ãs

(5.71)

with

A0 = A0(x, y) = −3(x ⊗ y) + (x⊥ ⊗ y⊥)

2
,

Ac = Ac(x, y) =
(

x21 + y21 x1x2 + y1y2
x1x2 + y1y2 x22 + y22

)
,

As = As(x, y) =
(−x1x2 + y1y2 x21 + y22−(x22 + y21) x1x2 − y1y2

)
,

Ãc = Ãc(x, y) =
( −x · y x⊥ · y

−x⊥ · y −x · y
)

,

Ãs = Ãs(x, y) =
(−x⊥ · y −x · y

x · y −x⊥ · y
)

.

Using (5.34) and (5.36), we get

Γ 111
a (x, y) = A0

16π

∫ ∞

0

∫ ∞

t
e−|x|2/4s ds

s3
dt + M111

a (x, y)

= −3(x ⊗ y) + (x⊥ ⊗ y⊥)

8π |x|2 + M111
a (x, y)

(5.72)
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with

|M111
a (x, y)| � C

|a||x|2 (5.73)

for |x| > 2|y|. Look at (5.64) and (5.71) to obtain

{(O(at)x) · y}O(at)T [(O(at)x − y) ⊗ (O(at)x − y)] = B0 + (remainder)

with

B0 = x · y
2

Ac + x⊥ · y
2

As = x · y
2

(x ⊗ x) + x⊥ · y
2

(x ⊗ x⊥) + B1 = |x|2(x ⊗ y)

2
+ B1

which is independent of t, where B1 is of degree one (resp. three) with respect to
x (resp. y) and the remainder consists of all terms involving cos kat and sin kat
(1 � k � 3). We thus find from (5.34) and (5.36) that

Γ 112
a (x, y) = |x|2(x ⊗ y)

64π

∫ ∞

0

∫ ∞

t
e−|x|2/4s ds

s4
dt + M112

a (x, y)

= x ⊗ y

4π |x|2 + M112
a (x, y)

(5.74)

with

|M112
a (x, y)| � C (|a|−1|y| + |y|3)

|x|3 � C (|a|−1 + |y|2)
|x|2 (5.75)

for |x| > 2|y|. Without using oscillation, we see that

|Γ 113
a (x, y)| � C|y|2|x|2

∫ ∞

0

∫ ∞

t

(|x|2s−5 + s−4) e−|x|2/16s ds dt = C|y|2
|x|2 (5.76)

for |x| > 2|y|. We collect (5.72), (5.73), (5.74), (5.75) and (5.76) to find

∣∣∣
∣Γ

11
a (x, y) − −(x ⊗ y) + (x⊥ ⊗ y⊥)

8π |x|2
∣∣∣
∣ � C(|a|−1 + |y|2)|x|−2 (5.77)

for |x| > 2|y|.
Finally, we decompose Γ 12

a (x, y) given by (5.37) as

Γ 12
a (x, y) = Γ 121

a (x) + Γ 122
a (x, y) + Γ 123

a (x, y)

by use of (5.70) and deduce its decay structure. By (5.34) we have

|Γ 121
a (x)| � C

|a||x|2 . (5.78)
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As in the argument for Γ 02
a (x, y), we employ (5.65) to obtain

Γ 122
a (x, y) = −1

32π

∫ ∞

0

∫ ∞

t
e−|x|2/4s ds

s3
dt

(
x · y x⊥ · y

−x⊥ · y x · y
)

+ M122
a (x, y)

= −1

8π |x|2
(

x · y x⊥ · y
−x⊥ · y x · y

)
+ M122

a (x, y)

(5.79)

with

|M122
a (x, y)| � C|y|

|a||x|3 � C

|a||x|2 (5.80)

for |x| > 2|y|. Similarly to the argument for Γ 113
a (x, y), it is seen that

|Γ 123
a (x, y)| � C|y|2

∫ ∞

0

∫ ∞

t

(|x|2s−4 + s−3
)
e−|x|2/16s ds dt = C|y|2

|x|2 (5.81)

for |x| > 2|y|. We collect (5.78), (5.79), (5.80) and (5.81) to obtain

∣∣∣∣Γ
12
a (x, y) − −1

8π |x|2
(

x · y x⊥ · y
−x⊥ · y x · y

)∣∣∣∣ � C(|a|−1 + |y|2)|x|−2 (5.82)

for |x| > 2|y|. Using the simple relation

(
x · y x⊥ · y

−x⊥ · y x · y
)

= x ⊗ y + x⊥ ⊗ y⊥,

we gather (5.69), (5.77) and (5.82) to conclude (5.60). The proof is complete. �
We next verify that (5.28) can be actually the fundamental solution. To this end,

we need two lemmas.

Lemma 5.3.4 Let f ∈ L1(R2) ∩ L∞(R2) and

p(x) =
∫

R2
Q(x − y) · f (y) dy, (5.83)

where Q(x) is given by (5.27). Set

v0(x, t) = O(at)T
∫

R2
G(O(at)x − y, t)f (y) dy, (5.84)

v1(x, t) = O(at)T
∫

R2
H(O(at)x − y, t)f (y) dy, (5.85)

where H(x, t) is given by (5.29). Then they respectively satisfy

∂tv
0 + Lav

0 = 0, v0(·, 0) = f , (5.86)
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∂tv
1 + Lav

1 = 0, v1(·, 0) = −∇p, (5.87)

in R2 × (0,∞), where

Lav := −Δv − a
(
x⊥ · ∇v − v⊥) . (5.88)

Proof The well-known estimate of singular integrals yields ∇p ∈ Lq(R2) for every
q ∈ (1,∞). By the derivation (5.6) of the equation (5.7), it is obvious that v0(x, t) is
a solution to the Cauchy problem (5.86), where the initial condition is understood as
limt→0 ‖v0(t) − f ‖Lq(R2) = 0 for every q ∈ (1,∞). By the same reasoning, v1(x, t) =
(v11, v

1
2)

T with

v1j (x, t) = −
∑

k

O(at)kj

∫

R2
G(O(at)x − y, t)∂kp(y) dy

= −
∫

R2
∂xjG(O(at)x − y, t)

∫

R2
Q(y − z) · f (z) dz dy (j = 1, 2)

solves (5.87). Note that the integration by parts above can be justified since p ∈
Lr(R2) for every r ∈ (2,∞) by the Hardy-Littlewood-Sobolev inequality. So we
have only to deduce the representation (5.85). Using the relation

Q(y) = y

2π |y|2 = −
∫ ∞

0
∇G(y, τ ) dτ

and the semigroup property of the heat kernel, we find

v1j (x, t) =
∫

R2

∑

m

∫ ∞

0

∫

R2
∂xjG(O(at)x − y, t)(∂mG)(y − z, τ ) dy dτ fm(z) dz

= −
∫

R2

∑

m

∫ ∞

0
∂xj∂zmG(O(at)x − z, t + τ) dτ fm(z) dz

=
∫

R2

∑

k,m

O(at)kj

∫ ∞

t
(∂k∂mG)(O(at)x − z, s) ds fm(z) dz

which leads us to (5.85). �

Lemma 5.3.5 Let ε � 0. Let U ∈ S ′(R2) fulfill

εU − ΔU − a x⊥ · ∇U = 0 inR2,

whereS ′ is the class of tempered distributions. Then Supp Û ⊂ {0}, where Û denotes
the Fourier transform of U. Similarly, if u ∈ S ′(R2) and p ∈ S ′(R2) satisfy
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εu − Δu − a
(
x⊥ · ∇u − u⊥)+ ∇p = 0, div u = 0 inR2, (5.89)

then Supp û ⊂ {0} and Supp p̂ ⊂ {0}.
Proof We will prove the second assertion along the same idea as in [11],
[27, Lemma 4.2] (in which the first assertion was shown for the case ε = 0). By
(5.19) we have Δp = 0, so that Supp p̂ ⊂ {0} is obvious. We take the Fourier trans-
form of (5.89)1 to find

(ε + |ξ |2) û − a
(
ξ⊥ · ∇ξ û − û⊥)+ iξ p̂ = 0.

Given ψ ∈ C∞
0 (R2 \ {0}) arbitrarily, we set

φ(ξ) =
∫ ∞

0
O(at) e−(ε+|ξ |2)tψ(O(at)Tξ) dt ∈ C∞

0 (R2 \ {0}),

which solves
(ε + |ξ |2) φ + a

(
ξ⊥ · ∇ξφ − φ⊥) = ψ.

We thus obtain

〈̂u, ψ〉 = 〈
û, (ε + |ξ |2) φ + a

(
ξ⊥ · ∇ξφ − φ⊥)〉

= 〈
(ε + |ξ |2) û − a

(
ξ⊥ · ∇ξ û − û⊥) , φ

〉

= −〈iξ p̂, φ〉 = 0,

which completes the proof. �

The following volume potential (5.91) is well-defined on account of (5.49) and
provides a solution to (5.97) for every f ∈ C∞

0 (R2); that is, Γa(x, y) is a fundamental
solution. We also deduce several properties of (5.91) for later use, including asymp-
totic representation (5.96) even for less regular f , whose support is not necessarily
compact but which decays sufficiently fast at infinity.

Proposition 5.3.2 Let a ∈ R \ {0}. Suppose

f ∈ L1(R2) ∩ L∞(R2). (5.90)

Set

u(x) =
∫

R2
Γa(x, y)f (y) dy, (5.91)

where Γa(x, y) is given by (5.28), and consider p(x) defined by (5.83) as well.

1. The function u(x) is well-defined by (5.91) as an element of L∞
loc(R

2) ∩ S ′(R2).
2. Suppose further that
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∫

R2
|x||f (x)| dx < ∞, f (x) = O(|x|−3(log |x|)−1) as |x| → ∞. (5.92)

Then the functions u(x) and p(x) enjoy

|u(x)| + |∇u(x)| + |p(x)| = O(|x|−1) as |x| → ∞ (5.93)

with estimate

sup
|x|�ρ

|x||u(x)| � C(1 + |a|−1)

[∫

R2
(1 + |x|)|f (x)| dx + sup

|x|�ρ/2
|x|3(log |x|)|f (x)|

]

(5.94)

for every ρ � e, where the constant C > 0 is independent of ρ ∈ [e,∞) and
a ∈ R \ {0}. Furthermore, we have

p(x) =
∫

R2
f dy · x

2π |x|2 + O(|x|−2) as |x| → ∞. (5.95)

3. In addition to (5.90) and (5.92), assume (5.14). Then we have

u(x) =
∫

R2
y⊥ · f dy x⊥

4π |x|2 + (1 + |a|−1) o(|x|−1) as |x| → ∞. (5.96)

If in particular the support of f is compact, then the remainder decays likeO(|x|−2)

in (5.96).
4. Under the conditions (5.90) and (5.92), the pair {u, p} satisfies

− Δu − a
(
x⊥ · ∇u − u⊥)+ ∇p = f , div u = 0 inR2 (5.97)

in the sense of distributions as well as

(∇2u, ∇p, x⊥ · ∇u − u⊥) ∈ Lq(R2) for∀ q ∈ (1,∞), (5.98)

x⊥ · ∇u ∈ Lr(R2) for∀ r ∈ (2,∞). (5.99)

If in addition f ∈ C∞(R2), then we have {u, p} ∈ C∞(R2).

Remark 5.3.2 It is also possible to deduce ∇u(x) = O(|x|−2) at infinity by use of
similar estimates of ∇xΓa(x, y), see (5.57), to Proposition 5.3.1 (such estimates of
∇xΓa(x, y) are not simple consequences of Proposition 5.3.1 and one needs further
several pages). Since slower decay∇u(x) = O(|x|−1) in (5.93) is enough for the proof
of Theorem 5.2.1, we postpone precise analysis of ∇xΓa(x, y) until a forthcoming
paper, in which the external force f = divF with F(x) = O(|x|−2) will be treated by
using estimates of ∇yΓa(x, y).
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Proof of Proposition 5.3.2. Let |x| � e, then we take ρ = 2|x| in (5.49) to obtain

∫

|y|�2|x|
|Γa(x, y)||f (y)| dy � C(1 + |a|−1)‖f ‖L∞(R2)|x|2 log |x| (|x| � e).

By (5.61) we also have

∫

|y|>2|x|
|Γa(x, y)||f (y)| dy � C

∫

|y|>2|x|

( |x|
|y| + 1

|a||y|2
)

|f (y)| dy

� C(1 + |a|−1)‖f ‖L1(R2) (|x| � e).

When |x| < e, we similarly use (5.49) with ρ = 2e and (5.61) to find

|u(x)| �
∫

|y|�2e
+
∫

|y|>2e
� C(1 + |a|−1)

(‖f ‖L∞(R2) + ‖f ‖L1(R2)

)
(|x| < e).

(5.100)
We thus obtain u ∈ L∞

loc(R
2) ∩ S ′(R2).

We next divide (5.91) into three parts:

u(x) = U1(x) + U2(x) + U3(x)

:=
(∫

|y|<|x|/2
+
∫

|x|/2�|y|�2|x|
+
∫

|y|>2|x|

)
Γa(x, y)f (y) dy.

By (5.59) and (5.92) we have

U1(x) = x⊥

4π |x|2
∫

|y|<|x|/2
y⊥ · f (y) dy + W (x) (5.101)

with

|W (x)| � C|a|−1|x|−2
∫

|y|<|x|/2
|f (y)| dy + C|x|−2

∫

|y|<|x|/2
|y|2|f (y)| dy

� C|a|−1|x|−2‖f ‖L1(R2) + C|x|−1
∫

R2
|y||f (y)| dy.

(5.102)

The second term of the first line of (5.102) can be estimated even by

C|x|−2
∫ |x|/2

0

(
log (e + r)

)−1
dr = o(|x|−1) as |x| → ∞.

Note that this holds true under weaker assumption f (x) = o(|x|−3) than (5.92)2. This
together with
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∣∣∣∣
x⊥

4π |x|2
∫

|y|�|x|/2
y⊥ · f (y) dy

∣∣∣∣ � C

|x|
∫

|y|�|x|/2
|y||f (y)| dy = o(|x|−1)

implies that

U1(x) = x⊥

4π |x|2
∫

R2
y⊥ · f (y) dy + o(|x|−1) as |x| → ∞. (5.103)

Let |x| � e, then it follows from (5.49) with ρ = 2|x| and (5.92) that

|U2(x)| �
∫

|x|/2�|y|�2|x|
|Γa(x, y)||f (y)| dy

� C|x|−3( log
|x|
2

)−1
∫

|y|�2|x|
|Γa(x, y)| dy sup

|y|�|x|/2
|y|3(log |y|)|f (y)|

� C(1 + |a|−1)|x|−1 sup
|y|�|x|/2

|y|3(log |y|)|f (y)| (|x| � e).

(5.104)

Under stronger assumption (5.14), we see that U2(x) = o(|x|−1) as |x| → ∞. We
remark that (5.14) is needed only here. We use (5.61) to find

|U3(x)| � C
∫

|y|>2|x|

( |x|
|y| + 1

|a||y|2
)

|f (y)| dy

� C(|x|−1 + |a|−1|x|−3)

∫

|y|>2|x|
|y||f (y)| dy = o(|x|−1)

(5.105)

as |x| → ∞. We gather (5.101), (5.102), (5.104) and (5.105) to conclude (5.94) for
every ρ � e. Then (5.94) with ρ = e together with (5.100) for |x| < e yields

sup
x∈R2

(1 + |x|)|u(x)|

� C(1 + |a|−1)

[∫

R2
(1 + |x|)|f (x)| dx + sup

x∈R2

(1 + |x|3)( log (e + |x|))|f (x)|
]

.

(5.106)

Furthermore, we collect (5.103), (5.104) and (5.105) to find the asymptotic represen-
tation (5.96) as long as (5.14) is additionally imposed. If in particular Supp f ⊂ Bρ(0)
for some ρ > 0, then u(x) = U1(x) for |x| � 2ρ. In view of the first line of (5.102),
we have

|W (x)| � C(|a|−1 + ρ2)|x|−2
∫

|y|<ρ

|f (y)| dy = O(|x|−2) as |x| → ∞.
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To show the decay of ∇u(x), consider

V (x) :=
∫

R2
∇xΓa(x, y)f (y) dy

=
∫

|y|<|x|/2
+
∫

|x|/2�|y|�2|x|
+
∫

|y|>2|x|
=: V1(x) + V2(x) + V3(x).

Neglecting the oscillation and using (5.57)–(5.58) together with (5.35)–(5.36), we
deduce

|∇xΓa(x, y)| �
{
C|x|−1, |x| > 2|y|,
C|y|−1, |y| > 2|x|. (5.107)

Although they are not sharp (Remark 5.3.2), they respectively yield

|V1(x)| � C|x|−1‖f ‖L1(R2)

and

|V3(x)| � C
∫

|y|>2|x|
|y|−1|f (y)| dy � C|x|−2

∫

|y|>2|x|
|y||f (y)| dy.

Let |x| � e and use (5.50) with ρ = 2|x| to find

|V2(x)| � C|x|−3
(
log

|x|
2

)−1
∫

|y|�2|x|
|∇xΓ (x, y)| dy � C|x|−2

(
log

|x|
2

)−1
.

We thus obtain

|V (x)| � C

|x| (|x| � e).

In order to conclude ∇u(x) = O(|x|−1) as |x| → ∞, it suffices to show that

∇u = V inD ′(R2 \ Be(0)). (5.108)

Given ϕ ∈ C∞
0 (R2 \ Be(0)) arbitrarily, we have

〈u, divϕ〉 =
〈∫

R2
Γa(·, y)f (y) dy, div ϕ

〉
=
∫

R2
〈Γa(·, y), div ϕ〉 f (y) dy,

in which the last equality is correct because

∫

e<|x|<M

∫

R2
|Γa(x, y)||f (y)||divϕ(x)| dy dx � C

∫

e<|x|<M

|divϕ(x)|
|x| dx < ∞
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follows from the proof of (5.94), where Suppϕ ⊂ BM(0) \ Be(0). We further obtain

〈u, divϕ〉 = −
∫

R2
〈∇xΓa(·, y), ϕ〉 f (y) dy = −〈V, ϕ〉

since we have
∫

e<|x|<M

∫

R2
|∇xΓa(x, y)||f (y)||ϕ(x)| dy dx � C

∫

e<|x|<M

|ϕ(x)|
|x| dx < ∞

by computation as above. We are thus led to (5.108).
We turn to the decay property of the pressure

p(x) = x

2π |x|2 ·
∫

R2
f (y) dy + R(x),

where the remainder R(x) is divided into three parts:

R(x) = R1(x) + R2(x) + R3(x)

:= 1

2π

(∫

|y|<|x|/2
+
∫

|x|/2�|y|�2|x|
+
∫

|y|>2|x|

)(
x − y

|x − y|2 − x

|x|2
)

· f (y) dy.

We then observe

|R1(x)| � 1

2π

∫

|y|<|x|/2

∫ 1

0

3|y|
|x − ty|2 dt |f (y)| dy � C|x|−2

∫

R2
|y||f (y)| dy

and

|R2(x)| � C|x|−3
(
log

|x|
2

)−1
(∫

|y−x|�3|x|
1

|x − y| dy + 1

|x|
∫

|y|�2|x|
dy

)

= C|x|−2( log
|x|
2

)−1

as well as

|R3(x)| � 1

2π

∫

|y|>2|x|

(
1

|x − y| + 1

|x|
)

|f (y)| dy

� C|x|−2
∫

|y|>2|x|
|y||f (y)| dy = o(|x|−2)

as |x| → ∞. We thus obtain (5.95).
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We will show that (5.91) is a solution to (5.97). We use v0 and v1 given by (5.84)
and (5.85), which satisfy (5.86) and (5.87), respectively, by (5.90). We set

v(x, t) = v0(x, t) + v1(x, t), w(x) =
∫ ∞

0
v(x, t) dt.

Since neither u nor w can absolutely converge, we are unable to apply the Fubini
theorem directly to them. We will show, nevertheless, that they do converge and
coincide. Let us employ the centering technique as in (5.52). We consider

ũ(x) =
∫

R2
Γ̃a(x, y)f (y) dy,

and

ṽ(x, t) = O(at)T
∫

R2

(
K(O(at)x − y, t) − e−1/4t

8π t
I

)
f (y) dy,

w̃(x) =
∫ ∞

0
ṽ(x, t) dt,

where Γ̃a(x, y) is given by (5.52). Then both integrals of ũ and w̃ are absolutely
convergent over (0,∞) × R

2 with respect to (t, y). In fact, as in (5.53), it follows
from (5.54)–(5.56) together with the assumption (5.92) that

∫ ∞

0

∫

R2

∣∣∣∣K(O(at)x − y, t) − e−1/4t

8π t
I

∣∣∣∣ |f (y)| dy dt

=
∫ ∞

0

∫

R2

∣∣∣∣K(x − y, t) − e−1/4t

8π t
I

∣∣∣∣ |f (O(at)y)| dy dt

� C
∫

R2

(∣∣ log |x − y|∣∣+ 1
)

1 + |y|3 dy

which is actually convergent. We thus obtain ũ = w̃. Since

u − ũ =
∫ ∞

0
O(at)T e−1/4t dt

8π t

∫

R2
f (y) dy = w − w̃ (5.109)

and since (5.109) does converge by (5.51), we eventually conclude that u = w. We
now show that {u, p} actually satisfies (5.97)1 in the sense of distributions. Given
ϕ ∈ C∞

0 (R2) arbitrarily, let us consider 〈̃u,L−aϕ〉 since we have the adjoint relation
L−a = L∗

a , see (5.88). Then we find

〈̃u,L−aϕ〉 = 〈w̃,L−aϕ〉 =
∫ ∞

0
〈̃v(t),L−aϕ〉 dt,
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in which the Fubini theorem is employed. Note that the argument does not work if ṽ
is replaced by v. By integration by parts we have

〈̃u,L−aϕ〉 =
∫ ∞

0
〈Lav(t), ϕ〉 dt +

∫ ∞

0

〈
La
(
ṽ(t) − v(t)

)
, ϕ
〉
dt, (5.110)

however, since ṽ − v is independent of x and since

∫

R2
(L−aϕ)(x) dx = −a

∫

R2
ϕ⊥(x) dx,

we obtain
∫ ∞

0

〈
La
(
ṽ(t) − v(t)

)
, ϕ
〉
dt = −a(u − ũ)⊥ ·

∫

R2
ϕ(x) dx

= a(u − ũ) ·
∫

R2
ϕ⊥(x) dx

= −〈u − ũ,L−aϕ〉,

(5.111)

see (5.109). On the other hand, in view of (5.86) and (5.87) and by taking

lim
t→∞ 〈v(t), ϕ〉 = 0, lim

t→0
〈v(t) − (f − ∇p), ϕ〉 = 0,

into account, we have

∫ ∞

0
〈Lav(t), ϕ〉 dt = −

∫ ∞

0
∂t〈v(t), ϕ〉 dt = 〈f − ∇p, ϕ〉. (5.112)

We collect (5.110), (5.111) and (5.112) to obtain

〈u,L−aϕ〉 = 〈f − ∇p, ϕ〉

for all ϕ ∈ C∞
0 (R2). Since Δp = div f , we take the divergence of (5.97)1 to see that

(div u) ∈ S ′(R2) obeys

−Δ(div u) − a x⊥ · ∇(div u) = 0

on account of (5.19). By Lemma 5.3.5, div u is a polynomial, however, from (5.93)
we conclude that div u = 0. Since f ∈ Lq(R2) for every q ∈ (1,∞), the result of [11]
(see also another proof given by [20]) implies (5.98). And then, (5.106) combined
with (5.98) especially for x⊥ · ∇u − u⊥ leads to (5.99). Finally, if f ∈ C∞(R2), then
we put the term x⊥ · ∇u − u⊥ in the RHS together with such f to use the regularity
theory of the usual Stokes system. As a consequence, we find {u, p} ∈ C∞(R2). This
completes the proof. �
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For the proof of Theorem 5.2.2 we also need analysis of the system

εu − Δu − a
(
x⊥ · ∇u − u⊥)+ ∇p = f , div u = 0 inR2, (5.113)

where the term εu is introduced in order to control the behavior of solutions at infinity.
Indeed (5.113) is the resolvent system, but the only case we are going to consider is
ε > 0. The velocity part of the associated fundamental solution is given by

Γ (ε)
a (x, y) =

∫ ∞

0
e−εtO(at)TK(O(at)x − y, t) dt, (5.114)

while the pressure part is the same, see (5.27). Of course, (5.114) converges without
using oscillation, however, what we need is to derive a certain estimate uniformly
with respect to ε > 0. Therefore, we still use oscillation as well as the centering
technique.

Proposition 5.3.3 Let a ∈ R \ {0}. Suppose f satisfies (5.90) and (5.92). Set

uε(x) =
∫

R2
Γ (ε)
a (x, y)f (y) dy, ε > 0, (5.115)

where Γ (ε)
a (x, y) is given by (5.114). Then uε(x) enjoys (5.94) for every ρ � e, where

the constant C > 0 is independent of ε > 0 (as well as ρ ∈ [e,∞) and a ∈ R \ {0}).
Furthermore, the pair {uε, p} is a solution to (5.113) in the sense of distributions,
where p(x) given by (5.83).

Proof Let m > 0. As in the proof of (5.33)–(5.34) by use of integration by parts, we
easily find

∣
∣∣∣

∫ ∞

0
e−εt+iate−r2/t dt

tm

∣
∣∣∣+

∣
∣∣∣

∫ ∞

0
e−εt+iat

∫ ∞

t
e−r2/s ds

sm+1
dt

∣
∣∣∣

� C√
ε2 + a2 r2m

� C

|a|r2m
(5.116)

with some C = C(m) > 0 independent of ε � 0, r > 0 and a ∈ R \ {0}. Owing to
(5.116), we have the similar estimates to (5.49), (5.59) and (5.61) uniformly in ε > 0;
namely, there is a constant C > 0 independent of ε > 0 such that

∫

|y|�2|x|
|Γ (ε)

a (x, y)| dy � C|a|−1|x|2 + C|x|2 log |x|, |x| � e,

|Γ (ε)
a (x, y)| �

{
C|x|−1|y| + C|a|−1|x|−2, |x| > 2|y|,
C|y|−1|x| + C|a|−1|y|−2, |y| > 2|x|.

(5.117)
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In fact, it follows from (5.116) that

∣∣∣∣

∫ ∞

0
e−εtO(at)T

e−1/4t

8π t
dt

∣∣∣∣ � C

|a|
with some C > 0 independent of ε > 0, which together with the same computing
as in the proof of Lemma 5.3.3 by means of centering technique as in (5.52) yields
(5.117)1. Also, look at the proof of Proposition 5.3.1, in which oscillation is used in
(5.63) and so on. This time, we employ (5.116) to get

∣∣
∣∣

∫ ∞

0
e−εtO(at)T e−|x|2/4t dt

t

∣∣
∣∣ � C

|a||x|2

and so on, where C > 0 is independent of ε > 0. The other estimates without using
oscillation are obvious. For the purpose here it is enough to split the exponential
function into two terms rather than (5.62) and (5.70) since we do not intend to find
out the leading term. As a consequence, we obtain (5.117)2. With use of (5.117) the
desired estimate (5.94) for uε uniformly in ε > 0 is deduced in exactly the same way
as in the proof of Proposition 5.3.2.

The proof of the latter assertion is easier than the corresponding part (the 4th
assertion) of Proposition 5.3.2, in which we are forced to introduce ũ. We do not
need it since uε itself converges absolutely. Hence, we have

uε(x) =
∫ ∞

0
vε(x, t) dt

with

vε(x, t) = e−εtO(at)T
∫

R2
K(O(at)x − y, t)f (y) dy,

which satisfies
∂tvε + (ε + La)vε = 0, vε(·, 0) = f − ∇p

in R2 × (0,∞), where La is given by (5.88). We thus obtain

〈uε, (ε + L−a)ϕ〉 = 〈f − ∇p, ϕ〉

for all ϕ ∈ C∞
0 (R2). This combined with Δp = div f implies div uε = 0 by Lemma

5.3.5 since |∇uε(x)| = O(|x|−1) as |x| → ∞, where this decay property is verified
along the same line as the case ε = 0 by use of (5.50) and (5.107) for ∇xΓ

(ε)
a (x, y)

without using oscillation. The proof is complete. �
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5.4 Proof of Theorem 5.2.1

To find the asymptotic representation (5.15), it would be standard to employ a poten-
tial representation formula in terms of the fundamental solution Γa(x, y) as in [9] for
the 3D problem, but we have to establish the decay properties (5.12) in advance in
order to justify such a formula. This procedure consisting of those two steps would be
also fine (and actually it works), however, there is another way, which is straightfor-
ward and leads us directly to (5.15) as well as (5.12), bymeans of a cut-off technique.
We will adopt the latter way to prove Theorem 5.2.1. The only disadvantage com-
pared with the former one by use of the potential representation formula is that the
coefficient of the leading profile needs a bit lengthy (but elementary) calculation.

Proof of Theorem 5.2.1. We use a cut-off technique as mentioned above. In order to
recover the solenoidal condition by use of the correction term with compact support,
we first reduce the problem to the one with vanishing flux at the boundary ∂Ω . To
this end, we fix x0 ∈ int (R2 \ Ω) and introduce the flux carrier

w(x) = β ∇
(

1

2π
log

1

|x − x0|
)

= −β (x − x0)

2π |x − x0|2 , β =
∫

∂Ω

ν · u dσ,

for given smooth solution {u, p} of (5.5). Then we have

∫

∂Ω

ν · w dσ = β,

divw = 0, Δw = 0, (x − x0)
⊥ · ∇w = w⊥ inR2 \ {x0} (5.118)

and

∇ jw(x) = ∇ j

( −βx

2π |x|2
)

+ O(|x|−(2+j)) ( j = 0, 1) (5.119)

as |x| → ∞. So the pair

ũ = u − w, p̃ = p − a x⊥
0 · w

fulfills (5.5) subject to ∫

∂Ω

ν · ũ dσ = 0, (5.120)

where we note the relation

∂k(x
⊥
0 · w) =

∑

j

(x⊥
0 )j∂k∂j

(
β

2π
log

1

|x − x0|
)

= x⊥
0 · ∇wk (k = 1, 2). (5.121)
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We fix R � 1 such thatR2 \ Ω ⊂ BR(0). Letψ ∈ C∞
0 (B3R(0); [0, 1]) be a cut-off

function satisfying ψ(x) = 1 for |x| � 2R. By using the Bogovskii operator B in the
annulus

A = {x ∈ R
2; R < |x| < 3R},

see [4, 5, 19], we set

v = (1 − ψ)̃u + B[̃u · ∇ψ], q = (1 − ψ)̃p.

It should be noted that
∫
A ũ · ∇ψ dx = 0 follows from (5.120). Then the pair {v, q}

obeys

− Δv − a
(
x⊥ · ∇v − v⊥)+ ∇q = g + (1 − ψ)f , div v = 0 inR2 (5.122)

for some function g ∈ C∞
0 (R2) whose support is a compact set in A. Here, we do

not need any explicit form of g; in fact, the important quantity (5.125) below can
be calculated only by taking account of the structure of the equation (5.122), that is,
div S(v, q) = −g − (1 − ψ)f , see (5.9). When u(x) = o(|x|), it is obvious that v ∈
S ′(R2). Under the alternative assumption ∇u ∈ Lr(Ω \ BR(0)) for some r < ∞,
we have ∇v ∈ S ′(R2), which implies v ∈ S ′(R2) by [7, Proposition 1.2.1]. Going
back to (5.122), we observe∇q ∈ S ′(R2) and thereby q ∈ S ′(R2), too. Proposition
5.3.2 together with Lemma 5.3.5 concludes that

v(x) =
∫

R2
Γa(x, y){g + (1 − ψ)f }(y) dy + Pv(x),

q(x) =
∫

R2
Q(x − y) · {g + (1 − ψ)f }(y) dy + Pq(x),

(5.123)

with some polynomials Pv and Pq, however, it turns out from (5.93) and from either
∇v ∈ Lr(R2)with some r ∈ (1,∞) or v(x) = o(|x|) thatPv must be a constant vector
u∞. Thus we have

u(x) = w(x) +
∫

R2
Γa(x, y){g + (1 − ψ)f }(y) dy + u∞ (|x| � 3R), (5.124)

from which combined with (5.96) and (5.119) we obtain (5.15) under the additional
condition (5.14) as well as (5.12)1, where the coefficient

α =
∫

R2
y⊥ · {g + (1 − ψ)f }(y) dy = −

∫

R2
y⊥ · div S(v, q) dy (5.125)

is computed as follows.
Set

α(ρ) := −
∫

|y|<ρ

y⊥ · div S(v, q) dy (ρ > 3R).
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In view of (5.9) we have the relation

div
(
y⊥ · S(v, q)) =

∑

j,k

∂k
[
(y⊥)jSjk(v, q)

]

= y⊥ · div S(v, q) − S12(v, q) + S21(v, q)

= y⊥ · div S(v, q) − 2a y · v
(5.126)

to find

α(ρ) = −
∫

|y|=ρ

y⊥ ·
(
S(̃u, p̃)

y

ρ

)
dσ − 2a

∫

|y|<ρ

y · v dy.

Since div S(̃u, p̃) = −f in Ω , it follows from (5.126) in which v is replaced by ũ that

α(ρ) =
∫

∂Ω

y⊥ · (S(̃u, p̃)ν) dσ + 2a
∫

Ωρ

y · (̃u − v) dy +
∫

Ωρ

y⊥ · f dy.

We are going to compute

∫

∂Ω

y⊥ · (S(̃u, p̃)ν) dσ

=
∫

∂Ω

y⊥ · {(T(u, p) + a u ⊗ y⊥) ν
}
dσ

−
∫

∂Ω

y⊥ · ((Dw)ν) dσ + a
∫

∂Ω

(y⊥ · ν)(x⊥
0 · w) dσ

− a
∫

∂Ω

y⊥ · {(w ⊗ y⊥)ν
}
dσ − a

∫

∂Ω

y⊥ · {(y⊥ ⊗ ũ)ν
}
dσ

=:
∫

∂Ω

y⊥ · {(T(u, p) + a u ⊗ y⊥) ν
}
dσ + J1 + J2 + J3 + J4.

We will show that

J1 = 0, J2 + J3 = 0, J4 + 2a
∫

Ωρ

y · (̃u − v) dy = 0,

which concludes

α(ρ) =
∫

∂Ω

y⊥ · {(T(u, p) + a u ⊗ y⊥) ν
}
dσ +

∫

Ωρ

y⊥ · f dy.

Letting ρ → ∞ leads us to

α =
∫

∂Ω

y⊥ · {(T(u, p) + a u ⊗ y⊥) ν
}
dσ +

∫

Ω

y⊥ · f dy. (5.127)
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In fact, we observe

2a
∫

Ωρ

y · (̃u − v) dy = a
∫

Ωρ

{ψ ũ − B[̃u · ∇ψ]} · ∇|y|2 dy

= a
∫

Ωρ

div
[|y|2 {ψ ũ − B[̃u · ∇ψ]} ] dy

= a
∫

∂Ω

|y|2(ν · ũ) dσ = −J4

and

J2 + J3 = −a
∫

∂Ω

(y⊥ · ν)(y − x0)
⊥ · w dσ = 0

on account of (y − x0)⊥ · w(y) = 0. We take account of (∇w)T = ∇w and Δw = 0
in R2 \ {x0} to see that

J1 = −2
∫

∂Ω

(y − x0)
⊥ · (ν · ∇w) dσ − 2x⊥

0 ·
∫

∂Ω

ν · ∇w dσ

= −2
∫

∂Ω

(y − x0)
⊥ · (ν · ∇w) dσ + 2x⊥

0 ·
∫

|y−x0|=ε

y − x0
ε

· ∇w dσ

where ε > 0 is taken in such a way that Bε(x0) ⊂ int (R2 \ Ω). Using the explicit
representation

∇w(y) = −β

2π

(
I

|y − x0|2 − 2(y − x0) ⊗ (y − x0)

|y − x0|4
)

,

we find

∫

∂Ω

(y − x0)
⊥ · (ν · ∇w) dσ = −β

2π

∫

∂Ω

(y − x0)⊥ · ν

|y − x0|2 dσ

= β

2π

∫

R2\
(
Ω∪Bε(x0)

) div
(y − x0)⊥

|y − x0|2 dy = 0

and ∫

|y−x0|=ε

y − x0
ε

· ∇w dσ = β

2πε3

∫

|y−x0|=ε

(y − x0) dσ = 0

which implies that J1 = 0. We thus obtain (5.127).
Concerning the pressure, it follows from (5.121) and (5.123) that

∇p = a x⊥
0 · ∇w + ∇

∫

R2
Q(x − y) · {g + (1 − ψ)f }(y) dy + ∇Pq (|x| � 3R).
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By (5.98) together with (5.119) we know ∇(p − Pq) ∈ Lr(Ω) for every r ∈ (1,∞).
Since Δw = 0 in R2 \ {x0}, we obtain from (5.124)

Δu = Δ

∫

R2
Γa(x, y){g + (1 − ψ)f }(y) dy (|x| � 3R),

so that Δu ∈ Lr(Ω) for every r ∈ (1,∞) on account of (5.98). In addition, we also
have

x⊥ · ∇u = x⊥ · ∇w + x⊥ · ∇
∫

R2
Γa(x, y){g + (1 − ψ)f }(y) dy (|x| � 3R).

It thus follows from (5.99) and (5.119) that x⊥ · ∇u ∈ Lr(Ω) for every r ∈ (2,∞).
Taking those as well as (5.12)1 into account, we go back to (5.5) and let |x| → ∞ to
find that ∇Pq = −au⊥∞. This implies that

p = a x⊥
0 · w +

∫

R2
Q(x − y) · {g + (1 − ψ)f }(y) dy − a u⊥

∞ · x + p∞ (|x| � 3R)

for some constant p∞. By (5.93) together with (5.119) we obtain (5.12)2. We also
use (5.95) and carry out a bit computation to obtain

p(x) + au⊥
∞ · x − p∞ =

[ ∫

∂Ω

{
T (̃u, p̃) + a

(
ũ ⊗ y⊥ − y⊥ ⊗ ũ

)}
ν dσy

+
∫

Ω

f dy − βax⊥
0

]
· x

2π |x|2 + O(|x|−2)

(5.128)

as |x| → ∞. We stop further computation of the coefficient, however, we will recall
(5.128) in Theorem 5.2.2, in which the coefficient is much simplified.

Once we have fine decay properties (5.12), we are able to justify the energy
relation (5.13).We first verify (5.10) for smooth vector fields u, v ∈ H1

loc(Ω)without
assuming their decay properties at infinity. For each ρ > 0 large enough we have

∫

Ωρ

[
(x⊥ · ∇u − u⊥) · v + u · (x⊥ · ∇v − v⊥)

]
dx =

∫

Ωρ

div [x⊥(u · v)] dx

=
∫

∂Ω

(ν · x⊥)(u · v) dσ

(5.129)

since
∫
|x|=ρ

= 0. Letting ρ → ∞, we obtain (5.10). Now, given smooth solution

{u, p} ∈ H1
loc(Ω) × L2

loc(Ω), we use the constants {u∞, p∞} found above and set

u∗(x) = u(x) − u∞, p∗(x) = p(x) + au⊥
∞ · x − p∞,
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which satisfy

−Δu∗ − a (x⊥ · ∇u∗ − u⊥
∗ ) + ∇p∗ = f , div u∗ = 0 inΩ.

We multiply u∗, perform integration by parts over Ωρ and use (5.129) to find the
following two equalities, in which the relation divT(u∗, p∗) = Δu∗ − ∇p∗ is used
for the latter:

∫

Ωρ

|∇u∗|2 dx =
∫

∂Ωρ

(
(∇u∗ − p∗I)ν

) · u∗ dσ + I,

1

2

∫

Ωρ

|Du∗|2 dx =
∫

∂Ωρ

(
T(u∗, p∗)ν

) · u∗ dσ + I,

where the common term I is given by

I = a

2

∫

∂Ω

(ν · x⊥)|u∗|2 dσ +
∫

Ωρ

f · u∗ dx.

Note that both T(u∗, p∗)ν and (∇u∗ − p∗I)ν are understood as the normal trace being
in H−1/2(∂Ωρ). In view of (5.124), we see from (5.93) and (5.119) that

∇u∗(x) = ∇u(x) = O(|x|−1) as |x| → ∞.

This together with (5.12) implies that

lim
ρ→∞

∫

|x|=ρ

(
∂u∗
∂ν

· u∗ − (ν · u∗)p∗
)

dσ = 0,

and that

lim
ρ→∞

∫

|x|=ρ

(
T(u∗, p∗)ν

) · u∗ dσ = 0.

On the other hand, we know that f · u∗ ∈ L1(Ω) by (5.11) and (5.12) together with
u ∈ H1

loc(Ω) ⊂ Ls
loc(Ω) for all s < ∞. We thus obtain not only ∇u ∈ L2(Ω) but

(5.13). This completes the proof. �

5.5 Proof of Theorem 5.2.2

Proof of Theorem 5.2.2. We begin with the proof of uniqueness. Suppose {u, p}
is a solution in the sense of distributions to (5.5) with f = 0 subject to u = 0 on
∂Ω and {u, p} → {0, 0} as |x| → ∞within the class∇u ∈ L2(Ω), {u, p} ∈ L2

loc(Ω).
We put the term x⊥ · ∇u − u⊥ in the RHS and use the interior regularity theory of
the usual Stokes system to show that u ∈ Hk+1

loc (Ω), p ∈ Hk
loc(Ω) for every integer
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k � 1 by bootstrapping argument; hence, u, p ∈ C∞(Ω). By Theorem 5.2.1 we have
(5.13), in which the RHS vanishes. So, u is the rigid motion, but u = 0 on account of
the boundary condition. Going back to (5.5) (with f = 0), we have ∇p = 0, which
together with p → 0 at infinity yields p = 0. This proves the uniqueness.

We turn to the existence. It is easy to find a solutionwith∇u ∈ L2(Ω) by following
the method of Leray, but one cannot exclude a constant vector u∞ at infinity even if
applyingTheorem5.2.1. To get around this difficulty, wewill adopt an approximation
procedure specified below which brings regularizing effect at infinity. We take the
auxiliary function

w(x) = a

2
∇⊥ (ζ(|x|)|x|2) =

{ |x|
2

ζ ′(|x|) + ζ(|x|)
} (

ax⊥) (5.130)

where ζ ∈ C∞([0,∞); [0, 1]) satisfies ζ(r) = 1 (r � R) and ζ(r) = 0 (r � 2R),
where R � 1 is fixed such that R2 \ Ω ⊂ BR(0). Then we have

w|∂Ω = ax⊥, divw = 0, x⊥ · ∇w − w⊥ = div (w ⊗ x⊥ − x⊥ ⊗ w) = 0.

We will find a solution of the form u = ũ + w, where ũ should obey

{−Δũ − a
(
x⊥ · ∇ũ − ũ⊥)+ ∇p = f + Δw, div ũ = 0 inΩ,

ũ|∂Ω = 0, ũ → 0 as |x| → ∞.
(5.131)

As Finn and Smith performed in their paper [13] on the Oseen system (see also
Galdi [19, Sect. 7.5]), for ε ∈ (0, 1), let us consider the approximate problem

{
εuε − Δuε − a

(
x⊥ · ∇uε − u⊥

ε

)+ ∇pε = f + Δw, div uε = 0 inΩ,

uε|∂Ω = 0, uε → 0 as |x| → ∞.

(5.132)

By C∞
0,σ (Ω) we denote the class of all solenoidal vector fields being in C∞

0 (Ω). Let
H1

0,σ (Ω) be the completion of C∞
0,σ (Ω) in H1(Ω). In a usual way (see, for instance,

the proof of Lemma 5.3 of [27], in which the problem in each bounded domain Ωρ

is first solved by means of the Lax-Milgram theorem and then the limit ρ → ∞ is
considered by using a priori estimate uniformly in ρ), one can find uε ∈ H1

0,σ (Ω)

which satisfies

ε ‖uε‖2L2(Ω) + 1

2
‖∇uε‖2L2(Ω) � 1

2
‖F + ∇w‖2L2(Ω) (5.133)

and
ε〈uε, ϕ〉 + 〈∇uε,∇ϕ〉 − a 〈x⊥ · ∇uε − u⊥

ε , ϕ〉 = 〈f + Δw, ϕ〉
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for all ϕ ∈ C∞
0,σ (Ω). We choose pε ∈ L2

loc(Ω) such that
∫
Ω3R

pε dx = 0 and that the
pair {uε, pε} satisfies (5.132)1 in theweak sense. Since f + Δw ∈ C∞(Ω), the interior
regularity theory of the usual Stokes system implies that uε, pε ∈ C∞(Ω).

As in the proof of Theorem 5.2.1, we take the same cut-off function ψ together
with the Bogovskii operator B in the annulus A = {x ∈ R

2;R < |x| < 3R} and set

vε = (1 − ψ)uε + B[uε · ∇ψ], qε = (1 − ψ)pε.

Then the pair {vε, qε} obeys

εvε − Δvε − a
(
x⊥ · ∇vε − v⊥

ε

)+ ∇qε = gε + (1 − ψ)f inR2,

div vε = 0 inR2,

where

gε = εB[uε · ∇ψ] + 2∇ψ · ∇uε + (Δψ + ax⊥ · ∇ψ)uε − ΔB[uε · ∇ψ]
− ax⊥ · ∇B[uε · ∇ψ] + aB[uε · ∇ψ]⊥ − (∇ψ)pε.

Here, note that (1 − ψ)Δw = 0 since ψ = 1 (|x| � 2R) and since Δw = 0 (|x| �
2R). We use the fundamental solution (5.114) for the system (5.113). Then, by
Proposition 5.3.3 with ρ = 6R and Lemma 5.3.5, we find

vε(x) =
∫

R2
Γ (ε)
a (x, y) {gε + (1 − ψ)f } (y) dy

subject to

sup
|x|�6R

|x||vε(x)| � C(1 + |a|−1)
[ ∫

R2
(1 + |x|) |{gε + (1 − ψ)f } (x)| dx

+ sup
|x|�3R

|x|3(log |x|)|f (x)|
] (5.134)

withC > 0 independent of ε. Here, the point is that a constant vector can be excluded
since uε ∈ L2(Ω).

By
∫
Ω3R

pε dx = 0 and (5.132)1 we have

‖pε‖L2(Ω3R) � CR‖∇pε‖H−1(Ω3R) � CR
(‖uε‖H1(Ω3R) + ‖F + ∇w‖L2(Ω3R)

)
,

where H−1(Ω3R) := H1
0 (Ω3R)

∗. This together with (5.133) and the estimate of the
Bogovskii operator [4, 5, 19] lead us to
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∫

A
|gε(y)| dy � 2

√
2R‖gε‖L2(A)

� CR
(‖uε‖H1(Ω3R) + ‖pε‖L2(Ω3R)

)

� CR
(‖∇uε‖L2(Ω3R) + ‖F‖L2(Ω3R) + |a|)

� CR(‖F‖L2(Ω) + |a|),

which combined with (5.134) implies that

|uε(x)| = |vε(x)| � C(1 + |a|−1)(|a| + ‖F‖L2(Ω) + [ f ]) |x|−1 (|x| � 6R),

(5.135)
where

[ f ] :=
∫

|x|�2R
|x||f (x)| dx + sup

|x|�3R
|x|3(log |x|)|f (x)|

and C = C(R) > 0 is independent of ε ∈ (0, 1). By (5.133) we have

‖uε‖L2,∞(Ω6R) � C‖uε‖L2(Ω6R) � CR‖∇uε‖L2(Ω6R) � CR(‖F‖L2(Ω) + |a|),

which together with (5.135) yields

uε ∈ L2,∞(Ω), ‖uε‖L2,∞(Ω) � C
{
1 + |a| + (1 + |a|−1)

(‖F‖L2(Ω) + [ f ])}

with C = C(R) > 0 independent of ε ∈ (0, 1). Hence, there is ũ ∈ L2,∞(Ω) ∩
H1

loc(Ω) with ∇ũ ∈ L2(Ω) such that, as ε → 0 along a subsequence,

uε → ũ weakly-star in L2,∞(Ω), ∇uε → ∇ũ weakly inL2(Ω),

uε → ũ weakly inH1(Ωρ), uε → ũ strongly inL2(Ωρ),

for every ρ � R and, thereby,

〈∇ũ,∇ϕ〉 − a 〈x⊥ · ∇ũ − ũ⊥, ϕ〉 = 〈f + Δw, ϕ〉

holds for all ϕ ∈ C∞
0,σ (Ω), as well as div ũ = 0. We fix ρ and use the trace inequality

‖uε − ũ‖L2(∂Ωρ) � C‖uε − ũ‖1/2L2(Ωρ)
‖uε − ũ‖1/2H1(Ωρ)

to see that ũ|∂Ω = 0. Since Δũ + a
(
x⊥ · ∇ũ − ũ⊥)+ f + Δw ∈ H−1(Ωρ) for every

ρ � R, we find an associated pressure p ∈ L2
loc(Ω) such that the pair {̃u, p} solves

(5.131)1 in the weak sense. The interior regularity theory of the Stokes system con-
cludes that {̃u, p} is smooth and, therefore, so is u := ũ + w. Both estimates in (5.20)
are obvious.

Let us apply Theorem 5.2.1 to {u, p} with ∇u ∈ L2(Ω) as well as u ∈ H1
loc(Ω),

p ∈ L2
loc(Ω). Since u ∈ L2,∞(Ω), we have all the properties in this theorem with
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u∞ = 0.Wedenote p − p∞ by the same symbol p so that {u, p} is the desired solution.
By u|∂Ω = ax⊥ we have

β =
∫

∂Ω

ν · u dσ = 0,
∫

∂Ω

y⊥ · {(u ⊗ y⊥)ν
}
dσy = a

∫

∂Ω

(ν · y⊥)|y|2 dσy = 0,

and thereby (5.15) implies (5.21). Finally, asymptotic representation of the pressure
is given by (5.128), in which {u∞, p∞} = {0, 0}. Since β = 0 and u|∂Ω = ay⊥, we
conclude (5.22). The proof is complete. �
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Chapter 6
Toward Understanding Global Flow
Structure
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Abstract Flows in nature are generally coupled with the environment. Also, flow
structures in the forms of convection rolls, vortices, boundary layers, for example,
are often coupled with flow structures in other form(s) as well as the external envi-
ronments such as the boundary motion and the temperature gradient. Whole flow
structure in such cases is often characterized by multi-scale or hierarchy, there-
fore, we will term such flow structures “global flow structure”. Clearly, the global
flow structure is complex in both space and scales, but there are general viewpoints
applicable to this category of the flow, by which we can tackle with new phenomena.
In this review, we discuss the global flow structure in both views of typical problems
and analysis methods itself.
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6.1 Introduction

Flow in many different form are ubiquitous and such forms may be categorized as
flow structures according to their characteristic behaviors; waves, boundary layers,
wakes, vortices, are a few examples. Such flow structure is convenient to focus on,
and we have been studying single flow structure so far. In many situations, however,
observed flow can not be classified to single flow structure. For the classification, the
‘global flow structure’ is defined [1] as the flow including the coupling of the flow
structures in space and scales, which are flow patterns with the boundaries. In the
following, we list four examples of the global flow structures.

1. A comprehensive example is bioconvection [2–6]. Here macroscopic flow is
generated by the collective behavior of microorganisms due to their taxes, and the
microscopic flow driven by an individual is influenced by the macroscopic flow;
advection and diffusion change their spatial number density distribution. In terms of
the governing equations, the microscopic flow governed by the Stokes equation is
coupled with the macroscopic flow governed by the Navier-Stokes equations includ-
ing mass flux of microorganisms. Not only single convection cell, consisting of such
hierarchical structure, but also their interaction governed by a long-range interaction
between convection cells adds a much more large macroscopic flow to understand.

2. Flows driven by moving boundary are also good examples. Insect’s flight [7] is
a typical example of heterogeneousmulti-scale flow. In this case, flow structure in the
form of boundary layer and separation vortices are generated by the wing motion.
The generated flow is needed to generate appropriate lift and moment for insect
to fly and to maneuver, which has been studied in simplified models, experiments,
and direct numerical simulations [8–15]. Because the flapping flight is unstable in
general, insects need to control the wing motion to generate the global flow structure
in an appropriate way, which is a central question in vortex-using flapping flight.

3. Partially filled liquid in a cylinder driven by the rotating bottomcauses boundary
layers on the bottom and various surface motions. Their interaction generates polyg-
onal flow [16–23], in which the surface has a polygon-like cross section. In some
situations where the container is relatively smaller and the volume of the water is
large, the surface shape switches among axisymmetric shape and non-axisymmetric
shapes non-periodically even if the rotation speed is constant. This phenomena is
called “surface switching” [19, 21, 24–27], and the flow transition is suggested a
major factor to cause such switching [24, 25, 27–29]. In this case, the surface shape
is an observable object, but the internal flow structure coupled with the surface shape
clearly plays an essential role. Because the flow transition mechanism should be cou-
pled with the surface shape dynamics, the idea of the global flow structure should be
useful to understand this phenomena.

4. Even if the situation is much simpler, the pattern can be very complex if the
elementary pattern is spatially localized. For this case, a good example is the thermal
convection of binary fluid mixture, such as a mixture of water and alcohol [30–38]



6 Toward Understanding Global Flow Structure 141

(binary fluid convection). This is the same as the Rayleigh Benárd convection except
for the liquid inside, which allows rich convection patterns, especially spatially local-
ized patterns. The formation process of these localized patterns and their interaction
makes a complex spatio-temporal patterns.

So far, four examples of global flow structure are introduced; their essential
mechanism contain heterogeneous interaction between typical flow structure and
surrounding environment, and/or homogeneous/hierchical interaction among typi-
cal flow structures. The observed spatio-temporal patterns become complicated in
general. However, in some cases, their complication is just on surface and their essen-
tial mechanism can be understood simpler than it seems. In a previous review [1],
we show several analysis of the global flow structure problem at that moment. After
the publish, we accumulated several examples and developed analysis methods. In
particular, we applied the knowledge of the global flow structure of the binary fluid
convection to the bioconvection problems. Also, theoretical developments are sig-
nificant in the surface switching phenomena. Analysis methods applicable for the
global flow structure problem are also developing, which should be mentioned. They
are the thrusts of this paper.

This review consists of two parts. One is the analysis part (Sect. 6.2), in which we
mention the developments of the analysis of the global flow structure problems after
the publish of Ref. [1]. We briefly summarize our recent results in the binary fluid
convection [38] (Sect. 6.2.1) to focus on the bioconvection problem [5, 39] (Sect.
6.2.2). We discuss similarity between the the elementary localized bioconvection
structures experimentally obtained in the bioconvection and the localized structures in
binary fluid convection. For the surface switching problem (Sect. 6.2.3), we comment
theoretical developments, a one-dimensional map with random noise term [40] and
a theory potential flow theory [22], both of which suggests that some modification of
the theory based on simple situation can describe the major part of the complicated
phenomena of the global flow structure.

The other is the methodology part (Sect. 6.3), in which two new analysis methods
applicable for the dynamics of the global flow structure are discussed, which may
be used in the cases with and without the governing equations. We propose a new
method of the analysis of dynamical systems based on the orbit property (Sect.
6.3.1). We focus on the orbit passing near the steady solution in the space defined
by the phase space and the parameter space. The characteristics of the orbit can be
described by the pullback vectors of the eigenvectors of the steady solution [41].
We also propose a new construction method of cellular automata (Sect. 6.3.2) which
only needs measurement data and can be applied without any knowledge of target
phenomena [39, 42, 43].
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6.2 Phenomena

6.2.1 Localized Convection Patterns in Binary Fluid
Convection

In binary fluid convection, a variety of convection patterns are observed, many of
which can never seen in the ordinary Rayleigh-Bénard convection. In this review,
we focus on the spatially localized convection patterns, i.e., convection rolls are
only observed in a spatially localized region (active region) while the flow outside
that region is almost quiet. Such structures are important because they can be unit
structure(s), and their properties including interaction behaviorwith another structure
are a convenient way to understand the global flow structure.

Two types of a variety of spatially localized convection patterns, stationary ones
and moving one, have been known. Stationary localized convection patterns, or con-
vectons, with different number of convection cells have been reported [32] (Fig. 6.1f,
g). They can coexist even if all the parameters remain the same [32, 38]. Moving
localized convection pattern, or localized traveling wave, also has convection cells in
a confined region, however, the convection cells are generated at one end of the active
region and transferred to the other end to disappear [31, 32, 37, 38, 44]. Further, the
whole structure moves at a constant speed; they have a group velocity. The localized
traveling wave has been reported in both experimentally and numerically [31, 44],
but had not been characterized mathematically; it had not been obtained as a solution
satisfying a mathematical condition. Watanabe et al. [37] firstly characterized the
localized traveling wave as a temporally periodic solution in a moving frame with
a constant velocity. In Fig. 6.1a–e, snapshots during the period is shown. Based on

(a)

(b)

(c)

(d)

(e)

(g)

(f)

Fig. 6.1 a–e Localized traveling wave, which moves with changing the shapes periodically. f, g
Convectons, which are steady. Curves and grayscale indicate streamlines and temperature field,
respectively [38]



6 Toward Understanding Global Flow Structure 143

this mathematical property, they also calculated the corresponding solutions numer-
ically and gave the bifurcation diagram [37, 38]. The shape of the bifurcation branch
for the localized traveling wave is much different from those of the convectons; the
bifurcation branches of the convectons are separated to two, which represent solu-
tions with even- or odd-symmetry. Their shapes are snaky and twisted [32], while the
bifurcation branch of the localized traveling wave is a Z-shape and the stable region
is a function of the Rayleigh number.

The localization mechanism of these structures may be originated from the
bistable structure of the conductive state where there is no flow and the convec-
tive state where convection cells covers the entire region. The coexistence of these
states leads to the spatially localized solutions, which was pointed out by Pomeau
[45]. Recent theory for the snaking bifurcation can be seen in Ref. [46] and references
in Ref. [38].

The generation process of such localized patterns is an intriguing problem, which
have been studied in both experimentally and numerically [34, 38]. In particular,
Watanabe et al. studied the generation process in the parameter range where the
conductive state is convectively unstable but both convectons and the localized trav-
eling waves can exist as stable solutions [38], which is possible due to the periodic
boundary condition laterally and the system size is finite. A long-time simulation
starting from a pointwise initial condition added to the conductive state reveals that
the perturbation initially spread to a small-amplitude wave packets and then they
propagates in the opposite directions with larger velocity than that of the localized
traveling wave, which is due to the convective instability (Fig. 6.2). During prop-

Fig. 6.2 Generation process of localized structures starting from pointwise initial condition by
time evolution of the streamfunction on the middle horizontal line. The aspect ratio of the system
size is 500 [38]
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agation, the wave packet grows their amplitude until the nonlinear effect becomes
dominant to form localized structure. Most of such localized structures are similar to
the localized traveling wave, but in detail, they are different from the solution of the
localized traveling wave; one of typical structure is called “cousin” of the localized
traveling wave [38]. Also, they interact with each other with emitting perturbations
in the ‘calm’ region similar to the conductive state. Perturbations can either grow to
form another localized structures or absorbed in other localized structure (Fig. 6.2).
After the complicated process, the whole system finally converge to co-propagating
localized structures each of which is similar to the localized traveling wave.

Some part of such interactions can be reduced to a collision between counter-
propagating and co-propagating localized traveling waves. We note that the collision
does not occur for wave packets because of linearity. The elementary process is
also analyzed using numerical solution, and their behavior depends on the parameter
region (bistable region or not) greatly [37, 38, 47]. We remark that the detailed
analysis of collision process requires detailed information of the localized traveling
wave because setting the initial condition requires the phases of the traveling waves
in addition to their distance. The detailed analysis becomes possible because of the
successful of calculating solution of the localized traveling wave [37]. It is known
that even unstable solutions are important to analyze the interaction process [33,
48, 49]. The relationship between such unstable solutions and collision or pattern
formation process is under study.

6.2.2 Localized Convection Patterns in Bioconvection

Microorganism often has behavioral responses to stimuli, taxis, by which the sus-
pension of the microorganism shows macroscopic ordered patterns, which is called
bioconvection [2, 50]. Various bioconvection patterns such as polygons, lines, and
dots, have been reported [6, 51, 52]. Typical formation mechanism of such patten
is as follows. Microorganisms moves directionally due to some taxis. If the pre-
ferred direction is upward, they accumulate in a near-surface region to generate a
layer. Because the mass density of microorganism is larger than water, the interface
between the near-surface layer and the rest part becomes unstable due to theRayleigh-
Taylor instability [53]. Then, a part of the layer fall down with inducing downward
flow (Fig. 6.3). The individuals in this part start to swimming upward again due to the
taxis, which leads to amacroscopic convection pattern: bioconvection.More detailed
reviews of bioconvection are found in Refs. [2, 50].

Here we focus on the bioconvection due to the phototaxis, the behavioral response
to light [54–58]. Recently, it was reported that bioconvection pattern of Euglena
gracilis (Fig. 6.4), a phototactic microorganism, can be spatially localized when they
are strongly illuminated from the bottom [6], which contrasts other bioconvection
patterns that generally cover the entire region. The localized patterns in Ref. [6] are,
however, rather complex; there are spots in the central region and wavy patterns
in the peripheral region. Therefore, we need to extract their essential features, or
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Fig. 6.3 Side view of the central part of the bioconvection unit. The flux of number density is also
shown

Fig. 6.4 Euglena gracilis

decompose the structure to prime units. For this purpose, we performed experiments
using an annular container (Fig. 6.5) to suppress complex structure formation in
the radial direction and exclude the wall effect in the azimuthal direction. Also the
number density was tuned near the critical density of the onset of the convection.
More detailed information is in Ref. [5].

We obtained the following two elementary localized convection patterns. One
consists of single or several localized regions of high number density, in particular,
the simplest structure with single high number density region sandwiched by two
convection cells was termed “bioconvection unit” [5] (Fig. 6.3). In most cases, they
do notmove for hours, but occasionally the velocity changes abruptly. In other words,
they has two time scales. This type of localized structure is similar to convecton in
binary fluid convection [32], which are stationary localized states consisting of sev-
eral convection rolls, although the present localized patterns can move with different
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Fig. 6.5 Annular container
and suspension of Euglena
gracilis illuminated below

velocity, which is not observed in the case of binary fluid convection.When two struc-
tures coexist and they move, their collision behavior is similar to those observed in
the reaction-diffusion systems [49]; two localized structure can be merged to single
structure, for example. In binary fluid convection, similar collision behavior between
two localized traveling waves is observed [37, 38].

Another localized pattern is a traveling wave of high density region, but the wave
travels within a spatial interval only; a high density region is generated at one end of
the interval and disappears from the other end. This localized structure was termed
“localized traveling wave” after the similar structure in the binary fluid convection
[5].

Because spatially localized structure in many spatially-extended dissipative sys-
tems is related to the bistable nature, we expected that this bioconvection system
is also bistable, as explained in Sect. 6.2.1. Difficulties to confirm this conjecture
are (1) the governing equations for E. gracilis bioconvection illumated below is not
known; (2) the natural control parameter for this bioconvection is the number density,
which is difficult to change during an experiment. Therefore we can neither find out
the solutions to show the bistability bifurcation structure nor conduct experiments
to show hysteresis. To overcome this difficulty, we prepared two types of the initial
state: one is set so that the number density of E. gracilis is uniformly distributed and
the other is set so that the density was distributed locally. A number of experiments
to count the number of convection pattern occurrence revealed that the frequency of
the occurrence clearly depended on the initial states, which suggests the bistability
of the system [5].

Biological and mathematical mechanism of the localization would be the first
question to answer for this system. We focus on the response behavior of E. gracilis
to light property, and we are measuring the function of such response qualitatively,
as well as calculating a model equation based on the measurements. The localized
bioconvection pattern can be reproduced, but further analysis is required to discuss
the localization mechanism. Figure6.6 shows an experimental result of the typical
formation process of the bioconvection units. As far as the figure and our experi-
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Fig. 6.6 Generation process
of the localized pattern

ences are concerned, the formation process does not include a clear transition of
the mechanism from the linear regime to the nonlinear regime observed in the case
of binary fluid convection (Fig. 6.2). This fact suggests that the localization mech-
anism in the bioconvection in this system is much simpler, despite of the relatively
complex hierarchy of flows from microscopic flow due to microorganism swim-
ming to the macroscopic flow. As mentioned above, the bioconvection of E. gracilis
and binary fluid convection shares typical localized structures in common, however,
the detailed behavior are clearly different. One may expect that some mathematical
structure responsible for these localized structure is shared in these systems, which
should be something more than the bistability, because bistability structure alone can
not account for the localized traveling wave. Comparing such similarity and differ-
ence in these two systems will help to deepen our understanding for the global flow
structure problems (Fig. 6.7).

(a) (b)

Fig. 6.7 a Experimental setup of the surface switching. Bottom of the cylinder rotates to drive the
flow partially filled in the cylinder. b A snapshot of the surface shape. The dynamics of the surface
shape is characterized by h(t), the height of the middle of the surface shape
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6.2.3 Surface Switching

When fluid is partially filled in a cylindrical container and driven by the bottom
rotation, the rotating flow with free surface is also a good example of global flow
structure. It is known that the free-surface shape can be polygonal despite that the
system has the axisymmetry [20, 23]. If the container is relatively small and the
aspect ratio is large (large liquid volume), the flow state (laminar or turbulent) can
change dynamically with accompanying surface shape switching (circle and ellipse)
even if the rotation speed is constant. This phenomena is termed “surface switching”
[25] and is studied by experimentally [24, 26, 27, 59] and theoretically [21]. Because
much of the experimental findings have been summarized in Ref. [10], our comments
here are focused on the following points; aMarkov process description and the recent
theoretical developments.

The first comment is on the Markov process model (A. Kawaharada, M. Iima,
Y. Tasaka, in preparation). A sequence of the height of the middle of the surface
shape, h(t), is discretized in time by taking the local average over the time interval
JΔt (J is an integer and Δt = 1/30[s] is the sampling time). The sequence of the
local average of h(t), {h j | j = 0, 1, ...}, was discretized into four states 0, 1, 2, and
3 represented by {m j | j = 0, 1, ...}, by the following mapping:

m j =

⎧
⎪⎪⎨

⎪⎪⎩

0 (h j/H ≤ 0.2),
1 (0.2 < h j/H ≤ 0.3),
2 (0.3 < h j/H ≤ 0.33),
3 (0.33 < h j/H),

(6.1)

where H is the unperturbed height. The threshold values are defined by the histogram
of h(t) [24, 29]. After checking the robustness and reproductivity of the statistical
values, we can choose appropriate value of J as 80 and the constructedMarkov chain

Fig. 6.8 Schematic picture
of the transient process of the
discretized height, 0, 1, 2, 3.
As the number increases, the
corresponding height
increases. Arrows indicate
the transition probability,
their value is represented the
line width
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of order one reproduces the statistical properties of the original time series such as
memoryless property [60]. In Fig. 6.8, the obtained Markov chain is depicted. The
highest state, 3, mainly moves to the state 1. The intermediate state 2 does not move
to the state 3, and the state oscillates between the state 2 and the state 1, or remains in
the same state. The lower states 0 and 1 either remain the states or move to the higher
states. These behavior matches our observation that the surface switching consists of
a random switching among a quasi-oscillation, quasi-steady and significant surface
elongation including touching the bottom [27].

Another model, the random dynamics model, was proposed by Sato et al. [40], in
which the surface switching dynamics is represented by a sequence of the height of
the surface shape, i.e., the local maximum and minimum of the (moving-averaged)
time series of the surface height. The random dynamical system is defined by

hn+1 = F(hn) + ξ(hn), (6.2)

where hn represents the nth local maximum orminimum, F(hn) is a function defined
by using the return plot, and ξ(hn) = ε(hn)ξn is the stochastic term consisting of the
state dependent amplitude of the noise ε(hn) and ξn , a random variable satisfying
normal distribution N (0, 1) [40]. Sato et al. succeeded in constructing one dimen-
sional map with random fluctuations term that depends on the surface height, based
on the measurements that shows a strong correlation between the surface height and
the turbulent intensity [27]. Accordingly, the amplitude of the random fluctuation
depends on the surface height. This random fluctuations can be regarded as the inter-
nal noise. Because the deterministic term and the stochastic term are separated in this
model, we can study the effect of the stochastic term by controlling the amplitude
of the stochastic term. Sato et al. revealed that the noise term essentially determines
the switching behavior.

Both the Markov process model and random dynamics model share determin-
istic and stochastic characteristics, both of which were needed to understand the
complicated behavior caused by the global flow structure. In principle, the fluid
dynamics is governed by the Navier-Stokes equations, but direct description based
on the Navier-Stokes equation would be too complex to understand. To extract the
essential feature, the above-mentioned models will be useful if we are aware of the
range of application.

The second comment is on a theoretical development. Recently, a theory was
proposed to explain the polygonal flow by the instability of the axisymmetric shape
[22]. Their theory assumes potential flow as the basic axisymmetric state and some
resonance of centrifugal wave and gravity wave, and the effect of the boundary
layers on the bottom and the side wall are much simplified to derive the resonance
condition between these waves. Their theory predicts the parameter region of the
polygonal flow so that the instability occurs. Mougel et al. applied this theory to the
parameters corresponding to the surface switching phenomena, and the modem = 2
(corresponding to the ellipse shape) has the largest growth rate [21], which may (at
least partially) explain the reason why the modesm > 2 are not observed in the setup
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of the surface switching [25, 27], while other modes are observed in other setups
with different container size and liquid volume.

6.3 Analysis Methods

In this section, the ideas of two analysis methods we are developing are introduced,
both of which are expected applicable for the analysis and useful to understand the
global flow structure.

When the governing equation is given, the bifurcation analysis is one of the power-
ful tools to extract the embedded mathematical structure in the global flow problems.
In the bifurcation analysis, we define a class of solution which satisfies some math-
ematical requirements, then find the solution in the parameter space [37, 38]. In the
phenomena part, the analysis of the binary fluid convection greatly owe to the bifur-
cation analysis, in which we define the solution of time periodic traveling solution
(Sect. 6.2.1). The branch consisting of the solutions with stable/unstable information
gives us characteristics of the solution or the corresponding flow structure. Such
solution is useful for the analysis of dynamics. One example is the detailed study of
the collision process, which became possible after obtaining the solution.

However, the formation process or interactions in the global flow structure can
be understood as a dynamical process where both the initial state and the final state
are often neither the same nor clearly defined. For example, the initial state for
the formation process of the localized structures is often characterized by random
perturbation, which is not a particular state. To directly analyze, we must treat the
orbits in the phase space. In the Sect. 6.3.1, we show our recent development of the
orbit analysis method that can classify the perturbations to the orbit passing near the
steady solution according to the eigenvectors of the critical point.

When the governing equation is not given, the problem becomes a challenge: how
can we derive the embedded rule from the observation data alone? If the time series
is given, wemay construct a return map to extract the embedded rule (as in the model
by Sato et al. [40]), but if we desire to know the rule governing the spatio-temporal
pattern from the observation, the applicable method is not known. In the Sect. 6.3.2,
we propose a new method to construct the cellular automaton from the measurement
data alone, without any knowledge of the data.

6.3.1 Orbit Analysis Applying Covariant Lyapunov Analysis

We assume that the governing equation of the target phenomena is known and that
the orbit (in the phase space) of interest passes near a steady solution which may be
unstable. Here the distance between the orbit and the solution may be measured in
the space determined by the phase space and the parameter space. We focus on the
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dynamics of the orbit starting from a perturbed point from the point on the original
orbit, which will be referred to as “perturbed orbit”, hereafter.

A comprehensive example is the case that the steady solution is the saddle. In this
case, the orbit and the perturbed orbit may be close to a stable manifold of the saddle,
however, they may be separated to different directions after passing near the steady
solution, each of which may be along (different) unstable manifold. In the collision
problem of localized structure, the corresponding saddle and its unstable manifold
plays a critical role [37, 38, 49]. To understand or control the relationship between
the perturbation direction and the final state far before the orbit reaches the saddle,
we need to know pullback vectors of the perturbation vector needed to change the
orbit to the desired direction, that is, the eigenvector of the saddle. A new algorithm
which pulls back vectors in tangent spaces along the orbit was proposed by applying
the calculation method of covariant Lyapunov vectors [41].

Covariant Lyapunov vectors are defined on each point on an orbit as the vectors
corresponding intrinsically to an exponent of growth rates of perturbations to an
orbit. Further, the covariant Lyapunov vectors have an important feature that their
time evolutions in both forward and backward time give also covariant Lyapunov
vectors at another point on the orbit. Thus the covariant Lyapunov vectors can be used
to estimate the time evolutions of orbits starting from an initial condition perturbed
from the original orbit.

We remark that the covariant Lyapunov vector can not be defined for transient
orbits. However, an algorithm by Ginelli et al. [61] can be applied to calculate the
pullback vectors of the eigenvector. In Ref. [41], we discuss the theoretical back-
ground of this method and the algorithm was applied to one of the simplest example;
a transient orbit passing near the saddle in a three-dimensional ordinary differential
equations. We demonstrated that the control of the orbit far before the saddle can
lead the orbit to bend to the direction of the unstable manifold of the saddle. The
tested system is the following three-dimensional dynamics system:

d

dt

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
Ax cos(arctan(Dz)) − By sin(arctan(Dz))
Ax sin(arctan(Dz)) + By cos(arctan(Dz))

C arctan(z)

⎞

⎠ , (6.3)

where A, B,C and D are constants. The origin is the equilibrium of this system and
the eigenvalues are A, B and C . In Fig. 6.9, the pullback of the eigenvectors of the
equilibrium point (the origin) is shown in the case A > B > 0 > C . The pullback
vector of the eigenvector tells us the appropriate direction of the perturbation to
the orbit to control the perturbated orbit in the future. For example, if the orbit is
perturbed along the pullback vector of the eigenvector associated with the second
largest eigenvalue (B; solid arrows), then the perturbation vector near the saddle will
be parallel to the eigenvector associated with the second largest eigenvalue. This is
not trivial, because almost all perturbation vector become parallel to the eigenvector
associated with the largest eigenvalue. Using our method, it is possible to calculate
such perturbations. Detailed demonstrations are found in Ref. [41]. Further, the fact
that the angle made by the two pullback vectors becomes narrow as z becomes large
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Fig. 6.9 Pullback of eigenvectors of a saddle along the orbit connecting to the saddle using covariant
Lyapunov analysis. Pullback vectors of eigenvectors (1, 0, 0)T and (0, 1, 0)T , which corresponds
to the eigenvalues A (dotted arrows) and B (solid arrows), respectively, are shown. Endpoints of
arrows are connected by curves to guide the eyes. The orbit is close to z−axis and the z-component
of the initial state is positive

indicates that the random perturbations added at a point where z is large enough is not
likely to result in an orbit passing inside the region made by these pullback vectors.
Thus, the pullback vectors also give us information of the probable perturbed orbits
passing near the saddle.

6.3.2 Generating Cellular Automata Rule from Measurement
Data Alone

When we have a measurement data of a spatio-temporal pattern alone (e.g. video
record of a phenomena), how can we extract the embedded rule of the dynamics? In
some cases we may create a mathematical model based on the knowledge of physics
or our understanding of the phenomena. In this section, however, we do not rely on
such a priori assumption and consider the method to generate appropriate cellular
automation rule, which was explained in detail in Refs. [39, 42]. The procedure to
construct a rule of CA from the data is summarized as follows. First, we discretize
the data in space, time, and the observed state. After discretization, the number of
possible states at each site in a discretized space-time plane is finite. Second, we pre-
determine the interaction range and number of the states. Assuming that the rule is
homogeneous, we can list all the possible interactions. Then we calculate the appear-
ance frequency of particular state from combinations of neighbor’s possible states.
To define the rule, we have two choices. One is a deterministic rule by taking the state
of the maximum count. The other is a stochastic rule in which each interaction can
be chosen with a probability proportional to the count, for example. These definition
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Fig. 6.10 Left Spatiotemporal pattern generated by cellular automaton (CA), Rule 90.Right Noise-
contaminated CA, Rule 90 (p = 0.05)

rules are used in Refs. [39, 42, 43], but other definition rule can be applied fitted to
the problem, e.g., some conservation law may be considered.

This method was firstly applied to noise contaminated CA pattern. We illustrate
the definition by the elementary CA Rule 90, defined by

xn(i + 1) = xn−1(i) + xn+1(i) (mod 2), (6.4)

where xn(i) ∈ {0, 1} represents the state on the site (n, i); n and i are indexes of space
and time, respectively. For space (indexed by n), the periodic boundary condition
is applied. The noise-contaminated CA is generated by the additional procedure
that the calculated state is flipped with probability p [42]. In Fig. 6.10 (Left), the
spatio-temporal pattern is shown; a well-known pattern with self-similar triangles is
generated. Figure6.10 (Right) shows a noise-contaminated CA (p = 0.05) is shown.
Although the probability is small and the CA rule is modified only slightly, the self-
similar triangles are completely destroyed and we can only see a pattern with random
triangles with noise. Thus, the contaminated pattern is far from typical patterns
expected by the original rule (Fig. 6.10). In Ref. [42], we show that the embedded
rule can be extracted by our method. Then, simple partial differential equations
(PDE), the diffusion equations and the Burgers equations, are used to generate the
data, and this method was applied to examine the reproductivity of the properties of
the original PDE. For the diffusion equations, stochastic type model gives a robust
time series of the variance if the number of the state is larger than two, but they
fit the theoretical line until limited steps (20–30 steps). For the Burgers equations,
stochastic type model gives a generation of shock and their merging process [39].
Also this method was tried to reproduce the experimental data of bioconvection
pattern [43].
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6.4 Concluding Remarks

In this review,we have outlined several phenomena related to the global flow structure
in Sect. 6.3, that is, binary fluid convection, bioconvection, and surface switching,
in terms of recent developments after the previous review [24]. All of these exam-
ples have multi-scale nature and heterogeneous flow structure in common. In binary
fluid convection, two types of localized structures are observed and their collision
dynamics based on the well controlled initial state obtained by the numerical solution
reveals a heterogeneous the pattern formation process. Here the macroscopic pattern
consists of localized structures composed of convection cells. In bioconvection, two
types of localized structures which somehow are quite similar to those in binary fluid
convection are experimentally obtained using new setup and initial states. Their inter-
action behaviors are similar to not only those in the binary fluid convection but also
those in dissipative systems such as the reaction-diffusion systems. Similar to the
case of binary fluid convection, the generated macroscopic pattern of bioconvection
is heterogeneous and the multi-scale nature can be traced back to the microscopic
flow around the microorganism. In the surface switching, the boundary layer due to
the rotation of the bottom and the bulk flow with free surface is globally coupled,
which is the main idea of the recently theory by Tophøj et al. [22].

Such multi-scale phenomena will show different aspects depending on the tar-
get scale, and they are not always fit our natural expectation. Thus we need a new
analysis method applicable to such phenomena which is outlined in Sect. 6.3. When
the governing equation is given, we can use analytical approach for the analysis. In
addition to the bifurcation analysis which basically focus on the solution of various
type, we propose a method to analyze the orbit based on the covariant Lyapunov
analysis(Sect. 6.3.1). Although it is restricted to the orbit passing through near the
steady solution, this method allows us to control the orbit in the direction to the
unstable manifold. When the governing equation is not given, the first task to under-
stand the phenomena mathematically is to extract the embedded rule. We proposed a
framework using the idea of cellular automata to achieve this goal (Sect. 6.3.2). This
method can be used without any knowledge of the target phenomena.

The merit to have the idea of the global flow structure is that we can understand
different problems from a single point of view. The successful of the bioconvection
analysis is clearly due to the fact that we regard the bioconvection and the binary
fluid convection as a single category problem, whereby the idea used in the analysis
of the binary fluid convection could be applied to the analysis of the bioconvection
problems. Although some modification from the mathematical idea to the experi-
mental setup is needed, a policy of analysis can be easily transferred. In the analysis
of the surface switching, the one-dimensional random dynamics gave us insights to
further flow analysis, which are now prepared by two of the authors for a series of
papers [28, 29].

For the analysis method, we could only show the idea and give simple but essential
examples. The analysismethod based on the covariant Lyapunov analysiswill be able
to be directly used to control the collision problems in reaction-diffusion problems
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and binary fluid convection problems, because such collision can be understood as
an orbit passing through the special saddle called ‘scatter’. It will be very interesting
of us to know the appropriate perturbation to determine the desired result of the
collision even when two localized structures are far from each other, which is one
of our current interests. The method to construct the cellular automaton from the
measurement data was applied to construct the bioconvection pattern, which was not
spatially localized [43]. We obtained several interesting patterns, but they are not
very similar to the original convection patterns. Perhaps we need much appropriate
phenomena to evaluate the potential of this method.

For themodel of the surface switching and the CAmodel has the following feature
in common. That is, the major part of the dynamics is based on the deterministic
simple model of single scale or single mechanics, and stochastic effect is used to
represent the effect coming from other part of the dynamics. These terms are used as a
convenient representation of other part of dynamics, whichwould be complex or have
different time scales. As discussed in Ref. [24] where theWayland test was applied to
the times series data of the surface switching, this idea itself is not new; the connection
between this type of representation and the mathematical structure embedded in the
global flow structure problem should be clarified, then, the construction of the model
will develop further.

In this review,wementioned several phenomena of and several proposal to analyze
the global flow structure. As has been discussed so far, the analysis of phenomena and
the development of method can not be separated; selection of appropriate problem
and method will be a great driving force for the understanding of the global flow
structure.
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Chapter 7
Mathematical and Numerical Analysis
of the Rayleigh-Plesset and the Keller
Equations

Masashi Ohnawa and Yukihito Suzuki

Abstract In the present paper, we conduct mathematical analysis on the Rayleigh-
Plesset and the Keller equations, ordinary differential equations of the second order
widely used for describing motions of a spherically symmetric single bubble. We
show that these equations admit structures of the Hamiltonian system with respect
to a physically reasonable energy function perturbed by dissipation and obtain the
asymptotic behavior of the solutions. Making use of this structure, we rewrite the
equations into gradient systems and develop numerical codes which properly inherit
conservation or dissipation of the energy from the original differential equations
following the discrete gradient method.

Keywords Bubble dynamics · Rayleigh-Plesset equation · Keller equation ·
Hamiltonian system · Discrete gradient method

7.1 Introduction

In the present paper, we analyze mathematically the Rayleigh-Plesset and the Keller
equations and based on the results, we numerically integrate the equations following
the discrete gradient method which preserves important mathematical features in the
discretized forms.

The Rayleigh-Plesset equation was proposed in [9, 13]. It is an ordinary differen-
tial equation of the second order which describes the radial motion of a spherical bub-
ble immersed in a incompressible liquid and has been used extensively for exploring
the dynamics of cavitation bubbles [1, 10].Reflecting on the significance of cavitation
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in industry, a lot of efforts have been done to extend the Rayleigh-Plesset equation
to account for phenomena in various occasions. For example, in order to model the
damping oscillations of underwater explosion bubbles which the Rayleigh-Plesset
equation fails to predict, Keller and Kolodner [8] introduced an effect of emission
of pressure waves into the equation and proposed the Rayleigh-Plesset-Keller equa-
tion or simply the Keller equation which describes the radial motion of a spherical
bubble immersed in a (nearly) incompressible, (outward) wave transmitting liquid.
Depending on contexts, there are some different implications in the extensions of
the Rayleigh-Plesset equation [3, 5, 11, 12, 14]. Among them, we deal with the
Keller equation and the Herring equations, which we call the Keller type equations
altogether.

In spite of intensive studies on modeling cavitation bubbles and derivation of the
governing equations for oscillating bubbles, their mathematical aspects do not seem
to have receivedmuch attention. Even to the simplest one such as theRayleigh-Plesset
equation, the existence and uniqueness of global solutions is proved only recently
in [2]. Following this study, we investigate mathematical aspects of the Keller type
equations. We introduce an energy function which makes physical sense and prove
its preservation or dissipation. Unique existence of the global solutions and large
time behaviors are obtained from this. This fact also allows us to formulate those
equations as the Hamiltonian systems including dissipation or damping of energy.

As for the numerical methods, there are some peculiar methods to Hamiltonian
systems, which inherit structures possessed by original differential equations. Sym-
plectic schemes which preserve the symplectic structure of canonical Hamiltonian
systems are typical examples of such kind of methods. In a different context, the
so called “discrete gradient method” [4] has also been proposed, which is applica-
ble not only to conservative systems but also to dissipative systems. This type of
scheme inherits the skew-symmetry and negative semi-definiteness of the operators
acting on the gradient of the Hamiltonian from the original systems and thus directly
guarantees the conservation or dissipation of the discretized energy. We apply the
discrete gradient method to the Keller type equations and obtain energy preserving
or dissipating numerical schemes for those equations, which properly reproduce the
dynamics proved by the mathematical analysis mentioned above.

The paper is organized as follows. In Sect. 7.2, we give a brief derivation of
the Rayleigh-Plesset and the Keller equations from the Bernoulli equation and the
conservation of mass following [9] and [8] respectively. Note that Prosreretti and
Lezzi [11] extended the Rayleigh-Plesset equations in a different way starting from
the compressible Navier-Stokes equations using an asymptotic expansion in terms
of the Mach number of the velocity of bubble’s surface. Section7.3 is devoted to the
mathematical analysis on the Keller type equations. We prove the global existence
and the uniqueness of solutions and showprincipal properties of the dynamics such as
the convergence of the solution to the equilibrium state and the exponential decay of
the energy. In Sect. 7.4, theKeller type equations are reformulated as theHamiltonian
systemswith dissipation or damping of energy. Based on this formulation, in Sect. 7.5
wedevelop a numerical schemewhich properly inherits conservation or dissipation of
energy following the discrete gradient method. We employ the coordinate increment
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method proposed by Ito and Abe [7] to get the discrete gradient operator. Finally in
Sect. 7.6, we present numerical results to demonstrate the usefulness of the proposed
method.

7.2 Mathematical Models for Motion of a Spherical Bubble

We consider the motions of an oscillating bubble immersed in a liquid. We assume
that the bubble is spherical and the motion is spherically symmetric.

Then the radiusR = R(t) of the bubble as a function of time t describes the kinetics
completely. The bubble is filled with vapor and a non-condensable gas. All thermal
effects have been ignored and the vapor pressure pV is assumed to be constant. The
pressure of the non-condensable gas pG follows the ideal gas law and determined by
the radius of the bubble. Under these conditions, the pressure inside the bubble pB is
represented by

pB(R) = pV + pG(R) = pV + p̄G

(
R̄

R

)3κ

, (7.1)

where a constant κ � 1 is prescribed depending on adiabatic, isothermal or interme-
diate nature of the process, and p̄G is the reference pressure of the non-condensable
gas when the bubble radius is R = R̄ as a reference state. Particularly, if we assume
the adiabatic process, κ corresponds to the heat capacity ratio.

The configuration of the bubble is illustrated in Fig. 7.1 (Table7.1).

7.2.1 The Rayleigh-Plesset Equation

Spherically symmetric motions of the bubble induce a spherically symmetric flows
in the surrounding liquid, which are irrotational. Then the radial velocity field v =
v(t, r) of the liquid has the velocity potentialφ = φ(t, r) such that v = ∂φ/∂r, which
satisfies the Bernoulli’s equation

Fig. 7.1 Spherical bubble



162 M. Ohnawa and Y. Suzuki

Table 7.1 List of symbols Name Symbol

Vapor pressure pV
Reference radius R̄

Reference pressure p̄G
Exponent of the barotropic relation κ

Coefficient of surface tension σ

Density of the liquid ρL

Coefficient of viscosity of the liquid μL

Speed of sound in the liquid cL
External pressure p∞

∂

∂r

[
∂φ

∂t
(t, r) + 1

2

(
∂φ

∂r
(t, r)

)2

+
∫ p(t,r) dp

ρ

]

= 0, (7.2)

where p = p(t, r) and ρ(p(t, r)) are the pressure and density field of the liquid. We
assume that the flow is barotropic, namely the density depends only on the pressure.
If we further assume that the flow of the surrounding liquid is incompressible and the
density is constant: ρ = ρL, then the velocity potential satisfies the Laplace equation

Δφ = 1

r2
∂

∂r

(
r2

∂φ

∂r

)
= 0, (7.3)

which implies that there is a function f = f (t) such that

φ(t, r) = f (t)

r
. (7.4)

Boundary conditions at the surface of the bubble r = R are the kinematic condition:

∂φ

∂r

∣∣∣
∣
r=R

= Ṙ, (7.5)

and the dynamic condition:

pB(R(t)) − p(t,R(t)) − 2σ

R(t)
+ 2μL

∂2φ

∂r2
(t,R(t)) = 0, (7.6)

whereμL is the coefficient of viscosity of the liquid and σ is the coefficient of surface
tension. The dynamics condition represents the balance among the viscous stress,
the surface tension and the pressures acting on both sides of the surface.
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Evaluating Eq. (7.4) at the surface r = R and appealing to the kinematic boundary
condition (7.5), the function f is determined as f (t) = −Ṙ(t)R(t)2 and the velocity
potential becomes

φ(t, r) = − Ṙ(t)R(t)2

r
. (7.7)

We integrate Eq. (7.2) assuming both the velocity and the velocity potential vanish
at infinity to get

p(t, r) = p∞ − ρL

[
∂φ

∂t
(t, r) + 1

2

(
∂φ

∂r
(t, r)

)2
]

. (7.8)

Substituting (7.7) into (7.8), we get

p(t, r) = p∞ + ρL

[
R̈(t)R(t)2 + 2Ṙ(t)2R(t)

r
− 1

2

Ṙ(t)2R(t)4

r4

]
, (7.9)

which is the pressure field of the liquid induced by the motion of the bubble. Evalu-
ating this equation at the surface r = R, we have

p(t,R(t)) − p∞
ρL

= R̈(t)R(t) + 3

2
Ṙ(t)2. (7.10)

The pressure of the liquid at the surface p(t,R(t)) in (7.10) is determined from
Eqs. (7.6) and (7.7):

p(t,R(t)) = pB(R(t)) − 2σ

R(t)
− 4μL

Ṙ(t)

R(t)
. (7.11)

Substituting (7.11) into (7.10), we have

RR̈ + 3

2
Ṙ2 + p∞ − [pB(R) − 2σ/R − 4μLṘ/R]

ρL
= 0. (7.12)

The Eq. (7.12) supplemented with (7.1) is called the Rayleigh-Plesset equation. This
governs the radially symmetric motion of a spherical bubble immersed in an incom-
pressible liquid.

7.2.2 The Rayleigh-Plesset-Keller Equation

As mentioned in the introduction, Keller and Kolodner [8] introduced an effect of
emissionof pressurewaves into theRayleigh-Plesset equation.To this end, the incom-
pressibility condition: Eq. (7.3) is replaced with the wave equation
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Δφ − 1

c2L

∂2φ

∂t2
= 0, (7.13)

where thewave velocity is assumed to be the speed of sound cL in the liquid at infinity.
If we consider only the outward wave, the velocity potential can be represented by

φ(t, r) = f (t − r/cL)

r
(7.14)

as a solution of the wave equation (7.13). Then Eq. (7.4) is replaced with Eq. (7.14).
Evaluating Eq. (7.14) at the surface r = R and appealing to the kinematic boundary
condition (7.5), we get

Ṙ(t) = − f (t − R(t)/cL)

R(t)2
− 1

cL

f ′(t − R(t)/cL)

R(t)
. (7.15)

On the other hand, substituting the velocity potential, Eq. (7.14) into (7.8), we get
the pressure field as

p(t, r) = p∞ − ρL

{
f ′(t − r/cL)

r
+ 1

2

[
f (t − r/cL)

r2
+ 1

cL

f ′(t − r/cL)

r

]2
}

.

(7.16)

Then the pressure at the surface is

p(t,R(t)) = p∞ − ρL

{
f ′(t − R(t)/cL)

R(t)
+ 1

2
Ṙ(t)2

}
. (7.17)

By solving (7.15) and (7.17) for f (t − R/cL) and f ′(t − R/cL) in terms of the dynam-
ical state of the bubble (R, Ṙ), we have

f (t − R/cL) = −R2Ṙ + R2

cL

[
1

2
Ṙ2 − p∞ − p(t,R)

ρL

]
, (7.18)

f ′(t − R/cL) = −R

[
1

2
Ṙ2 − p∞ − p(t,R)

ρL

]
. (7.19)

Taking time derivative of Eq. (7.18) and equating it with Eq. (7.19), we can eliminate
the function f to obtain the equation which governs the motion of the bubble:

(
1 − Ṙ

cL

)
RR̈ + 3

2

(
1 − Ṙ

3cL

)
Ṙ2 = −

(
1 + Ṙ

cL
+ R

cL

d

dt

)
p∞ − p(t,R)

ρL
. (7.20)

Note that the pressure of the surrounding liquid at the surface p(t,R) depends only
on the dynamical state of the bubble (R, Ṙ) as in the case of the Rayleigh-Plesset



7 Mathematical and Numerical Analysis of the Rayleigh-Plesset … 165

equation. Equation (7.20) supplemented with (7.11) and (7.1) is called the Rayleigh-
Plesset-Keller equation or simply the Keller equation. This governs the radially sym-
metricmotion of a spherical bubble immersed in a (nearly) incompressible, (outward)
wave transmitting liquid.

In a slightly different context, another equation called the Herring equation was
derived [5, 14] and can be combined with the Keller equation as

(
1 − (Λ + 1)

Ṙ

cL

)
RR̈ + 3

2

(
1 − 3Λ + 1

3

Ṙ

cL

)
Ṙ2

= −
(
1 + (1 − Λ)

Ṙ

cL
+ R

cL

d

dt

)
p∞ − p(t,R)

ρL
,

(7.21)

where Λ is a real parameter. The Keller and the Herring equations are recovered
when Λ = 0 and Λ = 1, respectively.

7.3 Mathematical Analysis

First we quote fundamental mathematical facts from [2] for the better understanding
of mathematical analysis on the Keller-Herring equation in the next theorem and the
gradient system formulation in the next section.

Proposition 7.3.1 ([2])
Consider the first order system

Ṙ = V, (7.22)

V̇ = −
(
3

2
V 2 + P(R)

ρL
+ 4μLV

ρLR

)
/R, (7.23)

where

P(R) := p∞ −
(
pB(R) − 2σ

R

)
= (p∞ − pV ) + 2σ

R
− p̄G

(
R̄

R

)3κ

. (7.24)

This is equivalent to the Rayleigh-Plesset equation (7.10). Assuming p∞ � pV , the
followings hold.

(i) There exists a unique equilibriumpoint (R, V ) = (R∗, 0), whereR∗ is the unique
positive solution to the equation P(R∗) = 0.

(ii) For an arbitrary initial datum, there exists a unique global solution. Defining
an energy function E(R, V ) by

E(R, V ) := 1

2
ρLR

3V 2 + G(R), G(R) :=
∫ R

R∗
P(r)r2dr, (7.25)
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the solution satisfies

d

dt
E(R(t), V (t)) = −μLRV

2.

(iii) In the case μL = 0, the solution is periodic for an arbitrary initial datum.
(iv) In the case μL > 0, the solution converges to (R∗, 0) for an arbitrary ini-

tial datum with the energy E(R(t), V (t)) decaying exponentially fast. More-
over, ifμL > μC := (3κρL(p∞ − pV ) + 2(3κ − 1)ρLσ/R∗)1/2 R∗/2, then V (t)
changes its sign only finite times while if μL < μC, then V (t) changes its sign
infinitely many times.

Remark 7.3.1 Some of the statements in this proposition are not included in [2].
Since they are proved similarly to the corresponding claims in the next theorem, we
omit the proof.

Remark 7.3.2 Since pB(R) − 2σ/R in (7.24) is the pressure of the inviscid liquid
(i.e. neglecting the viscous stress) at the surface of the bubble whose radius is R (see
Eq. (7.11)), G(R) stands for the work done when the bubble radius increases from
r = R∗ to r = R. Note that G(R) � G(R∗) = 0 holds for all R > 0 since P(R) ≷ 0
for R ≷ R∗. The first term of the right hand side of Eq. (7.25) is the kinetic energy of
the surrounding fluid.1

In the same spirit, we proceed tomathematically analyze the Keller-Herring equa-
tion (7.21). Rewriting it into a first order system, we have

Ṙ = V, (7.26)
(
1 − (Λ + 1)

V

cL

)
V̇

= −
{
3

2

(
1 − 3Λ + 1

3

V

cL

)
V 2 +

(
1 + (1 − Λ)

V

cL
+ R

cL

d

dt

)
P(R(t))

ρL

}
/R.

(7.27)

Theorem 7.3.1 Consider the Keller-Herring system (7.26) and (7.27). Assuming
p∞ � pV and V (0) < cL/(Λ + 1), we have the followings.

(i) There exists a unique equilibriumpoint (R, V ) = (R∗, 0), whereR∗ is the unique
positive solution to the equation P(R∗) = 0.

(ii) For an arbitrary initial datum, there exists a unique global solution which
satisfies

V (t) <
cL

Λ + 1
for all t � 0. (7.28)

1Strictly speaking, the work and the kinetic energy have been divided by 4π .
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The energy defined in (7.25) decays monotonically as

d

dt
E(R(t), V (t))

= − R2V 2

cL − (Λ + 1)V

(

ρLV
2 + 2(p∞ − pV ) + (3κ − 2)p̄G

(
R̄

R

)3κ

+ 2σ

R

)

,

(7.29)

and
lim
t→∞(R(t), V (t)) = (R∗, 0). (7.30)

(iii) Define a positive constant c0 by

c20 = {3κ(p∞ − pV ) + 2(3κ − 1)σ/R∗} /4ρL.

If cL < c0, V (t) changes the sign only finite times, while if cL > c0, V (t) changes
its sign infinitely many times.

(iv) The energy decays exponentially fast, i.e. there exists positive constants λ and
C such that E(R(t), V (t)) � Ce−λt holds for an arbitrary t � 0.

Proof (i) The proof is the same as that of (i) of Proposition 7.3.1 in [2].
(ii) The uniqueness of the solution is obvious since the vector field is locally Lipschitz
continuous. To obtain the energy dissipation (7.29), we multiply (7.27) by ρLR3V .
Of the two terms containing V̇ in the result, the first one: ρLR3V V̇ is combined with
−3ρLR2V 3/2 in the right hand side to make d

(
R3V 2/2

)
/dt. Another one −(Λ +

1)ρLR3V 2V̇ /cL is transformed using (7.27) to express V̇ in terms of R and V . Thus
(7.29) is shown. Since limR→+0 G(R) = limR→+∞ G(R) = ∞, this nonincreasing
property of E(R(t), V (t)) assures that (R(t), V (t)) is contained in a certain compact
set in (0,∞) × R. Next we show that

V (t) <
cL

Λ + 1
for all t � 0

provided V (0) < cL/(Λ + 1). In fact, for an arbitrary fixed R > 0, it is easy to see
that as V → cL/(Λ + 1) − 0, the right hand side of (7.27) tends to − (2P(R)+
RP′(R)

)
/ ((Λ + 1)ρLR) − c2L/

(
(Λ + 1)3R

)
. This value is negative since

2P(R) + RP′(R) = 2(p∞ − pV ) + (3κ − 2)p̄G
(
R̄/R

)3κ + 2σ/R > 0. (7.31)

By these discussions, we see that the solution exists globally in time. The Poincaré-
Bendixon theorem assures (7.30). For the detail, readers are referred to the proof of
Proposition 7.3.1(iv) in [2].
(iii) Let us denote by W (t) the winding number of the solution trajectory around
(R∗, 0) by the time t. Using the argument principle, we have
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W (t) = Re

[ −1

2π
√−1

∫ t

0

Ż(s)

Z(s) − R∗
ds

]
, Z(s) := R(s) + √−1V (s),

= 1

2π

∫ t

0

N(R(s), V (s))

(R(s) − R∗)2 + V (s)2
ds, N(R, V ) := V 2 − V̇ (R − R∗). (7.32)

Substituting (7.21) into (7.32), we have

N(R, V ) = A

R2∗
(R − R∗)2 + A

R∗cL
(R − R∗)V + V 2 + O

(
(|R − R∗| + |V |)3)

as |R − R∗| + |V | → 0, where A := 3κ
p∞ − pV

ρL
+ (3κ − 1)

2σ

ρLR∗
= 4c20.

Here consider a quadratic equation A + Ax + c2Lx
2 = 0, whose determinant is A2 −

4Ac2L = 4A(A/4 − c2L) = 4A(c20 − c2L). In the case of cL > c0, the integrand in the
second line of (7.32) is greater than a certain positive constant for sufficiently large
t in view of (7.30), and the trajectory rotates around (R∗, 0) infinitely many times.
In the case of cL < c0, the equation A + Ax + c2Lx

2 = 0 has two negative roots. Thus
R∗V (t)/cL(R(t) − R∗) converges to one of the roots ofA + Ax + c2Lx

2 = 0 as t → ∞
and W (t) has a finite upper bound.
(iv) We may assume that (R(0), V (0)) is sufficiently close to but not equal to (R∗, 0)
without loss of generality. Choose a constant ε ∈ (0, π/2) sufficiently small so that
−2c−1

L R∗ tan ε is larger than an arbitrary real root of the equation A + Ax + c2Lx
2 = 0

if it exists, and consider the region D := {
(R, V )

∣∣ |Arctan (V (t)/(R(t) − R∗)) | �
ε, (R, V ) ∈ (0,∞) × R

}
.Nowwe show that (R(t), V (t)) ∈ D does not hold consec-

utively for longer than a certain finite time and (R(t), V (t)) /∈ D holds consecutively
for longer than a certain positive time. In fact, by the winding number argument
above, we see that (R, V ) ∈ D implies (R − R∗)2 + V 2 �

(
1 + tan2 ε

)
(R − R∗)2

and N(R, V ) �
(
AR−2∗ − AR−1∗ c−1

L tan ε + tan2 ε
)
(R − R∗)2/2. Therefore Ẇ (t) is

greater than a certain positive constant ω1 and (R, V ) ∈ D does not hold con-
secutively for longer than t1 := 2ε/2πω1. On the other hand, when (R, V ) /∈ D,
i.e. |Arctan ((R(t) − R∗)/V (t)) | < π/2 − ε holds, we have N(R, V ) � 2

(
A/(R∗

tan ε)2 + A/(R∗cL tan ε) + 1
)
V 2 and hence Ẇ (t) � ω2 for a certain positive con-

stantω2. Therefore, the state |Arctan ((R(t) − R∗)/V (t)) | < π/2 − ε lasts for longer
than t2 := (π − 2ε)/2πω2. Also in this case, the right hand side of (7.29) divided
by E(R(t), V (t)) is less than −ω3 for a certain positive constant ω3. Therefore,
by defining λ := ω3t2/(t1 + t2) and letting a positive constant C sufficiently large,
E(R(t), V (t)) � Ce−λt holds for an arbitrary t � 0. �



7 Mathematical and Numerical Analysis of the Rayleigh-Plesset … 169

7.4 A Hamiltonian Formulation of the
Rayleigh-Plesset-Keller Equation

7.4.1 A Hamiltonian Formulation of the Rayleigh-Plesset
Equation

By introducing a momentum variable Q = ρLR3Ṙ = ρLR3V , we rewrite the energy
function (7.25) for the Rayleigh-Plesset equation as

E(R,Q) = Q2

2ρLR3
+

∫ R

R∗
P(r)r2dr. (7.33)

Theorem 7.4.1 The inviscid Rayleigh-Plesset equation can be represented as a
Hamiltonian systemwith Hamiltonian E defined by Eq. (7.33). Namely, the Rayleigh-
Plesset equation is equivalent to the Hamilton’s canonical equation:

u̇ = J∇E (7.34)

where u = (R,Q)T denotes a point of the phase space for the radial motion of a
spherical bubble, the dot over the variable means the time derivative,

J =
(

0 1
−1 0

)
(7.35)

is the symplectic (that is non-degenerate skew-symmetric) matrix and

∇E =
(

∂E/∂R
∂E/∂Q

)
,

is the gradient of the energy function, if we neglect the viscosity.
Moreover, adding the symmetric negative semi-definite matrix

DRP(u) =
(
0 0
0 −4μLR

)
(7.36)

to the symplectic matrix J, the Rayleigh-Plesset equation with viscosity can be rep-
resented in the form

u̇ = ARP(u)∇E =
(

0 1
−1 −4μLR

) (
∂E/∂R
∂E/∂Q

)
, (7.37)

where ARP(u) = J + DRP(u).
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Proof By definition, we haveQ = ρLR3Ṙ and Q̇ = ρL(RR̈ + 3Ṙ2)R2, Then the com-
ponents in the right hand side of Eq. (7.37) are

∂E

∂Q
= Q

ρLR3
= Ṙ,

and

−∂E

∂R
− 4μLR

∂E

∂Q
= 3

2

Q2

ρLR4
− P(R)R2 − 4μL

Q

ρLR2

= ρLR
2

(
3

2
Ṙ2 − P(R) + 4μLṘ/R

ρL

)

= ρLR
2
(
RR̈ + 3Ṙ2

) = Q̇,

where the Rayleigh-Plesset equation (7.12) is used. Thus we have (7.37). If we set
μL = 0 in the computation above, (7.34) is seen to be equivalent to the inviscid
Rayleigh-Plesset equation. �

According to this theorem, the time derivative of energy is

d

dt
E(u) = ∇E · u̇ = ∇E · (J + DRP)∇E = ∇E · DRP∇E

= −4μLRṘ
2 � 0 (7.38)

by virtue of J being skew-symmetric and DRP being negative semi-definite. Then
we recover the conservation and dissipation of energy property for the inviscid and
viscous Rayleigh-Plesset equation, respectively.

7.4.2 A Hamiltonian Formulation of the Keller-Herring
Equation

We show that the Keller-Herring equation (7.21) can be represented as a Hamiltonian
system perturbed by dissipation, as well as the Rayleigh-Plesset equation.

Theorem 7.4.2 The Keller-Herring equation can be represented in the form

u̇ = [J + DK(u)]∇E = AK(u)∇E =
(

0 1
−1 αK(u)

) (
∂E/∂R
∂E/∂Q

)
, (7.39)

where E is the energy function defined by Eq. (7.33),

DK(u) =
(
0 0
0 αK(u)

)
, AK(u) = J + DK(u) =

(
0 1

−1 αK(u)

)
(7.40)
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and

αK(u) = αK(R,Q) = − R2

cL − (Λ + 1) Q
ρLR3

(
2P(R) + P′(R)R + Q2

ρLR6

)
. (7.41)

Moreover, if the initial condition satisfies (Λ + 1)Ṙ(0) < cL, we have αK(u(t)) < 0
for all t > 0, which implies DK is negative semi-definite for all time.

Proof The right hand side of the first equation of (7.39) is

∂E

∂Q
= Q

ρLR3
= Ṙ.

The second equation of (7.39) is

Q̇ = −∂E

∂R
+ αK(u)

∂E

∂Q
,

= 3

2

Q2

ρLR4
− P(R)R2 −

Q
ρLR

cL − (Λ + 1) Q
ρLR3

(
2P(R) + P′(R)R + Q2

ρLR6

)
.

Since Q = ρLR3Ṙ and Q̇ = ρL(RR̈ + 3Ṙ2)R2, this is equivalent to

ρL(RR̈ + 3

2
Ṙ2) + P(R) = − Ṙ

cL − (Λ + 1)Ṙ

(
2P(R) + P′(R)R + ρLṘ

2
)
. (7.42)

This is rewritten into

(
1 − (Λ + 1)

Ṙ

cL

)
RR̈ + 3

2

(
1 − (Λ + 1)

Ṙ

cL
+ 2

3

Ṙ

cL

)
Ṙ2

= −
(
1 − (Λ + 1)

Ṙ

cL
+ 2

Ṙ

cL
+ R

cL

d

dt

)
P(R)

ρL
, (7.43)

which is the (inviscid) Keller-Herring equation itself.
Finally, recall that (7.28) and (7.31) in Theorem7.3.1 follow from the assumptions

V (0) < cL/(Λ + 1) and p∞ � pV with κ � 1 respectively. Therefore αK is always
negative and DK(u(t)) is negative semi-definite for all t � 0. �

Similarly to (7.38), the time derivative of energy is

d

dt
E(u) = ∇E · u̇ = ∇E · (J + DK)∇E = ∇E · DK∇E

= αK(u)Ṙ2 � 0 (7.44)
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by virtue of J being skew-symmetric and DK being negative semi-definite. Then we
have recovered the dissipation of energy property for the Keller equation discussed
in the previous section.

FromTheorems 7.4.1 and 7.4.2, we find that the conservative part of the dynamics
is governed by the same Hamiltonian both in the Rayleigh-Plesset and the Keller-
Herring equations. On that account, these equations describe the same dynamics
as long as the conservative part is concerned. The dissipative part of the dynamics
comes from the viscosity of the liquid in the Rayleigh-Plesset equation. The same
mechanism of dissipation can be incorporated in the Keller-Herring as well, though
we neglected it. The dissipation in the Keller-Herring equation depends on the ratio
of the velocity of the bubble surface Ṙ to the speed of sound cL, that is, the Mach
number of the velocity of the surface. If this Mach number is small, the dissipation of
energy is also small. In the limit of zero Mach number, the dissipation in the Keller-
Herring equation vanishes and the equation reduces to the inviscid Rayleigh-Plesset
equation as expected.

In the discussion above on the conservation or dissipation of energy, it is essential
to represent the equation in the form

u̇ = A(u)∇F(u) (7.45)

using the gradient ∇F of an energy function F and a linear operator A defined on a
state variable u. Indeed, the time derivative of energy is given by

d

dt
F(u) = ∇F · A(u)∇F, (7.46)

and the energy is conserved or dissipated if A is skew-symmetric or negative semi-
definite, respectively. We call this formulation a gradient system.

7.5 Discrete Gradient Schemes for the Rayleigh-Plesset
and Keller Equations

By applying the discrete gradient method to a gradient system (7.45), we obtain an
energy-dissipative/preserving scheme. Let [0,T ] be a computational interval and let
{tn}Nn=0 be a sequence of discrete time levels with 0 = t0 < t1 < · · · < tN−1 < tN =
T . We denote an approximate solution at t = tn by Un, and define hn := tn+1 − tn
and h := max1�n�N hn. Let A(x) = A(x1, x2) denote a matrix-valued function for
x = (x1, x2)T . The discrete gradient scheme for a gradient system (7.45) reads

Un+1 − Un

hn
= A(Un)∇̃F(Un,Un+1). (7.47)
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Here ∇̃ is an operator called a discrete gradient, which satisfies for x = (x1, x2)T , y =
(y1, y2)T ∈ R

2, and a differentiable function f that

f (y) − f (x) = ∇̃f (x, y) · (y − x), (7.48)

∇̃f (x, x) = ∇f (x). (7.49)

We note that the discrete gradient is not uniquely determined. In this paper, we
employ the coordinate increment method [7]:

∇̃f (x, y) =
⎛

⎜
⎝

f (y1, x2) − f (x1, x2)

y1 − x1
f (y1, y2) − f (y1, x2)

y2 − x2

⎞

⎟
⎠ , (7.50)

where in the case of x1 = y1 or x2 = y2, the finite difference is replaced by the partial
derivative of f with respect to the first or second variable at (x1, x2) or (y1, y2),
respectively. It is easy to check that this discrete gradient operator satisfies (7.48).
Depending on whether the matrix A is skew-symmetric or negative semi-definite,
the discretized equation (7.47) is energy-preserving or dissipative, because the rate
of change of the energy function F is

F(Un+1) − F(Un)

hn
= ∇̃F(Un,Un+1)

T Un+1 − Un

hn
= (∇̃F)TA(Un)(∇̃F) � 0.

(7.51)

Let us give the concrete form of the discrete gradient for the energy function E.
We apply F = E defined in (7.33) and A = ARP in (7.37) or AK in (7.39). Setting
x = Un, y = Un+1 and f = E in (7.50), we have

∇̃E(Un,Un+1) = ∇̃
(

Q2

2ρLR3

)
(Un,Un+1) + ∇̃G(R)(Un,Un+1)

=

⎛

⎜⎜
⎝

−Q2
n(R

2
n + RnRn+1 + R2

n+1)

2ρLR3
nR

3
n+1

+ G(Rn+1) − G(Rn)

Rn+1 − Rn
Qn + Qn+1

2ρLR3
n+1

⎞

⎟⎟
⎠ .

The function G appeared in the equations above has been defined in (7.25), and the
values of the function G and its derivative dG/dR can be computed if we have the
value of the radius R.

The discrete gradient scheme for the Rayleigh-Plesset and the Keller equations is
obtained if we set

U =
(
R
Q

)
, A =

(
0 1

−1 α(Rn,Qn)

)
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and ∇̃F = ∇̃E in (7.47), where α(R,Q) = −4μLR or αK(R,Q) for the Rayleigh-
Plesset or the Keller equation, respectively. The result is

Rn+1 − Rn

hn
= Qn + Qn+1

2ρLR3
n+1

,

Qn+1 − Qn

hn
= Q2

n(R
2
n + RnRn+1 + R2

n+1)

2ρLR3
nR

3
n+1

− G(Rn+1) − G(Rn)

Rn+1 − Rn

+ α(Rn,Qn)
Qn + Qn+1

2ρLR3
n+1

. (7.52)

These nonlinear equations can be solved uniquely using theNewton-Raphsonmethod
such that

lim
hn→0

Rn+1 − Rn

hn
= Qn

ρLR3
n

,

is satisfied by letting hn be sufficiently small for each n. For the Keller model, the
subsonic condition

Qn+1

ρLR3
n+1

< cL

must also be satisfied, which holds if hn is sufficiently small.

7.6 Numerical Results

We consider a spherical bubble collapsing under the influence of a high external
pressure p∞ in a liquid. The bubble contains saturated vapor and we assume that the
vapor pressure pV is constant and takes the value at room temperature (293K). The
bubble also contains a non-condensable gas such that the bubble with the radius R̄
is at rest under the external pressure p̄, that is, the pressure difference between the
inside and outside bubble balances with the surface tension:

pB(R̄)(= pV + p̄G) = p̄ + 2σ/R̄.

This equation gives the value of p̄G whenwe set the value of initial external pressure p̄
which is instantaneously increased to p∞ in the computation. The non-condensable
gas is modeled by an ideal monoatomic gas and we assume that the thermody-
namic processes which occur in the bubble are adiabatic. Then the exponent of the
barotropic relation corresponds to the heat capacity ratio for monoatomic gases. The
liquid surrounding the bubble is assumed to be inviscid. The material properties and
parameters used in the computation are listed in Table7.2. The equilibrium radius R∗
in this setting is 3.73 × 10−6 [m] and the natural period T∗ of the linearized system
about the equilibriumpoint (R∗, 0) in the phase plane (which is defined in Proposition
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Table 7.2 Material properties and parameters

Name Symbol Value

Coefficient of surface tension σ 7.275 × 10−2 [N/m]

Reference radius R̄ 1.0 × 10−5 [m]

Vapor pressure pV 2337 [Pa]

Density of the liquid ρL 998.2 [kg/m3]

Exponent of the barotropic relation κ 5/3

Coefficient of viscosity of the liquid μL 0 [m2/s]

Initial external pressure p̄ 2500 [Pa]

External pressure p∞ 1.0 × 105 [Pa]

Speed of sound in the liquid cL 1478 [m/s]

7.3.1) is

T∗ = 2πR∗/
√{3κ(p∞ − pV ) + (3κ − 1)2σ/R∗} /ρL ≈ 9.19 × 10−7 [s].

The initial values are set to be U0 = (R0,Q0)
T = (R̄, 0)T .

7.6.1 The Inviscid Rayleigh-Plesset Equation

We compute the collapsing bubble described by the inviscid Rayleigh-Plesset equa-
tion ((7.12) withμL = 0) using the discrete gradient method (DGM) for conservative
systems ((7.52) with α = 0) and fourth order Runge-Kutta method (RK4) for com-
parison. For each computation, we fix the time step hn independent of n. Here and
hereafter physical quantities without units are normalized using R∗, T∗, and ρL.

Figure7.2 shows the time evolution of the energy defined by (7.33). It should
be conserved according to Proposition 7.3.1(ii) and is indeed conserved by DGM
up to the accuracy in solving (7.52). We see that the energy obtained by DGM with
the time step hn = 5 × 10−9 [s] (solid line) is well kept constant, while RK4 with
hn = 5 × 10−10 [s] (broken line) and hn = 2 × 10−10 [s] (dotted line) lose energy to
some extent. The energy loss by RK4 is almost invisible if we further diminishes the
time step to hn = 1 × 10−10 [s].

The same situation can be observed in the phase diagram. Figure7.3 exhibits the
trajectory of (R(t), Ṙ(t)) over approximately six cycles computed by DGM and RK4
both with hn = 1 × 10−9 [s]. Conservation of energy in the inviscid Rayleigh-Plesset
equation requires that the trajectorymust lie on the contour of a certain energy, which
is a closed curve for the energy (7.25). We see that the trajectory by RK4 gets in and
out of that by DGM, implying vasillation of the energy in the result by RK4 with an
insufficient time resolution.
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Fig. 7.2 Time evolution of the energy in the inviscid Rayleigh-Plesset equation obtained by DGM
with hn = 5 × 10−9 [s] (solid) and RK4 with hn = 2 × 10−9 [s] (broken) and hn = 5 × 10−10 [s]
(dotted)
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Fig. 7.3 The phase diagram of (R(t), Ṙ(t)) computed by DGM (thick line) and RK4 (thin line)
both with hn = 1 × 10−9 [s]

Figure7.4 presents the radius as a function of time computed by RK4 with hn =
1 × 10−10 [s] (solid line), by DGM with hn = 5 × 10−9 [s] (broken line), and by
DGM with hn = 2 × 10−9 [s] (dotted line). Although the energy is very accurately
computed by DGM as seen in Fig. 7.2, the phase of the oscillation could differ from
the highly accurate values obtained by RK4. The result by DGM for hn = 1 × 10−9

[s] is almost identical to that by RK4.
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Fig. 7.4 Time evolution of the radius of the bubble in the inviscid Rayleigh-Plesset equation
obtained by RK4 with hn = 1 × 10−10 [s] (solid) and DGM with hn = 5 × 10−9 [s] (broken) and
hn = 2 × 10−9 [s] (dotted)

7.6.2 The Keller Equation

We compute the collapsing bubble subject to the inviscid Keller equation (7.20)
using DGM (7.52) with α = αK . The time step is set to be hn = 2 × 10−9 [s]. All
the results presented in this subsection are compared with RK4 and confirmed to be
highly accurate. Figure7.5 shows computed radius against time. The bubble expands
and shrinks almost regularly, but unlike the Rayleigh-Plesset model, the amplitude
of the oscillation decreases gradually in the Keller model.

Figure7.6 presents how the energy (7.33) of the bubble changes with time. We
see that the energy decreases monotonically in accordance with the mathematical
results stated in Theorem 7.3.1. The DGM well reproduces this property by virtue
of (7.51), up to the accuracy in solving (7.52).

Comparing Fig. 7.5 with Fig. 7.6, the bubble drastically loses energy around the
time when the bubble ceases to shrink and begins to expand. The decreasing rate of
energy for the Keller equation is given in (7.29) with Λ = 0 and should correspond
to the energy release rate due to the emission of pressure waves. The establishment
of the relation between the loss of energy and the emission of pressure waves is left
for future study.

The trajectory of (R(t), Ṙ(t)) is shown in Fig. 7.7. It converges to the equilibrium
point (1, 0) in nondimensional coordinate in agreement with the theoretical result
proved in Theorem 7.3.1.
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Fig. 7.5 Time evolution of the bubble radius for the Keller equation
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Fig. 7.6 Time evolution of the energy for the Keller equation

Finally, Fig. 7.8 shows the long time evolution of the energy in a logarithmic scale.
This manifests the exponential decay of energy on the time scale proved in Theorem
7.3.1.
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Fig. 7.7 The phase diagram of (R(t), Ṙ(t)) for the Keller model
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Fig. 7.8 Long time behavior of the energy for the Keller equation

7.7 Concluding Remarks

Wehavemathematically analyzed theRayleigh-Plesset equation and theKeller equa-
tions and found an energy function which physically makes sense. In view of this, we
reformulated them in theHamiltonian systems. Based on this formulation,we applied
the discrete gradient method to their numerical integration and reproduced precise
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energy conservation or dissipation. In this sense, we obtain a stable scheme with-
out introducing numerical dissipation often associated with fully implicit schemes.
Another benefit is that we can take large time step as compared to explicit schemes
such as the Runge-Kutta schemes. Note however, that the time step can not be taken
arbitrarily large in order to solve the nonlinear equations and that the energy conser-
vation alone, even if it holds, does not guarantee precise computations.
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Chapter 8
On the Amplitude Equation of Approximate
Surface Waves on the Plasma-Vacuum
Interface

Paolo Secchi

Abstract In this paper we present a recent result about the propagation of weakly
nonlinear surface waves on a plasma-vacuum interface. In the plasma region we
consider the equations of incompressible magnetohydrodynamics, while in vacuum
the magnetic and electric fields are governed by the Maxwell equations. A surface
wave propagate along the plasma-vacuum interface, when it is linearly weakly stable.
Following the approach of Alì and Hunter, we measure the amplitude of the surface
wave by the normalized displacement of the interface in a reference frame moving
with the linearizedphase velocity of thewave, andobtain that it satisfies an asymptotic
nonlocal, Hamiltonian evolution equation with quadratic nonlinearity. We show the
local-in-time existence of smooth solutions to the Cauchy problem for the amplitude
equation in noncanonical variables, and we derive the regularity of the first order
corrections of the asymptotic expansion.

Keywords Incompressiblemagneto-hydrodynamics ·Maxwell equations ·Plasma-
vacuum interface · Interfacial stability and instability

8.1 Introduction

Plasma-vacuum interface problems appear in the mathematical modeling of plasma
confinement by magnetic fields in thermonuclear energy production (as in Tokamaks
and Stellarators; see, e.g., [4]). In this model, the plasma is confined inside a perfectly
conducting rigid wall and isolated from it by a region containing very low density
plasma, which may qualify as vacuum, due to the effect of strong magnetic fields.
In Astrophysics, the plasma-vacuum interface problem can be used for modeling the
motion of a star or the solar corona when magnetic fields are taken into account.
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For the sake of simplicity, in [11] we consider the plasma-vacuum interface prob-
lem in two-dimensions, with the coupling of the incompressible MHD equations in
the plasma region and the Maxwell equations in the vacuum region. The solution is
close to a stationary basic state with parallel magnetic fields at the flat interface.

To study the time evolution of the plasma-vacuum interface we follow the
approach of Alì and Hunter in [1] and we show that, in a unidirectional surface
wave, the normalized displacement x2 = ϕ(t, x1) of a weakly stable surface wave
along the interface, in a reference frame moving with the linearized phase velocity
of the wave, satisfies the quadratically nonlinear, nonlocal asymptotic equation

ϕt + 1

2
H[Φ2]xx + Φϕxx = 0, Φ = H[ϕ] . (8.1)

Here H denotes the Hilbert transform defined by

H[ϕ](x) = 1

π
p.v.

∫ +∞

−∞
ϕ(y)

x − y
dy,

and such that

H[eikx ] = −i sgn(k) eikx , F [H[ϕ]] = −i sgn(k)F [ϕ],

forF denoting the Fourier transformation.
Equation (8.1) coincides with the amplitude equation for nonlinear Rayleigh

waves [5] and current-vortex sheets in incompressible MHD [1, 2]. It is interest-
ing that exactly the same equation appears for the incompressible plasma-vacuum
interface problem, where in the vacuum part the electric andmagnetic fields are ruled
by the Maxwell equations. The derivation of the same equation confirms that (8.1) is
a canonical model equation for nonlinear surface wave solutions of hyperbolic con-
servation laws, analogous to the inviscid Burgers equation for bulk waves. Equation
(8.1) also admits the alternative spatial form

ϕt + [H, Φ]Φxx + H[Φ2
x ] = 0 , (8.2)

where [H, Φ] is the commutator of H with multiplication by Φ, see [8]. The alter-
native form (8.2) shows that (8.1) is an equation of first order, due to a cancelation
of the second order spatial derivatives appearing in (8.1).

By adapting the proof of [7], in [11] we show the local-in-time existence of
smooth solutions to the Cauchy problem for amplitude equation in noncanonical
variables, and we derive a blow up criterion. Numerical computations [1, 5] show
that solutions of (8.1) form singularities in which the derivative ϕx blows up, but ϕ
appears to remain continuous. As far as we know, the global existence of appropriate
weak solutions is an open question.
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In the present note, from the previous existence result for the solution to the ampli-
tude equation we also derive the regularity of the first order asymptotic corrections
of the plasma variables and magnetic and electric fields in vacuum.

8.2 The Plasma-Vacuum Interface Problem

We consider the equations of incompressible magneto-hydrodynamics (MHD), i.e.
the equations governing themotion of a perfectly conducting inviscid incompressible
plasma. In the case of a homogeneous plasma (the density ρ ≡ const > 0), the
equations in a dimensionless form read:

⎧
⎪⎨

⎪⎩

∂tv + ∇ · (v ⊗ v − B ⊗ B) + ∇q = 0 ,

∂tB − ∇ × (v × B) = 0 ,

div v = 0 , divB = 0 ,

(8.3)

where v denotes the plasma velocity, B is the magnetic field (in Alfvén velocity
units), q = p + |B|2/2 is the total pressure, p being the pressure.

For smooth solutions, system (8.3) can be written in equivalent form as a sym-
metric system ⎧

⎪⎨

⎪⎩

∂tv + (v · ∇)v − (B · ∇)B + ∇q = 0 ,

∂tB + (v · ∇)B − (B · ∇)v = 0 ,

div v = 0 .

(8.4)

In addition the magnetic field must satisfy the constraint

divB = 0 ,

which is preserved by the evolution in time if it is satisfied by the initial data.
Let Ω+(t) and Ω−(t) be space-time domains occupied by the plasma and the

vacuum respectively, separated by an interface Γ (t). That is, in the domain Ω+(t)
we consider system (8.4) governing the motion of the plasma and in the domain
Ω−(t) we have the Maxwell system

{
ν∂tH + ∇×E = 0 ,

ν∂tE − ∇×H = 0 ,
(8.5)

describing the vacuum magnetic and electric fields H,E ∈ R
3. Here, the equa-

tions are written in nondimensional form through a suitable scaling (see Mandrik–
Trakhinin [9]), and ν = v̄

c , where v̄ is the velocity of a uniform flow and c is the
speed of light in vacuum. If we choose v̄ to be the speed of sound in vacuum, we
have that ν is a small, even though fixed parameter. System (8.5) is supplemented
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by the divergence constraints

divH = divE = 0

on the initial data.
For the sake of simplicity we consider the case of two space dimensions and write

v = (v1, v2)
T , B = (B1, B2)

T .

In the (three-dimensional) Maxwell equations (8.5) we assume that

H = (H1, H2, 0)
T ,

and that there is no dependence of H on the third space variable x3. It follows from
(8.5) that E takes the form

E = (0, 0, E)T ,

and the Maxwell equations reduce to

⎧
⎪⎨

⎪⎩

ν∂t H1 + ∂2E = 0 ,

ν∂t H2 − ∂1E = 0 ,

ν∂t E − ∂1H2 + ∂2H1 = 0 ,

(8.6)

under the constraint
∂1H1 + ∂2H2 = 0

on the initial data. From now on we write

H = (H1, H2)
T ,

hoping that this small abuse of notation will create no confusion for the reader.
Let us assume that the moving interface Γ (t) takes the form

Γ (t)
.= {(x1, x2) ∈ R

2 , x2 = ζ(x1, t)} ,

where t ∈ [0, T ], and that Ω±(t) = {x2 ≷ ζ(x1, t)}.
The plasma variables are connected with the vacuum magnetic and electric fields

on the interface Γ (t) through the relations [4]

∂tζ = v · N , q = 1

2

(
H 2

1 + H 2
2 − E2

)
, (8.7)

B · N = 0 , H · N = 0 , E − ν∂tζ H1 = 0 on Γ (t) , (8.8)
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where N = (−∂1ζ, 1) is a normal vector and [q] = q|Γ − 1
2 |H|2|Γ + 1

2 |E|2|Γ is the
jump of the total pressure across the interface.

A stationary solution of the 2-D Eqs. (8.4) and (8.6)–(8.8) with interface located
at {x2 = 0} is given by the constant states

v0 = (v0
1, 0)

T , B0 = (B0
1 , 0)

T ,

H0 = (H 0
1 , 0)T , E0 = 0, q0 = 1

2
(H 0

1 )2.

We will consider the propagation of surface waves localized near the interface. The
corresponding solutions must satisfy the decay conditions

lim
x2→+∞(v,B, q) = U 0 .= (v0

1, 0, B0
1 , 0, q0) , (8.9)

lim
x2→−∞(H, E) = V 0 .= (H 0

1 , 0, 0) . (8.10)

8.3 The Asymptotic Expansion

As in [1] we suppose that the perturbed interface has a slope of the order ε, where ε is
a small parameter. With respect to dimensionless variables in which the wavelength
of the perturbation and the velocity of the surface wave are of the order one, the time
scale for quadratically nonlinear effects to significantly alter the wave profile is of the
order ε−1. We therefore introduce a “slow” time variable τ = εt . We also introduce
a spatial variable θ = x1 − λt in a reference frame moving with the surface wave.
Here, λ is the linearized phase velocity of the wave, which we will determine as part
of the solution.

We write the perturbed location of the interface as

x2 = εϕ(θ, τ ; ε),

and define a new independent variable

η = x2 − εϕ(θ, τ ; ε),

so that the perturbed interface is located at η = 0. We look for an asymptotic expan-
sion of the solution U = (v,B, q)T , V = (H, E)T and ϕ as ε → 0 of the form

U (θ, η, τ ; ε) = U0 + εU (1)(θ, η, τ ) + ε2U (2)(θ, η, τ )+ O(ε3), η > 0, (8.11)
V (θ, η, τ ; ε) = V 0 + εV (1)(θ, η, τ ) + ε2V (2)(θ, η, τ )+ O(ε3), η < 0, (8.12)

ϕ(θ, τ ; ε) = ϕ(1)(θ, τ ) + εϕ(2)(θ, τ ) + O(ε2). (8.13)
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We expand the partial derivatives with respect to the original time and space vari-
ables as

∂t = −λ∂θ + ε(∂τ + λϕθ∂η) − ε2ϕτ∂η ,

∂x1 = ∂θ − εϕθ∂η ,

∂x2 = ∂η .

We substitute these expansions in (8.4) and (8.6), Taylor expand the result with
respect to ε and equate coefficients of ε1 and ε2 to zero. In the interior the asymptotic
solution satisfies at the first order

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λ − v0
1)∂θv

(1) + B0
1∂θ B(1) −

(
∂θ

∂η

)

q(1) = 0 ,

(λ − v0
1)∂θ B(1) + B0

1∂θv
(1) = 0 ,

∂θv
(1)
1 + ∂ηv

(1)
2 = 0 , for η > 0,

(8.14)

⎧
⎪⎨

⎪⎩

νλ∂θ H (1)
1 − ∂η E (1) = 0 ,

νλ∂θ H (1)
2 + ∂θ E (1) = 0 ,

νλ∂θ E (1) + ∂θ H (1)
2 − ∂η H (1)

1 = 0 , for η < 0.

(8.15)

We expand the jump conditions in (8.7) and (8.8), with ζ = εϕ, and equate coef-
ficients of ε1 and ε2 to zero. We find that the solutions satisfy at the first order the
following jump conditions

⎧
⎪⎨

⎪⎩

(λ − v0
1)∂θϕ

(1) + v(1)
2 = 0 ,

B0
1∂θϕ

(1) − B(1)
2 = 0 , H 0

1 ∂θϕ
(1) − H (1)

2 = 0 ,

q(1) = H 0
1 H (1)

1 , E (1) + νλH 0
1 ∂θϕ

(1) = 0 , for η = 0.

(8.16)

At the second order we obtain

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(λ − v0
1)∂θv

(2) + B0
1∂θ B(2) −

(
∂θ

∂η

)

q(2) = p1 ,

(λ − v0
1)∂θ B(2) + B0

1∂θv
(2) = p2 ,

−∂θv
(2)
1 − ∂ηv

(2)
2 = p3 , for η > 0,

(8.17)

⎧
⎪⎨

⎪⎩

νλ∂θ H (2)
1 − ∂η E (2) = p′

1 ,

νλ∂θ H (2)
2 + ∂θ E (2) = p′

2 ,

νλ∂θ E (2) + ∂θ H (2)
2 − ∂η H (2)

1 = p′
3 , for η < 0,

(8.18)
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and the jump conditions

⎧
⎪⎨

⎪⎩

(λ − v0
1)∂θϕ

(2) + v(2)
2 = r1 ,

B0
1∂θϕ

(2) − B(2)
2 = r2 , H 0

1 ∂θϕ
(2) − H (2)

2 = r3 ,

q(2) − H 0
1 H (2)

1 = r4 , E (2) + νλH 0
1 ∂θϕ

(2) = r5 , for η = 0,

(8.19)

where we have denoted

p1
.= (∂τ + λϕ(1)

θ ∂η)v
(1) + (v(1)

1 ∂θ + v(1)
2 ∂η − v0

1ϕ
(1)
θ ∂η)v

(1)

− (B(1)
1 ∂θ + B(1)

2 ∂η − B0
1ϕ

(1)
θ ∂η)B(1) −

(
ϕ(1)

θ ∂ηq(1)

0

)
,

p2
.= (∂τ + λϕ(1)

θ ∂η)B(1) + (v(1)
1 ∂θ + v(1)

2 ∂η − v0
1ϕ

(1)
θ ∂η)B(1)

− (B(1)
1 ∂θ + B(1)

2 ∂η − B0
1ϕ

(1)
θ ∂η)v

(1) ,

p3
.= −ϕ(1)

θ ∂ηv
(1)
1 ,

p′
1

.= ν(∂τ + λϕ(1)
θ ∂η)H (1)

1 , p′
2

.= ν(∂τ + λϕ(1)
θ ∂η)H (1)

2 + ϕ(1)
θ ∂η E (1) ,

p′
3

.= ν(∂τ + λϕ(1)
θ ∂η)E (1) + ϕ(1)

θ ∂η H (1)
2 ,

r1
.= (∂τ + v(1)

1 ∂θ)ϕ
(1) , r2

.= −B(1)
1 ∂θϕ

(1) ,

r3
.= −H (1)

1 ∂θϕ
(1) , r4

.= 1

2

(|H (1)|2 − (E (1))2
)
,

r5
.= −νλH (1)

1 ∂θϕ
(1) + νH 0

1 ∂τϕ
(1) .

The next step is the resolution of Eqs. (8.14)–(8.19).

8.4 The First Order Equations

We first solve system (8.14)–(8.16) by Fourier transformation. Introducing the
Fourier transforms

Û (1)(k, η, τ ) = 1

2π

∫ +∞

−∞
U (1)(θ, η, τ )e−ikθdθ,

V̂ (1)(k, η, τ ) = 1

2π

∫ +∞

−∞
V (1)(θ, η, τ )e−ikθdθ,

ϕ̂(1)(k, τ ) = 1

2π

∫ +∞

−∞
ϕ(1)(θ, τ )e−ikθdθ,
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and Fourier transforming (8.14)–(8.16) with respect to θ, we find a system of the
form

ikA Û (1) + B∂ηÛ (1) = 0 , η > 0 , (8.20)

with suitable real symmetric matricesA ,B. As shown in [11], the general solution
of (8.20) is

Û (1)(k, η, τ ) = a(k, τ )e−kηR + b(k, τ )ekηR , η > 0 , (8.21)

where

R = (λ − v0
1, i(λ − v0

1),−B0
1 ,−i B0

1 , d)T and d
.= (λ − v0

1)
2 − (B0

1 )
2.

Here a(k, τ ) and b(k, τ ) are arbitrary complex-valued functions, the bar denotes a
complex conjugate. The condition (8.9) at infinity implies

lim
η→+∞ Û (1)(k, η, τ ) = 0 , (8.22)

yielding from (8.21)

Û (1)(k, η, τ ) =
{

a(k, τ )e−kηR, if k > 0 ,

b(k, τ )ekηR, if k < 0 .
(8.23)

Then we consider problem (8.15) for η < 0. First of all we see that Ê (1) obeys the
equation

∂2
η Ê (1) + k2(ν2λ2 − 1)Ê (1) = 0 , η < 0 . (8.24)

Thus, in order to have
lim

η→−∞ V̂ (1)(k, η, τ ) = 0 (8.25)

(obtained from (8.10)), we need to prescribe in (8.24)

ν|λ| < 1. (8.26)

It is easily seen that the general solution of (8.15) is

Ĥ (1)
1 (k, η, τ ) = σ(λ)

iνλ

{
α(k, τ )eσ(λ)kη − β(k, τ )e−σ(λ)kη

}
, (8.27)

Ĥ (1)
2 (k, η, τ ) = − 1

νλ

{
α(k, τ )eσ(λ)kη + β(k, τ )e−σ(λ)kη

}
, (8.28)

Ê (1)(k, η, τ ) = α(k, τ )eσ(λ)kη + β(k, τ )e−σ(λ)kη , (8.29)
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where α(k, τ ) and β(k, τ ) are arbitrary complex-valued functions and

σ(λ)
.=

√
1 − ν2λ2 > 0 .

Finally, imposing the condition (8.25) at infinity to (8.27)–(8.29) we find that

V̂ (1)(k, η, τ ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α(k, τ )eσ(λ)kη

⎛

⎜
⎝

−iσ(λ)/νλ

−1/νλ

1

⎞

⎟
⎠, if k > 0 ,

β(k, τ )e−σ(λ)kη

⎛

⎜
⎝

iσ(λ)/νλ

−1/νλ

1

⎞

⎟
⎠, if k < 0 .

(8.30)

Next, we use the solution (8.23) and (8.30) in the jump conditions (8.16). First we
consider the case k > 0. Under the assumption λ − v0

1 	= 0 or B0
1 	= 0, the resulting

equations may be written as a linear system for the unknowns (a,α, kϕ̂(1)):

⎛

⎝
1 0 1
0 1 iνλH 0

1
d iσ(λ)H 0

1 /νλ 0

⎞

⎠

⎛

⎝
a
α

kϕ̂(1)

⎞

⎠ = 0. (8.31)

This system has a nontrivial solution if and only if

d = (λ − v0
1)

2 − (B0
1 )

2 = (H 0
1 )2σ(λ). (8.32)

Real roots λ of (8.26) and (8.32) do not exist for all stationary states (v0
1, B0

1 , H 0
1 ),

but only for those satisfying a suitable physical condition, as discussed in the fol-
lowing lemma.

Lemma 8.4.1 1. If |B0
1 | > |v0

1 | + 1/ν, Eq. (8.32) does not have any real root.
2. If |B0

1 | = |v0
1 | + 1/ν, for all |H 0

1 | > 0 and v0
1 	= 0 there exists one real root

λ = −sgn(v0
1)/ν. If v0

1 = 0 then λ = ±1/ν. Thus in any case |λ| = 1/ν.
3. If |v0

1 | − 1/ν ≤ |B0
1 | < |v0

1 | + 1/ν, for all |H 0
1 | > 0 there exist one or two real

roots λ of (8.32) such that |λ| < 1/ν.
4. If |B0

1 | < |v0
1 | − 1/ν, there exists H∗ > 0 such that, for all |H 0

1 | � H∗, there exist
two real roots λ of (8.32) such that |λ| < 1/ν (coincident roots if |H 0

1 | = H∗);
if |H 0

1 | < H∗ (8.32) does not have any real root.

Proof See [11].

We choose λ to be one of the values found in Lemma 8.4.1 such that |λ| < 1/ν (cases
3 and 4). Observe that for all such |λ| < 1/ν, from (8.32) there holds λ 	= v0

1 and
λ 	= v0

1 ± B0
1 , i.e. d 	= 0.
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The solution of (8.31) is then

a = −kϕ̂(1), α = −νλH 0
1 ikϕ̂(1) if k > 0 .

For k < 0 the analysis is similar and gives the solution

b = kϕ̂(1), β = −νλH 0
1 ikϕ̂(1) if k < 0 ,

under the same condition (8.32).
Summarizing these results, we have shown that when λ satisfies (8.26) and (8.32),

the solution of (8.14)–(8.16) and (8.22), (8.25) is given by

Û (1)(k, η, τ ) =
{

−|k|ϕ̂(1)(k, τ )e−kηR, if k > 0 ,

−|k|ϕ̂(1)(k, τ )ekηR, if k < 0 ,
(8.33)

V̂ (1)(k, η, τ ) = H 0
1 ϕ̂(1)(k, τ )eσ(λ)|k|η

⎛

⎝
−σ(λ)|k|

ik
−iνλk

⎞

⎠. (8.34)

This solution depends on the unknown function ϕ̂(1)(k, τ ), which describes the profile
of the surface wave, and will be determined through a solvability condition for the
equations for the second order corrections.

8.5 The Second Order Equations

We introduce the Fourier transforms

Û (2)(k, η, τ ) = 1

2π

∫ +∞

−∞
U (2)(θ, η, τ )e−ikθdθ,

V̂ (2)(k, η, τ ) = 1

2π

∫ +∞

−∞
V (2)(θ, η, τ )e−ikθdθ,

ϕ̂(2)(k, τ ) = 1

2π

∫ +∞

−∞
ϕ(2)(θ, τ )e−ikθdθ.

8.5.1 The Second Order Equations in the Plasma Region

Fourier transforming (8.17) with respect to θ gives the system of equations

ikA Û (2) + B∂ηÛ (2) = p̂ , η > 0 , (8.35)
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whereA ,B are the same matrices of (8.20). From (8.9), the solution of (8.35) must
satisfy the decay condition

lim
η→+∞ Û (2)(k, η, τ ) = 0 . (8.36)

In order to solve (8.35) and (8.36), we proceed as in [1, 11]. We look for a solution
of (8.35) in the form

Û (2)(k, η, τ ) = S(k, η, τ ) + a(k, η, τ )R + b(k, η, τ )R,

with a suitable vector-valued function S and scalar functions a, b. We look for S such
that

L · BS = L · BS = 0 ,

where L is an eigenvector of

L · (iA − B) = 0 ,

normalized by
L · BR = L · BR = 1 ,

that is

L = − 1

2id(λ − v0
1)
R .

In [11] we show that the solution S is given by

S =
(
1

k
L1 · p̂, 0,

1

k
L3 · p̂,

1

k
L4 · p̂, 0

)
T , (8.37)

where

L1 = 1

d

(−i(λ − v0
1), 0, i B0

1 , 0, 0
)

T , L3 = 1

d

(
i B0

1 , 0,−i(λ − v0
1), 0, 0

)
T ,

L4 =
(
0, 0, 0,− i

λ − v0
1

, 0

)
T .

As for a, b, they are given by

a(k, η, τ ) = e−kη

(
a0(k, τ ) +

∫ η

0
L · p̂(k, η′, τ )ekη′

dη′
)

, (8.38)

b(k, η, τ ) = ekη

(
b0(k, τ ) +

∫ η

0
L · p̂(k, η′, τ )e−kη′

dη′
)

, (8.39)
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where a0(k, τ ), b0(k, τ ) are arbitrary functions of integration, that will be chosen
later.

In order to verify the decay condition (8.36) for Û (2)(k, η, τ ), we first explicitly
calculate S(k, η, τ ) from (8.37). This is a very long expression that we don’t report
for the sake of brevity. The fact that we need here is that S depends on η only through
the exponentials of −|k|η and −(|k − �| + |�|)η, so that

lim
η→+∞ S(k, η, τ ) = 0 .

Thus Û (2)(k, η, τ ) satisfies (8.36) if and only if

lim
η→+∞ a(k, η, τ ) = 0 , (8.40)

lim
η→+∞ b(k, η, τ ) = 0 . (8.41)

From (8.38), (8.39), and the explicit calculation of L · p̂(k, η, τ ),L · p̂(k, η, τ ), it
follows that condition (8.40) is automatically satisfied if k > 0, and (8.41) is auto-
matically satisfied if k < 0. It follows that a0 remains undetermined for k > 0, and
b0 remains undetermined for k < 0. Instead, (8.38)–(8.41) may be used to determine
a0 if k < 0, and b0 if k > 0, as functions of ϕ̂(1):

a0(k, τ ) = −
∫ +∞

0
L · p̂(k, η′, τ )ekη′

dη′ , if k < 0 ,

b0(k, τ ) = −
∫ +∞

0
L · p̂(k, η′, τ )e−kη′

dη′ , if k > 0 . (8.42)

8.5.2 The Second Order Equations in Vacuum

We take the Fourier transform of (8.18) in θ for η < 0. The problem is easily solved
by substitution of ik Ĥ (2)

2 = ( p̂′
2 − ik Ê (2))/νλ in the other equations to give

∂2
η Ê (2) + k2(ν2λ2 − 1)Ê (2) = −P , η < 0 , (8.43)

where P = νλik p̂′
3 − ik p̂′

2 + ∂η p̂′
1. We solve (8.43) with the decay condition

lim
η→−∞ Ê (2)(k, η, τ ) = 0 ,
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then we substitute in the other equations to find the other components of V̂ (2)(k, η, τ )
and obtain

V̂ (2)(k, η, τ ) = α′(k, τ )eσ(λ)kη

⎛

⎝
σ(λ)
iνλ− 1

νλ
1

⎞

⎠ +
⎛

⎝
1

νλik p̂′
1

1
νλik p̂′

2
0

⎞

⎠

+ 1

2|k|σ(λ)

⎛

⎜
⎝

1
νλik

{∫ 0
−∞ e−σ(λ)|k||η−ζ|∂ζ P(k, ζ, τ ) dζ − e−σ(λ)|kη| P(k, 0, τ )

}

− 1
νλ

∫ 0
−∞ e−σ(λ)|k||η−ζ| P(k, ζ, τ ) dζ∫ 0

−∞ e−σ(λ)|k||η−ζ| P(k, ζ, τ ) dζ

⎞

⎟
⎠

if k > 0,

V̂ (2)(k, η, τ ) = β′(k, τ )e−σ(λ)kη

⎛

⎝
−σ(λ)

iνλ− 1
νλ
1

⎞

⎠ +
⎛

⎝
1

νλik p̂′
1

1
νλik p̂′

2
0

⎞

⎠

+ 1

2|k|σ(λ)

⎛

⎜
⎝

1
νλik

{∫ 0
−∞ e−σ(λ)|k||η−ζ|∂ζ P(k, ζ, τ ) dζ − e−σ(λ)|kη| P(k, 0, τ )

}

− 1
νλ

∫ 0
−∞ e−σ(λ)|k||η−ζ| P(k, ζ, τ ) dζ∫ 0

−∞ e−σ(λ)|k||η−ζ| P(k, ζ, τ ) dζ

⎞

⎟
⎠

if k < 0. Notice that we need to determine the arbitrary functions α′(k, τ ) if k > 0,
and β′(k, τ ) if k < 0.

8.5.3 The Second Order Jump Conditions

The first-order solution depends on the unknown function ϕ̂(1)(k, τ ), which describes
the profile of the surface wave, while the second order solution depends, in addition,
on unknown functions a0(k, τ ), b0(k, τ ) and α′(k, τ ),β′(k, τ ). Now we study the
second order jump conditions and show that they reduce to a singular linear system of
algebraic equations for (a0, b0,α′,β′, ϕ̂(2)), where ϕ̂(2)(k, τ ) is the Fourier transform
of the second-order displacement of the interface. Imposing solvability conditions
on this system gives the evolution equation for the function ϕ̂(1)(k, τ )we are looking
for.

We take the Fourier transform of (8.19), where we substitute the second order
corrections Û (2), V̂ (2) obtained in the previous sections, evaluated at η = 0.

Let us first assume k > 0, recalling that in this case we need to determine
a0(k, τ ),α′(k, τ ) and ϕ̂(2)(k, τ ) (for k > 0). In this case we obtain the linear system
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⎛

⎜⎜⎜⎜
⎝

1 0 1
1 0 1
0 1/νλ i H 0

1
d iσ(λ)H 0

1 /νλ 0
0 1 iνλH 0

1

⎞

⎟⎟⎟⎟
⎠

⎛

⎝
a0

α′
kϕ̂(2)

⎞

⎠ =

⎛

⎜⎜⎜⎜
⎝

r̂ ′
1

r̂ ′
2

r̂ ′
3

r̂ ′
4

r̂ ′
5

⎞

⎟⎟⎟⎟
⎠

, (8.44)

where r̂ ′
1, . . . , r̂ ′

5 depend on the first order corrections and b0 given by (8.42) (in case
k > 0 it is known). First of all we see that the first two lines of the matrix in the
left-hand side of (8.44) are equal, and we can also verify that r̂ ′

1 = r̂ ′
2. Moreover, the

last row of the matrix in (8.44) equals the third one multiplied by νλ, and actually
one verifies that r̂ ′

5 = νλr̂ ′
3. Thus (8.44) may be reduced to

⎛

⎝
1 0 1
0 1/νλ i H 0

1
d iσ(λ)H 0

1 /νλ 0

⎞

⎠

⎛

⎝
a0

α′
kϕ̂(2)

⎞

⎠ =
⎛

⎝
r̂ ′
1

r̂ ′
3

r̂ ′
4

⎞

⎠. (8.45)

The determinant of thematrix of this system is zero because of (8.32), i.e. the equation
defining λ. It is easily seen that the rank of this matrix is 2. Then, the linear system
(8.45) is solvable if and only if the rank of the augmented matrix is also equal to 2,
and this is true if the following condition holds:

dr̂ ′
3 + i H 0

1 r̂ ′
4 − i H 0

1 dr̂ ′
1 = 0 . (8.46)

Developing the terms in (8.46) we get the solvability condition for k > 0

μ0ϕ̂
(1)
τ (k, τ ) + i

∫ +∞

−∞
Λ+(k, �)ϕ̂(1)(k − �, τ )ϕ̂(1)(�, τ ) d� = 0 , (8.47)

where we have denoted

μ0 = 2
λ − v0

1

d
+ ν2λ

σ(λ)2
,

Λ+(k, �) = �
|k − �|(|k − �| − |�|) + (k − �)|�| − |k − �|�

|k − �| + |k| + |�| + (k − �)|�|(|�| − �)

|k| + |�|
−(k − �)|�| + σ(λ)

{
− k|�| + 1

2

(
(k + �)� − |k − �||�|)

}
.

Thus, when k > 0, system (8.45) is solvable if and only if ϕ̂(1) satisfies equation
(8.47) and then the rank of the augmented matrix of the system is equal to 2. Given
the solution ϕ̂(1) of (8.47) we compute Û (1), V̂ (1) from (8.33) and (8.34). Thus the
leading-order term of the asymptotic expansion is uniquely determined. From system
(8.45) we may obtain a0,α

′ in terms of an arbitrary second order wave profile ϕ̂(2),
and in turn Û (2), V̂ (2) from the expressions obtained in the previous sections. The
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wave profile ϕ̂(2) should be determined by considering higher order terms of the
asymptotic expansion, see [10].

The analysis for k < 0 is similar and leads to the solvability condition

μ0ϕ̂
(1)
τ (k, τ ) + i

∫ +∞

−∞
Λ−(k, �)ϕ̂(1)(k − �, τ )ϕ̂(1)(�, τ ) d� = 0 , (8.48)

where we have denoted

Λ−(k, �) = �
|k − �|(|k − �| − |�|) − (k − �)|�| + |k − �|�

|k − �| + |k| + |�| + (k − �)|�|(|�| + �)

|k| + |�|
−(k − �)|�| + σ(λ)

{
− k|�| − 1

2

(
(k + �)� − |k − �||�|)

}
.

Given the solution ϕ̂(1) of (8.48) we compute Û (1), V̂ (1) from (8.33) and (8.34). We
may get b0,β′ in terms of an arbitrary second order wave profile ϕ̂(2), and in turn
Û (2), V̂ (2) from the expressions obtained in the previous sections. Again, also for
k < 0 the wave profile ϕ̂(2) should be determined by considering higher order terms
of the asymptotic expansion, see [10].

8.5.4 The Kernel

The Eqs. (8.47) and (8.48) can be written in more compact form as

μ0ϕ̂
(1)
τ (k, τ ) + i

∫ +∞

−∞
Λ0(k, �)ϕ̂(1)(k − �, τ )ϕ̂(1)(�, τ ) d� = 0 , ∀k 	= 0 , (8.49)

with kernel

Λ0(k, �) =
{

Λ+(k, �) k > 0,

Λ−(k, �) k < 0,

where Λ± are defined after (8.47) and (8.48). This form is not convenient and so we
look for a different formula. First we write it as

Λ0(k, �) = sgn(k) �̃0(k − �, �),

so that the integral in (8.49) takes the form of a convolution product. Moreover, the
new kernel Λ̃0(k, �) can be equivalently replaced in (8.49) by the symmetrized kernel

Λ̃(k, �) = 1

2

(
Λ̃0(k, �) + Λ̃0(�, k)

)
,
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because the antisymmetric part of Λ̃0 gives a vanishing integral. Thus we can write
(8.49) as

μ0ϕ̂
(1)
τ (k, τ ) + i sgn(k)

∫ +∞

−∞
�̃(k − �, �) ϕ̂(1)(k − �, τ ) ϕ̂(1)(�, τ ) d� = 0 , (8.50)

for all k 	= 0. The explicit formula of Λ̃ is still rather complicated, see [11], but there
is the way to simplify it. First of all we verify that Λ̃ satisfies the following properties

Λ̃(k, �) = Λ̃(�, k) (symmetry), (8.51)

Λ̃(k, �) = Λ̃(−k,−�) (reality), (8.52)

Λ̃(αk,α�) = α2Λ̃(k, �) ∀α > 0 (homogeneity). (8.53)

Considering some particular cases we can considerably simplify Λ̃ as follows

Λ̃(k, �) =
{

−(1 + σ(λ))k� if k > 0, � > 0 ,

(1 + σ(λ))�(k + �) if k + � > 0, � < 0 .
(8.54)

Then the values of Λ̃ in the other regions of the (k, �)-plane follow from (8.51)–
(8.54). Finally Λ̃ can be written in a different way as

Λ̃(k, �) = −(1 + σ(λ))
2|k + �| |k| |�|

|k + �| + |k| + |�| , (8.55)

and, after an appropriate rescaling in time, we write (8.50) and (8.55) as

ϕ̂
(1)
τ (k, τ ) + i sgn(k)

∫ +∞
−∞

�(k − �, �) ϕ̂(1)(k − �, τ ) ϕ̂(1)(�, τ ) d� = 0 , ∀ k 	= 0 ,

(8.56)
with the new kernel Λ defined by

Λ(k, �) = 2|k + �| |k| |�|
|k + �| + |k| + |�| . (8.57)

The spacial form of (8.56) and (8.57) is, see [2, 5],

ϕ(1)
τ + 1

2
H[Φ2]θθ + Φϕ(1)

θθ = 0, Φ = H[ϕ(1)] ,

where H denotes the Hilbert transform. After renaming of variables it becomes (8.1)
and (8.2).

Equations (8.56) and (8.57) is well-known as it coincides with the amplitude
equation for nonlinear Rayleigh waves [5] and describes the propagation of surface
waves on a tangential discontinuity (current-vortex sheet) in incompressible MHD
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[1]. The derivation of the asymptotic equation (8.56) and (8.57) also for the plasma-
interface problem confirms that it is a canonical model equation for nonlinear surface
wave solutions of hyperbolic conservation laws, analogous to the inviscid Burgers
equation for bulk waves.

Λ, defined in (8.57), is perhaps the simplest kernel arising for surface waves. It
satisfies the properties

Λ(k, �) = Λ(�, k) (symmetry), (8.58)

Λ(k, �) = Λ(−k,−�) (reality), (8.59)

Λ(αk,α�) = α2Λ(k, �) ∀α > 0 (homogeneity), (8.60)

Λ(k + �,−�) = Λ(k, �) ∀k, � ∈ R (Hamiltonian). (8.61)

The value 2 of the scaling exponent in (8.60) is consistent with the dimensional
analysis in [2] for surface waves. It is shown by Alì et al. [2] that (8.61) is a sufficient
condition for (8.50), in addition to (8.58) and (8.59), to admit aHamiltonian structure,
see also [5, 6].

The results of Sects. 8.3 to 8.5 are summarized in the following theorem.

Theorem 8.5.1 Assume that v0
1, B0

1 , H 0
1 are as in (3) or (4) of Lemma 8.4.1, and

let λ be a real root of (8.32). Then the solution U = (v,B, q)T , V = (H, E)T , ϕ
of (8.4), (8.6)–(8.8) admits the asymptotic expansions (8.11)–(8.13) where the first
order terms of the expansion are defined in (8.33) and (8.34). The location of the
plasma-vacuum interface is given by

x2 = εϕ(1)(x1 − λt, εt) + O(ε2),

as ε → 0, with t = O(ε−1) and λ the linearized phase velocity of the surface wave.
After an appropriate rescaling in time, the Fourier transform of the leading order
perturbation ϕ(1)(θ, τ ) satisfies the amplitude equation (8.56) and (8.57).

We wish to stress that for the existence of surface waves propagating on the plasma-
vacuum interface, it is necessary to have a real root λ of (8.32) satisfying (8.26).
This is obtained if the basic state v0

1, B0
1 , H 0

1 is as in (3) or (4) of Lemma 8.4.1.

8.6 Noncanonical Variables and Well-Posedness

As in [7] we introduce the noncanonical dependent variable ψ(θ, τ ) defined by

ψ(θ, τ ) = |∂θ|1/2ϕ(1)(θ, τ ), ψ̂(k, τ ) = |k|1/2ϕ̂(1)(k, τ ).

Then rewriting Eq. (8.56) in terms of ψ gives
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ψ̂τ (k, τ ) + i k
∫ +∞

−∞
S(k − �, �) ψ̂(k − �, τ ) ψ̂(�, τ ) d� = 0 , ∀ k 	= 0 , (8.62)

with kernel S given by

S(k, �) = Λ(k, �)

|k�(k + �)|1/2 .

The definition of S is extended by setting

S(k, �) = 0 if k� = 0 .

The corresponding spatial form of (8.62) is

∂τψ + ∂θa(ψ,ψ) = 0 , (8.63)

where the bilinear form a is defined by

â(ψ,φ)(k, τ ) =
∫ +∞

−∞
S(k − �, �) ψ̂(k − �, τ ) φ̂(�, τ ) d�. (8.64)

(8.63) has the form of a nonlocal Burgers equation, like (2.8) in [7], or (1.1) in [3].

8.6.1 Well-Posedness of the Amplitude Equation

Weconsider the initial value problem for the noncanonical equation (8.63) and (8.64),
supplemented by an initial condition

ψ(θ, 0) = ψ0(θ). (8.65)

The well-posedness of (8.63)–(8.65) easily follows by adapting the proof of Hunter
[7] (given for the periodic setting) to our case.

Theorem 8.6.1 For any ψ0 ∈ H s(R), s > 2, the initial value problem (8.63)–(8.65)
has a unique local solution

ψ ∈ C(I ; H s(R)) ∩ C1(I ; H s−1(R))

defined on the time interval I = (−τ∗, τ∗), where

τ∗ = 1

Ks‖ψ0‖1−2/s
L2(R)

‖ψ0‖2/s
H s (R)

, (8.66)

for a suitable constant Ks.
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For a complete proof of Theorem 8.6.1 see [11]. The well-posedness result of The-
orem 8.6.1 may be easily recast as a similar result for (8.56) and (8.57).

Proof (Sketch of proof) The proof is based on the a priori estimate

∣
∣∣∣

d

dτ
‖ψ‖H s (R)

∣
∣∣∣ � CCs‖ψ0‖1−2/s

L2(R)
‖ψ‖1+2/s

H s (R), (8.67)

deduced from the properties (8.58)–(8.61) of the kernel. UsingGronwall’s inequality,
we deduce from (8.67) the bound

‖ψ(·, τ )‖H s (R) � ‖ψ0‖H s (R)

(
1 − 2CCs

s
‖ψ0‖1−2/s

L2(R)
‖ψ0‖2/s

H s (R)|τ |
)

−s/2, (8.68)

for |τ | < τ∗ where τ∗ is given by (8.66).
The rest of the proof follows from a standard Galerkin approximation. Given

any function f ∈ H s(R) with Fourier transform f̂ we define the finite dimensional
orthogonal projection

f N (θ) = PN f (θ) =
∫

|k|≤N
f̂ (k)eikθdk .

We consider the Galerkin approximation ψN = PN ψ, defined as the solution of the
approximate system of ODEs

{
∂τψ

N + PN ∂θa(ψN ,ψN ) = 0 ,

ψN (θ, 0) = PN ψ0(θ).
(8.69)

The approximate solutions ϕN satisfy the a priori estimate (8.68), uniformly in N .
By standard arguments we can extract a subsequence {ϕN } and pass to the limit in
(8.69) to obtain a solution of (8.63). The uniqueness of the solution follows by a
standard argument. See [11] for details.

In [11] we also obtain the following blow-up criterion.

Lemma 8.6.1 Under the assumptions of Theorem 8.6.1, if ψ ∈ C(0, T ; H s(R)) with
0 < T < +∞ is a solution of (8.63) such that

∫ T

0
‖ψ(·, τ )‖2/s ′

s ′ dτ < +∞

for some s ′ > 2, then ψ is continuable to a solution ψ ∈ C(0, T ′; H s(R))
with T ′ > T .

Proof See [11].
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8.6.2 Regularity of the First Order Terms U (1), V (1)

The resolution of (8.56) and (8.57) via the introduction of the noncanonical variable
ψ(θ, τ ), stated in Theorem 8.6.1, is the chief step. When this is achieved it is not
difficult to obtain the regularity of the other first order terms (8.33) and (8.34) of the
asymptotic expansions (8.11) and (8.12) as in the following lemma.

Lemma 8.6.2 For any ψ0 ∈ H s(R), with integer s > 2, let

ψ ∈ C(I ; H s(R)) ∩ C1(I ; H s−1(R))

be the solution of (8.63)–(8.65), given by Theorem 8.6.1. Let ϕ(1) be defined by
ψ(θ, τ ) = |∂θ|1/2ϕ(1)(θ, τ ), and Û (1), V̂ (1) be defined by (8.33) and (8.34). Then

U (1) ∈ C(I ; Hs(R2+)) ∩ C1(I ; Hs−1(R2+)), V (1) ∈ C(I ; Hs(R2−)) ∩ C1(I ; Hs−1(R2−)),

where R
2± = {(θ, η)| θ ∈ R,±η > 0}.

Proof For the proof it is convenient to introduce the homogeneous space Ḣ m(R)
(w.r.to the independent variable θ),

Ḣ m(R) =
{

u(θ) : R → R :
∫ +∞

−∞
|k|2m |û(k)|2 dk < +∞

}
,

normed by

‖u‖Ḣ m (R) =
(∫ +∞

−∞
|k|2m |û(k)|2dk

)
1/2.

Let us consider integers m, p � 0 such that m + p � s. For every τ ∈ I we have

‖∂ p
η U (1)(·, τ )‖2L2(R+

η ;Ḣ m (Rθ))
= ‖|k|m∂ p

η Û (1)(·, τ )‖2L2(R2+)
,

recalling that our Fourier transform is takenw.r.to θ. Substituting the definition (8.33)
gives

‖|k|m∂ p
η Û (1)(·, τ )‖2L2(R2+)

=
∫ ∞

0

∫

R

|k|2m+2|ϕ̂(1)(k, τ )|2|∂ p
η e−|k|η|2|R|2dkdη

= 1

2
|R|2

∫ ∞

0

∫

R

|k|2m+2p+1|ϕ̂(1)(k, τ )|22|k|e−2|k|ηdkdη

= 1

2
|R|2

∫

R

|k|2m+2p||k|1/2ϕ̂(1)(k, τ )|2dk = 1

2
|R|2‖ψ(·, τ )‖2Ḣ m+p(R)

.
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Adding overm, p � 0 such thatm + p � s givesU (1) ∈ L∞(I ; H s(R2+)). The same
calculation for a difference at times τ1, τ2 gives

‖∂ p
η U (1)(·, τ1) − ∂ p

η U (1)(·, τ2)‖L2(R+
η ;Ḣ m (Rθ))

≤ C‖ψ(·, τ1) − ψ(·, τ2)‖Ḣ m+p(R),

and adding again over m + p � s gives the time continuity of U (1) in H s(R2+), by
the time continuity of ψ in H s(R). Thus we have obtained U (1) ∈ C(I ; H s(R2+)).
The proof of U (1) ∈ C1(I ; H s−1(R2+)) is similar, thanks to the time continuity of ψτ

in H s−1(R). By the same arguments we prove the regularity of V (1).
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Chapter 9
On theR-Bounded Solution Operator and
the Maximal L p-Lq Regularity of the Stokes
Equations With Free Boundary Condition

Yoshihiro Shibata

Abstract In this paper, we consider the boundary value problem of Stokes opera-
tor arising in the study of free boundary problem for the Navier-Stokes equations
with surface tension in a uniform W 3−1/r

r domain of N -dimensional Euclidean
space R

N (N � 2, N < r < ∞). We prove the existence of R-bounded solution
operator with spectral parameter λ varying in a sector Σε,λ0 = {λ ∈ C | | arg λ| �
π − ε, |λ| � λ0} (0 < ε < π/2), and the maximal L p-Lq regularity with the help
of the R-bounded solution operator and the Weis operator valued Fourier multi-
plier theorem. The essential assumption of this paper is the unique solvability of
the weak Dirichlet-Neumann problem, namely it is assumed the unique existence
of solution p ∈ W 1

q (Ω) to the variational problem: (∇p,∇ϕ)Ω = ( f,∇ϕ)Ω for any
ϕ ∈ W 1

q ′ (Ω) with 1 < q < ∞ and q ′ = q/(q − 1), where W 1
q (Ω) is a closed sub-

space of Ŵ 1
q,Γ (Ω) = {p ∈ Lq,loc(Ω) | ∇p ∈ Lq(Ω)N , p|Γ = 0}with respect to gra-

dient norm ‖∇ · ‖Lq (Ω) that contains a space W 1
q,Γ (Ω) = {p ∈ W 1

q (Ω) | p|Γ = 0},
and Γ is one part of boundary on which free boundary condition is imposed. The
unique solvability of such weak Dirichlet-Neumann problem is necessary for the
unique existence of a solution to the resolvent problem with uniform estimate with
respect to spectral parameter varying in (λ0,∞), which was proved in Shibata [13].
Our assumption is satisfied for any q ∈ (1,∞) by the following domains: half space,
perturbed half space, bounded domains, layer, perturbed layer, straight cube, and
exterior domains with W 1

q (Ω) = Ŵ 1
q,Γ (Ω).

Keywords R-Boundedness · Stokes equations · Free boundary condition · Surface
tension ·UniformW 3−1/r

r domain ·Analytic semigroup ·Maximal L p-Lq regularity
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9.1 Introduction

Let Ω be a domain in the N dimensional Euclidean space R
N (N � 2), whose

boundary consists of two hypersurfaces Γ and Γ0. We assume that the distance
between Γ and Γ0 is positive, that Γ �= ∅, and that Γ0 = ∅ is admissible. Let t be the
time variable and x = (x1, . . . , xN ) ∈ R

N . In this paper, we consider the maximal
regularity of the non-stationary Stokes equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu − Div (μD(u) − pI) = f, div u = g in Ω × (0, T ),

∂t h − n · u = f on Γ × (0, T ),

{D(u) − pI − ((τ + δΔΓ )h)I}n = fb on Γ × (0, T ),

u = 0 on Γ0 × (0, T ),

(u, h)|t=0 = (u0, h0) in Ω × Γ,

(9.1)

and the existence ofR-bounded solution operators for the corresponding generalized
resolvent problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − pI) = f, div u = g in Ω,

λh − n · u = f on Γ,

{μD(u) − pI − ((τ + δΔΓ )h)I}n = fb on Γ,

u = 0 on Γ0

(9.2)

with spectral parameter λ varying inΣε,λ0 = {λ ∈ Σε | |λ| � λ0}with 0 < ε < π/2,
λ0 > 0 and Σε = {λ ∈ C \ {0} | | arg λ| � π − ε}. Here, unknowns are
u = 	(u1, . . . , uN ), p and h, where 	M denotes the transposed M , while
f = 	( f1, . . . , fN ), g, f , fb = 	( fb1, . . . , fbN ) are, in the order, prescribed
N -component vectors and scalar functions, and u0 and h0 are also prescribed
N -component vector and a scalar function.As for the remaining notations,μ and δ are
positive constants (the coefficients of viscosity and surface tension; the density of the
fluid is assumed to be one), I is the N × N identity matrix, andD(u) = ∇u + 	∇u is
the doubled deformation tensor whose (i, j) components are Di j (u) = ∂i u j + ∂ j ui
with ∂i = ∂/∂xi , ∂tu = (∂t u1, . . . , ∂t uN ) with ∂t = ∂/∂t , and ΔΓ is the Laplace-
Beltrami operator on Γ . Moreover, for any matrix field K with (i, j) compo-
nents Ki j , the quantity DivK is an N -vector with components

∑N
j=1 ∂ j Ki j . Also,

for any vector of functions v = 	(v1, . . . , vN ) we set div v = ∑N
j=1 ∂ j v j . Finally,

n = 	(n1, . . . , nN ) stands for the unit outer normal to Γ .
Problem (9.1) arises as a linearized systemof one phase free boundary problem for

the Navier-Stokes equations describing the motion of incompressible viscous fluids
with surface tension taken into account. To prove existence of solutions to problem
(9.1), one of standard methods is to use the technique of regularizers. Therefore,
we consider problem (9.1) locally in a neighbourhood of either an interior point
or a boundary point. The model problem for the interior points is the Stokes equa-
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tions in R
N , and therefore we can show the maximal L p regularity by applying the

Marcinkiewicz-Mikhlin-Lizorkin multiplier theorems to the solutions written by the
Fourier transform in the space-time variables. On the other hand, problem (9.1) in the
boundary neighbourhood is transformed to a problem in the half-space. Applying the
Fourier transformwith respect to time and tangent directions, problem (9.1) becomes
a system of ordinary differential equations, and we obtain the solution formula by
applying the inverse Fourier transform of the solution formulas for this ordinary dif-
ferential equations. To obtain the maximal L p regularity, Solonnikov [19] applied
the Marcinkiewicz-Mikhlin-Lizorkin multiplier theorems together with some Hardy
type inequality to the solution formulas in the half-space. The similar idea to [19]
was used for the same problem without surface tension by Mogilevskii [4, 5] and
Mucha and Zajaczkowski [6]. Prüss and Simonett [7, 8] proved the maximal L p

estimate by using the H ∞ calculus in the two phase model problem case. Shibata
and Shimizu [18] obtained even the maximal L p-Lq (L p in time and Lq in space)
regularity by applying the Weis operator valued Fourier multiplier theorem [20] to
the Laplace inverse transform of the solutions to (9.2) in the half-space written by
theR bounded solution operators.

To prove the existence of solutions of (9.1) in the domain Ω , we construct the
parametrix of the form: u = ∑

j φ j u j , where u j are solutions in the neighbour-
hood of interior points or the boundary points and the {φ j } j is the partition of unit
of Ω associated with the covering {Ω j } j having the finite intersection property
(cf. Proposition 9.5.1 (v) below). When the number of the covering is infinite, to
prove the convergence of the infinite sum:

∑
j φ j u j , we need the inequality

∑

j

∫ T

0

(∫

Ω j

| f (x, t)|q dx
)p/q

dt � C
∫ T

0

(∫

Ω

| f (x, t)|q dx
)p/q

dt. (9.3)

But, inequality (9.3) does seem to be valid only in the p = q case. Thus, in case
of p �= q we need a different idea from [6–8, 19]. In fact, Shibata [14] proved the
maximal L p-Lq regularity for (9.1) with τ = δ = 0 (without surface tension case)
in a general unbounded domain by constructing the R bounded solution operators
of (9.2) with τ = δ = 0 and applying the Weis operator valued Fourier multiplier
theorem to the Laplace inverse transform of solutions written by this R bounded
solution operators.

The purpose of this paper is to prove the maximal L p-Lq regularity of problem
(9.1) by using the R-bounded solution operators associated with problem (9.2) in
a general unbounded domain, which is the continuation of the work due to Shibata
[14]. To investigate solutions in the maximal L p-Lq regularity class with p �= q is
relevant for stability issues of global solutions in unbounded domains, since there,
we can expect only polynomially decay properties, so that we choose p large enough
freely to guarantee the global integrability in time (cf. Saito and Shibata [10] and
Schonbek and Shibata [12]).

In what follows, we state our assumptions and main results. To this end, we need
to recall some further notation used throughout the paper.
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Notation We denote the set of all complex numbers, real numbers and nat-
ural numbers by C, R, and N, respectively. Let N0 = N ∪ {0}. For any multi-
index α = (α1, . . . , αN ) ∈ N

N
0 we set ∂αx h = ∂

α1
1 · · · ∂αN

N h with ∂i = ∂/∂xi . Espe-
cially, for scalar, θ , and N -vector, u = 	(u1, . . . , uN ), functions and n ∈ N0, we
set∇nθ = (∂αx θ | |α| = n) and∇nu = (∇nu j | j = 1, . . . , N ). In particular,∇0θ =
θ , ∇1θ = ∇θ , ∇0u = u and ∇1u = ∇u. We use bold small letters to denote
N -vectors and bold capital letters to denote N × N matrices, respectively. For any
vectorsa = 	(a1, . . . , aN ) andb = 	(b1, . . . , bN ), leta · b =< a,b >= ∑N

j=1 a jb j

and let Tna = a− < a,n > n, which is the tangential part of a along n. Given
1 < q < ∞, we set q ′ = q/(q − 1). For any domain G in R

N , let Lq(G), Wm
q (G),

and Bs
q,p(G) be the usual Lebesgue space, Sobolev space, and Besov space on G,

while ‖ · ‖Lq (G), ‖ · ‖Wm
q (G), and ‖ · ‖Bs

q,p(G) denote their norms, respectively.Wewrite
W 0

q (G) = Lq(G), and Ws
q (G) = Bs

q,p(G). For a Banach space X with norm ‖ · ‖X ,
let

Xd = {( f1, . . . , fd) | fi ∈ X (i = 1, . . . , d)},

while the norm of Xd is written by ‖ · ‖X for short, that is ‖ f ‖X = ∑d
j=1 ‖ f j‖X for

f = ( f1, . . . , fd) ∈ Xd . Let Ŵ 1
q (G) = {θ ∈ Lq,loc(G) | ∇θ ∈ Lq(G)N } with semi-

norm ‖∇θ‖Lq (G). Let X1
q,0(G) = {θ ∈ X1

q(G) | θ |∂G = 0} with X ∈ {Ŵ ,W }. Let
(u, v)G = ∫

G u · v dx and (u, v)∂G = ∫
∂G u · v dω, where dω denotes the surface

element on ∂G. For 1 � p � ∞, L p((a, b), X) andWm
p ((a, b), X) denote the usual

Lebesgue space and Sobolev space of X -valued functions defined on an interval
(a, b), while ‖ · ‖L p((a,b),X) and ‖ · ‖Wm

p ((a,b),X) denote their norms, respectively.
Let C∞

0 (G) be the set of all C∞ functions whose supports are compact and con-

tained in G. For any γ ∈ R we set ‖eγ t f ‖L p((a,b),X) =
(∫ b

a (e
γ t‖ f (t)‖X )

p dt
)1/p

.

For two Banach spaces X and Y , L (X,Y ) denotes the set of all bounded lin-
ear operators from X into Y and L (X) is the abbreviation of L (X, X). For a
domain U in C, Hol (U,L (X,Y )) denotes the set of all L (X,Y )-valued holo-
morphic functions defined on U . Let Σε = {λ ∈ C \ {0} | | arg λ| � π − ε} and
Σε,λ0 = {λ ∈ Σε | |λ| � λ0}. Throughout the paper, the letterC denotes generic con-
stants andCa,b,c,··· means that the constantCa,b,c,··· depends on a, b, c, · · · . The value
of constants C and Ca,b,c,··· may change from line to line.

Now, we introduce some definitions.

Definition 9.1.1 Let 1 < r < ∞ and k = 2 or 3. We say that Ω is a uniform Wk,2
r

domain, if there exist positive constants α, β and K such that the following two
assertions hold:

• For any x0 = (x01, . . . , x0N ) ∈ Γ there exist a coordinate number j and a Wk−1/r
r

function h(x ′) defined on B ′
α(x

′
0) such that ‖h‖Wk−1/r

r (B ′
α(x

′
0))

� K , and

Ω ∩ Bβ(x0) = {x ∈ R
N | x j > h(x ′

j ) (x
′
j ∈ B ′

α(x
′
0 j ))} ∩ Bβ(x0),

Γ ∩ Bβ(x0) = {x ∈ R
N | x j = h(x ′

j ) (x
′
j ∈ B ′

α(x
′
0 j ))} ∩ Bβ(x0).

(9.4)
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• For any x0 = (x01, . . . , x0N ) ∈ Γ0 there exist a coordinate number j and aW 2−1/r
r

function h(x ′
j ) defined on B ′

α(x
′
0 j ) such that ‖h‖W 2−1/r

r (B ′
α(x

′
0 j ))

� K , and

Ω ∩ Bβ(x0) = {x ∈ R
N | x j > h(x ′

j ) (x
′
j ∈ B ′

α(x
′
0 j ))} ∩ Bβ(x0),

Γ0 ∩ Bβ(x0) = {x ∈ R
N | x j = h(x ′

j ) (x
′
j ∈ B ′

α(x
′
0 j ))} ∩ Bβ(x0).

(9.5)

Here, we have set

x ′
j = (x1, . . . , x j−1, x j+1, . . . , xN ), x ′

0 j = (x01, . . . , x0 j−1, x0 j+1, . . . , x0N ),

B ′
α(x

′
0 j ) = {x ′

j ∈ R
N−1 | |x ′

j − x ′
0 j | < α}, Bβ(x0) = {x ∈ R

N | |x − x0| < β}.

Remark 9.1.1 When Γ0 = ∅, Ω is called a uniform Wk−1/r
r domain. And, when

Γ = ∅, Ω is called a uniform W 2−1/r
r domain.

Definition 9.1.2 Let X and Y be two Banach spaces. A family of operators T ⊂
L (X,Y ) is called R-bounded on L (X,Y ), if there exist constants C > 0 and q ∈
[1,∞) such that for each n ∈ N, {Tj }nj=1 ⊂ T , and { f j }nj=1 ⊂ X , we have

∫ 1

0
‖

n∑

j=1

r j (u)Tj f j‖qY du � C
∫ 1

0
‖

n∑

j=1

r j (u) f j‖qX du. (9.6)

Here the Rademacher functions rk are given by rk(t) = sign(sin(2kπ t)) for t ∈ [0, 1]
(k ∈ N). The smallestC in (9.6) is calledR bound ofT onL (X,Y )which iswritten
byRL(X,Y )(T ) in what follows.

Remark 9.1.2 The definition of R-boundedness is independent of q ∈ [1,∞)

(cf. [2, p. 26 3.2. Remarks (2)]).

Finally, we introduce the weak Dirichlet-Neumann problem. Let

Ŵ 1
q,Γ (Ω) = {θ ∈ Lq,loc(Ω) | ∇θ ∈ Lq(Ω)N , θ |Γ = 0},

W 1
q,Γ (Ω) = {θ ∈ W 1

q (Ω) | θ |Γ = 0}.

Definition 9.1.3 Let 1 < q < ∞ and letW 1
q (Ω) be a closed subspace of Ŵ 1

q,Γ (Ω)

that contains W 1
q,Γ (Ω). Then, we say that the weak Dirichlet-Neumann problem is

uniquely solvable onW 1
q (Ω), if the following assertion holds: For any f ∈ Lq(Ω)N

there exists a unique θ ∈ W 1
q (Ω) which satisfies the variational equation:

(∇θ,∇ϕ)Ω = (f,∇ϕ)Ω for all ϕ ∈ W 1
q ′ (Ω), (9.7)
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and the estimate: ‖∇θ‖Lq (Ω) � Cq‖f‖Lq (Ω) for some constant Cq independent of
f , θ and ϕ. We define a bounded linear operator K1 ∈ L (Lq(Ω)N ,W 1

q (Ω)) by
K1(f) = θ with f ∈ Lq(Ω)N and θ ∈ W 1

q (Ω).

Remark 9.1.3 (1) Given f ∈ Lq(Ω)N and g ∈ W 1−1/q
q (Γ ), there exists a unique

u ∈ W 1
q (Ω) + W 1

q (Ω) that satisfies the variational equation:

(∇u,∇θ)Ω = (f,∇ϕ)Ω for any ϕ ∈ W 1
q ′ (Ω) (9.8)

subject to u = g on Γ , where

W 1
q (Ω) + W 1

q (Ω) = {p1 + p2 | p1 ∈ W 1
q (Ω), p2 ∈ W 1

q (Ω)}.

In fact, let T1
Γ : W 1−1/q

q (Γ ) → W 1
q (Ω) be a map such that for any g ∈ W 1−1/q

q (Γ ),
T1
Γ (g) ∈ W 1

q (Ω) satisfies the conditions:

T1
Γ (g) = g on Γ and ‖T1

Γ (g)‖W 1
q (Ω) � C‖g‖W 1−1/q

q (Γ )
(9.9)

with some constant C independent of g. For g ∈ W 1−1/q
q (Γ ), let

u = T1
Γ (g) + K1(f − T1

Γ (g)) ∈ W 1
q (Ω) + W 1

q (Ω) (9.10)

and then u satisfies (9.8). Obviously,

‖∇u‖Lq (Ω) � Cq(‖g‖W 1−1/q
q (Γ )

+ ‖f‖Lq (Ω)).

Especially, W 1
q (Ω) + W 1

q (Ω) is the space for the pressure.

Now, we state our main result. To this end, we introduce a space DIq(Ω) defined
by

DIq(Ω) = {g ∈ W 1
q (Ω) | there exists a G ∈ Lq(Ω)N

such that (g, ϕ)Ω = −(G,∇ϕ)Ω for any ϕ ∈ W 1
q ′,Γ (Ω)}. (9.11)

Let G (g) = {H ∈ Lq(Ω)N | divG = div H} and [G (g)] denotes the representative
elements of the set G (g). But [G (g)] is also written by G (g) for simplicity unless
confusionmay occur. The space DIq(Ω) is the space of data for divergence equation:
div u = g inΩ with n0 · u = 0 on Γ0,where n0 denotes the unit outer normal to Γ0.
We see that divG (g) = g inΩ and n0 · G (g) = 0 on Γ0. In fact, for any ϕ ∈ C∞

0 (Ω)

we have
(divG (g), ϕ)Ω = −(G (g),∇ϕ)Ω = (g, ϕ)Ω,
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which furnishes that divG (g) = g in Ω . Moreover, for any ψ ∈ C1
0(Γ0) we choose

ϕ ∈ W 1
q ′,Γ (Ω) in such a way that ϕ|Γ0 = ψ , and then,

(n0 · G (g), ψ)Γ0 = (divG (g), ϕ)Ω + (G (g),∇ϕ)Ω = (g, ϕ)Ω − (g, ϕ)Ω = 0,

which furnishes that n0 · G (g) = 0 on Γ0.
Let

‖g‖DIq (Ω) = ‖g‖W 1
q (Ω) + inf{‖H‖Lq (Ω) | H ∈ G (g)}

for g ∈ DIq(Ω), and then DIq(Ω) is a Banach space with norm ‖ · ‖DIq (Ω).
In this paper, we say that u ∈ W 1

q (Ω)N satisfies

div u = g in Ω, n0 · u|Γ0 = 0 (9.12)

if it holds that

(u,∇ϕ)Ω = (G (g),∇ϕ) for any ϕ ∈ W 1
q ′ (Ω). (9.13)

Note that whenW 1
q ′,Γ (Ω) is dense inW 1

q ′ (Ω), assertions (9.12) and (9.13) are equiv-
alent. Although (9.13) implies (9.12), the opposite direction can not be proved in
general.

Concerning the existence of R bounded solution operator for problem (9.2), we
have the following theorem.

Theorem 9.1.4 Let 1 < q < ∞, 0 < ε < π/2, N < r < ∞ and max(q, q ′) � r .
Assume thatΩ is a uniformW 3,2

r domain, and that theweakDirichlet-Neumannprob-
lem is uniquely solvable on W 1

m (Ω) for m = q and q ′. Let Jq(Ω) be the solenoidal
space defined by

Jq(Ω) = {f ∈ Lq(Ω)N | (f,∇ϕ)Ω = 0 for any ϕ ∈ W 1
q ′ (Ω)}, (9.14)

and let W 1
q,n(Ω) be the space for the boundary data defined by

W 1
q,n(Ω) = {fb ∈ W 1

q (Ω)N | < fb,n >= 0 on Γ }.

Let

Xq(Ω) = {(f, f, fb, g) | f ∈ Jq(Ω), f ∈ W 2
q (Ω),

fb ∈ W 1
q,n(Ω), g ∈ DIq(Ω)},

Xq(Ω) = {(F1, . . . , F7) | F1, F3, F5 ∈ Lq(Ω)N , F2 ∈ W 2−1/q
q (Γ ),

F4 ∈ W 1
q (Ω)N , F6 ∈ Lq(Ω), F7 ∈ W 1

q (Ω)}.

(9.15)

Then, there exist a constant λ0 � 1 and operator families:A(λ),P(λ) andH(λ)with



210 Y. Shibata

A(λ) ∈ Hol (Σε,λ0 ,L (Xq(Ω),W 2
q (Ω)N )),

P(λ) ∈ Hol (Σε,λ0 ,L (Xq(Ω),W 1
q (Ω) + W 1

q (Ω))),

H(λ) ∈ Hol (Σε,λ0 ,L (Xq(Ω),W 3−1/q
q (Γ )))

such that for any λ ∈ Σε,λ0 and (f, f, fb, g) ∈ Xq(Ω),

u = A(λ)Fλ(f, f, fb, g), p = P(λ)Fλ(f, f, fb, g), h = H(λ)Fλ(f, f, fb, g),

are unique solutions to (9.2), where

Fλ(f, f, fb, g) = (f, f, λ1/2fb, fb, λG (g), λ1/2g, g), (9.16)

and

RL (Xq (Ω),W 2− j
q (Ω)N )

({(τ∂τ )�(λ j/2A(λ)) | λ ∈ Σε,λ0}) � γ∗ ( j = 0, 1, 2),

RL (Xq (Ω),Lq (Ω)N )({(τ∂τ )�(∇P(λ)) | λ ∈ Σε,λ0}) � γ∗,

RL (Xq (Ω),W 3− j
q (Ω)N+1)

({(τ∂τ )�(λ jH(λ)) | λ ∈ Σε,λ0}) � γ∗ ( j = 0, 1)

with some constant γ∗ > 0 for � = 0, 1. Here and hereafter, λ represents a complex
number with λ = γ + iτ ∈ C.

Remark 9.1.4 (1) Here, F1, F2, F3, F4, F5, F6, and F7 are corresponding variables to
f , f , λ1/2fb, fb, λG (g), λ1/2g, and g, respectively. The norms ‖ · ‖Xq (Ω) and ‖ · ‖Xq (Ω)

of the spaces Xq(Ω) and Xq(Ω) are defined by

‖(f, f, fb, g)‖Xq (Ω) = ‖f‖Lq (Ω) + ‖g‖DIq (Ω) + ‖fb‖W 1
q (Ω),

‖(F1, . . . , F7)‖Xq (Ω) = ‖(F1, F3, F5, F6)‖Lq (Ω) + ‖(F4, F7)‖W̃ 1
q (Ω)

+ ‖F2‖W 2−1/q
q (Γ )

.

(9.17)

(2) Given f ∈ Lq(Ω) and fb ∈ W 1
q (Ω)N , let θ ∈ W 1

q (Ω) + W 1
q (Ω) be a solution to

the variational equation:

(∇θ,∇ϕ)Ω = (f,∇ϕ)Ω for any ϕ ∈ W 1
q ′Ω)

subject to θ = fb · n on Γ . If u, p and h satisfy the Eqs. (9.1), then u, p − θ and
h satisfy the Eqs. (9.1) replacing f and fb by f − ∇θ and fb− < fb,n > n. Thus,
without loss of generality we may assume that f ∈ Jq(Ω) and fb ∈ W 1

q,n(Ω).

To state the maximal L p-Lq regularity theorem for problem (9.1), we introduce the
space W−1

q (Ω) and its norm ‖ · ‖W−1
q (Ω) as follows: Let (1 − Δ)−1/2 be the opera-

tor defined by (1 − Δ)−1/2 f = F−1[(1 + |ξ |2)−1/4F [ f ]], where F and F−1 are
Fourier transform and Fourier inverse transform defined by
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F [ f ](ξ) =
∫

RN

e−i x ·ξ f (x) dx, F−1[g(ξ)] = 1

(2π)N

∫

RN

eix ·ξ g(ξ) dξ.

Let ι be an extension map from L1,loc(Ω) into L1,loc(R
N ) having the following

properties:
(e-1) For any 1 < q < ∞ and f ∈ W 1

q (Ω), ι f ∈ W 1
q (R

N ), ι f = f in Ω and

‖ι f ‖Wi
q (R

N ) � Cq‖ f ‖Wi
q (Ω)

for i = 0, 1 with some constant Cq depending on q, r and Ω .
(e-2) For any 1 < q < ∞ and f ∈ W 1

q (Ω),

‖(1 − Δ)−1/2ι(∇ f )‖Lq (RN ) � Cq‖ f ‖Lq (Ω)

with some constant Cq depending on q, r and Ω .

In the following, such extensionmap ι is fixed. Then, we define the spaceW−1
q (Ω)

and its norm ‖ · ‖W−1
q (Ω) by

W−1
q (Ω) = { f ∈ L1,loc(Ω) | (1 − Δ)−1/2ι f ∈ Lq(R

N )},
‖ f ‖W−1

q (Ω) = ‖(1 − Δ)−1/2ι f ‖Lq (RN ).

Our maximal L p-Lq regularity theorem for problem (9.1) is the following.

Theorem 9.1.5 Let 1 < q < ∞, 0 < ε < π/2, N < r < ∞, T > 0. Assume that
max(q, q ′) � r , that Ω is a uniform W 3,2

r domain, and that the weak Dirichlet-
Neumann problem is uniquely solvable on W 1

m (Ω) for m = q and q ′. Then, the
following unique existence theorem holds:

Let u0 ∈ B2(1−1/p)
q,p (Ω)N and h0 ∈ W 3−1/p−1/q

q,p (Γ ) be initial data for (9.1) and let
f , g, f , and fb be right members of (9.1) with

f ∈ L p((0, T ), Jq(Ω)), g ∈ L p((0, T ), DIq(Ω)N ) ∩ W 1
p((0, T ),W

−1
q (Ω))

G (g) ∈ W 1
p((0, T ), Lq(Ω)N ), f ∈ L p((0, T ),W

2−1/q
q (Γ )),

fb ∈ L p((0, T ),W
1
q,n(Ω)) ∩ W 1

p((0, T ),W
−1
q (Ω)N ).

Weassume that the initial data and right-members satisfy the compatibility condition:

u0 = 0 on Γ0, u0 − G (g)|t=0 ∈ Jq(Ω), μTnD(u0)n = Tnfb|t=0 on Ω. (9.18)

Then, problem (9.1) admits unique solutions u, p and h with

u ∈ L p((0, T ),W
2
q (Ω)N ∩ Jq(Ω)) ∩ W 1

p((0, T ), Lq(Ω)N ),

p ∈ L p((0, T ),W
1
q (Ω) + W 1

q (Ω)),

h ∈ L p((0, T ),W
2−1/q
q (Γ )) ∩ W 1

p((0, T ),W
3−1/q
q (Γ )), (9.19)
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possessing the estimate:

I ((0, t),u, p, h) � Ceγ tM (t,u0, h0, f, f, fb, g) (9.20)

for any t ∈ (0, T ] with some positive constants C and γ , where we have set

I ((0, t),u, p, h) = ‖u‖L p((0,t),W 2
q (Ω)) + ‖∂tu‖L p((0,t),Lq (Ω))

+ ‖∇p‖L p((0,t),Lq (Ω)) + ‖h‖L p((0,t),W
3−1/q
q (Γ ))

+ ‖∂t h‖L p((0,t),W
2−1/q
q (Γ ))

,

M (t,u0, h0, f, f, fb, g) = ‖u0‖B2(1−1/p)
q,p (Ω)

+ ‖h0‖B3−1/p−1/q
q,p (Γ )

+ ‖f‖L p((0,t),Lq (Ω)) + ‖∂tG (g)‖L p((0,t),Lq (Ω)) + ‖∂t (g, fb)‖L p((0,t),W
−1
q (Ω))

+ ‖(g, fb)‖L p((0,t),W 1
q (Ω)). (9.21)

Remark 9.1.5 (1) The third compatibility condition in (9.18) usually should read as

μTnD(u0)n = Tnfb|t=0 on Γ.

Both of μD(u0) and fb|t=0 belong to B1−2/p
q,p (Ω), but according to the trace theorem

due to Schneider [11], we do not have their boundary trace when 1 − 2/p � 1/q.
Thus, in this case, we can not impose the compatibility condition: μTnD(u0)n =
Tnfb|t=0 on Γ . On the other hand, in our approach, it is necessary to assume that
μTnD(u0)n = Tnfb|t=0, so that we assume that it holds on Ω , where n is suitably
extended toΩ . For the application to the nonlinear problem, the third compatibility
condition is naturally satisfied on Ω .
(2) As was discussed in Remark 9.1.3 (2), considering the pressure term p − θ

instead of p and noting the fact that Tn(fb) is independent of the value of< fb,n >,
without loss of generality we may assume that f ∈ L p((0, T ), Jq(Ω)) and fb ∈
L p((0, T ),W 1

q,n(Ω) ∩ W 1
p((0, T ),W

−1
q (Ω)N ).

Example 9.1.1 (1) WhenΩ is a bounded domain or an exterior domainwithΓ0 = ∅,
W 1

q (Ω) = Ŵ 1
q,Γ (Ω) (cf. [9, 17]).

(2) When Ω is a half-space and a bent half-space with Γ0 = ∅, we take W 1
q (Ω) =

Ŵ 1
q,0(Ω).

(3) Letϕ(x ′) (x ′ =(x1, . . . , xN−1))be a function inW
3−1/r
r (RN−1)with N < r < ∞.

Let

Hϕ = {x = (x1, . . . , xN ) ∈ R
N | xN > ϕ(x ′) (x ′ ∈ R

N−1)},
Γϕ = {x = (x1, . . . , xN ) ∈ R

N | xN = ϕ(x ′) (x ′ ∈ R
N−1)}.

Assume that there exists an R > 0 such that Ω ∩ BR = Hϕ ∩ BR and Γ ∩ BR =
Γϕ ∩ BR . Moreover, we assume that Γ is a hypersurface of W 3−1/r

r class and that
Γ0 = ∅. In this case, we take W 1

q (Ω) = Ŵ 1
q,0(Ω). Here, we have set BL = {x ∈

R
N | |x | > L} and BL = {x ∈ R

N | |x | < L} for any L > 0.
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(4) Let ϕ1(x ′) ∈ W 3−1/r
r (RN−1) and let ϕ2(x ′) ∈ W 2−1/r

r (RN−1), respectively.
Assume that ϕ2(x ′) < a < b < ϕ1(x ′) for any x ′ ∈ R

N−1 with some real numbers a
and b. Let

Hϕ1,ϕ2 = {x = (x1, . . . , xN ) ∈ R
N | ϕ2(x ′) < xN < ϕ1(x

′) (x ′ ∈ R
N−1)},

Γϕi = {x = (x1, . . . , xN ) ∈ R
N | xN = ϕi (x

′) (x ′ ∈ R
N−1)} (i = 1, 2).

Assume that there exists an R > 0 such that Ω ∩ BR = Hϕ1,ϕ2 ∩ BR , Γ ∩ BR =
Γϕ2 ∩ BR andΓ0 ∩ BR = Γϕ1 ∩ BR .Moreover, we assume thatΓ is the hypersurface
of W 3−1/r

r class and Γ0 the hypersurface of W
2−1/r
r class, respectively. In this case,

we take W 1
q (Ω) = Ŵ 1

q,Γ (Ω).

(5) Let D be a compact domain with W 3−1/r
r boundary in R

N−1 and let Ω = {x =
(x ′, xN ) | x ′ ∈ D, xN ∈ R} = D × R. In this case, we take W 1

q (Ω) = Ŵ 1
q,0(Ω).

Remark 9.1.6 In examples (2) (3) and (4), Ŵ 1
q,Γ (Ω) coincides with the closure of

W 1
q,Γ (Ω) with semi-norm ‖∇ · ‖Lq (Ω) (cf. Shibata [13, Appendix]).

The paper is organized as follows: In Sect. 9.2, we introduce the reduced Stokes
operators by eliminating the pressure term and the divergence equations and state
Theorem 9.2.1 concerning the existence of R-bounded solution operator for the
generalized resolvent problem of the reduced Stokes operators and Theorem 9.2.2
concerning the maximal L p-Lq regularity for the initial boundary value problem
of the reduced Stokes operators. In Sect. 9.3, the existence of R bounded solution
operators is proved in the case of model problems in R

N and in the half space with
free boundary condition and non-slip condition. In Sect. 9.4, the problems in bent
half-space are discussed. In Sect. 9.5, we prove Theorem 9.2.1 in a general domain by
constructing a parametrix. In Sect. 9.6, we prove Theorem 9.2.2 by applying theWeis
operator valued Fourier multiplier theorem [20] to the inverse Laplace transform of
solutions to (9.2) written by the R-bounded solution operator obtained in Theorem
9.1.4. Finally, in Sect. 9.7, according to what is pointed out in Sect. 9.2, we prove
Theorems 9.1.4 and 9.1.5 with the help of Theorems 9.2.1 and 9.2.2.

9.2 Reduced Stokes Problem

9.2.1 Equivalence Between Stokes and Reduced Stokes
Equations

In this section, eliminating the pressure term p and the divergence equation: div u = g
in (9.2), we deduce the reduced Stokes equations equivalent to the Eqs. (9.2). Let
K1 = K1(u) be a unique solution of the variational problem:

(∇K1(u),∇ϕ)Ω = (Div (μD(u)) − ∇div u,∇ϕ)Ω for any ϕ ∈ W 1
q ′ (Ω), (9.22)
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subject to K1(u) = μ < D(u)n,n > −div u on Γ , while K2(h) is a unique solution
of the variational problem:

(∇K2(h),∇ϕ)Ω = 0 for any ϕ ∈ W 1
q ′ (Ω), (9.23)

subject to K2(h) = −(τ + δΔΓ )h on Γ . In fact, as was seen in Remark 9.1.3, K1(u)
and K2(h) are defined by

K1(u) = g1 + K1(Div (μD(u)) − ∇div u − ∇g1),

K2(h) = −g2 + K1(∇g2).
(9.24)

with g1 = T1
Γ (μ < D(u)n,n > −div u) and g2 = T1

Γ {(τ + δΔΓ )h}. Obviously,
K1(u) and K2(h) belong to W 1

q (Ω) + W 1
q (Ω) and satisfy the estimates:

‖∇K1(u)‖Lq (Ω) � C‖∇u‖W 1
q (Ω),

‖∇K2(h)‖Lq (Ω) � C‖h‖W 3−1/q
q (Ω)

.
(9.25)

We consider the reduced Stokes equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − (K1(u) + K2(h))I) = f in Ω,

λh − n · u = f on Γ,

Tn(μD(u)n) = Tnfb, div u = n · fb on Γ,

u = 0 on Γ0.

(9.26)

Note that the third equations in (9.26) are equivalent to

(μD(u) − (K1(u) + K2(η))I)n − ((τ + δΔΓ )h)n = fb on Γ.

In what follows, we discuss the equivalence between (9.2) and (9.26). First, we
assume that (9.2) is uniquely solvable. Let f ∈ Lq(Ω)N , f ∈ W 2

q (Ω), and fb ∈
W 2

q (Ω)N . Let g ∈ W 1
q (Ω) be a unique solution of the variational equation:

λ(g, ϕ)Ω + (∇g,∇ϕ)Ω = −(f,∇ϕ)Ω for any ϕ ∈ W 1
q ′,Γ (Ω), (9.27)

subject to g = n · fb on Γ . The unique existence of g is guaranteed for large λ > 0
(cf. Theorem 9.6.2 in Sect. 9.6.2). In this case, we see that

G (g) = λ−1(∇g + f). (9.28)

Let u ∈ W 2
q (Ω)N , p ∈ W 1

q (Ω) + W 1
q (Ω) and h ∈ W 3−1/q

q (Γ ) be unique solutions
of (9.2), and then by (9.12), (9.13) and (9.28)
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div u = g in Ω, (u,∇ϕ)Ω = λ−1(∇g + f,∇ϕ) for any ϕ ∈ W 1
q ′ (Ω). (9.29)

On the other hand, by (9.22) and (9.23) for any ϕ ∈ W 1
q ′ (Ω) we have

(f,∇ϕ)Ω = (λu − Div (μD(u) − pI),∇ϕ)Ω

= λ(u,∇ϕ)Ω − (∇div u,∇ϕ)Ω − (Div (μD(u)) − ∇div u,∇ϕ)Ω + (∇p,∇ϕ)Ω

= λ(u,∇ϕ)Ω − (∇div u,∇ϕ)Ω + (∇(p − (K1(u) + K2(h))),∇ϕ)Ω,

which, combined with (9.29), furnishes that

(∇(p − (K1(u) + K2(h))),∇ϕ)Ω = 0 for any ϕ ∈ W 1
q ′ (Ω).

Moreover, by (9.22) and (9.23)

p − (K1(u) + K2(u))

=< μD(u)n,n > −(τ + δΔΓ )h− < fb,n > −K1(u) − K2(h)

= div u − n · fb = g − g = 0 on Γ,

because div u = g in Ω and g = n · fb on Γ . Thus, the uniqueness of solutions
implies that p = K1(u) + K2(h), which yields that u and h satisfy the Eqs. (9.26).

Conversely, we assume that problem (9.26) is uniquely solvable. In what follows,
we assume that

n · fb = 0 on Γ0, (f,∇ϕ)Ω = 0 for any ϕ ∈ W 1
q ′ (Ω). (9.30)

Given g ∈ DIq(Ω), let K ∈ W 1
q (Ω) + W 1

q (Ω) be a solution to the variational prob-
lem:

(∇K ,∇ϕ)Ω = (λG (g) − ∇g,∇ϕ)Ω for any ϕ ∈ W 1
q ′ (Ω), (9.31)

subject to K = −g on Γ . Let u and h be solutions of problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λu − Div (μD(u) − (K1(u) + K2(h))I) = f + ∇K in Ω,

λh − n · u = f on Γ,

Tn(μD(u)n) = Tn(fb + gn) = Tn(fb) on Γ,

div u = n · (fb + gn) = g on Γ,

u = 0 on Γ0.

(9.32)

By (9.30), (9.31) and (9.32),

(λG (g) − ∇g,∇ϕ)Ω = (∇K ,∇ϕ)Ω

= (λu − Div (μD(u) − (K1(u) + K2(h))I),∇ϕ)

= (λu,∇ϕ)Ω − (∇div u,∇ϕ)Ω for any ϕ ∈ W 1
q ′ (Ω). (9.33)
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Since W 1
q ′,Γ (Ω) ⊂ W 1

q ′ (Ω), by (9.33), (9.11) and the divergence theorem of Gauß

λ(div u, ϕ)Ω + (∇div u,∇ϕ)Ω

= λ(g, ϕ)Ω + (∇g,∇ϕ)Ω for any ϕ ∈ W 1
q ′,Γ (Ω),

so that

λ(g − div u, ϕ)Ω + (∇(g − div u),∇ϕ)Ω for any ϕ ∈ W 1
q ′,Γ (Ω).

Since div u = g onΓ , the uniqueness of solutions implies that div u = g inΩ , which
inserted into (9.33) yields that (u,∇ϕ)Ω = (G (g),∇ϕ)Ω for any ϕ ∈ W 1

q ′ (Ω). Thus,
in view of (9.12) and (9.13) we conclude that u, h and p = K1(u) + K2(h) − K
satisfy the Eqs. (9.2) under the assumptions (9.30).

9.2.2 On the R Bounded Solution Operators for the Reduced
Stokes Problem

From the observation in Sect. 9.2.1, in what follows we consider the reduced Stokes
equations (9.26) instead of Eqs. (9.2). For any domain D ∈ R

N , we set

Yq(D) = {(f, f, fb) | f ∈ Lq(D)
N , f ∈ W 2−1/q

q (∂D), fb ∈ W 1
q (D)

N },
Yq(D) = {(F1, F2, F3, F4) | F1, F3 ∈ Lq(D)

N , F2 ∈ W 2−1/q
q (∂D),

F4 ∈ W 1
q (Ω)N },

(9.34)

where ∂D is the boundary of D. And we set

‖(f, f, fb)‖Yq (D) = ‖f‖Lq (D) + ‖ f ‖W 2−1/q
q (∂D) + ‖fb‖W 1

q (D),

‖(F1, F2, F3, F4)‖Yq (D) = ‖(F1, F3)‖Lq (D) + ‖F2‖W 2−1/q
q (∂D) + ‖F4‖W 1

q (D),

for any (f, f, fb) ∈ Yq and (F1, F2, F3, F4) ∈ Yq(D), respectively. We prove the fol-
lowing theorem instead of Theorem 9.1.4.

Theorem 9.2.1 Let 1 < q < ∞, 0 < ε < π/2, N < r < ∞ and max(q, q ′) � r .
Assume that Ω is a uniform W 3,2

r domain, and that the weak Dirichlet-Neumann
problem is uniquely solvable on W 1

m (Ω) for m = q and q ′. Then, the following two
assertions hold.
(1) Existence There exist a constant λ0 � 1 and operator familiesA (λ) andH (λ)

with

A (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 2
q (Ω)N )),

H (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 3−1/q
q (Ω)))
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such that for any λ ∈ Σε,λ0 and (f, f, fb) ∈ Yq(Ω),

u = A (λ)Fλ(f, f, fb), h = H (λ)Fλ(f, f, fb),

where Fλ(f, f, fb) = (f, f, λ1/2fb, fb), are solutions to (9.26), and

RL (Yq (Ω),W 2− j
q (Ω)N )

({(τ∂τ )�(λ j/2A (λ)) | λ ∈ Σε,λ0}) � γ∗R ( j = 0, 1, 2),

RL (Yq (Ω),W 3− j
q (Ω))

({(τ∂τ )�(λ jH (λ)) | λ ∈ Σε,λ0}) � γ∗R ( j = 0, 1)

with some constant γ∗R > 0 for � = 0, 1.

(2)Uniqueness: There exists a λ0 � 1 such that if u ∈ W 2
q (Ω)N and h ∈ W 3−1/q

q (Γ )

satisfy the homogeneous equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − (K1(u) + K2(h))I) = 0 in Ω,

λh − n · u = 0 on Γ,

{μD(u) − (K1(u) + K2(h))I − ((τ + δΔΓ )h)I}n = 0 on Γ,

u = 0 on Γ0.

(9.35)

with λ ∈ Σε,λ0 , then u = 0 and h = 0.

9.2.3 Time Dependent Reduced Stokes Equations

In this subsection, we consider the time dependent problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu − Div (μD(u) − (K1(u) + K2(h))I) = f in Ω × (0, T ),

∂t h − n · u = f on Γ × (0, T ),

Tn(μD(u)n) = Tnfb, div u = n · fb on Γ × (0, T ),

u = 0 on Γ0 × (0, T ),

(u, h)|t=0 = (u0, h0) on Ω × Γ.

(9.36)

Concerning themaximal L p-Lq regularity for problem (9.36),we prove the following
theorem.

Theorem 9.2.2 Let 1 < q < ∞, 0 < ε < π/2, N < r < ∞, T > 0. Assume that
max(q, q ′) � r , that Ω is a uniform W 3,2

r domain, and that the weak Dirichlet-
Neumann problem is uniquely solvable onW 1

m (Ω) for m = q and q ′. Then, we have
the following unieque existence theorem:
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Let u0 ∈ B2(1−1/p)
q,p (Ω)N and h0 ∈ W 3−1/p−1/q

q,p (Γ ) be initial data for (9.1) and let
f , f , and fb be right members of (9.1) with

f ∈ L p((0, T ), Jq(Ω)), f ∈ L p((0, T ),W
2−1/q
q (Γ )),

fb ∈ L p((0, T ),W
1
q,n(Ω)) ∩ W 1

p((0, T ),W
−1
q (Ω)N ).

We assume that the following compatibility conditions are satisfied:

u0 = 0 on Γ0, μTnD(u0)n = Tnfb|t=0, div u0 = n · fb|t=0 on Ω. (9.37)

Then, problem (9.1) admits unique solutions u and h with

u ∈ L p((0, T ),W
2
q (Ω)N ∩ Jq(Ω)) ∩ W 1

p((0, T ), Lq(Ω)N ),

h ∈ L p((0, T ),W
3−1/q
q (Γ )) ∩ W 1

p((0, T ),W
2−1/q
q (Γ )), (9.38)

possessing the estimate:

IR(t,u, h) � Ceγ tMR(t,u0, h0, f, f, fb) (9.39)

for any t ∈ (0, T ] with some positive constants C and γ , where we have set

IR(t,u, h) = ‖u‖L p((0,t),W 2
q (Ω)) + ‖∂tu‖L p((0,t),Lq (Ω))

+ ‖h‖L p((0,t),W
3−1/q
q (Γ ))

+ ‖∂t h‖L p((0,t),W
2−1/q
q (Γ ))

MR(t,u0, h0, f, f, fb) = ‖u0‖B2(1−1/p)
q,p (Ω)

+ ‖h0‖B3−1/p−1/q
q,p (Γ )

+ ‖f‖L p((0,t),Lq (Ω))

+ ‖ f ‖L p((0,t),W
2−1/q
q (Γ ))

+ ‖∂t fb‖L p((0,t),W
−1
q (Ω)) + ‖fb‖L p((0,t),W 1

q (Ω)). (9.40)

Next, we consider the generation of analytic semigroup associated with the Eqs.
(9.36) with f = 0, f = 0 and fb = 0. Let

Hq(Ω) = {(u, h) | u ∈ Lq(Ω), h ∈ W 2−1/q
q (Γ )},

Dq(A ) = {(u, h) | u ∈ W 2
q (Ω), h ∈ W 3−1/q

q (Ω),u|Γ0 = 0,

Tn(μD(u)n) = 0, div u = 0 on Γ },
A (u, h) = (Div (μD(u) − (K1(u) + K2(h))I),n · u) for (u, h) ∈ Dq(A ).

Then, we have the following theorem.

Theorem 9.2.3 Let 1 < q < ∞, 0 < ε < π/2, N < r < ∞, T > 0. Assume that
max(q, q ′) � r , that Ω is a uniform W 3,2

r domain, and that the weak Dirichlet-
Neumann problem is uniquely solvable on W 1

m (Ω) for m = q and q ′. Then, the
operator A generates a continuous semigroup {T (t)}t�0 on Hq(Ω) which is ana-
lytic.

Moreover, if u0 ∈ Jq(Ω), then T (t)(u0, h0) ∈ Jq(Ω) for any t ∈ (0,∞).
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9.3 Reduced Stokes Equations in R
N and R

N+

9.3.1 Reduced Stokes Equations in R
N

In this subsection, let

DI0,q(R
N ) = {g ∈ W 1

q (R
N ) | there exists a G ∈ Lq(R

N )N

such that (g, ϕ)RN = −(G,∇ϕ)RN for any ϕ ∈ W 1
q ′(R

N )}.

Let G0(g) = {H ∈ Lq(R
N )N | divG = div H} and [G0(g)] denotes the representa-

tive elements of the set G0(g). But [G0(g)] is also written by G0(g) for simplicity
unless confusion may occur. We see that divG0(g) = g in R

N . For g ∈ DI0,q(RN ),
let

‖g‖W−1
q (RN ) = inf{‖H‖Lq (RN ) | H ∈ G0(g)}. (9.41)

We know that the weak Laplace equation:

(∇u,∇ϕ)RN = (f,∇ϕ)RN for any ϕ ∈ Ŵ 1
q ′(R

N )

is uniquely solvable for any f ∈ Lq(R
N ). In fact, we have u = Δ−1div f , so that

‖∇u‖Lq (RN ) � Cq‖f‖Lq (RN ).

For any u ∈ W 2
q (R

N ), let K (u) be a unique solution of the variational equation:

(∇K (u),∇ϕ)RN = (Div (μD(u)) − ∇div u,∇ϕ)RN for any ϕ ∈ Ŵ 1
q ′(R

N ).

Then, we consider the reduced Stokes equations:

λu − Div (μD(u) − K (u)I) = f in RN , (9.42)

and we prove the following theorem.

Theorem 9.3.1 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exists an operator
family S0(λ) ∈ Hol (Σε,L (Lq(R

N )N ,W 2
q (R

N )N )) such that for any λ ∈ Σε and
f ∈ Lq(R

N )N ,u = S0(λ)f is a unique solution of the reduced Stokes equation (9.42),
and

RL (Lq (RN )N ,W 2− j
q (RN )N )

{(τ∂τ )�(λ j/2S0(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0. Here and hereafter, cλ0 is some constant such
that supλ0�1 cλ0 is bounded and cλ0 → ∞ as λ0 → 0.

Inwhat follows, we prove Theorem9.3.1. Let g be a solution of the resolvent problem
for weak Laplace operator:
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(λg, ϕ)RN + (∇g,∇ϕ)RN = (f,∇ϕ)RN for any ϕ ∈ W 1
q ′(R

N ). (9.43)

And then, according to what was pointed out in Sect. 9.2.1, a solution u of the Stokes
equations:

λu − Div (μD(u) − pI) = f, div u = g in RN , (9.44)

with suitable pressure term p, is also a solution of the Eq. (9.42). Thus, we start with
the following lemma.

Lemma 9.3.2 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exists an operator
family G0(λ) ∈ Hol (Σε,L (Lq(R

N )N , DI0,q(RN ))) such that for any λ ∈ Σε and
f ∈ Lq(R

N )N , g = G0(λ)f is a unique solution of problem (9.43), and

RL (Lq (RN )N ,W 1− j
q (RN ))

({(τ∂τ )�(λ j/2G0(λ)) | λ ∈ Σε,λ0}) � cλ0 (9.45)

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

In what follows, F and F−1
ξ denote the Fourier transform and the inverse Fourier

transform defined by

F [ f ](ξ) =
∫

RN

e−iξ ·x f (x) dx, F−1
ξ [g(ξ)](x) = 1

(2π)N

∫

RN

eix ·ξ g(ξ) dξ,

respectively. To prove Lemma 9.3.2, we use the following three lemmas.

Lemma 9.3.3 (Theorem 3.3 in [3]) Let 1 < q < ∞ and let Λ be a set in C. Let
m = m(λ, ξ) be a function defined on Λ × (RN \ {0}) which is infinitely differen-
tiable with respect to ξ ∈ R

N \ {0} for each λ ∈ Λ. Assume that for any multi-index
α ∈ N

N
0 there exists a constant Cα depending on α and Λ such that

|∂αξ m(λ, ξ)| � Cα|ξ |−|α| (9.46)

for any (λ, ξ) ∈ Λ × (RN \ {0}). Let Kλ be an operator defined by

Kλ f = F−1
ξ [m(λ, ξ)F f (ξ)].

Then, the family of operators {Kλ | λ ∈ Λ} isR-bounded on L (Lq(R
N )) and

RL (Lq (RN ))({Kλ | λ ∈ Λ}) � Cq,N max
|α|�N+1

Cα (9.47)

with some constant Cq,N depending only on q and N.

Lemma 9.3.4 (a) Let X and Y be Banach spaces, and let T and S be
R-bounded families in L (X,Y ). Then, T + S = {T + S | T ∈ T , S ∈ S } is
also anR-bounded family inL (X,Y ) and

RL (X,Y )(T + S ) � RL (X,Y )(T ) + RL (X,Y )(S ).
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(b) Let X, Y and Z be Banach spaces, and let T andS beR-bounded families
inL (X,Y ) andL (Y, Z), respectively. Then,ST = {ST | T ∈ T , S ∈ S } also
anR-bounded family inL (X, Z) and

RL (X,Z)(ST ) � RL (X,Y )(T )RL (Y,Z)(S ).

(c) Let 1 < p, q < ∞ and let D be a domain in R
N . Let m = m(λ) be a

bounded function defined on a subset Λ in C and let Mm(λ) be a map defined
by Mm(λ) f = m(λ) f for any f ∈ Lq(D). Then, RL (Lq (D))({Mm(λ) | λ ∈ Λ}) �
CN ,q,D‖m‖L∞(Λ).

(d) Let n = n(τ ) be a C1-function defined on R \ {0} that satisfies the conditions
|n(τ )| � γ and |τn′(τ )| � γ with some constant c > 0 for any τ ∈ R \ {0}. Let Tn
be the operator-valued Fourier multiplier defined by Tn f = F−1(nF [ f ]) for any
f with F [ f ] ∈ D(R, Lq(D)). Then, Tn is extended to a bounded linear operator
from L p(R, Lq(D)) into itself. Moreover, denoting this extension also by Tn, we have

‖Tn‖L (L p(R,Lq (D))) � Cp,q,Dγ.

Here, D(R, Lq(D)) denotes the set of all Lq(D)-valued C∞ functions on R with
compact support.

Proof The assertions (a) and (b) follow from [2, p. 28, Proposition 3.4], and the
assertions (c) and (d) follow from [2, p. 27, Remarks 3.2] (see also Bourgain [1]). ��
Lemma 9.3.5 Let 0 < ε < π/2. Then, for any λ ∈ Σε and x � 0, we have

|λ + x | � (sin ε)(|λ| + |x |). (9.48)

Proof Let λ = |λ|eiθ with |θ | � π − ε, and then we have

|λ + x |2 = |λ|2 + 2x |λ| cos θ + x2 � |λ|2 − 2x |λ| cos ε + x2

= cos ε(|λ| − x)2 + (1 − cos ε)(|λ|2 + x2) � (1 − cos ε)(|λ|2 + x2)

� 2 sin2 ε(|λ|2 + x2) � {sin ε(|λ| + x)}2

which yields (9.48). ��

A proof of Lemma 9.3.2. Since C∞
0 (RN ) is dense in Lq(R

N ), we may assume
that f ∈ C∞

0 (RN )N . Let

G0(λ)f = −F−1
ξ

[F [div f](ξ)
λ + |ξ |2

]
(x) = −F−1

ξ

[ iξ · F [f](ξ)
λ + |ξ |2

]
(x)

= −
N∑

k=1

∂

∂xk
F−1

ξ

[F [ fk](ξ)
λ + |ξ |2

]
(x). (9.49)
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Obviously, g = G0(λ) satisfies the equation (λ − Δ)g = −div f in R
N , so that by

the divergence theorem of Gauß g also satisfies the variational Eq. (9.43). Let

B0(λ) f = F−1
ξ

[F [ f ](ξ)
λ + |ξ |2

]
, (9.50)

and then by Lemmas 9.3.3, 9.3.4 and 9.3.5, we have

B0(λ) ∈ Hol (Σε,L (Lq(R
N ),W 2

q (R
N ))),

RL (Lq (RN ),W 2− j
q (RN ))

({(τ∂τ )�(λ j/2B0(λ)) | λ ∈ Σε,λ0}) � cλ0 (9.51)

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0. Thus, in view of (9.49), we define G0(λ)

acting on f = 	( f1, . . . , fN ) by

G0(λ)f = −
N∑

k=1

∂

∂xk
B0(λ) fk,

and then, by (9.51) G0 has the properties stated in Lemma 9.3.2. This completes the
proof of Lemma 9.3.2. ��

Next, we consider the divergence equation:

div v = g in RN , (9.52)

where g is a solution of (9.43). Since v is represented by

v = −F−1
[ iξF [g](ξ)

|ξ |2
]
,

in view of (9.49), we define an operator S1(λ) by

S1(λ)f = F−1
ξ

[ ξξ · F [f](ξ)
|ξ |2(λ + |ξ |2)

]
,

and then by Lemmas 9.3.3, 9.3.4 and 9.3.5, we have the following lemma.

Lemma 9.3.6 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exists a S1(λ) ∈
Hol (Σε,L (Lq(R

N )N ,W 2
q (R

N )N )) such that for any λ ∈ Σε and f ∈ Lq(R
N )N ,

v = S1(λ)f is a solution of (9.52), where g is a solution of (9.43), and

RL (Lq (RN )N ,W 2− j
q (RN )N )

({(τ∂τ )�(λ j/2S1(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

Let u = v + w in (9.44) with v = S1(λ)f , and then w satisfies the equations:
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λw − Div (μD(w) − pI) = f̃ divw = 0 in RN (9.53)

with f̃ = f − (λv − Div (μD(v))).

Theorem 9.3.7 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exists S2(λ) ∈
Hol (Σε,L (Lq(R

N )N ,W 2
q (R

N )N )) such that for any λ ∈ Σε and f̃ ∈ Lq(R
N )N ,

w = S2(λ)f̃ is a unique solution of (9.53), and

RL (Lq (RN )N ,W 2− j
q (RN )N )

({(τ∂τ )�(λ j/2S2(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

Proof Applying divergence to (9.53), we have p = Δ−1div f , so that (λ − Δ)w =
f̃ − ∇Δ−1div f̃ . Thus, we have w = S2(λ)f̃ with

S2(λ)f̃ = F−1
ξ

[F [f̃](ξ) − ξξ · F [f̃](ξ)|ξ |−2

λ + |ξ |2
]
.

By Lemmas 9.3.3, 9.3.4 and 9.3.5, we have Theorem 9.3.7, which completes the
proof of Theorem 9.3.7. ��

Since u = v + w is a solution of the Eqs. (9.44), we define an operator family by

S0(λ)f = S1(λ)f + S2(λ)f − S2(λ)(λS1(λ)f − Div (μD(S1(λ)f)))

and then, by Lemmas 9.3.4, 9.3.6 and Theorem 9.3.7, we see thatS0(λ) satisfies the
properties stated in Theorem 9.3.1, which completes the proof of Theorem 9.3.1.

9.3.2 Reduced Stokes Equations in R
N+ with Free Boundary

Condition

Let

R
N
+ = {x = (x1, . . . , xN ) | xN > 0}, R

N
0 = {x = (x1, . . . , xN ) | xN = 0},

and n0 = (0, . . . , 0,−1). Recall that

Ŵ 1
q,0(R

N
+) = {u ∈ Lq,loc(R

N
+) | ∇u ∈ Lq(R

N
+)

N , u|xN=0 = 0},
W 1

q,0(R
N
+) = {u ∈ W 1

q (R
N
+) | u|xN=0},

In this subsection, let
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DIF,q(R
N
+) = {g ∈ W 1

q (Ω) | there exists a G ∈ Lq(R
N )N

such that (g, ϕ)RN = −(G,∇ϕ)RN for any ϕ ∈ W 1
q ′,0(R

N )}.

Let GF (g) = {H ∈ Lq(R
N )N | divG = div H} and [GF (g)] denotes the representa-

tive elements of the set GF (g). But [GF (g)] is also written by GF (g) for simplicity
unless confusion may occur. We see that divGF (g) = g in RN+ . For g ∈ DIF,q(RN ),
let

‖g‖W−1
q (RN+ ) = inf{‖H‖Lq (R

N+ ) | H ∈ GF (g)}. (9.54)

The weak Dirichlet problem:

(∇u,∇ϕ)RN+ = (f,∇ϕ)RN+ for any ϕ ∈ Ŵ 1
q ′,0(R

N )

is uniquely solvable for any f ∈ Lq(R
N )N with u ∈ Ŵ 1

q,0(R
N+). For anyu ∈ W 2

q (R
N+),

let KF1(u) ∈ W 1
q (R

N+) + W 1
q (R

N+) be a unique solution to the variational problem:

(∇KF1(u),∇ϕ)RN+ = (Div (μD(u)) − ∇div u,∇ϕ)RN+ (9.55)

for any ϕ ∈ Ŵ 1
q ′,0(R

N+), subject to KF1(u) =< μD(u)n0,n0 > −div u onRN
0 , while

for h ∈ W 3−1/q
q (RN−1) KF2(h) ∈ W 1

q (R
N+) + Ŵ 1

q,0(R
N+) be a unique solution to the

variational problem:

(∇KF2(h),∇ϕ)RN+ = 0 for any ϕ ∈ Ŵ 1
q ′,0(R

N
+) (9.56)

subject to KF2(h) = −(τ + δΔ′h) on RN
0 , where

Δ′h =
N−1∑

j=1

∂2

∂x2j
h.

We see that
‖∇KF1(u)‖Lq (R

N+ ) � C‖∇u‖W 1
q (R

N+ ),

‖∇KF2(h)‖Lq (R
N+ ) � C‖h‖W 3−1/q

q (RN+ )
.

(9.57)

In this subsection, we consider the following reduced Stokes equations:

⎧
⎪⎨

⎪⎩

λu − Div (μD(u) − (KF1(u) + KF2(h))I) = f in RN+ ,
λh − n0 · u = f on RN

0 ,

Tn0(μD(u)n0) = Tn0 fb, div u = n0 · fb on RN
0 .

(9.58)

The purpose of this subsection is to prove the following theorem.
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Theorem 9.3.8 Let 1 < q < ∞ and 0 < ε < π/2. Let Yq(RN+) and Yq(R
N+) be the

spaces defined in (9.34) with D = R
N+ . Then, there exist operator families SF0(λ)

and TF0(λ) with

SF0(λ) ∈ Hol (Σε,L (Yq(R
N
+),W

2
q (R

N
+)

N )),

TF0(λ) ∈ Hol (Σε,L (Yq(R
N
+),W

3−1/q
q (RN−1)))

such that for any λ ∈ Σε and (f, f, fb) ∈ Yq(RN+), problem (9.58) admits unique
solutions u = SF0(λ)Fλ(f, f, fb) and h = TF0(λ)Fλ(f, f, fb), where Fλ(f, f, fb) =
(f, f, λ1/2fb, fb), and

RL (Yq (R
N+ ),W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2SF0(λ)) | λ ∈ Σε,λ0}) � cλ0 ( j = 0, 1, 2),

RL (Yq (R
N+ ),W

3−1/q− j
q (RN+ ))

({(τ∂τ )�(λ jTF0(λ)) | λ ∈ Σε,λ0}) � cλ0 ( j = 0, 1)

for � = 0, 1 and any λ0 > 0.

In what follows, we prove Theorem 9.3.8. For this purpose, first we consider the
following resolvent problem for the weak Laplace-Dirichlet operator:

(λg, ϕ)RN+ + (∇g,∇ϕ)RN+ = (f,∇ϕ)RN+ for any ϕ ∈ W 1
q ′ (R

N
+) (9.59)

subject to g = n0 · fb on RN
0 . Then, according to what was pointed out in Sect. 9.2.1,

solutions u and h of the following equations:

⎧
⎪⎨

⎪⎩

λu − Div (μD(u) − pI) = f, div u = g in RN+ ,
λh − n0 · u = f on R

N
0 ,

(μD(u) − pI)n0 − ((τ + δΔ′)h)n0 = fb on R
N
0 .

(9.60)

are also solutions of problem (9.58).
In case of g = 0 in (9.60), we know the following theorem.

Theorem 9.3.9 Let 1 < q < ∞ and 0 < ε < π/2. Let Yq(RN+) and Yq(R
N+) be the

same spaces as in Theorem9.3.8. Then, there exist operator familiesSF1(λ),PF1(λ)

and TF1(λ) with

SF1(λ) ∈ Hol (Σε,L (Yq(R
N
+),W

2
q (R

N
+)

N )),

PF1(λ) ∈ Hol (Σε,L (Yq(R
N
+),W

1
q (R

N
+) + W 1

q (R
N
+))),

TF1(λ) ∈ Hol (Σε,L (Yq(R
N
+),W

3−1/q
q (RN

+)
N ))

such that for any λ ∈ Σε and (f, f, fb) ∈ Yq(RN+), problem (9.60) with g = 0 admits
unique solutions u = SF1(λ)Fλ(f, f, fb), p = PF1(λ)Fλ(f, f, fb) and
h = TF1(λ)Fλ(f, f, fb), and
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RL (Yq (R
N+ ),W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2SF1(λ)) | λ ∈ Σε,λ0}) � cλ0 ( j = 0, 1, 2),

RL (Yq (R
N+ ),Lq (R

N+ )N )({(τ∂τ )�(∇PF1(λ)) | λ ∈ Σε,λ0}) � cλ0 ,

RL (Yq (R
N+ ),W

3−1/q− j
q (RN+ ))

({(τ∂τ )�(λ jTF1(λ)) | λ ∈ Σε,λ0}) � cλ0 ( j = 0, 1)

for � = 0, 1 and any λ0 > 0.

Proof Since Theorem 9.3.9 was essentially proved in Shibata and Shimizu [18], we
may omit the proof. ��

Thus, we consider the divergence equation:

div v = g in RN
+ , (9.61)

where g is a solution of (9.59). The n0 · fb being renamed ρ in what follows, we
prove the following lemma.

Lemma 9.3.10 Let 1 < q < ∞ and 0 < ε < π/2. Let

Y 1
q (R

N
+) = {(f, ρ) | f ∈ Lq(R

N
+)

N , ρ ∈ W 1
q (R

N
+)},

Y 1
q (R

N
+) = {(F1, F8, F9) | F1 ∈ Lq(R

N
+)

N , F8 ∈ Lq(R
N
+), F9 ∈ W 1

q (R
N
+)}.

Then, we have the following assertions.

(a) There exists an operator family GF1(λ) ∈ Hol (Σε,L (Y 1
q (R

N+), DIF,q(RN+)))
such that for any λ ∈ Σε and (f, ρ) ∈ Y 1

q (R
N+), g = GF1(λ)(f, λ1/2ρ, ρ) be a unique

solution of problem (9.59) with ρ = n0 · fb, and

RL (Y 1
q (R

N+ ),W
1− j
q (RN+ ))

({(τ∂τ )�(λ j/2GF1(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1 and j = 0, 1, 2 and any λ0 > 0.

(b) Let g be the function given in (a). Then, there exists an operator family GF2(λ) ∈
Hol (Σε,L (Y 1

q (R
N+),W 2

q (R
N+)N )) such that for any λ ∈ Σε and (f, ρ) ∈ Y 1

q (R
N+),

problem (9.61) admits a solution v = GF2(λ)(f, λ1/2ρ, ρ), and

RL (Y 1
q (R

N+ ),W
2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2GF2(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

Remark 9.3.1 (1) The F8 and F9 are variables corresponding to λ1/2ρ and ρ.

Proof (a) Since C∞
0 (RN+) is dense in Lq(R

N+), we may assume that f ∈ C∞
0 (RN+)N .

In this case, we construct a solution g satisfying the Laplace equations of the strong
form

λg − Δg = −div f in RN
+ , g|xN=0 = ρ|xN=0. (9.62)
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For any function a defined on R
N+ , let

ae(x) =
{
a(x) (xN > 0),

a(x ′,−xn) (xN < 0),
ao(x) =

{
a(x) (xN > 0),

−a(x ′,−xn) (xN < 0).

The ae and ao are even and odd extensions of a to xN < 0, respectively. Let g1 be a
solution of the equation:

(λ − Δ)g1 = −(div f)o in RN , g1|xN=0,

which is defined by

g1 = GF3(λ)f with GF3(λ)f = −F−1
[F [(div f)o](ξ)

λ + |ξ |2
]
(x).

Since (div f)o = ∑N−1
j=1 ∂ j ( f oj ) + ∂N ( f eN ) as follows from f |xN=0 = 0, we have

g1 = GF3(λ)f = −F−1
[∑N−1

j=1 iξ jF [ f oj ](ξ) + iξNF [ f eN ](ξ)
λ + |ξ |2

]

= −
N−1∑

j=1

∂

∂x j
F−1

[F [ f oj ](ξ)
λ + |ξ |2

]
− ∂

∂xN
F−1

[F [ f eN ](ξ)
λ + |ξ |2

]
. (9.63)

Moreover, g1|xN=0 = 0. In fact,

ĝ1(ξ
′, 0) = − 1

2π

∫ ∞

−∞
dξN

λ + |ξ |2
∫ ∞

0
(e−iyN ξN − eiyN ξN )F ′[(div f)](ξ ′, yN ) dyN

= −
∫ ∞

0
F ′[div f](ξ ′, yN )

( 1

2π

∫ ∞

−∞
e−iyN ξN − eiyN ξN

λ + |ξ |2 dξN
)
dyN .

Here and hereafter, the partial Fourier transform with respect to x ′ = (x1, . . . , xN−1)

and its inversion formula are defined by

f̂ (ξ ′, xN ) = F ′[ f ](ξ ′, xN ) =
∫

RN−1
e−i x ′ ·ξ ′

f (x ′, xN ) dx ′,

F−1
ξ ′ [g(ξ ′, xN )](x ′) = 1

(2π)N−1

∫

RN−1
eix

′ ·ξ ′
g(ξ ′, xN ) dξ ′

with ξ ′ = (ξ1, . . . , ξN−1). By the residue theorem in the theory of one complex
varible, we have
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1

2π

∫ ∞

−∞
eiaξN

λ + |ξ |2 dξN = e−|a|B

2B
,

1

2π

∫ ∞

−∞
ξNeiaξN

λ + |ξ |2 dξN = −sign(a)
e−|a|B

2
(9.64)

for any a ∈ R \ {0}. Here and hereafte, B = √
λ + A2 with A = |ξ ′| and Re B > 0.

Thus, we have g1(x ′, 0) = 0.
By Lemmas 9.3.3 and 9.3.5, GF3(λ) ∈ Hol (Σε,L (Lq(R

N+),W 1
q (R

N+))), and

RL (Lq (R
N+ )N ,W

1− j
q (RN+ ))

({(τ∂τ )�(λ j/2GF3(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.
Next, we consider the equation:

(λ − Δ)g2 = 0 in RN
+ , g2|xN=0 = ρ|xN=0. (9.65)

Applying the partial Fourier transform to (9.65) we have

D2
N ĝ2 − (λ + |ξ ′|2)ĝ2 = 0 for xN > 0, ĝ2|xN=0 = ρ̂|xN=0. (9.66)

Let
g2(x) = F−1

ξ ′ [e−BxN ρ̂(ξ ′, 0)](x ′). (9.67)

We see that g2 satisfies (9.66). By the Volevich trick

a(xN )b(0) = −
∫ ∞

0

∂

∂yN
(a(xN + yN )b(yN )) dyN

and the identity:

1 = (λ + A2)B−2 = λB−2 −
N−1∑

j=1

(iξ j )(iξ j )B
−2,

we have

g2(x) = −
∫ ∞

0
F−1

ξ ′ [e−B(xN +yN )F ′[∂Nρ](ξ ′, yN )](x ′) dyN

+
∫ ∞

0
F−1

ξ ′ [Be−B(xN +yN )F ′[ρ](ξ ′, yN )](x ′) dyN

= −
∫ ∞

0
F−1

ξ ′

[λ1/2

B2
λ1/2e−B(xN +yN )F ′[∂Nρ](ξ ′, yN )

]
(x ′) dyN

−
∫ ∞

0
F−1

ξ ′

[ A

B2
Ae−B(xN +yN )F ′[∂Nρ](ξ ′, yN )

]
(x ′) dyN

+
∫ ∞

0
F−1

ξ ′

[ 1

B
λ1/2e−B(xN +yN )F ′[λ1/2ρ](ξ ′, yN )

]
(x ′) dyN
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−
N−1∑

j=1

∫ ∞

0
F−1

ξ ′

[ iξ j
A

1

B
Ae−B(xN +yN )F ′[∂ jρ](ξ ′, yN )

]
(x ′) dyN .

Moreover, using the identity:

e−B(xN+yN ) = −B−1 ∂

∂xN
e−B(xN+yN ),

we have

g2(x) = ∂

∂xN

{∫ ∞

0
F−1

ξ ′

[λ1/2

B3
λ1/2e−B(xN +yN )F ′[∂Nρ](ξ ′, yN )

]
(x ′) dyN

+
∫ ∞

0
F−1

ξ ′

[ A

B3
Ae−B(xN +yN )F ′[∂Nρ](ξ ′, yN )

]
(x ′) dyN

−
∫ ∞

0
F−1

ξ ′

[ 1

B2
λ1/2e−B(xN +yN )F ′[λ1/2ρ](ξ ′, yN )

]
(x ′) dyN

+
N−1∑

j=1

∫ ∞

0
F−1

ξ ′

[ iξ j
A

1

B2
Ae−B(xN +yN )F ′[∂ jρ](ξ ′, yN )

]
(x ′) dyN

}
.

Let GF4(λ)(F8, F9) = ∂
∂xN

GF5(λ)(F8, F9) with

GF5(λ)(F8, F9)

=
∫ ∞

0
F−1

ξ ′

[λ1/2

B3
λ1/2e−B(xN +yN )F ′[∂N F9](ξ ′, yN )

]
(x ′) dyN

+
∫ ∞

0
F−1

ξ ′

[ A

B3
Ae−B(xN +yN )F ′[∂N F9](ξ ′, yN )

]
(x ′) dyN

−
∫ ∞

0
F−1

ξ ′

[ 1

B2
λ1/2e−B(xN +yN )F ′[F8](ξ ′, yN )

]
(x ′) dyN

+
N−1∑

j=1

∫ ∞

0
F−1

ξ ′

[ iξ j
A

1

B2
Ae−B(xN +yN )F ′[∂ j F9](ξ ′, yN )

]
(x ′) dyN .

Obviously, g2(x) = G4(λ)(λ
1/2ρ, ρ). Let

Z 1
q (R

N
+) = {(F8, F9) | F8 ∈ Lq(R

N
+), F9 ∈ W 1

q (R
N
+)},

and then, we have

RL (Z 1
q (R

N+ ),W
2− j
q (RN+ ))

({(τ∂τ )�(λ j/2GF5(λ)) | λ ∈ Σε,λ0}) � cλ0 (9.68)

for � = 0, 1 and j = 0, 1, 2 and any λ0 > 0. If we prove (9.68), then, we have
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RL (Z 1
q (R

N+ ),W
1− j
q (RN+ ))

({(τ∂τ )�(λ j/2GF4(λ)) | λ ∈ Σε,λ0}) � cλ0 (9.69)

for � = 0, 1 and j = 0, 1, 2 and any λ0 > 0.
To prove (9.68), we use a lemma concerning the R boundedness of operators

defined on R
N+ . To state this lemma, we introduce some classes of multipliers.

Definition 9.3.11 Let V be a domain in C, let Ξ = (RN−1 \ {0}) × V , and let
m : Ξ → C, (ξ ′, λ) �→ m(ξ ′, λ) be C1 with respect to τ (where λ = γ + iτ ) and
C∞ with respect to ξ ′.

(1) m(ξ ′, λ) is called a multiplier of order s with type 1 on Ξ if there hold the
estimates:

|∂κ ′
ξ ′ m(ξ ′, λ)| � Cκ ′(|λ|1/2 + |ξ ′|)s−|κ ′|,

|∂κ ′
ξ ′ (τ∂τm(ξ

′, λ))| � Cκ ′(|λ|1/2 + |ξ ′|)s−|κ ′| (9.70)

for any multi-index κ ′ ∈ N
N−1
0 and (ξ ′, λ) ∈ Ξ with some constant Cκ ′ depend-

ing solely on κ ′ and Ξ .
(2) m(ξ ′, λ) is called a multiplier of order s with type 2 on Ξ if there hold the

estimates:
|∂κ ′
ξ ′ m(ξ ′, λ)| � Cκ ′(|λ|1/2 + |ξ ′|)s |ξ ′|−|κ ′|,

|∂κ ′
ξ ′ (τ∂τm(ξ

′, λ))| � Cκ ′(|λ|1/2 + |ξ ′|)s |ξ ′|−|κ ′| (9.71)

for any multi-index κ ′ ∈ N
N−1
0 and (ξ ′, λ) ∈ Ξ with some constant Cκ ′ depend-

ing solely on κ ′ and Ξ .

Let Ms,i (V ) be the set of all multipliers of order s with type i on Ξ (i = 1, 2).

Obviously, Ms,i (V ) are complex vector spaces. Moreover, the following lemma
follows from the inequality (|λ|1/2 + |ξ ′|)−|α′| � |ξ ′|−|α′| and the Leibniz rule imme-
diately.

Lemma 9.3.12 Let s1, s2 be two real numbers. Then, the following three assertions
hold.

(a) Given mi ∈ Msi ,1(V ) (i = 1, 2), we have m1m2 ∈ Ms1+s2,1(V ).
(b) Given �i ∈ Msi ,i (V ) (i = 1, 2), we have �1�2 ∈ Ms1+s2,2(V ).
(c) Given ni ∈ Msi ,2(V ) (i = 1, 2), we have n1n2 ∈ Ms1+s2,2(V ).

The estimate (9.68) follows immediately from the following lemma.

Lemma 9.3.13 Let 1 < q < ∞, 0 < ε < π/2 and λ0 > 0. Let

�0(ξ
′, λ) ∈ M−2,1(Σε,λ0), �1(ξ

′, λ) ∈ M−2,2(Σε,λ0).

If we define the operators L j (λ) ( j = 1, 2) by

[L1(λ) f ](x) =
∫ ∞

0
F−1

ξ ′ [�0(ξ ′, λ)λ1/2e−B(xN +yN )F ′[ f ](ξ ′, yN )](x ′) dyN ,
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[L2(λ) f ](x) =
∫ ∞

0
F−1

ξ ′ [�1(ξ, λ)Ae−B(xN +yN )F ′[ f ](ξ ′, yN )](x ′) dyN ,

then
RL (Lq (R

N+ ),W
2− j
q (RN ))

({(τ∂τ )�(λ j/2Li (λ)) | λ ∈ Σϑ }) � γ

for s = 0, 1, i = 1, 2 and j = 0, 1, 2 with some constant γ depending essentially on
ε and λ0.

Proof We can prove the lemma with the help of Lemma 5.4 in Shibata and Shimizu
[18] immediateley, so that we may omit the proof. ��

Let GF1(λ)(F1, F8, F9) = GF3(λ)F1 + GF4(λ)(F8, F9), and then GF1(λ) pos-
sesses the required properties. This completes the proof of the assertion (a).

(b) First, we construct a v1 satisfying the relation: div v1 = g1 inRN+ . Again, we may
assume that f ∈ C∞

0 (RN+)N . Recalling the definition of g1 given in (9.63), we define
v1 = 	(v1, . . . , vN ) by

v1 j = F−1
[−iξ jF [g1](ξ)

|ξ |2
]

= V1 j (λ)f

with

V1 j (λ)f = F−1
[∑N−1

k=1 ξ jξkF [ f ok ](ξ) + ξ jξNF [ f eN ](ξ)
|ξ |2(λ + |ξ |2)

]
.

Let GF6(λ) = 	(V11(λ), . . . ,V1N (λ)). By Lemmas 9.3.3 and 9.3.5, we see that
GF6(λ) ∈ Hol (Σε,L (Lq(R

N+)N ,W 2
q (R

N+)N )), that v1 = GF6(λ)f satisfies the rela-
tion: div v1 = g1 in RN+ , and that

RL (Lq (R
N+ )N ,W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2GF6(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.
Next, we construct a v2 satisfying the relation: div v2 = g2 in R

N+ . Recall that
g2 = ∂Nh with h = GF5(λ)(λ

1/2ρ, ρ). Thus, we define v2 = 	(v21, . . . , v2N ) by

v2 j (λ)ρ = −F−1
[ iξ jF [(∂Nh)o](ξ)

|ξ |2
]
.

Since (∂Nh)o = ∂N (he), we have

v2 j = F−1
[ξ jξNF [he](ξ)

|ξ |2
]
.

Let

GF7 j (λ)(F8, F9) = F−1
[ξ jξNF [{GF5(λ)(F8, F9)}e](ξ)

|ξ |2
]
,
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and then for any n ∈ N, {a�}n�=1 ⊂ C, {λ�}n�=1 ⊂ Σε, {(F8�, F9�)}n�=1 ⊂ Z 1
q (R

N+), and
m = 0, 1, 2, we have

n∑

�=1

a�GF7 j (λ�)(F8�, F9�) = F−1
[ξ jξN

|ξ |2 F [{
n∑

�=1

a�GF5(λ�)(F8�, F9�)}e](ξ)
]
,

and therefore,

‖
n∑

�=1

a�GF7 j (λ�)(F8�, F9�)‖Lq (RN ) � C‖
n∑

�=1

a�GF5(λ�)(F8�, F9�)‖Lq (R
N+ ).

Let GF7(λ) = 	(GF71, . . . ,GF7N (λ)), and then, by (9.68)

RL (Z 1
q (R

N+ ),W
2− j
q (RN+ ))

({(τ∂τ )�(λ j/2GF7(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0. Let GF2(λ)(F1, F8, F9) = GF6(λ)F1 +
GF7(λ)(F8, F9) and then GF2(λ) satisfies the properties stated in Lemma 9.3.10 (b),
which completes the proof of Lemma 9.3.10. ��

Let u be a solution of the Eqs. (9.60) and let w = u − v, where v is a solution of
the divergence equation (9.61). And then, w, p and h satisfy the equations:

⎧
⎪⎨

⎪⎩

λw − Div (μD(w) − pI) = f − λv + Div (μD(v)), divw = 0 in RN+ ,
λh − n0 · w = f + n0 · v on R

N
0 ,

(μD(w) − pI)n0 − ((τ + δΔ′)h)n0 = fb − μD(v)n0 on R
N
0 .

By Theorem 9.3.9 and Lemma 9.3.10, we have

u = v + SF1(λ)F, p = PF1(λ)F, h = TF1(λ)F

with

F = (f − λv + Div (μD(v)),n0 · v + f, λ1/2(fb − μD(v)n0), fb − μD(v)n0),

v = GF2(λ)(f, λ1/2n0 · fb,n0 · fb).

Aswas discussed in Sect. 9.2, p = KF1(u) + KF2(h), and thenu and h are the unique
solutions of problem (9.58). Thus, we define operators SF0(λ) and TF0(λ) by

SF0(λ)(F1, F2, F3, F4) = GF2(λ)(F1,n0 · F3,n0 · F4) + SF1(λ)(F1, F2, F3, F4)

+ SF1(λ)(F
1(λ)(F1, F3, F4))

TF0(λ)(F1, F2, F3, F4) = TF1(λ)(F1, F2, F3, F4) + TF1(λ)(F
1(λ)(F1, F3, F4))

with
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F 1(λ)F ′ = (F1(λ)F
′,F2(λ)F

′, λ1/2F3(λ)F
′,F3(λ)F

′) (F ′ = (F1, F3, F4)),

F1(λ)F
′ = −λGF2(λ)F

′′ + Div (μD(GF2(λ)F
′′)) (F ′′ = (F1,n0 · F3,n0 · F4)),

F2(λ)F
′ = n0 · GF2(λ)F

′′, F3(λ)F
′ = −μD(GF2(λ)F

′′).

By Theorem 9.3.9, Lemmas 9.3.10 and 9.3.4, operators SF0(λ) and TF0(λ) satisfy
the required properties in Theorem 9.3.8, which completes the proof of Theorem
9.3.8.

9.3.3 Reduced Stokes Equations in R
N+ with Non-slip

Boundary Condition

In this subsection, let

DID,q(R
N
+) = {g ∈ W 1

q (R
N
+) | there exists a G ∈ Lq(R

N
+)

N

such that (g, ϕ)RN+ = −(G,∇ϕ)RN+ for any ϕ ∈ W 1
q ′(R

N
+)}.

Let GD(g) = {H ∈ Lq(R
N+)N | divG = div H} and [GD(g)] denotes the representa-

tive elements of the set GD(g). But [GD(g)] is also written by GD(g) for simplicity
unless confusionmay occur.We see that div GD(g) = g inRN+ andGD(g) · n0|xN=0 =
0. For g ∈ DID,q(RN ), let

‖g‖W−1
q (RN+ ) = inf{‖H‖Lq (R

N+ ) | H ∈ GD(g)}. (9.72)

We know that the weak Neumann problem:

(∇u,∇ϕ)RN+ = (f,∇ϕ)RN+ for any ϕ ∈ Ŵ 1
q ′(R

N )

is uniquely solvable for any f ∈ Lq(R
N )N with u ∈ Ŵ 1

q (R
N+). For any u ∈ W 2

q (R
N+),

let KD(u) ∈ Ŵ 1
q (R

N+) be a unique solution to the variational problem:

(∇KD(u),∇ϕ)RN+ = (Div (μD(u)) − ∇div u,∇ϕ)RN+ (9.73)

for any ϕ ∈ Ŵ 1
q ′(RN+). We have

‖∇KD(u)‖Lq (R
N+ ) � C‖∇2u‖Lq (R

N+ ). (9.74)

In this subsection, we consider the following reduced Stokes equations:

λu − Div (μD(u) − KD(u)I) = f in RN
+ , u = 0 on R

N
0 . (9.75)
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The purpose of this subsection is to prove.

Theorem 9.3.14 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exists an operator
familySD0(λ) ∈ Hol (Σε,L (Lq(R

N+)N ,W 2
q (R

N+)N )) such that for any λ ∈ Σε and
f ∈ Lq(R

N+)N , problem (9.75) admits a unique solution u = SD0(λ)f , and

RL (Lq (R
N+ )N ,W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2SD0(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

Inwhat follows,weproveTheorem9.3.14. For this purpose,we consider the resolvent
problem for the weak Laplace-Neumann operator:

(λg, ϕ)RN+ + (∇g,∇ϕ)RN+ = (f,∇ϕ)RN+ for any ϕ ∈ Ŵ 1
q ′(R

N
+), (9.76)

and then, according to what was pointed out in Sect. 9.2.1, a solution u of the
equations:

λu − Div (μD(u) − pI) = f, div u = g in RN
+ , u = 0 on RN

0 , (9.77)

is also a solution of (9.75). Thus, we start with the following lemma.

Lemma 9.3.15 Let 1 < q < ∞ and 0 < ε < π/2. Then, we have the following
assertions.

(a) There exists an operator family GD1(λ) ∈ Hol (Σε,L (Lq(R
N+)N , DID,q(RN+)))

such that for any λ ∈ Σε and f ∈ Lq(R
N+)N , problem (9.76) admits a unique solution

g = GD1(λ)f , and

RL (Lq (R
N+ )N ,W

1− j
q (RN+ ))

({(τ∂τ )�(λ j/2GD1(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

(b) Let g be the function given in (a). We consider the divergence equation:

div v = g in RN
+ , n0 · v = 0 on R

N
0 . (9.78)

Then, there exists an operator family GD2(λ) ∈ Hol (Σε,L (Lq(R
N+)N ,W 2

q (R
N+)N ))

such that for any λ ∈ Σε and f ∈ Lq(R
N+)N , problem (9.78) admits a solution

v = GD2(λ)f , and

RL (Lq (R
N+ )N ,W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2GD2(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

Proof (a) Since C∞
0 (RN+) is dense in Lq(R

N+), we may assume that f ∈ C∞
0 (RN+)N .

Instead of (9.76), we consider a solution of the equations of the strong form:
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λg − Δg = −div f in RN
+ , ∂N g = 0 on R

N
0 . (9.79)

Let g = GD1(λ)f with

GD1(λ)f = −F−1
[F [(div f)e](ξ)

λ + |ξ |2
]
(x).

Since (div f)e = ∑N−1
j=1 ∂ j f ej + ∂N f oN , we have

GD1(λ)f = −F−1
[∑N−1

j=1 iξ jF [ f ej ](ξ) + iξNF [ f oN ](ξ)
λ + |ξ |2

]

= −
N−1∑

j=1

∂

∂x j
B0(λ) f

e
j − ∂

∂xN
B0(λ) f

o
N ,

(9.80)

where B0(λ) is the operator defined in (9.50).
Moreover, ∂N g|xN=0 = 0 and B0(λ) f oN |xN=0 = 0. In fact,

F ′[∂N g](ξ ′, 0)

= − i

2π

∫ ∞

−∞
ξN

λ + |ξ |2 dξN
∫ ∞

0
(e−iyN ξN + eiyN ξN )F ′[(div f)](ξ ′, yN ) dyN

= −i
∫ ∞

0
F ′[div f](ξ ′, yN )

( 1

2π

∫ ∞

−∞
ξN (e−iyN ξN + eiyN ξN )

λ + |ξ |2 dξN
)
dyN ;

F ′[B0(λ) f
o
N ](ξ ′, 0)

= − i

2π

∫ ∞

−∞
1

λ + |ξ |2 dξN
∫ ∞

0
(e−iyN ξN − eiyN ξN )F ′[ fN ](ξ ′, yN ) dyN

= −i
∫ ∞

0
F ′[ fN ](ξ ′, yN )

( 1

2π

∫ ∞

−∞
e−iyN ξN − eiyN ξN

λ + |ξ |2 dξN
)
dyN .

Thus, by (9.64), we have ∂N g|xN=0 = 0 and B0(λ) f oN |xN=0 = 0. Since (div f)e =
div f in RN+ , g satisfies (9.79).

By (9.51), we have

GD1(λ) ∈ Hol (Σε,L (Lq(R
N
+),W

1
q (R

N
+))),

RL (Lq (R
N+ )N ,W

1− j
q (RN+ ))

({(τ∂τ )�(λ j/2GD1(λ) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0. This completes the proof of the assertion
(a).

(b) Let g = GD1(λ)f be a function constructed in the proof of (a) above. Noting that
g is defined in RN , we define v(x) = 	(v1(x), . . . , vN (x)) with
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v j (x) = −F−1
[ iξ jF [g](ξ)

|ξ |2
]
(x).

And then, inserting the formula (9.80), we have v j = GD2 j (λ)f with

GD2 j (λ)f = −F−1
[∑N−1

k−1 ξ jξkF [ f ej ](ξ) + ξ jξNF [ f oN ](ξ)
|ξ |2(λ + |ξ |2)

]
.

Thus, letting GD2(λ)f = 	(GD21(λ)f, . . . ,FD2N (λ)f), we see that GD2(λ) has the
required properties in the assertion (b). ��

Next, we consider the Stokes equations:

λw − Div (μD(w) − pI) = f, divw = 0 in RN
+ , w = 0 on R

N
0 , (9.81)

and we prove the following theorem.

Theorem 9.3.16 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exists an operator
familySD1(λ) and PD1(λ) with

SD1(λ) ∈ Hol (Σε,L (Lq(R
N
+)

N ,W 2
q (R

N
+)

N )),

PD1(λ) ∈ Hol (Σε,L (Lq(R
N
+)

N ,W 1
q (R

N
+) + W 1

q (R
N
+))),

such that for any λ ∈ Σε and f ∈ Lq(R
N+)N , problem (9.81) admits unique solutions

w = SD1(λ)f and p = PD1(λ)f , and

RL (Lq (R
N+ )N ,W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2SD1(λ)) | λ ∈ Σε,λ0}) � cλ0 ,

RL (Lq (R
N+ )N )({(τ∂τ )�(∇PD1(λ)) | λ ∈ Σε,λ0}) � cλ0

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.

Proof Since Div (D(w)) = Δw if divw = 0, the Eqs. (9.81) are rewritten as

λw − μΔw + ∇p = f, divw = 0 in RN
+ , w = 0 on R

N
0 . (9.82)

Let w1 = SD2(λ)f = 	(SD21(λ)f, . . . ,SD2N (λ)f) and p1 = PD2f with

SD2 j (λ)f = F−1
[F [f̃](ξ) − |ξ |−2ξ jξ · F [f̃](ξ)

λ + μ|ξ |2
]
(x),

PD2f = F
[ξ · F [f̃](ξ)

|ξ |2
]
(x),

where f̃ has been defined by f̃ = 	( f e1 , . . . , f
e
N−1, f

o
N )) for f = 	( f1, . . . , fN ). We

have wN = SD2N (λ)f = 0 on R
N
0 . In fact, we observe that
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F ′[SD2N (λ)f](ξ ′, 0) =
∫ ∞

0
f̂N (ξ

′, yN )
( 1

2π

∫ ∞

−∞
e−iyN ξN − eiyN ξN

λ + μ|ξ |2 dξN
)
dyN

−
N−1∑

k=1

∫ ∞

0
ξk f̂k(ξ

′, yN )
( 1

2π

∫ ∞

−∞
ξN (e−iyN ξN + eiξN yN )

(λ + μ|ξ |2)|ξ |2 ) dξN
)
dyN

−
∫ ∞

0
f̂N (ξ

′, yN )
( 1

2π

∫ ∞

−∞
ξ 2N (e

−iyN ξN − eiξN yN )

(λ + μ|ξ |2)|ξ |2 dξN
)
dyN

By (9.64),

∫ ∞

0
f̂N (ξ

′, yN )
( 1

2π

∫ ∞

−∞
e−iyN ξN − eiyN ξN

λ + μ|ξ |2 dξN
)
dyN = 0.

Moreover, by the residue theorem in the theory of one complex variable, we have

1

2π i

∫ ∞

−∞
eiaξN

|ξ |2(λ + μ|ξ |2) dξN = μ−1 e−|a|A

B̃2 − A2
+ e−|a|B

A2 − B̃2
,

1

2π i

∫ ∞

−∞
eiaξN ξN

|ξ |2(λ + μ|ξ |2) dξN = μ−1sign (a)
[ i Ae−|a|A

B̃2 − A2
+ i Be−|a|B

A2 − B̃2

]
,

1

2π i

∫ ∞

−∞
eiaξN ξ 2N

|ξ |2(λ + μ|ξ |2) dξN = −μ−1
[ A2e−|a|A

B̃2 − A2
+ B2e−|a|B

A2 − B̃2

]

for any a ∈ R \ {0}, where we have set B̃ = √
λμ−1 + |ξ ′|2 with Re B̃ > 0, so that

we have w1 · n0|xN=0 = SD2N (λ)f |xN=0 = 0.
Moreover, by Lemmas 9.3.3 and 9.3.5, we have

SD2(λ) ∈ Hol (Σε,L (Lq(R
N
+)

N ,W 2
q (R

N
+)

N )),

PD2 ∈ L (Lq(R
N
+)

N ,W 1
q (R

N
+)),

RL (Lq (R
N+ )N ,W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2SD2(λ)) | λ ∈ Σε,λ0}) � cλ0 ,

RL (Lq (R
N+ )N )({(τ∂τ )�(∇PD2) | λ ∈ Σε,λ0}) � cλ0 ,

for � = 0, 1, j = 0, 1, 2 and any λ0 > 0.
Next, we consider the equations:

{
λw2 − Div (μD(w2) − p2I) = 0, divw2 = 0 in RN+ ,
w2 j = h j ( j = 1, . . . , N − 1), w2N = 0 on R

N
0

(9.83)

with w2 = 	(w21, . . . ,w2N ). Recalling that Div (μD(w2) − p2) = μΔw2 − ∇p2
when divw2 = 0 and applying the partial Fourier transform, we have



238 Y. Shibata

⎧
⎪⎨

⎪⎩

∂2N ŵ2 j − B̃2ŵ2 j + μ−1iξ j p̂2 = 0 ( j = 1, . . . , N − 1) for xN > 0,

∂2N ŵ2N − B̃2ŵ2N + μ−1∂N p̂2 = 0,
∑N−1

j=1 iξ j ŵ2 j + ∂N ŵ2N = 0 for xN > 0,

ŵ2 j = ĥ j ( j = 1, . . . , N − 1), ŵ2N = 0 for xN = 0.
(9.84)

For unknown complex numbers α j , β j and γ , we set

ŵ2 j = α j (e
−B̃xN − e−AxN ) + β j e

−B̃xN ( j = 1, . . . , N ), p̂2 = γ e−AxN ,

and inserting these formulas into (9.84) yields

− (A2 − B̃2)α j + μ−1iξ jγ = 0 ( j = 1, . . . , N − 1),

− (A2 − B̃2)αN − μ−1Aγ = 0,

i
N−1∑

j=1

ξ j (α j + β j ) − B̃(αN + βN ) = 0, i
N−1∑

j=1

ξ jα j − AαN = 0,

β j = ĥ j ( j = 1, . . . , N − 1), βN = 0.

Therefore, we have

ŵ2 j (ξ
′, xN ) = M̃ (xN )

iξ j
A

N−1∑

k=1

ξk ĥk(ξ
′, 0) + e−B̃xN ĥ j (ξ

′, 0) ( j = 1, . . . , N − 1),

ŵ2N (ξ
′, xN ) = M̃ (xN )

N−1∑

k=1

ξk ĥk(ξ
′, 0), M̃ (xN ) = e−B̃xN − e−AxN

B̃ − A
,

p̂2(ξ
′, xN ) = −μ(A + B̃)

N−1∑

k=1

ξk

A
ĥk(ξ

′, 0).

Thus, by the Volevich trick and the identity: 1 = λμ−1+A2

B̃2 , we have

w2 j (x)

= −
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ iξ jξk

μA2 B̃2
λ

1
2 AM̃ (xN + yN )F

′[λ 1
2 ∂Nhk](ξ ′, yN )

]
(x ′) dyN

+ i
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ iξ j

AB̃2
A2M̃ (xN + yN )F

′[∂k∂Nhk](ξ ′, yN )
]
(x ′) dyN

+
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ iξ jξk
A2 B̃2

Ae−B̃(xN +yN )F ′[(λμ−1 − Δ′)hk](ξ ′, yN )
]
(x ′) dyN

+
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ iξ jξk
A2 B̃2

A2M̃ (xN + yN )F
′[(λμ−1 − Δ′)hk](ξ ′, yN )

]
(x ′) dyN
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−
∫ ∞

0
F−1

ξ ′

[ 1

μB̃2
λ

1
2 e−B̃(xN +yN )F ′[λ 1

2 ∂Nh j ](ξ ′, yN )
]
(x ′) dyN

+
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ iξk

AB̃2
Ae−B̃(xN +yN )F ′[∂k∂Nh j ](ξ ′, yN )

]
(x ′) dyN

+
∫ ∞

0
F−1

ξ ′

[ λ
1
2

μB̃3
λ

1
2 e−B̃(xN +yN )F ′[(λμ−1 − Δ′)h j ](ξ ′, yN )

]
(x ′) dyN

+
∫ ∞

0
F−1

ξ ′

[ A

μB̃3
Ae−B̃(xN +yN )F ′[(λμ−1 − Δ′)h j ](ξ ′, yN )

]
(x ′) dyN

w2N (x)

= −
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ ξk

AB̃2
λ

1
2 AM̃ (xN + yN )F

′[λ 1
2 ∂Nhk](ξ ′, yN )

]
(x ′) dyN

+ i
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ 1

B̃2
A2M̃ (xN + yN )F

′[∂k∂Nhk](ξ ′, yN )
]
(x ′) dyN

+
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ ξk

AB̃2
Ae−B̃xN F ′[(λμ−1 − Δ′)hk](ξ ′, yN )

]
(x ′) dyN

+
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ ξk

AB̃2
A2M̃ (xN + yN )F

′[(λμ−1 − Δ′)hk](ξ ′, yN )
]
(x ′) dyN

p2(xN )

=i
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[
μe−A(xN +yN )F ′[∂k∂Nhk](ξ ′, yN )

]
(x ′) dyn

−
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[ξkλ
1
2

AB̃
e−A(xN +yN )F ′[λ 1

2 ∂Nhk](ξ ′, yN )
]
(x ′) dyn

+ i
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[μA

B̃
e−A(xN +yN )F ′[∂k∂Nhk](ξ ′, yN )

]
(x ′) dyn

−
N−1∑

k,�=1

∫ ∞

0
F−1

ξ ′

[μξ�
A

e−A(xN +yN )F ′[∂k∂�hk](ξ ′, yN )
]
(x ′) dyn

+
N−1∑

k=1

∫ ∞

0
F−1

ξ ′

[λ
1
2

B̃
e−A(xN +yN )F ′[λ 1

2 ∂khk](ξ ′, yN )
]
(x ′) dyn

−
N−1∑

k,�=1

∫ ∞

0
F−1

ξ ′

[μξ�
B̃

e−A(xN +yN )F ′[∂k∂�hk](ξ ′, yN )
]
(x ′) dyn (9.85)
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Let SD3 j (λ),SD3N (λ) and PD3(λ) be operators acting on (F10, F11, F12) with

F10 = (F10,1, . . . , F10,N−1) ∈ Lq (R
N+)N−1, F11 = (F11,1, . . . F11,N−1) ∈ W 1

q (R
N+)N−1,

F12 = (F12,11, . . . , F12,N−1) ∈ W 2
q (R

N+)N−1

defined by replacing λ1/2∂Nhk by ∂N F11.k , ∂k∂Nhk by ∂k∂N F12,k , λhk by F10,k , and
Δ′hk by Δ′F12,k in (9.85), respectively. Let SD3(λ) = 	(SD31(λ), . . . ,SD3N (λ))
and then, for any h′ = (h1, . . . , hN−1) ∈ W 2

q (R
N+)N−1 and λ ∈ Σε, w2 = SD3(λ)

FDλh′ and p2 = PD3(λ)FDλh′ with FDλh′ = (λh′, λ1/2h′,h′) are unique solutions
of problem (9.83). Moreover, let

Z 2
q (R

N+ )

= {(F10, F11, F12) | F10 ∈ Lq (R
N+ )N−1, F11 ∈ W 1

q (R
N+ )N−1, F12 ∈ W 2

q (R
N+ )N−1},

and then, we have

RL (Z 2
q (R

N+ ),W
2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2SD3(λ)) | λ ∈ Σε,λ0}) � cλ0 ,

RL (Z 2
q (R

N+ ),Lq (R
N+ )N )({(τ∂τ )�(∇PD3(λ)) | λ ∈ Σε,λ0}) � cλ0 , (9.86)

for � = 0, 1, j = 0, 1, 2 and λ0 > 0. To prove (9.86), we use Lemma 9.3.13 and the
following lemma due to Shibata and Shimizu [18].

Lemma 9.3.17 Let 1 < q < ∞, 0 < ε < π/2 and λ0 > 0. Given �1(ξ
′, λ) ∈

M−2,2(Σε,λ0), we define the operators Li (λ) (i = 3, 4, 5) by

[L3(λ) f ](x) =
∫ ∞

0
F−1

ξ ′ [�1(ξ ′, λ)Ae−A(xN +yN )F ′[ f ](ξ ′, yN )](x ′) dyN ,

[L4(λ) f ](x) =
∫ ∞

0
F−1

ξ ′ [�1(ξ ′, λ)A2M (xN + yN )F [ f ](ξ ′, yN )](x ′) dyN ,

[L5(λ) f ](x) =
∫ ∞

0
F−1

ξ ′ [�1(ξ ′, λ)λ1/2AM (xN + yN )F [ f ](ξ ′, yN )](x ′) dyN .

Then,
RL (Lq (R

N+ ),W
2− j
q (RN+ ))

({(τ∂τ )�(λ j/2Li (λ)) | λ ∈ Σϑ }) � γ

for s = 0, 1, j = 0, 1, 2, and i = 3, 4, 5 with some positive constant γ depending
on λ0, N , q, and ε.

If we set

SD1(λ)f = SD2(λ)f − SD3(λ)(λS
′
D2(λ)f, λ

1
2S ′

D2(λ)f, λS
′
D2(λ)f),

PD1(λ)f = PD2f − PD3(λ)(λS
′
D2(λ)f, λ

1
2S ′

D2(λ)f, λS
′
D2(λ)f),
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with S ′
D2(λ)f = (SD21(λ)f, . . . ,SD2N−1(λ)f), then SD1(λ) and PD1(λ) satisfy

the required properties in Theorem 9.3.16, which completes the proof of Theorem
9.3.16. ��

9.4 On the R Bounded Solution Operators in a Bent
Half-Space

9.4.1 Unit Outer Normal and Laplace-Beltrami Operator
in a Bent-Half Space

In this sectionwe consider (9.2) in a bent half-space. LetΦ : RN → R
N be a bijective

map of C1 class and letΦ−1 be its inverse map. We assume that ∇Φ and∇Φ−1 have
the forms:∇Φ(x) = A + B(x) and∇Φ−1(ξ) = A−1 + B−1(ξ), whereA andA−1

are orthonormalmatriceswith constant coefficients and B(x) and B−1(ξ) arematrices
of functions in W 2

r (R
N ) with N < r < ∞ such that

‖(B, B−1)‖L∞(RN ) � M1, ‖∇(B, B−1)‖W 1
r (R

N ) � M2. (9.87)

We will choose M1 small enough eventually, so that we may assume that 0 < M1 �
1 � M2. LetΩ+ = Φ(RN+) and let Γ+ = Φ(RN

0 ), which is the boundary ofΩ+. Let
n+ be the unit outer normal to Γ+. Setting Φ−1 = (Φ−1,1, . . . , Φ−1,N ), we see that
Γ+ is represented by Φ−1,N (ξ) = 0, which furnishes that

n+(x) = (∇Φ−1,N ) ◦ Φ(x)

|∇Φ−1,N | ◦ Φ(x)
= (aN1 + bN1(x), . . . , aNN + bNN (x))

(
∑N

j=1(aN j + bN j (x))2)1/2
, (9.88)

where we have set A−1 = (ai j ) and B−1 ◦ Φ(x) = (bi j (x)). The n+ is defined on
R

N and
‖n+‖L∞(RN ) � CN , ‖∇n+‖W 1

q (R
N ) � CM2 . (9.89)

Let gi j be the (i, j) component of the first fundamental matrix G on Γ+, which
is defined by

gi j =
N∑

k=1

∂Φk(x ′, 0)
∂xi

∂Φk(x ′, 0)
∂x j

= δi j + g̃i j (x
′, 0) (9.90)

with g̃i j (x) = ∑N
k=1(bki (x)akj + akibk j (x) + bki (x)bkj (x)), where δi j is the

Kronecker’s delta symbol. By (9.87),

‖g̃i j‖L∞(RN ) � CM1, ‖∇ g̃i j‖W 1
r (R

N ) � CM2 . (9.91)
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Let g
Γ+ = √

det G and G−1 = (gi j
Γ+
). Choosing M1 > 0 suitably small, by (9.91) we

may write gΓ+ = 1 + g̃ and gi jΓ+ = δi j + g̃i j with

‖(g̃, g̃i j )‖L∞(RN ) � CM1, ‖∇(g̃, g̃i j )‖W 1
r (R

N ) � CM2 . (9.92)

The Laplace-Beltrami operator ΔΓ+ is defined by

ΔΓ+ f (x ′) =
N−1∑

i, j=1

1

g
Γ+ (x ′,0)

∂

∂xi

(
g
Γ+ (x

′, 0)gi j
Γ+
(x ′, 0)

∂ f (x ′)
∂x j

)
.

Let

Δ′ f =
N−1∑

j=1

∂2 f

∂x2j
, D+ f =

N−1∑

i, j=1

g̃i j (x ′, 0)
∂2 f

∂xi∂x j
+

N−1∑

j=1

g̃ j (x ′, 0)
∂ f

∂x j
,

g̃ j =
N−1∑

i=1

(∂ g̃i j

∂xi
+

gi j
Γ+

g
Γ+

∂ g̃

∂xi

)
,

(9.93)

and then ΔΓ+ f = Δ′ f + D+ f . By (9.92) and the Sobolev imbedding theorem,

‖g̃ j‖W 1
r (R

N ) � CM2 . (9.94)

9.4.2 Reduced Stokes Equations with Free Boundary
Condition in a Bent-Half Space

First, we consider the generalized resolvent problem for the reduced Stokes equations
with free boundary condition. For v ∈ W 2

q (Ω+)N , let K 0+1(v) be a unique solution
to the variational problem:

(∇K 0
+1(v),∇ϕ)Ω+ − (Div (μD(v)) − ∇div v,∇ϕ)Ω+ for any ϕ ∈ Ŵ 1

q ′,0(Ω+)

subject to K 0+1(v) =< μD(v)n+,n+ > −div v on Γ+, while for h ∈ W 3−1/q
q (Γ+),

let K 0+2(h) be a unique solution to the variational problem:

(∇K 0
+2(h),∇ϕ)Ω+ = 0 for any ϕ ∈ Ŵ 1

q ′,0(Ω+)

subject to K 0+2(h) = −(τ + δΔΓ+)h on Γ+. And then, we consider the generalized
resolvent problem for the reduced Stokes operator with free boundary condition:
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⎧
⎪⎨

⎪⎩

λv − Div (μD(v) − (K 0+1(v) + K 0+2(h))I) = g in Ω+,
λh − n+ · v = g on Γ+,

(μD(v) − (K 0+1(v) + K 0+2(h))I − ((τ + δΔΓ+)h)I)n+ = gb on Γ+.
(9.95)

The purpose of this subsection is to prove.

Theorem 9.4.1 Let 1 < q < ∞ and 0 < ε < π/2. Let Yq(Ω+) and Yq(Ω+) be the
spaces defined in (9.34) with D = Ω+. Then, there exist positive numbers M1 > 0,
λ0 � 1, and operator families SF+(λ) and TF+(λ) with

SF+(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω+),W 2
q (Ω+)N )),

TF+(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω+),W 3−1/q
q (Γ+)N ))

such that for any λ ∈ Σε,λ0 and (g, g, gb) ∈ Yq(Ω+), problem (9.95) admits unique
solutions v = SF+(λ)(g, g, λ1/2gb, gb) and h = TF+(λ)(g, g, λ1/2gb, gb).

Moreover, we have

RL (Yq (Ω+),W 2− j
q (Ω+)N )({(τ∂τ )�(λ j/2SF+(λ)) | λ ∈ Σε,λ0}) � γ+1,

RL (Yq (Ω+),W 3−1/q−k
q (Γ+))({(τ∂τ )�(λkTF+(λ)) | λ ∈ Σε,λ0}) � γ+1

for � = 0, 1, j = 0, 1, 2, k = 0, 1 with some positive constant γ+1 depending on λ0,
M2, N , q and ε.

In what follows, we prove Theorem 9.4.1. For this purpose, we use the symbols
given in Sect. 9.4.1. By the change of variable: ξ = Φ(x), we have

∂

∂ξ j
=

N∑

k=1

(akj + bkj (x))
∂

∂xk
. (9.96)

Thus, the variational equation:

(∇u,∇ϕ)Ω+ = (g,∇ϕ)Ω+ for any ϕ ∈ Ŵ 1
q ′,0(Ω+)

subject to u = g on Γ+ is transformed to the variational equation:

(∇v,∇ψ)RN+ + (B0∇v,∇ψ)RN+ = (h,∇ψ)RN+ for any ψ ∈ W 1
q ′,0(R

N
+) (9.97)

subject to v = f on R
N
0 , where h = det G(A−1 + B−1 ◦ Φ)g ◦ Φ, f = g ◦ Φ,

v = u ◦ Φ, ψ = ϕ ◦ Φ, and B0 is an N × N matrix whose (k, �) component pk�
is given by

pk� = δk�(detG − 1) +
N∑

j=1

(bkja�j + akjb�j + bkjb�j ) det G. (9.98)
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Since N < r < ∞, by the Sobolev imbedding theorem, ‖∇bi j‖L∞(RN ) �
‖∇bi j‖W 1

r (R
N ), and therefore by (9.87) we have

‖(detG − 1, pk�)‖L∞(RN ) � CM1, ‖(∇ detG,∇ pk�)‖W 1
r (R

N ) � CM2 . (9.99)

Choosing M1 > 0 small enough and using the Banach fixed point theorem, we can
easily prove the following lemma.

Lemma 9.4.2 Let 1 < q < ∞. Then, there exist M1 ∈ (0, 1) and an operator K2

with
K2 ∈ L (Lq(R

N
+)

N ,W 1
q (R

N
+) + Ŵ 1

q,0(R
N
+))

such that for any f ∈ Lq(R
N+)N and f ∈ W 1−1/q

q (RN−1), v = K2(f, f ) is a unique
solution to the variational problem (9.97) possessing the estimate:

‖∇K2(f, f )‖Lq (R
N+ ) � C{‖f‖Lq (R

N+ ) + ‖ f ‖W 1−1/q
q (RN−1)

}.

Next, we transform problem (9.95) to problem in the half-space by the change of
variable: ξ = Φ(x). Given v ∈ W 2

q (Ω+), we set u = A−1v ◦ Φ, and then

∂vi
∂ξ j

+ ∂v j
∂ξi

=
N∑

k,�=1

(akia�j + akja�i )
∂u�
∂xk

+ bdi j : ∇u (9.100)

wherebdi j is the N × N matrixwhose (k, �) component isbkia�j + bkja�i andbdi j : ∇u
means that

bdi j : ∇u =
N∑

k,�=1

(bkia�j + bkja�i )
∂u�
∂xk

. (9.101)

By (9.87), we have

‖bdi j‖L∞(RN ) � CM1, ‖∇bdi j‖W 1
r (R

N ) � CM2. (9.102)

Since
∑N

k=1 a
2
Nk = 1, setting Bn = {∑N

k=1(aNk + bNk(x))2}−1 − 1, by (9.87) we
have

‖Bn‖L∞(RN ) � CM1, ‖∇Bn‖W 1
q (R

N ) � CM2 , (9.103)

and therefore, we have

< D(v)n+,n+ >=< D(u)n0,n0 > +B1 : ∇u (9.104)
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where n0 = (0, . . . , 0,−1) and B1 is an N × N matrix whose (k, �) componet is

2BnδNN + (1 + Bn)[
N∑

i, j=1

{aN jbNi + bN j (aNi + bNi )}(akia�j + akja�i )

+
N∑

i, j=1

(aN j + bN j )(aNi + bNi )(bkia�j + bkja�i )].

By (9.87) we have

‖B1 : ∇u‖W 1
q (R

N+ ) � CM1‖∇2u‖Lq (R
N+ ) + CM2‖∇u‖Lq (R

N+ ).

Let bdiv be an N × N matrix whose (k, �) component is
∑N

j=1 akjb�j , and then we
have

div v = div u + bdiv : ∇u.

Thus, there exists an operator R1 acting on u such that

< μD(v)n+,n+ > −div v =< μD(u)n0,n0 > −div u + R1u,

‖R1u‖Lq (R
N+ ) � CM1‖∇u|Lq (R

N+ ),

‖R1u‖W 1
q (R

N+ ) � CM1‖∇2u‖Lq (R
N+ ) + CM2‖∇u‖Lq (R

N+ ).

(9.105)

Analogously, we see that there exist operators Ri (i = 2, 3, 4, 5) acting on u such
that

A−1DivD(v) = DivD(u) + R2u,

detG(A−1 + B−1 ◦ Φ)(Div (μD(v)) − ∇div v) = Div (μD(u)) − ∇div u + R3u,

A−1(μD(v)n+) = μD(u)n0 + R4u,

n+ · v = n0 · u + R5u,

‖Riu‖Lq (R
N+ ) � CM1‖∇2u‖Lq (Ω) + CM2‖∇u‖Lq (R

N+ ) (i = 2, 3),

‖R4u‖Lq (R
N+ ) � CM1‖∇u‖Lq (R

N+ ),

‖R4u‖W 1
q (R

N+ ) � CM1‖∇2u‖Lq (R
N+ ) + CM2‖u‖W 1

q (R
N+ ),

‖R5u‖W 2
q (R

N+ ) � CM1‖∇2u‖Lq (R
N+ ) + CM2‖u‖W 1

q (R
N+ ). (9.106)

Let p1 = K 0+1(v) ◦ Φ and p2 = K 0+2(h) ◦ Φ, and then by (9.93), (9.97), (9.105), and
(9.106), p1 and p2 satisfy the variational equations:

(∇p1,∇ψ)RN+ + (B0∇p1,∇ψ)RN+ = (Div (μD(u)) − ∇div u + R3u,∇ψ)RN+
(9.107)
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for anyψ ∈ W 1
q ′,0(R

N+) subject to p1 =< μD(u)n0,n0 > −div u + R1u onRN
0 , and

(∇p2,∇ψ)RN+ + (B0∇p2,∇ψ)RN+ = 0 for any ψ ∈ W 1
q ′,0(R

N
+) (9.108)

subject to p2 = −(τ + δΔ′)η − δD+η on R
N
0 , respectively. Here, we have set

η = h ◦ Φ. Moreover, by (9.88), (9.104) and (9.106) problem (9.95) is transformed
to the equations:

λu − Div (μD(u)) − R2u + (I + B2)∇(p1 + p2) = f in RN+ ,
λη − n0 · u − R5u = f on R

N
0 ,

(μD(u)n0 + R4u − (p1 + p2 + (τ + δΔ′ + δD+)η)(n0 + B3) = fb on R
N
0 ,

where we have set f = A−1g ◦ Φ, f = g ◦ Φ, fb = A−1gb ◦ Φ, B2 = A−1
	

(B−1 ◦ Φ), andB3 = Bn
	(aN1, . . . , aNN ) + (1 + Bn)

	(bN1, . . . , bNN ). By (9.87),
we have

‖Bi‖L∞(RN ) � CM1, ‖∇Bi‖W 1
q (R

N ) � CM2 (i = 2, 3). (9.109)

By (9.55), (9.56) and Lemma 9.4.2, we have

p1 = K 0
1 (u) + K2(R

3u − B0∇K 0
1 (u),R

1u),

p2 = K 0
2 (η) − K2(B

0∇K 0
2 (η), δD+η),

and therefore, finally we arrive at

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − (K 0
1 (u) + K 0

2 (η))I) + R6(u, η) = f in RN+ ,
λη − n0 · u − R5u = f on R

N
0 ,

Tn0(μD(u)n0) + Tn0(R
7(u)) = Tn0(fb) on R

N
0 ,

div u + R7(u) · n0 = n0 · fb on R
N
0

(9.110)

with

R6(u, η) = −R2u + ∇{K2(R
3u − B0∇K 0

1 (u),R
1u)

− K2(B
0∇K 0

2 (η), δD+η)} + B2∇{K 0
1 (u) + K 0

2 (η)

+ K2(R
3u − B0∇K 0

1 (u),R
1u) − K2(B

0∇K 0
2 (η), δD+η)},

R7(u) = R4u − (R1u)n0 − {< D(u),n0,n0 > −div u + R1u}B3. (9.111)

LetSF0(λ) andTF0(λ) be the solution operators of problem (9.58) given inTheorem
9.3.8, and set u = SF0(λ)Fλ(f, f, fb) and η = TF0(λ)Fλ(f, f, fb) in (9.110), where
Fλ(f, f, fb) = (f, f, λ1/2fb, fb). Then, the Eqs. (9.110) are rewritten as follows:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − (K 0
1 (u) + K 0

2 (η))I) = f − R8(λ)Fλ(f, f, fb) in RN+ ,
λη − n0 · u = f − R9(λ)Fλ(f, f, fb) on RN

0 ,

Tn0(μD(u)n0) = Tn0(fb − R10(λ)Fλ(f, f, fb)) on RN
0 ,

div u = n0 · (fb − R10(λ)Fλ(f, f, fb)) on RN
0 ,

(9.112)
where we have set

R8(λ)(F1, F2, F3, F4) = R6(S1(λ)(F1, F2, F3, F4),T (λ)(F1, F2, F3, F4)),

R9(λ)(F1, F2, F3, F4) = −R5S1(λ)(F1, F2, F3, F4),

R10(λ)(F1, F2, F3, F4) = R7(S1(λ)(F1, F2, F3, F4)).

For any δ > 0, we have

‖R6(u, η)‖Lq (R
N+ ) � C(M1 + δ)(‖∇2u‖Lq (R

N+ ) + ‖η‖W 3−1/q
q (RN−1)

)

+ CM2,δ(‖u‖W 1
q (R

N+ ) + ‖η‖W 2−1/q
q (RN−1)

);
‖R7(u)‖Lq (R

N+ ) � CM1‖∇u‖Lq (R
N+ );

‖R7(u)‖W 1
q (R

N+ ) � C(M1 + δ)‖∇2u‖Lq (R
N+ ) + CM2,δ‖u‖W 1

q (R
N+ ).

(9.113)

To prove (9.113), we use the following lemma which follows immediately from the
Sobolev imbedding theorem.

Lemma 9.4.3 Let 1 < q < r < ∞ and N < r < ∞. Then, there exists a constant
CN ,q,r such that

‖ab‖Lq (R
N+ ) � CN ,q,r‖a‖Lr (R

N+ )‖b‖1−N/r
Lq (R

N+ )
‖∇b‖N/r

Lq (R
N+ )
. (9.114)

Moroever, for any δ > 0 we have

‖ab‖Lq (R
N+ ) � δ‖∇b‖Lq (R

N+ ) + CN ,q,rδ
− N

r−N ‖a‖
r

r−N

Lr (R
N+ )

‖b‖Lq (R
N+ ). (9.115)

By Lemma 9.4.3, (9.91), (9.93), and (9.94), we have

‖D+ f ‖W 1−1/q
q (RN−1)

� C(M1 + δ)‖ f ‖W 3−1/q
q (RN−1)

+ CM2,δ‖ f ‖W 2−1/q
q (RN−1)

. (9.116)

Thus, by Lemma 9.4.2, (9.57), (9.87), (9.98), (9.99), (9.105), (9.106), and (9.116),
we have the estimate for R6(u, η) in (9.113). Analogously, by (9.105), (9.106) and
(9.109), we have the estimates for R7(u) in (9.113).

Let

Q0(λ)(f, f, fb) = (R8(λ)Fλ(f, f, fb),R9(λ)Fλ(f, f, fb),R10(λ)Fλ(f, f, fb)),

Q0(λ)F = (R8(λ)F,R9(λ)F, λ1/2R10(λ)F,R10(λ)F) (F = (F1, F2, F3, F4)),
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‖(f, f, fb)‖Yq (RN+ ) = ‖f‖Lq (R
N+ ) + ‖ f ‖W 2−1/q

q (RN−1)
+ ‖fb‖W 1

q (R
N+ ),

‖(F1, F2, F3, F4)‖Yq (R
N+ ) = ‖(F1, F3)‖Lq (R

N+ ) + ‖F2‖W 2−1/q
q (RN−1)

+ ‖F4‖W 1
q (R

N+ ),

where we have set Fλ(f, f, fb) = (f, f, λ1/2fb, fb). Obviously,

FλQ0(f, f, fb) = Q0(λ)Fλ(f, f, fb). (9.117)

By the definition of R-boundedness (cf. Definition 9.1.2), Lemma 9.3.4, Theorem
9.3.8 with λ0 = 1, (9.106), and (9.113), we have

RL (Yq (R
N+ ))({(τ∂τ )�Q0(λ) | λ ∈ Σε,λ0}) � C(M1 + δ) + CM2,δλ

−1/2
0 (� = 0, 1)

for any λ0 � 1with some costantC independent of λ0 � 1. Thus, we chooseM1 > 0
and δ > 0 so small that CM1 � 1/4, Cδ � 1/4, and then we choose λ0 > 1 so large
that CM2,δλ

−1/2
0 � 1/4. Thus, we have

RL (Yq (R
N+ ))({(τ∂τ )�Q0(λ) | λ ∈ Σε,λ0}) � 3/4 (� = 0, 1), (9.118)

which, combined with (9.117), furnishes that

‖FλQ0(λ)(f, f, fb)‖Yq (R
N+ ) � (3/4)‖Fλ(f, f, fb)‖Yq (R

N+ ). (9.119)

Since ‖Fλ(f, f, fb)‖Yq (R
N+ ) is an equivalent norm to ‖(f, f, fb)‖Yq (RN+ ) provided that

λ �= 0, by (9.119) there exists an inverse operator (I − Q0(λ))
−1 of I − Q0(λ) in

L (Yq(RN+)) for any λ ∈ Σε,λ0 . Thus, in view of (9.112),

u = S1(λ)Fλ(I − Q0(λ))
−1(f, f, fb), η = T1(λ)Fλ(I − Q0(λ))

−1(f, f, fb)

are unique solutions of problem (9.110).
On the other hand, by (9.118)

(I − Q0(λ))
−1 =

∞∑

j=0

Q0(λ)
j

exists in L (Yq(R
N+)) and

RL (Yq (R
N+ ))({(τ∂τ )�(I − Q0(λ))

−1 | λ ∈ Σε,λ0}) � c (� = 0, 1) (9.120)

with some positive constant c. Since

Fλ(I − Q0(λ))
−1 =

∞∑

j=1

FλQ0(λ)
j = (

∞∑

j=0

Q0(λ)
j )Fλ = (I − Q0(λ))

−1Fλ
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as follows from (9.117), setting

S̃ (λ) = SF0(λ)(I − Q0(λ))
−1, T̃ (λ) = TF0(λ)(I − Q0(λ))

−1,

we have
u = S̃ (λ)Fλ(f, f, fb), η = T̃ (λ)Fλ(f, f, fb).

Moreover, by Theorem 9.3.8, Lemma 9.3.4, and (9.119), we have

RL (Yq (R
N+ ),W

2− j
q (RN+ )N )

({(τ∂τ )�(λ j/2S̃ (λ)) | λ ∈ Σε,λ0}) � c,

RL (Yq (R
N+ ),W

3−1/q−k
q (RN+ )N )

({(τ∂τ )�(λkT̃ (λ)) | λ ∈ Σε,λ0}) � c (9.121)

for j = 0, 1, 2, k = 0, 1 and � = 0, 1 with some positive constant c.
Recalling that

u = A−1v◦Φ, η = h ◦ Φ, f = A−1g ◦ Φ, f = g ◦ Φ, fb = A−1g ◦ Φ,

we define operators SF+(λ) and TF+(λ) by

SF+(λ)(F1, F2, F3, F4)

= [	A−1S̃ (λ)(A−1F1 ◦ Φ, F2 ◦ Φ,A−1F3 ◦ Φ,A−1F4 ◦ Φ)] ◦ Φ−1,

TF+(λ)(F1, F2, F3, F4)

= [T̃ (λ)(A−1F1 ◦ Φ, F2 ◦ Φ,A−1F3 ◦ Φ,A−1F4 ◦ Φ)] ◦ Φ−1,

and then by (9.121) we see easily that SF+(λ) and TF+(λ) satisfy the required
properties in Theorem 9.4.1, which completes the proof of Theorem 9.4.1.

9.4.3 Reduced Stokes Equations with Non-slip Boundary
Condition in a Bent-Half Space

In this subsection, we consider the generalized resolvent problem for the reduced
Stokes equations with non-slip boundary condition. For v ∈ W 2

q (Ω+)N , let K 1+(v)
be a unique solution to the variational problem:

(∇K 1
+(v),∇ϕ)Ω+ − (Div (μD(v)) − ∇div v,∇ϕ)Ω+ for any ϕ ∈ Ŵ 1

q ′(Ω+).

And, we consider the generalized resolvent problem for the reduced Stokes operator
with non-slip boundary condition:

λv − Div (μD(v) − K 1
+(v)I) = g in Ω+, v = 0 on Γ+. (9.122)

Then, we have the following theorem.
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Theorem 9.4.4 Let 1 < q < ∞ and 0 < ε < π/2. Then, there exist positive num-
bers M1 > 0, λ0 � 1 and an operator familySD+(λ) with

SD+(λ) ∈ Hol (Σε,λ0 ,L (Lq(Ω+)N ,W 2
q (Ω+)N ))

such that for any λ ∈ Σε,λ0 and g ∈ Lq(Ω+)N , problem (9.122) admits a unique
solution v = SD+(λ)g.

Moreover, we have

RL (Lq (Ω+)N ,W 2− j
q (Ω+)N )({(τ∂τ )�(λ j/2SD+(λ)) | λ ∈ Σε,λ0}) � γ+2,

for � = 0, 1 and j = 0, 1, 2 and k = 0, 1 with some positive constant γ+2 depending
on λ0, M2, N , q and ε.

Employing the same argumentation as in Sect. 9.4.2, we can prove Theorem 9.4.4
with the help of Theorem 9.3.14, so that we may omit the proof.

9.5 Proof of Theorem 9.2.1

9.5.1 Some Preparation for the Proof of Theorem 9.2.1

First, we state several properties of a uniform W 3,2
r domain (cf. [3]).

Proposition 9.5.1 Let N < r < ∞, letΩ be a uniform W 3,2
r domain in RN and let

Γ1 = Γ . Then, for any M1 ∈ (0, 1) there exist M2 � 1, di ∈ (0, 1) (i = 0, 1, 2), and
at most countably many N-vector of functions Φ0

j ∈ W 2
r (R

N )N , Φ1
j ∈ W 3

r (R
N )N ,

points xij ∈ Γi (i = 0, 1), and x2j ∈ Ω such that the following assertions hold.

(i) For i = 0, 1 and j ∈ N, the maps: RN � x �→ Φ i
j (x) ∈ R

N are bijective.

(ii) Ω =
(⋃1

i=0

⋃∞
j=1(Φ

i
j (R

N+) ∩ Bdi (xij ))
)

∪
(⋃∞

j=1 Bd2(x2j )
)
, Bd2(x2j ) ⊂ Ω ,

Φ i
j (R

N+) ∩ Bdi (xij ) = Ω ∩ Bdi (xij ), Φ i
j (R

N
0 ) ∩ Bdi (xij ) = Γi ∩ Bdi (xij ) (i =

0, 1).
(iii) There exist C∞ functions ζ ij and ζ̃

i
j (i = 0, 1, 2, j ∈ N) such that

0 � ζ ij , ζ̃ ij � 1, supp ζ ij , supp ζ̃ ij ⊂ Bdi (x
i
j ), ‖(ζ ij , ζ̃ ij )‖W 3∞(RN ) � c,

ζ̃ ij = 1 on supp ζ ij ,
2∑

i=0

∞∑

j=1

ζ ij = 1 on Ω,

∞∑

j=1

ζ ij = 1 on Γi (i = 0, 1).

Here, c is a constant independent of j ∈ N.
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(iv) For i = 0, 1 and j ∈ N, ∇Φ i
j = A i

j + Bi
j , ∇(Φ i

j )
−1 = A i

j.− + Bi
j,−, where

A i
j and A i

j,− are N × N constant orthonormal matrices, and Bi
j and Bi

j,−
are N × N matrices of W 1+i

r (RN ) functions which satisfy the conditions:
‖(Bi

j , B
i
j,−)‖L∞(RN ) � M1 and ‖∇(Bi

j , B
i
j,−)‖W 1+i

r (RN ) � M2.
(v) There exists a natural number L � 2 such that any L + 1 distinct sets of

{Bdi (xij ) | i = 0, 1, 2, j ∈ N} have an empty intersection.
Proof Employing the same argument as in Appendix A of Enomoto and Shibata [3],
we can prove Proposition 9.5.1, so that we may omit the proof. ��

Next, we prepare some propositions used to construct a parametrix. In the fol-
lowing, we write Bi

j = Bdi (xij ) for the sake of simplicity. By the finite intersection
property stated in Proposition 9.5.1 (v), for any r ∈ [1,∞) there exists a constant
Cr,L such that

[ ∞∑

j=1

‖ f ‖rLr (Ω∩Bi
j )

] 1
r � Cr,L‖ f ‖Lr (Ω) for any f ∈ Lr (Ω). (9.123)

Proposition 9.5.2 Let X be a Banach space and X∗ its dual space, while ‖ · ‖X ,
‖ · ‖X∗ , and < ·, · > be the norm of X, the norm of X∗, and the duality pairing
between of X and X∗, respectively. Let n ∈ N, l = 1, . . . , n, and {al}nl=1 ⊂ C, and
let { f lj }∞j=1 be sequences in X

∗ and {glj }∞j=1, {h j }∞j=1 be sequences of positive numbers.
Assume that there exist mapsN j : X → [0,∞) such that

| < f lj , ϕ > | � M3g
l
jN j (ϕ) (l = 1, . . . , n),

∣∣∣
〈 n∑

l=1

al f
l
j , ϕ

〉∣∣∣ � M3h jN j (ϕ)

for any ϕ ∈ X with some positive constant M3 independent of j ∈ N and
l = 1, . . . , n. If

∞∑

j=1

(
glj

)q
< ∞,

∞∑

j=1

(
h j

)q
< ∞,

∞∑

j=1

(
N j (ϕ)

)q ′
� (M4‖ϕ‖X )

q ′

with 1 < q < ∞ and q ′ = q/(q − 1) for some positive constant M4, then the infinite
sum f l = ∑∞

j=1 f lj exists in the strong topology of X
∗ and

‖ f l‖X∗ � M3M4

( ∞∑

j=1

(
glj

)q)1/q
,

∥∥∥
n∑

l=1

al f
l
∥∥∥
X∗

� M3M4

( ∞∑

j=1

(
h j

)q)1/q
.

(9.124)
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Proof Let Fl
m = ∑m

j=1 f lj . We can show that {Fm}∞m=1 is a Cauchy sequence in X∗,
which implies the existence of f l . Then the estimates (9.124) follow
immediately. ��

In the following, we write H i
j = Φ i

j (R
N+), Γ i

j = Φ i
j (R

N
0 ) (i = 0, 1) and H 2

j =
R

N for the sake of simplicity. Let n ∈ N0, f ∈ Wn
q (Ω), and let ηij be functions in

C∞
0 (Bi

j ) with ‖ηij‖Wn∞(RN ) � c0 for some constant c0 independent of j ∈ N. Then,
since Ω ∩ Bi

j = H i
j ∩ Bi

j , by (9.123)

∞∑

j=1

‖ηij f ‖qWn
q (H

i
j )

� Cq‖ f ‖Wn
q (Ω). (9.125)

The following propositions are used to define the infinite sum ofR-bounded operator
families defined onH i

j .

Proposition 9.5.3 Let 1 < q < ∞, i = 0, 1, 2, and n ∈ N0. Let ηij be a function in
C∞
0 (Bi

j ) such that ‖ηij‖Wn∞(RN ) � c1 for any j ∈ Nwith some constant c1 independent
of j ∈ N. Let f j ( j ∈ N) be elements in Wn

q (H
i
j ) such that

∑∞
j=1 ‖ f j‖qWn

q (H
i
j )
< ∞.

Then,
∑∞

j=1 η
i
j f j converges some f ∈ Wn

q (Ω) strongly in Wn
q (Ω), and

‖ f ‖Wn
q (Ω) � Cq{

∞∑

j=1

‖ f j‖qWn
q (H

i
j )

}1/q .

Proof For any α ∈ N
N
0 with |α| � n, we have

|(∂αx (ηij f j ), ϕ)Ω | � CNc1‖ f j‖Wn
q H

i
j )

‖ϕ‖Lq′ (Ω∩Bi
j )
.

By (9.123),
∞∑

j=1

‖ϕ‖q ′

Lq′ (Ω∩Bi
j )

� Cq ′ ‖ϕ‖q ′
Lq′ (Ω),

so that by Proposition 9.5.2,
∑∞

j=1 η
i
j f j converges to some f ∈ Wn

q (Ω) strongly in
Wn

q (Ω) and ‖ f ‖qWn
q (Ω) � Cq

∑∞
j=1 ‖ f j‖qWn

q (H
i
j )
. ��

Proposition 9.5.4 Let 1 < q < ∞ and n = 2, 3. Then we have the following asser-
tions.
(1) There exist extension maps Tn

j : Wn−1/q
q (Γ 1

j ) → Wn
q (H

1
j ) such that for any

h ∈ Wn−1/q
q (Γ 1

j ), T
n
j h = h on Γ 1

j and ‖Tn
j h‖Wn

q (H
1
j )

� C‖h‖Wn−1/q
q (Γ 1

j )
with some

constant C > 0 independent of j ∈ N.
(2) There exists an extension map Tn

Γ : Wn−1/q
q (Γ ) → Wn

q (Ω) such that for

h ∈ Wn−1/q
q (Γ ), Tn

Γ h = h on Γ and ‖Tn
Γ h‖Wn

q (Ω) � C‖h‖Wn−1/q
q (Γ )

with some con-
stant C > 0.
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Proof (1) In view of Sect. 9.4.1, by the small perturbation from R
N+ , we can solve

the Dirichlet problem: (λ − Δ)h̃ = 0 in H 1
j subject to h̃ = h on Γ 1

j for large λ

independent of j ∈ N.Moreover, we have the estimate: ‖h̃‖Wn
q (H

i
j )

� C‖h‖Wn−1/q
q (Γ 1

j )

with some C > 0 independent of j ∈ N. Let Tn
j h = h̃, and then Tn

j are the required
extension maps.
(2) LetΩ1 be a domain such thatΩ1 ⊃ Ω and the boundary ofΩ1 = Γ . Then, there
exists a large λ > 0 such that the Dirichlet problem (λ − Δ)u = 0 in Ω1 subject to
u = h onΓ admits a unique solutionu ∈ Wn

q (Ω1) for any h ∈ Wn−1/q
q (Γ )possessing

the estimate: ‖u‖Wn
q (Ω1) � C‖h‖Wn−1/q

q (Γ )
. LetTnh = u|Ω , and thenTn is the required

extension map. ��
Proposition 9.5.5 Let 1 < q < ∞ and n = 2, 3 and let η j ∈ C∞

0 (B1
j ) ( j ∈ N) with

‖η j‖Wn∞(RN ) � c2 for some constant c2 independent of j ∈ N. Then, we have the
following two assertions:
(1) Let f j ( j ∈ N) be functions in Wn−1/q

q (Γ 1
j ) such that

∑∞
j=1 ‖ f j‖qWn−1/q

q (Γ 1
j )
< ∞,

and then the infinite sum
∑∞

j=1 η j f j converges to some f ∈ Wn−1/q
q (Γ ) strongly in

Wn−1/q
q (Γ ) and

‖ f ‖Wn−1/q
q (Γ )

� Cq{
∞∑

j=1

‖ f j‖qWn−1/q
q (Γ 1

j )
}1/q .

(2) For any h ∈ Wn−1/q
q (Γ ),

∞∑

j=1

‖η j h‖q
Wn−1/q

q (Γ 1
j )

� C‖h‖q
Wn−1/q

q (Γ )
.

Proof (1) Let Tn
j be operators given in Proposition 9.5.4 (1), and then

∑N
j=1 η j f j =

∑N
j=1 η jTn

j f j on Γ . Since
∑∞

j=1 ‖Tn
j f j‖qWn

q (H
1
j )

� Cq
∑∞

j=1 ‖ f j‖qWn−1/q
q (Γ j )

< ∞, by

Proposition 9.5.3,
∑N

j=1 η jTn
j f j converges to some f̃ ∈ Wn

q (Ω) as N → ∞ strongly
in Wn

q (Ω) and

‖ f̃ ‖Wn
q (Ω) � Cq{

∞∑

j=1

‖T n
j f j‖qWn

q (H
1
j )

}1/q � Cq{
∞∑

j=1

‖ f j‖qWn−1/q
q (Γ 1

j )
}1/q ,

which furnishes that for any 1 � N < M

lim
N ,M→∞ ‖

M∑

j=1

η j f j −
N∑

j=1

η j f j‖Wn−1/q
q (Γ )

� Cq lim
N ,M→∞ ‖

M∑

j=1

η j T
n
j f j −

N∑

j=1

η j T
n
j f j‖Wn

q (Ω) = 0.
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Thus,
∑N

j=1 η j f j is a Cauchy sequence inW
n−1/q
q (Γ ), so that

∑N
j=1 η j f j converges

to some f ∈ Wn−1/q
q (Γ ) strongly in Wn−1/q

q (Γ ). Since the trace operator is contin-
uous from Wn−1/q

q (Ω) to Wn−1/q
q (Γ ), we have f̃ |Γ = f , and so that

‖ f ‖Wn−1/q
q (Γ )

� Cq‖ f̃ ‖Wn
q (Ω) � Cq{

∞∑

j=1

‖ f j‖qWn−1/q
q (Γ 1

j )
}1/q .

(2) By Proposition 9.5.4 (2),

‖η j h‖Wn−1/q
q (Γ 1

j )
= ‖η jTn

Γ h‖Wn−1/q
q (Γ )

� C‖η jTn
Γ h‖Wn

q (Ω) � Cc2‖Tn
Γ h‖Wn

q (Ω∩B1
j )
.

Since Tn
Γ h ∈ Wn

q (Ω), by (9.125)

∞∑

j=1

‖η j h‖q
Wn−1/q

q (Γ 1
j )

� Cqc
q
2‖Tn

Γ h‖qWn
q (Ω) � Cqc

q
2‖h‖q

Wn−1/q
q (Γ )

.

This completes the proof of Proposition 9.5.5. ��

9.5.2 Local Solutions

To costruct a parametrix for reduced Stokes equations (9.26), we consider the fol-
lowing problems:

λu0
j − DivμD(u0

j ) − K 0
j (u

0
j )I) = f0j inH 0

j , u0
j |Γ 0

j
= 0; (9.126)

⎧
⎪⎨

⎪⎩

λu1
j − Div (μD(u1

j ) − (K 1
j (u

1
j ) + L j (h j ))I) = f1j inH 1

j ,

λh j − n1
j · u1

j = f j on Γ 1
j ,

(μD(u1
j ) − (K 1

j (u
1
j ) + L j (h j ))I)n1

j − ((τ + δΔΓ 1
j
)h1j )n

1
j = fbj , on Γ 1

j :
(9.127)

λu2
j − Div (μD(u2

j ) − K 2
j (u

2
j )I) = f2j inH 2

j . (9.128)

Here, n1
j stands for the unit outer normal to Γ 1

j and ΔΓ 1
j
is the Laplace-Beltrami

operator on Γ 1
j . According to what was discussed in Sect. 9.4.1, we may assume that

n1
j are defined in RN and satisfies the estimates:

‖n1
j‖L∞(RN ) � C, ‖∇n1

j‖W 1
r (R

N ) � CM2 , (9.129)

while ΔΓ 1
j
has the representation of the form:
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ΔΓ 1
j
f = Δ′ f + DΓ 1

j
f

with Δ′ f = ∑N−1
j=1 ∂2j f and DΓ 1

j
f = ∑N−1

i, j=1 ai j∂i∂ j f + ∑N−1
i=1 ai∂i f in a local

chart, where ai j and ai possess the estimates:

‖ai j‖L∞(RN ) � CM1, ‖(∇ai j , ai )‖W 1
r (R

N ) � CM2 . (9.130)

Here and hereafter, C denotes a generic constant independent of M2 and j ∈ N and
CM2 a generic constant independent of j ∈ N but depending on M2.

As for the remaining notations, for u0
j ∈ W 2

q (H
0
j ), let K

0
j (u

0
j ) ∈ Ŵ 1

q (H
0
j ) be a

solution to the variational problem:

(∇K 0
j (u

0
j ),∇ϕ)H 0

j
= (Div (ν0j D(u

0
j )) − ∇div u0

j ,∇ϕ)H 0
j

(9.131)

for any ϕ ∈ Ŵ 1
q ′(H 0

j ). For u
1
j ∈ W 2

q (H
1
j ), let K

1
j (u

1
j ) ∈ W 1

q (H
1
j ) + Ŵ 1

q,0(H
1
j ) be

a unique solution of the variational equation:

(∇K 1
j (u

1
j ),∇ϕ)H 1

j
= (Div (μD(u1

j )) − ∇div u1
j ,∇ϕ)H 1

j
(9.132)

for any ϕ ∈ Ŵ 1
q ′,0(H

1
j ), subject to K 1

j (u
1
j ) =< ν1j D(u

1
j )n

1
j ,n

1
j > −div u1

j on Γ 1
j ,

while for h j ∈ W 3−1/q
q (Γ 1

j ), let L j (h j ) ∈ W 1
q (H

1
j ) + Ŵ 1

q,0(H
1
j ) be a unique solu-

tion of the variational equation:

(∇L j (h j ),∇ϕ)H 1
j

= 0 for any ϕ ∈ Ŵ 1
q ′,0(H

1
j ), (9.133)

subject to L j (h j ) = −(τ + δΔΓ 1
j
)h j on Γ 1

j . For u2
j ∈ W 2

q (H
2
j ), let K 2

j (u
2
j ) ∈

Ŵ 1
q (H

2
j ) be a unique solution of the variational equation:

(∇K 2
j (u

2
j ),∇ϕ)H 2

j
= (Div (μD(u2

j )) − ∇div u2
j ,∇ϕ)H 2

j
(9.134)

for any ϕ ∈ Ŵ 1
q ′(H 2

j ).
Choosing M1 ∈ (0, 1) suitably small, we have the unique existence of solutions

to (9.131), (9.132) (9.133), and (9.134) possessing the estimates:

‖∇K i
j (u

i
j )‖Lq (H

i
j )

� c3‖∇uij‖W 1
q (H

i
j )
,

‖∇L j (h j )‖Lq (H
i
j )

� c3‖h j‖W 3−1/q
q (Γ 1

j )

(9.135)

with some constant c3 independent of j ∈ N. Let

Zq(H
i
j ) =

{
Lq(H

i
j )

N (i = 0, 2),

Yq(H 1
j ),

Zq(H
i
j ) =

{
Lq(H

i
j )

N (i = 0, 2),

Yq(H
1
j ),
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for the notational simplicity. And then, by Theorems 9.3.1, 9.4.1 and 9.4.4 there exist
constant λ0 � 1 and operators families

S i
j (λ) ∈ Hol (Σε,λ0 ,L (Zq(H

i
j )

N ,W 2
q (H

i
j )

N )) (i = 0, 1, 2),

T j (λ) ∈ Hol (Σε,λ0 ,L (Zq(H
1
j ),W

3−1/q
q (Γ 1

j )))

such that problems (9.126), (9.127) and (9.128) admit unique solutions

uij = S i
j (λ)f

i
j , u1

j = S 1
j (λ)Fλ(f j , f j , fbj ), h j = T j (λ)Fλ(f j , f j , fbj )

for i = 0, 2 and j ∈ N. Moreover, we have

RL (Zq (H
i
j )

N ,W 2−m
q (H i

j )
N )({(τ∂τ )�(λm/2S i

j (λ)) | λ ∈ Σε,λ0}) � ω0,

RL (Zq (H
1
j ),W

3−n−1/q
q (Γ 1

j ))
({(τ∂τ )�(λnT j (λ) | λ ∈ Σε,λ0}) � ω0

(9.136)

for � = 0, 1, m = 0, 1, 2 and n = 0, 1 with some positive constant ω0 independent
of j ∈ N. By (9.136), we have

‖(λuij , λ1/2∇uij ,∇2uij )‖Lq (H
i
j )

� C‖f ij‖Lq (H
i
j )

(i = 0, 2),

‖(λu1
j , λ

1/2∇u1
j ,∇2u1

j )‖Lq (H
1
j )

+ ‖(λh j ,∇h j )‖W 2−1/q
q (Γ 1

j )

� C(‖(f1j , λ1/2fbj‖Lq (H
1
j )

+ ‖ f j‖W 2−1/q
q (Γ 1

j )
+ ‖fbj‖W 1

q (H
1
j )
)

(9.137)

for any j ∈ N and λ ∈ Σε,λ0 with some constant C independent of j ∈ N.

9.5.3 Construction of a Parametrix

For f ∈ Lq(Ω)N , f ∈ W 2−1/q
q (Γ ) and fb ∈ W 1

q (Ω)N , we consider the reduced
Stokes equations (9.26).We use the symbols given in Proposition 9.5.1. Let us define
u and h by

u =
2∑

i=0

∞∑

j=1

ζ iju
i
j , h =

∞∑

j=1

ζ 1j h j (9.138)

with

uij = S i
j (λ)ζ̃

i
j f (i = 0, 2),

u1
j = S 1

j (λ)Fλ(ζ̃
1
j f, ζ̃

1
j f, ζ̃

1
j fb), h j = T j (λ)Fλ(ζ̃

1
j f, ζ̃

1
j f, ζ̃

1
j fb), (9.139)
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where we have set Fλ(g, g, gb) = (g, g, λ1/2g, g). The right hand sides of (9.138)
converge strongly in W 2

q (Ω) and W 3−1/q
q (Γ ), respectively. In fact, by (9.125),

(9.137), and Proposition 9.5.5 (2),

∞∑

j=1

‖h j‖qW 2−1/q
q (Γ 1

j )

� C
∞∑

j=1

{‖ζ̃ 1j (f, λ1/2fb)‖qLq (H
1
j )

+ ‖ζ̃ 1j f ‖qW 2−1/q
q (Γ 1

j )
+ ‖ζ̃ 1j fb‖qW 1

q (H
1
j )

}

� C{‖(f, λ1/2fb)‖qLq (Ω) + ‖ f ‖q
W 2−1/q

q (Γ )
+ ‖fb‖qW 1

q (Ω)
} < ∞,

by Proposition 9.5.5, the infinite sum
∑∞

j=1 ζ
1
j h j converges to h in W 3−1/q

q (Γ )

strongly and

‖h‖W 3−1/q
q (Γ )

� Cq(‖(f, λ1/2fb)‖Lq (Ω) + ‖ f ‖W 2−1/q
q (Γ )

+ ‖fb‖W 1
q (Ω)).

Analogously, the infinite sum
∑2

i=0

∑∞
j=1 u

i
j strongly converges to u in W 2

q (Ω)N

and
‖u‖W 2

q (Ω) � Cq(‖(f, λ1/2fb)‖Lq (Ω) + ‖ f ‖W 2−1/q
q (Γ )

+ ‖fb‖W 1
q (Ω)).

Inserting u and h into (9.26) and the fact that n = n1
j on supp ζ 1j ∩ Γ , we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − (K1(u) + K2(h)) = f − V1(λ)(f, f, fb) in Ω,

λh − n · u = f on Γ,

(μD(u) − (K1(u) + K2(h)I)n − ((τ + δΔΓ )h)n
= fb − V2(λ)(f, f, fb)) on Γ,

(9.140)

where we have set

V1(λ)(f, f, fb) = μ

2∑

i=0

∞∑

j=1

{Div (D(ζ ijuij )) − ζ ijDiv (D(u
i
j ))}

−
2∑

i=0

∞∑

j=1

{∇K1(ζ
i
ju

i
j ) − ζ ij∇K i

j (u
i
j )} −

∞∑

j=1

{∇K2(ζ
1
j h j ) − ζ 1j ∇L j (h j )},

V2(λ)(f, f, fb) =
2∑

i=0

∞∑

j=1

μ{D(ζ ijuij )) − ζ ijD(u
i
j )}ni

j

−
∞∑

j=1

μ(< D(ζ 1j u
1
j )n

1
j ,n

1
j > −ζ 1j < D(u1

j )n
1
j ,n

1
j >)n

1
j (9.141)



258 Y. Shibata

+
∞∑

j=1

(div (ζ 1j u
1
j ) − ζ 1j div u

1
j )n

1
j . (9.142)

Here, we have used the fact that

∇K1(u) =
2∑

i=0

∞∑

j=1

∇K (ζ iju
i
j ), ∇K2(h) =

∞∑

j=1

∇K2(ζ
1
j h j ) (9.143)

which follows from the strong convergence in (9.138) and the continuity of ∇K1 in
Definition 9.1.3. Recalling (9.138) and (9.139), we define the operators S (λ) and
T (λ) acting on F = (F1, F2, F3, F4) ∈ Yq(Ω) by

S (λ)F =
∑

i=0,2

∞∑

j=1

ζ ijS
i
j (λ)ζ̃

i
j F1 +

∞∑

j=1

ζ 1j S
1
j (λ)ζ̃

1
j F,

T (λ)F =
∞∑

j=1

ζ 1j T j (λ)ζ̃
1
j F.

And then, we have

S (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 2
q (Ω)N ),

T (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 3−1/q
q (Γ )),

RL (Yq (Ω),W 2− j
q (Ω)N

({(τ∂τ )�(λ j/2S (λ)) | λ ∈ Σε,λ0}) � Cqω0,

RL (Yq (Ω),W 3−k
q (Ω)N ({(τ∂τ )�(λkT (λ)) | λ ∈ Σε,λ0}) � Cqω0 (9.144)

for � = 0, 1, j = 0, 1, 2 and k = 0, 1.
In fact, for any m ∈ N, {λ�}m�=1 ⊂ Σε,λ0 , {F�}m�=1 ⊂ Yq(Ω) and {a�}m�=1 ⊂ C, by

(9.136)

‖
m∑

�=1

a�λ
n
�T j (λ�)ζ̃

1
j F�‖W 3−n−1/q (Γ ) �

m∑

�=1

|a�|‖λn�T j (λ�)ζ̃
1
j F�‖W 3−n−1/q

q (Γ 1
j )

� ω0

m∑

�=1

|a�|‖ζ̃ 1j F�‖Yq (H
1
j )

(n = 0, 1).

Thus, employing the same argument as in the proof of Proposition 5.3 in [14], by
(9.125) and Proposition 9.5.5, we see that

T (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 3−n−1/q
q (Γ ))),

‖
m∑

�=1

a�λ
n
�T (λ�)F�‖qW 3−n−1/q (Γ )
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� Cq

∞∑

j=1

‖
m∑

�=1

a�λ
n
�ζ

1
j T j (λ�)ζ̃

1
j F�‖qW 3−n−1/q (Γ 1

j )
} (n = 0, 1).

Thus, by (9.136), the monotone congergence theorem in the theory of Lebesgue
integral, (9.125) and Proposition 9.5.5 (2) we have

∫ 1

0
‖

m∑

�=1

r�(u)λ
n
�T (λ�)F�‖qW 3−n−1/q

q (Γ )
du

� Cq

∞∑

j=1

∫ 1

0
‖

m∑

�=1

r�(u)λ
n
�T j (λ�)ζ̃

1
j F�‖qW 3−n−1/q

q (Γ 1
j )
du

� Cqω
q
0

∫ 1

0

∞∑

j=1

‖ζ̃ 1j
m∑

�=1

r�(u)F�‖qYq (H
1
j )
du

� Cqω0

∫ 1

0
‖

m∑

�=1

r�(u)F�‖qYq (Ω) du (n = 0, 1).

Thus,wehaveproved the assertion forT (λ).Analogously,we canprove the assertion
forS (λ).

9.5.4 Representation of the Remainder Terms Vi (λ)(f, f, fb)

In this subsection, we prove the following lemma.

Lemma 9.5.6 Let λ0 and ω0 be the same constants as in (9.136). Let V1(λ) and
V2(λ) be the operators defined in (9.142) and set

V(λ)(f, f, fb) = (V1(λ)(f, f, fb), 0,V2(λ)(f, f, fb)).

Then, there exists an operator family V (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω))) such that

FλV(λ)(f, f, fb) = V (λ)Fλ(f, f, fb) ((f, f, fb) ∈ Yq(Ω)), (9.145)

RL (Yq (Ω))({(τ∂τ )�V (λ) : λ ∈ Σε,λ1}) � (σ + Cσ λ
−1/2
1 )ω0 (9.146)

(� = 0, 1) for any σ > 0 andλ1 � max(λ0, 1), whereCσ is some constant depending
on σ but independent of λ1. Here and hereafter, Fλ is the operator defined by

Fλ(f, f, fb) = (f, f, λ1/2fb, fb).
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Proof First we consider the term:

V11(λ)(f, f, fb) =
2∑

i=0

∞∑

j=1

μ{Div (D(ζ ijuij )) − ζ ijDiv (D(u
i
j ))}.

Let Div (D(ϕu)) − ϕDiv (D(u)) = I1(ϕ,u) for any scalar function ϕ and
N -vector functions u, where we have set

I1(ϕ,u) = (∇ϕ)div u + 2(∇ϕ)∇u + (∇ϕ)	∇u + (∇2ϕ)u + (Δϕ)u.

Using this symbol, we define an operator V 11(λ) acting on F = (F1, F2, F3, F4) ∈
Yq(Ω) by

V 11(λ)F =
∑

i=0,2

∞∑

j=1

μI1(ζ
i
j ,S

i
j (λ)ζ̃

i
j F1)) +

∞∑

j=1

μI1(ζ
1
j ,S

1
j (λ)ζ̃

1
j F).

And then, we have

V 11(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω))),

V11(λ)(f, f, fb) = V 11(λ)Fλ(f, f, fb), ((f, f, fb) ∈ Yq(Ω)),

RL (Yq (Ω),Lq (Ω)N )({(τ∂τ )�V 11(λ) | λ ∈ Σε,λ1}) � Cq,Lω0λ
−1/2
1 (9.147)

(� = 0, 1) for any λ1 � λ0 � 1. Here and hearafter, λ1 denotes any number with
λ1 � max(λ0, 1).

In fact, for any m ∈ N, {λ�}m�=1 ⊂ Σε,λ0 , {F�}m�=1 ⊂ Yq(Ω) and {a�}m�=1 ⊂ C, by
(9.136)

‖
m∑

�=1

a�divS
1
j (λ�)ζ̃

1
j F�‖Lq (H

1
j )

�
m∑

�=1

|a�|‖S 1
j (λ�)ζ̃

1
j F�‖W 1

q (H
1
j )

� λ
−1/2
0 ω0

m∑

�=1

‖ζ̃ 1j F�‖Yq (H
1
j )
.

Let V 111(λ) = ∑∞
j=1(∇ζ 1j )divS

1
j (λ)ζ̃

1
j F , and then employing the same argument

as in the proof of Proposition 5.3 in [14], by (9.125) and Proposition 9.5.5, we see
that

V 111(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω), Lq(Γ )N )),

‖
∑

�=1

a�V
111(λ�)F�‖qΩ � Cq

∞∑

j=1

‖
m∑

�=1

a�divS
1
j (λ�)ζ̃

1
j F�‖qLq (H

1
j )
.
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Thus, by (9.136), the monotone congergence theorem in the theory of Lebesgue
integral, Lemma 9.3.4, (9.125) and Proposition 9.5.5 (2) we have

∫ 1

0
‖

m∑

�=1

r�(u)V
111(λ�)F�‖qLq (Ω) du

� Cq

∞∑

j=1

∫ 1

0
‖

m∑

�=1

r�(u)S
1
j (λ�)ζ̃

1
j F�‖qW 1

q (H
1
j )
du

� Cq

∞∑

j=1

λ
−1/2
1

∫ 1

0
‖

m∑

�=1

r�(u)λ
1/2
� S 1

j (λ�)ζ̃
1
j F�‖qW 1

q (H
1
j )
du

� Cqω
q
0λ

−1/2
1

∫ 1

0

∞∑

j=1

‖ζ̃ 1j
m∑

�=1

r�(u)F�‖qYq (H
1
j )
du

� Cqω0λ
−1/2
1

∫ 1

0
‖

m∑

�=1

r�(u)F�‖qYq (Ω) du,

where {λ�}m�=1 ⊂ Σε,λ1 and we have used Propsotion 9.3.4. Thus, we have

RL (Yq (Ω),Lq (Ω)N )({V 111(λ) | λ ∈ Σε,λ1}) � Cq,Lω0λ
−1/2
1 .

Analogously, we can prove the assertions for other terms, so that we have (9.147).
Second, we consider the terms:

∇K1(ζ
i
ju

i
j ) − ζ ij∇K i

j (u
i
j ), ∇K2(ζ

1
j h) − ζ 1j ∇L j (h j ).

The former was treated in Sect. 5 in Shibata [14], and employing the same argumen-
tation as in Sect. 5 in [14] we see that

V12(λ)(f, f, fb) =
2∑

i=0

∞∑

j=1

{∇K1(ζ
i
ju

i
j ) − ζ ij∇K i

j (u
i
j )}

exists strongly in Lq(Ω)N for any (f, f, fb) ∈ Yq(Ω). Moreover, there exists an
operator V 12(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω), Lq(Ω)N ))) such that

V12(λ)(f, f, fb) = V 12(λ)Fλ(f, f, fb) ((f, f, fb) ∈ Yq(Ω)),

RL (Yq (Ω),Lq (Ω)N )({(τ∂τ )�V 12(λ) | λ ∈ Σε,λ1}) � (σ + Cσ λ
−1/2
1 )ω0 (9.148)

(� = 0, 1) for any σ > 0 andλ1 � max(λ0, 1), whereCσ is some constant depending
on σ . Thus, in the following, we treat ∇K2(ζ

1
j h) − ζ 1j ∇L j (h j ). But, employing the

same argument as in the following, we can also prove (9.148).
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We start with the following inequalities of Poincaré type with uniform constant,
which was proved in Shibata [13, Lemmas 3.4, 3.5].

Lemma 9.5.7 Let N < r < ∞ and let Ω be a W 2,2
r uniform domain in R

N . Then,
there exists a constant c4 > 0 independent of j = 1, 2, 3, . . . such that

‖ϕ‖W 1
q (H

1
j ∩B1

j )
� c4‖∇ϕ‖Lq (H

1
j ∩B1

j )
for any ϕ ∈ Ŵ 1

q,0(H
1
j ),

‖ψ‖W 1
q (Ω∩B1

j )
� c4‖∇ψ‖Lq (Ω∩B1

j )
for any ψ ∈ W 1

q (Ω).

To handle (∇ζ 1j )L j (h j ), we use the following lemma.

Lemma 9.5.8 Let 1 < q < ∞. Then, there exists a constant c5 independent of j ∈ N

such that

‖L j (h)‖Lq (H
1
j ∩B1

j )
� c5(‖h‖W 2−1/q

q (Γ 1
j )

+ ‖h‖1−1/q

W 2−1/q
q (Γ 1

j )
‖h‖1/q

W 3−1/q
q (Γ 1

j )
) (9.149)

for any h ∈ W 3−1/q
q (Γ 1

j ).

Remark 9.5.1 Applying Young’s inequality to (9.149), we have

‖L j (h)‖Lq (H
1
j ∩B1

j )
� σ‖h‖W 3−1/q

q (Γ 1
j )

+ Cσ‖h‖W 2−1/q
q (Γ 1

j )
(9.150)

for any σ > 0 and h ∈ W 3−1/q
q (Γ 1

j ) with some constant Cσ depending on σ but is
independent of h and j ∈ N.

Proof In the following, C stands for generic constants independent of j ∈ N. Let T3
j

be the operator given in Proposition 9.5.4. We write L j (h) = −T3
j (τ + δΔ)h + f ,

where f ∈ Ŵ 1
q,0(H

1
j ) is a unique solution to the variational problem:

(∇ f,∇ϕ)H 1
j

= (∇T3
j (τ + δΔΓ 1

j
)h,∇ϕ)H 1

j
for any ϕ ∈ Ŵ 1

q ′,0(H
1
j ). (9.151)

Let Yq ′, j = {ψ ∈ Lq ′(H 1
j ) | suppψ ⊂ B1

j ∩ H 1
j } and letψ be an arbitrary element

of Yq ′, j . By Lemma 9.5.7,

|(ψ, ϕ)H 1
j
| � ‖ψ‖Lq′ (H 1

j )
‖ϕ‖Lq (H

1
j ∩B1

j )
� c4‖ψ‖Lq′ (H 1

j )
‖∇ϕ‖Lq (H

1
j )

for any ϕ ∈ Ŵ 1
q,0(H

1
j ). By the Hahn-Banach theorem, there exists a g ∈ Lq ′(H 1

j )
N

such that g satisfies the variational equation:

(ψ, ϕ)H 1
j

= (g,∇ϕ)H 1
j

for any ϕ ∈ Ŵ 1
q,0(H

1
j ) (9.152)

and the estimate:
‖g‖Lq′ (H 1

j )
� C‖ψ‖Lq′ (H 1

j )
. (9.153)
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Let Xq ′, j = {Ψ ∈ Ŵ 1
q ′,0 | ∇Ψ ∈ W 1

q ′(H 1
j )

N }, and then in view of (9.152) and
(9.153), there exists a unique Ψ ∈ Xq ′, j such that

(∇Ψ,∇ϕ)H 1
j

= (g,∇ϕ)H 1
j

for any ϕ ∈ Ŵ 1
q,0(H

1
j ), (9.154)

‖∇Ψ ‖W 1
q′ (H 1

j )
� C(‖g‖Lq′ (H 1

j )
+ ‖ψ‖Lq′ (H 1

j )
) � C‖ψ‖Lq′ (H 1

j )
. (9.155)

Since f ∈ Ŵ 1
q,0(H

1
j ), by (9.151), (9.152), (9.154), and the divergence theorem of

Gauß

( f, ψ)H 1
j

= (∇ f, g)H 1
j

= (∇ f,∇Ψ )H 1
j

= (∇T3
j (τ + δΔΓ 1

j
)h,∇Ψ )H 1

j

= (T3
j (τ + δΔΓ 1

j
)h,n1

j · ∇Ψ )Γ 1
j
− (T3

j (τ + δΔΓ 1
j
)h,ΔΨ )H 1

j
,

which, combined with (9.155) and classical interpolation inequality:

‖v‖Lq (H
1
j )

� C‖v‖1−1/q
Lq (H

1
j )

‖∇v‖1/q
Lq (H

1
j )
, (9.156)

furnishes that

|( f, ψ)H 1
j
| � C{‖T3

j (τ + δΔΓ 1
j
)h‖Lq (H

1
j )

+ ‖∇T3
j (τ + δΔΓ 1

j
)h‖1/q

Lq (H
1
j )

‖T3
j (τ + δΔΓ 1

j
)h‖1−1/q

Lq (H
1
j )

}‖ψ‖Lq′ (H 1
j )
.

Since ψ is chosen arbitrarily,

‖ f ‖Lq (H
1
j ∩B1

j )
� C{‖T3

j (τ + δΔΓ 1
j
)h‖Lq (H

1
j )

+ ‖∇T3
j (τ + δΔΓ 1

j
)h‖1/q

Lq (H
1
j )

‖T3
j (τ + δΔΓ 1

j
)h‖1−1/q

Lq (H
1
j )

},

which, combined with Proposition 9.5.4, completes the proof of Lemma 9.5.8. ��
Write ∇K2(ζ

1
j h j ) − ζ 1j ∇L j (h j ) = ∇(K2(ζ

1
j h j ) − ζ 1j L j (h j )) + (∇ζ 1j )L j (h j )

and first we consider (∇ζ 1j )L j (h j ). And then,V13(λ)(f, f, fb) = ∑∞
j=1(∇ζ 1j )L j (h j )

exists strongly in Lq(Ω)N for any (f, f, fb) ∈ Yq(Ω). Moreover, there exists an oper-
ator family V 13(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω), Lq(Ω)N )) such that

V13(λ)(f, f, fb) = V 13(λ)Fλ(f, f, fb) ((f, f, fb) ∈ Yq(Ω)),

RL (Yq (Ω),Lq (Ω)N )({(τ∂τ )�V 13(λ) | λ ∈ Σε,λ1}) � (σ + Cσ λ
−1
1 )ω0 (9.157)

(� = 0, 1) for any σ > 0 and λ1 � max(λ0, 1) with some constant Cσ depending on
σ but independent of λ1.
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In fact, in view of (9.139), we define operatorsL j (λ) acting on F ∈ Yq(H
1
j ) by

L j (λ)F = (∇ζ 1j )L j (T j (λ)F), and then

L j (λ) ∈ Hol (Σε,λ0 ,L (Yq(H
1
j ), Lq(H

1
j )

N )),

(∇ζ 1j )L j (h j ) = L j (λ)Fλ(ζ̃
1
j f, ζ̃

1
j f, ζ̃

1
j fb) for (f, f, fb) ∈ Yq(Ω).

Moreover, by Lemma 9.5.8

‖L j (λ)F‖q
Lq (H

1
j )

� σ‖T j (λ)F‖q
W 3−1/q

q (Γ 1
j )

+ Cσ‖T j (λ)F‖q
W 2−1/q

q (Γ 1
j )

for any F ∈ Yq(H
1
j ) and any σ > 0 with some constantCσ depending on σ . Noting

that ∇ζ 1j = ζ̃ 1j (∇ζ 1j ), we define an operator V 13(λ) acting on F ∈ Yq(Ω) by

V 13(λ)F =
∞∑

j=1

ζ̃ 1j L j (λ)ζ̃
1
j F.

And then, by (9.136), Proposition 9.5.5 and (9.125),we see thatV 13(λ) is the operator
family satisfying the properties (9.157).

Next, we consider ∇(K2(ζ
1
j h j ) − ζ 1j L j (h j )). In this case, we see that

V14(λ)(f, f, fb) =
∞∑

j=1

∇(K2(ζ
1
j h j ) − ζ 1j L j (h j ))

exists strongly in Lq(Ω)N and there exists an operator family V 14(λ) with

V 14(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω), Lq(Ω)N ))

such that

V14(λ)(f, f, fb) = V 14(λ)Fλ(f, f, fb),

RL (Yq (Ω),Lq (Ω)N )({(τ∂τ )�V 14(λ) | λ ∈ Σε,λ1}) � (σ + Cσ λ
−1/2
1 )ω0 (9.158)

(� = 0, 1) for any σ > 0 and λ1 � max(λ0, 1) with some constant depending on σ
but independent of λ1.

In fact, noting that Ω ∩ B1
j = H 1

j ∩ B1
j and Γ ∩ B1

j = Γ 1
j ∩ B1

j , by (9.23) and
(9.133) we have

(∇(K2(ζ
1
j h j ) − ζ ij L j (h j )),∇ϕ)Ω

= −((∇ζ 1j )L j (h j ),∇ϕ)H 1
j

+ (∇L j (h j ), (∇ζ 1j )ϕ)H 1
j

= −(2(∇ζ 1j )L j (h j ),∇ϕ)H 1
j

− (L j (h j ), (Δζ
1
j )ϕ)H 1

j
(9.159)
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for any ϕ ∈ W 1
q ′ (Ω), subject to

K2(ζ
1
j h j ) − ζ 1j L j (h j ) = −δ{2(∇Γ 1

j
ζ 1j ) · (∇Γ 1

j
h j ) + (Δζ 1j )h j } on Γ.

Let W −1
q (Ω) be the dual space of W 1

q ′ (Ω) and let < ·, · >Ω be the duality pairing
betweenW −1

q (Ω) andW 1
q ′ (Ω). If we define I j (λ)(f, f, fb) ∈ W −1

q (Ω) andI j (λ) ∈
Hol (Σε,λ0 ,L (Yq(Ω),W −1

q (Ω))) acting on F ∈ Yq(Ω) by

< I j (λ)(f, f, fb), ϕ >Ω= −(2(∇ζ 1j )L j (h j ),∇ϕ)Ω − ((Δζ 1j )L j (h j ), ϕ)Ω,

< I j (λ)F, ϕ >Ω= −(2(∇ζ 1j )L j (T j (λ)ζ̃
1
j F),∇ϕ)Ω

− ((Δζ 1j )L j (T j (λ)ζ̃
1
j F), ϕ)Ω (9.160)

for any ϕ ∈ W 1
q ′ (Ω). By Lemmas 9.5.7, 9.5.8, (9.136), and (9.137), we have

| < I j (λ)(f, f, fb), ϕ >Ω | � (σ + Cσ λ
−1
1 )ω0‖Fλ(f, f, fb)‖Yq (Ω∩B1

j )
‖∇ϕ‖Lq (Ω∩B1

j )
,

| < I j (λ)F, ϕ >Ω | � C(σ‖T j (λ)ζ̃
1
j F‖W 3−1/q

q (Γ 1
j )

+ Cσ‖T j (λ)ζ̃
1
j F‖W 2−1/q

q (Γ 1
j )
)‖∇ϕ‖Lq (Ω∩B1

j )
.

By Proposition 9.5.2, (9.125) and Proposition 9.5.5, there exist I (λ)(f, f, fb) ∈
W −1

q (Ω) andI (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W −1
q (Ω))) such that the infinite sums∑∞

j=1 I j (λ)(f, f, fb) and
∑∞

j=1 I j (λ)F converge to I and I (λ)F in W −1
q (Ω)

strongly for any λ ∈ Σε,λ0 , respectively, I (λ)(f, f, fb) = I (λ)Fλ(f, f, fb), and

‖I (λ)(f, f, fb)‖W −1
q (Ω) � (σ + Cσ λ

−1
1 )ω0‖Fλ(f, f, fb)‖Yq (Ω),

‖
m∑

�=1

a�I (λ)F‖q
W −1

q (Ω)
�

∞∑

j=1

{σ‖
m∑

�=1

a�T j (λ�)ζ̃
1
j F�‖qW 3−1/q

q (Γ 1
j )

+ Cσ‖
m∑

�=1

a�T j (λ�)ζ̃
1
j F�‖W 2−1/q

q (Γ 1
j )

}. (9.161)

By the second formula in (9.161), the monotone congergence theorem in theory of
Lebesgue integral, Lemma 9.3.4, and (9.136) we have

RL (Yq (Ω),W −1
q (Ω))({(τ∂τ )�I (λ) | λ ∈ Σε,λ1}) � (σ + Cσ λ

−1
1 )ω0 (9.162)

(� = 0, 1) for any σ > 0 and λ1 � max(λ0, 1) with some constant Cσ depending on
σ but independent of λ1. Let G be an operator in L (W −1

q (Ω), Lq(Ω)N ) such that
for any θ ∈ W −1

q (Ω)

< θ, ϕ >Ω= (G(θ),∇ϕ)Ω for any ϕ ∈ W 1
q ′ (Ω),
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‖G(θ)‖Lq (Ω) � sup{| < θ, ϕ >Ω | : ϕ ∈ W 1
q ′ (Ω), ‖∇ϕ‖Lq′ (Ω) = 1}. (9.163)

Such an operator G can be constructed by the Hahn-Banach theorem. By (9.159)
and (9.163),

(∇(

∞∑

j=1

K2(ζ
1
j h j ) − ζ 1j L j (h j )),∇ϕ)Ω = (G(I (λ)Fλ(f, f, fb)),∇ϕ)Ω (9.164)

for any ϕ ∈ W 1
q ′ (Ω). Moreover, by (9.162) and (9.163), we have

RL (Yq (Ω),Lq (Ω)N )({(τ∂τ )�GI (λ) | λ ∈ Σε,λ1}) � (σ + Cσ λ
−1
1 )ω0 (9.165)

(� = 0, 1) for any σ > 0 and λ1 � max(λ0, 1) with some constant Cσ depending on
σ but independent of λ1.

On the other hand, by (9.137)

‖2(∇Γ 1
j
ζ 1j ) · ∇Γ 1

j
h j + (Δζ 1j )h j‖W 1−1/q

q (Γ )
� Cω0|λ|−1‖Fλ(ζ̃ 1j f, ζ̃ 1j f, ζ̃ 1j fb)‖Yq (H

1
j )

for any j ∈ N and λ ∈ Σε,λ0 with some constant C independent of j and λ, so
that by Proposition 9.5.2, (9.125) and Proposition 9.5.5, we see that there exists a
h(λ)(f, f, fb) ∈ W 1−1/q

q (Γ ) such that the infinite sum

−σ

∞∑

j=1

(2(∇Γ 1
j
ζ 1j ) · ∇Γ 1

j
h j + (ΔΓ 1

j
ζ 1j )h j )

converges to h(λ)(f, f, fb) strongly in W 1−1/q
q (Γ ) and

‖h(λ)(f, f, fb)‖W 1−1/q
q (Γ )

� C |λ|−1‖Fλ(f, f, fb)‖Yq (Ω). (9.166)

Moreover, there exists aN (λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 1−1/q
q (Γ ))) such that

N (λ)Fλ(f, f, fb) = h(λ)(f, f, fb) on Γ,

RL (Yq (Ω),W 1−1/q
q (Γ )

({(τ∂τ )�N (λ) | λ ∈ Σε,λ1}) � Cλ−1
1 ω0 (9.167)

(� = 0, 1) for any λ1 � max(λ0, 1). Since

∞∑

j=1

(K2(ζ
1
j h j ) − ζ 1j L j (h j )) = h(λ)(f, f, fb) on Γ,
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by Remark 9.1.3 and (9.164) we have

∇(

∞∑

j−1

K2(ζ
1
j h j ) − ζ 1j L j (h j ))

= T1
Γ h(λ)(f, f, fb) + K1(I (λ)(f, f, fb) − T1

Γ h(λ)(f, f, fb)). (9.168)

Let
V 14(λ)F = T1

ΓN (λ)F + K1(I (λ)F − T1
ΓN (λ)F)

for F ∈ Yq(Ω), and then by (9.168), (9.167), and (9.165), V 14(λ) satisfies the prop-
erties stated in (9.158). Summing up, we have proved thatV1(λ) = ∑4

i=1 V
1i (λ) and

morever, if we set V 1(λ) = ∑4
i=1 V

1i (λ), then

V 1(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω), Lq(Ω)N )),

V 1(λ)Fλ(f, f, fb) = V1(λ)(f, f, fb) ((f, f, fb) ∈ Yq(Ω)),

RL (Yq (Ω),Lq (Ω)N )({(τ∂τ )�V 1(λ) | λ ∈ Σε,λ1}) � (Cqσ + Cσ,qλ
−1/2
1 )ω0 (9.169)

for � = 0, 1 and for any σ > 0 and λ1 � max(1, λ0).
Finally,we considerV2(λ)(f, f, fb).WriteD(ϕu) = (A ∇ϕ)uwith someconstant

matrix A , and we have

V2(λ)(f, f, fb)

=
2∑

i=0

∞∑

j=1

μ(A ∇ζ ij )u
i
j −

∞∑

j=1

μ < (A ∇ζ 1j )u
1
jn

1
j ,n

1
j > n1

j +
∞∑

j=1

((∇ζ 1j ) · u1
j )n

1
j ,

where the right hand side converges strongly in W 1
q (Ω). Moreover, we define an

operator V 2(λ) acting on F = (F1, F2, F3, F4) ∈ Yq(Ω) by

V 2(λ)F =
∑

i=0,1

∞∑

j=1

μ(A ∇ζ ij )S
i
j (λ)ζ̃

i
j F1 +

∞∑

j=1

μ(A ∇ζ 1j )S
1
j (λ)ζ̃

1
j F

−
∞∑

j=1

μ < (A ∇ζ 1j )S
1
j (λ)ζ̃

1
j F,n

1
j > n1

j +
∞∑

j=1

((∇ζ 1j ) · S 1
j (λ)ζ̃

1
j F)n

1
j ,

by (9.137), (9.136), Proposition 9.5.2 and (9.125), we see that

V2(λ) ∈ Hol (Σε,λ0 ,L (Yq(Ω),W 1
q (Ω)N )),

V2(λ)Fλ(f, f, fb) = V2(λ)(f, f, fb) ((f, f, fb) ∈ Yq(Ω)),

RL (Yq (Ω),W 1−n
q (Ω)N )({(τ∂τ )�(λn/2V2(λ)) | λ ∈ Σε,λ1}) � Cω0λ

−1/2
1 (9.170)
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for � = 0, 1 and n = 0, 1 and for any λ1 � max(λ0, 1).
Let

V (λ) = (V1(λ), 0, λ
1/2V2(λ),V2(λ))

and then by (9.169) and (9.170), V (λ) is the operator satisfying the properties in
Lemma 9.5.6, which completes the proof of Lemma 9.5.6.

9.5.5 Proof of Theorem 9.2.1

Recall that

‖(f, f, fb)‖Yq (Ω) = ‖f‖Lq (Ω) + ‖ f ‖W 2−1/q
q (Γ )

+ ‖fb‖W 1
q (Ω), for (f, f, fb) ∈ Yq(Ω),

‖(F1, F2, F3, F4)‖Yq (Ω) = ‖(F1, F3)‖Lq (Ω) + ‖F2‖W 2−1/q
q (Γ )

+ ‖F4‖W 1
q (Ω)

for F = (F1, F2, F3, F4) ∈ Yq(Ω), and then

‖Fλ(f, f, fb)‖Yq (Ω) = ‖(f, λ1/2fb)‖Lq (Ω) + ‖ f ‖W 2−1/q
q (Γ )

+ ‖fb‖W 1
q (Ω),

so that ‖Fλ(f, f, fb)‖Lq (Ω) (λ �= 0) give equivalent norms ofYq(Ω). ByLemma9.5.6,

‖FλV(λ)(f, f, fb)‖Yq (Ω) = ‖V (λ)Fλ(f, f, fb)‖Yq (Ω)

� (σ + Cσ λ
−1/2
1 )ω0‖Fλ(f, f, fb)‖Lq (Ω).

Choosing σ and λ1 in such a way that 0 < σω0 � 1/4 and Cσ λ
−1/2
1 ω0 � 1/4, we

have
‖FλV(λ)(f, f, fb)‖Lq (Ω) � (1/2)‖Fλ(f, f, fb)‖Lq (Ω)

for any λ ∈ Σε,λ1 , so that (I − V(λ))−1 = ∑∞
j=0 V(λ)

j exists inL (Yq(Ω)). More-
over, by (9.146) (I − V (λ))−1 = ∑∞

j=0(FλV (λ)) j exists and

RL (XR,q (Ω))({(τ∂τ )�(I − V (λ))−1 | λ ∈ Σε,λ1}) � 2 (� = 0, 1). (9.171)

By (9.140), (9.142), and (9.144), and (9.140),

u = S (λ)Fλ(I − V(λ))−1(f, f, fb), h = T (λ)Fλ(I − V(λ))−1(f, f, fb)

are solutions of the equations (9.26). Sine FλV(λ) = V (λ)Fλ, we have

Fλ(I − V(λ))−1 = Fλ

∞∑

j=1

V(λ) j =
∞∑

j=1

V (λ) j Fλ = (I − V (λ))−1Fλ,
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so that

u = S (λ)(I − V (λ))−1Fλ(f, f, fb), h = T (λ)(I − V (λ))−1Fλ(f, f, fb).

Thus, setting A (λ) = S (λ)(I − V (λ))−1 and H (λ) = T (λ)(I − V (λ))−1, by
(9.144), (9.171), and Proposition 9.3.4, we see that A (λ) and H (λ) satisfy the
properties stated in Theorem 9.2.1, which completes the proof of the existence part
of Theorem 9.2.1.

Next, we prove the uniqueness part of Theorem 9.2.1. Let u ∈ W 2
q (Ω)N and

h ∈ W 3−1/q
q (Γ ) satisfy the homogeneous equations (9.35). Let g be any element in

Jq ′(Ω) and let v ∈ W 2
q ′(Ω)N and ρ ∈ W 3−1/q ′

q ′ (Γ ) be solutions to the equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λv − Div (μD(v) − (K1(v) + K2(ρ))I) = g in Ω,

λρ − n · v = 0 on Γ,

(μD(v) − (K1(v) + K2(ρ))I)n − ((τ + δΔΓ )ρ)n = 0 on Γ,

v = 0 on Γ0.

(9.172)

First, we observe that v ∈ Jq ′(Ω). In fact, for any ϕ ∈ W 1
q (Ω), we have

0 = (g,∇ϕ)Ω = λ(v,∇ϕ)Ω − (Div (μD(v)) − ∇div v,∇ϕ)Ω

= λ(v,∇ϕ)Ω − (∇div v,∇ϕ)Ω.
(9.173)

Since W 1
q,Γ (Ω) ⊂ W 1

q (Ω), for any ϕ ∈ W 1
q,Γ (Ω) we have

0 = λ(div v, ϕ)Ω + (∇div v,∇ϕ)Ω,

so that the uniqueness guaranteed by Theorem 9.6.1 in Sect. 9.6.2 implies that
div v = 0, which inserted into (9.173) yields that (v,∇ϕ)Ω = 0 for any ϕ ∈ W 1

q (Ω),
that is v ∈ Jq ′(Ω). Analogously, we have u ∈ Jq(Ω).

Since K1(v), K2(ρ) ∈ W 1
q ′(Ω) + W 1

q ′ (Ω), we write K1(v) = A1 + A2 and
K2(ρ) = B1 + B2 with A1, B1 ∈ W 1

q ′(Ω) and A2, B2 ∈ W 1
q ′ (Ω). Noting that

A1 = K1(v) and B1 = K2(ρ) on Γ and that (u,∇A2)Ω = (u,∇B2)Ω = 0, by the
divergence theorem of Gaußwe have

(u, g)Ω = λ(u, v) − (u,Div (μD(v) − (A1 + B1)I))Ω

= λ(u, v) − (n · u, (τ + δΔΓ )ρ)Γ + μ

2
(D(u),D(v))Ω − (div u, A1 + B1)Ω .

Finally, using the second equations in (9.172), we have

(u, g)Ω = λ(u, v)Ω − λτ(h, ρ)Γ + λδ(∇Γ h,∇Γ ρ)Γ + μ

2
(D(u),D(v))Ω.

(9.174)
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Analogously, we have

0 = (λu − Div (μ(D(u) − K1(u) + K2(h))I), v)Ω

= λ(u, v)Ω − λτ(h, ρ)Γ + λδ(∇Γ h,∇Γ ρ)Γ + μ

2
(D(u),D(v))Ω,

which, combined with (9.174), furnishes that

(u, g)Ω = 0 for any g ∈ Jq ′(Ω). (9.175)

For any f ∈ C∞
0 (Ω)N , let ψ ∈ W 1

q ′ (Ω) be a solution to the variational equation
(f,∇ϕ)Ω = (∇ψ,∇ϕ)Ω for anyϕ ∈ W 1

q (Ω). Let g = f − ∇ψ , and then g ∈ Jq ′(Ω)

and (u,∇ψ)Ω = 0. Thus, by (9.175), (u, f)Ω = (u, g)Ω = 0, which, combined with
the arbitrariness of the choice of f , furnishes that u = 0. And then, by the second
equation of (9.35) yields that h = 0. This completes the proof of the uniqueness part
of Theorem 9.2.1.

9.6 Proof of Theorem 9.2.2

9.6.1 Existence Part

In this section, we prove the unique existence of solutions to time dependent prob-
lem (9.36). In this subsection, we prove the existence part. For this purpose, we
transform the problem to the zero initial data case. To this end, we take a domain
Ω1 such that ∂Ω1 = Γ0 and Ω ⊂ Ω1. The Ω1 is a uniform W 2−1/r

r (N < r < ∞)
domain. Let u0 ∈ B2(1−1/p)

q,p (Ω) be an initial velocity field for problem (9.1) and
let ũ0 = (ũ01, . . . , ũ0N ) be an extension of u0 to Ω1 such that u0 = ũ0 on Ω and
‖ũ0‖B2(1−1/p)

q,p (Ω1)
� C‖u0‖B2(1−1/p)

q,p (Ω)
. We consider the time-shifted heat equations:

∂t v j + λ0v j − μΔv j = 0 in Ω1 × (0,∞), v j |Γ0 = 0, v j |t=0 = ũ0 j (9.176)

( j = 1, . . . , N ). Since ũ0 j satisfies the compatibility condition: ũ0 j |Γ0 = u0 j |Γ0 = 0
as follows from (9.18), employing the similar argumentation to that in Shibata [14,
15], we see that there exist v j ( j = 1, . . . , N ) such that

v j ∈ L p((0,∞),W 2
q (Ω1)) ∩ W 1

p((0,∞), Lq(Ω1)),

‖∂t v j‖L p((0,∞),Lq (Ω1)) + ‖v j‖L p((0,∞),W 2
q (Ω1))

� C‖ũ0 j‖B2(1−1/p)
q,p (Ω1)

� C‖u0‖B2(1−1/p)
q,p (Ω)

. (9.177)

Thus, we define v by v = (v1, . . . , vN ).
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Concerning the initial data h0 ∈ B3−1/p−1/q
q,p (Γ ) for the height function of problem

(9.1), let h̃0 ∈ B3−1/p
q,p (RN ) be an extension of h0 to RN such that h̃0 = h0 on Γ and

‖h̃‖B3−1/p
q,p (RN )

� C‖h‖B3−1/p−1/q
q,p (Γ )

. We define the function d by

d = e−At h̃0 = F−1[e−t
√

1+|ξ |2F [h̃0](ξ)](x).

We have

d ∈ L p((0,∞),W 3
q (R

N )) ∩ W 1
p((0,∞),W 2

q (R
N )),

‖d‖L p((0,∞),W 3
q (R

N )) + ‖∂t d‖L p((0,∞),W 2
q (R

N ))

� C‖h̃0‖B3−1/p
q,p (RN )

� C‖h0‖B3−1/p−1/q
q,p (Γ )

. (9.178)

Setting u = v + w and h = d + ρ, we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tw − Div (μD(u) − (K1(w) + K2(ρ))I) = f̃, in Ω × (0, T ),

∂tρ − n · w = f̃ on Γ × (0, T ),

Tn(μD(w)n) = Tn(f̃b), divw = n · f̃b on Γ × (0, T ),

w = 0 on Γ0 × (0, T ),

(w, ρ)|t=0 = (0, 0) in Ω × Γ,

(9.179)

where

f̃ = f − ∂tv + Div (μ(D(v) − (K1(v) + K2(d))I), f̃ = f − ∂t d + n · v,
f̃b = fb − Tn(μD(v)n) − (div v)n

By the compatibility condition (9.37), we have

Tnf̃b|t=0 = 0, n · f̃b|t=0 = 0 in Ω.

Moreover, by (9.177) and (9.178), we have

MR(t, 0, 0, f̃, f̃ , f̃b) � CMR(t,u0, h0, f, f, fb).

Thus, from now on we consider problem (9.36) with u0 = 0 and h0 = 0 under
the condition:

fb|t=0 = 0 in Ω. (9.180)

Given any function f (·, t) defined on (0, T ), let f0 denotes the zero extension of f to
(−∞, 0), namely f0(·, t) = f (·, t) for t ∈ (0, T ) and f0(·, t) = 0 for t ∈ (−∞, 0).
Let Et be an operator defined by
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[Et f ](·, s) =
{
f0(·, s) for s < t,

f0(·, 2t − s) for s > t.
(9.181)

Obviously, [Et f ](·, s) = 0 for s /∈ (0, 2t), Moreover, if f |t=0 = 0, then we have

∂s[Et f ](·, s) =

⎧
⎪⎨

⎪⎩

0 for s /∈ (0, 2t),

(∂s f )(·, s) for s ∈ (0, t),

−(∂s f )(·, 2t − s) for s ∈ (t, 2t).

(9.182)

Instead of (9.36) with u0 = 0 and h0 = 0, we consider the equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − Div (μD(u) − (K1(u) + K2(h))I) = Et [f] in Ω × R,

∂t h − n · u = Et [ f ] on Γ × R,

Tn(μD(u)n) = Tn(Et [fb]), div u = n · Et [fb] on Γ × R,

u = 0 on Γ0 × R.

(9.183)

Let L and L −1 denote the Laplace-Fourier transform and the inverse
Laplace-Fourier transform with respect to t defined by

L [ f ](τ ) =
∫ ∞

−∞
e−(γ+iτ)t f (t) dt, L −1[g](t) = 1

2π

∫ ∞

−∞
e(γ+iτ)t g(τ ) dτ.

Let Ft and F−1
τ be the Fourier transform with respect to t and the inverse Fourier

transform with respect to τ , and then L [ f ](λ) = Ft [e−γ t f (t)] and L −1[g](t) =
eγ tF−1

τ [g(τ )](t) with λ = γ + iτ (γ , τ ∈ R). Applying the Laplace-Fourier trans-
form to (9.183), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λv − Div (μD(v) − (K1(v) + K2(η))I) = f̂ in Ω,

λη − n · v = f̂ on Γ,

Tn(μD(v)n) = Tn(f̂b), div v = n · f̂b on Γ,

v = 0 on Γ0.

(9.184)

Here,
f̂ = L [Et f](x, λ), f̂ = L [Et f ](x, λ), f̂b = L [Et fb](x, λ).

Applying the solution operators A (λ) and H (λ) given in Theorem 9.2.1, we have

v = A (λ)Dλ, η = H (λ)Dλ, Dλ = (f̂, f̂ , λ1/2 f̂b,∇ f̂b). (9.185)

LetΛγ f be the operator defined byΛγ f = L −1[λ1/2L [ f ](λ)]. Note that λ1/2 f̂ =
L [Λ1/2

γ Et f] andλ1/2 f̂b = L [Λ1/2
γ Et fb].Applying the inverseLaplace-Fourier trans-

form, the solutions u and h of problem (9.183) are given by u = L −1[A (λ)Dλ] and
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h = L −1[H (λ)Dλ). Since (∂t ,Λ
1/2
γ )u(·, t) = L −1[(λ, λ1/2)A (λ)Dλ] and ∂t h =

L −1[λH (λ)Dλ], by the Weis operator valued Fourier multiplier theorem [20] and
Theorem 9.2.1,

‖e−γ s∂su‖L p(R,Lq (Ω)) + ‖e−γ tΛ1/2
γ u‖L p(R,W 1

q (Ω)) + ‖e−γ tu‖L p(R,W 2
q (Ω))

+ ‖e−γ s∂t h‖L p(R,W
2−1/q
q (Γ ))

+ ‖e−γ t h‖L p(R,W
3−1/q
q (Γ ))

� C{‖e−γ s(Et f,Λ1/2
γ Et fb)‖L p(R,Lq (Ω)) + ‖e−γ s Et fb‖L p(R,W 1

q (Ω))

+ ‖e−γ s Et f ‖L p(R,W
2−1/q
q (Γ ))

} (9.186)

for any γ � γ0 with some constants C and γ0. From Shibata [16, Appendix] we
have

‖eγ sΛ1/2
γ f ‖L p(R,Lq (Ω)) � C{‖e−γ s∂s f ‖L p(R,W

−1
q (Ω)) + ‖e−γ s f ‖L p(R,W 1

q (Ω))},
γ ‖e−γ s f ‖L p(R,X) � C‖e−γ s∂s f ‖L p(R,X) (X ∈ {Lq(Ω),W 2−1/q

q (Γ )}), (9.187)

which, combined with (9.186), furnishes that

‖e−γ s∂tu‖L p(R,Lq (Ω)) + ‖e−γ su‖L p(R,W 2
q (Ω)) + γ ‖e−γ su‖L p(R,Lq (Ω))

+‖e−γ s∂t h‖L p(R,W
2−1/q
q (Γ ))

+ ‖e−γ sh‖L p(R,W
3−1/q
q (Γ ))

+ γ ‖e−γ sh‖L p(R,W
2−1/q
q (Γ ))

� CM̃γ

(9.188)

with

M̃γ = ‖e−γ s Et f‖L p(R,Lq (Ω)) + ‖e−γ s∂s Et fb‖L p(R,W
−1
q (Ω)) + ‖e−γ s Et fb‖L p(R,W 1

q (Ω))

+ ‖e−γ s Et f ‖L p(R,W
2−1/q
q (Γ )

By (9.181) and (9.182), we have

M̃γ � CMR(t, 0, 0, f, f, fb). (9.189)

On the other hand, by (9.188) and (9.189) we have

‖u‖L p((−∞,0),L p(Ω)) + ‖h‖L p((−∞,0),W 2
q (Ω))

� ‖e−γ su‖L p(R,L p(Ω)) + ‖e−γ sh‖L p(R,W 2
q (Ω))

� γ−1CMR((0, t), 0, 0, f, f, fb) → 0 letting γ → ∞,

which furnishes that ‖u‖L p((−∞,0),L p(Ω)) + ‖h‖L p((−∞,0),W 2
q (Ω)) = 0. This implies

that u(·, s) = 0 and h(·, s) = 0 for s ∈ (−∞, 0). In particular, (u, h)|s=0 = (0, 0) in
Ω × Γ . Moreover, we have
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IR(t,u, h) � Ceγ tMR(t, 0, 0, f, f, fb). (9.190)

Since [Et f ](·, s) = f (·, s) for s ∈ (0, t), u and h satisfy the equations (9.36) with
T = t and (u, h)|s=0 = (0, 0). For 0 < t1 < t2 � T , let uti and hti be solutions of
equations (9.36) with T = ti and (u0, h0) = (0, 0). By the uniqueness of solutions
proved in Sect. 9.6.3, we have (ut1 , pt1 , ht1) = (ut2 , pt2 , ht2) for s ∈ (0, t1), so that
if we set (u, p, h) = (uT , pT , hT ), then we have (u, p, h) = (ut , pt , ht ) for any t ∈
(0, T ). This completes the proof of the existence part of Theorem 9.2.2.

9.6.2 The Weak Laplace Problem with Dirichlet Condition

In this subsection, let W−1
q (Ω) be the dual space of W 1

q ′,Γ (Ω). By the Hahn-Banach
theorem there exists a map F0 : W−1

q (Ω) → Lq(Ω)N+1 such that for any I ∈
W−1

q (Ω)

I (ψ) = (F00(I ), ψ)Ω + (F ′
0(I ),∇ψ)Ω

for any ψ ∈ W 1
q ′,Γ (Ω), where F0(I ) = (F00(I ),F ′

0(I )), and

‖F0(I )‖Lq (Ω) � Cq‖I ‖W−1
q (Ω).

Especially, if g is represented by g = g0 + div g with (g0, g) ∈ Lq(Ω)N+1, then
g ∈ W−1

q (Ω) and
‖g‖W−1

q (Ω) � ‖(g0, g)‖Lq (Ω).

First, we consider the following resolvent problem:

λ(g, ϕ)Ω + (∇g,∇ϕ)Ω = (f,∇ϕ)Ω + ( f, ϕ)Ω for any ϕ ∈ W 1
q ′,Γ (Ω) (9.191)

subject to g = h on Γ . We have the following theorem.

Theorem 9.6.1 Let 1 < q < ∞, 0 < ε < π/2, N < r < ∞ and max(q, q ′) � r .
Assume that Ω is a uniform W 2,2

r (Ω) domain. Let

Y 2
q (Ω) = {(f, f, h) | (f, f ) ∈ Lq(Ω)N+1, h ∈ W 1

q (Ω)},
Y 2

q (Ω) = {(F0, F8, F9) | F0 ∈ Lq(Ω)N+1, F8 ∈ Lq(Ω), F9 ∈ W 1
q (Ω)},

where F0, F8 and F9 are variables corresponding to (f, f ), λ1/2h and h. Then, there
exist a constant λ0 > 0 and an operator family GΩ(λ) with

GΩ(λ) ∈ Hol (Σε,λ0 ,L (Y 2
q (Ω),W 1

q (Ω) ∩ W−1
q (Ω)))
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such that for any λ ∈ Σε,λ0 and (f, f, h) ∈ Y 2
q (Ω), g = GΩ(λ)(f, f, λ1/2h, h) is a

unique solution of problem (9.191), and

RL (Y 2
q (Ω),W 1− j

q (Ω))
({(τ∂τ )�(λ j/2GΩ(λ)) | λ ∈ Σε,λ0}) � c

for � = 0, 1 and j = 0, 1, 2.

Proof In the case where Ω = R
N and Ω = R

N+ employing the same arguments as
in the proof of Lemma 9.3.2, Lemma 9.3.10 (a) and Lemma 9.3.15 (a), we can prove
Theorem9.6.1.WhenΩ is the bent half spaceΩ+ given in Sect. 9.4, we setW−1

q (Ω+)
is the dual space of W 1

q ′,0(Ω+). In this case, we consider the variational equation:

λ(g, ϕ)Ω+ + (∇g,∇ϕ)Ω+ = (f,∇ϕ)Ω+ + ( f, ϕ)Ω+ (9.192)

for any ϕ ∈ W 1
q ′,0(Ω+) subject to g = h on Γ+. As was seen in Sect. 9.4.2, by the

change of variable: ξ = Φ(x) the variational problem (9.192) is transformed to the
variational problem:

λ(u detG, ψ)RN+ + (∇u,∇ψ)RN+ + (B0∇u,∇ψ)RN+ = (f̃,∇ψ)RN+ + ( f̃ , ψ)RN+

subject to u = h̃. Setting v = u det G, we have

λ(v, ψ)RN+ + (∇v,∇ψ)RN+ + (∇((det G)−1 − 1)v,∇ψ)RN+

+ (B0∇((detG)−1v),∇ψ)RN+ = (f̃,∇ψ)RN+ + ( f̃ , ψ)RN+

subject to v = (detG)−1h̃. Since

‖(1 − (detG)−1)‖L∞(RN ) � CM1, ‖∇(1 − (detG)−1)‖Lr (R
N+ ) � CM2 ,

by (9.98) and (9.99), the terms:

(∇((det G)−1 − 1)v,∇ψ)RN+ + (B0∇((detG)−1v),∇ψ)RN+

can be regarded as a small perturbation from themain part:λ(v, ψ)RN+ + (∇v,∇ψ)RN+
Thus, using the Banach fixed point argument, we can prove Theorem 9.6.1 when
Ω = Ω+ with Dirichlet boundary condition.

WhenΩ = Ω+ with Neumann boundary condition, we set W−1
q (Ω+) is the dual

space of W 1
q ′(Ω+). In this case, we consider the variational equation:

λ(g, ϕ)Ω+ + (∇g,∇ϕ)Ω+ = (f,∇ϕ)Ω+ + ( f, ϕ)Ω+

for any ϕ ∈ W 1
q ′(Ω+). Employing the same argumentation as above, we can prove

Theorem 9.6.1.
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WhenΩ is a uniformW 2,2
r domain, we use the same argumentation as in Sect. 9.5.

Let gij be solutions to the following variational equations of three different cases:

λ(gmj , ψ)H m
j

+ (∇gmj ,∇ψ)H m
j

= (ζ̃mj f,∇ψ)H m
j

+ (ζ̃mj f, ψ)H m
j

for any ψ ∈ W 1
q ′(H m

j ) (m = 0, 2);

λ(g1j , ψ)H 1
j

+ (∇g1j ,∇ψ)H 1
j

= (ζ̃ 1j f,∇ψ)H 1
j

+ (ζ̃ 1j f, ψ)H 1
j

(9.193)

for any ψ ∈ W 1
q ′,0(H

1
j ), subject to g1j = ζ̃ 1j h on Γ 1

j . By the results for the whole
space and bent half space, there exist operator families G m

j (λ) with

G m
j (λ) ∈ Hol (Σε,λ0 ,L (Y 2

q (H
m
j ),W 1

q (H
m
j ) ∩ W−1

q (H m
j ))),

RL (Y 2
q (H

m
j ),W 1−k

q (H m
j ))({(τ∂τ )�(λk/2G m

j (λ) | λ ∈ Σε,λ0}) � c

for � = 0, 1 and k = 0, 1, 2, where c is some constant independent of j ∈ N. Here,
W−1

q (H m
j ) are the dual space of W 1

q ′(H m
j ) for m = 0, 2 and W 1

q ′,0(H
1
j ), respec-

tively. From (9.193), we have

λ(

2∑

i=0

∞∑

j=1

ζ ij g
i
j , ψ)Ω + (∇(

2∑

i=0

∞∑

j=1

ζ ij g
i
j ),∇ψ)Ω

= (f,∇ψ)Ω + ( f, ψ)Ω + 2(
2∑

i=0

∞∑

j=1

(∇ζ ij )g
i
j ,∇ψ)Ω

+ (

2∑

i=0

∞∑

j=1

((Δζ̃ ij )g
i
j , ψ)Ω − (

∞∑

j=1

{(∇ ζ̃ 0j ) · n0}g0j , ψ)Γ0 .

Let I be an element of W−1
q (Ω) defined by

< I, ψ >= (

∞∑

j=1

{(∇ ζ̃ 0j ) · n0}g0j , ψ)Γ0 ,

where < ·, · > denotes the dual paring between W−1
q (Ω) and W 1

q ′,Γ (Ω), and then
by (9.125) and the classical interplation inequality about the boundary trace to Γ0

like (9.156), we have

| < I, ψ > | � Cq{
∞∑

j=1

(ε‖g0j‖qW 1
q (H

0
j )

+ Cε‖g0j‖Lq (H
0
j )

}1/q‖ψ‖W 1
q′ (Ω).
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Thus, there exists an N + 1 vector of functionsG = (G0,G′) ∈ Lq(Ω)N+1 such that

< I, ψ >Ω= (G0, ψ)Ω + (G′,∇ψ)Ω,

‖G‖Lq (Ω) � Cq{
∞∑

j=1

(ε‖g0j‖qW 1
q (H

0
j )

+ Cε‖g0j‖Lq (H
0
j )

}1/q ,

and then, we have

λ(

2∑

i=0

∞∑

j=1

ζ ij g
i
j , ψ)Ω + (∇(

2∑

i=0

∞∑

j=1

ζ ij g
i
j ),∇ψ)Ω

= (f,∇ψ)Ω + ( f, ψ)Ω + (2
2∑

i=0

∞∑

j=1

(∇ζ ij )g
i
j + G′,∇ψ)Ω

+ (

2∑

i=0

∞∑

j=1

((Δζ̃ ij )g
i
j + G0, ψ)Ω.

Employing the similar argumentation to that in Sect. 9.5, we can prove Theorem
9.6.1. This completes the proof of Theorem 9.6.1. ��

Next, we consider the following time dependent problem corresponding to
(9.191): ⎧

⎪⎨

⎪⎩

∂t g − Δg = f in Ω × (0, T ),

g = h on Γ × (0, T ),

g = g0 in Ω,

(9.194)

where the Laplace operator Δ is defined for g ∈ W 1
q (Ω) by

< Δg, ψ >= (∇g,∇ψ)Ω for any ψ ∈ W 1
q ′,0(Ω).

Here and hereafter,< ·, · > denotes the dual pairing betweenW−1
m (Ω) andW 1

m ′,Γ (Ω)

for m = q and q ′ with q ′′ = q. We have the following theorem.

Theorem 9.6.2 Let 1 < q < ∞, T > 0, N < r < ∞ and max(q, q ′) � r . Assume
thatΩ is a uniform W 2,2

r (Ω) domain. Then, for any initial data g0 ∈ B1−1/p
q,p (Ω) and

right members

f ∈ L p((0, T ),W
−1
q (Ω)), h ∈ W 1

p((0, T ),W
−1
q (Ω)) ∩ L p((0, T ),W

1
q (Ω)),

satisfying the compatibility condition: g0 = h|t=0 on Ω , problem (9.194) admits a
unique solution g with

g ∈ W 1
p((0, T ),W

−1
q (Ω)) ∩ L p((0, T ),W

1
q (Ω))
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possessing the estimate:

‖g‖L p((0,T ),W 1
q (Ω)) + ‖∂t g‖L p((0,t),W

−1
q (Ω)) � Ceγ T {‖g0‖B1−1/p

q (Ω)

+ ‖ f ‖L p((0,T ),W
−1
q (Ω)) + ‖g‖L p((0,T ),W 1

q (Ω)) + ‖∂t g‖L p((0,T ),W
−1
q (Ω))}.

Proof Theorem 9.6.1 enable us to prove the existence part of Theorem 9.6.2 in the
same manner as in the proof of the existence part of Theorem 9.2.2 in Sect. 9.6.1.

The uniqueness follows from the existence of the dual problem: In fact, let g
satisfy the regularity condition:

g ∈ L p((0, T ),W
1
q (Ω)) ∩ W 1

p((0, T ),W
−1
q (Ω))

and the homogeneous equations:

⎧
⎪⎨

⎪⎩

∂t g − Δg = 0 in Ω × (0, T ),

g = 0 on Γ × (0, T ),

g|t=0 = 0 in Ω.

Note that g ∈ L p((0, T ),W 1
q,0(Ω)). For any f ∈ L p′((0, T ),W−1

q ′ (Ω)), let u with

u ∈ L p′((0, T,W 1
q ′(Ω)) ∩ W 1

p′((0, T ),W−1
q ′ (Ω))

be a solution to the time reversed equations:

⎧
⎪⎨

⎪⎩

∂t u + Δu = f in Ω × (0, T ),

u = 0 on Γ × (0, T ),

u|t=T = 0 in Ω.

Note that u ∈ L p′((0, T ),W 1
q ′,0(Ω)). Then, we have

∫ T

0
< g(·, s), f (·, s) > ds =

∫ T

0
< g(·, s), (∂su + Δu)(·, s) > ds

= −
∫ T

0
< (∂sg − Δg)(·, s), u(·, s) > ds = 0,

which furnishes that g = 0. This completes the proof of Theorem 9.6.2. ��
As an application of Theorem 9.6.2, we prove that if u satisfies the regularity

condition:
u ∈ W 1

p((0, T ), Lq(Ω)) ∩ L p((0, T ),W
2
q (Ω))
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and the equations:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tu − Div (μD(u) − (K1(u) + K2(h))I) = f in Ω × (0, T ),

div u = 0 on Γ × (0, T ),

u = 0 on Γ0 × (0, T ),

u|t=0 = u0 in Ω,

and if f(·, t) ∈ Jq(Ω) for any t ∈ (0, T ) and div u0 = 0 in Ω , then div u = 0 in
Ω × (0, T ). Moreover, if u0 ∈ Jq(Ω), then u ∈ Jq(Ω) for any t ∈ (0, T ).

In fact, for any ϕ ∈ W 1
q ′ (Ω), we have

0 = (f,∇ϕ)Ω = (∂tu,∇ϕ)Ω + (∇div u,∇ϕ)Ω. (9.195)

Since ϕ ∈ W 1
q ′,Γ (Ω) ⊂ W 1

q ′ (Ω), for any ϕ ∈ W 1
q ′,Γ (Ω) we have

(∂tdiv u, ϕ)Ω + (∇div u,∇ϕ)Ω = 0.

Namely, div u ∈ W 1
p((0, T ),W

−1
q (Ω)) ∩ L p((0, T ),W 1

q (Ω)) and div u satisfies the
equations: ⎧

⎪⎨

⎪⎩

∂tdiv u − Δdiv u = 0 in Ω × (0, T ),

div u = 0 on Γ × (0, T ),

div u = 0 in Ω,

so that the uniqueness, guaranteed by Theorem 9.6.2, furnishes that div u = 0 for
any t ∈ (0, T ).

Moreover, inserting this formula into (9.195) yields that (∂tu(·, t),∇ϕ)Ω = 0 for
any ϕ ∈ W 1

q ′ (Ω). Thus, if (u|t=0,∇ϕ)Ω = (u0,∇ϕ)Ω = 0, then (u(·, t),∇ϕ)Ω = 0
for any ϕ ∈ W 1

q ′ (Ω) and t ∈ (0, T ).

9.6.3 Uniqueness Part

Finally, we prove the uniqueness part of Theorem 9.1.5. Let u and h with

u ∈ L p((0, T ),W
2
q (Ω)N ) ∩ W 1

p((0, T ), Lq(Ω)N ),

h ∈ L p((0, T ),W
3−1/q
q (Γ )) ∩ W 1

p((0, T ),W
2−1/q
q (Γ ))

satisfy the homogeneous equations:
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu − Div (μD(u) − (K1(u) + K2(u))I) = 0 in Ω × (0, T ),

∂t h − n · u = 0 on Γ × (0, T ),

Tn(μD(u)n) = 0, div u = 0 on Γ × (0, T ),

u = 0 on Γ0 × (0, T ),

(u, h)|t=0 = (0, 0) in Ω × Γ,

(9.196)

For any g ∈ L p′((0, T ), Jq ′(Ω)), let v and ρ with

v ∈ L p′((0, T ),W 2
q ′(Ω)N ) ∩ W 1

p′((0, T ), Lq ′(Ω)N ),

ρ ∈ L p′((0, T ),W 3−1/q ′
q ′ (Γ )) ∩ W 1

p′((0, T ),W
2−1/q ′
q ′ (Γ ))

be solutions to the time reversed equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tv + Div (μD(v) − (K1(v) + K2(ρ))I) = g in Ω × (0, T ),

∂tρ + n · v = 0 on Γ × (0, T ),

Tn(μD(v)n) = 0, div v = 0 on Γ × (0, T ),

v = 0 on Γ0 × (0, T ),

(v, ρ)|t=T = (0, 0) in Ω × Γ,

(9.197)

From the fact mentioned in the last part of Sect. 9.6.2 it follows that

u(·, t) ∈ Jq(Ω), v(·, t) ∈ Jq ′(Ω) for any t ∈ (0, T ). (9.198)

Since

K1(u) + K2(h) ∈ L p((0, T ),W
1
q (Ω) + W 1

q (Ω)),

K1(v) + K2(ρ) ∈ L p′((0, T ),W 1
q ′(Ω) + W 1

q ′ (Ω)),

we write

K1(u) + K2(h) = A1 + A2, K1(v) + K2(ρ) = B1 + B2

with A1 ∈ L p((0, T ),W 1
q (Ω)), B1 ∈ L p′((0, T ),W 1

q ′(Ω)), A2 ∈ L p((0, T ),
W 1

q (Ω)), and B2 ∈ L p′((0, T ),W 1
q ′ (Ω)). Since K1(u) + K2(h) = A1 and K1(v) +

K2(ρ) = B1 on Γ , we have

(μD(u) − A1I)n = (τ + δΔΓ )h, (μD(v) − B1I)n = (τ + δΔΓ )ρ

on Γ . Moreover, by (9.198), we have

∫ T

0
(u(·, t),∇B2(·, t))Ω dt = 0,

∫ T

0
(∇A2(·, t), v(·, t))Ω dt = 0.
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Thus, using (9.196), (9.197) and the divergence theorem of Gauß we have

∫ T

0
(u(·, t), g(·, t))Ω dt = 0. (9.199)

In fact,

∫ T

0
(u, g)Ω dt =

∫ T

0
(u, ∂tv + Div (μD(v) − B1I))Ω dt

= −
∫ T

0
(ut , v)Ω dt +

∫ T

0
(u · n, (τ + δΔΓ )ρ)Γ dt − μ

2

∫ T

0
(D(u),D(v))Ω dt

= −
∫ T

0
(Div (μD(u) − A1I), v)Ω dt +

∫ T

0
(ht , (τ + δΔΓ )ρ)Γ dt

− μ

2

∫ T

0
(D(u),D(v))Ω dt

=
∫ T

0
((τ + δΔΓ )h, ρt ) dt +

∫ T

0
(ht , (τ + δΔΓ )ρ)Γ dt = 0.

For any f ∈ C∞((0, T ),C∞
0 (Ω)N ), let θ be a function in C∞((0, T ),W 1

q ′ (Ω)) sat-
isfying the variational equation:

(∇θ(·, t),∇ψ)Ω = (f(·, t),∇ψ)Ω for any ψ ∈ W 1
q (Ω).

Since f − ∇θ ∈ L p′((0, T ), Jq(Ω)), by (9.199)

∫ T

0
(u, f)Ω dt =

∫ T

0
(u, f − ∇θ)Ω dt +

∫ T

0
(u,∇θ)Ω dt = 0.

Since C∞((0, T ),C∞
0 (Ω)N ) is dense in L p′((0, T ), Lq ′(Ω)N ), we have u = 0. By

the second equation in (9.196), ht = 0, which, combined with h|t=0 = 0, furnishes
that h = 0. This completes the proof of the uniquness part of Theorem 9.2.2.

9.7 Proofs of Theorems 9.1.4 and 9.1.5

First, according to what was pointed out in Sect. 9.2.1, under the assumption (9.30),
we prove Theorem 9.1.4 with the help of Theorem 9.2.1. Given g ∈ DIq(Ω), let K ∈
W 1

q (Ω) + W 1
q (Ω) be a solution to the variational problem (9.31). Let u ∈ W 2

q (Ω)N

and h ∈ W 3−1/q
q (Γ ) be solutions to the equations (9.32), the unique existence of

which is guaranteed by Theorem 9.2.1. Then, by (9.32) and (9.33), we have

λ(u − G (g),∇ϕ)Ω − (∇(div u − g),∇ϕ)Ω = 0 (9.200)
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for any ϕ ∈ W 1
q ′ (Ω) subject to div u − g = 0 on Γ . Since ϕ ∈ W 1

q ′,Γ (Ω) ⊂ W 1
q ′ (Ω),

applying the divergence theorem of Gauß to the first term in (9.200) and using (9.13)
we have

λ((div u − g), ϕ)Ω − (∇(div u − g),∇ϕ)Ω = 0

for any ϕ ∈ W 1
q ′,Γ (Ω) subject to div u − g = 0 on Γ . Thus, by Theorem 9.6.1,

div u = g in Ω provided that λ0 is chosen larger if necessary, which, inserted into
(9.200), furnishes that (u,∇ϕ)Ω = (G (g),∇ϕ)Ω for any ϕ ∈ W 1

q ′ (Ω). Thus, setting
p = K1(u) + K2(h) + K , we see that u, p and h are required solutions of the equa-
tions (9.2). Therefore, the existence part of Theorem 9.1.4 immmediately follows
from Theorem 9.2.1.

To prove the uniqueness part, let u, p and h be solutions to the homogeneous
equations: ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

λu − Div (μD(u) − pI) = 0, div u = 0 in Ω,

λh − n · u = 0 on Γ,

{μD(u) − pI − ((τ + δΔΓ )h)I}n = 0 on Γ,

u = 0 on Γ0

(9.201)

with

u ∈ W 2
q (Ω)N , p ∈ W 1

q (Ω) + W 1
q (Ω), h ∈ W 3−1/q

q (Γ ).

For any ϕ ∈ W 1
q ′ (Ω), we have

0 = (λu − Div (μD(u) − pI),∇ϕ)Ω = (∇(p − (K1(u) + K2(h)),∇ϕ)Ω.

Moreover, p = K1(u) + K2(h) on Γ , so that the uniqueness implies that p =
K1(u) + K2(h). Thus, u and h satisfy the homogeneous equations (9.35), so that
u = 0 and h = 0, which completes the proof of the uniqueness of solutions to (9.2).

Next, we prove Theorem 9.1.5 with the help of Theorem 9.2.2 under the assump-
tion (9.30). Given g ∈ L p((0, T ), DIq(Ω)) ∩ W 1

p((0, T ),W
−1
q (Ω)) with G (g) ∈

W 1
p((0, T ), Lq(Ω)N ), let K ∈ L p((0, T ),W 1

q (Ω) + W 1
q (Ω)) be a solution to the

variational problem

(∇K ,∇ϕ)Ω = (∂tG (g) − ∇g,∇ϕ)Ω (9.202)

for any ϕ ∈ W 1
q ′ (Ω) subject to K = −g on Γ , which possesses the estimate:

‖∇K‖Lq (Ω) � C(‖g‖W 1
q (Ω) + ‖∂tG (g)‖Lq (Ω)).

Let u and h be solutions of the equations:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tu − Div (μD(u) − (K1(u) + K2(h))I) = f + ∇K in Ω × (0, T ),

∂t h − n · u = f on Γ × (0, T ),

Tn(μD(u)n) = Tn(fb + gn) = Tn(fb) on Γ × (0, T ),

div u = n · (fb + gn) = g on Γ × (0, T ),

u = 0 on Γ0 × (0, T ),

(u, h)|t=0 = (u0, h0) on Ω × Γ,

(9.203)
with

u ∈ W 1
p((0, T ), Lq(Ω)N ) ∩ L p((0, T ),W

2
q (Ω)N ),

h ∈ W 1
p((0, T ),W

2−1/q
q (Γ )) ∩ L p((0, T ),W

3−1/q
q (Γ )),

which possess the estimate:

IR(t,u, h) � Ceγ t {MR(t, f, f, fb)

+ ‖∂tG (g)‖L p((0,T ),Lq (Ω)) + ‖g‖L p((0,T ),W 1
q (Ω)) + ‖∂t g‖L p((0,T ),W

−1
q (Ω)}

(9.204)

for any t ∈ (0, T ] with some positive constants C and γ . Here, we have used the the
assumption that fb · n = 0 on Γ . Since we assume that f ∈ L p((0, T ), Jq(Ω)), for
any ϕ ∈ W 1

q ′ (Ω)

(∇K ,∇ϕ)Ω = (∂tu,∇ϕ)Ω − (∇div u,∇ϕ)Ω,

which, combined with (9.202), furnishes that

∂t (u − G (g),∇ϕ) − (∇(div u − g),∇ϕ)Ω = 0 for any ϕ ∈ W 1
q ′ (Ω). (9.205)

Since

(div u, ϕ)Ω = −(u,∇ϕ)Ω, (g, ϕ)Ω = −(G (g),∇ϕ)Ω

for any ϕ ∈ W 1
q ′,Γ (Ω) and since u and G (g) belong to L p((0, T ), Lq(Ω)N ), we have

div u − g ∈ L p((0, T ),W
1
q (Ω)) ∩ W 1

p((0, T ),W
−1
q (Ω)),

where W−1
q (Ω) is the dual space of W 1

q ′,Γ (Ω) Moreover, since ϕ ∈ W 1
q ′,Γ (Ω) ⊂

W 1
q ′ (Ω), applying the divergence theorem of Gauß to the first term in (9.205) and

using the boundary condition: div u = g on Γ × (0, T ) in (9.203) and the compati-
bility condition: div u0 = g|t=0 in Ω , we see that div u − g satisfies the equations:



284 Y. Shibata

⎧
⎪⎨

⎪⎩

∂t (div u − g) − Δ(div u − g) = 0 in Ω × (0, T ),

div u − g = 0 on Γ × (0, T ),

(div u − g)|t=0 = 0 in Ω.

Thus, the uniqueness guaranteed by Theorem 9.6.2 implies that div u = g in Ω ×
(0, T ). Inserting this fact into (9.205), we have

(u,∇ϕ)Ω = (G (g),∇ϕ)Ω

for any ϕ ∈ W 1
q ′ (Ω) provided that the compatibility condition: u0 − G (g)|t=0 ∈

Jq(Ω) holds. Thus, setting p = K + K1(u) + K2(h) and noting that

0 = div u − g =< μD(u)n,n > −(K1(u) + K2(h) + K ) − (τ + δΔΓ )h in Γ,

we see that u, p and h are the required solutions of the equations (9.1).
To prove the uniqueness part, let u, p and h be solutions to the homogeneous

equations:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tu − Div (μD(u) − pI) = 0 in Ω × (0, T ),

λh − n · u = 0 on Γ × (0, T ),

{μD(u) − pI − ((τ + δΔΓ )h)I}n = 0 on Γ × (0, T ),

u = 0 on Γ0 × (0, T ),

(u, h)|t=0 = (0, 0) in Ω × Γ,

(9.206)

with

u ∈ L p((0, T ),W
2
q (Ω)N ∩ W 1

p((0, T ), Jq(Ω)N ),

p ∈ L p((0, T ),W
1
q (Ω) + W 1

q (Ω)),

h ∈ L p((0, T ),W
3−1/q
q (Γ )) ∩ W 1

p((0, T ),W
2−1/q
q (Γ )).

For any ϕ ∈ W 1
q ′ (Ω), we have

0 = (∂tu − Div (μD(u) − pI),∇ϕ)Ω = (∇(p − (K1(u) + K2(h)),∇ϕ)Ω.

Moreover, p = K1(u) + K2(h) on Γ , so that the uniqueness implies that
p = K1(u) + K2(h). Thus, u and h satisfy the homogeneous equations (9.196), so
that u = 0 and h = 0, which completes the proof of the uniqueness of solutions to
(9.1).
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Chapter 10
On the Solvability of Free Boundary Problem
for Viscous Compressible Fluids in an Infinite
Time Interval

Vsevolod Alekseevich Solonnikov

Abstract We consider evolution free boundary problem for two viscous compress-
ible fluids contained in a bounded vessel and separated by a free (unknown) variable
surface. We prove that this problem is uniquely solvable in the anisotropic Sobolev
spaces, and under certain assumptions the solution is defined for t > 0 and decays
exponentially as t → ∞. In the proof we use the estimate of “modified energy”
obtained by M. Padula.

Keywords Compressible fluids · Exponential stability · Sobolev spaces

10.1 Introduction

The paper is concerned with the free boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρ(x, t)(Dtv + (v · ∇)v)) − ∇ · T(v) + ∇p(ρ) = 0,

Dtρ + ∇ · (ρv) = 0, x ∈ Ω+
t ∪ Ω−

t , t > 0,

[v] = 0, [−p(ρ)n + T(v)n] = 0, Vn = v · n, x ∈ Γt,

v−(x, t) = 0, x ∈ S,

v(x, 0) = v0(x), ρ(x, 0) = ρ0(x), x ∈ Ω+
0 ∪ Ω−

0 ,

(10.1)

where v(x, t) = v±(x, t), ρ(x, t) = ρ±(x, t) for x ∈ Ω±
t , Ω

+
t and Ω−

t are bounded
domains separated by a free interface Γt = ∂Ω+

t that is given for t = 0 and should
be found for t > 0. The domain Ω = Ω+

t ∪ Γt ∪ Ω−
t is fixed; the surface S = ∂Ω

is bounded away from Γt . By T(v) ≡ T±(v) we mean the viscous part of the stress
tensor:

T±(v) = μ±S(v) + μ±
1 I∇ · v, x ∈ Ω±

t ,
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where S(v) = ∇v + (∇v)T is the doubled rate-of-strain tensor, n is the normal to Γt

exterior with respect to Ω+ and Vn is the velocity of evolution of Γt in the direction
n, μ±, μ±

1 = const > 0, [u]|Γt = u+ − u− is the jump of the function u on Γt .
The pressure functions p±(ρ) are positive strictly increasing functions of a positive

argument possessing Lipshitz continuous derivatives.
By the rest state we mean the solution of (10.1) with v±(x, t) = 0. Then the

domains Ω±
t are independent of t and ρ±(x, t) = ρ± = M±/|Ω±|, where M± are

total masses of the fluids and |Ω±| = mesΩ±. The jump conditions on Γt reduce to

p+(ρ+) = p−(ρ−). (10.2)

Our aim is to prove the stability of the rest state. Here we restrict ourselves with
the case

p+(ρ) = p−(ρ) ≡ p(ρ), ρ+ = ρ− = ρ = M/|Ω|, M = M+ + M−,

hence (10.2) is fulfilled automatically; moreover, Θ = ρ − ρ satisfies the condition

∫

Ω

Θ(x, t)dx = 0. (10.3)

We work in the Lagrangian coordinates, in which (10.1) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r(ξ, t)Dtu − ∇u · Tu(u) + ∇up(r) = 0,

Dtr + r∇u · u = 0, ξ ∈ Ω+
0 ∪ Ω−

0 , t > 0,

[u] = 0, [−p(r)n + Tu(u)n] = 0, ξ ∈ Γt,

u− = 0, ξ ∈ S,

u(ξ, 0) = v0(ξ), r(ξ, 0) = ρ0(ξ), ξ ∈ Ω+
0 ∪ Ω−

0 ,

(10.4)

where r = ρ(X(ξ, t), t), u(ξ, t) = v(X, t),

X(ξ, t) = ξ +
∫ t

0
u(ξ, τ )dτ ≡ ξ + U(ξ, t), ξ ∈ Ω−

0 ∪ Ω+
0 .

We set ∇u = J−1
u A∇, Su(u) = (∇uu) + (∇uu)T , Tu(u) = μSu(u) + μ1I∇u · u,

Ju = detL ,L = (
∂X
∂ξ

)
. The elements of the matrix A are co-factors of the elements

lij = δij +
∫ t
0

∂ui
∂ξj

dτ of the matrix L . The normal n(X) to Γt is connected with the
normal n0(ξ) to Γ0 by

n(X) = An0
|An0| .
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By virtue of (10.3), the function θ(ξ, t) = Θ(X(ξ, t), t) satisfies the orthogonality
condition ∫

Ω

θ(ξ, t)Ju(ξ, t)dξ = 0. (10.5)

Problem (10.4) can be written in the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρDtu − ∇ · T(u) + p′(ρ)∇θ = l1(u, θ),

Dtθ + ρ∇ · u = l2(u, θ), ξ ∈ Ω+
0 ∪ Ω−

0 ,

u(ξ, t) = 0, ξ ∈ S,

[u] = 0, [μΠ0S(u)n0] = l3(u),

[−p′(ρ)θ + n0 · T(u)n0] = l4(u, θ), ξ ∈ Γ0,

u(ξ, 0) = v0(ξ), θ(ξ, 0) = θ0(ξ) = ρ0(ξ) − ρ, ξ ∈ Ω+
0 ∪ Ω−

0 ,

(10.6)

where

l1(u, θ) = −ϑDtu + (∇u · Tu(u) − ∇ · T(u)) + p′(ρ)∇θ − p′(ρ + θ)∇uθ,

l2(u, θ) = −r∇u · u + ρ∇ · u,
l3(u) = [μ(Π2

0 S(u)n0 − Π0ΠSu(u)n)],
l4(u, θ) = −[n · Tu(u)n − n0 · T(u)n0] + [p(ρ + θ) − p(ρ) − p′(ρ)θ ],

(10.7)

Π f = f − n(f · n), Π0f = f − n0(f · n0).

Our main result is as follows.

Theorem 1 Let S, Γ0 ∈ W 3/2+l
2 , 1/2 < l < 1, p ∈ C2(ρ/2, 3ρ/2), ρ, p′(ρ) > 0.

Then for arbitrary v±
0 ∈ Wl+1

2 (Ω±
0 ), ρ±

0 ∈ Wl+1
2 (Ω±

0 ) such that

v−
0 (ξ, 0)|S = 0,

∫

Ω0

θ0(ξ)dξ = 0,

[v0] = 0, [−p(ρ0)n0 + T(u0)n0] = 0, ξ ∈ Γ0,

|ρ0| � c0 > 0,

(10.8)

∑

±
‖v0‖Wl+1

2 (Ω±
0 ) +

∑

±
‖θ0‖Wl+1

2 (Ω±
0 ) � ε 
 1, (10.9)
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problem (10.4) has a unique solution defined for t � 0, and

∑

±
(‖eatu‖Wl+2,l/2+1

2 (Q±∞)
+ ‖eatθ‖Wl+1,0

2 (Q±∞) + ‖eatDtθ‖Wl+1,0
2 (Q±∞))

� c
∑

±
(‖v0‖Wl+1

2 (Ω±
0 ) + ‖θ0‖Wl+1

2 (Ω±
0 )), a > 0, Q±

∞ = Ω±
0 × (0,∞).

(10.10)

For problem (10.1) this means that the velocity decays exponentially, the density
tends to its mean value ρ, and Γt → Γ∞ = X(·,∞)Γ0 as t → ∞.

Theorem 1 is proved in [1] for the Dirichlet problem with no-slip condition on the
fixed boundary S, see also [2, 3]. The proof of the estimate (10.10) is also outlined
in [1] but it is not complete. Here (10.10) is obtained by the method that enables one
to avoid technicalities connected with the analysis of model problems.

We recall the definition of the Sobolev spaces used in this paper. By Wl
2(D),

D ⊂ R
n, we mean the space with the norm given by

‖u‖2Wl
2(D)

=
∑

|j|�l

‖D ju‖2L2(D),

if l is an integer, or

‖u‖2Wl
2(D)

= ‖u‖2
W [l]

2 (D)
+

∑

|j|=[l]

∫

D

∫

D
|D ju(x) − D ju(y)|2 dxdy

|x − y|n+2λ
,

if l = [l] + λ, 0 < λ < 1. We work in anisotropic spaces

Wr,r/2
2 (DT ) = Wr,0

2 (DT ) ∩ W 0,r/2
2 (DT ),

where DT = D × (0,T), T � ∞,

Wr,0
2 (DT ) = L2(0,T;Wr

2 (D)), W 0,s
2 (DT ) = Ws

2(0,T;L2(D)).

It is convenient to define the norm in W 0,l
2 (DT ), l = [l] + λ, by

‖u‖2
W 0,l

2 (DT )
=

∫ 1

0

dh

h1+2λ

∫ T

h
‖D [l]

t u(·, t) − D [l]
t u(·, t − h)‖2L2(D)dt + ‖u‖2

W 0,[l]
2 (DT )

(as a rule, T > 1 in the sequel).
We deal with functions decaying exponentially as t → ∞ and belonging to the

Sobolev spaces with exponential weight eβt , β > 0. For functions vanishing as t � 0,
the norm

||eβtu‖W 0,l
2 (DT )
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is equivalent to
( ∫ ∞

−∞
(1 + |s|)2l‖̃u(·, s)‖2L2(D)ds2

)1/2

where ũ(x, s) is the Laplace transform of the function u and s = s1 + is2, s1 = −β.

10.2 Linear Problem

Along with (10.4), we consider a linear problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρDtv − ∇ · T(v) + p′(ρ)∇θ = f (x, t),

Dtθ + ρ∇ · v = h(x, t), x ∈ Ω+
0 ∪ Ω−

0 , t > 0,

v(x, t) = 0, x ∈ S,

[v] = 0, [−p′(ρ)θn0 + T(u)n0] = b(x, t), x ∈ Γ0,

v(x, 0) = v0(x), θ(x, 0) = θ0(x), x ∈ Ω+
0 ∪ Ω−

0 ,

(10.11)

Theorem 2 1. For arbitrary v±
0 ∈ Wl+1

2 (Ω±
0 ), θ±

0 ∈ Wl+1
2 (Ω±

0 ), f ± ∈ Wl,l/2
2 (Q±

T ),
h± ∈ Wl+1,0

2 (Q±
T ), b ∈ Wl+1/2,l/2+1/4

2 (GT ) satisfying the compatibility conditions

v−
0 (x) = 0, x ∈ S,

[v0] = 0, [−p′(ρ)θ0n0 + T(u0)n0] = b(x, 0), x ∈ Γ0,
(10.12)

problem (10.11) has a unique solution v ∈ W 2+l,1+l/2
2 (Q±

T ), θ, θt ∈ Wl+1,0
2 (Q±

T ), T <

∞ defined for t ∈ (0,T) and satisfying the inequality

∑

±
(‖v‖Wl+2,l/2+1

2 (Q±
T )

+ ‖θ‖Wl+1,0
2 (Q±

T ) + ‖Dtθ‖Wl+1,0
2 (Q±

T ))

� c(T)
( ∑

±
(‖v0‖Wl+1

2 (Ω±
0 ) + ‖θ0‖Wl+1

2 (Ω±
0 )

+ ‖f ‖Wl,l/2
2 (Q±

T )
+ ‖h‖Wl+1,0

2 (Q±
T )) + ‖b‖Wl+1/2,l/2+1/4

2 (GT )

)
,

(10.13)

where Q±
T = Ω±

0 × (0,T), GT = Γ0 × (0,T). The number T grows without limits
as the sum of norms in the right hand side of (10.13) tends to zero.

2. Moreover, if

∫

Ω

θ0(x)dx = 0,
∫

Ω

h(x, t)dx = 0, ∀t > 0, (10.14)

then the solution is defined for all t > 0, the condition
∫
Ω

θ(x, t)dx = 0 holds and
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∑

±
(‖eβtv‖Wl+2,l/2+1

2 (Q±
T )

+ ‖eβtθ‖Wl+1,0
2 (Q±

T ) + ‖eβtDtθ‖Wl+1,0
2 (Q±

T ))

� c
( ∑

±
(‖v0‖Wl+1

2 (Ω±
0 ) + ‖θ0‖Wl+1

2 (Ω±
0 ) + ‖eβt f ‖Wl,l/2

2 (Q±
T )

+ ‖eβth‖Wl+1,0
2 (Q±

T ))

+ ‖eβtb‖W 1/2+l,1/4+l/2
2 (GT )

)

(10.15)
with β > 0 and c independent of T � ∞.

If b = 0, then the problem (10.11) can be written as

DtU + AU = F, U|t=0 = U0,

where U = (v, θ)T , U0 = (v0, θ0)
T , F = (f , h)T . The operator A is defined by

AU =
(

− 1
ρ
∇ · T(·) p′(ρ)

ρ
∇

ρ∇· 0

)

U,

and the domain of A is the set of U = (v, θ)T such that

v ∈ W 2+l
2 (Ω+

0 ) ∩ W 2+l
2 (Ω−

0 ),

θ ∈ W 1+l
2 (Ω+

0 ) ∩ W 1+l
2 (Ω−

0 ),

∫

Ω

θ(x)dx = 0,

v|x∈S = 0, [v]|x∈Γ0 = 0, [−p′(ρ)θn + T(v)n]|x∈Γ0 = 0.

Since

ρsI + A : (W 2+l
2 (Ω+

0 ) ∩ W 2+l
2 (Ω−

0 )) × (W 1+l
2 (Ω+

0 ) ∩ W 1+l
2 (Ω−

0 ))

→ (Wl
2(Ω

+
0 ) ∩ Wl

2(Ω
−
0 )) × (W 1+l

2 (Ω+
0 ) ∩ W 1+l

2 (Ω−
0 )),

the operator (ρsI + A)−1 is not compact, which is the main difficulty of the problem.
The first statement of Theorem 2 is a consequence of local in time existence

theorem for the parabolic problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρvt − ∇ · T(v) = f ′(x, t), x ∈ Ω+
0 ∪ Ω−

0 ,

v(x, t) = 0, x ∈ S,

[v] = 0, [T(u)n0] = b′(x, t), x ∈ Γ0,

v(x, 0) = v0(x), x ∈ Ω−
0 ∪ Ω+

0 ,

(10.16)

established in [4]. The proof of the estimate (10.15) is based on the ideas of M.
Padula who has estimated a Lyapunov type function, so called modified energy, for
the complete equations of motion of the compressible viscous fluid ([5, 6], see also
[7]). We obtain similar estimate for problem (10.11).
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Proposition 1 If (10.14) hold, then the solution of the problem (10.11) satisfies the
inequality

sup
t<T

e2βt(‖v(·, t)‖2L2(Ω) + ‖θ(·, t)‖2L2(Ω)) +
∫ T

0
e2βt(‖v‖2W 1

2 (Ω)
+ ‖θ‖2L2(Ω))dt

� c
(‖v0‖2L2(Ω) + ‖θ0‖2L2(Ω) +

∫ T

0
e2βt(‖f ‖2L2(Ω) + ‖h‖2L2(Ω) + ‖b‖2L2(Γ0)

)dt
)

(10.17)
with T � ∞, β > 0 and c independent of T .

Proof Werecall that the conditions (10.14) imply
∫
Ω

θ(x, t)dx = 0, t > 0.By stan-
dard calculation we obtain

1

2

d

dt
ρ‖v‖2L2(Ω) +

∑

±

∫

Ω±
0

T(v) : ∇vdx − p′(ρ)

∫

Ω

θ∇ · vdx

+
∫

Γ0

[p′(ρ)θn − T(v)n] · vdS =
∫

Ω

f · vdx,

which implies

1

2

d

dt
(ρ‖v‖2L2(Ω) + p′(ρ)

ρ
‖θ‖2L2(Ω)) +

∑

±
(
μ±

2
‖S(v)‖2L2(Ω±

0 )
+ μ±

1 ‖∇ · v‖2L2(Ω±− 0))

=
∫

Ω

(f · v − p′(ρ)

ρ
hθ)dx +

∫

Γ0

b · vdS.

(10.18)

Let V (x, t), x ∈ Ω , be a vector field such that

∇ · V (x, t) = −θ(x, t), x ∈ Ω, V (x, t) = 0, x ∈ S,

‖V ‖W 1
2 (Ω) � c‖θ‖L2(Ω),

‖DtV ‖W 1
2 (Ω) � c‖Dtθ‖L2(Ω) � c(‖v‖W 1

2 (Ω) + ‖h‖L2(Ω))

(10.19)

(the problem (10.19) has been analyzed by many authors, see, e.g., [8–10]). We
multiply the first equation in (10.11) by V and integrate over Ω , which leads to

ρ(
d

dt

∫

Ω

v · Vdx −
∫

Ω

v · DtV dx) +
∫

Ω

T(v) : ∇Vdx + p′(ρ)‖θ‖2L2(Ω)

=
∫

Ω

f · Vdx +
∫

Γ0

b · VdS.
(10.20)
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Finally, wemultiply (10.20) by a small positive γ and add to (10.18), which yields

1

2

dE0(t)

dt
+ E1(t) − ργ

∫

Ω

v · DtV dx

=
∫

Ω

(f · (v + γ V ) − p′(ρ)

ρ
hθ)dx +

∫

Γ0

b · (v + γ V )dS,
(10.21)

where

E0(t) = ρ‖v‖2L2(Ω) + p′(ρ)

ρ
‖θ‖2L2(Ω) + 2ργ

∫

Ω

v · Vdx,

E1(t) =
∑

±
(
μ±

2
‖S(v)‖2L2(Ω±

0 )
+ μ±

1 ‖∇ · v‖2L2(Ω±
0 )

)

+ γ p′(ρ)‖θ‖2L2(Ω) + γ
∑

±

∫

Ω±
0

T(v) : ∇Vdx.

(10.22)

Due to (10.19) and the Korn inequality, we have

c1(‖v‖2L2(Ω) + ‖θ‖2L2(Ω)) � E0(t) � c2(‖v‖2L2(Ω) + ‖θ‖2L2(Ω)),

E1(t) � 2βE0(t), β > 0,

E1(t) � c3(‖v‖2W 1
2 (Ω)

+ ‖θ‖2L2(Ω)),

(10.23)

provided γ is sufficiently small. Hence

dE0(t)

dt
+ 2βE0(t) + E1(t) � I(t),

where β > 0 and

I(t) = 2
∫

Ω
(f · (v + γ V ) − p′(ρ)

ρ
hθ)dx + 2

∫

Γ0

b · (v + γ V )dS + 2γ ρ

∫

Ω
v · DtV dx.

It follows that

e2βtE0(t) +
∫ t

0
e2βτE1(τ )dτ � E0(0) +

∫ t

0
e2βτ |I(τ )|dτ, (10.24)

which leads to (10.17) after easy calculations.
We pass to the local estimates of the higher order norms of v and θ . Let {ωk}

be the covering of Ω of the following form: ωk , k = 1, ...,m− − 1 are the balls
|x − xk| � d, xk ∈ S, ωk , k = 1 + m−, ...,m− + m+ − 1 are the balls |x − xk| � d
with xk ∈ Γ0; ωm− , and ωm−+m+ are strictly interior subdomains of Ω− and Ω+,
respectively. Let {ϕk} be the partition of unity subordinate to this covering, and let ζk ,
k = 1, ...,m− − 1, k = m− + 1, ...,m− + m+ − 1, be the functions with suppζk ⊂
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Bk ⊂ ωk ∩ ωm− , k < m−, or Bk ⊂ ωk ∩ ωm−+m+ , m− < k < m− + m+ such that∫
Bk

ϕk(x)dx = 1, where Bk are balls with the radius αd, α < 1. We set vk = vϕk ,
θk = θϕk , ω′

k = ωk ∩ Ω ,

wk(x, t) = vk(x, t) − ζk(x)
∫

ω′
k

vk(y, t)dy, ϑk = θk − ζk

∫

ω′
k

θk(y, t)dy

for k �= m−,m− + m+, and

w̃m−(x, t) = vm−(x, t) +
m−−1∑

k=1

ζk(x)
∫

ω′
k

vk(y, t)dy,

w̃m−+m+ = vm−+m+ +
m−+m+−1∑

k=m−+1

ζk

∫

ω′
k

vk(y, t)dy,

ϑ̃m−(x, t) = θm−(x, t) +
m−−1∑

k=1

ζk(x)
∫

ω′
k

θk(y, t)dy,

ϑ̃m−+m+ = θm−+m+ +
m−+m+−1∑

k=m−+1

ζk

∫

ω′
k

θk(y, t)dy.

Let ω̃ = Ω \ (∪m−
k=1ωk ∪ ωm−+m+),

wm−(x, t) = w̃m− − ζ̃ (x)
∫

ωm−
w̃m−(y, t)dy,

wm−+m+(x, t) = w̃m−+m+ + ζ̃ (x)
∫

ωm−
w̃m−(y, t)dy,

ϑm−(x, t) = ϑ̃m− − ζ̃ (x)
∫

ωm−
ϑ̃m−(y, t)dy,

ϑm−+m+(x, t) = ϑ̃m−+m+ + ζ̃ (x)
∫

ωm−
ϑ̃m−(y, t)dy,

where ζ̃ (x) is a smooth function with supp̃ζ ⊂ ω̃ and
∫
ω̃

ζ̃ (x)dx = 1. It is clear that

∫

ω′
k

ϑk(x, t)dx = 0, k �= m−,m− + m+,

∫

ωm−
ϑ̃m−dx +

∫

ωm−+m+
ϑ̃m−+m+dx = 0,

∫

ω̃m−
ϑm−dx = 0,

∫

ω̃m−+m+
ϑm−+m+dx = 0,

and ∑

k

ϑk(x, t) = θ(x, t),
∑

k

vk(x, t) = v(x, t).
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Moreover, for all k = 1, ...,m− + m+

ρDtwk − ∇ · T(wk) + p′(ρ)∇ϑk = fk + fk,

Dtϑk + ρ∇ · wk = hk + hk,
(10.25)

where

fk = f ϕk − ζk

∫

ω′
k

f ϕkdx, hk = hϕk − ζk

∫

ω′
k

hϕkdx, k �= m−,m− + m+,

f̃m− = f ϕm− +
m−−1∑

k=1

ζk

∫

ω′
k

f ϕkdx, h̃m− = hϕm− +
m−−1∑

k=1

ζk

∫

ω′
k

hϕkdx,

f̃m−+m+ = f ϕm−+m+ +
m−+m+−1∑

k=1+m−
ζk

∫

ω′
k

f ϕkdx,

h̃m−+m+ = hϕm−+m+ +
m−+m+−1∑

k=1+m−
ζk

∫

ω′
k

hϕkdx,

fm−(x, t) = f̃m−(x, t) − ζ̃ (x)
∫

ω̃m−
f̃m−dy,

fm−+m+(x, t) = f̃m−+m+(x, t) + ζ̃ (x)
∫

ω̃m−
f̃m−dy.

(10.26)
The expressions fk , hk contain only lower order derivatives of v and θ .
In order to estimate (v, θ) in the interior of Ω±

0 , we consider Eq. (10.25) for
k = m−, k = m− + m+ completed by initial conditions

wk(x, 0) = w0k(x), ϑk(x, 0) = ϑ0k, k = m−,m− + m+, (10.27)

where

w0m−(x) = w̃0m−(x) − ζ̃ (x)
∫

ωm−
w̃0m−(y)dy,

w0m−+m+(x) = w̃0m−+m+ + ζ̃ (x)
∫

ω̃m

w̃0m−(y)dy,

ϑ0m−(x) = ϑ̃0m−(x) − ζ̃ (x)
∫

ωm−
ϑ̃0m−(y)dy,

ϑ0m−+m+(x) = ϑ̃0m−+m+ + ζ̃ (x)
∫

ω̃m

ϑ̃0m−(y)dy.

Since suppwm− , suppϑm− ⊂ ω̃m− , suppwm−+m+ , suppϑm−+m+ ⊂ ω̃m−+m+ , we can
extend these functions by zero into larger domains Qk: |xj − xjk| � D, k = m−.

m− + m− with preservation of differential properties and apply Proposition 1 to
the problems (10.25), (10.27). This gives
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∫ T

0
e2βt(‖wk(·, t)‖2W 1

2 (Qk)
+ ‖ϑk(·, t)‖2L2(Qk)

)dt

� c(‖wk(·, 0)‖2L2(Qk)
+ ‖ϑk(·, 0)‖2L2(Qk)

+
∫ T

0
e2βt(‖fk + fk‖2L2(Qk)

+ ‖hk + hk‖2L2(Qk)
)dt), k = m−,m− + m+.

(10.28)

To obtain the estimates of higher order norms of wk and ϑk , we take finite

differences Δ
q
j (z)u(x) = ∑q

k=0(−1)q−k
(q
k

)
u(x + kejz) of (10.25) and (10.27) with

q > l + 1, which leads to

ρΔ
q
j (z)Dtwk − ∇ · T(Δ

q
j (z)wk) + p′(ρ)∇Δ

q
j (z)ϑk = Δ

q
j (z)(fk + fk),

Δ
q
j (z)Dtϑk + ρ∇ · Δ

q
j (z)wk = Δ

q
j (z)(hk + hk),

Δ
q
j (z)wk(x, 0) = Δ

q
j (z)w0k(x),

Δ
q
j (z)ϕk(x, 0) = Δ

q
j (z)ϕ0k,

(10.29)

k = m−,m− + m+. We introduce the vector fields Wk(x, t) such that

∇ · Wk(x, t) = −Δ
q
j (z)ϑk(x, t), x ∈ Qk,

‖Wk‖W 1
2 (Qk)

� c‖Δq
j (z)ϑk‖L2(Qk),

‖DtWk‖L2(Qk) � c(‖Δq
j (z)∇wk‖L2(Qk) + ‖Δq

j (z)(hk + hk)‖L2(Qk)).

(10.30)

and in view of Proposition 1 applied to the system (10.29), we obtain

∫ T

0
e2βt(‖Δq

j (z)wk(·, t)‖2W 1
2 (Qk)

+ ‖Δq
j (z)ϑk(·, t)‖2L2(Qk)

)dt

� c
(‖Δq

j (z)w0k‖2L2(Qk)
+ ‖Δq

j (z)ϑ0k‖2L2(Qk)

+ 2|
∫ T

0
e2βtdt

∫

Qk

(Δ
q
j (z)(fk + fk) · (Δ

q
j (z)wk + γWk(x, t))

+ Δ
q
j (z)(hk + hk)Δ

q
j ϑk)dx| + 2ργ |

∫ T

0
e2βtdt

∫

Qk

Δ
q
j (z)wk · DtWk(x, t)dx|

)
.

(10.31)

We make use of

∫ T

0
e2βtdt

∫

Qk

(Δ
q
j (z)(fk + fk) · (Δ

q
j (z)wk + γWk)dx

= −
∫ T

0
e2βtdt

∫

Qk

(Δ
q−1
j (z)(fk + fk) · (Δ

q+1
j wk + γΔ1

j (z)Wk)dx

(10.32)
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and estimate the penultimate integral in (10.31) (denoted by Jk) as follows:

|Jk | � c
( ∫ T

0
e2βt(‖Δq−1

j (z)(fk + fk)‖L2(Qk)
(‖Δq+1

j wk‖L2(Qk)
+ |z|‖∇Wk‖L2(Qk)

)dt

+
∫ T

0
e2βt(‖Δq

j (z)(hk + hk)‖L2(Qk)
‖Δq

j (z)ϑk‖L2(Q)dt
)

� c
( ∫ T

0
e2βt‖Δq−1

j (z)(fk + fk)‖L2Q)(‖Δq+1
j wk‖L2(Qk)

+ |z|‖Δq
j (z)ϑk‖L2(Qk)

)dt

+
∫ T

0
e2βt‖Δq

j (z)(hk + hk)‖L2(Qk)
‖Δq

j (z)ϑk‖L2(Qk)
dt

)
.

(10.33)

Next, we divide (10.31) by z1+2(l+1) and integrate over z ∈ (0, z0). Since the norms

‖u‖L2(Qk) +
3∑

j=1

( ∫ z0

0
‖Δs

j (z)u‖2L2(Qk)

dz

z1+2r

)1/2

and ‖u‖Wr
2 (Qk) are equivalent for all s > r > 0 [11], our calculations lead to

‖eβtwk‖2Wl+2,0
2 (QkT )

+ ‖eβtϑk‖2Wl+1,0
2 (QkT )

� c
(‖eβt(fk + fk)‖2Wl,0

2 (QkT )

+ ‖eβt(hk + hk)‖2Wl+1,0
2 (QkT )

+ ‖wk(·, 0)‖2Wl+1
2 (Qk)

+ ‖ϑk(·, 0)‖2Wl+1
2 (Qk)

) ≡ Ak,

(10.34)
where QkT = Qk × (0,T). Moreover, we have

‖eβtDtϑk‖2Wl+1,0
2 (QkT )

� c(‖eβt∇ · wk‖2Wl+1,0
2 (QkT )

+ ‖eβt(hk + hk)‖2Wl+1,0
2 (QkT )

) � cAk,

‖eβtDtwk‖2
W 0,l/2

2 (QkT )
� c

(‖eβtD2
x wk‖2

W 0,l/2
2 (QkT )

+ ‖eβt∇ϑk‖2
W 0,l/2

2 (QkT )
+ ‖eβt(fk + fk)‖2

W 0,l/2
2 QkT )

)
.

(10.35)
Due to the interpolation inequalities, the right hand side in the last estimate is not
greater than

δ(‖eβtDtwk‖2W 0,l/2
2 (QkT )

+ ‖eβtDtϑk‖2Wl+1,0
2 (QkT )

) + c(δ)(‖eβtwk‖2W 2+l,0
2 (QkT )

+ ‖eβtϑk‖2Wl+1,0
2 (QkT )

)

+ c(‖eβtDtϑk‖2Wl+1,0
2 (QkT )

+ ‖eβt(fk + fk)‖2Wl,l/2
2 QkT )

).

Collecting the estimates and choosing δ sufficiently small, we obtain the desired
inequality
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‖eβtwk‖2Wl+2,l/2+1
2 (QkT )

+ ‖eβtϑk‖2Wl+1,0
2 (QkT )

+ ‖eβtDtϑk‖2Wl+1,0
2 (QkT )

� c(Ak + ‖eβt(fk + fk)‖2W 0,l/2
2 QkT )

), k = m−,m− + m+.
(10.36)

In order to estimate v and θ near S and Γ0, we should consider Eq. (10.25) com-
pleted by appropriate initial and boundary conditions, for k < m− and m− < k <

m− + m+:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρDtwk − ∇ · T(wk) + p′(ρ)∇ϑk = fk + fk,

Dtϑk + ρ∇ · wk = hk + hk, x ∈ ω′
k,

wk(x, t) = 0, x ∈ ω′
k ∩ S,

wk(x, 0) = w0k(x), ϑk(k, 0) = ϑ0k(x), x ∈ ω′
k, k < m−,

(10.37)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρDtwk − ∇ · T(wk) + p′(ρ)∇ϑk = fk + fk,

Dtϑk + ρ∇ · wk = hk + hk, x ∈ ωk,

[wk(x, t)] = 0, [−p′(ρ)ϑkn + T(wk)n] = bk(x, t) + bk, x ∈ Γ0 ∩ ωk,

wk(x, 0) = w0k(x), ϑk(x, 0) = ϑ0k(x), x ∈ ωk, m− < k < m− + m+,

(10.38)

where fk , hk are defined in (10.26) and bk = bϕk . As above, fk , hk , bk contain lower
order derivatives of v and θ . We also keep in mind that suppwk, suppϑk ⊂ ωk .

We consider a more specific system (10.38). Without loss of generality we may
assume that the point xk coincides with the origin and the x3-axis is directed along
the interior normal−n(xk)with respect toΩ+

0 . Let x3 = φ(x′), x′ = (x1, x2) ∈ K , be
equation of Γ0 near the origin; by K we mean the disc |x| � d1; d1 > d.

Assuming for simplicity that Γ0 ∈ W 2+l
2 , we make the change of variables

x1 = y1, x2 = y2, x3 = y3 + φ(y′), (10.39)

where φ ∈ W 2+l
2 (K). The Jacobi matrix of this transformation is given by

L =
⎛

⎝
1 0 0
0 1 0

φy1 φy2 1

⎞

⎠ ,

hence detL = 1, andL−1 coincides with the co-factors matrix L̂. The transformation
(10.39) converts ωk ∩ Ω into a certain ω̃k ⊂ R

3. We extend wk and ϑk by zero into
larger domains

Q± = {0 < ±y3 < 2d0, y′ ∈ Q′ = {|yα| < d0}, α = 1, 2,
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where d0 > d. In the new coordinates y, the system (10.38) takes the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρDtwk − ∇̃ · T̃(wk) + p′(ρ)∇̃ϑk = fk + fk,

Dtϑk + ρ∇̃ · wk = hk + hk, y ∈ Q±,

[wk] = 0, [−p′(ρ)ϑkn + T̃(wk)n] = bk(x, t) + bk, y3 = 0,

wk(y, 0) = w0k(y), ϑk(y, 0) = ϑ0k(y), y ∈ Q±, m− < k < m− + m+,

(10.40)

where ∇̃ = L−T∇ is the transformed gradient ∇x, T̃(u) = μS̃(u) + μ1I∇̃ · u is the
transformed stress tensor and S̃(u) = ∇̃u + (∇̃u)T is the transformed rate-of-strain
tensor. We write (10.40) as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρDtw − ∇ · T(w) + p′(ρ)∇ϑ = f + f̃,

Dtϑ + ρ∇ · w = h + h̃, y ∈ Q±,

[w] = 0, [μSα3(w)] = bα + b̃α, α = 1, 2,

[−p′(ρ)ϑ + T33(w)] = b3 + b̃3, y3 = 0, y′ ∈ Q′,
w(y, t) = 0, y3 = ±2d0, y′ ∈ Q′,

w(y, 0) = w0(y), ϑ(y, 0) = ϑ0(y), y ∈ Q̂±

(10.41)

(the index “k” is omitted). The expressions

f̃ = f + ∇̃ · T̃(w) − ∇ · T(w) − p′(ρ)∇̃ϑ + p′(ρ)∇ϑ,

h̃ = h − ρ∇̃·w + ρ∇·w,

b̃α = bα − [μ(̃S(w)n − n(n · S̃(w)n))α] + [μSα3(w)],
b̃3 = b3 + [μ(S33(w) − n · S̃(w)n)],

(10.42)

contain also higher order derivatives of w and ϑ with small coefficients proportional
to φ or to the derivatives of φ. We note that also in the new coordinates

∫

Q+∪Q−
ϑ(y, t)dy = 0. (10.43)

Remark If φ ∈ W 3/2+l
2 (K), then instead of (10.39) the transformation

x′ = y′, x3 = y3 + φ∗(y) (10.44)

should be used, where φ∗ is the extension of φ into K × (0, 2d0) such that

φ∗(y)|y3=0 = φ(y′),
∂φ∗

∂y3

∣∣
y3=0 = 0,

‖φ∗‖Wl+2
2 (K×(0,2d0)) � c‖φ‖Wl+3/2

2 (K)
.

(10.45)
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Since φ∗(0) = 0, ∇φ∗(0) = 0, there holds

|φ∗(y)| � c|y|1+α, |∇φ∗(y)| � c|y|α, α = l − 1/2. (10.46)

The Jacobi matrix of the transformation (10.44) equals

L =
⎛

⎝
1 0 0
0 1 0

φ∗
y1 φ∗

y2 1 + φ∗
y3

⎞

⎠ ,

and detL = 1 + φ∗
y3 . Consequently,

∫

Q+∪Q−
ϑ(y, t)(1 + φ∗

y3)dy = 0.

In order to conserve the condition (10.43), we can introduce new function

Θ(y, t) = ϑ(y, t) + Σ(y)
∫

Q+∪Q−
ϑ(y, t)φ∗

y3dy,

where Σ(y) is smooth, suppΣ ⊂ Q+ ∪ Q− and
∫
suppΣ Σ(x)dx = 1. Clearly,

(w,Θ) satisfy the system of the type (10.41) with other f̃k and h̃k , but possess-
ing the same properties. Since the new system is treated in the same way as (10.41),
we omit the details.

We proceed as above and apply Proposition 1 to the problem (10.41). Since finite
differences can be taken this time only with respect to the tangential variables y1, y2,
we obtain, instead of (10.36), the estimate

∑

±
(‖eβt∇w‖2

Wl+1,0
2,tan (Q±

T )
+ ‖eβtw‖2

Wl+1,0
2,tan (Q±

T )
+ ‖eβtϑ‖2

Wl+1
2,tan(Q

±
T )

)

� c
( ∑

±
‖eβt(f + f̃)‖2

Wl,l/2
2,tan(Q

±
T )

+ ‖eβt(h + h̃)‖2
Wl+1,0

2,tan (Q±
T )

+ ‖w(·, 0)‖2
Wl+1

2,tan(Q
±)

+ ‖ϑ(·, 0)‖2
Wl+1

2,tan(Q
±)

) + ‖eβt(b + b̃)‖2
Wl+1/2,0

2 (Q
′
T )

)
,

(10.47)

where
Wr

2,tan(Q
±) = L2(I

±,Wr
2 (Q

′)), I± = {0 < ±y3 < 2d0}.

To estimate the derivatives of w and ϑ with respect to t and y3, we treat (10.38)
as one-dimensional problems containing only these derivatives in the left hand side
(other derivatives are included into f′i, h′, b′

j):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρDtwα − μ
∂2wα

∂y23
= fα + fα + f′α = gα,

y3 ∈ I± = {±y3 ∈ (0, 2d0)}, t > 0, α = 1, 2,

[wα] = 0, [μ∂wα

∂y3
] = bα + b̃α + b′

α = aα(y′, t), y3 = 0,

wα(y, t) = 0, y3 = ±2d0,

wα(y, 0) = wα0(y), y3 ∈ I±,

(10.48)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρDtw3 − (2μ + μ1)
∂2w3

∂y23
+ p′(ρ)

∂ϑ

∂y3
= f3 + f3 + f′3 = g3,

Dtϑ + ρ
∂w3

∂y3
= h + h̃ + h′ = e,

± y3 ∈ (0, 2d0), t > 0,

[w3] = 0, [−p′(ρ)ϑ + (2μ + μ1)
∂w3

∂y3
] = b3 + b̃3 + b′

3 = a3, y3 = 0,

w3 = 0, y3 = ±2d0,

w3(y, 0) = w30(y), ϑ(y, 0) = ϑ0(y), y3 ∈ I±.

(10.49)

We analyze only problem (10.49) as more complicated. We reduce it to a similar
problem with homogeneous initial data. We set w(1)±

3 (y3, t) = u±(y3, t)χ(t), where
χ(t) is a smooth cut-off function equal to 1 for t ∈ [0, 1], to zero for t � 2, and we
require that

u±(y3, 0) = w±
3,0(y3), u±(y3, t)|y3=±2d0 = 0; [u]|y3=0 = 0,

‖u±‖W 2+l,1+l/2
2 (I±×(0,2)) � c‖w±

3,0‖W 1+l
2 (I±)

(10.50)

for arbitrary fixed y′ ∈ Q′; the functions w
(1)±
3 satisfy similar inequalities. The func-

tions ϑ(1)± we define by ϑ(1)±(y, t) = ϑ±
0 (y)χ(t); it is clear that

‖ϑ(1)±‖W 1+l,0
2 (I±×(0,2)) + ‖Dtϑ

(1)±‖W 1+l,0
2 (I±×(0,2)) � c‖ϑ±

0 ‖W 1+l
2 (I±). (10.51)

For w
(2)
3 = w3 − w

(1)
3 , ϑ(2) = ϑ − ϑ(1) we obtain a problem with zero initial

conditions
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρDtw
(2)
3 − (2μ + μ1)

∂2w
(2)
3

∂y23
+ p′(ρ)

∂ϑ(2)

∂y3
= g(1)

3 ,

Dtϑ
(2) + ρ

∂w
(2)
3

∂y3
= e(1), y3 ∈ I±, t > 0,

[w(2)
3 ]|y3=0 = 0, [−p′(ρ)ϑ(2) + (2μ + μ1)

∂w
(2)
3

∂y3
]|y3=0 = a(1)

3 (s),

w
(2)
3 |y3=±2d0 = 0, w

(2)
3 |t=0 = 0, ϑ(2)|t=0 = 0,

(10.52)

where

g(1)
3 = g3 − ρDtw

(1)
3 + (2μ + μ1)

∂2w
(1)
3

∂y23
− p′(ρ)

∂ϑ(1)

∂y3
,

e(1) = e − Dtϑ
(1) − ρ

∂w
(1)
3

∂y3
, a(1)

3 = a3 + [p′(ρ)ϑ(1) − (2μ + μ1)
∂w

(1)
3

∂y3
].

We extend all the functions in this problem by zero into the domain t < 0 and
apply the Laplace transformation defined by a standard formula

ũ(s) =
∫ ∞

0
e−stu(t)dt, s = s1 + is2,

with a small negative s1 = Res. We also eliminate ϑ̃ (2) by using the equation sϑ̃ (2) =
ẽ(1) − ρ

dw̃
(2)
3

dy3
, which leads to the following problem for w̃

(2)
3 :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρsw̃(2)
3 − (2μ + μ1(s))

d2w̃(2)
3

dy23
= g̃(1)

3 − p′(ρ)ρ

s

d̃e(1)

dy3
, y3 ∈ I±,

[w̃(2)
3 ] = 0, [(2μ + μ1(s))

dw
(2)
3

dy3
] = ã(1)

3 + p′(ρ)ρ

s
ẽ(1)(0), y3 = 0,

w̃
(2)
3 |y3=±2d0 = 0,

(10.53)

where μ±
1 (s) = μ±

1 + p′(ρ)ρ/s. It is equivalent to

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

R(s)w̃(2)
3 − λ(s)

d2

dy23
w̃

(2)
3 = G̃, y3 ∈ I±,

[w̃(2)
3 ] = 0, [λ(s)

dw̃
(2)
3

dy3
] = Ẽ, y3 = 0,

w̃
(2)
3 |y3=±2d0 = 0

(10.54)
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with

R(s) = ρs2

a0s + b0
, λ±(s) = a±s + b

a0s + b0
, a± = 2μ± + μ±

1 , b = p
′
(ρ)ρ,

G̃ = sg̃(1)
3

a0s + b0
− p

′
(ρ)ρ

a0s + b0

d̃e(1)

dy3
, Ẽ = s

a0s + b0
ã(1)
3 + p

′
(ρ̃)ρ

a0s + b0
ẽ(1)

and a0, b0 = const > 0 (we assume that a±b0 > a0b).
Multiplying (10.54) by w̃

(2)
3 and s̄w̃

(2)
3 , integrating and taking the real part we

obtain

∑

±
(ρ

s1a0|s|2 + b0(s21 − s22)

|a0s + b0|2 ‖w̃(2)
3 ‖2L2(I±) + Reλ±(s)‖dw̃

(2)
3

dy3
‖2L2(I±))

= Re
∫ 2d0

−2d0

G̃w̃
(2)
3 dy3 + ReẼw̃

(2)
3 |y3=0,

∑

±
(
ρ(a0|s|2 + b0s1)

|a0s + b0|2 ‖sw̃(2)
3 ‖2L2(I±) + Re(s̄λ±(s))‖dw̃

(2)
3

dy3
‖2L2(I±))

= Re
∫ 2d0

−2d0

G̃s̄w̃
(2)
3 dy3 + Re(Ẽs̄w̃

(2)
3 ),

(10.55)

where s̄ and w̃3 are complex conjugate of s and w̃3, respectively. Since

s1a0|s|2 + b0(s21 − s22)

|a0s + b0|2 � −c1, Reλ±(s) � c2 > 0

with constants ci independent of s2, the first of Eq. (10.55) implies

∑

±
(‖w̃(2)

3 ‖2L2(I±) + ‖w̃(2)
3 ‖2W 1

2 (I±)
) � c(

∑

±
‖G̃‖2L2(I±) + |Ẽ|2), (10.56)

ifd0 is sufficiently small.Moreover, the conditiona±b0 > a0b impliesRes̄λ±(s) � c3
and |s| � c

√|s1| implies

ρ(a0|s|2 + b0s1)

|a0s + b0|2 � c4 > 0,

hence by the second equation in (10.55),

∑

±
(‖sw̃(2)

3 ‖2L2(I±)

� c(
∑

±
‖G̃‖2L2(I±) + |Ẽ|2 + |̃e(1)(s)||w̃(2)

3 (s, 0)| + |̃a(1)
3 ||s||w̃(2)

3 (s, 0)|)|y3=0)
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(if |s| � c5
√|s1|, then this inequality is also true, in view of (10.56)). Finally, by

(10.54),

∑

±
(‖sw̃(2)

3 ‖2L2(I±) + ‖w̃(2)
3 ‖2W 2

2 (I±)
)

� c(
∑

±
‖G̃‖2L2(I±) + |Ẽ|2 + |̃e(1)(s)||w̃(2)

3 (s, 0)| + |̃a(1)
3 ||s||w̃(2)

3 (s, 0)|)|y3=0).

(10.57)
We multiply (10.57) by |s|l and integrate over the line Res = s1. This leads to the
inequality equivalent to

∑

±
(‖eβtw

(2)
3 ‖2

W 0,1+1/2
2 (I±×(0,∞))

+ ‖eβtw
(2)
3 ‖2

W 2
2 (I±,W 1/2

2 (0,∞))
)

� c
( ∑

±
‖eβtG‖2

W 0,l/2
2 (I±×(0,∞))

+ ‖eβtE‖2
Wl/2

2 (0,∞)
+ ‖eβta(1)

3 ‖W 1/4+l/2
2 (0,∞)

‖eβtw
(2)
3 (0)‖W 3/4+l/2

2 (0,∞)

+ ‖eβte(1)(0)‖L2(0,∞)‖eβtw
(2)
3 (0)‖Wl

2(0,∞)

)
, β = −s1.

(10.58)

Using the Cauchy inequality and imbedding theorem we obtain

∑

±
(‖eβtw

(2)
3 ‖2

W 0,1+1/2
2 (I±×(0,∞))

+ ‖eβtw
(2)
3 ‖2

W 2
2 (I±;W 1/2

2 (0,∞))
)

� c
( ∑

±
(‖eβtG‖2

W 0,1/2
2 (I±×(0,∞))

+ ‖eβte(1)‖2L2(I±×(0,∞))) + ‖eβta(1)
3 ‖2

Wl/2+1/4
2 (0,∞)

)
.

(10.59)
Finally, we estimate the W 2+l

2 (I±)- norms of w̃
(2)
3 making use of (10.54). This

yields ∑

±
‖D2

y3w̃
(2)
3 ‖Wl

2(I
±) � c

∑

±
(|R(s)|‖w̃(2)

3 ‖Wl
2(I

±) + ‖G̃‖Wl
2(I

±)).

From this and the preceding inequality we deduce

∑

±
‖eβtw

(2)
3 ‖2

W 2+l,1+l/2
2 (I±×(0,∞))

� c
( ∑

±
(‖eβtG‖2

Wl,l/2
2 (I±×(0,∞))

+ ‖eβte(1)‖2
W 1+l,0

2 (I±×(0,∞))
) + ‖eβta(1)

3 ‖2
Wl/2+1/4

2 (0,∞)

) (10.60)

and, in view of (10.50), (10.51),
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∑

±
(‖eβtw3‖2L2(Q′,W 2+l,1+l/2

2 (I±×(0,∞)))
+ ‖eβtϑ‖2

L2(Q′,W 1+l,0
2 (I±×(0,∞)))

+ ‖eβtDtϑ‖2
L2(Q′,W 1+l,0

2 (I±×(0,∞)))
) � c

( ∑

±
(‖eβt g3‖2L2(Q′;Wl,l/2

2 (I±×(0,∞)))

+ ‖eβte‖2
L2(Q′,Wl+1,0

2 (I±×(0,∞)))
) + ‖eβta3‖2L2(Q′,W 1/4+l/2

2 (0,∞))

+
∑

±
(‖w30‖2L2(Q′,W 1+l

2 (I±))
+ ‖ϑ0‖L2(Q′,Wl+1

2 (I±)))
)
.

(10.61)

The functions wα satisfying (10.48) can be estimated by similar (in fact, more
elementary) calculations, so that we have

∑

±
(‖eβtw‖2

L2(Q′,W 2+l,1+l/2
2 (I±×(0,∞)))

+ ‖eβtϑ‖2
L2(Q′,W 1+l,0

2 (I±×(0,∞)))

+ ‖eβtDtϑ‖2
L2(Q′,W 1+l,0

2 (I±×(0,∞)))
) � c

( ∑

±
(‖eβt g‖2

L2(Q′,Wl,l/2
2 (I±×(0,∞)))

+ ‖eβte‖2
L2(Q′,Wl+1,0

2 (I±×(0,∞)))
+ ‖w0‖2L2(Q′,Wl+1

2 (I±))
+ ‖ϑ0‖2L2(Q′,Wl+1

2 (I±))
)

+ ‖eβta‖2
W 0,l/2+1/4

2 (Q′×(0,∞))

)
.

(10.62)

As in the case of parabolic problems (see [12]), the interval (0,∞) in (10.58)–
(10.62) can be substituted by (0,T), hence along with (10.62) there holds

∑

±
(‖eβtwk‖2Wl+2,1+l/2

2 (Q±
T )

+ ‖eβtϑk‖2Wl+1,0
2 (Q±

T )
+ ‖eβtDtϑk‖2Wl+1,0

2 (Q±
T )

)

� c
( ∑

±
(‖eβt gk‖2Wl,l/2

2 (Q±
T )

+ ‖eβtek‖2Wl+1,0
2 (Q±

T )
+ ‖wk(·, 0)‖2Wl+1

2 (Q±)

+ ‖ϑk(·, 0)‖2Wl+1
2 (Q±)

) + ‖eβtak‖2Wl+1/2,l/2+1/4
2 (Q′×(0,T))

)
, m− < k < m− + m+,

(10.63)
where

gk = fk + f̃k + f′k, ek = hk + h̃k + h′
k, ak = bk + b̃k + b′

k .

We recall that the expressions f′k , h
′
k b

′
k are linear combinations of the derivatives of

wk and ϑk , exceptDtwk ,Dtϑk D2
y3wk ,Dy3ϑk . They can be estimated by interpolation

inequalities as follows:

∑

±
(‖eβtf′k‖2L2(Q′,Wl,l/2

2 (I±×(0,T)))
+ ‖eβth′

k‖2L2(Q′,Wl+1
2 (I±×(0,T)))

)

� δ
∑

±
(‖eβtwk‖2Wl+2,1+l/2

2 (Q±
T )

+ ‖eβtϑk‖2Wl+1,0
2 (Q±

T )
+ ‖eβtDtϑk‖2Wl+1,0

2 (Q±
T )

)

+ c(δ)
∑

±
(‖eβtwk‖2Wl+2,0

2,tan (Q±
T )

+ ‖eβtϑk‖2Wl+1,0
2,tan (Q±

T )
+ ‖eβtDtϑk‖2Wl+1,0

2,tan (Q±
T )

).

(10.64)
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Hence, for small δ we have, in view of (10.47)

∑

±
(‖eβtwk‖2Wl+2,1+l/2

2 (Q±
T )

+ ‖eβtϑk‖2Wl+1,0
2 (Q±

T )
+ ‖eβtDtϑk‖2Wl+1,0

2 (Q±
T )

)

� c
( ∑

±
(‖eβt(fk + f̃k)‖2Wl,l/2

2 (Q±
T )

+ ‖eβt(hk + h̃k)‖2Wl+1,0
2 (Q±

T )

+ ‖eβt(bk + bk)‖Wl+1/2,l/2+1/4
2 (Q′×(0,T))

) + ‖wk(·, 0)‖2Wl+1
2 (Q+)

+ ‖ϑk(·, 0)‖2Wl+1
2 (Q+)

),

(10.65)
m− < k < m− + m+. Similar inequality, but without the norms of b + b, holds for
the functions wk and ϑk , k < m−.

Since v = ∑m
k=1 vϕk , the norms

∑
± ‖eβtv‖2

W 2+l,1+l/2
2 (Q±

T )
and

∑

k

∑

±
‖eβtvk‖2W 2+l,1+l/2

2 (ω±
k ×(0,T))

, ω±
k = Ω± ∩ ωk

are equivalent. The differences wk − vk contain no higher order terms and can be
estimated by interpolation inequalities, like fk , hk , bk . The same is true for θk − ϑk .

Hence
∑

±

∑

k

(‖eβtvk‖2
W 2+l,1+l/2

2 (ωk×(0,T))
+ ‖eβtθk‖2W 1+l,0

2 (ωk×(0,T))
+ ‖eβtDtθk‖2W 1+l,0

2 (ωk×(0,T))
)

� c
( ∑

±
(‖v0‖2Wl+1

2 (Ω±
0 )

+ ‖θ0‖2Wl+1
2 (Ω±

0 )
+ ‖eβt f ‖2

Wl,l/2
2 (Q±

T )
+ ‖eβth‖2

Wl+1,0
2 (Q±

T )
)

+ ‖b‖
W 1/2+l,1/4+l/2

2 (Γ0)
) + δ

∑

±
(‖eβtv‖2

W 2+l,1+l/2
2 (Q±

T )
+ ‖eβtDtθ‖2

W 1+l,0
2 (Q±

T )

+ ‖eβtθ‖2
W 1+l,0

2 (Q±
T )

) + c(δ)(‖eβtv‖2
L2(Q

±
T )

+ ‖eβtθ‖2
L2(Q

±
T )

)
)
.

(10.66)

The weighted L2-norms of v and θ are already estimated in (10.17), hence the
inequalities (10.17) and (10.66) imply (10.15), if δ is chosen small. This completes
the proof of (10.15).

10.3 Nonlinear Problem

In this section, we outline the proof of Theorem 1. It is based on Theorem 2 and on
the following estimates of nonlinear terms (10.7).

Proposition 2 Let p ∈ C2(ρ/2, 3ρ/2), U(ξ, t) = ∫ t
0 u(ξ, τ )dτ . If

sup
t<T

‖U(·, t)‖W 2+l
2 (Ω±

0 ) � δ1, δ1 > 0,

sup
QT

|θ(x, t)| � ρ/2,
(10.67)
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then
Z(T) � c(δ1Y(T) + Y 2(T)), (10.68)

where T > 1 and

Z(T) ≡ Z(u, q) =
∑

±
(‖l1(u, θ)‖Wl,l/2

2 (Q±
T )

+ ‖l2(u, θ)‖Wl+1,0
2 (Q±

T ))

+ ‖l3‖Wl+1/2,l/2+1/4
2 (GT )

+ ‖l4‖Wl+1/2,l/2+1/4
2 (GT )

,

Y(T) ≡ Y(u, q) =
∑

±
(‖u‖W 2+l,1+l/2

2 (Q±
T )

+ ‖θ‖Wl+1,0
2 (Q±

T ) + ‖Dtθ‖Wl+1,0
2 (Q±

T )),

l ∈ (1/2, 1).
(10.69)

Proof We make use of auxiliary inequalities

‖f g‖Wl
2(Ω

±
0 ) � c‖f ‖Wl

2(Ω
±
0 )‖g‖Wl+1

2 (Ω±
0 ), (10.70)

‖f g‖L2(Ω±
0 ) � c‖f ‖Lp(Ω±

0 )‖g‖Lq(Ω±
0 ) � c‖f ‖Wl

2(Ω
±
0 )‖g‖W 1

2 (Ω±
0 ), (10.71)

where 1/p + 1/q = 1/2, l − 3/2 + 3/p = 0. The condition l > 1/2 implies 1 −
3/2 + 3/q > 0. Setting

‖u‖2W λ
2 (0,T)

= ‖u‖2L2(0,T) +
∫ 1

0

dh

h1+2λ

∫ T

h
|Δt(−h)u(t)|2dt, 0 < λ < 1,

where Δt(−h)u = u(t − h) − u(t), we obtain

‖θDtu‖Wl,0
2 (Q±

T ) � c sup
t<T

‖θ(·, t)‖Wl+1
2 (Ω±

0 )‖Dtu‖Wl,0
2 (Q±

T ),

‖Δt(−h)(θDtu)‖L2(Ω±
0 ) � c(sup

Ω±
0

|θ(x, t)|‖Δt(−h)Dtut‖L2(Ω±
0 )

+ ‖Dtu‖Wl
2(Ω

±
0 )

∫ h

0
‖Dtθ(·, t − τ)‖Wl+1

2 (Ω±
0 )dτ, )

(10.72)

which implies

‖θDtu‖Wl,l/2
2 (Q±

T )
� c‖Dtu‖Wl,l/2

2 (Q±
T )

(sup
t<T

‖θ‖Wl+1
2 (Ω±

0 ) + ‖Dtθ‖Wl+1,0
2 (Q±

T )). (10.73)

Next, we consider the term ∇u · Tu(u) − ∇ · T(u) = (∇u − ∇) · T(u) + ∇u ·
(Tu(u) − T(u)). Since ∇u − ∇ = (J−1

u A − I)∇ and

‖J−1
u − 1‖Wl+1

2 (Ω±
0 ) + ‖A − I‖Wl+1

2 (Ω±
0 ) � cδ1,
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we have
‖(∇u − ∇) · T(u)‖Wl,0

2 (Q±
T ) � cδ1‖D2

x u‖Wl,0
2 (Q±

T ). (10.74)

Moreover, from

‖Δt(−h)(J−1
u A − I)‖W 1

2 (Ω±
0 ) � c

∫ h

0
‖u‖W 2

2 (Ω±
0 )dt � c

√
h‖u‖W 2,0

2 (Q±
T ),

it follows that

‖(∇u − ∇) · T(u)‖W 0,l/2
2 (Q±

T )
� c(δ1 + ‖u‖W 2,0

2 (Q±
T ))‖D2

x u‖Wl,l/2
2 (Q±

T )
. (10.75)

The expression ∇u · (Tu(u) − T(u)) is estimated in a similar way.
Let us estimate the last term −P(θ)∇θ + p(ρ + θ)(∇ − ∇u)θ in l1 (see (10.7)),

where P(θ) = p′(ρ + θ) − p′(ρ)). We have

‖P(θ)∇θ‖L2(Q±
T ) � c sup

Q±
T

|θ(x, t)|‖∇θ‖L2(Q±
T ). (10.76)

Assuming that θ± is extended into R
3 with preservation of class we estimate the

difference

P(θ(x + z, t))∇θ(x + z, t) − P(θ(x, t))∇θ(x, t)

= (P(θ(x + z)) − P(θ(x)))∇θ(x + z) + P(θ(x, t))(∇θ(x + z) − ∇θ(x)).
(10.77)

Since
|P(θ(x + z, t)) − P(θ(x, t))| � c|θ(x + z, t) − θ(x, t)|,
|P(θ(x, t))| � c|θ(x, t)|,

the L2-norm of the difference (10.77) is controlled by

c(‖θ(x + z, t) − θ(x, t)‖Lq(Ω±
0 )‖∇θ‖Lp(Ω±

0 )

+ sup
Ω±

0

|θ(x, t)|‖∇θ(x + z, t) − ∇θ(x, t)‖L2(Ω±
0 ))

� c‖θ(x + z, t) − θ(x, t)‖W 1
2 (Ω±

0 )‖θ(·, t)‖Wl+1
2 (Ω±

0 ).

(10.78)

Multiplying (10.77), (10.78) by |z|−3−2l and integrating with respect to z, we obtain

‖P(θ)∇θ‖Wl,0
2 (Q±

T ) � c sup
Q±

T

‖θ‖Wl+1
2 (Ω±

0 )‖θ‖Wl+1,0
2 (Q±

T ). (10.79)

The finite difference of P(θ)∇θ with respect to t is estimated in the same way, and
we obtain
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‖P(θ)∇θ‖W 0,l/2
2 (Q±

T )

� c(sup
Q±

T

|θ(x, t)|‖∇θ‖W 0,l/2
2 (Q±

T )
+ ‖θ‖Wl/2

2 (0,T),W 1
2 (Ω±

0 ))
sup
t<T

‖θ‖Wl+1
2 (Ω±

0 ))

� c sup
t<T

‖θ‖Wl+1
2 (Ω±

0 )(‖Dtθ‖Wl+1,0
2 (Q±

T ) + ‖θ‖Wl+1,0
2 (Q±

T )),

(10.80)

hence

‖P(θ)∇θ‖Wl,l/2
2 (Q±

T )
� c sup

t<T
‖θ‖Wl+1

2 (Ω±
0 )(‖θ‖Wl+1,0

2 (Q±
T ) + ‖Dtθ‖Wl+1,0

2 (Q±
T )). (10.81)

It can be shownby similar arguments that the expression p(ρ + θ)(∇u − ∇)θ satisfies
the same inequality with additional term

cδ1(‖θ‖Wl+1,0
2 (Q±

T ) + ‖Dtθ‖Wl+1,0
2 (Q±

T )) + c sup
t<T

‖θ‖Wl+1
2 (Ω±

0 )‖u‖W 2,0
2 (Q±

T )

on the right hand side.
As for l2 = −θ∇u · u − ρ(∇u − ∇)u, we have

‖l2(u, θ)‖Wl+1,0
2 (Q±

T ) � c(δ1 + sup
t<T

‖θ‖Wl+1
2 (Ω±

0 ))‖u‖Wl+2,0
2 (Q±

T ). (10.82)

It remains to estimate l3(u) and l4(u, ϑ). At first we consider S(u)n0 − Su(u)n.
Let n∗

0 ∈ W 1+l
2 (Ω+

0 ) be the extension of n0 into Ω+
0 and n∗ = An∗

0/|An∗
0|. We have

‖S(u)n0 − Su(u)n‖W 1/2+l,0
2 (GT )

� c‖S(u)n∗
0 − Su(u)n

∗‖
W 1+l,0

2 (Q+
T )

� c(‖(S(u) − Su(u))n
∗‖

W 1+l,0
2 (Q+

T )
+ ‖S(u)(n∗

0 − n∗)‖
W 1+l,0

2 (Q+
T )

) � cδ1‖u‖W 2+l,0
2 (Q+

T )
.

(10.83)
Moreover, since

‖Δt(−h)(S(u) − Su(u))‖L2(Γ0)

� c(sup
t<T

|I − A|‖Δt(−h)∇u‖L2(Γ0) + h sup
Q+

t−h,t

|∇u(ξ, τ )|‖∇u‖L2(Γ0)),

|Δt(−h)n| � c sup
t<T

|Δt(−h)A| � ch sup
Q+

t−h,t

|∇u(ξ, τ )|,

there holds

‖S(u)n0 − Su(u)n‖W 0,1/4+l/2
2 (GT )

� ‖(S(u) − Su(u))n0‖W 0,1/4+l/2
2 (GT )

+ ‖Su(u)(n0 − n)‖W 0,1/4+l/2
2 (GT )

� c(δ1‖∇u‖W 0,l/2+1/4
2 (GT )

+ supQ+
T
|∇u|‖∇u‖L2(GT )).

(10.84)
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Finally,
‖[p(ρ + θ) − p(ρ) − p′(ρ)θ ]‖W 1/2+l,1/4+l/2

2 (GT )

� c
∑

±
‖p(ρ + θ) − p(ρ) − p′(ρ)θ‖W 1+l,1/2+l/2

2 (Q±
T )

� c sup
t<T

‖θ‖Wl+1
2 (Ω±

0 )(‖θ‖Wl+1,0
2 (Q±

T ) + ‖Dtθ‖Wl+1,0
2 (Q±

T ))

(10.85)

(see the proof of (10.81)).
From (10.83), (10.85) is easy to deduce

‖l3(u)‖W 1/2+l,1/4+l/2
2 (GT )

+ ‖l4(u)‖W 1/2+l,1/4+l/2
2 (GT )

� c(δ1 + ‖u‖W 2+l,1+l/2
2 (Q1

T )
)‖u‖W 1+l,1/2

2 (Q1
T )

+ sup
t<T

‖θ‖Wl+1
2 (Ω±

0 )(‖θ‖Wl+1,0
2 (Q±

T ) + ‖Dtθ‖Wl+1,0
2 (Q±

T )).

(10.86)

The estimate (10.68) is a consequence of (10.72)–(10.86). The proposition is
proved.

We pass to the construction of solution of a nonlinear problem (10.6) in the time
interval t > 0. We recall that the solution of this problem satisfies the condition

∫

Ω

θ(x, t)Ju(x, t)dx = 0 (10.87)

(in view of the mass conservation), while in the case of a linear problem we have

∫

Ω

θ(x, t)dx = 0. (10.88)

Therefore we are constrained to construct the solution step by step, from the time
interval [(k − 1)T , kT ] to [kT , (k + 1)T ] with a certain large enough but finite T ,
eliminating at every step the discrepancy between the conditions (10.87) and (10.88).
This procedure was proposed in [13].

We set u = u′ + u
′′
, θ = θ ′ + θ

′′
, represent (u0, θ0) in the form u0 = u′

0 + u
′′
0,

θ0 = θ ′
0 + θ

′′
0 , where

u′ = u0, u
′′
0 = 0, θ ′

0 = θ0, θ
′′
0 = 0, (10.89)

and define (u′, θ ′) and (u
′′
, θ

′′
) as solutions to the problems
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρDtu
′ − ∇ · T(u′) + p′(ρ)∇θ ′ = 0,

Dtθ
′ + ρ∇ · u′ = 0, ξ ∈ Ω±

0 ,

[u′] = 0, [−p′(ρ)θ ′n0 + T(u′)n0] = 0, ξ ∈ Γ0,

u′(ξ, t) = 0, ξ ∈ S,

u′(ξ, 0) = u0(ξ), θ ′(ξ, 0) = θ0(ξ), ξ ∈ Ω±
0 ,

(10.90)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρDtu
′′ − ∇ · T(u′′) + p′(ρ)∇θ ′′ = l1(u

′ + u′′, θ ′ + θ ′′),
Dtθ

′′ + ρ∇ · u′′ = l2(u
′ + u′′, θ ′ + θ ′′), ξ ∈ Ω±

0 ,

[u′′] = 0, [Π0T(u′′)n0] = l3(u
′ + u′′),

[−p′(ρ)ϑ
′′+n0 · T(u′′)n0] = l4(u

′ + u′′, θ ′ + θ ′′), ξ ∈ Γ0,

u′′(ξ, t) = 0, ξ ∈ S,

u′′(ξ, 0) = 0, θ
′′
(ξ, 0) = 0. ξ ∈ Ω±

0 ,

(10.91)

Since
∫
Ω

θ0(x)dx = 0 (becauseX(ξ, 0) = I and Ju(ξ, 0) = 1), the problem (10.90)
has a global solution satisfying (10.15) (with f = 0,h = 0,b = 0) for arbitraryT > 0,
hence

eβTN(u′(·,T), θ ′(·,T)) � c1N(u0, θ0), Y(u′, θ ′) � c2N(u0, θ0), (10.92)

where N(u0, θ0) = ∑
±(‖u0‖Wl+1

2 (Ω±
0 ) + ‖θ0‖Wl+1

2 (Ω±
0 )). We fix T by the condition

c1e
−βT � 1

32
. (10.93)

According to Proposition 2, nonlinear terms in (10.91) satisfy inequality (10.68)
with δ1 = √

T(Y(u′, θ ′) + Y(u
′′
, θ

′′
)), which yields

Z(u′ + u
′′
, θ ′ + θ

′′
) � c(Y(u′, θ ′) + Y(u

′′
, θ

′′
))2 � c(Y 2(u

′′
, θ

′′
) + εN(u0, θ0)).

In the case of small ε, the solution of (10.91) can be constructed in the time interval
(0,T) by successive approximations, and it can be shown that δ1 is of order ε and

Y(u
′′
, θ

′′
) � c2εN0(u0, θ0). (10.94)

It follows that

N(u(·,T), θ(·,T)) � (
1

32
+ c2εN(u0, θ0)) � 1

8
N0(u0, θ0). (10.95)

Assume that the solution of (10.6) is found for t < kT and

Nk � 1

8
Nk−1 � ... � 1

8k
N0, (10.96)
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where Nk = N(u(·, kT), θ(·, kT)). The function θ(ξ, kT) satisfies

∫

Ω

θ(ξ, kT)Ju(ξ, kT)dξ = 0,

and we set θ(ξ, kT) = θ ′
k(ξ) + θ

′′
k (ξ), where

θ ′
k(ξ) = θ(ξ, kT) − |Ω|−1

∫

Ω

θ(ξ, kT)dξ,

θ
′′
k (ξ) = |Ω|−1

∫

Ω

θ(ξ, kT)(1 − Ju(ξ, kT))dξ.

(10.97)

We consider problems (10.90), (10.91) in the interval t ∈ (kT , (k + 1)T), taking as
initial data (u′

k = u(ξ, kT), θ ′
k(ξ)) and (u

′′
k = 0, θ

′′
k (ξ)), respectively and assuming

that (10.67) is satisfied with a certain small δ1 for t ∈ (0, kT). It is clear that

N(u′(·, (k + 1)T), θ ′(·, (k + 1)T))

� c1e
−βTN(u′(·, kT), θ

′
(·, kT)) � 2c1e

−βTN(u(·, kT), θ(·, kT)),
(10.98)

moreover, the nonlinear terms in (10.91) can be estimated for t ∈ (kT , (k + 1)T) as
follows:

Zk(u
′ + u

′′
, θ ′ + θ

′′
) � c(δ1(Yk(u

′ + u
′′
, θ ′ + θ

′′
) + Y 2

k (u′ + u
′′
, θ ′ + θ

′′
)2)

� c(δ1Yk(u
′′
) + Y 2

k (u
′′
) + δ1Yk(u

′
) + Y 2

k (u
′
)

� c(δ1Yk(u
′′
) + Y 2

k (u
′′
, θ

′′
)) + cδ1N(u(·, kT , θ(·, kT)),

where Yk and Zk stand for the norms (10.69) in the time interval (kT , (k + 1)T). The
solution of (10.91) can be constructed in this interval by successive approximations.
Since

N(u
′′
(·, kT , θ

′′
(·, kT)) � cδ1N(u(·, kT , θ(·, kT)),

it can be shown that

Yk(u
′′
, θ

′′
) � cδ1N(u(·, kT), θ(·, kT)), (10.99)

if δ1 is small. Hence

N0(u(·, (k + 1)T), θ(·, (k + 1)T)) � c(e−βT + δ1)N(u(·, kT , θ(·, kT)),

and we require that c(eβT + δ1) � 1/8, which can be achieved by taking small δ1.
Thus, (10.96) holds also for Nk+1.
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Inequality (10.99) is satisfied for all intervals t ∈ (jT , (j + 1)T), j � k, and if a
is so small that eaT � 2, then

k∑

j=0

Y 2
j e

2ajT � c
k∑

j=0

e2ajT

8j
N2
0 � cN2

0 ,

which is equivalent to (10.10).
Verification of the condition (10.67) for U in the interval (0, kT) reduces to

sup
t<kT

‖U(·, t)‖Wl+2
2 (Ω±

0 ) � c
( ∫ kT

0
e2at‖u‖2

Wl+2
2 (Ω±

0 )
dt

)1/2 � cN0 � cε,

hence we can set δ1 = cε. The inequality ‖θ‖Wl+1
2 (Ω±

0 ) � ρ/2 is verified in a similar
way.

More detailed arguments can be found in [14]. By the same method the solution
of the non-homogeneous Navier-Stokes equation with mass forces f (x, t) can be
constructed, provided f decays exponentially as t → ∞ (see [14, 15]).
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Chapter 11
Classical Solvability of the Two-Phase
Radial Viscous Fingering Problem
in a Hele-Shaw Cell

Atusi Tani and Hisasi Tani

Abstract We discuss two-phase radial viscous fingering problem in a Hele-Shaw
cell, which is a nonlinear problem with a free boundary for elliptic equations. Unlike
the Stefan problem for heat equations Hele-Shaw problem is of hydrodynamic type.
In this paper the classical solvability of two-phase Hele-Shaw problem with radial
geometry is established by applying the same method as for the Stefan problem
and justifying the vanishing the coefficients of the derivative with respect to time in
parabolic equations.

Keywords Radial viscous fingering · Two-phase Hele-Shaw problem · Classical
solution

Mathematical Subject Classification (2010): 35R35 · 35Q35 · 76D27 · 35K55

11.1 Introduction

Hele-Shaw cell is a device which consists of two closely spaced parallel plates
containing a thin layer of viscous fluid [8]. When a fluid of low viscosity displaces
a fluid of higher viscosity, the interface between them becomes unstable and starts
to deform. First rigorous result on it was due to Saffman and Taylor [19] in 1958.
Since then a large number of physical experiments have appeared (see [3, 11, 26]
and the literatures therein). Both experiment and theory focus on two basic flow
geometries: (i) rectangular [19] and (ii) radial [17]. For both geometries the initial
developments of the interface instability were discussed through the linear stability

A. Tani (B)
Department of Mathematics, Keio University, 3-14-1 Hiyoshi,
Yokohama 223-8522, Japan
e-mail: tani@math.keio.ac.jp

H. Tani
Department of Mathematics, Meiji University, 1-1-1 Higashi-Mita,
Kawasaki 214-8571, Japan
e-mail: hisasitani@gmail.com

© Springer Japan 2016
Y. Shibata and Y. Suzuki (eds.), Mathematical Fluid Dynamics,
Present and Future, Springer Proceedings in Mathematics & Statistics 183,
DOI 10.1007/978-4-431-56457-7_11

317



318 A. Tani and H. Tani

theory in [3]. However, the significant differences have been reported between the
theoretical and the experimental results, which call attention to the validity of Hele-
Shaw approximation and the new formulation with various physically reasonable
effects. Among them one is the wetting layer effect [9, 14, 16, 25] and another is
viscous normal stress effect [12, 24].

Linear stability for the radial fingering phenomena was discussed in [14] with the
former effect and in [12] with the latter effect. Weakly nonlinear analysis was done
first by Miranda and Widom [15] without any effect, and recently by Tani in [25]
with the wetting effect and in [24] with viscous normal stress effect.

Most of mathematical results have been established by applying the complex
function theory (see [7, 10] and the literatures therein). There are very few results
from the exact mathematical analysis: [5, 6] in the little Hölder spaces, [23] in the
standard Hölder spaces and [18] in the Sobolev spaces for one-phase problem.

In this paper we discuss two-phase radial viscous fingering problem in a Hele-
Shaw cell in the classical framework, which is in more realistic physical situation.

This paper is organized as follows. In Sect. 11.2 we formulate the problem dis-
cussed in this paper and describe the main theorems. In Sect. 11.3 the problem in
Sect. 11.2 is reformulated. In Sect. 11.4 the linear problem of the reformulated one
is analyzed by following the arguments due to Bazaliı̆ [1, 2] and Bizhanova and
Solonnikov [4]. The most importance is to get a uniform estimate of the solution
with respect to a parameter as in [2, 21]. For that it necessitates to modify the discus-
sion used in the Stefan problem since the boundary conditions on the interface for
the Hele-Shaw problem cause further difficulty. In Sects. 11.5 and 11.6 the original
nonlinear problem and the passing to the limit of the parameter are discussed.

11.2 Formulation of the Problem

We consider a slow quasi-stationary displacement of a fluid by another fluid in the
Hele-Shaw cell. Both fluids are assumed to be immiscible and incompressible. The
motion is quasi-two-dimensional and all characteristics of the flow are averaged
over the cell thickness. This approximation, so-called Hele-Shaw approximation, is
traditional for problems of this type.

The motion of such fluids is described by

∇ · vi = 0, vi = −Mi∇ pi in Ωi (t), t > 0 (i = 1, 2). (11.1)

Here the second equation in (11.1) means Darcy law (Mi = b2/12μi , mobility; μi ,
the fluid viscosity; b, the width of two plates), vi is the velocity vector field in the
fluid and pi is the pressure (i = 1 or 2 for the displacing or the displaced fluid,
respectively). Moreover,
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Ω1(t) =
{
x ∈ R

2
∣
∣ R∗ < |x | < R(t) + ζ

(
x

|x | , t
)}

is the displacing region,

Ω2(t) =
{
x ∈ R

2
∣∣ R(t) + ζ

(
x

|x | , t
)

< |x | < R∗
}

is the displaced region,

where R∗ is the radius of the hole through which the displacing fluid is injected at
a flow rate Q(t), R∗ is the radius of the Hele-Shaw cell occupied by the displaced
fluid, R(t) is the time-dependent unperturbed radius satisfying

πR(t)2 = πR2
0 +
∫ t

0
Q(τ ) dτ, R0 ≡ R(0) > R∗

and ζ is the perturbed radius.
In addition, the following boundary conditions are imposed:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

v1 · n = Q(t)

2πR∗
on Γ∗ = {x ∈ R

2 | |x | = R∗}, t > 0,

p2 = pe on Γ ∗ = {x ∈ R
2 | |x | = R∗}, t > 0,

v1 · n = v2 · n = Vn, p1 = p2 on Γ (t), t > 0,

(11.2)

where

Γ (t) =
{
x ∈ R

2
∣∣ |x | = R(t) + ζ

(
x

|x | , t
)}

,

Vn is the normal velocity of the interface Γ (t) and n is the unit normal vector on Γ∗
or Γ (t), and the initial conditions are

{
vi |t=0 = v0i , pi = p0i on Ωi (0) ≡ Ωi (i = 1, 2),

ζ |t=0 = ζ 0 on Γ (0) ≡ Γ (ζ 0 ∈ (R∗ − R0, R∗ − R0)).
(11.3)

Our problem is to find (vi , pi ) (i = 1, 2) and ζ satisfying (11.1)–(11.3), which is
reduced to find (p1, p2) and ζ satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Δpi = 0 in Ωi (t), t > 0 (i = 1, 2),

−M1∇ p1 · n = Q(t)

2πR∗
on Γ∗, t > 0,

p2 = pe on Γ ∗, t > 0,

−M1∇ p1 · n = −M2∇ p2 · n = Vn, p1 = p2 on Γ (t), t > 0,

pi
∣∣
t=0= p0i on Ωi (i = 1, 2), ζ

∣∣
t=0= ζ 0 on Γ.

(11.4)
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As the compatibility conditions we assume that p01 and p02 satisfy

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Δp0i = 0 in Ωi (i = 1, 2),

−M1∇ p01 · n = Q(0)

2πR∗
on Γ∗,

p02 = p0e ≡ pe|t=0 on Γ ∗,

p01 = p02 on Γ.

(11.5)

It is more convenient to rewrite (11.4) in polar coordinates (r, θ):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

r

∂

∂r

(
r
∂p1
∂r

)
+ 1

r2
∂2 p1
∂θ2

= 0

(R∗ < r < R(t) + ζ(θ, t), 0 � θ < 2π, t > 0) ,

1

r

∂

∂r

(
r
∂p2
∂r

)
+ 1

r2
∂2 p2
∂θ2

= 0

(
R(t) + ζ(θ, t) < r < R∗, 0 � θ < 2π, t > 0

)
,

M1
∂p1
∂r

= − Q(t)

2πR∗
(r = R∗, 0 � θ < 2π, t > 0) ,

p2 = pe
(
r = R∗, 0 � θ < 2π, t > 0

)
,

M1

(
∂p1
∂r

− 1

r2
∂ζ

∂θ

∂p1
∂θ

)
= M2

(
∂p2
∂r

− 1

r2
∂ζ

∂θ

∂p2
∂θ

)

= − ∂

∂t
(R(t) + ζ ) ,

p1 = p2 (r = R(t) + ζ(θ, t), 0 � θ < 2π, t > 0) ,

p1
∣∣
t=0= p01

(
R∗ < r < R0 + ζ 0(θ), 0 � θ < 2π

)
,

p2
∣∣
t=0= p02

(
R0 + ζ 0(θ) < r < R∗, 0 � θ < 2π

)
,

ζ
∣∣
t=0= ζ 0 (0 � θ < 2π) .

(11.6)
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Besides the problem (11.6) we consider the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

r

∂

∂r

(
r
∂p1
∂r

)
+ 1

r2
∂2 p1
∂θ2

= ε
∂p1
∂t

+ ε f1

(R∗ < r < R(t) + ζ(θ, t), 0 � θ < 2π, t > 0) ,

1

r

∂

∂r

(
r
∂p2
∂r

)
+ 1

r2
∂2 p2
∂θ2

= ε
∂p2
∂t

+ ε f2
(
R(t) + ζ(θ, t) < r < R∗, 0 � θ < 2π, t > 0

)
,

M1
∂p1
∂r

= − Q(t)

2πR∗
(r = R∗, 0 � θ < 2π, t > 0) ,

p2 = pe
(
r = R∗, 0 � θ < 2π, t > 0

)
,

M1

(
∂p1
∂r

− 1

r2
∂ζ

∂θ

∂p1
∂θ

)
= M2

(
∂p2
∂r

− 1

r2
∂ζ

∂θ

∂p2
∂θ

)

= − ∂

∂t
(R(t) + ζ ) ,

p1 = p2 (r = R(t) + ζ(θ, t), 0 � θ < 2π, t > 0) ,

p1
∣∣
t=0= p01

(
R∗ < r < R0 + ζ 0(θ), 0 � θ < 2π

)
,

p2
∣∣
t=0= p02

(
R0 + ζ 0(θ) < r < R∗, 0 � θ < 2π

)
,

ζ
∣∣
t=0= ζ 0 (0 � θ < 2π)

(11.7)

with ε > 0 and fi (i = 1, 2) being given later.
Now let us transform the free boundary problem (11.7) into the problem on fixed

domains. Introduce the transformation from

Ω1(t) = {R∗ < r < R(t) + ζ(θ, t), 0 � θ < 2π}

onto
Ω1 = {R∗ < r ′ < R0 + ζ 0(θ ′), 0 � θ ′ < 2π

}

by the change of the variables

r ′ = R0 + ζ 0 − R∗
R + ζ − R∗

(r − R∗) + R∗, θ ′ = θ, t ′ = t,

the transformation from

Ω2(t) = {R(t) + ζ(θ, t) < r < R∗, 0 � θ < 2π
}

onto
Ω2 = {R0 + ζ 0(θ ′) < r ′ < R∗, 0 � θ ′ < 2π

}
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by the change of the variables

r ′ = R0 + ζ 0 − R∗

R + ζ − R∗ (r − R∗) + R∗, θ ′ = θ, t ′ = t,

and
pi (r, θ, t) = p′

i (r
′, θ ′, t ′) (i = 1, 2), ζ(θ, t) = ζ ′(θ ′, t ′).

By omitting the primes for simplicity, problem (11.7) takes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂p1
∂t

= L 1
ζ p1 − ε f1 in Ω1, t > 0,

ε
∂p2
∂t

= L 2
ζ p2 − ε f2 in Ω2, t > 0,

∂p1
∂r

= − Q(t)

2πR∗M1

R + ζ − R∗
R0 + ζ 0 − R∗

on Γ∗ ≡ {r = R∗, θ ∈ [0, 2π ]}, t > 0,

p2 = pe on Γ ∗ ≡ {r = R∗, θ ∈ [0, 2π ]}, t > 0,

∂ζ

∂t
− b12(ζ )

∂p1
∂r

− b11(ζ )
∂p1
∂θ

− b22(ζ )
∂p2
∂r

− b21(ζ )
∂p2
∂θ

= −Q(t)

2πR
,

b12(ζ )
∂p1
∂r

+ b11(ζ )
∂p1
∂θ

= b22(ζ )
∂p2
∂r

+ b21(ζ )
∂p2
∂θ

,

p1 = p2 on Γ ≡ {r = R0 + ζ 0(θ), θ ∈ [0, 2π ]}, t > 0,

p1
∣∣
t=0= p01 on Ω1, p2

∣∣
t=0= p02 on Ω2,

ζ
∣∣
t=0= ζ 0 on [0, 2π ].

(11.8)

Here

L 1
ζ ≡ L 1

ζ

(
r, θ; ∂

∂r
,

∂

∂θ

)
= 1
(
R∗ + R+ζ−R∗

R0+ζ 0−R∗
(r − R∗)

)2

[
∂2

∂θ2

+2

(
1

R0 + ζ 0 − R∗
dζ 0

dθ
− 1

R + ζ − R∗
∂ζ

∂θ

)

(r − R∗)
∂2

∂r∂θ

+
⎛

⎝
(
R∗ + R + ζ − R∗

R0 + ζ 0 − R∗
(r − R∗)

)2 ( R0 + ζ 0 − R∗
R + ζ − R∗

)2

+
(

1

R0 + ζ 0 − R∗
dζ 0

dθ
− 1

R + ζ − R∗
∂ζ

∂θ

)2
(r − R∗)2

⎞

⎠ ∂2

∂r2

]
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+
{
ε

r − R∗
R + ζ − R∗

∂

∂t
(R + ζ ) + 1

R∗ + R+ζ−R∗
R0+ζ 0−R∗

(r − R∗)

R0 + ζ 0 − R∗
R + ζ − R∗

+ r − R∗
(
R∗ + R+ζ−R∗

R0+ζ 0−R∗
(r − R∗)

)2

[
∂

∂θ

(
1

R0 + ζ 0 − R∗
dζ 0

dθ
− 1

R + ζ − R∗
∂ζ

∂θ

)

+
(

1

R0 + ζ 0 − R∗
dζ 0

dθ
− 1

R + ζ − R∗
∂ζ

∂θ

)2⎤

⎦
}

∂

∂r
,

L 2
ζ ≡ L 2

ζ

(
r, θ; ∂

∂r
,

∂

∂θ

)
= L 1

ζ with R∗ replaced by R∗;

b12(ζ ) = M1

2

[
R0 + ζ 0 − R∗
R + ζ − R∗

(

1 + 1

(R0 + ζ 0)2

(
∂ζ

∂θ

)2)

− 1

(R0 + ζ 0)2
∂ζ

∂θ

dζ 0

dθ

]

,

b11(ζ ) = −M1

2

1

(R0 + ζ 0)2
∂ζ

∂θ
,

b22(ζ ) = M2

2

[
R0 + ζ 0 − R∗
R + ζ − R∗

(

1 + 1

(R0 + ζ 0)2

(
∂ζ

∂θ

)2)

− 1

(R0 + ζ 0)2
∂ζ

∂θ

dζ 0

dθ

]

,

b21(ζ ) = −M2

2

1

(R0 + ζ 0)2
∂ζ

∂θ
.

Now we choose

f1 = r − R∗
R0 + ζ 0 − R∗

∂p01
∂r

∂

∂t
(R + ζ )

∣∣
t=0 on Ω1,

f2 = r − R∗

R0 + ζ 0 − R∗
∂p02
∂r

∂

∂t
(R + ζ )

∣∣
t=0 on Ω2.

Before describing the main result, we introduce function spaces. For a domain Ω
in R

n (n ∈ N) and any T > 0 let Cl(Ω̄) and Cl,l/2(Q̄T ) (Q̄T ≡ Ω̄ × [0, T ]) with
l = k + α, k ∈ Z, k � 0, α ∈ (0, 1) be the standard Hölder spaces constructed with
the use of the following semi-norms:

〈u〉(α)
x ≡ sup

x,y∈Ω̄, t∈[0,T ]
|u(x, t) − u(y, t)|

|x − y|α , 〈u〉(α)
t ≡ sup

x∈Ω̄, t,t ′∈[0,T ]
|u(x, t) − u(x, t ′)|

|t − t ′|α ,

〈u〉(α) = 〈u〉(α)
x + 〈u〉(α/2)

t

(see [13]). We also use the semi-norm

[u](α,β) ≡ sup
x,y∈Ω̄ t,t ′∈[0,T ]

|u(x, t) − u(y, t) − u(x, t ′) + u(y, t ′)|
|x − y|α|t − t ′|β , α, β ∈ (0, 1),
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and define the Banach spaces Ek+α(Q̄T ) that are obtained as the completion of
infinitely differential functions in respective norms

‖u‖α = ‖u‖Eα ≡ Eα,α/2[u] = sup
(x,t)∈Q̄T

|u(x, t)| + 〈u〉(α) + [u](α,α/2),

‖u‖1+α = ‖u‖E1+α = Eα,α/2[D1
xu] + Dα,α[u],

Dα,α[u] = sup
(x,t)∈Q̄T

|u(x, t)| + 〈u〉(α)
x + 〈u〉(α)

t + [u](α,α),

‖u‖2+α = ‖u‖E2+α = Eα,α/2[D2
xu] + Dα,α[D1

xu] + Dα,α[u]
(
Dk

x =
∑

| j |=k

D j
x ( j is a multi-index), k = 1, 2

)
,

and the space P2+α
ε (Q̄T ) with the norm

‖u‖P2+α
ε

= ‖εDt u‖α + ‖u‖2+α (Dt = ∂/∂t) .

We also introduce the spaces

Ê2+α(Q̄T ) = {u ∣∣ u ∈ E2+α(Q̄T ), Dt u ∈ E1+α(Q̄T )
}
,

Ě2+α(Q̄T ) = {u ∣∣ u ∈ E2+α(Q̄T ), Dt u ∈ Eα(Q̄T )
}
,

‖u‖Ê2+α = ‖u‖2+α + ‖Dt u‖1+α, ‖u‖Ě2+α = ‖u‖2+α + ‖Dt u‖α.

Denote byC
0

l,l/2(Q̄T ), E
0

k+α(Q̄T ), Pε
0

2+α(Q̄T ), Ê
0

2+α
(Q̄T ) and Ě

0

2+α
(Q̄T ) the spaces

of the corresponding spaces whose elements are equal to zero at t = 0 together with
their admissible derivatives with respect to t .

For a smooth manifold Γ inRn Cl(Γ ), Cl,l/2(ΓT ), etc., are defined with the help
of partition of unity and of local maps.

The followings are our main results.

Theorem 11.2.1 Let T > 0andα ∈ (0, 1). Assume that (p01, p
0
2, ζ

0) ∈ C3+α(Ω̄1) ×
C3+α(Ω̄2)×C4+α([0, 2π ]) satisfy the compatibility conditions, ∂p01/∂r − ∂p02/∂r >

0 on Γ , Q ∈ Cα([0, T ]) and pe ∈ C3+α,(3+α)/2(Γ ∗
T ). Then there exists T0 > 0

depending on the data of the problem such that problem (11.8) with ε = 0 has a
solution (p1, p2, ζ ) ∈ E2+α(Q̄1,T0) × E2+α(Q̄2,T0) × Ê2+α(ΓT0).

Theorem 11.2.1 is proved in several steps. First we consider problem (11.8) with
ε > 0 in the classes of smooth functions, and then show that this solution has a
convergent subsequence as ε → 0. For that it is necessary to use the function classes
where the uniform estimate in ε holds.
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Theorem 11.2.2 Let ε0 > 0 and the corresponding assumptions in Theorem 11.2.1
hold. Then there exists T0 > 0 depending on the data of the problem and ε0 such
that for any fixed ε ∈ (0, ε0] problem (11.8) has a unique solution (p1, p2, ζ ) ∈
P2+α

ε (Q̄1,T0) × P2+α
ε (Q̄2,T0) × Ê2+α(ΓT0).

11.3 Reformulation of the Problem

Let ζ̄ ∈ C4+α,(4+α)/2([0, 2π ] × [0, T ]) be an extension of ζ 0 such that

(
ζ̄ ,

∂ζ̄

∂t
,
∂2ζ̄

∂t2

)∣∣
∣∣
t=0

=
(

ζ 0,
∂ζ

∂t
,
∂2ζ

∂t2

)∣∣
∣∣
t=0

,

where (∂ζ/∂t, ∂2ζ/∂t2)
∣
∣
t=0 are obtained from the fifth equation in (11.8) and its

derivative in t at t = 0.
We seek a solution of problem (11.8) in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p1 = p∗
1 + p01 + r − R∗

R + ζ̄ − R∗

∂p01
∂r

ζ ∗,

p2 = p∗
2 + p02 + r − R∗

R + ζ̄ − R∗
∂p02
∂r

ζ ∗,

ζ = ζ ∗ + ζ̄ .

(11.9)

Then (11.8) becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂p∗

1
∂t

= L 1∗ p∗
1 + Φ1 in Ω1, t > 0,

ε
∂p∗

2
∂t

= L 2∗ p∗
2 + Φ2 in Ω2, t > 0,

∂p∗
1

∂r
= Ψ∗ on Γ∗, t > 0,

p∗
2 = Ψ ∗ on Γ ∗, t > 0,

∂ζ∗
∂t

− b12(ζ̄ )
∂p∗

1
∂r

− b11(ζ̄ )
∂p∗

1
∂θ

− b22(ζ̄ )
∂p∗

2
∂r

− b21(ζ̄ )
∂p∗

2
∂θ

= Ψ1 + Ψ2,

b12(ζ̄ )
∂p∗

1
∂r

+ b11(ζ̄ )
∂p∗

1
∂θ

− b22(ζ̄ )
∂p∗

2
∂r

− b21(ζ̄ )
∂p∗

2
∂θ

= −Ψ1 + Ψ2,

p∗
1 − p∗

2 + d(ζ̄ )ζ∗ = Ψ3 on Γ, t > 0,

p∗
1

∣
∣
t=0= 0 on Ω1, p∗

2

∣
∣
t=0= 0 on Ω2,

ζ∗ ∣∣
t=0= 0 on [0, 2π).

(11.10)
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Here

L 1
∗ ≡ L 1

∗

(
r, θ; ∂

∂r
,

∂

∂θ

)
= 1
(
R∗ + R+ζ̄−R∗

R0+ζ 0−R∗ (r − R∗)
)2

[
∂2

∂θ2

+2

(
1

R0 + ζ 0 − R∗
dζ 0

dθ
− 1

R + ζ̄ − R∗

∂ζ̄

∂θ

)
(r − R∗)

∂2

∂r∂θ

+
((

R∗ + R + ζ̄ − R∗
R0 + ζ 0 − R∗

(r − R∗)
)2 (

R0 + ζ 0 − R∗
R + ζ̄ − R∗

)2

+
(

1

R0 + ζ 0 − R∗
dζ 0

dθ
− 1

R + ζ̄ − R∗

∂ζ̄

∂θ

)2
(r − R∗)2

)
∂2

∂r2

]
,

L 2
∗ ≡ L 2

∗

(
r, θ; ∂

∂r
,

∂

∂θ

)
= L 1

∗ with R∗ replaced by R∗;

Φ1 = Φ1(p
∗
1, ζ

∗) = L 1
ζ p1 − L 1

∗ p∗
1 − ε (r − R∗)

∂p01
∂r

∂

∂t

(
ζ ∗

R + ζ̄ − R∗

)
− ε f1,

Φ2 = Φ2(p
∗
2, ζ

∗) = L 2
ζ p2 − L 2

∗ p∗
2 − ε

(
r − R∗) ∂p02

∂r

∂

∂t

(
ζ ∗

R + ζ̄ − R∗

)
− ε f2;

Ψ∗ = Ψ∗(ζ ∗) = − ∂

∂r

(
p01 + r − R∗

R + ζ̄ − R∗

∂p01
∂r

)
ζ ∗ − R + ζ − R∗

R0 + ζ 0 − R∗
Q(t)

2πR∗M1
,

Ψ ∗ = pe − p02,

Ψ j = Ψ j
(
p∗
1, p

∗
2, ζ

∗) = b j
2(ζ )

∂p j

∂r
+ b j

1(ζ )
∂p j

∂θ
− b j

2(ζ̄ )
∂p∗

j

∂r
− b j

1(ζ̄ )
∂p∗

j

∂θ

− Q

4πR
− 1

2

∂ζ̄

∂t
( j = 1, 2),

Ψ3 = p02 − p01;
d(ζ̄ ) = R0 + ζ 0 − R∗

R + ζ̄ − R∗

∂p01
∂r

− R0 + ζ 0 − R∗

R + ζ̄ − R∗
∂p02
∂r

,

with (11.9).
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11.4 Linear Problem

In this section we consider the following linear problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂u1
∂t

− L 1
∗ u1 = φ1 in Ω1, t > 0,

ε
∂u2
∂t

− L 2
∗ u2 = φ2 in Ω2, t > 0,

∂u1
∂r

= ψ∗ on Γ∗, t > 0, u2 = ψ∗ on Γ ∗, t > 0,

∂ρ

∂t
− b12(ζ̄ )

∂u1
∂r

− b11(ζ̄ )
∂u1
∂θ

− b22(ζ̄ )
∂u2
∂r

− b21(ζ̄ )
∂u2
∂θ

= ψ1 + ψ2,

b12(ζ̄ )
∂u1
∂r

+ b11(ζ̄ )
∂u1
∂θ

− b22(ζ̄ )
∂u2
∂r

− b21(ζ̄ )
∂u2
∂θ

= −ψ1 + ψ2,

u1 − u2 + d(ζ̄ )ρ = ψ3 on Γ, t > 0,

(u1, u2, ρ)
∣∣
t=0= 0

(11.11)

for given φ1, φ2, ψ∗, ψ∗, ψ1, ψ2, ψ3 under the conditions b12 > 0, b22 > 0, d > 0.
First we study four model problems in the whole- and half-spaces:

ε
∂u

∂t
− L u = f

(
(x1, x2) ∈ R

2, t > 0
)
, u

∣∣
t=0= 0; (11.12)

⎧
⎪⎨

⎪⎩

ε
∂u

∂t
− L u = f

(
(x1, x2) ∈ R

2
+, t > 0

)
,

u
∣∣
x2=0= 0, u

∣∣
t=0= 0;

(11.13)

⎧
⎪⎪⎨

⎪⎪⎩

ε
∂u

∂t
− L u = f

(
(x1, x2) ∈ R

2+, t > 0
)

,

∂u

∂x2

∣
∣∣
x2=0

= 0, u
∣
∣
t=0= 0;

(11.14)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂u+

∂t
− L u+ = 0

(
(x1, x2) ∈ R

2
+, t > 0

)
,

ε
∂u−

∂t
− L u− = 0

(
(x1, x2) ∈ R

2
−, t > 0

)
,

∂ρ

∂t
− b+ ∂u+

∂x2
− b− ∂u−

∂x2

∣∣
∣
x2=0

= g1,

−b+ ∂u+

∂x2
+ b− ∂u−

∂x2

∣∣∣
x2=0

= g2, −u+ + u− + dρ
∣∣
x2=0= g3,

(u+, u−, ρ)
∣∣
t=0 = 0

(11.15)
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(
R

2
± ≡ {(x1, x2) ∈ R

2
∣∣ ±x2 > 0

})
.

In the aboveL =∑2
j,k=1 a jk∂

2/∂x j∂xk is the second order partial differential oper-
ator with positive real coefficients a jk which constitute positive definite symmetric
matrix, and b± and d are positive constants.

For problems (11.12)–(11.15) we can assume without loss of generality a jk = δ jk

by changing the independent variables (cf. [13]). Then the solutions to the problems
(11.12)–(11.14) forL = Δ are given by

u(x, t) =
∫ t

0
dτ
∫

R2
Γε(x − y, t − τ) f (y, τ ) dy, (11.16)

u(x, t) =
∫ t

0
dτ
∫

R2
Gε(x − y, t − τ) f (y, τ ) dy (11.17)

and

u(x, t) =
∫ t

0
dτ
∫

R2
Nε(x − y, t − τ) f (y, τ ) dy, (11.18)

respectively, where

Γε(x, t) = εn/2−1(4π t)−n/2 exp

[
−ε|x |2

4t

]
,

Gε(x, t) = Γε(x
′, xn, t) − Γε(x

′,−xn, t), x = (x ′, xn),
Nε(x, t) = Γε(x

′, xn, t) + Γε(x
′,−xn, t), n = 2.

Applying the same arguments as in the estimation of the volume potential for the
heat equation to the integrals in (11.16)–(11.18), we have a uniform estimate with
respect to ε for the solutions of the problems (11.12)–(11.14) (see, [2, 13]):

ε

∥∥∥∥
∂u

∂t

∥∥∥∥
α

+ ‖u‖2+α � C1‖ f ‖α. (11.19)

For the problem (11.15) by making use of the Fourier-Laplace transformation

FL [u](ξ, x2, s) ≡ ũ(ξ, x2, s) =
∫ ∞

0
e−st dt

∫ ∞

−∞
e−i ξ x1u(x1, x2, t) dx1



11 Classical Solvability of the Two-Phase Radial … 329

as in [1, 2, 4], the parabolic equations are reduced to the ordinary differential
equations in x2, so that we get

⎧
⎪⎪⎨

⎪⎪⎩

ũ+(ξ, x2, s) = ṽ+(ξ, s) e−rεx2 (x2 > 0),

ũ−(ξ, x2, s) = ṽ−(ξ, s) erεx2 (x2 < 0),

rε = rε(s, ξ) =
√

εs + ξ 2, Re rε > 0.

(11.20)

From the boundary conditions in (11.15) it follows that

⎧
⎪⎨

⎪⎩

b+rε ṽ+ − b−rε ṽ− + sρ̃ = g̃1,

b+rε ṽ+ + b−rε ṽ− = g̃2,

ṽ+ − ṽ− − dρ̃ = −g̃3.

Solving these, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṽ+ = 1

s + Φε

(
db−

b+ + b− g̃1 − b − db−

b+ + b− g̃2 + bb−

b+ + b− rε g̃3

)

+ 1

(b+ + b−) rε
g̃2 − b−

b+ + b− g̃3,

ṽ− = 1

s + Φε

(
− db+

b+ + b− g̃1 − b − db+

b+ + b− g̃2 − bb+

b+ + b− rε g̃3

)

+ 1

(b+ + b−) rε
g̃2 + b+

b+ + b− g̃3,

ρ̃ = 1

s + Φε

(
g̃1 − b+ − b−

b+ + b− g̃2 + 2b+b−

b+ + b− rε g̃3

)
,

Φε = 2db+b−

b+ + b− rε ≡ b rε.

(11.21)

The solution of problem (11.15) is given through the inverse Fourier-Laplace
transformation

v(x1, t) ≡ (FL )−1[ṽ] = 1

2π i

∫

R

ei x1ξ dξ
∫

Re s=a>0
est ṽ(ξ, s) ds

as follows.
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v+(x1, t) = (FL )−1

[
1

s + Φε

]
∗
(

db−

b+ + b− g1 − b − db−

b+ + b− g2

+ bb−

b+ + b− (FL )−1
[
rε g̃3
])

+ 1

b+ + b− (FL )−1

[
1

rε

]
∗ g2 − b−

b+ + b− g3,

v−(x1, t) = (FL )−1

[
1

s + Φε

]
∗
(

− db+

b+ + b− g1 − b − db+

b+ + b− g2

− bb−

b+ + b− (FL )−1
[
rε g̃3
])

+ 1

b+ + b− (FL )−1

[
1

rε

]
∗ g2 + b+

b+ + b− g3,

ρ(x1, t) = (FL )−1

[
1

s + Φε

]
∗
(
g1 − b+ − b−

b+ + b− g2

+ 2b+b−

b+ + b− (FL )−1
[
rε g̃3
])

,

(11.22)

where ∗ means a convolution with respect to x1 and t .
By following the arguments in [1] let us derive the explicit representation of

Zε(x1, t) ≡ (FL )−1

[
1

s + Φε(s, ξ)

]
, t > 0. (11.23)

For that it is sufficient to consider the case b = 1. Since

(
s +
√

εs + ξ 2
)−1 =

∫ ∞

0
exp
[
−τ
(
s +
√

εs + ξ 2
)]

dτ,

1

2π i

∫ a+i∞

a−i∞
exp
[
−τ
(
s +
√

εs + ξ 2
)

+ st
]
ds

= 1

2π i

∫ a+i∞

a−i∞
exp[−τ s + st] ds ∗

t

1

2π i

∫ a+i∞

a−i∞
exp
[
−τ
√

εs + ξ 2 + st
]
ds

= δ(t − τ) ∗
t

√
ε

2
√

π
τ t−3/2 exp

[
−ξ 2t

ε
− ετ 2

4t

]
(a > 0),
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where ∗
t
means a convolution with respect to t , so that

Z̃ε(ξ, t) =
∫ ∞

0
δ(t − τ) ∗

t

√
ε

2
√

π
τ t−3/2 exp

[
−ξ 2t

ε
− ετ 2

4t

]
dτ

=
√

ε

2
√

π

∫ t

0
τ(t − τ)−3/2 exp

[
−ξ 2

ε
(t − τ) − ετ 2

4(t − τ)

]
dτ

= 1

2
√

π

∫ t/ε

0

t − εz

z3/2
exp

[
−ξ 2z − (t − εz)2

4z

]
dz.

Therefore, we have

Zε(x1, t) = 1

2π

∫ ∞

0
Z̃ε(ξ, t) cos(ξ x1) dξ

= 1

4π

∫ t/ε

0

t − εz

z2
exp

[
− x21
4z

− (t − εz)2

4z

]
dz. (11.24)

From (11.24) it easily follows

Lemma 11.4.1 Following inequalities hold with a constant C2 independent of ε:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

|Zε(x1, t)| � C2 t
1 + √

εt

x21 + t2
,

∣∣∣∣
∂

∂t
Zε(x1, t)

∣∣∣∣+
∣∣∣∣

∂

∂x1
Zε(x1, t)

∣∣∣∣ � C2
1 + √

εt

x21 + t2
,

∣∣∣∣
∂2

∂t∂x1
Zε(x1, t)

∣∣∣∣+
∣∣∣∣

∂2

∂x21
Zε(x1, t)

∣∣∣∣ � C2
1 + εt

(x21 + t2)3/2
.

(11.25)

Lemma 11.4.1 implies that for any bounded continuous function f (x1)

lim
t→0

∫ ∞

−∞
Zε(x1 − ξ, t) f (ξ) dξ = f (x1). (11.26)

Introduce the notation

w(x1, t) = (Zε ∗ g) (x1, t) =
∫ t

0
dτ
∫ ∞

−∞
Zε(x1 − y, t − τ) g(y, τ ) dy,

wh(x1, t) =
∫ t−h

0
dτ
∫ ∞

−∞
Zε(x1 − y, t − τ) g(y, τ ) dy (h > 0).
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For wh it is clear to hold

∂

∂t
wh(x1, t) =

∫ t−h

0
dτ
∫ ∞
−∞

∂

∂t
Zε(x1 − y, t − τ) (g(y, τ ) − g(x1, τ )) dy

+
∫ t−h

0
g(x1, τ ) dτ

∫ ∞
−∞

∂

∂t
Zε(x1 − y, t − τ) dy +

∫ ∞
−∞

Zε(x1 − y, h) g(y, t − h) dy.

Making use of (11.26) and the formula

∂

∂t
Z̃ε(ξ, t) = − 1√

π

∫ t/ε

0

ε(t − εz)

z1/2(t + εz)2
exp

[
−ξ 2z − (t − εz)2

4z

]
dz

− 1√
π

∫ t/ε

0

ξ 2(t − εz)

z1/2(t + εz)
exp

[
−ξ 2z − (t − εz)2

4z

]
dz (11.27)

together with the estimates in Lemma 11.4.1, we have after passing to the limit
h → 0

∂

∂t
w(x1, t) =

∫ t

0
dτ
∫ ∞

−∞
∂

∂t
Zε(x1 − y, t − τ) (g(y, τ ) − g(x1, τ )) dy

+
∫ t

0
g(x1, τ ) dτ

∫ ∞

−∞
∂

∂t
Zε(x1 − y, t − τ) dy + g(x1, t). (11.28)

Analogously we have

∂2

∂x21
w(x1, t)

=
∫ t

0
dτ
∫ ∞

−∞
∂

∂x1
Zε(x1 − y, t − τ)

(
∂

∂y
g(y, τ ) − ∂

∂x1
g(x1, τ )

)
dy. (11.29)

We begin by estimating the first term denoted by w† in the right hand side of
(11.28). Following the arguments in [13], we get

w†(x1, t) − w†(x ′
1, t)

=
∫ t

0
dτ
∫

|x1−y|�2|x1−x ′
1|

∂

∂t
Zε(x1 − y, t − τ) (g(y, τ ) − g(x1, τ )) dy

−
∫ t

0
dτ
∫

|x1−y|�2|x1−x ′
1|

∂

∂t
Zε(x

′
1 − y, t − τ) (g(y, τ ) − g(x ′

1, τ )) dy

+
∫ t

0
dτ
∫

|x1−y|�2|x1−x ′
1|

(
∂

∂t
Zε(x1 − y, t − τ) − ∂

∂t
Zε(x

′
1 − y, t − τ)

)

× (g(y, τ ) − g(x1, τ )) dy
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+
∫ t

0

(
g(x ′

1, τ ) − g(x1, τ )
)
dτ
∫

|x1−y|�2|x1−x ′
1|

∂

∂t
Zε(x

′
1 − y, t − τ) dy

≡
4∑

j=1

I j . (11.30)

Applying Lemma 11.4.1, we have

|I1| � C ′′
3 〈g〉(α)

x

∫

|x1−y|�2|x1−x ′
1|

|x1 − y|α dy
∫ t

0

1 + √
ε(t − τ)

|x1 − y|2 + (t − τ)2
dτ

� C ′
3 (1 + √

εt) 〈g〉(α)
x

∫

|x1−y|�2|x1−x ′
1|

|x1 − y|α−1 dτ

� C3(ε0, T ) 〈g〉(α)
x |x1 − x ′

1|α.

I2 is estimated by just the same way as I1. For I3 we do in the same way with the
help of the mean value theorem. Finally for I4 we get

|I4| � C ′
4 〈g〉(α)

x |x1 − x ′
1|α
∫ t

0
dτ

∣∣∣∣
∣

∫

|x1−y|�2|x1−x ′
1|

∂

∂t
Zε(x

′
1 − y, τ ) dy

∣∣∣∣
∣

� C4(ε0, T ) 〈g〉(α)
x |x1 − x ′

1|α

due to (11.27) and Lemma 11.4.1. Second term in the right hand side of (11.28) is
estimated similarly. Hence we obtain

〈∂w
∂t

〉(α)

x
� C5(ε0, T ) 〈g〉(α)

x . (11.31)

Next the difference with respect to t of w† is expressed for t ′ � t :

w†(x1, t) − w†(x1, t
′)

=
∫ t

2t ′−t
dτ
∫ ∞

−∞
∂

∂t
Zε(x1 − y, t − τ) (g(y, τ ) − g(x1, τ )) dy

−
∫ t ′

2t ′−t
dτ
∫ ∞

−∞
∂

∂t ′
Zε(x1 − y, t ′ − τ) (g(y, τ ) − g(x1, τ )) dy

+
∫ 2t ′−t

−∞
dτ
∫ ∞

−∞

(
∂

∂t
Zε(x1 − y, t − τ) − ∂

∂t ′
Zε(x1 − y, t ′ − τ)

)

× (g(y, τ ) − g(x1, τ )) dy

≡
3∑

j=1

I ′
j .
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Lemma 11.4.1 yields

|I ′
1| � C ′′

6 〈g〉(α)
x

∫ t

2t ′−t
dτ
∫ ∞

−∞
|x1 − y|α(1 + √

ε(t − τ))

(x1 − y)2 + (t − τ)2
dy

� C ′
6 〈g〉(α)

x

∫ t

2t ′−t

1 + √
ε(t − τ)

(t − τ)1−α
dτ

� C6(ε0, T ) 〈g〉(α)
x |t − t ′|α.

I ′
2 is estimated by just the same way as I ′

1. For I
′
3 we do in the same way with the

help of the mean value theorem and the estimate of ∂2Zε(x1, t)/∂t2:

∣
∣∣∣
∂2

∂t2
Zε(x1, t)

∣
∣∣∣ � C7

ε

t2
exp

[
−εx21

4t

]
+ C ′

7

∫ t/ε

0
z−5/2 exp

[
− x21
4z

− (t − εz)2

4z

]
dz.

After some lengthy calculations we get

〈w†〉(α)
t � C8(ε0, T ) 〈g〉(α)

x .

Second term in the right hand side of (11.28) is estimated similarly. Hence we obtain

〈∂w
∂t

〉(α)

t
� C9(ε0, T )

(
〈g〉(α)

x + 〈g〉(α)
t

)
. (11.32)

From (11.28) we can derive

∂2

∂t∂x1
w(x1, t) =

∫ t

0
dτ
∫ ∞
−∞

∂

∂t
Zε(x1 − y, t − τ)

(
∂

∂y
g(y, τ ) − ∂

∂x1
g(x1, τ )

)
dy

+
∫ t

0

∂

∂x1
g(x1, τ ) dτ

∫ ∞
−∞

∂

∂t
Zε(x1 − y, t − τ) dy + ∂

∂x1
g(x1, t).

Then repeating the above arguments, we obtain the estimates

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

〈 ∂2w

∂t∂x1

〉(α)

x
� C10(ε0, T )

〈 ∂g
∂x1

〉(α)

x
,

〈 ∂2w

∂t∂x1

〉(α/2)

t
� C10(ε0, T ) ‖g‖1+α.

(11.33)

We come to the estimate [∂w/∂t](α,α). Since w† can be written as

w†(x1, t) =
∫ ∞

−∞
dτ
∫ ∞

−∞
∂

∂t
Zε(x1 − y, τ ) (g(y, t − τ) − g(x1, t − τ)) dy,
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w†(x1, t) − w†(x1, t − Δt)

(Δt)α
≡ W †(x1, t)

=
∫ ∞

−∞
dτ
∫ ∞

−∞
∂

∂t
Zε(x1 − y, τ ) (ϕ(y, t − τ) − ϕ(x1, t − τ)) dy

=
∫ t

0
dτ
∫ ∞

−∞
∂

∂t
Zε(x1 − y, t − τ) (ϕ(y, τ ) − ϕ(x1, τ )) dy

for Δt > 0, where

ϕ(x1, t) = g(x1, t) − g(x1, t − Δt)

(Δt)α
.

Again the above argument implies

〈W †〉(α)
x � C11(ε0, T ) 〈ϕ〉(α)

x = C11(ε0, T ) sup
x1,x ′

1,t

|ϕ(x1, t) − ϕ(x ′
1, t)|

|x1 − x ′
1|α

= C11(ε0, T ) sup
x1,x ′

1,t

|g(x1, t) − g(x ′
1, t) − g(x1, t − Δt) + g(x ′

1, t − Δt)|
|x1 − x ′

1|α(Δt)α
,

and hence
[w†](α,α) � C11(ε0, T ) [g](α,α).

Second term in the right hand side of (11.28) is estimated similarly. Thus we obtain

[
∂w

∂t

](α,α)

� C ′
11(ε0, T ) [g](α,α). (11.34)

Similarly we have

[
∂2w

∂t∂x1

](α,α/2)

� C12(ε0, T )

[
∂g

∂x1

](α,α/2)

. (11.35)

Now it is necessary to get the representation of (FL )−1[rε g̃3]:

(FL )−1[rε g̃3] = 2
∂2

∂x22

∫ t

0
dτ
∫ ∞

−∞
Γε(x1 − y, x2, t − τ) g3(y, τ ) dy

∣
∣∣∣
x2=0

= 2
∂2

∂x22

∫ t ′

0
dτ
∫ ∞

−∞
Γ1(x1 − y, x2, t

′ − τ)G3(y, τ ) dy

∣
∣∣∣∣
x2=0

,



336 A. Tani and H. Tani

where t ′ = t/ε, G3(x1, t ′) = g3(x1, t), Γ1 = Γε|ε=1 (see [21]). From this we have

〈(FL )−1[rε g̃3]〉(α,α/2) � C13〈G3〉(1+α,(1+α)/2)

= C13

(
〈g3〉(1+α)

x + ε(1+α)/2〈g3〉((1+α)/2)
t

)
.

Equation (11.22) and estimates (11.31)–(11.35) lead to

∥∥∥
∥
∂ρ

∂t

∥∥∥
∥
1+α

� C14(ε0, T ) (‖g1‖1+α + ‖g2‖1+α + ‖g3‖2+α) . (11.36)

The same arguments can be applied to (11.29) with the help of Lemma 11.4.1, so
that similar estimates to (11.31), (11.32) and (11.34) hold for ∂2w/∂x21 :

∥∥∥
∥
∂2w

∂x21

∥∥∥
∥

α

� C15(ε0, T )

∥∥∥
∥

∂g

∂x1

∥∥∥
∥

α

;

moreover, we have
〈∂2w

∂x21

〉(α)

t
� C16(ε0, T )

〈 ∂g
∂x1

〉(α)

x
.

Lower order derivatives of w are easily estimated.
Therefore, from (11.22) we get

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

‖ρ‖2+α � C17(ε0, T ) (‖g1‖1+α + ‖g2‖1+α + ‖g3‖2+α) ,

〈∂2ρ

∂x21

〉(α)

t
� C18(ε0, T )

(〈∂g1
∂x1

〉(α)

x
+
〈∂g2
∂x1

〉(α)

x

+
〈∂g3
∂x1

〉(1+α,(1+α)/2)
)

.

(11.37)

Functions v±(x1, t) in (11.22) are easily estimated. Indeed, since

(FL )−1

[
1

rε

]
∗ g(x1, t) =

∫ t

0
dτ
∫ ∞

−∞
Γε(x1 − y, 0, t − τ) g(y, τ ) dy,

we have a similar estimate to (11.36) and (11.37):

∥∥∥∥
∂v±

∂t

∥∥∥∥
α

+ ‖v±‖2+α � C19
(‖g1‖1+α + ‖g2‖1+α + ‖g3‖Ě2+α

)
. (11.38)
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For u±(x, t) we prepare two representations:

u±(x, t) = −2
∫ t

0
dτ
∫ ∞

−∞
∂

∂x2
Γε(x1 − y, x2, t − τ) v±(y, τ ) dy, (11.39)

and

u±(x, t) = −2
∫ t

0
dτ
∫ ∞

−∞
Γε(x1 − y, x2, t − τ) g±(y, τ ) dy, (11.40)

where

g+ = − 1

2b+

(
g1 + g2 − ∂ρ

∂t

)
, g− = 1

2b−

(
−g1 + g2 + ∂ρ

∂t

)
,

since ṽ± are represented as

ṽ+ = 1

2b+rε
(g̃1 + g̃2 − sρ̃) , ṽ− = 1

2b−rε
(−g̃1 + g̃2 + sρ̃) .

Here we use (11.39) for the estimates of ∂2u±/∂x21 , ∂
2u±/∂x22 , ∂u

±/∂x1, and (11.40)
for the estimates of ∂2u±/∂x1∂x2, ∂u±/∂x2.

Introduce the notation with t ′ = t/ε

u±(x, εt ′) = U±(x, t ′), v±(x1, εt
′) = V±(x1, t

′), g±(x1, εt
′) = G±(x1, t

′).

Then, (11.39) and (11.40) are represented as

U±(x, t ′) = −2
∂Γ1

∂x2
∗ V± and U±(x, t ′) = −2Γ1 ∗ G±,

respectively. We can find the following estimates (see [13]):

〈∂Γ1

∂x2
∗ V±

〉(α/2)

t ′
� C20 〈V±〉(α/2)

t ′ ,
〈∂Γ1

∂x2
∗ V±

〉(α)

x
� C20

(
〈V±〉(α)

x + 〈V±〉(α/2)
t ′

)
.

Simultaneously we have

〈∂2U±

∂x21

〉(α/2)

t ′
+
〈∂2U±

∂x22

〉(α/2)

t ′
� C21

(〈∂2V±

∂x21

〉(α/2)

t ′
+
〈∂V±

∂t ′
〉(α/2)

t ′

)
,

〈∂2U±

∂x21

〉(α)

x
+
〈∂2U±

∂x22

〉(α)

x

� C21

(〈∂2V±

∂x21

〉(α)

x
+
〈∂2V±

∂x21

〉(α/2)

t ′
+
〈∂V±

∂t ′
〉(α)

x
+
〈∂V±

∂t ′
〉(α/2)

t ′

)
.
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These inequalities yield

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈∂2u±

∂x21

〉(α/2)

t
+
〈∂2u±

∂x22

〉(α/2)

t
� C21

(〈∂2v±

∂x21

〉(α/2)

t
+ ε
〈∂v±

∂t

〉(α/2)

t

)
,

〈∂2u±

∂x21

〉(α)

x
+
〈∂2u±

∂x22

〉(α)

x
� C21

(〈∂2v±

∂x21

〉(α)

x

+εα/2
〈∂2v±

∂x21

〉(α/2)

t
+ ε
〈∂v±

∂t

〉(α)

x
+ ε1+α/2

〈∂v±

∂t

〉(α/2)

t

)
.

(11.41)

Furthermore, by the same method as that for w† we have

[
∂2U±
∂x21

](α,α/2)

� C ′
22

⎛

⎝
[

∂2V±
∂x21

](α,α/2)

+ sup
x1,t ′,s,Δt ′

1

|Δt ′|α/2|s|α/2

∣
∣∣
∣
∣
∂2V±
∂x21

(x1, t
′ − s)

−∂2V±
∂x21

(x1, t
′) − ∂2V±

∂x21
(x1, t

′ + Δt ′ − s) + ∂2V±
∂x21

(x1, t
′ + Δt ′)

∣
∣
∣
∣∣

)

� C22

⎛

⎝
[

∂2V±
∂x21

](α,α/2)

+
〈∂2V±

∂x21

〉(α)

t ′

⎞

⎠ ,

and hence

[
∂2u±

∂x21

](α,α/2)

� C23

([
∂2v±

∂x21

](α,α/2)

+ εα/2
〈∂2v±

∂x21

〉(α)

t

)

. (11.42)

Analogously we obtain the estimate for [∂2u±/∂x22 ](α,α/2).
By virtue of the expression (11.40) we get

∂U±

∂x2
= −2

∂Γ1

∂x2
∗ G±,

∂2U±

∂x2∂x1
= −2

∂Γ1

∂x2
∗ ∂G±

∂x1
,

from which it follows

〈∂U±

∂x2

〉(α)

t ′
� C24〈G±〉(α)

t ′ ,
〈 ∂2U±

∂x1∂x2

〉(α/2)

t ′
� C24

〈∂G±

∂x1

〉(α/2)

t ′
,

and hence

〈∂u±

∂x2

〉(α)

t
� C25〈g±〉(α)

t ,
〈 ∂2u±

∂x1∂x2

〉(α/2)

t
� C25

〈∂g±

∂x1

〉(α/2)

t
. (11.43)
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Each term in the right hand side of (11.41)–(11.43) is estimated by virtue of (11.36)–
(11.38).

Similar arguments are applicable to other terms appearing in the norm ‖u±‖2+α .
And finally from the first and second equations in (11.15) we derive the uniform
estimates ε‖∂u±/∂t‖α with respect to ε.

Lemma 11.4.2 Let ε0 be a fixed positive number and b+, b− and d be positive

constants. Assume that g1, g2 ∈ E
0

1+α(RT ) and g3 ∈ Ě
0

2+α
(RT ) with α ∈ (0, 1) and

T > 0. Then problem (11.15) with any ε ∈ (0, ε0] has a unique solution

u+ ∈ Pε
0

2+α(R2
+,T ), u− ∈ Pε

0

2+α(R2
−,T ), ρ ∈ Ê

0

2+α
(RT )

(
R

2
±,T ≡ R

2
± × [0, T ], RT ≡ R × [0, T ])

satisfying the inequality

ε

∥∥∥∥
∂u+

∂t

∥∥∥∥
α

+ ε

∥∥∥∥
∂u−

∂t

∥∥∥∥
α

+ ‖u+‖2+α + ‖u−‖2+α + ‖ρ‖2+α +
∥∥∥∥
∂ρ

∂t

∥∥∥∥
1+α

� C26

(
‖g1‖1+α + ‖g2‖1+α + ‖g3‖2+α +

∥
∥∥∥
∂g3
∂t

∥
∥∥∥

α

)
, (11.44)

where C26 is a positive constant depending on ε0, but not on ε.

Now we shall solve problem (11.15) by the regularizer method.
In the followings (θ, r) corresponds to the above (x1, x2). For a suitably small posi-

tive numberλwe construct two systems of coverings {ωk} and {Ωk} ofΩ1 ∪ Ω2 ≡ Ω̄

as follows (cf. [20, 22]):
Let k be inM1 if two dimensional squares ωk andΩk included completely inΩ1 are
mapped by Π1 from those with common center (rk, θk) and with the length of their
edges, in parallel directions of axes, equal to λ/2 and λ, respectively;
M2 and Π2 for Ω2 are the same as M1 and Π1 for Ω1;
For k ∈ M3 satisfying ωk ∩ Γ �= ∅, ωk and Ωk ⊂ Ω1 are defined in the local coor-
dinates (z1, z2) with an origin at (rk, θk) ∈ Γ by

ωk = Π3 {|z2| � λ/2, −λ � z1 − FΓ (z2) � 0} ,

Ωk = Π3 {|z2| � λ, −2λ � z1 − FΓ (z2) � 0} ,

where equation z1 = FΓ (z2) represents Γ around (rk, θk) ∈ Γ and Π3 is a transfor-
mation from (z1, z2) to (r, θ) ∈ Ωk ;
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M4 is the same set as M3, but to use in distinction of the coverings in Ω2:

ωk = Π4 {|z2| � λ/2, 0 � z1 − FΓ (z2) � λ} ,

Ωk = Π4 {|z2| � λ, 0 � z1 − FΓ (z2) � 2λ} ;

By {ωk} and {Ωk}, k ∈ M5, we denote the coverings of Γ∗ in Ω1 and by Π5 the
transformation from z to (r, θ) ∈ Ωk ;
M6 and Π6 for Γ ∗ are the same as M5 and Π5 for Γ∗, respectively.

Nowwe introduce partitions of unity {ηk} and {η∗
k } subordinated to {ωk} and {Ωk}

such that

ηk(r, θ) =
{
1 for (r, θ) ∈ ωk,

0 for (r, θ) ∈ Ω̄ \ Ωk,
0 ≤ ηk(r, θ) ≤ 1, ηk ∈ C∞

0 (Ω̄),

∣∣∣D j
r,θ ηk(r, θ)

∣∣∣ � C27λ
−| j |, η∗

k (r, θ) ≡ ηk(r, θ)
∑

k(ηk(r, θ))2
.

Obviously, {η∗
k (r, θ)} have properties

η∗
k (r, θ) = 0 if (r, θ) ∈ Ω̄ \ Ωk,

∑

k

ηk(r, θ)η∗
k (r, θ) = 1,

∣∣∣D j
r,θ η

∗
k (r, θ)

∣∣∣ � C28λ
−| j |.

First let T∗ = γ λ2, where γ ∈ (0, 1) will be specified later. Then the regularizer
R is defined by

RH =
∑

m=1,3,5

∑

k∈Mm

η∗
k u

k
1 +

∑

m=2,4,6

∑

k∈Mm

η∗
k u

k
2 +
∑

k∈M3

η∗
kρ

k,

H = (φ1, φ2, ψ∗, ψ∗, ψ1, ψ2, ψ3).

Here uk1 = Π1ūk1, where ū
k
1 is a solution of problem

⎧
⎪⎨

⎪⎩

∂ ūk1
∂t

− Π−1
1

(
L 1

∗,k

)
ūk1 = Π−1

1 ηkφ1 in R
2 × (0, T ),

ūk1
∣∣
t=0 = 0 on R

2,

(11.45)

(
L j

∗,k ≡ L j
∗ (rk, θk; ∂/∂r, ∂/∂θ)

∣∣∣
t=0

( j = 1, 2)
)

;

uk2 = Π2ūk2, where ū
k
2 is a solution of problem
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⎧
⎪⎨

⎪⎩

∂ ūk2
∂t

− Π−1
2

(
L 2

∗,k

)
ūk2 = Π−1

2 ηkφ2 in R
2 × (0, T ),

ūk2
∣∣
t=0 = 0 on R

2;
(11.46)

uk1 = Π5ūk1, where ū
k
1 is a solution of problem

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂ ūk1
∂t

− Π−1
5

(
L 1

∗,k

)
ūk1 = Π−1

5 ηkφ1 in R
2
+ × (0, T ),

ūk1
∣
∣
t=0 = 0 on R

2
+,

∂ ūk1
∂z1

∣∣∣
∣
z1=0

= Π−1
5 ηkψ∗;

(11.47)

uk2 = Π6ūk2, where ū
k
2 is a solution of problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ ūk2
∂t

− Π−1
6

(
L 2

∗,k

)
ūk2 = Π−1

6 ηkφ2 in R
2
+ × (0, T ),

ūk2
∣∣
t=0 = 0 on R

2
+,

ūk2
∣
∣
z1=0 = Π−1

6 ηkψ
∗;

(11.48)

uk1 = Π3ūk1, uk2 = Π4ūk2, ρk = Π3ρ̄
k , where

(
ūk1, ū

k
2, ρ̄

k
)
is a solution of problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ ūk1
∂t

− Π−1
3

(
L 1

∗,k

)
ūk1 = Π−1

3 ηkφ1 in R
2
− × (0, T ),

∂ ūk2
∂t

− Π−1
4

(
L 2

∗,k

)
ūk2 = Π−1

4 ηkφ2 in R
2
+ × (0, T ),

(
ūk1, ū

k
2, ρ̄

k
)∣∣

t=0 = 0,

∂ρ̄k

∂t
− b+

k

∂ ūk2
∂z1

− b−
k

∂ ūk1
∂z1

∣
∣∣∣
z1=0

= Π−1
3 ηk(ψ1 + ψ2),

−b+
k

∂ ūk2
∂z1

+ b−
k

∂ ūk1
∂z1

∣∣∣∣
z1=0

= Π−1
3 ηk(−ψ1 + ψ2),

−ūk2 + ūk1 + dk ρ̄
k
∣∣
z1=0 = Π−1

3 ηkψ3

(11.49)

with (b+
k , b−

k ) ez1 = Π3
(
(b22, b

2
1)(ζ̄ ), (b12, b

1
1)(ζ̄ )

)∣∣
θ=θk ,t=0, dk = d(ζ̄ ))

∣
∣
θ=θk ,t=0 and

ez1 = (1, 0), where R2± ≡ {(z1, z2) ∈ R
2 | ± z1 > 0}.



342 A. Tani and H. Tani

Then it is not difficult to see that RH = (u′
1, u

′
2, ρ

′) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε
∂u′

1

∂t
− L 1

∗ u
′
1 = φ1 − T1H in Ω1, t > 0,

ε
∂u′

2

∂t
− L 2

∗ u
′
2 = φ2 − T2H in Ω2, t > 0,

∂u′
1

∂r
= ψ∗ − T3H on Γ∗, t > 0,

u′
2 = ψ∗ − T4H on Γ ∗, t > 0,

∂ρ ′

∂t
− b12(ζ̄ )

∂u′
1

∂r
− b11(ζ̄ )

∂u′
1

∂θ
− b22(ζ̄ )

∂u′
2

∂r
− b21(ζ̄ )

∂u′
2

∂θ

= ψ1 + ψ2 − T5H,

b12(ζ̄ )
∂u′

1

∂r
+ b11(ζ̄ )

∂u′
1

∂θ
− b22(ζ̄ )

∂u′
2

∂r
− b21(ζ̄ )

∂u′
2

∂θ

= −ψ1 + ψ2 − T6H,

u′
1 − u′

2 + d(ζ̄ )ρ ′ = ψ3 − T7H on Γ, t > 0,
(
ū′
1, ū

′
2, ρ̄

′)∣∣
t=0 = 0.

(11.50)

Here the operator T = (T1,T2,T3,T4,T5,T6,T7) is defined on

HT = E
0

α(Q̄1,T ) × E
0

α(Q̄2,T ) × E
0

1+α(Γ∗,T ) × E
0

2+α(Γ ∗
T )

×E
0

1+α(ΓT ) × E
0

1+α(ΓT ) × Ě
0

2+α
(ΓT )

by the formulae

T1H = L 1
∗ u

′
1 −

∑

j=1,3,5

∑

k∈M j

η∗
kΠ jL

1
∗,k ū

k
1,

T2H = L 2
∗ u

′
2 −

∑

j=2,4,6

∑

k∈M j

η∗
kΠ jL

2
∗,k ū

k
2,

T3H = ∂u′
1

∂r
−
∑

k∈M5

η∗
kΠ5

∂ ūk1
∂z1

,

T4H = 0,

T5H = b12(ζ̄ )
∂u′

1

∂r
+ b11(ζ̄ )

∂u′
1

∂θ
−
∑

k∈M3

η∗
kΠ3b

−
k

∂ ūk1
∂z1

+b22(ζ̄ )
∂u′

2

∂r
+ b21(ζ̄ )

∂u′
2

∂θ
−
∑

k∈M4

η∗
kΠ4b

+
k

∂ ūk2
∂z1

,
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T6H = −b12(ζ̄ )
∂u′

1

∂r
− b11(ζ̄ )

∂u′
1

∂θ
+
∑

k∈M3

η∗
kΠ3b

−
k

∂ ūk1
∂z1

+b22(ζ̄ )
∂u′

2

∂r
+ b21(ζ̄ )

∂u′
2

∂θ
−
∑

k∈M4

η∗
kΠ4b

+
k

∂ ūk2
∂z1

,

T7H = −d(ζ̄ )ρ ′ +
∑

k∈M3

η∗
kΠ3dk ρ̄

k .

One can find the solution of problem (11.11) in the form

(u1, u2, ρ) = R(I + T + T 2 + . . .)H = R(I − T )−1H

(I is an identity operator),

for which it is necessary to show that the operatorT is a contraction onHT∗ . We first
note that Γ ∈ C2+α implies FΓ ∈ C2+α(B̄δ) (Bδ ≡ {z2 ∈ R | |z2| < δ}) satisfying
FΓ (0) = 0, ∂FΓ /∂z2 (0) = 0, ‖FΓ ‖C2+α(B̄δ)

� C with some constants δ and C being
independent of z2. We take λ small enough to satisfy λ � δ/2. Clearly,

|FΓ (z2)| � C |z2|1+α,

∣∣∣∣
∂FΓ (z2)

∂z2

∣∣∣∣ � C |z2|α. (11.51)

We estimate each term in T1H,T2H, . . . ,T7H in such a way that for the lower
order terms the interpolation inequalities, for example,

sup
x∈Ω

|∇u(x)| � c
(〈u〉(α)

x

) 1+α
2
(〈u〉(2+α)

x

) 1−α
2 , 〈∇2u〉(α/2)

t � cλα[∇2u](α,α/2)

for u ∈ E
0

2+α(Q̄T ) are used, while for the highest order terms the smallness of their

coefficients like (11.51) derived from the smallness of λ and γ are used. Then we
get the following estimate after some lengthy, but straightforward calculations:

‖T H‖Ht ≡ ‖T1H‖Eα(Q̄1,t )
+ ‖T2H‖Eα(Q̄2,t )

+ ‖T3H‖E1+α(Γ∗,t )

+‖T4H‖E2+α(Γ ∗
t ) + ‖T5H‖E1+α(Γt ) + ‖T6H‖E1+α(Γt ) + ‖T7H‖Ě2+α(Γt )

� C29(λ, γ )

⎛

⎝
∑

j=1,3,5

∑

k∈M j

‖uk1‖E2+α(Q̄k
1,t )

+
∑

j=2,4,6

∑

k∈M j

‖uk2‖E2+α(Q̄k
2,t )

+
∑

k∈M3

‖ρk‖Ê2+α(Γ k
t )

⎞

⎠ (11.52)
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for any t ∈ (0, T∗), where Qk
t = Ωk × (0, t), Γ k

t = Γt ∩ Qk
t and C29(λ, γ ) =

C29,1(λ) + C29,2(γ ) +C29,3(λ)C29,4(γ ) is a positive constant with C29, j (·) being
dependent on their argument non-decreasingly andC29, j (0) = 0 ( j = 1, 2, 3, 4). By
virtue of Lemma 11.4.2 and (11.19) we see that T is the contraction operator on
HT∗ for suitably small λ and γ .

Repeating the above argument finite times, we come to

Lemma 11.4.3 For any T > 0 and any ε0 > 0 the problem (11.11) with a fixed ε ∈
(0, ε0]hasaunique solution (u1, u2, ρ) ∈ Pε

0

2+α(Q̄1,T ) × Pε
0

2+α(Q̄2,T ) × Ê
0

2+α
(ΓT )

satisfying

‖u1‖P2+α
ε (Q̄1,T ) + ‖u2‖P2+α

ε (Q̄2,T ) + ‖ρ‖Ê2+α(ΓT ) � C30‖H‖HT , (11.53)

where C30 is a positive constant depending on ε0, but not on ε.

11.5 Nonlinear Problem: Proof of Theorem 11.2.2

In this section we construct the solution to problem (11.10) by the successive approx-
imation method.

Let (p∗
1,n, p

∗
2,n, ζ

∗
n ) (n = 1, 2, 3, . . .) be a solution of problem (11.11) with

φ1 = Φ1(p
∗
1,n−1, ζ

∗
n−1), φ2 = Φ2(p

∗
2,n−1, ζ

∗
n−1), ψ∗ = Ψ∗(ζ ∗

n−1), ψ∗ = Ψ ∗,
ψ1 = Ψ1(p

∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1), ψ2 = Ψ2(p

∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1), ψ3 = Ψ3

for a given (p∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) ∈ Pε

0

2+α(Q̄1,T ) × Pε
0

2+α(Q̄2,T ) × Ê
0

2+α
(ΓT ) and

(p∗
1,0, p

∗
2,0, ζ

∗
0 ) = (0, 0, 0).

It is easily seen that there exists a constant M > 0 dependent on ε0 and T , but not
on ε such that

∥∥(Φ1(0, 0),Φ2(0, 0), Ψ∗(0), Ψ ∗, Ψ1(0, 0, 0), Ψ2(0, 0, 0), Ψ3
)∥∥

HT
� M. (11.54)

From the same argument as in (11.52) we derive the following inequality with the
help of (11.54):

∥
∥(Φ1(p

∗
1,n−1, ζ

∗
n−1),Φ2(p

∗
2,n−1, ζ

∗
n−1), Ψ∗(ζ ∗

n−1), Ψ
∗, Ψ1(p

∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1),

Ψ2(p
∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1), Ψ3

)∥∥
Ht

�
∥∥(Φ1(0, 0),Φ2(0, 0), Ψ∗(0), Ψ ∗, Ψ1(0, 0, 0), Ψ2(0, 0, 0), Ψ3

)∥∥
Ht

+ ∥∥(Φ1(p
∗
1,n−1, ζ

∗
n−1) − Φ1(0, 0),Φ2(p

∗
2,n−1, ζ

∗
n−1) − Φ2(0, 0),
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Ψ∗(ζ ∗
n−1) − Ψ∗(0), 0, Ψ1(p

∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) − Ψ1(0, 0, 0),

Ψ2(p
∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) − Ψ2(0, 0, 0), 0

)∥∥
Ht

� M + β
(
‖p∗

1,n−1‖E2+α(Q̄1,t )
+ ‖p∗

2,n−1‖E2+α(Q̄2,t )
+ ‖ζ ∗

n−1‖Ê2+α(Γt )

)

+Cβ t
χ F
(
‖p∗

1,n−1‖E2+α(Q̄1,t )
+ ‖p∗

2,n−1‖E2+α(Q̄2,t )
+ ‖ζ ∗

n−1‖Ê2+α(Γt )

)
(11.55)

for any t ∈ (0, T ) and any β > 0, where Cβ is a positive constant depending on
β non-increasingly, χ > 0 is a constant depending on α (possibly) and F(·) is a
polynomial in its argument. Thus, Lemma 11.4.3 yields

‖p∗
1,n‖P2+α

ε (Q̄1,t )
+ ‖p∗

2,n‖P2+α
ε (Q̄2,t )

+ ‖ζ ∗
n ‖Ê2+α(Γt )

� C30

(
M + β

(
‖p∗

1,n−1‖E2+α(Q̄1,t )
+ ‖p∗

2,n−1‖E2+α(Q̄2,t )
+ ‖ζ ∗

n−1‖Ê2+α(Γt )

)

+Cβ t
χ F
(
‖p∗

1,n−1‖E2+α(Q̄1,t )
+ ‖p∗

2,n−1‖E2+α(Q̄2,t )
+ ‖ζ ∗

n−1‖Ê2+α(Γt )

))
(11.56)

for any t ∈ (0, T ). Now we take first β = 1/(4C30), and then

T ′ = min

{

T,

(
M

2CβF(2C30M)

)1/χ}

.

Therefore, (11.56) yields

‖p∗
1,n‖P2+α

ε (Q̄1,t )
+ ‖p∗

2,n‖P2+α
ε (Q̄2,t )

+ ‖ζ ∗
n ‖Ê2+α(Γt )

� 2C30M

for any t ∈ (0, T ′) if

‖p∗
1,n−1‖P2+α

ε (Q̄1,T ) + ‖p∗
2,n−1‖P2+α

ε (Q̄2,T ) + ‖ζ ∗
n−1‖Ê2+α(ΓT ) � 2C30M,

that is, for n = 0, 1, 2, . . .

⎧
⎪⎨

⎪⎩

(p∗
1,n, p

∗
2,n, ζ

∗
n ) ∈ Pε

0

2+α(Q̄1,T ′) × Pε
0

2+α(Q̄2,T ′) × Ê
0

2+α
(ΓT ′),

‖p∗
1,n‖P2+α

ε (Q̄1,T ′ ) + ‖p∗
2,n‖P2+α

ε (Q̄2,T ′ ) + ‖ζ ∗
n ‖Ê2+α(ΓT ′ ) � 2C30M.

(11.57)

In order to prove the convergence of the approximate sequence we consider the
difference (p∗

1,n − p∗
1,n−1, p

∗
2,n − p∗

2,n−1, ζ
∗
n − ζ ∗

n−1), which satisfies (11.11) with
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = p∗
1,n − p∗

1,n−1, u2 = p∗
2,n − p∗

2,n−1, ρ = ζ ∗
n − ζ ∗

n−1,

φ1 = Φ1(p
∗
1,n−1, ζ

∗
n−1) − Φ1(p

∗
1,n−2, ζ

∗
n−2),

φ2 = Φ2(p
∗
2,n−1, ζ

∗
n−1) − Φ2(p

∗
2,n−2, ζ

∗
n−1),

ψ∗ = Ψ∗(ζ ∗
n−1) − Ψ∗(ζ ∗

n−2), ψ∗ = 0,

ψ1 = Ψ1(p
∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) − Ψ1(p

∗
1,n−2, p

∗
2,n−2, ζ

∗
n−2),

ψ2 = Ψ2(p
∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) − Ψ2(p

∗
1,n−2, p

∗
2,n−2, ζ

∗
n−2), ψ3 = 0.

Similarly as above, with the help of the interpolation inequalities we can obtain a
similar estimate as (11.55):

∥∥(Φ1(p
∗
1,n−1, ζ

∗
n−1) − Φ1(p

∗
1,n−2, ζ

∗
n−2),Φ2(p

∗
2,n−1, ζ

∗
n−1) − Φ2(p

∗
2,n−2, ζ

∗
n−2),

Ψ∗(ζ ∗
n−1) − Ψ∗(ζ ∗

n−2), 0, Ψ1(p
∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) − Ψ1(p

∗
1,n−2, p

∗
2,n−2, ζ

∗
n−2),

Ψ2(p
∗
1,n−1, p

∗
2,n−1, ζ

∗
n−1) − Ψ2(p

∗
1,n−2, p

∗
2,n−2, ζ

∗
n−2), 0

)∥∥
Ht

�
(
β ′ + Cβ ′ tχ

′
F ′
(
‖p∗

1,n−1‖E2+α(Q̄1,t )
+ ‖p∗

1,n−2‖E2+α(Q̄1,t )
+ ‖p∗

2,n−1‖E2+α(Q̄2,t )

+‖p∗
2,n−2‖E2+α(Q̄2,t )

+ ‖ζ ∗
n−1‖Ê2+α(Γt )

+ ‖ζ ∗
n−2‖Ê2+α(Γt )

))

×
(
‖p∗

1,n−1 − p∗
1,n−2‖E2+α(Q̄1,t )

+ ‖p∗
2,n−1 − p∗

2,n−2‖E2+α(Q̄2,t )

+‖ζ ∗
n−1 − ζ ∗

n−2‖Ê2+α(Γt )

)

for any t ∈ (0, T ′) and any β ′ > 0, where Cβ ′ is a positive constant depending on
β ′ non-increasingly, χ ′ > 0 is a constant depending on α (possibly) and F ′(·) is a
polynomial in its argument. Therefore, Lemma 11.4.3 and (11.57) yield

‖p∗
1,n − p∗

1,n−1‖P2+α
ε (Q̄1,t )

+ ‖p∗
2,n − p∗

2,n−1‖P2+α
ε (Q̄2,t )

+ ‖ζ ∗
n − ζ ∗

n−1‖Ê2+α(Γt )

� C30

(
β ′ + Cβ ′ tχ

′
F ′ (4C30M)

) (
‖p∗

1,n−1 − p∗
1,n−2‖E2+α(Q̄1,t )

+‖p∗
2,n−1 − p∗

2,n−2‖E2+α(Q̄2,t )
+ ‖ζ ∗

n−1 − ζ ∗
n−2‖Ê2+α(Γt )

)

for any t ∈ (0, T ′). Again taking first β ′ = 1/(4C30), and then

T0 = min

{

T ′,
(

1

4C30Cβ ′ F ′(4C30M)

)1/χ ′}

,

we obtain
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‖p∗
1,n − p∗

1,n−1‖P2+α
ε (Q̄1,t )

+ ‖p∗
2,n − p∗

2,n−1‖P2+α
ε (Q̄2,t )

+ ‖ζ ∗
n − ζ ∗

n−1‖Ê2+α(Γt )

� 1

2

(
‖p∗

1,n−1 − p∗
1,n−2‖E2+α(Q̄1,t )

+ ‖p∗
2,n−1 − p∗

2,n−2‖E2+α(Q̄2,t )

+‖ζ ∗
n−1 − ζ ∗

n−2‖Ê2+α(Γt )

)
for t ∈ (0, T0). (11.58)

Consequently, (p∗
1,n, p

∗
2,n, ζ

∗
n ) converges to (p∗

1, p
∗
2, ζ

∗) as n → ∞ uniformly in

Pε
0

2+α(Q̄1,T0) × Pε
0

2+α(Q̄2,T0) × Ê
0

2+α
(ΓT0), which satisfies

‖p∗
1‖P2+α

ε (Q̄1,T0 )
+ ‖p∗

2‖P2+α
ε (Q̄2,T0 )

+ ‖ζ ∗‖Ê2+α(ΓT0 )
� 2C30M.

The uniqueness of such a solution follows from the similar inequality as (11.58)
for two solutions to problem (11.10).

11.6 Passing to the Limit ε → 0: Proof of Theorem 11.2.1

Theorem 11.2.2 means that for any ε ∈ (0, ε0] the problem (11.10) admits a smooth
solution (p∗

1,ε, p
∗
2,ε, ζ

∗
ε ), and hence the following integral identity holds for any suf-

ficiently smooth test function ϕ(r, θ, t) with ϕ(r, θ, T ∗) = 0 (0 < T ∗ � T0):

−
∫

Ω1

εp∗
1,ε

∂ϕ

∂t
dr dθ −

∫

Ω2

εp∗
2,ε

∂ϕ

∂t
dr dθ −

∫

Q1,T∗
L 1

∗ p∗
1,ε ϕ dr dθ dt

−
∫

Q2,T∗
L 2

∗ p∗
2,ε ϕ dr dθ dt

=
∫

Q1,T∗
Φ1(p

∗
1,ε, ζ

∗
ε ) ϕ dr dθ dt +

∫

Q2,T∗
Φ2(p

∗
2,ε, ζ

∗
ε ) ϕ dr dθ dt. (11.59)

Since the set of (p∗
1,ε, p

∗
2,ε, ζ

∗
ε ) belongs to the compact subset

{
(p∗

1,ε, p
∗
2,ε, ζ

∗
ε )
∣∣ ‖p∗

1,ε‖E2+α(Q̄1,T0 )
+ ‖p∗

1,ε‖E2+α(Q̄2,T0 )
+ ‖ζ ∗

ε ‖Ê2+α(ΓT0 )
� 2C30M

}
,

one can select a convergent subsequence of it such that

(p∗
1,εk , p

∗
2,εk , ζ

∗
εk

) → (p∗
1, p

∗
2, ζ

∗) as εk → 0

in E2+α(Q̄1,T0) × E2+α(Q̄2,T0) × Ê2+α(ΓT0). Passing to the limit in (11.59) along
the selected subsequence, we establish that the function (p∗

1, p
∗
2, ζ

∗) is a solution of
(11.10) with ε = 0, which proves Theorem 11.2.1.
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Chapter 12
Investigation of Bubble Clouds
in a Cavitating Jet

Katsuhiro Yamamoto

Abstract It is possible for cloud cavitation to severely damage a material’s surface.
In this study, the unsteady behavior of cloud cavitation in a high-speed water jet is
investigated by experimental observation and numerical simulations. Using a high-
speed video camera with a frame rate of approximately 5 × 105 fps, it is found that
high-pressure pulses are formed by collapsing bubble clouds, and that those pulses
rise at a few microseconds before the cloud collapses. An erosion test is carried
out by the injection of the water jet into the aluminum specimen. This test shows
that the mass loss curve has two peaks and that the mass loss at the second peak
located some distance below the nozzle outlet comes from the erosive property of
the cloud cavitation. To explain these experimental results, two cavitation models are
employed. The first is a simplified continuum model of a homogeneous two-phase
flow, and the other is a spherical cloud model filled with the cavitation bubbles. The
intermittent generation of the cavitating jets is simulated numerically by the first
model, and the focusing effect of a spherical wave is computed by the second model.
The second model reproduces the large impulsive pressure and the time lag between
the pressure pulse and the cloud collapse. Some problems in the computational
models are also identified by comparing them with the experimental results.

Keywords Cavitation cloud · Impulsive pressure ·High-speed photography · Bub-
ble dynamics · Numerical simulation

12.1 Introduction

Rayleigh [16] and Plesset [13] analyzed the collapse of a single spherical bubble in a
liquid under hydrostatic pressure to explain the cavitation damage in solid materials.
They regarded the liquid surrounding a bubble as an incompressible fluid. The liq-
uid compressibility in the Rayleigh-Plesset model was considered by Gilmore [7],
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Keller [9] and Prosperetti [15], among others. One of the most important problems in
cavitation is determining the magnitude of the maximum pressure during the bubble
collapse. However, the maximum pressure generated by a single bubble collapse is
much smaller than the yield stress of common-use metals. Thus, the collapse of a
single bubble cannot be considered as a predominant cause of cavitation erosion.

By the way, some researchers have predicted that a micro-jet may be formed,
if a bubble collapse is asymmetric. Such micro-jet formation was shown by the
numerical simulations of Plesset and Chapman in the case of a bubble collapse near
a solid surface [14]. In addition, such asymmetric collapses and high-speed micro-
jets have been observed by Kling [11], Lauterborn [12], and Tomita [22], among
others. Today, the micro-jet may be considered as a dominant cause of cavitation
erosion rather than a spherical bubble collapse.

It has been known over the last two decades that impulsive pressures due to the
collapse of cavitation clouds cause cavitation noise and hard material damage rather
than the impulsive pressures arising from individual cavitation bubbles [1, 3, 17].
Mathematical models of such cavitation clouds were firstly introduced by Brennen
[6, 24] and Matsumoto [19]. Both models come from the two-phase flow model of
Wijngaarden [23], that is, they considered the flow in the cloud as a homogeneous
two-phase flow containing many cavitation bubbles as represented by the Rayleigh-
Plesset equation. The main assumptions in the models are that the flow in the cloud
is spherically symmetric, the small bubble radius is much smaller than the distance
between each bubble and the distance is much smaller than the cloud radius. How-
ever, the validity of their models has still not been verified by experimental results.
Recently, the bubble clouds were numerically analyzed by ETH Zurich and the IBM
team [18]. They conducted three-dimensional direct simulation of the liquid flowcon-
taining 15,000 small bubbles using high-performance computing. Their two-phase
flow model is almost free of the assumptions of Wijngaarden’s model. The model
shows the generation of micro-jets and impulsive pressure during the collapse of the
bubble cloud. However, the results have also not been compared with experimental
results.

Water jet technology is well known as a technique to use the damage potential
of cavitation. Particularly, a high-speed submerged water jet is composed of a large
number of cavitation clouds with high erosive properties [27]. Thus, the purpose of
this study is to investigate the properties of cloud cavitation in a high-speed water
jet by experimental observation and numerical simulation.

12.2 Experimental Observations

12.2.1 Experimental Apparatus

Figure12.1 shows the experimental apparatus of the high-speed submerged water jet.
The tap water was pressurized by a plunger pump with a maximum delivery pressure
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Fig. 12.1 Layout of high-speed submerged water jet system

Fig. 12.2 High-speed cavitating jet from orifice nozzle

of 200MPa and a flow rate of 0.5 L/min. The pressurizedwaterwas injected vertically
into the still water at atmospheric pressure through an orifice nozzle with an internal
diameter dn of 0.15mm. The observation of the submerged jets and the erosion test
of the aluminum specimen were carried out in the water tank. The upstream injection
pressure Pu was varied from 30 to 200 MPa and the downstream pressure Pd was
kept constant at atmospheric pressure.

Figure12.2 shows the details of the orifice nozzle and a snapshot of the high-speed
cavitating jet, which is the target of this study, taken with a usual shutter speed of
1ms.
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Fig. 12.3 Flow structure of free cavitating jet (Pd = 101.3 kPa)

12.2.2 Instantaneous Photograph of Cavitating Jet
and Visualization of Flow Around the Jet

To realize the structure of the cavitating jets, the flow field was observed using an
instantaneous photograph and the particle image velocimetry (PIV) method. The
instantaneous photograph of the cavitating jet was taken using a charge-coupled
device (CCD) camera with an exposure time of 150 ns. Figure12.3 illustrates the
averaged flowfield of the streamline and the velocity vector around the free cavitating
jet over a period of 5 s. These were measured using the PIV method with injection
pressures of Pu = 50 and 100 MPa.

The flow field is separated into two regions. The outer region has a low speed of
0.2m/s maximum, whereas the inner region is the high-speed cavitating jet with a
velocity of a few hundred meters per second. The outer region has an almost axisym-
metric steady flow, whereas the inner region has a non-symmetric and intermittent
jet flow.

12.2.3 Observation of Unsteady Behavior of Bubble Cloud
Using Shadowgraph Technique and Schlieren Method
with High-Speed Video Camera

To measure the unsteady behavior of the cavitating jets, a shadowgraph and a
Schlieren photograph of the jets were taken for the distance x = 30–60mm below the
nozzle outlet and the injection pressure of Pu = 50, and 100MPa. A high-speed video
camera of a complementary metal oxide semiconductor (CMOS) was used. It had
a maximum frame rate of 1.3 million frames second, but in this study, the rate was
used at approximately a half million frames per a second to maintain the resolution
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Fig. 12.4 Optical arrangement for a shadowgraph or Schlieren photograph of cavitation jet using
high-speed video camera

Fig. 12.5 Schlieren photograph of pressure pulse from the cavitation cloud (at frame rate of 4.65 ×
105 fps, x = 30 − 60 mm, Pu = 100 MPa, Pd = 101.3 kPa)

of the picture (the time interval between the frames was approximately 2.2 µs). The
optical arrangement for the Schlieren photograph is shown in Fig. 12.4.

The collapse of the bubble cloud and the severe pressure pulses were observed for
both injection pressures. From the binary image of the bubble cloud picture, I calcu-
lated the spherical radius equivalent to the volume of the bubble cloud. Figure12.5
shows a typical example of the Schlieren photograph of the pressure pulse for the
injection pressure of 100 MPa. It shows the bright ring of the pressure wave spread-
ing after the collapse of the bubble cloud. The Schlieren photograph is clearer than
the shadowgraph and can be used for more precise measurements of the propagation
speeds of the pressure pulses.

The time histories of the spherical waves and the radius change of the bubble
cloud are shown in Fig. 12.6 for the injection pressure Pu = 50–200 MPa. It can be
observed from Fig. 12.6b that the pressure pulses are generated 1–6 µs before the
volume of the cloud reaches a minimum value.

The propagation speed of the first pressure pulses is in the range of 1000±200m/s
as shown in Fig. 12.7a. From this figure, it can be reconfirmed that the starting times
are approximately 1–6 µs before the cloud collapse. Figure12.7b indicates that the
propagation speed decreases rapidly as the number of collapsing times increases.
The void fraction increases after collapsing, due to small bubbles in the cavitation
clouds dispersing into the water.



354 K. Yamamoto

Fig. 12.6 Origin and propagation of pressure pulse with the first collapse of the cavitation clouds
(Pd = 101.3 kPa)

Fig. 12.7 Propagation speed of pressure pulse and its preceding time before cloud collapse (Pd =
101.3 kPa)

Figure12.8 presents the typical behaviors of the bubble cloud, which is separated
from the cavitating jet. The time histories of the leading edge of the continuous
cavitating jet, its velocity, the equivalent radius of the bubble cloud are shown in
this figure. The equivalent radius was estimated from a binary image of the cloud
which could be seen in the shadowgraph. From this measurement, we can see that
the velocities of the leading edge of the cavitating jet are 100–150 m/s. The initial
radii of the cavitation cloud are 1–3mm, and the rebounding periods of the clouds
are approximately 100–150 µs.

From the experimental observation until this section, the unsteady behavior of the
free cavitation jets can be summarized as illustrated in Fig. 12.9.
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Fig. 12.8 Examples of time histories of jet length and cloud radius in cavitating jet (Pd = 101.3
kPa)

Fig. 12.9 Schematic diagram of unsteady behavior of free cavitating jet

Phase 1: A continuous cavitating jet from the orifice nozzle breaks up some bubble
clouds of radii in the order of a few millimeters.

Phase 2: The bubble clouds are separated from the cavitating jet and collapsed by
the downstreampressure. Then the impulsive pressure generated during the
collapse of the cloud. Such pressure rises at a few micro seconds before
the cloud reaches the minimum volume.

Phase 3: Each cloud disappears after a few rebounds.
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12.2.4 Incidence Frequencies of Pressure Pulses Generated
by Cavitating Jet

Tomeasure the incident frequencies of the pressure pulses generated by the cavitating
jet, a hydrophone (with a maximum frequency of 250 kHz) was positioned at x
= 40mm below the nozzle outlet and y = 30mm from the jet axis as shown in
Fig. 12.10a. Figure12.10b represents a sample of the output signal of the hydrophone
and it shows the strong impulsive pressure described in Sect. 12.2.3. The Fourier
components of such signals were analyzed by fast Fourier transformation (FFT).

Figure12.11presents an exampleof thepressure pulse detectedby thehydrophone.
The average Fourier spectra analyzed by FFT for the changes of 125 samples are
shown in Fig. 12.12. The peak frequency of the pressure pulses is 2.36 kHz for an

Fig. 12.10 Pressure pulses generated by collapse of cavitation clouds (Pu = 50 MPa, Pd = 101.3
kPa)

Fig. 12.11 Pressure pulse generated by collapse of cavitation clouds at x = 40mm, y = 30mm
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Fig. 12.12 Fourier spectra of pressure pulse from cavitating jet (average of 125 samples, x =
40mm, y = 30mm)

injection pressure of 50 MPa, and 1.73 kHz for an injection pressure of 100 MPa.
These incident frequencies of the pressure pulses are in the audible range of 1–
10 kHz. Pressure pulses of this type generate cavitation noise. The peak frequency
decreases as the injection pressure increases because the sound speed of the fluid
around the jets decreases rapidly as the void fraction increases with the injection
pressure.

12.2.5 Erosion Test of Aluminum Specimen Using Cavitating
Jet

To examine the erosive properties of the cavitating jet, the erosion test was carried
out using pure aluminum specimens. The water jet was directed perpendicularly at
each specimen for 1200 s, and the mass loss and diameter of the damaged area were
measured. The stand-off distance of the specimens x below the nozzle outlet varied
between 0 and 70mm. Typical damage patterns on the specimen surfaces for each
stand-off distance when Pu = 100 MPa are shown in Fig. 12.13. In Fig. 12.13a, c,
the mass losses of the specimens have maximum values, whereas in Fig. 12.13b, the
damaged area reaches maximum, as described in the following.

Figure12.14 shows the mass loss curves and the damaged area of the aluminum
specimens at the defined stand-off distance (S.O.D.) with the injection pressure vary-
ing between 50 and 100 MPa. Figure12.14a indicates that the mass loss curves have
two peaks. The first peak occurs immediately below the nozzle outlet and the mass
loss increases remarkablywith the injection pressure.However, the stand-off distance
of the second peak increases linearly with the injection pressure and the mass loss is
slightly dependent on the injection pressure. This likely means that the damage for
the second peak is significantly affected by cloud cavitation. Figure12.15 shows the
contour map of the damage characteristics with the injection pressure Pu = 0−150
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Fig. 12.13 Eroded surface of aluminum specimen (Pu = 100 MPa, Pd = 101.3 kPa)

Fig. 12.14 Erosive properties of cavitating jet for aluminum specimen (S.O.D.: stand-off distance,
Pd = 101.3 kPa)

Fig. 12.15 Contour map of the damaged characteristics with injection pressure Pu and S.O.D. x
(S.O.D.: stand-off distance, test peace: Pure aluminum, Pd = 101.3 kPa)
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MPa and the stand-off distance x = 0−70 mm. The 2nd peak region in the mass loss
curves can be seen in Fig. 12.15a. The mass loss in this region is mostly caused by
the cloud cavitation as described before.

12.3 Numerical Analysis

12.3.1 Continuum Model of Homogeneous Two-Phase Flow
of Cavitating Jet

The orifice nozzle in Fig. 12.2 has an internal diameter dn = 0.15mm, and a tip
length of 7.0mm. The internal diameter of the cap is 4.0mm, and a length of the
straight section is 5.0mm. High-pressure water was injected from this nozzle into
still water at atmospheric pressure to produce a high-speed submergedwater jet. Thus
the computational object should be a three-dimensional flow of the jet. To examine
the separation of the cavitation cloud from the submerged water jet, a continuum
model of the homogeneous two-phase (gas-liquid) flow was initially employed.

The governing equations of the flow are the compressible Navier-Stokes equa-
tions, written in the non-conservative form to apply the constrained interpolation
profile (CIP) scheme [21, 26].

∂ρ

∂t
+ (u · ∇)ρ = −ρ(∇ · u) (12.1)

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇ p + ν

{
∇2u + 1

3
∇(∇ · u)

}
(12.2)

where t is the time; x = (x, y, z) is the position; ρ(x, t) is the fluid density; u(x, t) =
(u, v, w)T is the velocity; p(x, t) is the static pressure; ν is the kinematic viscosity;
and ∇ is the nabla operator.

With the assumption that water is a barotoropic fluid, the modified Tait equation
for water in the high-pressure region and the continuum mixture of the cavitating
flow in the low-pressure region can be expressed as

p > Pv : ρ = ρ0

(
p + B

P0 + B

)1/N

(12.3)

p = Pv : ρ = (1 − α)ρvl + αρvg ≈ (1 − α)ρvl (12.4)

where B = 293.1 MPa; N = 7.15; P0 is the atmospheric pressure; ρ0 is the density of
water at atmospheric pressure; Pv is the vapor pressure of water at room temperature;
ρvl is the density of liquid water at p = Pv; ρvg is the density of vaporous water at
p = Pv; and α is the void fraction, which is determined by Eqs. (12.1) and (12.4).
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Fig. 12.16 Computational
domain

Introducing the sound speed of water a = √
dp/dρ, Eq. (12.1) becomes

∂p

∂t
+ (u · ∇)p = −ρa2(∇ · u). (12.5)

The initial conditions are approximated by the steady one-dimensional flow; that
is, at t = 0:

u(x, 0) = (u(x), 0, 0)T , and p(x, 0) = p(x),

where u(x) and p(x) are the one-dimensional pipe flow in the steady state.
It is assumed that the metal specimen at the downstream end is a rigid wall, the

boundary conditions are written as follows:
At x = xin (inflow side): p(x, t) = Pu (injection pressure), v = 0 and w = 0.
At x = xsolid (solid surface of the nozzle and specimen): u(x, t) = 0.
At x = xout (outflow side): p(x, t) = Pd .
Figure12.16 shows agrid generationmethod for the computational domain includ-

ing the nozzle. The number of grids is 3 × 105. TheCIP schemeof thefinite difference
method [21, 26] was used to maintain the numerical stability for a steep change in
the two-phase flow. The time increment of the calculation was Δt ≈ 2.0 ns, and the
Courant number was Cn ≈ 0.1.
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12.3.2 Computational Results of Cavitating Jet

When the injection pressure upstream of the nozzle Pu = 50 MPa, the downstream
pressure Pd = P0 = 101.3 kPa (atmospheric pressure), and the minimum pressure Pv

= 2.3 kPa (vapor pressure of water), the computed density distribution on the vertical
cross-section, including the center axis of the flow field, is as illustrated in Fig. 12.17.
In this figure, the cavitation cloud can be regarded as a low-density fluid mass with
void fraction α = 1 − (ρ/ρvl), which is greater than 1.0 × 10−3(0.1%). From this
figure, we can confirm that the cavitating jet is a non-symmetric three-dimensional
flow and that the cavitation clouds are intermittently generated by the submerged
water jet.

The fluctuation of the flow rate at the nozzle throat is shown in Fig. 12.18, where
Cd = (Q/An)/

√
2(Pu − Pd)/ρl is the flow coefficient. The measured value of the

flow coefficient for steady flow is 0.66. Thus the computational result is proper. The
frequency of the fluctuation is 32 kHz, but this value should not be compared with
the experimental results of the pressure pulses described in Sect. 12.2.4, because the
flow fluctuation is different from the collapse of cavitation clouds.

The pressure and velocity fluctuations of the free jet and the pressure of the
impinging jet on the rigid wall, as obtained from the numerical simulation, are shown
in Fig. 12.19. The characteristics of the cavitating jet are as follows: At x = 20mmand
y = 0mm, the pressure change is between p = 2.3 kPa and 1000 kPa, the frequency
range is between f p =10 kHz and 30 kHz, and the velocity range is between u =150
m/s and 250 m/s. In addition, the pressure range of the impinging jet is between p

Fig. 12.17 Distribution of void fraction in non-symmetric three-dimensional non-symmetric flow
of cavitating jet (Pu = 50 MPa, Pd = 101.3 kPa and Pv = 2.3 kPa)
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Fig. 12.18 Fluctuation of flow rate at the nozzle throat

Fig. 12.19 Computational results of unsteady free jet and impinging jet on rigid wall

= 10 MPa and 30 MPa, and the frequency range is between f p = 1 kHz and 5 kHz.
However, such impulsive pressure as observed in Fig. 12.5 cannot be simulated by
this computation, because the motion of the cavitation bubbles is not considered in
the continuum model of the cavitating flow. I therefore introduce a spherical bubble
cloud model for the impulsive pressure in the next section.

12.3.3 Spherical Cloud Model of Cavitation Bubbles

To examine the impulsive pressure produced by the collapse of the cavitation cloud
described in Sects. 12.2.3 and 12.2.4, I hereby introduce the simplified cavitation
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Fig. 12.20 Spherical cloud
model of cavitation bubbles

model, which is a spherical cloud model of the cavitation bubble that takes into
account the many small bubble motions as shown in Fig. 12.20 [6, 19, 20, 24, 25].

Assuming that the flow field around the cloud is spherical in symmetry and that
the fluid is compressible and inviscid, the density ρ of the continuum mixture for a
void fraction α is given by

ρ = (1 − α)ρl + αρg ≈ (1 − α)ρl (12.6)

where the density ρl of water is given by the modified Tait equation in the high-
pressure region.

The conservation laws of the spherical flow are expressed by the non-conservative
form [4, 5], and the CIP scheme is used to obtain the numerical solution.

∂ρ

∂t
+ u

∂ρ

∂r
= −ρ

(
∂u

∂r
+ 2

r
u

)
(12.7)

∂u

∂t
+ u

∂u

∂r
= − 1

ρ

∂p

∂r
(12.8)

where t is the time, r is the distance from the center of the bubble cloud; u(r, t)
is the radial velocity of the flow field; and p(r, t) is the pressure of the flow field.
Eliminating ρ and ρl from Eqs. (12.3), (12.6), and (12.7), the unknown variables are
u(r, t), p(r, t), and α(r, t). An equation relating these variables is therefore required,
which would be the constitutive equation.

In Fig. 12.20, the bubble cloud of radius Rc0 and void fraction α0 at a low pressure
Pl0 is abruptly released into still water with void fraction α1 at atmospheric pressure
P0 (=101.3 kPa). If the pressure discontinuity P0 − Pl0 at the boundary r = rend
is removed instantaneously, the spherical compression wave begins to enter into
the cloud and a rarefaction wave simultaneously spreads to the outer region. This
situation is represented by the following initial conditions at t = 0:

At 0 � r � rend (in the computational domain): u(r, 0) = 0.
At 0 � r < Rc0 (inside the cloud): p(r, 0) = Pl0 and α(r, 0) = α0.
At Rc0 � r < rend (outside the cloud): p(r, 0) = Pl0 and α(r, 0) = α1(< α0).
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At r = rend (at the boundary of the computational domain): p(rend , 0) = P0 and
α(rend , 0) = 0.

Regarding the boundary conditions (t > 0), the fluid at the center of the bubble
cloud is still that is, at r = 0:

u(0, t) = 0 (12.9)

At the outer boundary of the computational domain, r = rend , all the expanding
waves should be transmitted without reflection. The Rayleigh-Plesset-Keller equa-
tion [9, 13, 16] may be used to represent this condition, because it is an approximate
high-order integration between infinity and any concentric spherical surface of a
compressible inviscid fluid. Because the movement of a fluid particle at r = rend
is very small, thus we can assume that rend ≈ Rend , and u(rend , t) ≈ u(Rend , t) =
dRend/dt = uend(t). This specifies a constraint condition between the unknown vari-
ables uend and pend at r = rend ;

rend

(
1 − uend

cl

)
duend
dt

+ 3

2

(
1 − uend

3cl

)
u2end

= 1

ρl

(
1 + uend

cl

)
(Pend − P0) + rend

ρl cl

dpend
dt

(12.10)

In this model, the bubble cloud is distinguished from the surrounding fluid, and the
fluid particle in the flow has either a high or low void fraction in the initial condition.
The relation between p and α is determined by the oscillation of the bubbles.

I assume that the frequencies of the bubbles are sufficiently high compared to
the fluctuation of the flow field. The surface tension at the liquid/gas interface, and
the viscosity of the liquid are considered. Moreover, the bubble radius is very small.
Using the small bubble radius Rb(r, t), and the velocity Ub = DRb/Dt in which
D/Dt = ∂/∂t + u∂/∂r is the Lagrangian derivative and taking into account the
compressibility of the surrounding liquid, the Rayleigh-Plesset-Keller equation [9,
15] can be used again to determine the motion of individual bubble.

Rb

(
1 − Ub

cl

)
DUb

Dt
+ 3

2

(
1 − Ub

3cl

)
U 2

b

= 1

ρl

(
1 + Ub

cl
+ Rb

cl

D

Dt

) (
pB − p∞ − 4μUb

Rb
− 2σT

Rb

)
(12.11)

We suppose that the distance between any two bubbles is very large compared
with their radii, although there are many bubbles in the computational cell of the
homogeneous two-phase flow. The pressure at infinity can therefore be considered
equal to the pressure of the two-phase flow namely, p∞ = p(r, t). Moreover, the
pressure pB inside a small bubble is the sumof the pressure pg of the non-condensable
gas and the vapor pressure Pv of water. The non-condensable gas in each bubble has
a constant mass and its pressure change is isothermal; that is,
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pB = pg + Pν, pg = pg0

(
Rb0

Rb

)3

(12.12)

The small bubbles are frozen to the flowing fluid, and if the density number of
the bubbles is represented by nb m−3, the conservation of the bubble number can be
expressed as

∂nb
∂t

+ u
∂nb
∂r

= −nb

(
∂u

∂r
+ 2

r
u

)
(12.13)

In this model, the void fraction α of the continuum mixture can be expressed in
terms of the distribution of the small bubble nuclei size [20, 25], using the radius of
the bubble Rb,k and the density number of the bubble nb,k

α =
∑

k

nb,k
4

3
πR3

b,k (12.14)

where k = 1–5. It can be seen that the set of Eqs. (12.11)–(12.14) is a differential
constitutive relation between p and α for the spherical cloud model. In Eqs. (12.12)
and (12.14), pg , Rb, and α have no time lag, but in Eq. (12.11), a time lag arises
between p(r, t) and pg and then between p(r, t) and α(r, t). These time lags are
induced by the mass of the liquid surrounding the small bubble, which is known as
the added mass effect.

Equation (12.11) is integrated by the fourth-order Runge-Kutta scheme, and the
system of Eqs. (12.7) and (12.8) is solved by the CIP scheme as explained previously
[21, 26].

12.3.4 Using Parameters for Flow Simulation of Cloud
Cavitation

Table12.1 lists the numerical data of the physical property, the initial and bound-
ary conditions, and the computational constants for the flow simulation of cloud
cavitation. In this table, the physical properties of the fluids are standard ones. As
for the constants of the initial and boundary conditions, the initial radius of the
bubble cloud RC0 is determined by considering the measured values described in
Sect. 12.2.3. The initial pressures in the computational domain and in the small
bubbles Pl = pg0 is low pressure in the cavitating flow. The initial void fraction
α0(0 � r � RC0) and α1(RC0 � rend) and the initial radii of the small bubbles Rb0

are determined by the references [20, 25]. Then the initial bubble density numbers
is between nb,k = 5 × 107 and 1 × 108m−3. The mesh sizes of space increment Δr
and time increment Δt = Cn(Δr/cl0) are used to solve Eqs. (12.7) and (12.8). The
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Table 12.1 Numerical data for flow simulation of cavitation cloud

Quantities Numerical values

Density of water: ρl0 997.1kg/m3

Sound speed of water: cl0 1496 m/s

Viscosity of water: μl 891 µPa · s
Surface tension of water/air: σT 72.74 × 10−3 Nm

Vapor pressure of water: Pv 2.3 kPa

Atmospheric pressure: P0 101.3 kPa

Downstream pressure: Pd (= P0) 101.3 kPa

Initial pressure: Pl0 = pg0(0 � r � rend ) 10 kPa

Initial radius of the bubble cloud: RC0 3mm

Initial void fraction: α0(0 � r < RC0) 1.0 × 10−3

α1(RC0 � r < rend ) 5.5 × 10−4

Initial radii of small bubbles: Rb0 60, 70, 80, 90 and 100 µm

Radius of computational domain: rend 6mm

Space increment: Δr 3 µm

Time increment: Δt ≈2 ns (Cn = 0.5)

parameter Cn is Courant number. To solve Eq. (12.11), the time increment is set to
1/10 of Δt .

12.3.5 Results and Discussion on Pressure Pulse in
Cavitation Cloud

First, it must be emphasized that in my model, the impulsive pressure is generated
by the focusing effect of the spherical wave even in the case of pure water without
bubbles. Figure12.21 presents a computational result in the case of water that does
not contain any small bubbles in the domain. The spherical pressure wave converges
to the center r = 0 at t = 4µs and the atmospheric pressure becomes a pressure
impulse of approximately 10 MPa at r = 3Δr = 9µm near the center. In addition,
it is confirmed that there is no flection wave at the outer boundary r = rend from
Eq. (12.9).

In the case of the cavitation cloud which is specified in Table12.1, the com-
putational result is shown in Fig. 12.22. This figure shows that the spherical wave
converges to the center r = 0 at t = 31.4 µs and that the atmospheric pressure reaches
a pressure impulse of approximately 176 MPa at r = 3Δr = 9 µm.

Figure12.23 shows the propagation speeds of the pressure waves in the com-
putational domain. The speed of the inward pressure wave outside the cloud
(RC < r < rend ) is reduced by the elastic effect of the small bubbles. However,
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the bubbles cause not only a time lag of the changes between the pressure and the
void fraction, but also very large pressure owing to the effect of added mass of
the water surrounding a bubble. The speed of the outward pressure wave inside the
cloud(0 < r < RC ) becomes c ≈ 1400 m/s because the mixture is at a high pressure
and almost of the same order as pure water. Outside the cloud the speed becomes
c ≈ 1100 m/s, which coincides with the experimental value, as shown in Fig. 12.7a.

The propagation of the spherical waves in the cavitation cloud is illustrated in
Fig. 12.24. The left side is a void fraction, and the right side is a pressure distribution.
The parameters are those given in Table12.1.

Fig. 12.21 Generation of impulsive pressure in purewater (Pd = 101.3 kPa, Pl0 = 10 kPa,α0 = 0)

Fig. 12.22 Wave diagram
on r, t—plane (Parameters
see Table12.1)



368 K. Yamamoto

Fig. 12.23 Propagation speed of spherical wave in bubbly flow

Fig. 12.24 Computational results of cavitation cloud (parameters are given in Table12.1)

We can reconfirm that the pressure wave converges to the center of cloud at time
t = 31.4 µs, and that it diverges to the outside of the cloud. A time lag between the
pressure and void fraction changes can be seen at the center of the cloud.

In the case of a single bubble, it is known that the peak pressure surrounding the
bubble attenuates asymptotically by r−1 [2, 8]. In the case of the cavitation cloud,
Fig. 12.25 shows that the peak pressure attenuates at a rate between r−0.97 and r−0.63,
which is less than that of a single bubble.

Figure12.26 represents the time changes of the pressure p and the void fraction α

at r =9µmwhich is near the center of the cloud.Asdescribedpreviously, the spherical
cloud model with the small bubbles causes the time lag between two changes of the
void fraction and the pressure. As shown in Fig. 12.26, the time lag is approximately
2 µs at the center of the cloud, which is within the experimentally measured range
of 1–6 µs, as presented in Fig. 12.7a.
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Fig. 12.25 Changes in
pressure profile in the
cavitation cloud

Fig. 12.26 Time histories of
pressure and void fraction
near the center of the cloud

Fig. 12.27 Void fraction
versus pressure diagram near
the center of the cloud

Figure12.27 displays the p − α curve at r = 9µm. It can be observed that the
pressure reaches the maximum value before the void fraction decreases to the min-
imum value. This time lag is caused by the acceleration terms in Eq. (12.11) and is
the so-called added mass effect.

The time changes of the pressure and radius of the small bubble at the center of the
cloud are shown in Fig. 12.28. The period of the bubble oscillation is approximately



370 K. Yamamoto

Fig. 12.28 Time histories of
pressure of small bubbles
and bubble radiuses at the
center of the cloud

Table 12.2 Comparison of calculated pressure pulse with measured values

y mm PcalkPa PexpkPa

3 250 −−−
6 120 −−−
30 24 60

90 8 25

10–18 µs, which is almost equal to the natural oscillation of each bubble under
atmospheric pressure. It can be seen from Fig. 12.28b that the period of rebounding
of the cloud is approximately 12µs, which is nearly equal to that of the natural oscil-
lation described previously. However, this rebounding period is too short compared
with the measured value of approximately 100–150 µs. Therefore it is necessary to
revise the spherical cloud model under consideration to simulate the rebounding of
the bubble cloud.

Table12.2 gives the peak value of the outward pressure pulse from the cloud. In
this table, Pcal denotes the calculated peak pressures and Pexp denotes the measured
values. The calculated pressures Pcal at y = 30 and 90mm are extrapolated from the
inside of the cloudby the approximate theory ofKirkwood-Bethe [10],which is r(h +
u2/2) = constant along an outward wave dr/dt = u + c, where h = ∫ p

p0
(1/ρ)dp.
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Fig. 12.29 Influence of the cloud size and downstreampressure on the impulsive pressure (Pl0 = 10
kPa, α0 = 1.0 × 10−3)

This table indicates that the calculated pressure pulse Pcal is much lower than the
measured values Pexp. Therefore the cloud model should be revised again.

12.3.6 Influence of Cloud Size and Downstream Pressure
on the Impulsive Pressure

Up to this section, the behavior of a bubble cloud has been simulated for a cloud
of one size only. However, there are many sizes of cavitation clouds in practice.
Figure12.29a shows that the impulsive pressure increases as the cloud size becomes
large. In an application with cavitating jets, it is very important to know the influence
of the downstream pressure on the impulsive pressure. Figure12.29b shows that the
impulsive pressure increases as the downstream pressure increases. The model of
the bubble cloud does not explicitly include injection pressure. The collapse of the
cavitation cloud is a phenomenon that is strongly dependent on the downstream
pressure more than the injection pressure.

12.3.7 Concluding Remarks and Further Outlook

Finally, this work can be concluded with a few remarks and the outlook for the future.

1. It should be stressed that a high-speed video camera with a grade of a million fps
at a flame rate is a very powerful tool for the study of the unsteady behavior of
bubble clouds in a cavitating jet.

2. I simulated numerically the shedding of bubble clouds froma cavitating jet and the
large impulsive pressure in a bubble cloud by using two computational models.
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The results show that it is possible for cavitation clouds to severely damage a
material’s surface.

3. Some problems of the two mathematical models have also been identified by my
experiments. The calculated rebounding period of the cloud is too short compared
with themeasured values, and the pressure pulse is much lower than themeasured
values.

Consequently to obtainmore realistic numerical results, somebreakthrough improve-
ments will be required for the current mathematical models of cavitation.
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Chapter 13
Weak Solutions to Problems Involving
Inviscid Fluids

Eduard Feireisl

Abstract We consider an abstract functional-differential equation derived from the
pressureless Euler system with variable coefficients that includes several systems
of partial differential equations arising in the fluid mechanics. Using the method
of convex integration we show the existence of infinitely many weak solutions for
prescribed initial data and kinetic energy.

Keywords Euler system · Weak solution · Convex integration

13.1 Introduction

The concept of weak solution is indispensable in the mathematical theory of inviscid
fluids, where solutions of the underlying non-linear systems of partial differential
equations are known to develop singularities in a finite lap of time no matter how
smooth the initial data might be. The weak solutions are being used even in the
analysis of certain viscous fluids like the standard Navier-Stokes system, where a
rigorous theory in the classical framework represents one of the major open problems
of modern mathematics. In the absence of a sufficiently strong dissipative mechanism,
solutions of non-linear systems of conservation laws may develop fast oscillations
and/or concentrations that inevitably give rise to singularities of various types. As
shown in the nowadays classical work of Tartar [19], oscillations are involved in
many problems, in particular in those arising in the context of inviscid fluids.

The well know deficiency of weak solutions is that they may not be uniquely
determined in terms of the data and suitable admissibility criteria must be imposed
in order to pick up the physically relevant ones, cf. Dafermos [9]. Although most
of the admissibility constraints are derived from fundamental physical principles as
the Second law of thermodynamics, their efficiency in eliminating the nonphysical
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solutions is still dubious, cf. Dafermos [10]. Recently, DeLellis and Székelyhidi [11]
developed the method previously known as convex integration in the context of fluid
mechanics, in particular for the Euler system. Among other interesting results, they
show the existence of infinitely many solutions to the incompressible Euler system
violating many of the standard admissibility criteria. Later, the method was adapted
to the compressible case by Chiodaroli [7].

In this note, we introduce an abstract functional-differential equation that may be
viewed as the pressureless Euler system with variable (functionally solution depen-
dent) coefficients. We present an abstract version of the so-called oscillatory lemma
and use it in order to show the existence of infinitely many solutions adapting the
method of [11]. Various specific systems arising in fluid dynamics will be then iden-
tified as special cases of the abstract problem.

The paper is organized as follows. In Sect. 13.2, we introduce the abstract problem
and formulate our main result proved in the remaining part of the paper. To this end,
we adapt the apparatus of convex integration including the concept of subsolution
in Sect. 13.3. In Sect. 13.4, we present the oscillatory lemma and show the existence
of infinitely many solutions. Several specific examples are discussed in Sect. 13.5.
Finally, Sect. 13.6 addresses the problem of strong continuity of the weak solutions
at the initial time.

13.2 Abstract Problem, Main Result

The symbol RN×N
sym will denote the space of N × N symmetric matrices over the

Euclidean space RN , N = 2, 3, RN×N
sym,0 is its subspace of those with zero trace. For

two vectors v,w ∈ RN , we denote

v ⊗ w ∈ RN×N
sym , [v ⊗ w]i, j = vi v j , and v � w ∈ RN×N

sym,0, v � w = v ⊗ w − 1

N
v · wI.

For the sake of simplicity, we suppose the physical space to be the “flat” torus

Ω =
(

[−1, 1]
∣∣∣{−1,1}

)
N ,

meaning, the functions of x ∈ Ω are (2-)periodic in RN .
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13.2.1 Abstract Problem

We consider the following problem:
Find a vector field u ∈ Cweak([0, T ]; L2(Ω; RN )) satisfying

∂tu + divx

(
(u + h[u]) � (u + h[u])

r [u] + H[u]
)

= 0, divxu = 0, (13.1)

in D ′((0, T ) × Ω; RN ),

1

2

|u + h[u]|2
r [u] (t, x) = e[u](t, x) for a.a. (t, x) ∈ (0, T ) × Ω, (13.2)

u(0, ·) = u0, u(T, ·) = uT , (13.3)

where h[u], r [u], H[u], and e[u] are given (nonlinear) operators.

Remark 13.2.1 The problem (13.1)–(13.3) is seemingly overdetermined as both the
initial and the end state are prescribed. Moreover, the associated “kinetic energy” is
constrained by (13.2). Specific applications will be given in Sect. 13.5.

Remark 13.2.2 The choice

h = 0, r = 1,H = 0, e = e(t)

gives rise to the incompressible Euler system

∂tu + divx (u ⊗ u) + ∇xΠ = 0, divxu = 0

with the prescribed kinetic energy

1

2
|u|2 = e(t)

studied by Chiodaroli [7] and DeLellis, Székelyhidi [11].

Remark 13.2.3 Note that a “more complex” problem

∂tu + divx

(
(u + h[u]) ⊗ (u + h[u])

r [u] + H[u]
)

+ ∇xΠ [u] = 0, divxu = 0

(13.4)
can be converted to (13.1) and (13.2), with

e[u] = Z [u](t) − N

2
Π [u],

where Z is an arbitrary spatially homogeneous function.
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Remark 13.2.4 The “pressure” Π in (13.4) can be incorporated in H by solving the
problem

divxHΠ = ∇xΠ in Ω, HΠ(x) ∈ RN×N
sym,0, x ∈ Ω.

We can take, for instance, the solution of the Lamé system

HΠ = ∇xU + ∇xUT − 2

N
divxUI.

As observed by Desvillettes and Villani [12, Sect. 4.1, Proposition 11], the vector
field U is uniquely determined up to an additive constant. Of course, in order to
preserve certain continuity of HΠ , more regularity of Π is needed.

The quantities h, r , H, and e are operators depending on the solution u. In order
to specify their properties, we introduce the following definition:

Definition 13.2.1 Let Q ⊂ (0, T ) × Ω be an open set such that

|Q| = |(0, T ) × Ω|.

An operator

b : Cweak([0, T ]; L2(Ω; RN )) ∩ L∞((0, T ) × Ω; RN ) → Cb(Q, RM)

is Q-continuous if:

• b maps bounded sets in L∞((0, T ) × Ω; RN ) on bounded sets in Cb(Q, RM);
• b is continuous, specifically,

b[vn] → b[v] in Cb(Q; RM) (uniformly for (t, x) ∈ Q )

whenever

vn → v in Cweak([0, T ]; L2(Ω; RN )) and weakly-(*) in L∞((0, T ) × Ω; RN );
(13.5)

• b is causal (non-anticipative), meaning

v(t, ·) = w(t, ·) for 0 ≤ t ≤ τ ≤ T implies b[v] = b[w] in [(0, τ ] × Ω] ∩ Q.
(13.6)

In this paper, we suppose
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h = h[u] : Cweak([0, T ]; L2(Ω; RN )) → Cb(Q; RN ),

r = r [u] : Cweak([0, T ]; L2(Ω; RN )) → Cb(Q; R), r > 0,

e = e[u] : Cweak([0, T ]; L2(Ω; RN )) → Cb(Q; R), e � 0,

H = H[u] : Cweak([0, T ]; L2(Ω; RN )) → Cb(Q; RN×N
sym,0)

(13.7)

are given Q-continuous operators for a certain open set Q.

13.2.2 Subsolutions

Before stating our main result concerning solvability of problem (13.1)–(13.3), it
is convenient to introduce the set of subsolutions. Let λmax[A] denote the maximal
eigenvalue of a matrix A ∈ RN×N

sym . Similarly to DeLellis and Székelyhidi [11], we
introduce the set of subsolutions:

X0 =
{
v

∣∣∣ v ∈ Cweak([0, T ]; L2(Ω; RN )) ∩ L∞((0, T ) × Ω; RN ), (13.8)

v(0, ·) = u0, v(T, ·) = uT ,

∂tv + divxF = 0, divxv = 0 in d′((0, T ) × Ω; RN ),

for some F ∈ L∞((0, T ) × Ω; RN×N
sym,0) ∩ C(Q; RN×N

sym,0), v ∈ C(Q; RN ),

sup
(t,x)∈Q,t>τ

N

2
λmax

[
(v + h[v]) ⊗ (v + h[v])

r [v] − F + H[v]
]

− e[v] < 0

for any 0 < τ < T

}
.

Remark 13.2.5 Note that, in contrast with [11], the inequality

N

2
λmax

[
(v + h[v]) ⊗ (v + h[v])

r [v] − F + H[v]
]

< e[v]

is satisfied only on the open set Q, where all quantities are continuous. Moreover,
the inequality is strict on any open time interval (τ, T ), 0 < τ < T .



382 E. Feireisl

13.2.3 Main Result

We are ready to state our main result.

Theorem 13.2.1 Let the operators h, r , H, and e given by (13.7) be Q-continuous,
where Q ⊂ [(0, T ) × Ω] is an open set,

|Q| = |(0, T ) × Ω|.

In addition, suppose that r [v] > 0 and that the mapping v �→ 1/r [v] is continuous
in the sense specified in (13.5). Finally, assume that the set of subsolutions X0 is
non-empty and bounded in L∞((0, T ) × Ω; RN ).

Then problem (13.1)–(13.3) admits infinitely many solutions.

The next two sections will be devoted to the proof of Theorem 13.2.1. For the
set of subsolutions to be non-empty, the energy e must be chosen large enough.
For instance, taking u0 = uT ∈ C(Ω; RN ), divxu0 = 0 we check easily that X0 is
non-empty, specifically u0 ∈ X0, as soon as

N

2
λmax

[
(u0 + h[u0]) ⊗ (u0 + h[u0])

r [u0] + H[u0]
]

< e[u0]. (13.9)

Recalling the purely algebraic inequality (cf. [11])

1

2

|h̃|2
r̃

≤ N

2
λmax

[
h̃ ⊗ h̃
r̃

− H̃

]

, (13.10)

where the equality holds only if

H̃ = h̃ ⊗ h̃
r̃

− 1

N

|h̃|2
r̃

I, (13.11)

we get from (13.9) that
1

2

|u0 + h[u0]|2
r [u0] < e[u0],

meaning the relation (13.2) is violated at the initial time. This is the undesirable initial
“energy jump” characteristic for the weak solutions obtained by the method of convex
integration. A possible remedy for this problem will be discussed in Sect. 13.6.
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13.3 Convex Integration

As the set X0 is bounded, there exists a positive constant e such that

e[v] ≤ e for any v ∈ X0. (13.12)

Under the hypotheses of Theorem 13.2.1 we may define a topological space X0 as
the closure of the space of subsolutions X0 with respect to the (metrizable) topology
of the space Cweak([0, T ]; L2(Ω; RN )). Accordingly, X0 is a (non-empty) complete
metric space with the distance of two functions v, w given by

sup
t∈[0,T ]

d[v(t, ·);w(t, ·)],

where d is the metrics induced by the weak topology on bounded sets of the Hilbert
space L2(Ω; RN ). Note that, in view of (13.10) and (13.12) and boundedness of all
operators involved in the definition of X0, the associated fluxes F are bounded in
L∞, in particular,

∂tv + divxF = 0, divxv = 0 in d′((0, T ) × Ω; RN ), (13.13)

for any v ∈ X0, where the flux F ∈ L∞((0, T ) × Ω; RN×N
sym,0) can be obtained as a

weak limit of fluxes in X0. Moreover, by convexity of the function

N

2
λmax

[
(v + h) ⊗ (v + h)

r
− F + H

]

in v and F, we get

N

2
λmax

[
(v + h[v]) ⊗ (v + h[v])

r [v] − F + H[v]
]

≤ e[v] a.a. in (0, T ) × Ω.

(13.14)
Next, we introduce a countable family of functionals

In[v] =
∫ T

1/n

∫

Ω

[
1

2

|v + h[v]|2
r [v] − e[v]

]
dx : X0 → (−∞, 0].

In accordance with the hypotheses (13.7), each In can be seen as a lower semi-
continuous functional on X0. In particular, by means of Baire’s category argument,
the set

S = ∩n>0

{
v ∈ X0

∣∣∣ v is a point of continuity of In
}

has infinite cardinality.
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In the next section, we show that

if v is a point of continuity of In in X0, then In[v] = 0. (13.15)

In accordance with (13.10) and (13.11), combined with the previous observations
stated in (13.13) and (13.14), this implies that S consists of weak solutions to prob-
lem (13.1)–(13.3). Consequently, the proof of Theorem 13.2.1 reduces to showing
(13.15).

13.4 Oscillatory Lemma, Infinitely Many Solutions

In accordance with the previous discussion, the final step in the proof of Theorem
13.2.1 is to show (13.15). The main tool we shall use is the following variant of the
oscillatory lemma (cf. De Lellis and Székelyhidi [11, Proposition 3], Chiodaroli [7,
Sect. 6, formula (6.9)]) proved in [13, Lemma 3.1]:

Lemma 13.4.1 Let U ⊂ R × RN , N = 2, 3 be a bounded open set. Suppose that

h̃ ∈ C(U ; RN ), H̃ ∈ C(U ; RN×N
sym,0), ẽ, r̃ ∈ C(U ), r̃ > 0, ẽ ≤ e in U

are given such that
N

2
λmax

[
h̃ ⊗ h̃
r̃

− H̃

]

< ẽ in U. (13.16)

Then there exist sequences

wn ∈ C∞
c (U ; RN ), Gn ∈ C∞

c (U ; RN×N
sym,0), n = 0, 1, . . .

such that
∂twn + divxGn = 0, divxwn = 0 in RN ,

N

2
λmax

[
(h̃ + wn) ⊗ (h̃ + wn)

r̃
− (H̃ + Gn)

]

< ẽ in U, (13.17)

and

wn → 0 weakly in L2(U ; RN ), lim inf
n→∞

∫

U

|wn |2
r̃

dx dt � Λ(e)
∫

U

(

ẽ − 1

2

|h̃|2
r̃

)
2 dx dt

(13.18)
for a certain Λ(e) > 0 depending only on the energy upper bound e.
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Remark 13.4.1 Note that Lemma 13.4.1 applies to continuous, not necessarily
bounded, functions on the open set U .

With Lemma 13.4.1 at hand, we may show the following result that contains
(13.15) as a particular case.

Lemma 13.4.2 Let

ID =
∫

D

[
1

2

|v + h[v]|2
r [v] − e[v]

]
dx dt : X0 → (−∞, 0]

be a functional defined on an open set D ⊂ [(τ, T ) × Ω] ∩ Q, 0 < τ < T .
Then ID vanishes at any of its points of continuity.

Proof Arguing by contradiction we assume that v ∈ X0 is a point of continuity of
ID such that

ID[v] < 0.

Since ID is continuous at v, there is a sequence {vm}∞m=1 ⊂ X0 (with the associated
fluxes Fm) such that

vm → v in Cweak([0, T ]; L2(Ω; RN )), ID[vm] → ID[v] as m → ∞.

As [vm,Fm] are subsolutions and τ > 0, we get, thanks to (13.8),

N

2
λmax

[
(vm + h[vm]) ⊗ (vm + h[vm])

r [vm] − Fm + H[vm]
]

< e[vm] − δm in [[τ, T ) × Ω)] ∩ Q for some δm ↘ 0.

Now, fixing m for a while, we apply Lemma 13.4.1 with

N = 2, 3, U = D, r̃ = r [vm ], h̃ = vm + h[vm ], H̃ = Fm − H[vm ], ẽ = e[vm ] − δm .

For
{[wm,n,Gm,n]

}∞
n=1 the quantities resulting from the conclusion of Lemma 13.4.1,

we set
vm,n = vm + wm,n, Fm,n = Fm + Gm,n .

Obviously,

∂tvm,n + divxFm,n = 0, divxvm,n = 0 in D ′((0, T ) × Ω), ]

vcvm,n(0, ·) = v0, vm,n(T, ·) = vT .
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Moreover, in accordance with (13.17) and the fact that wn , Gm,n vanish outside
D,

N

2
λmax

[
(vm,n + h[vm]) ⊗ (vm,n + h[vm])

r [vm] − Fm,n + H[vm]
]

< e[vm] − δm in [τ, T ) × Ω ∩ Q,

and, by virtue of the causality property (13.6),

sup
(t,x)∈Q,s<t≤τ

N

2
λmax

[
(vm,n + h[vm,n ]) ⊗ (vm,n + h[vm,n ])

r [vm,n ] − Fm,n + H[vm,n ]
]

− e[vm,n ]

< 0

for any 0 < s < τ . Consequently, in view of continuity of the operators v �→
h[v], r [v], e[v],H[v] specified in (13.5), we may infer that for each m there exists
n = n(m) such that

vm,n(m) ∈ X0, m = 1, 2, . . .

Moreover, by virtue of (13.18), we may suppose that

vm,n(m) → v in Cweak([0, T ]; L2(Ω; R2))

in particular,
ID[vm,n(m)] → ID[v] (13.19)

as m → ∞.
Finally, using again the conclusion of Lemma 13.4.1 combined with Jensen’s

inequality, we observe that the sequence vm,n(m) can be taken in such a way that

lim inf
m→∞ ID[vm,n(m)]

= lim inf
m→∞

∫

D

(
1

2

|vm + wm,n(m) + h[vm + wm,n(m)]|2
r [vm + wm,n(m)] − e[vm + wm,n(m)]

)
dx dt

= lim
m→∞

∫

D

(
1

2

|vm + h[vm + wm,n(m)]|2
r [vm + wm,n(m)] − e[vm + wm,n(m)]

)
dx dt

+ lim inf
m→∞

∫

D

1

2

|wm,n(m)|2
r [vm + wm,n(m)]dx dt

� ID[v] + Λ(e)

2
lim inf
m→∞

∫

D

(
e([vm]) − δm − 1

2

|vm + h[vm]|2
r [vm]

)2

dx dt



13 Weak Solutions to Problems Involving Inviscid Fluids 387

� ID[v] + Λ(e)

2|G| lim inf
m→∞

( ∫

D

(
e([vm]) − δm − 1

2

|vm + h[vm]|2
r [vm]

)
dx dt

)2

= ID[v] + Λ(e)

2|G| (ID[v])2,

which is compatible with (13.19) only if ID[v] = 0. �
We have shown (13.15); whence Theorem 13.2.1.

13.5 Examples

There are many systems arising in mathematical fluid dynamics that can be written
in the abstract form (13.1)–(13.3). We review some of them already studied in the
available literature.

13.5.1 Euler-Fourier System

The Euler-Fourier system describes the time evolutions of the mass density ρ =
ρ(t, x), the velocity u = u(t, x), and the (absolute) temperature ϑ = ϑ(t, x):

∂tρ + divx (ρu) = 0, (13.20)

∂t (ρu) + divx (ρu ⊗ u) + ∇x (ρϑ) = 0, (13.21)

3

2

(
∂t (ρϑ) + divx (ρϑu)

)
− Δϑ = −ρϑdivxu. (13.22)

Following [8] we first write the momentum ρu as its Helmholtz decomposition

ρu = v + ∇xΦ, divxv = 0.

Accordingly, we may fix the density ρ and the acoustic potential Φ so that

∂tρ + ΔΦ = 0 holds,

meaning equation (13.20) is satisfies as divxv = 0.
With ρ, Φ given we may determine the temperature field ϑ = ϑ[v] as the (unique

solution) of (13.22), specifically

3

2

(
ρ∂tϑ + (v + ∇xΦ) · ∇xϑ

)
− Δϑ = −ρϑdivx

(
1

ρ
(v + ∇xΦ)

)
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endowed with appropriate initial data.
Finally, we rewrite (13.21) in the form

∂tv + divx

(
(v + ∇xΦ) ⊗ (v + ∇xΦ)

ρ

)
+ ∇x (∂t∇xΦ + ρϑ[v]) = 0. (13.23)

Fixing the “energy” so that

1

2

|v + ∇xΦ|2
r

= e[v] ≡ Z − N

2
(∂t∇xΦ − ρϑ[v]), (13.24)

where Z = Z(t) is a suitable spatially homogeneous function, we reduce (13.23) to

∂tv + divx

(
(v + ∇xΦ) � (v + ∇xΦ)

ρ

)
= 0, divxv = 0, (13.25)

which is an equation in the form (13.1).
With certain effort, it is possible to show that the hypotheses of Theorem 13.2.1 are

satisfied for Q = (0, T ) × Ω , and we obtain the following result, see [8, Theorem
3.1]:

Theorem 13.5.1 Let T > 0 be given, along with the initial data

⎧
⎨

⎩

ρ(0, ·) = ρ0 ∈ C3(Ω), ρ0 > 0, ϑ(0, ·) = ϑ0 ∈ C2(Ω), ϑ0 > 0,

u(0, ·) = u0 ∈ C3(Ω; RN )

⎫
⎬

⎭
, (13.26)

Ω = ([−1; 1]{−1;1}
)
N , N = 2, 3.

Then the Euler-Fourier system (13.20)–(13.22) admits infinitely many weak solu-
tions in (0, T ) × Ω emanating from the same initial data (13.26).

As already pointed out, the solutions obtained in Theorem 13.5.1 may be non-
physical in the sense they violate the principle of energy conservation. However, this
drawback can be removed at least for certain initial data. We will discuss this issue
in Sect. 13.6.1.

13.5.2 Quantum Fluids

The Euler-Korteweg-Poisson system describes the time evolution of the density ρ =
ρ(t, x) and the momentum J = J(t, x) of an inviscid fluid:

∂tρ + divxJ = 0, (13.27)
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∂tJ + divx

(
J × J

ρ

)
+ ∇x p(ρ) = −αJ + ρ∇x

(
K (ρ)Δxρ + 1

2
K ′(ρ)|∇xρ|2

)
+ ρ∇x V,

(13.28)
Δx V = ρ − ρ, (13.29)

where K : (0,∞) → (0,∞) is a given function, see Audiard [3], Benzoni-Gavage
et al. [4, 5]. The choice K = K > 0 yields the standard equations of an inviscid
capillary fluid (see Bresch et al. [6], Kotchote [16, 17]), while K (ρ) = �

4ρ
gives rise

to the quantum fluid system (see for instance Antonelli and Marcati [1, 2], Jüngel
[15, Chapter 14] and the references therein).

For
χ(ρ) = ρK (ρ),

it can be shown that system (13.27)–(13.29) can be recast in the form

∂tv + divx

(
(v + h) ⊗ (v + h)

r
+ H

)
+ ∇xΠ = 0, (13.30)

with
r = etρ, h = et∇x M,

H(t, x) = 4et
(
χ(ρ)∇x

√
ρ ⊗ ∇x

√
ρ − 1

3
χ(ρ)|∇x

√
ρ|2I − 1

4
∇x V ⊗ ∇x V

+ 1

12
|∇x V |2I

)
,

and

Π(t, x) = et
(
p(ρ) + ∂t M + M − χ(ρ)Δxρ − 1

2
χ ′(ρ)|∇xρ|2

+4

3
χ(ρ)|∇x

√
ρ|2 − ρV + 1

6
|∇x V |2

)
,

where ρ and M are suitably chosen functions, see [13].
Now, Theorem 13.2.1 can be applied to obtain the following result, see [13,

Theorem 2.1] and the proof therein.

Theorem 13.5.2 Let T > 0 be given. Suppose that p and χ satisfy

p ∈ C1[0,∞) ∩ C2(0,∞), p(0) = 0, χ ∈ C2[0,∞), χ > 0 in (0,∞).

Let the initial data be given such that

ρ(0, ·) = ρ0 = r2
0 , r0 ∈ C2(Ω), meas

{
x ∈ Ω

∣∣∣ r0(x) = 0
}

= 0, (13.31)
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J(0, ·) = J0 = ρ0U0, U0 ∈ C3(Ω; R3). (13.32)

Then the initial value problem (13.27)–(13.29), (13.31), (13.32) admits infinitely
many weak solutions in (0, T ) × Ω .

In the situation described in Theorem 13.5.2, the set Q must be taken

Q = (0, T ) × Ω \
{
(t, x)

∣
∣∣ ρ(t, x) = 0

}
.

13.5.3 Binary Mixtures of Compressible Fluids

We consider a physically motivated regularization of the Euler equations proposed
in the seminal paper by Lowengrub and Truskinovsky [18]. The model describes the
motion of a mixture of two immiscible compressible fluids in terms of the density
ρ = ρ(t, x), the velocity u = u(t, x), and the concentration difference c = c(t, x).
The fluid is described by means of the standard Euler system coupled with the Cahn-
Hilliard equation describing the evolution of c:

∂tρ + divx (ρu) = 0, (13.33)

∂t (ρu) + divx (ρu ⊗ u) + ∇x p0(ρ, c) = divx

(
ρ∇xc ⊗ ∇xc − ρ

2
|∇xc|2I

)
,

(13.34)

∂t (ρc) + divx (ρcu) = Δ

(
μ0(ρ, c) − 1

ρ
divx (ρ∇xc)

)
, (13.35)

where

p0(ρ, c) = ρ2 ∂ f0(ρ, c)

∂ρ
, μ0(ρ, c) = ∂ f0(ρ, c)

∂c
(13.36)

for a given free energy function f0. The system is neither purely hyperbolic nor
parabolic as the dissipation mechanism acts in a very subtle way through the coupling
of the Euler and the Cahn-Hilliard systems.

The machinery of convex integration can be applied, first fixing ρ and Φ, similarly
to Sect. 13.5.1, to solve

∂tρ + ΔΦ = 0,

then taking c = c[v], divxv = 0 to be the unique solution of the equation

∂t (ρc) + divx (ρc(v + ∇xΦ)) = Δ

(
μ0(ρ, c) − 1

ρ
divx (ρ∇xc)

)
.
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Accordingly, we obtain

v(0, ·) = v0, divxv = 0, (13.37)

∂tv + divx

(
(v + ∇xΦ) � (v + ∇xΦ)

ρ
− ρ(∇xc[v] � ∇xc[v])

)
= 0, (13.38)

1

2

|v + ∇xΦ|2
ρ

= e[v] ≡ Z(t) − N

2

(
1

6
|∇xc[v]|2 + p0(ρ, c[v]) + ∂t∇xΦ

)
,

(13.39)
where Z is a spatially homogeneous function.

Theorem 13.2.1 yields the following result, see [14] for details:

Theorem 13.5.3 Let the potential f0 = f0(ρ, c) satisfy

f0(ρ, c) = H(c) + log(ρ)

(
α1

1 − c

2
+ α2

1 + c

2

)
,

H ∈ C2(R), |H ′′(c)| ≤ H for all c ∈ R1.

Then for any choice of initial conditions

ρ(0, ·) = ρ0 ∈ C3(Ω), inf
Ω

ρ0 > 0, u(0, ·) = u0 ∈ C3(Ω; R3),

c(0, ·) = c0 ∈ C2(Ω),

the problem (13.33–13.35) admits infinitely many weak solutions in (0, T ) × Ω .

13.6 Continuity at the Initial Time, Admissible Solutions

The major drawback of the construction delineated in the previous part of the paper
and the main reason why the weak solution obtained via convex integration can be
eliminated as physically unacceptable is the energy jump at the initial time discussed
in Sect. 13.2.3. On the other hand, however, once a subsolution v along with the
associated energy e[v] are obtained, it is possible to show the existence of another
subsolution defined on a possibly shorter time interval for which the initial energy is
attained. Such a subsolution can be then used in the process of convex integration to
produce weak solutions that are strongly continuous at the initial time and dissipate
energy.

We first state the result for the abstract system and then shortly comment on
possible applications. Modifying slightly the procedure used in the proof of Theorem
13.2.1 we can show the following assertion:
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Theorem 13.6.1 In addition to the hypotheses of Theorem 13.2.1, suppose that

∣∣∣
{
x ∈ Ω

∣∣∣(t, x) ∈ Q
}∣∣∣ = |Ω| for any 0 < t < T . (13.40)

Then there exists a set of times R ⊂ (0, T ) dense in (0, T ) such that for any
τ ∈ R there is v ∈ X0 with the following properties:

•
⎧
⎨

⎩

v ∈ Cb([(0, τ ) ∪ (τ, T ) × Ω] ∩ Q; RN ) ∩ Cweak([0, T ]; L2(Ω; RN )),

v(0, ·) = u0, v(T, ·) = uT

⎫
⎬

⎭
;

(13.41)
•

∂tv + divxF = 0, divxv = 0 in d′((0, T ) × Ω; RN ) (13.42)

for some F ∈ Cb([(0, τ ) ∪ (τ, T ) × Ω] ∩ Q; R3×3
sym,0);•

N

2
λmax

[
(v + h[v]) ⊗ (v + h[v])

r [v] − F + H[v]
]

< e[v] in [(0, τ ) × Ω] ∩ Q,

(13.43)
•

sup
(t,x)∈Q,t>τ+s

N

2
λmax

[
(v + h[v]) ⊗ (v + h[v])

r [v] − F + H[v]
]

− e[v] < 0

(13.44)
for any 0 < s < T − τ ,

•
1

2

∫

Ω

|v + h[v]|2
r [v] (τ, ·) dx =

∫

Ω

e[v](τ, ·) dx . (13.45)

Remark 13.6.1 Unlike the subsolutions considered in the proof of Theorem 13.2.1,
the function v satisfies (13.45) and is therefore strongly continuous at the point τ
attaining the desired energy e[v](τ, ·) in the integral sense. There is no energy jump
at the time t = τ ! Moreover, the set of such times is dense in (0, T ).

Remark 13.6.2 In view of hypothesis (13.40) we have

Cb(Q; RM) ⊂ Cloc(0, T ; Lq(Ω; RM)) for any 1 ≤ q < ∞. (13.46)

This observation justifies (13.45) and will be frequently used in the proof below.

Proof The function v will be constructed recursively as a limit

vk → v in Cweak([0, T ]; L2(Ω; RN )) for suitable vk ∈ X0. (13.47)
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We start by fixing the open interval (a0, b0) ⊂ (0, T ) in which the time τ is to be
localized. As the space X0 of subsolutions is non-empty, we take

v0 ∈ X0, along with the associated flux F0.

Next, we construct a sequence of functions vk , open intervals (ak, bk) ⊂ (0, T ),
times τk ∈ (ak, bk), and a decreasing sequence of positive numbers δk ↘ 0 such that:

•

∂tvk + divxFk = 0, divxvk = 0 in d′((0, T ) × Ω), v(0) = u0, v(T ) = uT ,
(13.48)

for a certain field Fk ∈ C(Q; RN×N
sym,0),

vk − vk−1 ∈ C∞
c (Q; RN ), supp[vk − vk−1] ⊂ [(ak, bk) × Ω] ∩ Q,

Fk − Fk−1 ∈ C∞
c (Q; RN×N

sym,0), supp[Fk − Fk−1] ⊂ [(ak, bk) × Ω] ∩ Q,
(13.49)

where

0 < ak−1 < ak < bk < bk−1, εk = bk − ak → 0 for k → ∞;

•
sup

t∈[0,T ]
d(vk(t), vk−1(t)) <

1

2k
; (13.50)

•
sup

t∈(0,T )

∣∣∣∣

∫

Ω

1

r [v j ] (vk − vk−1) · v j dx

∣∣∣∣ <
1

2k
(13.51)

for all j = 0, . . . , k − 1;
• there exists τk ∈ (ak, bk) and a positive constant λ independent of k such that

1

2

∫

Ω

|vk + h[vk]|2
r [vk] (τk, ·) dx � 1

2

∫

Ω

|vk−1 + h[vk−1]|2
r [vk−1] (t, ·) dx + λ

1

ε2
k

α2
k

(13.52)

>
1

2

∫

Ω

|vk−1 + h[vk−1]|2
r [vk−1] (τk−1, ·) dx + 1

2
λ

1

ε2
k

α2
k for all t ∈ (ak, bk),

where we have set

αk =
∫ bk

ak

∫

Ω

(
e[vk−1] − 1

2

|vk−1 + h[vk−1]|2
r [vk−1]

)
dxdt > 0;
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•
N

2
λmax

[
(vk + h[vk ]) ⊗ (vk + h[vk ])

r [vk ] − Fk + H[vk ]
]

< e[vk ] in [(0, ak ] × Ω] ∩ Q,

(13.53)
N

2
λmax

[
(vk + h[vk]) ⊗ (vk + h[vk])

r [vk] − Fk + H[vk]
]

< e[vk] − δk

(
1 + 1

2k

)

(13.54)
in [(ak, bk) × Ω] ∩ Q,

N

2
λmax

[
(vk + h[vk]) ⊗ (vk + h[vk])

r [vk] − Fk + H[vk]
]

< e[vk] − δ j−1

(
1 + 1

2k

)

(13.55)
in [[b j , b j−1) × Ω] ∩ Q, j = 0, 1, . . . , k, b−1 ≡ T .

Step 1
It follows from the properties of X0 that v0 satisfies (13.48), along with the bounds

(13.53)–(13.55) for a certain
δ0 = δ−1 > 0.

Step 2
Suppose we have already constructed the functions v j , along with intervals

(a j , b j ), the times τ j , and the constants δ j , for j = 0, 1, . . . k − 1 enjoying the prop-
erties (13.48)–(13.55). Our goal is to find vk , (ak, bk), τk , and δk .

First, we fix the interval (ak, bk). To this end, compute

αk =
∫ bk

ak

∫

Ω

(
e[vk−1] − 1

2

|vk−1 + h[vk−1]|2
r [vk−1]

)
dxdt.

As a consequence of (13.46), the integrand is a continuous function of time contin-
uous function of time; whence

αk

εk
= 1

εk

∫ bk

ak

∫

Ω

(
e[vk−1] − 1

2

|vk−1 + h[vk−1]|2
r [vk−1]

)
dxdt

→
∫

Ω

(
e[vk−1] − 1

2

|vk−1 + h[vk−1]|2
r [vk−1]

)
(τk−1) dx as εk = bk − ak → 0.

Consequently, keeping in mind that αk > 0 and repeating the same continuity argu-
ment, we may choose ak−1 < ak < bk < bk−1 and εk so small that



13 Weak Solutions to Problems Involving Inviscid Fluids 395

1

εk

∫ bk

ak

∫

Ω

1

2

|vk−1 + h[vk−1]|2
r [vk−1] dxdt + Λ(e)

α2
k

ε2
k

(13.56)

�
∫

Ω

1

2

|vk−1 + h[vk−1]|2
r [vk−1] (t, ·) dx + Λ(e)

α2
k

2ε2
k

�
∫

Ω

1

2

|vk−1 + h[vk−1]|2
r [vk−1] (τk−1, ·) dx + Λ(e)

α2
k

4ε2
k

for all t ∈ (ak, bk),

where Λ(e) is the universal constant introduced in Lemma 13.4.1.
At this stage, we apply Lemma 13.4.1 for

U = [(ak, bk) × Ω] ∩ Q, h̃ = vk−1 + h[vk−1], r̃ = r [vk−1], H̃ = Fk−1 − H[vk−1],

and

ẽ = e[vk−1] − δk

(
1 + 1

2k−1

)
,

where δk > 0 is chosen small enough so that (13.16) may hold.
Now we claim that it is possible to take

vk = vk−1 + wn, Fk = Fk−1 + Gn, n large enough, (13.57)

where wn , Gn are the quantities constructed in Lemma 13.4.1. Obviously, the func-
tions vk satisfy (13.48)–(13.51) provided n is large enough. Indeed we observe that
n can be chosen so large for (13.51) to be satisfied. To see this we realize that, by
virtue of (13.46), the image

∪t∈[ak ,bk ]
v j

r [v j ] (t, ·) is compact in L2(Ω; RN ), j = 0, . . . , k − 1.

Next, we use continuity of the operators h, r specified in (13.46) to compute

∫ bk

ak

∫

Ω

1

2

|vk + h[vk]|2
r [vk] dx dt =

∫ bk

ak

∫

Ω

1

2

|vk−1 + h[vk−1 + wn]|2
r [vk−1 + wn] dx dt

+
∫ bk

ak

∫

Ω

1

2

|wn|2
r [vk−1 + wn] dx dt + 2

∫ bk

ak

∫

Ω

wn · (vk−1 + h[vk−1 + wn])
r [vk−1 + wn] dx dt

�
∫ bk

ak

∫

Ω

1

2

|vk−1 + h[vk−1]|2
r [vk−1] dx dt + 1

2

∫ bk

ak

∫

Ω

1

2

|wn|2
r [vk−1] dx dt + en

provided n is large enough, where en → 0 as n → ∞ for any fixed k. Consequently,
(13.18) gives rise to
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∫ bk

ak

∫

Ω

1

2

|vk + h[vk]|2
r [vk] dx dt + en �

∫ bk

ak

∫

Ω

1

2

|vk−1 + h[vk−1]|2
r [vk−1] dx dt (13.58)

+Λ(e)

4

∫ bk

ak

∫

Ω

(
e[vk−1] − 1

2

|vk−1 + h[vk−1]|2
r [vk−1]

)
2 dx dt

�
∫ bk

ak

∫

Ω

1

2

|vk−1 + h[vk−1]|2
r [vk−1] dx dt + Λ(e)

4

1

|Ω|
α2
k

εk
,

where the last line follows from Jensen’s inequality. Thus, using (13.56), (13.58),
we may find n large enough and τk ∈ (ak, bk) such that (13.52) holds with some λ
that can be determined in terms of Λ(e) and |Ω|.

Finally, our goal is to check that vk , Fk satisfy (13.53)–(13.55). First we claim
that (13.53) is a direct consequence of the causality property (13.6). Next, Lemma
13.4.1, specifically (13.17), yields

N

2
λmax

[
(vk + h[vk−1]) ⊗ (vk + h[vk−1])

r [vk−1] − Fk + H[vk−1]
]

< e[vk−1] − δk

(
1 + 1

2k−1

)

in [(ak, bk) × Ω] ∩ Q; whence (13.54) follows from uniform continuity of h, r , H
and e provided n is large enough. To see (13.55), we have to realize that vk = vk−1

and Fk = Fk−1 in [(bk, T ) × Ω] ∩ Q, and, similarly to the above, relation (13.55)
follows from continuity of h, r , H and e as son as n is chosen large enough.

Step 3
Our ultimate goal is to observe that v, determined by the limit (13.47), enjoys

the desired properties claimed in Theorem 13.6.1. We set τ = limk→∞ τk . Since the
functions vk , Fk coincide with vk−1, Fk−1 on the time intervals (0, ak), (bk, T ), the
properties (13.41)–(13.44) follow by taking the limit in (13.48), (13.53)–(13.55) for
k → ∞.

To see (13.45), we first observe that, by virtue of (13.52),

1

2

∫

Ω

|vk + h[vk]|2
r [vk] (τk) dx ↗ Y as k → ∞,

and the convergence is uniform on the time intervals (ak, bk); whence

αk

εk
= 1

εk

∫ bk

ak

∫

Ω

(
e[vk−1] − 1

2

|vk−1 + h[vk−1]|2
r [vk−1]

)
dxdt → 0,

which in turn implies
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1

2

∫

Ω

|vk + h[vk]|2
r [vk] (t) dx →

∫

Ω

e[v](τ ) dx as k → ∞ uniformly for t ∈ (ak, bk).

(13.59)
We show that (13.59) yields

wk(τ, ·) → w(τ, ·)

which completes the proof of Theorem 13.6.1. Indeed we may write

∫

Ω

|vm − vn|2
r [vn] dx =

∫

Ω

|vm |2
r [vn] dx −

∫

Ω

|vn|2
r [vn] dx − 2

∫

Ω

(vm − vn) · vn
r [vn] dx, m > n,

where the difference of the first two integrals vanishes as n → ∞ uniformly for
t ∈ (0, T ); whereas

∣∣∣∣

∫

Ω

(vm − vn) · vn
r [vn] dx

∣∣∣∣ =
∣∣∣∣
∣

m−1∑

k=n

∫

Ω

(vk+1 − vk) · vn
r [vn] dx

∣∣∣∣
∣
≤ 1

2n−1
uniformly in (0, T )

in view of (13.51). �

Now, we can define a set of subsolutions on the time interval (τ, T ), with

u0 = v(τ ), Q = Qτ = Q ∩ [(τ, T ) × Ω],

and the operators hτ , rτ , eτ , Hτ defined as

hτ [w] = h[w̃]|(τ,T ), where w̃ =
⎧
⎨

⎩

v in [0, τ ]

w ∈ [τ, T ]
,

where v is the function constructed in Theorem 13.6.1. In accordance with (13.45),
we have v|[τ,T ] is a subsolution, and

1

2

∫

Ω

|u0 + hτ [u0]|2
rτ [u0] dx =

∫

Ω

eτ [u0] dx .

Finally we note that in this case the weak solutions u constructed via Theorem
13.2.1 will satisfy

1

2

|u + h[u]|2
r [u] (t, x) = e[u](t, x)

for a.a. (t, x) ∈ (0, T ) × Ω and including the initial time t = 0.
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13.6.1 Example, Dissipative Solutions to the Euler-Fourier
System

Revisiting the Euler-Fourier system introduced in Sect. 13.5.1, we say that ρ, ϑ , u is
a dissipative solution of (13.20)–(13.22), if, in addition, the energy balance

E(t) ≡
∫

Ω

(
1

2
ρ|u|2 + 3

2
ρϑ

)
(t, ·) dx =

∫

Ω

(
1

2
ρ0|u0|2 + 3

2
ρ0ϑ0

)
dx (13.60)

holds for a.a. t ∈ (0, T ).
As a possible application of Theorem 13.6.1, one can show the following result,

see [8, Theorem 4.2]:

Theorem 13.6.2 Under the hypotheses of Theorem 13.5.1, let T > 0 and the data

ρ0, ϑ0 ∈ C2(Ω), ρ0, ϑ0 > 0

be given.
Then there exists u0 ∈ L∞(Ω; RN ) such that the Euler-Fourier system (13.20)–

(13.22), with the initial conditions (13.26), admits infinitely many dissipative solu-
tions in (0, T ) × Ω .
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Chapter 14
Enstrophy Variations in the Incompressible
2D Euler Flows and α Point Vortex System

Takeshi Gotoda and Takashi Sakajo

Abstract The dissipation of the enstrophy, which is the L2 norm of the vorticity,
in the zero-viscous limit gives rise to the emergence of inertial range in the ensem-
ble average of the energy density spectrum in 2D fluid turbulence. However, it is
mathematically known that not only smooth solutions but also weak solutions in
L p(R2), p > 2 to the 2D Euler equations never dissipates the enstrophy [7]. This
indicates that weak solutions for initial vorticity distributions belonging to weaker
function spaces such as the space of Radon measure on R

2 should be constructed
to obtain such singular solutions with the enstrophy dissipation, but no existence
result in this function space has not yet been established. We here consider the 2D
Euler-α equations, which is a dispersive regularization of the Euler equations with a
scaling parameter α, for the initial vorticity distributions whose support consists of
a set of N points, called α-point vortices. We shall construct singular weak solutions
to the Euler equations from those of the evolution equations of the α point vortices
by taking their α → 0 limit. We then numerically demonstrate that the self-similar
collapse of the α point vortices gives rise to the anomalous enstrophy dissipation
in the distributional sense and it is a robust mechanism of the enstrophy dissipation
observed for a wide range of initial configurations of α point vortices.

Keywords Hamiltonian dynamics · Point Vortex collapse · 2D turbulence · Euler-
alpha model · Onsager’s conjecture

14.1 Introduction

The isotropic turbulence is a model of fluid turbulence, in which the flow field is
assumed to be statistically steady, homogeneous and isotropic. Kolmogorov success-
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fully revealed some fundamental properties of 3D fluid turbulence with this isotropic
model [13, 14]. Numerical investigation of the incompressible Navier-Stokes equa-
tions with high Reynolds number in a 3D periodic box has also supported the statis-
tical properties. See, e.g., [11]. In spite of these great achievements, it is still far from
a complete theoretical understanding how a set of solutions of the nonlinear fluid
equations such as the Navier-Stokes equations gives rise to their statistical properties
of the isotropic turbulence.

One of the characteristic properties of the isotropic turbulence is the emergence
of a region of wavenumbers k, called the inertial range, in the ensemble average of
the energy density spectrum 〈E(k)〉 with k = |k|, where the energy dissipates self-
similarly at a constant rate as 〈E(k)〉 ∼ k− 5

3 known as the energy cascade. In the
Kolmogorov’s theory, it is derived under the assumption that the energy dissipation
rate of the flow field converges to a strictly positive constant in the zero-viscous limit.
However, naively speaking, this assumption contradicts the fact that smooth solu-
tions to the incompressible Euler equations describing non-viscous flow evolutions
conserve the energy. To this problem, Onsager [26] has conjectured that non-smooth
solutions to the Euler equations with Hölder continuity of exponent greater than 1/3
can conserve the energy, which is known as Onsager’s conjecture. This assertion has
been justified mathematically by Constantin et al. [3] and Duchon and Robert [6]
under the assumption that weak solutions to the 3D incompressible Euler equations
exist. Onsager’s conjecture, in other words, also claims that the Euler flows with
less than 1/3-Hölder continuity may dissipate the energy. Regarding the existence
of weak solutions with a Hölder continuity, a great progress has been made recently
by Buckmaster et al. [2], in which weak solutions to the 3D Euler equation exist in
L1([0, T ); C

1
3 (T3))with any prescribed energy profile. This supports the occurrence

of the energy dissipation in the weak Euler flows. In spite of the recent developments,
it is uncertain, from a viewpoint of fluid dynamics, what kind of physical mechanism
of those singular Euler flows triggers the energy dissipation, which is our concern
here. However, it is difficult to consider this problem in 3D flows, since the global
well-posedness of the 3D Navier-Stokes equations as well as the 3D Euler equations
has not yet been established and we are thus unable to define the evolution of solu-
tions as a dynamical system. So, for simplicity, we reformulate the same problem
for 2D turbulent flows in this paper.

In 2D fluid turbulence, it is pointed out that there also appears an inertial range
in the energy density spectra caused by the dissipation of not the energy but the
enstrophy, which is the L2 norm of the vorticity, for sufficiently small viscosity
[1, 15, 18]. Since the enstrophy is conserved by smooth solutions to the 2D Euler
equations, the 2D turbulence is characterized by non-smooth singular weak solutions
to the 2D Euler equations that dissipate the enstrophy, which is a 2D analogue of the
energy in Onsager’s conjecture for the 3D isotropic turbulence. Hence, we expect
that the theoretical description of the singular enstrophy dissipation in terms of 2D
fluid dynamics shall shed some lights upon the theory of 2D fluid turbulence.

The 2DEuler equations have beenwell-investigatedmathematically. See the book
by Marchioro and Pulvirenti [22] for a list of references. The global existence of the
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unique solution has been established for the initial vorticity data in L1(R2) ∩ L∞(R2)
[29] and in L p(R2) with 1 < p < ∞ [5, 8]. In regards to the enstrophy dissipation,
Eyink [7] has shown that weak solutions of the 2D Euler equations in L p(R2), p > 2
can not dissipate the enstrophy in a weak sense. This indicates that it is necessary
to deal with the initial vorticity data in a weaker space, the space of Radon measure
M (R2) onR2 for instance, to obtain such weak solutions with the singular enstrophy
dissipation. The global existence of (non-unique)weak solutions has been established
for the initial vorticity ω0 ∈ M (R2) and its induced velocity v0 ∈ L2

loc(R
2) [4, 21],

but no existence has not yet been proven only for ω0 ∈ M (R2).
In the meantime, when the initial vorticity distribution consists of a finite number

of δ measures belonging to M (R2), one can formally reduce the Euler equations
to the system of ordinary differential equations describing the evolution of the δ-
singularities, called the point vortex (PV) system. The PV system has been used as
inviscid models of 2D flows [23], but solutions of the PV system do not define a
weak solutions to the 2D Euler equations, since the velocity field induced by point
vortices does not belong to L2

loc(R
2). Accordingly, it is impossible to investigate the

evolution of weak solutions to the 2D Euler equations in terms of the evolution of
point vortices.

In order to construct such a singular weak solution to the 2D Euler equations in
M (R2), we consider weak solutions to a regularized the Euler equations, called the
2D Euler-α equations; For incompressible velocity field uα(x, t) in space x ∈ R

2

and time t ∈ R, they are given by

(1 − α2Δ)∂tuα + uα · ∇(1 − α2Δ)uα − α2(∇uα)T · Δuα = −∇ p, (14.1)

∇ · uα = 0, uα(x, 0) = uα
0 (x), (14.2)

where p(x, t) denotes the pressure and α is a regularization parameter [9, 10]. Note
that (14.1) and (14.2) are equivalent to the Euler equations when α = 0. The momen-
tum equation (14.1) is a dispersive regularization, since it is derived by the least action
principle of the regularized energy,

E =
∫ T

0

∫

R2

|u(x, t)|2 + α2 |∇u(x, t)|2 dxdt.

Physically, the momentum equation (14.1) is obtained by taking an average of the
spatial flow information below the small α. It has also been numerically confirmed
in [20] that the Navier-Stokes-α equations acquire the inertial ranges in the energy
density spectrum corresponding to the backward energy cascade and the forward
enstrophy cascade for small viscosity and small scale α, which is a common property
with 2D fluid turbulence. Hence, the Euler-α equations are regarded as amodel of 2D
fluid turbulence in the nonviscous limit. Mathematically, Linshiz and Titi [19] have
shown that there exists a unique global solution of (14.1) and (14.2) for the initial
velocity field in the Sobolev space H m(R2),m > 2 and that the solution converges to
that of the Euler equations in L∞([0,∞); H m). Moreover, the 2D Euler-α equations
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still have the unique global weak solution for the initial vorticity distributions in
M (R2) [25]. Hence, the initial pointwise discrete vorticity distribution gives rise
to a weak solution to the Euler-α equations. This is a significant difference from
the relation between the Euler equations and the PV system. Consequently, we are
able to describe a singular weak solution to the Euler equations that dissipates the
enstrophy as α → 0 in terms of the evolution of α point vortices.

With the scalar α-vorticity, q = (1 − α2Δ)∇⊥uα , the 2D Euler-α equations are
reduced to the following transport equation for q:

∂t q(x, t) + (uα(x, t) · ∇)q(x, t) = 0, uα(x, t) =
∫

R2
K α(x, y)q( y, t)d y,(14.3)

q(x, 0) = q0(x) = (1 − α2Δ)∇⊥u0(x), (14.4)

where

K α = ∇⊥Gα, −ΔGα(x − y) = 1

2πα2
K0

( |x − y|
α

)
.

Here K0(x) denotes the modified Bessel function of the second kind [30]. We define
the Lagrangian flow map induced by uα(x, t) as follows.

d

dt
ηα(x, t) = uα(ηα(x, t), t), ηα(x, 0) = x. (14.5)

We note that if q0 ∈ L1(R2) ∩ L∞(R2), then there exists a unique global weak solu-
tion q ∈ C(R; L1(R2) ∩ L∞(R2)) and a unique flow map ηα ∈ C1(R;G), where G
denotes the group of all homeomorphisms on R

2, which is easily shown with the
same argument for the 2D Euler equations [22, 29].

Suppose that the initial vorticity field is represented by α-point vortices:

q0(x) =
N∑

m=1

Γmδ(x − x0m), (14.6)

where x0m , m = 1, . . . , N are the support of point singularities and Γm denotes the
strength of theα-point vortices. Substituting (14.6) into (14.5) and settingηα(x0n, t) =
xα

n (t), we obtain the evolution of the α-point vortices.

d

dt
xα

m = 1

2π

N∑

n �=m

Γn
(xα

m − xα
n )⊥

(lαmn)
2

BK

(
lαmn

α

)
, xα

m(0) = x0m, m = 1, . . . , N ,

(14.7)
where lαmn(t) = |xα

m(t) − xα
n (t)| and BK (x) = 1 − x K1(x). Here, K1(x) denotes the

modified Bessel function of the second kind [30]. We call the Eq. (14.7) the α-point
vortex (αPV) system. Let us note that the Eq. (14.7) is equivalent to the PV system
when we set α = 0:
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d

dt
xm = 1

2π

N∑

n �=m

Γn
(xm − xn)

⊥

(lmn)2
, xm(0) = x0m, m = 1, . . . , N , (14.8)

where lmn(t) = |xm(t) − xn(t)|.
In this paper, we investigate singular weak solutions to the 2D Euler equations

in terms of the α → 0 limit solutions of the αPV system. In Sect. 14.2, we consider
the relation between solutions to the 2D Euler-α equations and those of the αPV
system and show that the αPV system gives rise to a weak solution of the 2D Euler-α
equations. In Sect. 14.3, we consider the evolution of three or four α point vortices for
initial configurations leading to a self-similar collapse in the PV system. In particular,
we pay close attention to how the α → 0 limit evolution of the αPV system and
numerically demonstrate that this gives rise to an anomalous enstrophy dissipation
in aweak sense. Section14.4 gives a summary and discussion for the future direction.

14.2 The 2D Euler-α Equations and the αPV System

We consider the vortex model of the Euler-α Eqs. (14.1) and (14.2), where the initial
distribution of the α-vorticity is concentrated in a set of small domains with constant
vorticity containing xm ∈ R

2 for m = 1, . . . , N . When the size of these domains
tends to zero with keeping the circulations unchanged, one can expect that the evolu-
tion of these domains is approximated by the αPV system (14.7). The vortex model
for the Euler equations was originally introduced by Marchioro and Pulvirenti [22]
to compare the Euler equations and the PV system (14.8). We follow the same argu-
ment as theirs to figure out the similarity and the difference between the PV system
and the αPV system.

The first step is considering the evolution of an isolated single small vorticity
domain in the presence of a smooth divergence-free external force.

Theorem 14.2.1 Let Fα be a divergence-free and uniformly bounded
time-dependent vector field satisfying the global Lipschitz condition

|Fα(x, t) − Fα( y, t)| ≤ L|x − y|

for some L > 0 independent of α. We consider the weak form of the α-vorticity
Eqs. (14.3) and (14.4) as follows.

⎧
⎪⎨

⎪⎩

d

dt

∫

R2
qε(x, t) f (x)dx =

∫

R2
qε(x, t)(uα

ε (x, t) + Fα(x, t)) · ∇ f (x)dx,

uα
ε (x, t) =

∫

R2
K α(x, y)qε( y, t)d y,
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with the initial vorticity profile qε(x, 0) = ε−2χΛε
(x), where χΛε

denotes the char-
acteristic function for a family of open sets {Λε}ε>0 satisfying

meas. Λε = ε2, Λε ⊂ B(x∗, βε).

Here, B(x, r) denotes a ball centered at x with radius r and β > 0 is a constant. Then,
the solution of the Euler-α equations is given by qε(x, t) = ε−2χΛε(t)(x). Moreover,
for an arbitrary fixed T > 0, we have the following properties.

(i)
lim
ε→0

Gε(t) = G(t),

where Gε(t) represents the center of vorticity,

Gε(t) =
∫

R2
xqε(x, t)dx,

and G(t) is the solution of the initial value problem

d

dt
G(t) = Fα(G(t), t), G(0) = x∗.

(ii) For any f ∈ C∞
0 (R2), we have

lim
ε→0

∫

R2
qε(x, t) f (x)dx = f (G(t)), ∀t ∈ [0, T ].

(iii) For all d > 0, we choose ε0 = ε0(d, T, ‖Fα‖L∞) > 0 such that, if ε < ε0, then

Λε(t) ⊂ B(Gε(t), d), ∀t ∈ [0, T ].

Proof Sinceqε(·, 0) belongs to L1(R2) ∩ L∞(R2), there exist a uniqueweak solution
qε(·, t) ∈ L1(R2) ∩ L∞(R2) and the flow map ηα(x, t) globally in time as we note
in the introduction. Moreover, it is easy to see that qε(x, t) = ε−2χΛε(t)(x), where
Λε(t) ≡ {ηα(x, t)|x ∈ Λε} = {x|ηα(x,−t) ∈ Λε}, since qε(x, t) = qε(η

α(x,−t),
0) = ε−2χΛε

(ηα(x,−t)) = ε−2χΛε(t)(x).
First, we prove that the moment of inertia around Gε(t),

Iε(t) =
∫

R2
qε(x, t)|x − Gε(t)|2dx,

is vanishing in the limit of ε → 0. By taking the time derivative of Gε(t), we have

d

dt
Gε(t) =

∫

R2
qε(x, t)(uα(x, t) + Fα(x, t))dx =

∫

R2
qε(x, t)Fα(x, t)dx.

(14.9)
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Similarly, we have

d

dt
Iε(t) = 2

∫

R2
qε(x, t)(uα(x, t) + Fα(x, t)) · (x − Gε(t))dx

+2
d

dt
Gε(t) ·

∫

R2
qε(x, t)(x − Gε(t))dx

= 2
∫

R2
qε(x, t)Fα(x, t) · (x − Gε(t))dx

= 2
∫

R2
qε(x, t)(Fα(x, t) − Fα(Gε(t), t)) · (x − Gε(t))dx,

from which ∣∣∣
∣

d

dt
Iε(t)

∣∣∣
∣ ≤ 2L Iε(t).

Hence, Iε(t) ≤ Iε(0) exp(2LT ) and we get the convergence of Iε(t), since

Iε(0) =
∫

R2

1

ε2
χΛε

|x − x∗|2dx ≤
∫

R2

1

ε2
χΛε

(βε)2dx = (βε)2 → 0,

as ε → 0. Here, we recall that |x − x∗| ≤ βε, if x ∈ χΛε
.

Next, we prove (i) and (ii) which are straightforward. We have

|G(t) − Gε(t)| ≤ ∣∣x∗ − Gε(0)
∣∣ +

∫ t

0
|Fα(G(s), s)) − Fα(Gε(s), s)| ds

+
∫ t

0

∣∣∣∣F
α(Gε(s), s) −

∫

R2
qε(x, s)Fα(x, s)dx

∣∣∣∣ ds

≤ ∣∣x∗ − Gε(0)
∣∣ + L

∫ t

0
|G(s) − Gε(s)| ds + T L (Iε(t))

1/2

≤ (∣∣x∗ − Gε(0)
∣∣ + T L (Iε(0))

1/2 exp(LT )
)
exp(Lt).

By Gronwall’s inequality, we finish the proof of (i). Regarding (ii), we use the mean
value theorem.

∣∣∣
∣

∫

R2
qε(x, t) f (x)dx − f (Gε(t))

∣∣∣
∣ =

∫

R2
|qε(x, t)| | f (x) − f (Gε(s))| dx ≤ ‖∇ f ‖L∞ (Iε(t))

1
2 .

Therefore, we have

∣∣∣∣

∫

R2
qε(x, t) f (x)dx − f (G(t))

∣∣∣∣ ≤ ‖∇ f ‖L∞ (Iε(t))
1/2 + ‖∇ f ‖L∞ |G(t) − Gε(t)| ,

and (ii) follows by using the above results.
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The last step is proving the localization property (iii). To control the vorticity
flux, we introduce the following function WR ∈ C∞

0 (R2), depending only on |x|,
such that:

WR(x) =
{
1 , |x| ≤ R,
0 , |x| > 2R,

such that, for some C > 0,

|∇WR(x)| ≤ C

R
, |∇WR(x) − ∇WR( y)| ≤ C

R2
|x − y|.

Define the quantity μR(t) by

μR(t) = 1 − ε−2
∫

Λε

WR(Gε(t) − ηα
ε (x, t))dx

= 1 −
∫

R2
qε(x, 0)WR(Gε(t) − ηα

ε (x, t))dx

= 1 −
∫

R2
qε(x, t)WR(Gε(t) − x)dx,

where ηα
ε (x, t) is the solution of the initial value problem

d

dt
ηα

ε (x, t) = u(ηα
ε (x, t), t) + Fα(ηα

ε (x, t), t), ηα
ε (x, 0) = x ∈ Λε.

Moreover, setting mt (R) = ε−2|Λε(t) ∩ B(Gε(t), R)C |, we have

mt (R) ≤ 1

R2
Iε(t) ≤ exp(2LT )

R2
Iε(0), mt (R) ≤ μR/2(t).

We estimate the time derivative

d

dt
μR(t) = ε−4

∫

Λε(t)
(∇WR)(Gε(t) − x) ·

∫

Λε(t)
K α(x − y)d ydx

+ε−4
∫

Λε(t)
(∇WR)(Gε(t) − x) ·

∫

Λε(t)
(Fα(x, t) − Fα( y, t))d ydx

= J1 + J2.

To estimate the first term in the right-hand side, we use the estimate of the kernel K α ,

|J1| ≤ ε−4 C

R

∫

Λε(t)∩{R<|Gε(t)−x|<2R}

∫

Λε(t)
|K α(x − y)|d ydx ≤ C

αR
mt (R).
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In the second term, we use the properties of Fα ,

|J2| ≤ ε−4 C

R

∫

Λε(t)∩{R<|Gε(t)−x|<2R}

∫

Λε(t)∩B(Gε(t),R)C

|Fα(x, t) − Fα( y, t)|d ydx

+ε−4 C

R

∫

Λε(t)∩{R<|Gε(t)−x|<2R}

∫

Λε(t)∩B(Gε(t),R)

|Fα(x, t) − Fα( y, t)|d ydx

≤ C

R
‖Fα‖L∞mt (R)2 + C Lmt (R).

Therefore, we achieve the following estimate,

d

dt
μR(t) ≤ C

αR
mt (R) + C

R
‖Fα‖L∞mt (R)2 + C Lmt (R)

≤ C LμR/2(t) + CF exp(2LT )

R5
Iε(0)

(
exp(2LT )Iε(0) + R2

α

)

= C LμR/2(t) + A(R, ε).

Here, we choose R > 0 and k ∈ N sufficiently small but large enough that 2−k R >
βε, then, by iterating the inequality, we can obtain

μR(t) ≤ T A(R, ε) + C L
∫ t

0
μR/2(τ )dτ ≤ T

k−1∑

s=0

(T L)s A(R2−s, ε) + (Lt)k

k! .

Let R = ε1/n , k = [−D log ε] and ε, D be small enough, then

μR(t) ≤ CF,T,L

(
ε2−2/n + 1

α

)
ε2−3/n−DCT,L = c0ε

l .

The above estimates conclude the proof. Consider the disk B1 = B(Gε(t), ε1/n)
and B2 = B(Gε(t), ε1/m) for m > n. Let n = x−Gε(t)

|x−Gε(t)| be the normal vector. We
now evaluate the velocity field u1 generated by vorticity inside of the disk B1 and u2

generated by vorticity outside of the disk B1.

|u1(x) · n| =
∣
∣∣∣n · ε−2

∫

B1∩Λε(t)
(K α(x − y) − K α(x − Gε(t))) d y

∣
∣∣∣

≤ ε−2
∫

B1∩Λε(t)
| y − Gε(t)|

∫ 1

0
|∇K α(x − y + τ( y − Gε(t)))| dτd y

≤ C
ε1/n

α2

(
− log

ε1/n

α
+ 1

)
.
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Moreover,

|u2(x)| =
∣∣∣∣
∣
ε−2

∫

BC
1 ∩Λε(t)

K α(x − y)d y

∣∣∣∣
∣
≤ C

c0
α

εl .

Therefore, the time derivative of the distance from Gε(t) to the particle ηα
ε (x, t) is

given by

d

dt

∣∣ηα
ε (x, t) − Gε(t)

∣∣2 ≤ 2
∣∣ηα

ε (x, t) − Gε(t)
∣∣ {|u1(η

α
ε (x, t))| + |u2(η

α
ε (x, t))|

+ ε−2
∫

Λε(t)

∣∣Fα(ηα
ε (x, t), t) − Fα( y, t)

∣∣ d y
}

≤ C
ε1/n

α2
(1 + ‖Fα‖L∞)

∣∣ηα
ε (x, t) − Gε(t)

∣∣

+2L
∣∣ηα

ε (x, t) − Gε(t)
∣∣2 .

On the other hand, if there is some x0 ∈ Λε such that ηα
ε (x0, t) ∈ B(Gε(t), d)C , then

we have

∣∣ηα
ε (x0, t) − Gε(t)

∣∣ ≤ |x0 − Gε(0)| exp
{

C
T ε1/n

dα2
(1 + ‖Fα‖L∞) + LT

}
.

This implies that Λε(t) must be contained in a disk B(Gε(t), d), for an arbitrary d,
provided that ε is sufficiently small. This fact contradicts the choice of x0. �

We now extend Theorem 14.2.1 to many vorticity distributions. Let {Λn
ε }ε>0 for

n = 1, . . . , N be a family of open sets satisfying the conditions

meas. Λn
ε = ε2, Λn

ε ⊂ B(x∗
n, βε)

and we consider the following initial distributions of vorticity

qε(x, 0) =
N∑

n=1

qn
0 (x),

where qn
0 (x) = ε−2χΛn

ε
(x). Suppose that, for any fixed T , we can choose ε(T ) suf-

ficiently small such that there is some positive constant d(T ) satisfying

min
0≤t≤T

min
n �=m

inf
xn∈Λn

ε (t),xm∈Λm
ε (t)

|xn − xm | > d(T ) > 0,

for ε < ε(T ). Then, in the same way as in the proof of Theorem 14.2.1, for each
x∗

n one can define Λn
ε (t), with which the unique solution to the Euler-α equations is

expressed by



14 Enstrophy Variations in the Incompressible 2D Euler Flows … 411

qε(x, t) =
N∑

n=1

qn
ε (x, t) =

N∑

n=1

ε−2χΛn
ε (t)(x),

and qn
ε (x, t) satisfies following equations:

d

dt

∫

R2
qn

ε (x, t) f (x)dx =
∫

R2
qn

ε (x, t)(un
ε (x, t) + Fα(x, t)) · ∇ f (x)dx,

un
ε (x, t) =

∫

R2
K α(x, y)qn

ε ( y, t)d y,

where Fα(x, t) represents the velocity field induced by the other vorticity distribu-
tions:

Fα(x, t) =
N∑

m �=n

∫

R2
K α(x, ηα(z, t))qm

0 (z)d z.

We just confirm that Fα satisfies the Lipschitz condition with the Lipschitz constant
independent of α. Let us set r = |x − y|. Then we have

∣
∣Fα(x, t) − Fα( y, t)

∣
∣ ≤

∑ ∫

|x−ηα(z)|≤2r

∣
∣K α(x, ηα(z)) − K α( y, ηα(z))

∣
∣
∣
∣qm
0 (z)

∣
∣ d z

+
∑ ∫

|x−ηα(z)|>2r

∣
∣K α(x, ηα(z)) − K α( y, ηα(z))

∣
∣
∣
∣qm
0 (z)

∣
∣ d z

≤
∑ ∫

|x−ηα(z)|≤3r

∣∣K (x, ηα(z))
∣∣ + 1

α
K1

( |x − ηα(z)|
α

) ∣∣qm
0 (z)

∣∣ d z

+C
∑ ∫

|x−ηα(z)|>2r

1

|x − ηα(z)|2 + 1

α2
K0

( |x − ηα(z)|
2α

)

+ 1

α|x − ηα(z)| K1

( | y − ηα(z)|
2α

) ∣
∣qm
0 (z)

∣
∣ d z

≤ C
r

d(T )2

∑
‖qm

0 ‖L1 .

Moreover, we have

‖Fα‖L∞ ≤ C

α

∑
‖qm

0 ‖L1 .

Therefore, we can apply Theorem 14.2.1 and Corollary 14.2.2 to qn
ε (x, t) and get

the same result as we had for the vortex model for the Euler equations.
The theorem is the same as that for the Euler equations shown by Marchioro

and Pulvirenti [22]. The idea of the proof is similar to theirs, while, in the Euler-α
equations, the proof becomes much simpler, since the kernel is regularized. On the
other hand, we can show that the orbit of any point in Λε converges to that of the
center of vorticity for the Euler-α equations. This fact does not hold true for the
vortex model for the Euler equation. See Remark 1 of Theorem 4.1 in [22].
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Corollary 14.2.2 Under the same conditions and notations with Theorem 14.2.1,
we have

lim
ε→0

sup
0≤t≤T

sup
x0∈Λε

∣∣ηα
ε (x0, t) − G(t)

∣∣ = 0.

Proof We have

|ηα
ε (x0, t) − G(t)| ≤ |x0 − x∗| +

∫ t

0
|uα(ηα

ε (x0, s))|ds

+
∫ t

0

∣
∣Fα(ηα

ε (x0, s), s) − Fα(G(s), s)
∣
∣ ds

≤ |x0 − x∗| + L
∫ t

0

∣
∣ηα

ε (x0, s) − G(s)
∣
∣ ds

+ε−2
∫ t

0

∫

Λε

|K α(ηα
ε (x0, s) − ηα

ε (z, s))|d zds

≤ |x0 − x∗| + L
∫ t

0

∣∣ηα
ε (x0, s) − G(s)

∣∣ ds

+C

α
ε−2

∫ t

0

∫

Λε

φ

( |ηα
ε (x0, s) − ηα

ε (z, s)|
α

)
d zds,

where φ is defined by

φ(x) =
{ |x|(1 − log |x|) , |x| < 1,

1 , |x| ≥ 1.

We use K α(r) ∼ r log r + O(r) as r → 0 and, by Theorem 2.1, |ηα
ε (x0) − ηα

ε (z)|
is small enough. To obtain explicit bounds, we set

ρ(t) = 1

α
sup
x∈Λε

|ηα
ε (x, t) − G(t)|,

then it follows that ρ satisfies the integral inequality:

ρ(t) ≤ ρ(0) + L
∫ t

0
ρ(s) + C

α2
φ (ρ(s)) ds ≤ ρ(0) + c0

∫ t

0
φ (ρ(s)) ds,

where c0 = L + C
α2 . By using Gronwall’s inequality, we obtain

ρ(t) ≤ ρ(0)exp(−c0t)e1−exp(−c0t).
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That is

sup
x∈Λε(t)

|x − G(t)| ≤ αe

(
βε

αe

)exp
(

L+ C
α2

)
t

. �

The vortexmodel where the vorticity is localized in small regions is approximated
by the evolution of the 2D Euler-α equations as well as the 2D Euler equations. On
the other hand, since the PV system is not a weak solution of the Euler equations,
we have a stronger result for the Euler-α equations.

Suppose now that the α-vorticity belongs toM (R2) at the initial moment. Then,
Oliver and Shkoller [25] have established the global well-posedness of the Euler-α
equations.

Theorem 14.2.3 (Oliver and Shkoller [25]) For initial data q0 ∈ M(R2), there
exists a unique global weak solution to (14.3), (14.4) and (14.5) with

ηα ∈ C1(R;G), uα ∈ C(R; C(R2,R2)), q ∈ C(R;M(R2)),

where G denotes the group of all homeomorphisms of R2 that preserves the Lebesgue
measure.

We further assume that the initial vorticity field is represented by discrete point
distributions as (14.6). Then, the evolution of the α-point vortices gives rise to a weak
solution of the Euler-α equations.

Proposition 14.2.4 The solution to (14.3) and (14.4) with the initial data (14.6) is
expressed by

q(x, t) =
N∑

m=1

Γmδ(x − ηα(x0m, t)). (14.10)

Moreover, the α-point vortices never collapse.

Proof We know the global existence and uniqueness of the Euler-α flow from The-
orem 1.1. Thus,

q(x, t) = q0(η
α(x,−t)) =

N∑

m=1

Γmδ(ηα(x,−t) − x0m).

If ηα(x,−t) = x0m then x = ηα(x0m, t) else x �= ηα(x0m, t). This implies

δ(ηα(x,−t) − x0m) = δ(x − ηα(x0m, t)).

Moreover, by the uniqueness of the flow, it follows that if n �= m then ηα(x0m, t) �=
ηα(x0n, t) for an arbitrary t > 0, namely, there is no collapse. �

Proposition 14.2.4 shows a significant difference between the point vortex approx-
imation of the Euler equations and the α-point vortex approximation of the Euler-α
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equations. Namely, the evolution of α-point vortices is a weak solution of the Euler-α
equations, whereas that of point vortices is no longer a weak solution of the Euler
equations. In addition, the α-point vortices never collapse in finite time, which is
another difference from the PV system where the self-similar collapse occurs.

14.3 Enstrophy Variations in the αPV System

14.3.1 The αPV System

Let xα
m(t) = (xα

m(t), yα
m(t)) for m = 1, . . . , N . Then the αPV system (14.7) is

described as a Hamiltonian dynamical system:

dxα
m

dt
= {

xα
m, Hα

}
,

dyα
m

dt
= {

yα
m, Hα

}
, xα

m(0) = x0
m, yα

m(0) = y0m, (14.11)

where the Hamiltonian Hα and the Poisson bracket between functions f, g : R2N →
R are defined by

Hα = − 1

2π

N∑

n=1

N∑

m=n+1

ΓnΓm log lαnm − 1

2π

N∑

n=1

N∑

m=n+1

ΓnΓm K0

(
lαnm

α

)
, (14.12)

{ f, g} =
N∑

m=1

1

Γm

(
∂ f

∂xm

∂g

∂ym
− ∂g

∂xm

∂ f

∂ym

)
.

From (14.7), we can derive the following evolution equation for the distance lαmn(t):

d

dt
(lαmn)2 = 2

π

N∑

k �=m �=n

Γkσmnk Aα
mnk

(
1

(lαnk )2
BK

(
lαnk
α

)
− 1

(lαkm )2
BK

(
lαkm
α

))

, (14.13)

lαmn(0) = |xα
m − xα

n |,

where σα
mnk and Aα

mnk denote the sign of the arrangement and the area of the triangle
formed by the three α point vortices, respectively. That is to say, σmnk = 1 if the three
point vortices at xα

m , x
α
n and xα

k are arranged in the counterclockwise direction, and
σmnk = −1 otherwise. The area Aα

mnk is computed from Heron’s formula:

Aα
mnk = 1

2

[
2(lαmn)2(lαnk )2 + 2(lαnk )2(lαkm )2 + 2(lαkm )2(lαmn)2 − (lαmn)4 − (lαnk )4 − (lαkm )4

] 1
2 .

(14.14)
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The quantities

Q =
N∑

m=1

Γm xα
m, P =

N∑

m=1

Γm yα
m, I =

N∑

m=1

Γm
[
(xα

m)2 + (yα
m)2

]
,

are invariant owing to {Q, H} = {P, H} = {I, H} = 0. It follows from {P2 +
Q2, H} = 0 that I , P2 + Q2 and H are in involution and the three αPV system
(14.11) is thus integrable for all values of Γm . Let us note that, for N = 4, it is inte-
grable when the strengths of the four α-point vortices satisfy

∑N
m=1 Γm = 0. This

indicates that the integrability of the αPV system is the same as that of the PV system
[23, 28].

In this paper, we are concerned with the variations of the energy and the enstrophy
associated with the evolution of the αPV system. According to [27], the energy
variation Eα(t) and the enstrophy variation Z α(t) in the sense of Novikov [24] are
given by

Eα(t) = − 1

2π

n∑

n=1

N∑

m=n+1

ΓnΓm

[
log lαmn + K0

(
lαmn

α

)
+ lαmn

2α
K1

(
lαmn

α

)]
, (14.15)

Z α(t) = 1

4πα2

N∑

n=1

N∑

m=n+1

ΓnΓm
lαmn

α
K1

(
lαmn

α

)
. (14.16)

We are also interested in the limits of xα
m(t) and lαmn(t) as α → 0. In order to take

these limits, introducing the scaled variables

Xm(t) = 1

α
xα

m(α2t), Lmn(t) = |Xm(t) − Xn(t)| = 1

α
lαmn(α

2t),

we consider the following equations for Xm(t), m = 1, . . . , N :

dXm

dt
= 1

2π

N∑

n �=m

Γn
(Xm − Xn)

⊥

L2
mn

BK (Lmn) , Xm(0) = x0m
α

. (14.17)

The equation for the distance Lmn(t) is given by

d

dt
L2

mn = 2

π

N∑

k �=m �=n

Γkσmnk Amnk

(
BK (Lnk)

L2
nk

− BK (Lkm)

L2
km

)
, Lmn(0) = lαmn(0)

α
,

(14.18)
where Amnk denotes the area of the triangle formed by the three points at Xm , Xn

and Xk .

A2
mnk = 1

4

[
2L2

mn L2
nk + 2L2

nk L2
km + 2L2

km L2
mn − L4

mn − L4
nk − L4

km

]
. (14.19)
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Since the Eq. (14.17) is equivalent to (14.7) with α = 1, the Eq. (14.17) also defines
a Hamiltonian dynamical system with the Hamiltonian,

H = − 1

2π

N∑

n=1

N∑

m=n+1

ΓnΓm log Lnm − 1

2π

N∑

n=1

N∑

m=n+1

ΓnΓm K0 (Lnm) ,

but the initial configurations are obtained by magnifying the original initial data
(14.7) by the factor α−1. We then recover the solutions of (14.7) and (14.13) from
those of the scaled systems (14.17) and (14.18) via

xα
m(t) = αXm

(
t

α2

)
, lαnm(t) = αLnm

(
t

α2

)
. (14.20)

Before solving the Eqs. (14.17) and (14.18), we consider a necessary condition for
the occurrence of the energy and enstrophy variations in the α → 0 limit of the αPV
system.

Proposition 14.3.1 Suppose that there exist a time interval I and functions Cmn(t) �=
0 for all t ∈ I such that

lim
α→0

sup
t∈I

∣∣lαmn(t) − Cmn(t)
∣∣ = 0, m �= n = 1, . . . , N . (14.21)

Then the energy converges to the Hamiltonian energy of the PV system and the
enstrophy converges zero. Namely, we have

lim
α→0

sup
t∈I

|Eα(t) − H | = 0, lim
α→0

sup
t∈I

|Z α(t)| = 0,

where H denotes the Hamiltonian of the PV system.

Proof Let us remark that the evolution of point vortices (14.8) is described by the
Hamiltonian dynamical system with

H(t) = − 1

2π

N∑

n=1

N∑

m=n+1

ΓnΓm log lnm(t).

First, we prove the convergence of the energy. Owing to (14.12), we have

|Eα − H | ≤ |Hα − H | + 1

2π

∑ ∑
|ΓnΓm | lαmn

2α
K1

(
lαmn

α

)
. (14.22)
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Since Hamiltonian Hα(t) is invariant in time, we find

− 1

2π

∑ ∑
ΓnΓm log lαnm(t) − 1

2π

∑∑
ΓnΓm K0

(
lαnm(t)

α

)

= − 1

2π

∑ ∑
ΓnΓm log |x0n − x0m | − 1

2π

∑ ∑
ΓnΓm K0

( |x0n − x0m |
α

)
.

By the assumption (14.21), in the limit of α → 0, we have

− 1

2π

∑ ∑
ΓnΓm logCmn(t) = − 1

2π

∑∑
ΓnΓm log |x0n − x0m |,

for t ∈ I . On the other hand, from the time invariance of H(t), we have

− 1

2π

∑ ∑
ΓnΓm log lmn(t) = − 1

2π

∑∑
ΓnΓm log |x0n − x0m |.

Hence, we obtain

− 1

2π

∑ ∑
ΓnΓm logCmn(t) = − 1

2π

∑ ∑
ΓnΓm log lmn(t).

This shows that the first termof the right hand side in (14.22) vanishes asα approaches
zero. Regarding the second term, it follows from K0(x), K1(x) ∼ e−x as x → ∞
that it tends to zero in the limit of α.

The proof of the convergence of the enstrophy variation is straightforward. By
the assumption, we have

lαmn

α
→ ∞ as α → 0.

Thus, owing to the decay rate of K1, we have the conclusion. �

This proposition indicates that the evolution of α-point vortices is equivalent to
that of point vortices with the Hamiltonian H as α → 0 as long as their distance
function lαmn(t) converges a non-vanishing function uniformly in time. Furthermore,
we have no enstrophy variation in the same time period t ∈ I . In other words, taking
its contraposition, we have the following corollary on the necessary condition for the
enstrophy variation.

Corollary 14.3.2 Suppose that, in the limit of α → 0, the enstrophy Z α(tc) �= 0 at
time tc. Then lαmn(tc) → 0 as α → 0.

Let us remember that the αPV system has no collapse, i.e. lαmn(t) �= 0 for all t ∈
R and α �= 0, as shown in Proposition 14.2.4. Nevertheless, the distance function
could vanish at some time tc in the limit of α → 0, at which we might observe the
enstrophy variation. The limit evolution of xα

m(t) or lαmn(t) as α → 0 is obtained by
solving the canonical equation (14.17) or (14.18) and taking limα→0 αXm(t/α) or
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limα→0 αLmn(t/α) owing to (14.20). According to Corollary 14.3.2, the enstrophy
variation occurs at the time when the α → 0 limit of lαmn(t) vanishes. We must note
that, even if Proposition 14.2.4 shows that the α-point vortices never collapse in finite
time, there is a possibility that the distance lαmn vanishes at a certain time as α → 0.

It is straightforward to see that the enstrophy variation never occurs for the evo-
lution of two α point vortices. That is to say, it follows from d L2

12/dt = 0 owing to
the distance equation (14.18) that we have L12(t) = L12(0) = l12(0)/α for all t ∈ R

and thus limα→0 αL12(t/α2) = l12(0) �= 0. Hence, in order to obtain the enstrophy
variation in the evolution of the α → 0 limit of the evolution of α point vortices, we
need to consider the αPV system (14.17) with N ≥ 3.

14.3.2 Collapse of α-Point Vortices and the Enstrophy
Dissipation

14.3.2.1 Enstrophy Dissipation via the Triple Collapse

It is well known that, under a certain circumstance, the PV system (14.8) admits a
singular solution, where N point vortices collide self-similarly in finite time. Kimura
[12] has actually constructed such a singular evolution of three point vortices, in
which there exists an initial configuration of point vortices and a positive constant
Cmn such that the distance of point vortices is represented by lmn(t) = Cmn

√|t |. This
means that the three point vortices are approaching self-similarly and collide at the
origin as t → 0−, which is a self-similar collapse, and they emerge abruptly at the
origin at t = 0 and then diverge self-similarly to infinity for t > 0, which we call a
self-similar expansion. Let us note that these collapsing and diverging self-similar
solutions are not connected as one solution of the PV system. Since the distances
of the three point vortices vanish at the critical time for the triple collapse, one can
easily expect that distance of three α point vortices may vanish in the α → 0 limit
under the same conditions as Kimura’s, which are

Γ1Γ2 + Γ2Γ3 + Γ3Γ1 = 0, M = Γ1Γ2L2
12 + Γ2Γ3L2

23 + Γ3Γ1L2
31 = 0.

(14.23)
This problem has been investigated in [27, 28]. Based on these results, we explain

how to obtain limα→0 lαmn from the solution of the canonical equation (14.17) and
(14.18). Let us first notice that M = ∑N

n=1

∑N
m=n+1 ΓnΓm L2

nm is an invariant quan-

tity in the αPV system owing to M =
(∑N

m=1 Γm

)
I − Q2 − P2. As discussed in

Sect. 14.3.1, the three αPV system is integrable for any strengths and initial configu-
rations. Thus we can investigate the behaviour of solutions of the canonical equations
(14.17) for N = 3 with the same technique as used in the analysis of the integrable
PV system [23].
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The canonical equations (14.17) are reduced to the equations (14.18) for the
distances L12(t), L23(t), L31(t) and the one for the area A(t) := A123(t). Since A(t)
is obtained from the distances Lmn(t) via (14.19), we have only to consider the
Eq. (14.18). Introducing the new variables,

b1 = L2
23

Γ1
, b2 = L2

31

Γ2
, b3 = L2

12

Γ3
,

we rewrite the condition M = 0 as b1 + b2 + b3 = 0, from which we can reduce
(14.18) to a two-dimensional dynamical system in the phase space (b1, b2). Further-
more, since the canonical system conserves the Hamiltonian,

H = − 1

4π

[
Γ2Γ3 logΓ1b1 + Γ3Γ1 logΓ2b2 + Γ1Γ2 logΓ3b3

]

− 1

2π

[
Γ2Γ3K0

(√
Γ1b1

)
+ Γ3Γ1K0

(√
Γ2b2

)
+ Γ1Γ2K0

(√
Γ3b3

)]
, (14.24)

each level curve of the Hamiltonian in the phase space (b1, b2) corresponds to the
orbit of a solution of the canonical system.

Since the area of the triangle A(t)must be positive for all t , it follows from |A(t)| ≥
0 and M = 0 that there exist two reals k1 and k2 with 0 < k1 < 1 < k2 such that
k1 ≤ L2

23/L2
31 ≤ k2. This gives rise to a wedge region Γ2/Γ1k1 ≤ b1/b2 ≤ Γ2/Γ1k2

in the (b1, b2)-space, in which solutions of the canonical system exist and thus level
curves of the Hamiltonian are plotted. Let us note that every point at the boundary
b1/b2 = Γ2/Γ1k1 and Γ2/Γ1k2 of the wedge region corresponds to a collinear con-
figuration, where three points are aligned along a straight line. Figure14.1a shows
the level curves of the Hamiltonian (14.24) for Γ1 = Γ2 = 1. The steady solutions of
(14.18) with (14.23) are similar equilateral triangles, i.e., L12 = L23 = L31, which
correspond to the diagonal line connecting to the origin. The other level curves except
the diagonal line are connected to the boundary of thewedge region and go to infinity.
Hence, when we choose the initial configuration at a point off the diagonal line in
the phase pace, the solution of the canonical equation moves along the level curve
going through this point. Hence, without loss of generality, we choose a collinear
configuration at the boundary of the wedge region as an initial data. Then, the solu-
tion of (14.18) with A(0) = 0 satisfies A(t) = −A(−t) and Lmn(t) = Lmn(−t) for
t ∈ R.

Let us also note that that each point in the phase space represents two mirror
symmetric configurations, (L12, L23, L31, A) and (L12, L23, L31,−A). It thus goes
to infinity along the level curves as t → ±∞. As b1, b2 → ∞, the contour lines of the
Hamiltonian tend asymptotically to Γ1b1/Γ2b2 = L2

23/L2
31 = k for any k ∈ (k1, k2)

with k �= 1, which correspond to the self-similar evolutions. Therefore, as t → ±∞,
the solution of the canonical system for any collinear initial configuration behaves
like

lim
t→±∞ Lmn(t) ∼ C (k)

mn

√|t |, (14.25)
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Fig. 14.1 Analysis of the canonical system (14.17) for Γ1 = Γ2 = 1. a Level curves of the Hamil-
tonian (14.24). b Evolution of the distances Lmn(t) for a collinear initial configuration. c Plot of
F(t). d Plot of HK (t)

for some constant C (k)
mn > 0 and the ratios L12/L31 and L23/L31 converge to the

constants C (k)
12 /C (k)

31 and C (k)
23 /C (k)

31 as t± → ∞. Figure14.1b shows the evolutions
of the distances Lmn(t) starting fromacollinear initial configuration forΓ1 = Γ2 = 1,
which clearly demonstrates the asymptotic behavior (14.25) as t → ∞.

We now consider the behaviour of solutions for the sequence of initial configura-
tions Lmn(0) = lmn(0)/α andobserve theirα → 0 limit. Since the initial data satisfies
L23/L31 = l23/ l31 := k̃ regardless of α, the initial configurations are represented as
the straight line b1/b2 = Γ2/Γ1k̃ in the phase space (b1, b2). As α → 0, the ini-
tial configuration diverges along L23/L31 = k̃. Then, the evolution starting from the
infinitely large initial configuration corresponds to the solution (14.25) with k = k̃.
Hence, noting that t/α2 → ∞ for t �= 0 as α → 0, we have the convergence of the
solution of the αPV system (14.13) owing to (14.20) and (14.25) as follows.

lαmn(t) = αLmn

(
t

α2

)
−→ C (̃k)

mn

√|t |, α → 0, (14.26)

which indicates that the solution of αPV system converges to the self-similar triple
collapse for t < 0 and to the self-similar triple expansion for t > 0.
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It follows from (14.26) and Proposition 14.3.1 that we have |Eα − H | → 0 and
|Z α(t)| → 0 for t �= 0 as α → 0. On the contrary, since αLmn(t/α2) → 0 at t =
0, the energy and the enstrophy variations could occur at this time according to
Corollary 14.3.2, which is examined in what follows. Since the energy variation in
the αPV system is represented by

Eα(t) = Hα + 1

4π
HK

(
t

α2

)
,

owing to (14.12) and (14.15), where

HK (t) = − 1

4π

N∑

m=1

N∑

n=m+1

ΓmΓn Lmn(t)K1(Lmn(t)),

we have the energy variation at t = 0 as follows.

lim
α→0

Eα(0) − H = HK (0) �= 0.

This indicates the energy variation acquires a finite jump discontinuity at t = 0.
Moreover, since the Hamiltonian Hα is invariant, the energy dissipation rate Dα

E (t)
is given by

Dα
E (t) = 1

4π

d

dt
HK (t)

= 1

4πα2

N∑

m=1

N∑

n=m+1

ΓmΓn
d Lmn

dt

(
t

α2

)
Lmn

(
t

α2

)
K0

(
Lmn

(
t

α2

))

:= 1

α2
F

(
t

α2

)
.

Figure14.1c shows the plot of the function F(t) for a collinear initial configura-
tion. As α → 0, the energy dissipation rate Dα

E (t) acquires an infinite discontinuity
at t = 0 and thus it is no longer a function. On the other hand, since F(t) is odd, i.e.
F(t) + F(−t) = 0, for any compactly supported smooth function ϕ(t), we have

〈Dα
E , ϕ〉 =

∫ ∞
−∞

1

α2 F

(
t

α2

)
ϕ(t)dt =

∫ ∞
−∞

F(s)ϕ(α2s)ds → ϕ(0)
∫ ∞
−∞

F(s)ds = 0.

Hence, the energy dissipation rate becomes zero in the sense of distributions.
Figure14.1d is the plot of HK (t), which shows that the function is even, positive

and rapidly decreasing. Since the enstrophy variation (14.16) is represented by

Z α(t) = − 1

α2
HK

(
t

α2

)
,
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it also diverges at t = 0 as α → 0. On the other hand, for any compactly supported
smooth function ϕ(t), we have

〈Z α, ϕ〉 = −
∫ ∞

−∞
1

α2
HK

(
t

α2

)
ϕ(t)dt = −

∫ ∞

−∞
HK (s)ϕ(α2s)ds → −z0ϕ(0),

in which, in view of Fig. 14.1d,

z0 =
∫ ∞

−∞
HK (s)ds > 0.

We thus obtain the convergence of the enstrophy variation in the distributional sense
as follows.

lim
α→0

Z α = −z0δ0,

where δ0 is Dirac’s δ function with singularity at t = 0. By integrating it in the sense
of distributions, we have the convergence of the total enstrophy variation:

∫ T

−∞
Z α(t)dt → −z0H(T ),

where H(T ) denotes the Heaviside function with a finite jump discontinuity at T =
0. This means that the total enstrophy remains zero, until the three point vortices
collapse. It suddenly drops to −z0 at t = 0, and then it remains at the same level
for t > 0, where the three point vortices exhibit the self-similar expansion. This
indicates that the enstrophy dissipation occurs at the event of the collapse of the three
point vortices. As shown in [28], the solution of the canonical system has the same
behavior for any collinear initial configuration, its corresponding HK (t) is similarly
even, positive and rapidly decreasing. We thus observe the enstrophy dissipation for
any initial configurations in the limit of α → 0 for Γ1 = Γ2 = 1. We refer to this
distributional loss of the enstrophy as an anomalous enstrophy dissipation via the
triple collapse.

Figure14.2a, b are the level curves of the Hamiltonian for (Γ1, Γ2) = (2, 1) and
(4, 3), respectively, which also indicate that the same observation as above still holds
true. The plots of F(t) and HK (t) for various Γ1 and Γ2 in Fig. 14.2c, d show that
F(t) is odd and HK (t) is even, positive and rapidly decreasing. Accordingly, the
anomalous enstrophy dissipation via the triple collapse occurs for the other strengths
Γ1 and Γ2 as long as initial collinear configurations satisfy (14.23). As a matter of
fact, even if the initial configuration does not satisfy the second condition of (14.23),
namely

M = Γ1Γ2L2
12 + Γ2Γ3L2

23 + Γ3Γ1L2
31 �= 0, (14.27)

the anomalous enstrophy variation has also been confirmed by numerical means [28].
In this case, we need to use another two-dimensional phase space representation to
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Fig. 14.2 a Level curves of the Hamiltonian (14.24) for Γ1 = 2 and Γ2 = 1. b Level curves of
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observe the contour plot of the Hamiltonian, since (14.27) is reduced to b1 + b2 +
b3 = 3, where

b1 = L2
23

Γ1M̃
, b2 = L2

31

Γ2M̃
, b3 = L2

12

Γ3M̃
,

with M̃ = M
3Γ1Γ2Γ3

. This change of variables gives rise to a two-dimensional phase
space (x, y), called the trilinear coordinate,

(x, y) =
(√

3 − 1√
3

b1 − 2√
3

b2, b1

)
,

as shown in Fig. 14.3a. Figure14.3b shows the contour plot of the Hamiltonian in the
trilinear coordinates for Γ1 = Γ2 = 1 and M = 0.02. The boundary A = 0 becomes
a hyperbola and each contour line is also a hyperbola approaching asymptotically to
two straight lines on which the ratio b1/b2 becomes a constant [28]. Accordingly,
with the same argument as we have done in the case of M = 0, we can conclude
that the evolution of the canonical system for the sequence of initial configurations
lmn(0)/α also behaves similarly like (14.25) as α tends to zero. Figure14.3c, d show
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the evolution of the distances Lmn and the ratios between them for Γ1 = Γ2 = 1 and
M = 0.02. They indicate that the distances certainly tend asymptotically to

√|t | and
their ratios converge to different constants asymptotically as t → ±∞. Hence, the
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evolution of the αPV system converges to a self-similar collapse for t < 0 and a
self-similar expansion for t > 0, while the shape of the vortex triangle for t < 0 is
different from that for t > 0 in this case.

Computing the evolution of the canonical system for M = 0.05, 0.1 and 0.5 when
(Γ1, Γ2) = (1, 1) and (2, 1), we give the plots of HK (t) for them in Fig. 14.3e and f,
respectively. They show that HK (t) is even, positive and rapidly decreasing. Hence,
the enstrophy variation converges to the δ0 function with a negative weight in the
sense of distributions for M > 0 as well as M = 0. We must note that the collapse
of three point vortices never occurs if M �= 0, which seems to be a contradiction in
terms of the continuity of the evolution of αPV system in the α → 0 limit and the
PV system with α = 0. But this is not the case, since, owing to (14.18) and (14.27)
at the initial moment, we have

αM = Γ1Γ2l
2
12(0) + Γ2Γ3l

2
23(0) + Γ3Γ1l

2
31(0),

= Γ1Γ2(l
α
12)

2(0) + Γ2Γ3(l
α
23(0))

2 + Γ3Γ1(l
α
31(0))

2,

and thus, if the evolution lαmn converges as α → 0, the limit evolution is subject to

0 = Γ1Γ2(l12)
2 + Γ2Γ3(l23)

2 + Γ3Γ1(l31)
2,

which is equivalent to the condition of the initial configuration for the triple col-
lapse. Therefore, we conclude that the anomalous enstrophy dissipation is a robust
phenomenon observed for a wide range of initial configurations of the three α point
vortices.

14.3.2.2 Collapse of Four α-Point Vortices and Enstrophy Variations

In this section, we consider the evolution of four α point vortices under the same
conditions as the self-similar collapse of N point vortices. According to Kimura [12],
the necessary condition for the self-similar collapse in terms of the vortex strengths
is given by

N∑

m=1

N∑

n=m+1

ΓmΓn = 0,

which is equivalent to the first condition of (14.23). Since the canonical system
with this condition is no longer integrable for N ≥ 4, it is not easy to solve the
canonical equation nor to consider the α → 0 limit of the evolution analytically.
Thus, we use an implicit fourth order symplectic Runge-Kutta method [17] with time
step size Δt = 0.001 to obtain long-time evolutions of (14.17) numerically. Initial
configurations of four α point vortices are chosen so that point vortices collapse self-
similarly in finite time. Kudela [16] has been shown that N point vortices collapse
self-similarly in finite time, if their initial configuration satisfies the following 2N
equations:
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N∑

m=1

Γm |zm |2 = 0,
N∑

m=1

Γm zm = 0, (14.28)

v1zm = vm z1, m = 1, . . . , N − 2, (14.29)

Re

(
N∑

m=1

Γmvm

)

= 0, (14.30)

in which zm = xm + iym is the location of the mth point vortex in the complex plane,
and vm represents the complex velocity at zm induced by the other N − 1 point
vortices given as follows.

vm = − 1

2π i

N∑

n �=m

Γn

z̄m − z̄n
.

As shown in [16], the algebraic equations (14.28)–(14.30) for N = 4 are solved
numerically with high accuracy using Mathematica. Figure14.4 shows an example
of the self-similar evolution of four point vortices with Γ1 = 2, Γ2 = 1, Γ3 = 1 and
Γ4 = − 5

4 for an initial configuration obtained by solving (14.28)–(14.30).
Figure14.5a shows the long-time evolution of four α point vortices with Γ1 = 2,

Γ2 = 1, Γ3 = 1 and Γ4 = − 5
4 for the same initial configuration as in Fig. 14.4. We

solve the canonical system numerically forward as well as backward in time. After
the four point vortices are getting closer with each other without collapse, they
separate away. In order to see the evolution more clearly, we plot the evolution
of the distances Lmn(t) for α = 1 in Fig. 14.5b. All distances take their minimum
values at a certain time, say tα

c < 0, and each of them behaves as Cmn
√|t − tα

c | for a
constant Cmn > 0. Figure14.5c shows the close-up of the evolution of the distance

Fig. 14.4 Self-similar
evolution of four point
vortices with the strengths
Γ1 = 2, Γ2 = 1, Γ3 = 1 and
Γ4 = − 5

4 . The initial
configuration is obtained by
solving (14.28)–(14.30)
numerically

x

y
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αL12(t/α2), which indicates that the minimum distance converges to zero and we
observe limα→0 tα

c = t0c . This numerical solution suggests that, as α tends to zero,
the distance αL12(t/α2) converges to Cmn

√|t − t0c |. Consequently, the solution of
the canonical system converges to the self-similar collapse for t < t0c and to the
self-similar expansion for t > t0c as we have observed in the three vortex problem.
Furthermore, the plots of the enstrophy variation 1

α2 HK (t/α2) in Fig. 14.5d illustrate
the convergence to the delta function δ

(
t − t0c

)
as α → 0. Hence, we conclude that

the anomalous enstrophy dissipation occurs via the quadruple collapse as α → 0.
According to [16], one can obtain the other initial configurations of α point vor-

tices with different Hamiltonian value by a continuation. That is to say, we first
compute the value of Hamiltonian, say H0, for the initial configuration obtained
from (14.28)–(14.30). We then solve the Eqs. (14.28), (14.29) and H̃ = H0 + ε for
a given small ε instead of (14.30) to obtain the initial configuration with this Hamil-
tonian value. Figure14.6a, b show the evolution of the distances Lmn(t) for another
initial configuration and the plot of HK (t) corresponding to the evolution, respec-
tively. They also indicate that the anomalous enstrophy dissipation via the quadruple
collapse is observed as α → 0.
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A different evolution of fourα point vortices is observedwhen the vortex strengths
are chosen as Γ1 = 1, Γ2 = 1, Γ3 = 1 and Γ4 = −1. Figure14.7a shows the orbits
of Xm(t) for the initial configuration satisfying (14.28)–(14.30). After the four α
point vortices approach sufficiently close to each other, an interaction caused by
the α regularization begins, and we then observe that the two α point vortices with
Γ1 = 1 and Γ4 = −1 are moving towards infinity. Figure14.7b shows the evolution
of the distances Lmn(t). There exists a critical time t̃α

c such that Lmn(t) ∼ √|t − t̃α
c |

for t < t̃α
c , which shows that the four α point vortices approach self-similarly. For

t > t̃α
c , L14(t) and L23(t) become constant functions, while the other distances are

increasing linearly. In order to see more closely how they evolve after t > t̃α
c , we plot

the evolutions of each component of Xm(t) = (Xm(t), Ym(t)) in Fig. 14.7c, which
indicates that the four α point vortices are divided into two pairs. The pair of the
α point vortices with Γ1 = 1 and Γ4 = −1 move together with a constant speed
to infinity as a vortex dipole. The other α-vortex pair with Γ2 = 1 and Γ3 = 1 is
co-rotating and stays in the neighborhood of the origin. The two vortex pairs are
separated away linearly, since the vortex dipole moves with a constant speed. We can
expect that, asα → 0,αLmn(t/α2)(t) behaves like

√|t − t̃0c | for t < t̃0c = limα→0 t̃α
c ,

which means that the evolution converges to a self-similar quadruple collapse. On
the other hand, after t > t̃0c , the distances αL14(t/α2) and αL23(t/α2) converge to
zero, but the other distances diverge as α → 0. Hence, the limit evolution consists
of a singular vortex dipole going infinity with infinite speed and a singular pair
of identical point vortices co-rotating with infinite angular speed after t̃0c . Finally,
we plot the function HK (t) for the evolution in Fig. 14.7d. Since αL14(t/α2) and
αL23(t/α2) converge to zero for t > t̃0c as α → 0, the enstrophy variation Z α(t)
never converges to zero after t̃0c owing to Corollary 14.3.2. As a matter of fact, since
HK (t) becomes a non-zero constant for t > t̃0c , the enstrophy diverges as α → 0
for t > 0, which suggests that the infinite enstrophy jump occurs at the event of the
self-similar quadruple collapse.
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14.4 Summary and Discussion

We have investigated the α → 0 limit of weak solutions to the 2D Euler-α equations
for the initial vorticity distribution in M (R2) whose support consists of a set of N
discrete points, in order to understand how singular solutions to the Euler equations
dissipate the enstrophy anomalously. The evolution of the N points, called α point
vortices, is described by aHamiltonian dynamical systemwith N degrees of freedom,
whose solution exists globally in time and gives rise to a weak solution to the Euler-α
equations. The enstrophy variation, which is defined as a function of the distances
between α point vortices, vanishes as α → 0, unless the distances converges to zero
in the limit, i.e. α point vortices collapse at a certain time. As long as α �= 0, the
collapse ofα point vortices never occurs, butwehave found that it occurs in theα → 0
limit when we consider the three α point vortices with the vortex strengths and the
initial configurations satisfying (14.23). The evolution of the three α point vortices
converges to the self-similar collapse for t < 0 and the self-similar expansion for
t > 0 in the limit. The enstrophy variation converges to the δ-measure at the critical
time t = 0 with a negative weight, which indicates that the enstrophy dissipates
at the event of the collapse. We numerically observe this phenomenon, even if the
initial configuration does not satisfy (14.23). Moreover, we have also confirmed
numerically that the anomalous enstrophy dissipation occurs for a collapse of four α
point vortices in the α → 0 limit. Hence, the collapse of α point vortices is a robust
mechanism that induces the anomalous enstrophy dissipation. Let us note that the
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collapse of α-point vortices with the anomalous enstrophy variation in the α → 0
limit is just confirmed by numerical means. Hence, it is important to prove this fact
with a mathematical rigor, which will be reported in near future.

By considering the limit solutions of the αPV system, we successfully describe
the physical mechanism of the anomalous enstrophy dissipation induced by singular
evolutions of incompressible fluid flows in terms of vortex dynamics. Since the
enstrophy dissipation is one of the characteristic properties observed in 2D high-
Reynolds number turbulence, the αPV system works as a model of singular weak
solutions to the 2D Euler equations. However, on the other hand, there are many
questions to be considered in understanding of 2D turbulence, part of which are
proposed as follows. (i) Mathematically, it is uncertain whether or not the α → 0
limit solution of theαPVsystemdefines aweak solution to the 2DEuler equations. (ii)
The αPV system suggests that the enstrophy variation could occur when the coherent
vortex structures approach closelywith each other.We need to check computationally
if this phenomenon is observed in 2D Navier-Stokes-α flows for sufficiently small
viscosity and α. (iii) We have considered a special class of singular solutions in the
PV system, the self-similar evolutions, as a reference in order to construct singular
evolution of the αPV system as α → 0. It is interesting to investigate the case of
non-integrable αPV systemwith N ≥ 4, in which we observe how complex (chaotic)
evolutions and their corresponding enstrophy variation converges as α → 0.
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Chapter 15
Thermodynamical Consistent Modeling
and Analysis of Nematic Liquid
Crystal Flows

Matthias Hieber and Jan Prüss

Abstract The general Ericksen-Leslie model for the flow of nematic liquid crystals
is reconsidered in the non-isothermal case aiming for thermodynamically consistent
models. The non-isothermal simplified model is then investigated analytically. A
fairly complete dynamic theory is developed by analyzing these systems as quasi-
linear parabolic evolution equations in an Lp − Lq-setting. First, the existence of a
unique, local strong solution is proved. It is then shown that this solution extends
to a global strong solution provided the initial data are close to an equilibrium or
the solution is eventually bounded in the natural norm of the underlying state space.
In these cases the solution converges exponentially to an equilibrium in the natural
state manifold.

Keywords Nematic liquid crystals · Quasilinear parabolic evolution equations ·
Regularity · Global solutions · Convergence to equilibria

15.1 Introduction

The continuum theory of liquid crystals was developed by Ericksen and Leslie during
the 1960s in their pioneering work [9, 22]. This theory models nematic liquid crystal
flow from a hydrodynamical point of view and reduces to the Oseen-Frank theory
in the static case, see [15, 31]. It describes the evolution of the complete system
under the influence of the velocity u of the fluid and the orientation configuration
d of rod-like liquid crystals. Hence, d = d(t, x) is a unit vector in R

3. The original
derivation [9, 22] is based on the conservation laws for mass and linear as well as
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angular momentums. General liquid crystal materials are described by the Landau-de
Gennes theory [5] from a unified point of view.

The Ericksen-Leslie theory is nowadays widely used as a model for the flow of
nematic liquid crystals, see for example the works of Ericksen and Kinderlehrer [10],
Chandrasekhar [2], DeGennes and Prost [6] as well as Virga [37].

Note that these models are mostly formulated in an isothermal environment and
are, in general, neither thermodynamically consistent nor thermodynamically stable.
To the best of our knowledge, only very few articles are dealing so far with the ther-
modynamical consistency of these models. Concerning the Ericksen-Leslie model,
for a physically rigorous derivation we refer to the work ofMüller [30] concentrating
on the modeling aspect, and for recent analytical work to Feireisl et al. [11], Feireisl
et al. [12] and Li and Xin [23]. Non-isothermal Landau-De Gennes nematic liquid
crystal flows were investigated in the recent articles [13, 14].

The aim of this paper is twofold: first, we reconsider the Ericksen-Leslie approach
from the perspective of thermodynamical consistency and stability. Following argu-
ments from thermodynamics and employing entropy principles, we derive consistent
models in a mathematically efficient way, even in the case of compressible fluids.
Let us emphasize that, in the end, our model contains the classical Ericksen-Leslie
model in its general form as a special case.

Secondly, we investigate our model analytically. Restricting ourselves to the case
of constant density and not taking into account so called stretching, we develop a
rather complete dynamic theory for the equations representing these models. More
precisely, we first prove the existence of a unique, local strong solution to this system.
We further show that this solution extends to a global, strong solution, provided
the initial data are close to an equilibrium or the solution is eventually bounded in
the natural norm of the underlying state space. In this case the solution converges
exponentially to an equilibrium in the natural state manifold. The results obtained
thus parallel those proved recently by Hieber et al. [17] dealing with the isothermal
situation. For results concerning the asymptotic behaviour of solutions in the situation
of the whole space R3, we refer to the work of Dai and Schonbek [4].

The nowadays called simplified Ericksen-Leslie model in the isothermal situation
was introduced and investigated first by Lin [24, 25]. Lin and Liu [26, 27] studied
the situation, where the nonlinearity in the equation for the director d is replaced
by a Ginzburg-Landau energy functional. The existence of global weak solutions to
this system in dimension 2 or 3 was proved under suitable assumptions on the intial
data. For related results see [18, 28]. Wang proved in [38] global well-posedness
for the simplified system for initial data being small in BMO−1 × BMO in the case
of a whole space by combining techniques of Koch and Tataru with methods from
harmonic maps to certain Riemannian manifolds.

The general Ericksen-Leslie model (in the isothermal situation) is based on the
Oseen-Frank energy density functional which takes into account stretching as well as
rotational effects for the director field. In the special case of homogeneous isotropic
elasticity the equation for d reads as
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∂td + u · ∇d − Vd + λ2

λ1
Dd = − 1

λ1
(Δd + |∇d|22d) + λ2

λ1
(Dd · d)d in (0,T) × Ω.

(15.1)
Here | · |2 means the l2-norm, D = 1

2 (∇u + [∇u]T ) denotes the symmetric, V =
1
2 (∇u − [∇u]T) the anti-symmetric part of the deformation tensor andλ1, λ2 ∈ R\{0}
are material coefficients. Modifications of this model were considered by Coutard
and Shkoller [3] inwhich the aboveEq. (15.1) for d is replaced by aGinzburg-Landau
type approximation.

γ (∂td + u · ∇d + d · ∇u) = Δd − 1

ε2
(|d|22 − 1)d in (0,T) × Ω. (15.2)

They proved local wellposedness for this system as well as a global existence result
for small data within this setting. Note, however, that in this case the presence of
the stretching term d · ∇u causes loss of total energy balance and, moreover, the
condition |d|2 = 1 in (0,T) × Ω , is not preserved anymore. For recent results on
the general Ericksen-Leslie model with d satisfying (15.1), we refer to the articles
[19, 28, 29, 39], which contain well-posedness criteria for the general system under
various assumptions on the Leslie coefficients. For results on non-isothermal models
including the above mentioned stretching term, see [12] and references therein.

Let us stress at this point that an important novelty of our approach lies in the
fact that the complete model described in Sect. 2.7 is rigoroulsy proven to be ther-
modynamically consistent and stable. Specialising to the isothermal situation, we
rediscover in particular the classical general Ericksen-Leslie system. It is interesting
to compare our approach with the approach of Müller [30], and with the energy
variational approach developed by Liu and coworkers [29] and by Virga [37].

The plan for this contribution is as follows: Sect. 15.2 is devoted to the modeling
of liquid crystals. In particular, based on the entropy principle, we derive a model of
Ericksen-Leslie type which is thermodynamically consistent and stable. In Sect. 15.3
the equilibria of the system are identified—which are zero velocities and constant
temperature and director—and it is proved that these are thermodynamically stable.
The negative total entropy is shown to be a strict Ljapunov functional, in particular the
model is thermodynamically consistent. In Sect. 15.4 we prove local well-posedness
of the non-isothermal simplified model and construct the resulting local semiflow in
the natural state manifold of the system. We show that each solution which does not
develop singularities in a sense to be specified converges to a unique equilibrium.
These results are proved by means of techniques involving maximal Lp-regularity
and results on quasilinear paprabolic evolution equations. For these methods, we
refer to the booklet by Denk et al. [7] and to the work of Prüss and Simonett [34],
Köhne et al. [20], and LeCrone et al. [21].

By means of these techniques we are also able to prove analogous results for the
full model, which, however, due to limitation of space will be presented elsewhere.

http://dx.doi.org/10.1007/978-4-431-56457-7_2


436 M. Hieber and J. Prüss

15.2 Thermodynamical Consistent Modeling

In this section we aim to give a self-contained presentation of a thermodynamically
consistent modeling of liquid crystals. Like this we are able to refrain from refering
to the orginal papers [9, 22], which are not easily accessible to a mathematical
audience. Our approach does not only extend the classical Ericksen-Leslie model to
the non-isothermal situation in a thermodynamical consistent and stable way but it
also allows to exhibit the physical and mathematical beauty of this model.

In this section, Ω ⊂ R
n always denotes a domain with C1-boundary.

1. First Principles
We begin with the balance laws of mass, momentum, and energy. They read as

∂tρ + div(ρu) = 0 in Ω,

ρ(∂t + u · ∇)u + ∇π = div S in Ω, (15.3)

ρ(∂t + u · ∇)ε + div q = S : ∇u − πdiv u in Ω,

u = 0, q · ν = 0 on ∂Ω.

Here ρ means density, u velocity, π pressure, ε internal energy, S extra stress and q
heat flux. This immediately gives conservation of the total energy. In fact, we have

ρ(∂t + u · ∇)e + div(q + πu − Su) = 0 in Ω,

where e := |u|2/2 + ε means the total mass specific energy density (kinetic and
internal). The energy flux Φe is given by Φe := q + πu − Su. Integrating over Ω

yields

∂tE(t) = 0, E(t) = Ekin(t) + Eint(t) =
∫

Ω

ρ(t, x)e(t, x)dx,

provided
q · ν = u = 0 on ∂Ω. (15.4)

Hence, if (15.4) holds, total energy is preserved, independent of the particular choice
of S and q.

2. Thermodynamics
Assume a given free energy ψ of the form ψ = ψ(ρ, θ, τ ), where θ denotes the
(absolute) temperature and τ will be specified later. We then have the following
thermodynamical relations:

ε = ψ + θη internal energy,

η = −∂θψ entropy, (15.5)

κ = ∂θε = −θ∂2
θ ψ heat capacity.
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Later on, for well-posedness of the heat problem, we require κ > 0, i.e. ψ to be
strictly concave with respect to θ ∈ (0,∞).

In the classical case, where ψ depends only on ρ and θ , we have the Clausius-
Duhem equation

ρ(∂t + u · ∇)η + div(q/θ) = S : ∇u/θ − q · ∇θ/θ2 + (ρ2∂ρψ − π)(div u)/θ in Ω.

Hence, in this case the entropy flux Φη is given by Φη := q/θ and the entropy
production by

θr := S : ∇u − q · ∇θ/θ + (ρ2∂ρψ − π)(div u).

Employing the boundary conditions (15.4), we obtain for the total entropy N by
integration over Ω

∂tN(t) =
∫

Ω

r(t, x)dx ≥ 0, N(t) =
∫

Ω

ρ(t, x)η(t, x)dx,

provided r ≥ 0 in Ω . As div u has no sign we require

π = ρ2∂ρψ, (15.6)

which is the famous Maxwell relation. Further, as S and q are independent, this
requirement leads to the classical conditions

S : ∇u ≥ 0 and q · ∇θ ≤ 0. (15.7)

Summarizing, we see that whatever one chooses for S and q, one always has conser-
vation of energy and the total entropy is non-decreasing provided (15.7), (15.6) and
(15.4) are satisfied. Thus, these conditions ensure the thermodynamic consistency of
the model.

As an example for S and q consider the classical laws due to Newton and Fourier
which are given by

S := SN := 2μsD + μbdiv u I, 2D = (∇u + [∇u]T), q = −α0∇θ.

In this case, (15.7) is satisfied as soon as μs ≥ 0, 2μs + nμb ≥ 0 and α0 ≥ 0 hold.
Note that it does not matter at all whether μs, μb, α0 are constants or whether they
depend on ρ, θ , or on other variables.

3. Nematic Liquid Crystals
For isotropic nematic liquid crystals we assume a free energy density ψ of the form

ψ = ψ(ρ, θ, τ ), with τ = 1

2
|∇d|22.
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Here d means the orientation vector, also called the director, which should satisfy
the condition

|d|22 :=
n∑

j=1

d2j = 1.

Note that 2τ = tr(∇d[∇d]T) is the first invariant of the matrix ∇d[∇d]T, and for its
last invariant it holds det(∇d[∇d]T) = (det∇d)2 = 0, as ∇dd = 0 by |d|2 = 1.

We neglect spin energy below but take into account transport of energy due to
couple stress. This means that the energy flux is replaced by

Φe := q + πu − Su − ΠDtd, Dt = ∂t + u · ∇,

where Π has to be modeled.
As constitutive laws we will employ

S = SN + SE + SL, SE = −λ∇d[∇d]T, q = −α0∇θ − α1(d · ∇θ)d. (15.8)

SN means the Newton stress introduced above, SE the Ericksen stress, and SL the
Leslie stress which will be defined later. Assuming these two constitutive laws we
derive in the following the balance of entropy, i.e. the Clausius-Duhem equation. A
short computation gives

ρ(∂t + u · ∇)η + divΦη = r, (15.9)

with Φη = q/θ , and

θr = −q · ∇θ/θ + 2μs|D|22 + μb|div u|2 + (ρ2∂ρψ − π)div u

+ (ρ∂τψ − λ)∇d[∇d]T : ∇u + (Π − ρ∂τψ∇d) : ∇Dtd

+ SL : ∇u + (divΠ + βd) · Dtd.

for some scalar function β. Note that d · Dtd = 0 as |d|2 = 1, hence β ∈ R can be
chosen arbitrarily.

For the entropy production r to be nonnegative, we require

μs ≥ 0, 2μs + nμb ≥ 0, α0 ≥ 0, α0 + α1 ≥ 0.

Except for the last one, these conditions are the well-known conditions from fluid
dynamics, see Sect. 2.2. The subsequent terms in the definition of r have no sign,
hence we require them to vanish, which yields the relations

π = ρ2∂ρψ, λ = ρ∂τψ Π = ρ∂τψ∇d. (15.10)

http://dx.doi.org/10.1007/978-4-431-56457-7_2
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Finally, to obtain nonnegativity of the last two terms, in the simplest case, we may
assume that the Leslie stress SL vanishes, and

γDtd = div[(ρ∂τψ)∇]d + βd,

for some γ = γ (ρ, θ, τ ) ≥ 0. The condition |d|2 = 1 then requires β = λ|∇d|22,
which leads to the equation

γ (∂t + u · ∇)d = div[λ∇]d + λ|∇d|22d, (15.11)

a nonlinear convection-diffusion equation for d. This is the basic equation governing
the evolution of the director field d. With these assumptions the entropy production
reads as

θr = −q · ∇θ/θ + 2μs|D|22 + μb|div u|2 + 1

γ
|a|22,

where
a = div[λ∇]d + λ|∇d|22d = γDtd.

At the boundary ∂Ω , energy should be preserved,whichmeansΦe · ν = 0.Asq · ν =
0 and u = 0 this yields

λ∂νd · ∂td = 0.

This is clearly valid if d satisfies theNeumann condition ∂νd = 0, which is physically
reasonable.

4. Stretching and Vorticity
Observe that the equation (15.11) for d admits the solutions d = const, nomatter how
the velocity field and the temperature field are defined. In this case the director field
is not at all affected by the fluid dynamics. This seems to be physically unrealistic
and so the model should be adapted.

This can be done by introducing a so-called stretching stress. To introduce this
stress we follow Leslie. DefinePd = I − d ⊗ d the orthogonal projection ontoEd :=
{d}⊥, the vorticity V according to 2V = ∇u − [∇u]T, and set

n = μV Vd + μDPdDd − γDtd,

where μV , μD, γ are scalar functions of ρ, θ, τ and γ > 0. Note that n · d = 0. For
brevity we use the notation

a := Pddiv(λ∇)d = div(λ∇)d + λ|∇d|22d.

Now we define the stretch tensor

SstretchL = μD + μV

2γ
n ⊗ d + μD − μV

2γ
d ⊗ n. (15.12)
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This modification of the model does not change the entropy flux Φη = q/θ , and the
relevant entropy production becomes,

SstretchL : ∇u + Dtd · a = 1

γ
(|n|2 + γDtd · n)) + a · Dtd

= 1

γ
(|a|2 + (n + a) · (μV Vd + μDPdDd − a).

If we want to keep the total entropy production at the same level as in the previous
section, the simplest way to achieve this is to setn + a = 0,which yields the equation

γ (∂td + u · ∇d) = div(λ∇)d + λ|∇d|22d + μV Vd + μDPdDd. (15.13)

This is the stretched equation for d. Note that it preserves the constraint |d|2 = 1.
The entropy production is the same as before, we have

θr = [α0|∇θ |22 + α1(d|∇θ)2]/θ + 2μs|D|22 + μb|div u|2 + 1

γ
|Pddiv(λ∇)d|22.

In particular, N satisfies ∂tN(t) = ∫
Ω
r(t, x)dx, and so −N will be shown below to

be a strict Lyapunov functional for the system, as soon as

μs > 0, 2μs + nμb > 0, α0 > 0, α0 + α1 > 0, γ > 0, (15.14)

and
κ > 0, λ > 0, ∂ρπ > 0. (15.15)

Note that no conditions on the new parameter functions μD, μV are needed, so far.

5. Additional Dissipation
We may add additional dissipative terms in the stress tensor of the form

SdissL = μP

γ
(n ⊗ d + d ⊗ n) + γμL + μ2

P
2γ

(PdDd ⊗ d + d ⊗ PdDd) + μ0(Dd|d)d ⊗ d, (15.16)

where as before 2D = ∇u + [∇u]T and 2V = ∇u − [∇u]T are the symmetric and
antisymmetric parts of the rate of strain tensor ∇u. Note that the tensor SdissL is sym-
metric. Adding these terms to the stress tensor will be thermodynamically consistent
provided their contribution to the entropy production ensures that the total entropy
production remains nonnegative. By a simple calculation we obtain

SdissL : ∇u = SdissL : D = 2
μP

γ
(n|PdDd) + (μL + μ2

P

γ
)|PdDd|22 + μ0(Dd|d)2.

(15.17)
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So with n = −a, the total relevant dissipation amounts to

1

γ
(|a|22 + 2μP(n|PdDd) + μ2

P|PdDd|22) + μL|PdDd|22 + μ0(Dd|d)2

= 1

γ
|a − μPPdDd|22 + μL|PdDd|22 + μ0(Dd|d)2,

hence the total entropy production becomes

θr = [α0|∇θ |22 + α1(d|∇θ)2]/θ + 2μs|D|22 + μb|div u|2

+ 1

γ
|Pddiv(λ∇)d − μPPdDd|22 + μL|PdDd|22 + μ0(Dd|d)2.

Note that so far the parameter functions μj, j = 0, s, b, V,D,P,L, α0, α1, and γ for
thermodynamical consistency are only subject to the requirements

α0, α0 + α1 ≥ 0, μs, 2μs + nμb ≥ 0, μ0, μL ≥ 0, γ > 0. (15.18)

Recall that all parameters functions are allowed to be functions of ρ, θ, τ .

Remark (i) A more refined algebra shows that it is enough to require

2μs + μL ≥ 0, 2μs + μ0 ≥ 0

in the incompressible case, and additionally

μ2
0

n2
≤ (2μs + μ0)(

2μs

n
+ μb + μ0

n2
)

in the compressible case.

(ii) We want to stress that in case μV = γ , our parameters μs, μ0, μV , μD, μP, μL

are in one-to-one correspondence to the famous Leslie parameters α1, . . . , α6. This
shows that our model contains the isotropic Ericksen-Leslie model as a special case.

6. Conservation of Angular Momentum in 3D
We briefly discuss conservation of momentum in the physical important three-
dimensional case. Recall that the mass specific density m of angular momentum
is defined by

m = x × u.

Balance of angular momentum reads as follows

Dt(ρm) + div(ρu × m − x × T) = −ei × Ti,
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where we use Einstein’s sum convention and Ti denotes the i-th row of the stress
tensor T . Thus the flux of angular momentum Φm is given by

Φm = ρu × m − x × T .

It is well-known that ei × Ti = 0 in case T is symmetric. Therefore we may concen-
trate on the non-symmetric part of T which is given by

Tas = μV

2γ
(n ⊗ d − d ⊗ n).

This implies

ei × Tas
i = μV

2γ
(n × d − d × n) = −μV

γ
d × n

= μV

γ
d × div(λ∇)d

= ∂i(
μV

γ
λd × ∂id) − ∂i(

μV

γ
)λd × ∂id − μVλ

γ
∂id × ∂id

= ∂i(
μV

γ
λd × ∂id) − ∂i(

μV

γ
)λd × ∂id.

This shows that ei × Tas
i is a divergence provided ∇x

μV

γ
= 0, i.e. if

μV = c0γ, for some constant c0 ∈ R.

Then the flux of angular momentum becomes

Φm = ρu × m − x × T + c0λd × ∇d.

We mention that if we also require so-called objectivity of the model, then c0 = 1,
which means μV = γ .

7. The Complete Model: Non-isothermal, Compressible Fluid, Isotropic Elas-
ticity
Summarizing, the complete model may be represented as

∂tρ + div(ρu) = 0 in Ω,

ρ(∂t + u · ∇)u + ∇π = div S in Ω,

ρ(∂t + u · ∇)ε + div q − div(λ∇dDtd) = S : ∇u − πdiv u in Ω,

(15.19)

γ (∂t + u · ∇)d − μV Vd − μDPdDd − div[λ∇]d = λ|∇d|22d, in Ω,

u = 0, q · ν = 0, ∂νd = 0 on ∂Ω.

ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in Ω
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These equations have to be supplemented by the thermodynamical laws

ε = ψ + θη, η = −∂θψ, κ = ∂θε,

π = ρ2∂ρψ, λ = ρ∂τψ, (15.20)

and by the constitutive laws

S = SN + SE + SstretchL + SdissL ,

SN = 2μsD + μbdiv u I, SE = −λ∇d[∇d]T, (15.21)

SstretchL = μD + μV

2γ
n ⊗ d + μD − μV

2γ
d ⊗ n, n = μV Vd + μDPdDd − γDtd,

SdissL = μP

γ
(n ⊗ d + d ⊗ n) + γμL + μ2

P
2γ

(PdDd ⊗ d + d ⊗ PdDd) + μ0(Dd|d)d ⊗ d,

q = −α0∇θ − α1(d|∇θ)d.

Here all coefficients μj, αj and γ are functions of ρ, θ, τ . For thermodynamic con-
sistency we require

μs ≥ 0, 2μs + nμb ≥ 0, α0 ≥ 0, α0 + α1 ≥ 0, μ0, μL ≥ 0, γ > 0,
(15.22)

Finally, we will use in addition the following conditions

μs > 0, 2μs + nμb > 0, α0 > 0, α0 + α1 > 0, γ > 0,

κ > 0, λ > 0, ∂ρπ > 0, (15.23)

to identify the equilibria and to investigate their thermodynamic stability in Sect. 15.3.

8. The Complete Model: Non-isothermal, Compressible Fluid, Non-isotropic
Elasticity
For the sake of completeness, we comment briefly on the non-isotropic case. Then
ψ = ψ(ρ, θ, d,∇d), and the Ericksen stress tensor becomes SE = −ρ

∂ψ

∂∇d [∇d]T.
Following the derivation in Sects. 2.3 and 2.4, here the energy and entropy fluxes
read again as

Φe := q + πu − Su − ΠDtd, Φη = q/θ,

and the equation for d becomes

γDtd = Pda, a = ∂i(ρ∇∂idψ) − ρ∇dψ,

in the case without stretching, and

γDtd = Pda + μV Vd + μDPdDd

http://dx.doi.org/10.1007/978-4-431-56457-7_2
http://dx.doi.org/10.1007/978-4-431-56457-7_2
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in the stretched case. The couple stress here isΠ = ρ∂∇dψ , and the entropy produc-
tion now reads as

θr = [α0|∇θ |22 + α1(d|∇θ)2]/θ + 2μs|D|22 + μb|div u|2

+ 1

γ
|Pd(a − μPDd)|22 + μL|PdDd|2 + μ0(Dd|d)2.

Summarizing, the complete model in the case of non-isotropic elasticity becomes

∂tρ + div(ρu) = 0 in Ω,

ρ(∂t + u · ∇)u + ∇π = div S in Ω,

ρ(∂t + u · ∇)ε + div q − div(ρ∂∇dψDtd) − S : ∇u + πdiv u = 0 in Ω, (15.24)

γ (∂t + u · ∇)d − μV Vd − μDPdDd − Pd
(
div(ρ

∂ψ

∂∇d
) − ρ∇dψ

) = 0, in Ω,

u = 0, q · ν = 0, ∂νd = 0 on ∂Ω.

ρ(0) = ρ0, u(0) = u0, θ(0) = θ0, d(0) = d0 in Ω

These equations have to be supplemented by the thermodynamical laws

ε = ψ + θη, η = −∂θψ, κ = ∂θε, π = ρ2∂ρψ, (15.25)

and by the constitutive laws

S = SN + SE + SstretchL + SdissL ,

SN = 2μsD + μbdiv u I, SE = −ρ
∂ψ

∂∇d
[∇d]T, (15.26)

SstretchL = μD + μV

2γ
n ⊗ d + μD − μV

2γ
d ⊗ n, n = μV Vd + μDPdDd − γDtd,

SdissL = μP

γ
(n ⊗ d + d ⊗ n) + γμL + μ2

P

2γ
(PdDd ⊗ d + d ⊗ PdDd) + μ0(Dd|d)d ⊗ d,

q = −α0∇θ − α1(d|∇θ)d.

Here all coefficients μj, αj and γ are functions of ρ, θ,∇d. For thermodynamic
consistency we require as before only (15.22).We also note that the natural boundary
condition at ∂Ω here becomes

νi∇∂idψ = 0.

Observe that this condition is fully nonlinear, in general, in contrast to the isotropic
case.

Concluding, we mention as an example the classical Oseen-Frank free energy
density for the isothermal incompressible case, which is given by

ψFO = k1(div d)2 + k2|d × (∇ × d)|22 + k3|d · (∇ × d)|2 + (k2 + k4)[tr(∇d)2 − (div d)2],

where ki are given constants.
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15.3 Thermodynamical Consistency and Stability

In this sectionwe determine the equilibria set of the complete system described above
in Sect. 2.7, show that the critical points of the entropy functional coincide with these
equilibria and prove that they are thermodynamically stable. We begin investigating
the set of equilibria.

1. Equilibria
Suppose that in some time interval t ∈ (t1, t2)wehave ∂tN(t) = 0.Then r ≥ 0 implies
r(t, x) = 0 in Ω . This yields ∇θ(t, x) = 0 in Ω as α0 > 0 and α0 + α1 > 0. Hence,
θ = θ∗ is constant in Ω .

Next, byμs > 0, 2μs + nμb > 0, we also haveD = 0 inΩ . By Korn’s inequality
and the no-slip boundary condition for u, we hence obtain u = u∗ = 0 in Ω , t ∈
(t1, t2). Therefore ∂tρ = ∂tu = 0, which implies ∇π = 0.

Finally, γ > 0 yields Dtd = 0 in Ω , which implies that d satisfies the nonlinear
eigenvalue problem

div(a(x)∇)d + a(x)|∇d|22d = 0 in Ω,

|d|2 = 1 in Ω,

∂νd = 0 on ∂Ω,

(15.27)

where a(x) = λ(ρ(t, x), θ(t), τ (t, x)), for each fixed t ∈ (t1, t2). But, as the next
lemma shows, this implies ∇d = 0 in Ω . Hence, d = d∗ is constant.

Lemma 1 Let q > n, a ∈ H1
q (Ω), a > 0 and suppose that d ∈ H2

q (Ω;Rn) satisfies
(15.27). Then d is constant in Ω .

Proof The idea is to reduce inductively the dimension N = n of the vector d. This
can be achieved by introducing polar coordinates according to

d1 = c1 cosϕ, d2 = c1 sin ϕ, dj = cj−1, j ≥ 3.

Simple computations yield

1 = |d|22 = |c|22, |∇d|22 = |∇c|22 + c21|∇ϕ|22,

and
div(a∇)cj + a[|∇c|22 + c21|∇ϕ|22]cj = 0 in Ω,

aswell as ∂νcj = 0 on ∂Ω for j = 2, . . . , n − 1.Moreover, by somemore calculations
we further obtain

−div(a∇)c1 + ac1|∇ϕ|22 = a[|∇c|22 + c21|∇ϕ|22]c1 in Ω,

http://dx.doi.org/10.1007/978-4-431-56457-7_2
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and
c1div(a∇)ϕ + 2a∇c1 · ∇ϕ = 0 in Ω,

as well as
∂νc1 = c1∂νϕ = 0 on ∂Ω.

Multiplying the second of the last equations by c1ϕ and integrating overΩ we deduce

0 =
∫

Ω

[c1div(a∇)ϕ + 2a∇c1 · ∇ϕ]c1ϕdx =
∫

Ω

div[c21a∇ϕ]ϕdx = −
∫

Ω

c21a|∇ϕ|2dx.

Hence, c1∇ϕ = 0 as a > 0 by assumption. This implies that c satisfies equation
(15.27), where the vector c has dimensionN − 1. Inductively, we arrive at dimension
N = 1 and if d is a solution of (15.27) with dimension 1, then d = 1 or d = −1 by
the connectedness of Ω . �

Knowing that θ andd are constant inΩ , and∇π = 0,we see thatπ = ρ2∂ρψ(ρ, θ, 0)
is constant, henceρ = ρ∗ is constant, provided the functionρ �→ π(ρ, θ, 0) is strictly
increasing. This shows that we are at an equilibrium (ρ∗, u∗, θ∗, d∗) ∈ E with

E = {(ρ∗, u∗, θ∗, d∗) ∈ (0,∞) × {0} × (0,∞) × R
n : |d∗|2 = 1},

the set of physical equilibria. In particular, the functional −N is a strict Lyapunov
functional.

Observe that E forms an n + 1-dimensional manifold. If we take into account
conservation of mass and energy,

M0 :=
∫

Ω

ρdx = ρ∗|Ω|, E0 :=
∫

Ω

(ρ|u|22/2 + ρε)dx = ρ∗ε∗|Ω|,

at an equilibrium, then the values of ρ∗ and θ∗ are uniquely determined by

ρ∗ = M0/|Ω|, ε∗ := ε(ρ∗, θ∗, 0) = E0/M0,

whenever θ �→ ε(ρ, θ, 0) is strictly increasing, i.e. whenever κ > 0.

2. Critical Points of Total Entropy
(a) Consider the entropy functional N with constraints of prescribed mass M = M0

and energy E = E0, as well as G(d) := (|d|22 − 1)/2 = 0. Suppose we have a suffi-
ciently smooth critical point (ρ, u, θ, d) ofNwithρ, θ > 0, subject to the constraints.
Then the method of Lagrange multipliers yields κM, κE ∈ R and κG ∈ L2(Ω) such
that

〈N′ + κMM′ + κEE′ + κGG
′|z〉 = 0,
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where z = (σ, v, ϑ, δ). We have

〈M′|z〉 =
∫

Ω

σdx, 〈κGG ′|z〉 =
∫

Ω

κGd · δdx,

and

〈N′|z〉 =
∫

Ω

[(∂ρ(ρη))σ + ρ∂θηϑ + ρ∂τη∇d : ∇δ]dx,

as well as

〈E′|z〉 =
∫

Ω

[ρu · v(∂ρ(ρε))σ + ρ∂θεϑ + ρ∂τ ε∇d : ∇δ]dx.

This yields the relation

0 =
∫

Ω

{[∂ρ(ρη) + κM + κE(
1

2
|u|22 + ∂ρ(ρε))]σ + [ρ∂θη + κEρ∂θε]ϑ}dx

+
∫

Ω

{κEρu · v + [ρ∂τη + κEρ∂τ ε]∇d : ∇δ + κGd · δ}dx.

We first vary ϑ to obtain ρ(∂θη + κE∂θε) = 0, which by ρ > 0 and by the definition
of η, ε and κ > 0 yields κE = −1/θ . Hence, θ is constant and κE < 0. Next, varying
v we obtain u = 0, as κE and ρ are not zero. Next we vary δ, which after an integration
by parts, employing the boundary condition ∂νd = 0, implies

div(λ∇)d + κGd = 0 in Ω.

But then |d|2 = 1 implies κG = λ|∇d|22, and d is a solution of the problem (15.27),
which by Lemma 1 shows that d is constant. Finally, we vary σ to the result that
∂ρ(ρψ) = θκM is constant. As π = ρ2∂ρψ is strictly increasing in the variable ρ,
this shows that ρ is constant inΩ as well. Therefore, the critical points of the entropy
functional are precisely the equilibria of the problem.

(b) Let
H := N′′ + κEE′′

denote the second variation of N. Note that M′′ = 0 and κG = λ|∇d|22 = 0. The
identities

ρ(∂τη − 1

θ
∂τ ε) = −λ, ∂ρ∂θ (ρη) − 1

θ
∂ρ∂θ (ρε) = 0,

∂2
ρ(ρη) − 1

θ
∂2
ρ(ρε) = −∂ρπ

ρθ
, ∂2

θ η − 1

θ
∂2
θ ε = − κ

θ2
,
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imply

−〈Hz|z〉 =
∫

Ω

[∂ρπ

ρθ
σ 2 + κ

θ2
ϑ2 + λ|∇δ|22

]
dx ≥ 0,

by κ, λ, ∂ρπ ≥ 0. This shows that the second variation of N at an equilibrium is
negative semi-definite,whichmeans that the equilibria are thermodynamically stable.

(c) Summarizing we have the following basic result

Theorem 1 The complete model has the following properties.

(i) Along smooth solutions total mass M and energy E are preserved.
(ii) Along smooth solutions the total entropy N is non-decreasing.
(iii) The negative total entropy is a strict Lyapunov functional.
(iv) The condition |d|2 = 1 is preserved along smooth solutions.
(v) The equilibria are given by the set of constants

E = {(ρ∗, 0, θ∗, d∗) : ρ∗, θ∗ ∈ (0,∞), d∗ ∈ R
n, |d∗|2 = 1}.

Here ρ∗, θ∗ are uniquely determined by the identities

ρ∗ = M0/|Ω|, ε(ρ∗, θ∗, 0) = E0/M0.

(vi) The equilibria are precisely the critical points of the total entropy with prescribed
mass and energy.
(vii) The second variation ofNwith given mass and energy at equilibrium is negative
semidefinite.

In particular, the model is thermodynamically consistent and it is also thermo-
dynamically stable.

3. The Isothermal Case
In the isothermal case we set θ = const and ignore the equation for the energy. In
this case, instead of the total mass specific energy e = |u|22/2 + ε, we employ the
available energy ea which is defined by ea = |u|22/2 + ψ . We have the following
balance of ea which is a direct consequence of balance of total energy and entropy

ρ(∂t + u · ∇)ea + div(Φe − θΦη) = −θr − ρηDtθ − Φη · ∇θ.

In the case where θ is constant this reduces to

ρ(∂t + u · ∇)ea + div(Φe − θΦη) = −ra,

with

ra = 2μs|D|22 + μb|div u|2 + μ0(Dd|d)2 + μL|PdDd|22 + |Pd(div(λ∇)d − μPDd)|22/γ.
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Therefore, in the isothermal case, the total available energy Ea is a strict Ljapunov
functional for the system, i.e.

∂tEa(t) = −
∫

Ω

ra(t, x)dx, Ea(t) =
∫

Ω

ρ(t, x)ea(t, x)dx.

As a consequence, the equilibrium set is the same as in the non-isothermal case,
dropping temperature, hence is a manifold of dimension n, and when we incorporate
preserved mass it is isomorphic to the unit sphere in R

n. In this case the equations
read

∂tρ + div(ρu) = 0 in Ω,

ρ(∂t + u · ∇)u + ∇π = divS in Ω, (15.28)

γ (∂t + u · ∇)d − μV Vd − div(λ∇)d = λ|∇d|22d + μDPdDd in Ω

where ψ = ψ(ρ, τ), π = ρ2∂ρψ , λ = ρ∂τψ/θ , and

S = 2μsD + μbdiv u I − θλ∇d[∇d]T + SstretchL + SdissL ,

SstretchL = μD + μV

2γ
n ⊗ d + μD − μV

2γ
d ⊗ n, n = μV Vd + μDPdDd − γDtd. (15.29)

SdissL = μP

γ
(n ⊗ d + d ⊗ n) + γμL + μ2

P
2γ

(PdDd ⊗ d + d ⊗ PdDd) + μ0(Dd|d)d ⊗ d,

If one further restricts to the incompressible case ρ = const > 0, λ constant,
μ0 = μD = μV = μP = μL = 0, with μ = μs one obtains the so-called isothermal
simplified Ericksen-Leslie model

ρ(∂t + u · ∇)u + ∇π = μsΔu − λdiv(∇d[∇d]T) in Ω,

|d|2 = 1, div u = 0 in Ω, (15.30)

γ (∂t + u · ∇)d − λΔd = λ|∇d|2d in Ω.

Of course, in all caseswe have to add initial conditions aswell as boundary conditions
u = ∂νd = 0 on ∂Ω . Problem (15.30) subject to the condition |d|2 = 1 inΩ has been
analyzed in a fairly complete manner in the recent article [17] by Hieber, Nesensohn,
Prüss and Schade.

15.4 Analysis of the Non-isothermal Simplified Model

In this section we consider the incompressible case ρ = const and we let μ = μs.
Hence, the pressure π is no longer determined by Maxwell’s relation; it is now
a free variable, a Lagrangian multiplier to cover the constraint div u = 0. Further-
more, in the followingwe neglect stretching, i.e. we assumeμD = μV = μP = μL =



450 M. Hieber and J. Prüss

μ0 = 0. For simplicity we also set α1 = 0 and α = α0. Then the resulting model—
which we call the non-isothermal simplified Ericksen-Leslie model—reads as fol-
lows.

ρDtu − 2div(μD) + ∇π = −div(λ∇d[∇d]T) in Ω,

|d|2 = 1, div u = 0 in Ω,

ρκDtθ − div(α∇θ) = 2μ|D|22 − λ∇d[∇d]T : D
− ρ∂τ ε∇d : Dt∇d + div(λ∇dDtd) in Ω,

(15.31)

γDtd − div(λ∇)d = λ|∇d|22d in Ω,

u = ∂νθ = ∂νd = 0 on ∂Ω,

u(0) = u0, θ(0) = θ0, d(0) = d0 in Ω.

Recall that ρ > 0 is constant and α, γ, μ as well as λ = ρ∂τψ, κ = ∂θε = −θ∂2
θ ψ

are functions of θ > 0 and τ ≥ 0.

1. Regularity Assumptions (R)
The parameter functions should have the following minimal regularity properties:

μ, α, γ ∈ C2((0,∞) × [0,∞)), ψ ∈ C4((0,∞) × [0,∞));

We also require the positivity conditions

μ > 0, α > 0, κ > 0, γ > 0, λ > 0,

which have been mentioned before, but for well-posedness of the problem for d we
need in addition to require λ + 2τ∂τλ > 0. We assume that Ω ⊂ R

n is a bounded
domain with C3−-boundary.

2. Maximal Lp-Regularity of the Principal Linearization
The equation for u will turn out to be only weakly coupled, so we first concentrate
on the system for w := [θ, d]T. The principal part of the linearization becomes

∂tw + A (w0,∇)w = f in Ω,

∂νw = 0 on ∂Ω, (15.32)

w(0) = w0 in Ω.

The matrix A = A (w0,∇) reads as

A =
[−a0Δ − a1∇d0[∇d0]T : ∇2, b0∇d0 : (λ0Δ + ∂τλ0[∇d0]T∇d0 : ∇2)∇

b1[∇d0]T∇, −γ −1
0 (λ0Δ + ∂τλ0[∇d0]T ⊗ ∇d0 : ∇2).

]
.
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Here κ0 = κ(θ0, τ0) etc., and we used the abbreviations

a0 = α0

ρκ0
, a1 = ρθ0[∂τη0]2

γ0κ0
, b0 = θ0∂τη0

γ0κ0
, b1 = ρ∂τη0

γ0
.

Note that A (w0,∇) is second order in the diagonal, but third and first order off-
diagonal! This is a mixed-order problem subject to Neumann boundary conditions
and subject to variable, non-smooth coefficients. For resolvent estimates within the
Lp-setting for various mixed-order systems we refer to the work of Grubb [16].
Regarding the maximal Lp-regularity of this nonstandard problem, we do not know
of any general theory covering the above situation. However, we note for the whole
space case there is the theory of Denk and Kaip [8] available. Nevertheless, we prove
maximal Lp-regularity for this problem in the following.

To this end, fix q ∈ (1,∞) and choose as a base space

Y0 := Lq(Ω) × H1
q (Ω;Rn),

and as a regularity space

Y1 := {w = (θ, d) ∈ H2
q (Ω) × H3

q (Ω;Rn) : ∂νθ = ∂νd = 0 on ∂Ω},

equipped with their natural norms. We will also employ the time-weighted spaces
defined by

y ∈ Hm
p,μ(J;Y) ⇔ t1−μy ∈ Hm

p (J;Y), m ∈ N0, μ ∈ (1/p, 1].

The time trace space Yγ,μ is then given by

Yγ,μ = {(θ, d) ∈ B2(μ−1/p)
qp (Ω) × B2(μ−1/p)+1

qp (Ω;Rn) : ∂νd = 0 on ∂Ω},

provided
1

p
< μ <

1

2
+ 1

p
+ 1

2q
;

otherwise one has to add ∂νθ = 0 in the definition of Yγ,μ. In order to profit from the
embedding

Yγ,μ ↪→ C(Ω) × C1(Ω;Rn), (15.33)

we will always assume

1 ≥ μ >
1

p
+ n

2q
.

Then by means of the assumptions stated before we obtain the following result.
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Theorem 2 Assume (R), 1/p + n/2q < μ ≤ 1, and suppose that w0 ∈ Yγ,μ. Then
the differential operator A2(w0) defined by A2(w0)w := A (w0,∇)w with domain
D(A2(w0)) := Y1 has maximal Lp-regularity in Y0 and thus also maximal Lp,μ-
regularity in Y0.

Proof The proof is based on the results and techniques developed by Denk et al.
[7] for the case μ = 1. By the results due to Prüss and Simonett [34], these results
extend to general μ ∈ (1/p + n/2q, 1], as the coefficients have enough regularity by
the embedding (15.33).

(a) The case Ω = R
n with constant coefficients

In the sequel, we denote the covariable for t by z and that for x by ξ . The symbol
A (ξ) of A (w0,∇) reads as

A (ξ) =
[
a0|ξ |2 + a1|c(ξ)|2 −ib0(λ0|ξ |2 + ∂τλ0|c(ξ)|2)c(ξ)T

ib1c(ξ) λ0
γ0

|ξ |2 + ∂τ λ0
γ0

c(ξ) ⊗ c(ξ)

]
,

where c(ξ) = ξ · ∇d0. It is convenient to reduce this symbol for the variable wred =
[θ, dred]T where dred = c(ξ) · d. The reduced symbol Ared(ξ) becomes

Ared(ξ) =
[
a0|ξ |2 + a1|c(ξ)|2 −ib0(λ0|ξ |2 + ∂τλ0|c(ξ)|2)

ib1|c(ξ)|2 λ0
γ0

|ξ |2 + ∂τ λ0
γ0

|c(ξ)|2
]

.

This symbol is homogeneous of second order and not strongly elliptic. However, it
is normally elliptic in the sense of [7] as its spectrum satisfies σ(Ared(ξ)) ⊂ (0,∞)

for each ξ �= 0. The latter can be seen by considering

det(z + Ared(ξ)) = (z + a0|ξ |2 + a1|c(ξ)|2)(z + λ0

γ0
|ξ |2 + ∂τλ0

γ0
|c(ξ)|2)

− b0b1|c(ξ)|2(λ0|ξ |2 + ∂τλ0|c(ξ)|2), ξ �= 0,

which has two negative zeros, as α, γ, κ > 0 and λ + 2τ∂τλ > 0. Therefore,Ared is
normally elliptic, and by Sect. 6 of [7], theLp-realizationAred ofAred hasmaximalLp-
regularity. This shows that whenever fθ ∈ Lp(J;Lq(Rn)) and fd ∈ Lp(J;H1

q (Ω;Rn))

are given, there is a unique solution

wred = [θ, d̄]T ∈ 0H
1
p(J;Lq(Rn;R2)) ∩ Lp(J;H2

q (R
n;R2))

of
∂twred + Aredwred = fred, t > 0, wred(0) = 0,

where fred = [fθ ,−ic(∇) · fd]T. To obtain d, it remains to solve the problem

∂td − λ0

γ0
Δd = f 1d := fd + i

∂τλ0

γ0
c(∇)dred − b1c(∇)θ, t > 0, d(0) = 0,



15 Thermodynamical Consistent Modeling and Analysis … 453

with maximal Lp-regularity of −Δ to obtain a unique solution

d ∈ 0H
1
p(J;H1

q (R
n;Rn)) ∩ Lp(J;H3

q (R
n;Rn)),

as λ, γ > 0 and f 1d ∈ Lp(J;H1
q (R

n;Rn)). This proves Theorem 2 in the caseΩ = R
n

with constant coefficients. As detailed in Sect. 6 of [7], this assertion extends by
perturbation and localization to variable coefficients, still in the case Ω = R

n.

(b) The case Ω = R
n+ with constant coefficients

It is convenient to replace x ∈ R
n+ by (x, y) ∈ R

n−1 × R+. On the symbolic level we
have to replace ξ by ξ − iν∂y, where ν denotes the outer normal at a boundary point
of Ω , and ξ · ν = 0. Then c(ξ) becomes

c(ξ − iν∂y) = (ξ − iν∂y) · ∇d0 = ξ · ∇d0 − iν · ∇d0∂y = ξ · ∇d0,

as ∂νd0 = 0. Therefore the symbol A (ξ) from Step (a) is replaced by

−E∂2
y + z + A (ξ),

where

E =
[
a0 −ib0λ0c(ξ)T

0 (λ0/γ0)I

]
.

Considering again the reduced variables wred = (θ, dred) with dred = c(ξ) · d, the
reduced symbol becomes

−Ered∂
2
y + z + Ared(ξ),

with

Ered =
[
a0 −ib0λ0

0 λ0/γ0

]
.

To apply the half-space theory for normally elliptic operators in Sect. 7 of [7], we
need to verify the corresponding Lopatinskii-Shapiro condition (LS) which states
the following.

If w ∈ C0(R+;R2) satisfies

(LS) − Ered∂
2
y w(y) + (z + Ared(ξ))w(y) = 0, y > 0, ∂yw(0) = 0,

then w = 0.

Condition (LS) can be proved without much pain. In fact, we observe that E−1
red(z +

Ared(ξ)) has no eigenvalues −ω2 ≤ 0; otherwise z ∈ C \ (−∞, 0] would be a solu-
tion of

0 = det(z + Ared(ξ) − ω2Ered) = det(z + Ared(ξ − iων)),
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which by Step (a) is impossible. Therefore B = (E−1
red(z + Ared(ξ)))1/2 is well-

defined and has spectrum inC+. Thus,wred(y) := e−Bywb is the unique stable solution
of

−Ered∂
2
y wred(y) + (z + Ared(ξ))wred(y) = 0, y > 0, wred(0) = wb.

The Neumann condition implies

0 = ∂ywred(0) = −Bwb,

hence wb = 0, as B is invertible, for all (z, ξ) �= (0, 0), z ∈ C \ (−∞, 0], ξ ∈ R
n,

ξ · ν = 0. Therefore, the techniques of Sect. 7 in [7] apply and show that the reduced
problem has maximal Lp-regularity in Rn+.

As a result, given fθ ∈ Lp(J;Lq(Rn+)), fd ∈ Lp(J;H1
q (R

n+;Rn)), with fred =
[fθ ,−ic(∇x) · fd]T, we find a unique solution wred = [θ, dred]T of the problem

∂twred + Aredwred = fred in Rn
+, wred(0) = 0,

within the class

wred ∈ 0H
1
p(J;Lq(Rn

+;R2)) ∩ Lp(J;H2
q (R

n
+;R2)),

where Ared denotes the realization of Ared in Lq(Rn+;R2) with Neumann boundary
condition.

Next, we solve the remaining problem for d

∂td − λ0

γ0
Δd = f 1d in Rn

+, d(0) = 0,

∂νd = 0 on ∂Rn
+

with

f 1d := fd + i
∂τλ0

γ0
c(∇)dred − b1c(∇)θ,

in a similar way as in Step (a) by employing maximal Lp-regularity for −Δ. This
yields a unique solution

d ∈ 0H
1
p(J;Lq(Rn

+;Rn)) ∩ Lp(J;H2
q (R

n
+;Rn)).

As f 1d ∈ Lp(J;H1
q (R

n+;Rn)) we may differentiate the equation for d tangentially to
obtain also

∇xd ∈ 0H
1
p(J;Lq(Rn

+;R(n−1)×n)) ∩ Lp(J;H2
q (R

n
+;R(n−1)×n)).
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On the other hand, wemay also take the derivative with respect to the normal variable
y in order to obtain a problem with Dirichlet boundary conditions for v := ∂yd. We
solve this with maximal Lp-regularity to obtain

∂yd ∈ 0H
1
p(J;Lq(Rn

+;Rn)) ∩ Lp(J;H2
q (R

n
+;Rn)).

This proves Theorem 2 for the caseΩ = R
n+ with constant coefficients. As described

in [7], Sect. 7, this assertion extends by perturbation and localization to variable
coefficients, still in the case Ω = R

n+.

(c) General domains and variable coefficients
Here we follow the line given in [7], Sect. 8. We may use a perturbation argument
to extend the result for the half-space to a bent half-space and then employ the
localization method to prove Theorem 2 for general domains with C3−-boundary.

3. Local-Wellposedess
We rewrite the above problem as an abstract quasilinear evolution equation of the
form

ż + A(z)z = F(z), t > 0, z(0) = z0. (15.34)

Here z = (u,w) = (u, θ, d) and we apply theHelmholtz projection P to the equation
for u. The base space will be X0 := Lq,σ (Ω) × Y0, where the subscript σ means
solenoidal. Then with the generalized Stokes operator A1(w) = −Pμ(θ, τ )Δ, we
define the regularity space by

X1 := D(A1) × Y1, D(A1) = {u ∈ H2
q (Ω;Rn) ∩ Lq,σ (Ω) : u = 0 on ∂Ω}.

The operator A(z) is defined by A(z) = diag(A1(w),A2(w)), and F(z) collects all
lower order terms.

In order to prove local well-posedness of (15.34), we may now resort to abstract
theory, e.g. to the results by Köhne et al. [20] and by LeCrone et al. [21].

Then, by Theorem 2 and by the maximal regularity of the generalized Stokes
operator, see e.g. Bothe and Prüss [1],A(z) hasmaximal Lp-regularity. For an interval
J = [0, a], the solution space Eμ(J) will be

Eμ(J) = H1
p,μ(J;X0) ∩ Lp,μ(J;X1).

The time-trace space Xγ,μ of Eμ(J) is given by

Xγ,μ = {u ∈ B2(μ−1/p)
qp (Ω)n ∩ Lq,σ (Ω) : u|∂Ω

= 0} × Yγ,μ;

it satisfies

Xγ,μ ↪→ B2(μ−1/p)
qp (Ω)n+1 × B1+2(μ−1/p)

qp (Ω)n ↪→ C(Ω)n+1 × C1(Ω)n,
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provided
1

p
+ n

2q
< μ ≤ 1. (15.35)

Here Bs
pq denote as usual the Besov spaces; see e.g. Triebel [36]. Then A,F satisfy

the requirements in the paper by LeCrone et al. [21], and so we have local well-
posedness. If 1

p + n
2q + 1

2 < μ ≤ 1, the conditions of Köhne et al. [20] also hold. In
particular, defining the state manifold of (15.34) by

SM = {(u, θ, d) ∈ Xγ : θ > 0, |d|2 = 1}, Xγ := Xγ,1,

thenSM is locally positive invariant for the semi-flow, total energy E is preserved,
and the negative total entropy −N is a strict Lyapunov functional for the semi-flow
onSM . Summarizing we have the following result

Theorem 3 Assume (R), let p, q, μ be subject to (15.35), and let z0 ∈ Xγ,μ. Then
for some a = a(z0) > 0, there is a unique solution

z ∈ H1
p,μ(J,X0) ∩ Lp,μ(J;X1), J = [0, a],

of (15.34), i.e. (15.31) on J. Moreover,

z ∈ C([0, a];Xγ,μ) ∩ C((0, a];Xγ ),

i.e. the solution regularizes instantly in time. It depends continuously on z0 and exists
on a maximal time interval J(z0) = [0, t+(z0)). Moreover,

t[ d
dt

]z ∈ H1
p,μ(J;X0) ∩ Lp,μ(J;X1),

and |d(t, x)|2 ≡ 1,E(t) ≡ E0, and−N is a strict Lyapunov functional. Furthermore,
the problem (15.34) generates a local semi-flow in its natural state manifold SM .

4. The Generalized Principle of Linearized Stability
Consider the autonomous quasilinear problem

ż(t) + A(z(t))z(t) = F(z(t)), t > 0, z(0) = z0. (15.36)

Here we assume
(A,F) ∈ C1(V,B(X1,X0) × X0), (15.37)

where V ⊂ Xγ is open. Let E ⊂ V ∩ X1 denote the set of equilibrium solutions of
(15.36), which means that

z ∈ E if and only if z ∈ V ∩ X1, A(z)z = F(z).
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Given an element z∗ ∈ E , we assume that z∗ is contained in an m-dimensional man-
ifold of equilibria. This means that there is an open subset U ⊂ R

m, 0 ∈ U, and a
C1-function ψ : U → X1, such that

ψ(U) ⊂ E , ψ(0) = z∗, A(ψ(ζ ))ψ(ζ ) = F(ψ(ζ )), ζ ∈ U. (15.38)

and the rank of ψ ′(0) equals m.
Let A0 denote the linearization of A(z)z − F(z) at z∗, i.e.

A0h = A(z∗)h + [A′(z∗)h]z∗ − F ′(z∗)h.

We call z∗ ∈ E normally stable if the following conditions hold.

(i) near z∗ the set E is a C1-manifold in X1, dim E = m ∈ N0,
(ii) the tangent space for E at z∗ is isomorphic to N(A0),
(iii) 0 is a semi-simple eigenvalue of A0, i.e. N(A0) ⊕ R(A0) = X0,
(iv) σ(A0) \ {0} ⊂ C+ = {ζ ∈ C : Re ζ > 0}.
The following result is due to Prüss et al. [35].

Theorem 4 Let 1 < p < ∞. Suppose z∗ ∈ V ∩ X1 is an equilibrium of (15.36) and
that (A,F) satisfy (15.37) and that A(z∗) has the property of maximal Lp-regularity.
Assume further that z∗ is normally stable.

Then z∗ is stable in Xγ , and there exists δ > 0 such that the unique solution
z(t) of (15.36) with initial value z0 ∈ Xγ satisfying |z0 − z∗|γ < δ exists on R+ and
converges at an exponential rate in Xγ to some z∞ ∈ E as t → ∞.

It is worthwhile to note that in case m = 0, z∗ is necessarily isolated by (i). Then
Theorem 4 reduces to the usual principal of linearized stability, as (ii), (iii), (iv) are
equivalent to σ(A0) ⊂ C+.

5. Linear Stability of Equilibria
The linearization of (15.34), i.e. of (15.31) at an equilibrium z∗ = (0, θ∗, d∗) is given
by the operator

A∗ = −diag
(
(μ∗/ρ)PΔ, (α∗/ρκ∗)Δ, (λ∗/γ∗)Δ

)

in the base space X0 with domain D(A∗) = X1. This operator has maximal Lp-
regularity, it is the negative generator of a compact analytic C0-semigroup, and
it has compact resolvent. So its spectrum consists only of countably many eigen-
values of finite multiplicity, which are all positive, hence stable, except for 0. The
eigenvalue 0 is semi-simple, its eigenspace is given by

N(A∗) = {(0, ϑ,d) : ϑ ∈ R,d ∈ R
n},

hence it coincides with the set of constant equilibria Ē , when ignoring the constraint
|d|2 = 1 and conservation of energy. Therefore each such equilibrium is normally
stable.
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6. Nonlinear Stability
We have stability with asymptotic phase for the equilibria of (15.34).

Theorem 5 Assume (R). Then any equilibrium z∗ ∈ Ē of (15.34) is stable in Xγ .
Moreover, for each z∗ ∈ Ē there is ε > 0 such that if |z0 − z∗|Xγ,μ

≤ ε, then the
solution z of (15.34) with initial value z0 exists globally in time and converges at an
exponential rate in Xγ to some z∞ ∈ Ē .

This result is proved by means of the generalized principle of linearized stability,
Theorem 4. In fact, by the previous section we know that each equilibrium z∗ =
(0, θ∗, d∗) is normally stable.

7. Long-Time Behaviour
We conclude this paper with a result on the convergence of solutions to equilibria in
the topology of the state manifoldSM .

Theorem 6 Assume (R) and let z be the solution of (15.34), i.e. of (15.31), with
initial value z0 ∈ SM . Then the following assertions hold.

(a) If we suppose
sup

t∈(0,t+(z0))
[|z(t)|Xγ,μ

+ |1/θ(t)|L∞] < ∞,

then t+(z0) = ∞ and z is a global solution.
(b) If z is a global solution, bounded in Xγ,μ and with 1/θ bounded, then z converges
exponentially inSM to an equilibrium z∞ ∈ E of (15.34), as t → ∞.

This result follows from abstract dynamical system arguments involving the strict
Lyapunov functional −N, as well as the nonlinear stability result; see Köhne et al.
[20]. Note that, by a compactness argument, the converse of (b) is also valid.
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Chapter 16
Statistical Mechanics of Quasi-geostrophic
Vortices

Takeshi Miyazaki, Yuichi Shimoda and Keisei Saga

Abstract The statistical mechanics of quasi-geostrophic vortices is investigated
numerically and theoretically. Direct numerical simulations of a point vortex sys-
tem of mixed sign under periodic boundary conditions are performed using a fast
special-purpose computer for molecular dynamics (GRAPE9). Clustering of point
vortices of like sign is observed and a columnar dipole structure appears as an equilib-
rium state. These numerical results are explained from the viewpoint of the classical
statistical mechanics. A three-dimensional mean field equation is derived based on
the maximum entropy theory. The numerically obtained end states are shown to be
the two-dimensional sn-sn dipole solutions of the mean field equation (i.e., the sinh-
Poisson equation).We present other branches of two- and three-dimensional solution
of the mean field equation. The entropy of these solution branches is found to be
smaller than that of the two-dimensional sn-sn dipole branch.The stability of themax-
imum entropy states is studied theoretically and numerically. The two-dimensional
(sn-sn dipole and zonal) solutions are stable against disturbances of finite amplitude,
whereas the three-dimensional solutions are shown to be unstable. These findings
explain the reason why only the two-dimensional sn-sn dipole states are found in the
numerical simulations of point vortices. The influence of the aspect ratio of periodic
unit box on the maximum entropy states and their stability is investigated. When
the horizontal aspect ratio (Ly/Lx ) is less than unity, the entropy of the zonal flow
solution becomes larger than that of the dipole solution if the energy is less than a
certain critical value. This critical energy increases as the aspect ratio is decreased.
In contrast, the dipole solution in a box of square cross section (Ly/Lx = 1) has the
largest entropy, even if Lz/Lx is changed.
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16.1 Introduction

Statistical mechanics of two-dimensional turbulence has been investigated exten-
sively, for applications in plasma physics and geophysical fluid dynamics as well
as for its own intrinsic interest. Geophysical flows are subject to strong influence of
the stable density stratification and the Coriolis force. Both effects suppress vertical
motion and the geophysical flows are considered to be two-dimensional at the low-
est order of approximation. In two-dimensional turbulence, many coherent vortices
appear spontaneously and their interactions dominate the turbulence dynamics. The
investigation on the statistical mechanics of two-dimensional vortex system has a
long history, starting from Onsager [14] who was the first to illustrate the existence
of negative temperature states. Joyce and Montgomery [7] and Montgomery and
Joyce [12] derived the mean field equation (so called the sinh-Poisson equation) for
a system of point vortices of mixed sign, based on the maximum entropy theory. The
sinh-Poisson equation is known to be integrable and Gurarie and Chow [4] presented
doubly periodic exact solutions, including the sn-sn dipole solutions. There have
been also many numerical works on two-dimensional decaying turbulence, in which
the relaxation process towards a maximum entropy state is investigated (see [13]).
These classical studies are succeeded by more sophisticated researches focusing on
the delicate characteristics of the statistical mechanics of systems with long-range
interactions (see e.g. [8, 18] and references therein).

In actual geophysical flows, the fluid motion is almost confined within a hori-
zontal plane, but different flow patterns are realized on different horizontal planes.
This three-dimensionality is incorporated in the ‘quasi-geostrophic approximation’,
which takes the first order terms of the Rossby number expansions into account
(see, e.g., [15, 16]). This approximation yields a very simple governing equation
quite similar to the Euler equation. The numerical simulations by McWilliams [9]
of decaying quasi-geostrophic turbulence indicated that the vorticity field developed
coherent vortex structures spontaneously. These vortices kept their identity for a long
time, dominating the dynamics of geostrophic turbulence. A following vortex-based
statistical analysis showed that there was a period of self-similar dissipative temporal
evolution, which terminated as the number of vortices decreased due to merger and
alignment of like-sign vortices. The end state was consisted of a pair of tall columnar
vortices of different sign [10]. In order to understand the turbulence dynamics fully,
it will be of importance to investigate a simpler system, i.e., the statistical mechanics
of inviscid quasi-geostrophic point vortices.

The statistical properties of mono-disperse quasi-geostrophic point vortices in an
infinite space, were studied numerically and theoretically (see, e.g., [6, 11]). Large
direct numerical simulations of point vortices were performed using a fast special-
purpose computer for molecular dynamics (GRAPE-2, -3 and -DR), and axisymmet-
ric equilibrium states were found to form. The radial vorticity distributions of the
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equilibrium states changed in accord with the vertical distribution of vortices P(z)
and the total energy of the vortex system E . Here, the vertical vorticity distribution is
invariant, because each vortex moves in the horizontal plane on which it was located
initially. It is known that the angular momentum I is conserved, besides the energy
E , under the axisymmetric boundary condition. At a certain energy level, the radial
vorticity distribution becomes the Gaussian distribution at any vertical height. When
the energy is lower than this critical value (in the positive temperature region), the
radial vorticity distribution of the center region becomes flatter. In contrast, if the
energy is higher (in the negative temperature region), the vortices in the center region
concentrate tighter near the axis of symmetry. These numerical equilibrium states
were shown to be actually themaximumShannon entropy state, under the constraints
of the fixed vertical distribution P(z), the energy E and the angular momentum I ,
of which the last one was found to be crucial for the existence of negative tempera-
ture states. These theoretical studies based on the statistical mechanics provided the
most probable vorticity distributions, which agreed with the numerically obtained
equilibrium states.

The statistical properties of bi-disperse quasi-geostrophic point vortices under
periodic boundary conditions were studied by Funakoshi et al. [5]. They derived
a mean field equation based on the maximum entropy theory. This equation was a
natural extension of the sinh-Poisson equation derived for two-dimensional point
vortices. They solved the mean field equation utilizing an iteration procedure pro-
posed by Turkington and Whitaker [17]. Although two-dimensional solutions were
obtained in a wide energy range, they could present three-dimensional solutions
only at very low energy level, where the mean field equation was approximated by
a linear Poisson equation. They also carried out direct numerical computations of
quasi-geostrophic point vortices, to find the equilibrium states were two-dimensional
at any energy level considered, i.e., the sn-sn dipole solutions of the sinh-Poisson
equation. They conjectured that the three-dimensional states with high energy might
be unstable and that only two-dimensional states with the largest entropy could be
found in the numerical simulations.

The aim of the present paper is to extend the previous work by Funakoshi et al. [5].
In order to providemore quantitative discussions, we carry out numerical simulations
with more point vortices, and also we determine the two- and three-dimensional
maximum entropy states at higher energy level, theoretically. It is interesting to
investigate the influence of the aspect ratio of the periodic box. We present the
solutions of the mean field equation in a unit box of various size. The stability
of these maximum entropy states is studied using Arnold’s method and by direct
numerical simulations of the continuous quasi-geostrophic equation. It is shown
that some of the two-dimensional maximum entropy states are Lyapunov stable.
In contrast, we are not able to determine the stability characteristics of the three-
dimensional states by Arnold’s method alone. The numerical simulations indicate
that the three-dimensional states are weakly unstable against small disturbances and
that they switches to a two-dimensional structure resembling the sn-sn dipole, in the
later stage of the simulations. The influence of the aspect ratio of unit box on the
stability is also studied.
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The paper is organized as follows. In the next section, we will make a few com-
ments on the quasi-geostrophic approximation as well as on the equations of motion
of quasi-geostrophic point vortices. We review in Sect. 16.3 the derivation of the
mean field equation, based on the maximum entropy theory. In Sect. 16.4, the results
from the numerical simulations of the point vortex system are illustrated in some
detail. The most probable states with maximum entropy are given theoretically, and
compared with the numerical equilibrium states in Sect. 16.5, where the influence of
the aspect ratio of the periodic box on the maximum entropy states is discussed. In
Sect. 16.6, the stability of the maximum entropy states is investigated theoretically
and numerically. The last section is devoted to a brief summary.

16.2 Quasi-geostrophic Approximation and the Equations
of Motion of Point Vortices

We consider geophysical flows in a uniformly rotating (f-plane), continuously strat-
ified fluid with uniform vertical density gradient (i.e., constant Brunt-Vaisala fre-
quency). In the quasi-geostrophic approximation, the fluid motions occur on each
horizontal plane, whereas they are assumed to be different on different horizontal
planes. Then, we are able to introduce a stream function ψ(r, t), r = (x, y, z) by,

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (16.1)

In this paper, we follow the sign convention in the fluid dynamical society. It is noted
that ψ(r, t) and u(r, t), v(r, t) depend on the vertical coordinate z, because different
flows are realized at different vertical heights.

The quasi-geostrophic equations of motion represents the conservation of the
potential vorticity:

(
∂

∂t
+ ∂ψ

∂y

∂

∂x
− ∂ψ

∂x

∂

∂y

)
q(r, t) = 0. (16.2)

Here, the potential vorticity is defined as,

q(r, t) = −Δψ(r, t). (16.3)

The vertical coordinate z is rescaled appropriately (see, e.g., [15, 16]) to make the
equation isotropic (so called Charney isotropy). These equations are quite similar to
the two-dimensional Euler equation. The differences appear only in the z-dependence
of the stream function ψ(r, t) and in the three-dimensional Δ in the definition of the
potential vorticity q(r, t).

As a model of coherent vortices, we consider the simplest one, i.e., point vortices
with infinitesimal size. The potential vorticity of point vortices is concentrated δ-
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function like at the location of vortices Ri = (Xi ,Yi , Zi ):

q(r) =
N++N−∑

i=1

Γ̂iδ(r − Ri ). (16.4)

Here, N+ and N− denote the numbers of vortices with positive and negative sings,
respectively. Γ̂i is the strength of the i-th vortex.We consider a symmetric bi-disperse
case, taking N+ = N− = N and |Γ̂i | = Γ̂0. The point vorticesmove bymutual advec-
tion, and the motion of the i-th vortex is governed by the canonical equations:

dXi

dt
= 1

Γ̂i

∂H

∂Yi
,

dYi
dt

= − 1

Γ̂i

∂H

∂Xi
. (16.5)

These equations look similar to those describing the motion of two-dimensional
point vortices, in which the interaction energy is proportional to the logarithm of
the distance between two vortices. It should, however, be noted that the interaction
energy between two quasi-geostrophic point vortices is proportional to the inverse of
the distance between them, corresponding to the fact that Δ in the definition of the
potential vorticity is the three-dimensional Laplace operator. The vertical coordinate
Zi of the i th-vortex remains constant, i.e., the vortices move on the horizontal plane
on which they are initially located, under the quasi-geostrophic approximation.

The Hamiltonian under periodic boundary conditions is given by evaluating the
Ewald sum. Several efficient methods have been proposed for molecular dynam-
ics simulations dealing with the Coulomb interactions between molecules (see
e.g., [1]). We can utilize them with some modifications, because the Green func-
tion of the present problem is the same to that of the Coulomb potential. We will
show the results of direct numerical simulations in Sect. 16.4. There is no dissipa-
tive term in the canonical equations and the energy H is conserved. In contrast, the
angular momentum is not conserved, unlike in an infinite fluid domain, because the
axial symmetry is lost under the periodic boundary conditions.

16.3 Maximum Entropy Theory and the
Three-Dimensional Mean Field Equation

We will review the formulation of the maximum entropy theory, whose details were
provided by Funakoshi et al. [5]. In this section, we consider the statistical mechanics
of bi-disperse vortices (Γ̂+ = −Γ̂− = Γ̂0) located inside a unit box of size Lx , Ly and
Lz , assuming the periodicities in the x−, y− and z−directions. The probability distri-
butions of positive and negative vortices are denoted by F+(x, y, z) and F−(x, y, z),
respectively. We saw in the previous section that the energy of the vortex system is
conserved. In addition, the vertical distribution of the vortices is unchanged, because
each point vortexmoves on the same horizontal plane where it is initially. This means
that the vertical distributions
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P±(z) =
∫∫

F±(x, y, z)dxdy (16.6)

are unchanged. Note that they satisfy the following normalization constraints:

∫ Lz/2

−Lz/2
P±(z)dz = 1. (16.7)

The Shannon entropy of this system is defined as,

S = −
∫∫∫

[F+(r) log F+(r) + F−(r) log F−(r)]d3r. (16.8)

The normalized energy E = H/(Γ̂0N )2 is computed to be

E = 1

2

∫∫∫∫∫∫
G(r, r ′)[F+(r)F+(r ′) + F−(r)F−(r ′) − 2F+(r)F−(r ′)]d3rd3r ′.

(16.9)

Here, G(r, r ′) denotes the Green function under the periodic boundary conditions,
which is provided basically by evaluating the Ewald sumof the Coulomb potential. In
the following iteration procedure, we expand the probability distribution functions in
the formof Fourier series expansions (normally 643 and 1283 for higher energy cases)
and the inversion from the potential vorticity to the stream function is performed in
the Fourier space. Then, the energy is computed in the real space by integrating the
product of the potential vorticity and the stream function (see Funakoshi et al. [5]
for the details).

The maximum Shannon entropy state under the constraints of the energy E and
the vertical vorticity distributions P±(z), is determined by the method of Lagrange’s
multipliers, i.e., making the following functional S̄ stationary.

S̄ = S −
∫

α+(z)P+(z)dz −
∫

α−(z)P−(z)dz

− 1

2
β

∫∫∫∫∫∫
G(r, r ′)[F+(r)F+(r ′) + F−(r)F−(r ′) − 2F+(r)F−(r ′)]d3rd3r ′.

(16.10)

Here, α±(z) are the Lagrange’s multipliers corresponding to the invariants P±(z)
and β is that corresponding to the energy E . β is called the inverse temperature in
the literature of the statistical mechanics. We will give solutions for negative values
of β, in Sect. 16.5.

We obtain the following equations by taking the variation with respect to F±(r):

−1 − log F+(r) − α+(z) − β

∫∫∫
G(r, r ′)[F+(r ′) − F−(r ′)]d3r ′ = 0,

(16.11)
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−1 − log F−(r) − α−(z) + β

∫∫∫
G(r, r ′)[F+(r ′) − F−(r ′)]d3r ′ = 0.

(16.12)

These equationswith the constraints of the vertical distributions P±(z) and the energy
E , are solved to determine the maximum entropy states.

If we focus on a symmetric case in which P+(z) = P−(z) = P(z), we can assume
the symmetry of α+(z) = α−(z) = α(z). Then, the variations with respect to F±(r)
yield the following equations, respectively:

F+(r) = exp [−βψ(r) − α(z) − 1], (16.13)

F−(r) = exp [βψ(r) − α(z) − 1]. (16.14)

The stream function ψ(r) and the potential vorticity q(r) are related to F±(r) as

ψ(r) =
∫∫∫

G(r, r ′)[F+(r ′) − F−(r ′)]d3r ′, (16.15)

q(r) = F+(r) − F−(r). (16.16)

Then, taking the difference between F±(r), we have

q(r) = e−α(z)−1[e−βψ(r) − eβψ(r)]
= −2e−α(z)−1 sinh βψ(r). (16.17)

Finally, we obtain the mean field equation, after recalling the relation between the
potential vorticity and the stream function q(r) = −Δψ(r):

Δψ̄(r) + λ2(z) sinh ψ̄(r) = 0. (16.18)

Here, we have introduced new variables ψ̄(r) = −βψ(r) and λ2(z) = −2βe−α(z)−1,
for later convenience. Coherent vortex structures appear only in the negative tem-
perature region with β < 0. This equation is a natural extension of the sinh-Poisson
equation derived for the two-dimensional point vortices [5].

16.4 Direct Numerical Simulation of the Point
Vortex System

We will illustrate the results of numerical simulation for a point vortex system in
a cubic box of size Lx = Ly = Lz = 2π, in this section. We integrate the equa-
tions of motion for N = N± = 2400 and 4000 point vortices of strength Γ̂0 = 0.103
and 0.062, respectively. The time is normalized by the mean potential vorticity
N Γ̂0/(2π)3 = 1.00, which is taken to be unity. We are to make sure that the same
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equilibrium states are formed irrespective of the number of point vortices. The energy
is conserved within the accuracy of five significant figures. The vertical distribution
P±(z) = L−1

z = 1/2π is assumed to be uniform. This simple vertical distribution
was studied repeatedly in the dissipative numerical simulations by McWilliams et
al. [9] (spectral code).

Figures16.1a and 16.2a show the initial distributions of bigger computations with
N = 4000. Two energy levels of E = 1.0 × 10−2 (Case A) and E = 8.1 × 10−3

(Case B) are considered. Red points represent positive vortices and blue points do
negative ones. The initial distributions have somewhat characteristic structures, i.e.,
Case A has a three-dimensional dipole structure, whereas Case B with the slightly
lower energy is characterized by a two-dimensional zonal structure.

We show, in Fig. 16.1b–d, the time evolution of Case A with higher energy. The
number of vortices N is 2400. In all figures, 20 snapshots during a time interval
of Δt = 2 are superposed. The initial three-dimensional dipole structure becomes
unstable soon (see Fig. 16.1b), but the initial clusters of vortices of like sign are not
destroyed completely.After about t = 37.5,wefind that a tall dipole-pair of columnar
vortices is formed (Fig. 16.1c), as a result of vertical alignment. This almost two-
dimensional vortex pair, however, moves around the whole computational domain
until t = 390, at which time we stopped the numerical computation. The top view
of the final state (not yet in the equilibrium) is shown in Fig. 16.1d. The positive
columnar vortex (red) is tilted slightly even at this time. The system of point vor-
tices seems to approach to a purely two-dimensional dipole state very slowly. The
corresponding time evolution of the bigger system with N = 4000 vortices is shown
in Fig. 16.1e–g. We selected the times so that similar vortex structures are observed.
A dipole structure is almost formed by t = 50, which is later than in the smaller
computation. The dipole moves around slowly and randomly, again. Then, the point
vortex system cannot reach the true equilibrium until t = 500, at which time we
stopped the numerical computation.

Figure16.2b, c illustrate the time evolution of Case B using N = 2400 point
vortices, and Fig. 16.2d–e show that using N = 4000 vortices. We show only the top
views of the vortex structures, since the flow field remains almost two-dimensional
in the course of time. It takes much longer for the two-dimensional distribution to
reach the equilibrium, probably because the two dimensional zonal flow is more
stable and robust than the three-dimensional vorticity distribution. In the smaller
computation (b–c), the initial zonal distribution becomes deformed significantly by
t = 345, whereas similar deformation cannot be observed until t = 630 in the bigger
computation. Two columnar clusters of positive and negative vortices are formed at
about t = 430 (Fig. 16.2c) and this two-dimensional dipole structure lasts for a quite
long time, telling that the system has settled down into an equilibrium state. However,
in the bigger computation, it takesmuch longer for the latter point vortex system to be
equilibrium. In fact, theflowpattern at t = 990 (Fig. 16.2e) is still evolving.Generally
speaking, the simulation using more point vortices is a better approximation of the
continuous quasi-geostrophic equation, which has an infinite number of conserved
quantity. Then the influence of the initial condition may last longer as the number of
point vortices is increased.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 16.1 Distributions of point vortices for E = 1.0 × 10−2. Red and blue points denote positive
and negative vortices, respectively. a the initial condition (t = 0, N = 4000), b seemingly random
phase (t = 37.5, N = 2400), c the end state (t = 390, N = 2400), d top view of the end state
(t = 390, N = 2400), e seemingly random phase (t = 50, N = 4000), f the end state (t = 500,
N = 4000), g top view of the end state (t = 500, N = 4000)
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(a)

(b) (d)

(c) (e)

Fig. 16.2 Distributions of point vortices for E = 8.1 × 10−3. Red and blue points denote positive
and negative vortices, respectively. a the initial condition (t = 0, N = 4000), bwavy zonal structure
(t = 345, N = 2400), c the end state (t = 990, N = 2400), d wavy zonal structure (t = 630,
N = 4000), f the end state (t = 990, N = 4000)

In these simulations, we have observed the transitions from both three- and two-
dimensional initial vorticity distributions to the sn-sn dipole states. Note that it took
much longer for the latter transition (from the two-dimensional zonal flow) to be
completed. As we will make clear in Sect. 16.6, this deference is attributed to the
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deference of the stability of initial flows. Any way, we may conclude both the clus-
tering of like-sign vortices and the formation of tall columnar vortex structures are
purely inviscid phenomena. The next task is to explain the underlining mechanism,
whose first step is to determine the maximum entropy states at various energy level.

16.5 Maximum Entropy States

In the previous section, we have investigated the time evolution of a point vortex
systemat relatively high energy, numerically.Auniformvertical distribution P±(z) =
1/2π is assumed in order to study the basic statistical properties of the system. We
observed clustering of vortices of like sign and the formation of columnar dipole
structures.

Funakoshi et al. [5] argued that the equilibrium state should be the maximum
entropy state with the initially specified energy. They also pointed out that the solu-
tions corresponding to the numerical equilibrium states belong to a class of soliton
solutions of the sinh-Poisson equation, given by Gurarie and Chow [4]. Since the
analytical form is presented using the Jacobian elliptic sn-function, they named this
solution branch the ‘sn-sn dipole’. There are a number of other solution branches,
including the zonal flow and quadrupole branches.

In this section, we first compare the numerically obtained end states with the
two-dimensional maximum entropy states, which were the solutions of the clas-
sical sinh-Poisson equation with a constant λ(z)2 = λ2. Figure16.3 shows three
solution branches in the E–S (energy-entropy) plane, where the horizontal and ver-

Fig. 16.3 Two-dimensional solution branches on the E–S plane: the inserted figures show the
potential vorticity distribution of each branch
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tical axes denote the energy and entropy, respectively. The inserted figures illustrate
the contours of the potential vorticity of each branch. All branches emanate from
the point E = 0, S = 6 log(2π) ≈ 11.027, i.e., the uniformly random distributions
F± = 1/(2π)3. As can be seen in Fig. 16.3, the sn-sn dipole branch has the largest
entropy. The entropy difference between the zonal- and dipole-solution branches is
rather small, although their vorticity distributions are quite different. We see that the
entropy of the quadrupole branch is much smaller. Funakoshi et al. [5] conjectured
that only the sn-sn dipole branch with the largest entropy, could be found in the
numerical simulation of point vortices. We show the end states of Cases A and B
computed in the previous section, by two points on the sn-sn dipole branch. The
numerical end state of Case B is elongated in the y−direction slightly and it is not
the true equilibrium. The dipole distribution at a still lower energy (E = 4.9 × 10−3)
is shown for comparison. It can be seen that the distribution of the potential vorticity
shrinks as the energy increases.

In order to see how close the numerical distributions are to the maximum entropy
states, we have computed the entropy of the numerically obtained end states in the
computations using 2400 and 4000 point vortices. Since the number of vortices is
not large enough, 1400 snapshots during a time interval of Δt = 140 are superposed
by adjusting the coordinate origin, so that the dipole patterns coincide as close as
possible. The volume integration of the entropy is carried out using 643 grid points.
The obtained entropy value in Case A is 9.58 for bigger computation with N = 4000,
which is smaller than the theoretical value 9.69 inFig. 16.3. This difference is partially
attributed to the inaccurate shift of the coordinate origin and mainly to the fact that
the numerical end state hasn’t reached the true final equilibrium. In contrast, the
numerical value 9.76 in the smaller computation (N = 2400) slightly exceeds the
theoretical value 9.69, probably because the inaccurate shit of the origin contaminated
the data. As for Case B, the theoretical entropy value is 9.96 and the numerical values
are 9.88 (bigger computation with N = 4000) and 9.93 (smaller computation with
N = 2400). The numerically obtained entropy is a little smaller than the theoretical
value, because the numerical end states don’t reach the true equilibrium yet. The
approaching speed to the equilibrium is much slower for Case B, in which case the
initial entropy value is closer to the equilibrium value, and the initial state is more
stable. It can be reasonably concluded that the numerically found end states are very
close to the maximum entropy states.

Funakoshi et al. [5] also searched for three-dimensional solutions, but they were
unsuccessful except at very low energy level, because of poor convergence of their
iteration procedure. In the next subsection, we first reconsider the same problem in a
cubic box of (2π)3, and determine the three-dimensional solution branches extending
the energy range. After that, we investigate the influence of the box aspect ratio on
the maximum entropy states, by changing the shape of the unit box.
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16.5.1 Three-Dimensional Maximum Entropy
States in a Cubic Box

We give the three-dimensional maximum entropy states in the cubic box of size
(2π)3, in this subsection. The method proposed by Turkington and Whitaker [17] is
utilized again, but with several refinements. The main modification is to introduce an
appropriate damping factor between the succeeding iteration steps, which has made
the iteration procedure more robust. Also, the initial guess has been improved by
using a data-fitting technique and an appropriate extrapolation method, as the energy
value is changed.

We have traced three branches, corresponding to the three-dimensional
dipole, zonal and quadrupole solutions. They have larger entropy than other three-
dimensional solutions with more complicated structure. We show three solution
branches on the E–S plane, in Fig. 16.4. The horizontal and vertical axes denote the
energy and entropy, respectively. From top to bottom, three branches representing
the dipole (purple), zonal flow (blue) and quadrupole (black) are drawn. All branches
emanate from the point E = 0, S = 6 log(2π) ≈ 11.027, corresponding the uniform
distributions F± = 1/(2π)3, again. It is interesting to note that the entropy of the
three-dimensional dipole branch is slightly larger than the two-dimensional quadru-
pole branch (see Fig. 16.3). We are successful in extending the energy range con-
siderably. The potential vorticity distributions of three-dimensional dipole solution
branch at E = 1.30 × 10−3 and E = 6.40 × 10−3 are inserted. The potential vortic-
ity distribution around the center of vortex structure shrinks as the energy increases.

Fig. 16.4 Three-dimensional maximum entropy states on the E–S plane. Inserted figures are three-
dimensional potential vorticity distributions of the three-dimensional dipole, zonal and quadrupole
solution branches (q × 104)



474 T. Miyazaki et al.

The same trend was reported byMiyazaki et al. [11], in which the maximum entropy
states in an infinite domain was investigated. The three-dimensional zonal type solu-
tions at E = 1.30 × 10−3 and E = 6.40 × 10−3 are shown in the inserted figures. It
was rather difficult to have three-dimensional quadrupole solutions at a high energy
level. So, we insert two figures demonstrating the potential vorticity distributions at
relatively low energy levels, i.e., E = 1.01 × 10−3 and E = 3.23 × 10−3. The cen-
ter region of each vortex structure becomes narrower with the energy, again. As the
value of λ2(z) increases, it becomes more difficult to have a well converged solution.

16.5.2 Influence of the Aspect Ratio of the Periodic Domain

We will determine two- and three-dimensional maximum entropy states in various
unit box, by changing the length Ly or Lz , while keeping Lx = 2π unchanged. The
solution procedure is the same as in the case of the cubic box of (2π)3.

Before showing the obtained solution branches, we explain an important differ-
ence that appears when the symmetry between the x− and y− coordinates is lost.
We take the zonal flow branches for the case of Lx = 2π, Ly = 1.8π, Lz = 2π, as an
example. As it can be seen in Fig. 16.5, there are presented two zonal flow branches of
different entropy, i.e., the x—independent solution branches (yellow and gray lines)
and the y−independent solution branches (green and blue lines). It is seen that the lat-
ter branches have larger entropy. Generally speaking, solutions with smaller spacial
gradient have larger entropy, because they are closer to the uniform distribution with
the largest entropy. Hereafter, we present only solution branches with larger entropy,
although there are always accompanied solution branches with smaller entropy.

When the size of periodic box is Lx = 2π, Ly = 1.8π, Lz = 2π, we observe
a similar but slightly different solution branch diagram in the E − S plane, com-
pared with the purely cubic case (Fig. 16.6). All branches emanate from E = 0, S =
2 log(7.2π3), corresponding to the uniformly random distribution without any struc-
ture. This entropy value differs slightly from that of the cubic box. The more impor-
tant is the fact that the dipole type branch has less entropy than the zonal flow, at
very low energy level. As the energy level is increased, the entropy of the dipole
solution becomes larger than that of the zonal flow. This change occurs at about
E = 5.5 × 10−3. The difference in the entropy value is very small at lower energy
level, and then the difference between two distributions of the potential vorticity is
very small, too. We see the similar exchange between the three-dimensional zonal
flow and the three-dimensional dipole solution branches, which occurs at about
E = 1.6 × 10−3 (Fig. 16.6).

The two- and three-dimensional solution branches for the case Lx = 2π, Ly =
1.6π, Lz = 2π are illustrated in Fig. 16.7, where the aspect ratio is decreased further
to Ly/Lx = 0.8. Similar exchange of the branch with maximum entropy, is observed
at still higher energy level (at about E = 9.6 × 10−3 for the two-dimensional solu-
tions). At lower energy level, the zonal flow (green line) has the largest entropy, but
the difference in the entropy value is quite small (see the inserted close up). Then it
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Fig. 16.5 Breakdown of symmetry of zonal flow branches on the E–S plane in the unit box of
Lx = 2π, Ly = 1.8π, Lz = 2π. Inserted figures are two- and three-dimensional potential vorticity
distributions of the zonal branches (q × 104). The y axis is elongated by a factor 10/9, and the unit
box is represented by a cubic box

Fig. 16.6 Three-dimensional extremum states on the E–S plane in the unit box of Lx = 2π, Ly =
1.8π, Lz = 2π. Inserted figures are two- and three-dimensional potential vorticity distributions of
the dipole, zonal flow and quadrupole solution branches (q × 104). The y axis is elongated by a
factor 10/9, and the unit box is represented by a cubic box. The close up at low energy level of
two-dimensional dipole and zonal flow branches
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Fig. 16.7 Maximum entropy states on the E–S plane in the unit box of Lx = 2π, Ly = 1.6π, Lz =
2π. Inserted figures are two- and three-dimensional potential vorticity distributions of the dipole,
zonal flow and quadrupole solution branches (q × 104). The y axis is elongated by a factor 5/4,
and the unit box is represented by a cubic box

may be very difficult to identify the branch type (zonal flow or dipole) of the end state
realized in the numerical simulations of point vortices. As the energy is increased
more and more, the dipole pattern (red line) will be formed clearly as an equilibrium
state, because it has significantly larger entropy than the zonal flow solution even in
a box of the rectangular cross section Ly/Lx = 0.8. It is difficult to distinguish the
three-dimensional zonal flow branch (blue line) from the three-dimensional dipole
branch (purple line) in the present figure, for the corresponding two lines overlap.

For the case of Ly = π, we see the zonal flowbranch (green line) has larger entropy
than the sn-sn dipole branch (red line) up to E = 1.5 × 10−2 (Fig. 16.8), although the
difference remains very small (see the inserted close-up). We can hardly distinguish
the vorticity distributions of the two solution branches (compare the inserted potential
vorticity distributions). The fact that the entropyvalues of two-dimensional zonal flow
and dipole solutions are larger than those of three-dimensional solutions remains
unchanged. Then, we can conclude columnar structures will form irrespective of
the aspect ratio Ly/Lx of the horizontal cross section. It becomes much harder to
distinguish the three-dimensional zonal flow (blue line) from the three-dimensional
dipole (purple line), and the purple line is masked with the blue line completely.

Next, we consider the influence of the vertical box size. The solution branches
in the E–S plane for a shallower box with Lx = Ly = 2π, Lz = π are shown in
Fig. 16.9. A qualitative difference from the cubic case is found, i.e., the
two-dimensional quadrupole solution branch has larger entropy than any three-
dimensional solution branch.When Lz is decreased, the entropy of three-dimensional
solutions decreases quite rapidly as the energy increases. This decay rate is much
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Fig. 16.8 Maximumentropy states on the E–S plane in the unit box of Lx = 2π, Ly = π, Lz = 2π.
Inserted figures are two- and three-dimensional potential vorticity distributions of the dipole, zonal
flow and quadrupole solution branches (q × 104). The y axis is elongated by a factor 2, and the unit
box is represented by a cubic box

Fig. 16.9 Maximum entropy states on the E–S plane in the unit box of Lx = Ly = 2π, Lz = π.
Inserted figures are two- and three-dimensional potential vorticity distributions of the dipole, zonal
flow and quadrupole solution branches (q × 104). The z axis is elongated by a factor 2, and the unit
box is represented by a cubic box
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Fig. 16.10 Maximum entropy states on the E–S plane in the unit box of Lx = Ly = 2π, Lz = 8π.
Inserted figures are two- and three-dimensional potential vorticity distributions of the dipole, zonal
flow and quadrupole solution branches (q × 104). The z axis is shrunk by a factor 4, and the unit
box is represented by a cubic box

larger than those of two-dimensional solutions. Then, the two-dimensional sn-sn
dipole solution will become more dominant equilibrium state in a shallower box.

In contrast, the entropy of three-dimensional solutions increases in a deeper box
with increased Lz . Figure16.10 show the solution branches in the E–S plane for
the unit box of Lx = Ly = 2π, Lz = 8π. The entropy difference between two- and
three-dimensional solutions becomes less significant. In fact, the three-dimensional
dipole branch has larger entropy than the two-dimensional zonal flow. The differ-
ence between the entropy values of two- and three-dimensional dipole solutions
becomes much smaller, although the two-dimensional dipole branch still has the
largest entropy.

We have obtained three-dimensional maximum entropy states in addition to two-
dimensional states in a periodic box of various size. It is noted that the equilibrium
state with the largest entropy can be two-dimensional zonal flow when the x − y
symmetry in the horizontal plane is lost. This interesting fact may be attributed
to the inverse energy cascade mechanism in geostrophic turbulence, that leads to
the formation of larger and larger vortex structures in the course of time. Then the
final states are constrained strongly by the boundary conditions at the largest scale,
here the shape of the periodic box. It makes a sharp contrast to the energy cascade
observed in the three-dimensional Navier-Stokes turbulence, in which the energy
is transfered to the smallest scale and dissipated there. When we try to construct
a sub-grid turbulence model of geophysical flow, we should keep these findings in
mind.
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Although various two- and three-dimensional solution branches of the mean
field equations are found under the periodic boundary conditions, only the two-
dimensional sn-sn dipole states are realized in the numerical simulations of point
vortices in a cubic box. A possible explanation is that the state with the largest
entropy at a specified energy level is selected among other maximum entropy states
of the same energy. This conjecture is simple and attracting, but we should be more
careful because the entropy is merely a measure of geometric arrangement, in which
no dynamical information is included. In order to understand the dynamical aspects
behind vortex clustering and the formation of columnar vortices fully, the stability of
the solutions of the mean field equation should be investigated, which is the subject
in the following section.

16.6 Stability of the Maximum Entropy States

We have obtained several branches of two- and three-dimensional maximum entropy
states in various unit box. Funakoshi et al. [5] argued that these solutions might
be stable, because they had larger entropy than nearby states. It is a suspicious
conjecture and a more quantitative investigation is required to explore their stability
characteristics.

In this section, we present theoretical and numerical studies about the stability
of the maximum entropy states. First, we apply the method developed by Arnold
[2, 3], yielding exact theoretical conjectures for some of two-dimensional solutions.
Unfortunately, this method alone doesn’t provide decisive results for other solution
branches. Secondly, we study the time evolution of small perturbations imposed on
the solutions of the mean field equation (16.18), by integrating the quasi-geostrophic
equation (16.2) numerically. In the following subsection, we will explain the appli-
cation of Arnold’s method for the cases in the (2π)3 box in some detail, while only
the results will be presented briefly for other cases.

16.6.1 Arnold’s Method

Themean field equation (16.18) can be derived in a framework of different variational
problem. It is well known that there are infinite number of conserved quantity of the
quasi-geostrophic equation (16.2). The volume integral of an arbitrary function of the
potential vorticityq and z, is invariant under the the quasi-geostrophic approximation:

C =
∫∫∫

F(q, z)dxdydz. (16.19)
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These conserved quantities are called Casimir invariants. By selecting an appropriate
function for F(q, z) and adding the associated Casimir C to the energy, we can
formulate another variational problem, that leads to the same mean field equation:

HC = H + C. (16.20)

The mean field equation (16.18) can be re-derived by taking the first variation of
(16.20) with respect to ψ:

δHC =
∫∫∫

q0δψdxdydz −
∫∫∫

Δ

(
∂F

∂q0

)
δψdxdydz

=
∫∫∫ [

q0 − Δ

(
∂F

∂q0

)]
δψdxdydz. (16.21)

Here, q0 denotes the potential vorticity in the equilibrium. In order to be consistent
with the mean field equation (16.18), F(q, z) should satisfy the following relation:

∂F

∂q0
= − sinh−1

(
q0

λ2(z)

)
. (16.22)

Integrating and differentiating this relation with respect to q0, we have

F = − q0 sinh
−1

(
q0

λ2(z)

)
+

√
λ4(z) + q2

0 ,

∂2F

∂q2
0

= − 1
√

λ4(z) + q2
0

. (16.23)

Next, we calculate the second variation with respect to ψ:

δ2HC = 1

2

∫∫∫
[−Δ(δψ)]δψdxdydz + 1

2

∫∫∫
1

√
λ4(z) + q2

0

(Δ (δψ))2 dxdydz

= 1

2

∫∫∫
⎡

⎣|gradδψ|2 − (Δ (δψ))2

√
λ4(z) + q2

0

⎤

⎦ dxdydz. (16.24)

Here, the second equation of (16.23) is used. The sign of the second variation (16.24)
seems indeterminate, because the first term is positive definite whereas the second
is negative definite. This situation is similar to that of the second theorem by Arnold
[2, 3]. Under the periodic boundary conditions, we notice that the volume integral
of (Δδψ)2 is always larger than (or equal to) that of |gradδψ|2. Then, the second
variation (16.24) is known to be negative definite, if the factor of the second term
is larger than unity everywhere in the cubic box (2π)3. In that case, the Lyapunov
stability of the equilibrium solution can be assured.
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Fig. 16.11 The minimum
values of the factor D as
functions of the energy:
Two-dimensional branches
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Let us denote by D the minimum values of the factor in front of the second term
(Δδψ)2 in the x–y plane:

D(z) = min
(x,y)∈[−π,π]×[−π,π]

1
√

λ4 + q2
0

. (16.25)

We plot, in Fig. 16.11, the values of D for the sn-sn dipole (red circle), the two-
dimensional zonal flow (blue cross) and the quadrupole (green asterisk) solutions,
as functions of the energy. The horizontal axis is the energy and the vertical axis
shows the minimum value of D, which is independent of z for two-dimensional
solutions. We see that D both for the two-dimensional zonal flow (blue cross) branch
and for the sn-sn dipole (red circle) branch, increases with the energy and it is always
greater than unity. These solution-branches are known to be stable in the Lyapunov
sense. This finding is consistent with the results of numerical simulations of the two-
dimensional Euler equation carried out by Gurarie and Chow [4], in which the sn-sn
dipole solutions were shown to be stable against two-dimensional disturbances. In
contrast, D of the two-dimensional quadrupole branch is less than unity at low energy
level, and we cannot prove its stability.

The situation becomesmore complex for the three-dimensional solutions, because
the maximum value in the horizontal plane D(z) depends on the vertical coordinate
z. Generally D(z) for any three-dimensional solutions is smaller than unity in some
interval of z at any energy level, although we will not show the details. Thus, we
are not able to judge the stability of these solution branches based on the method by
Arnold.

We give quickly the results of theoretical stability analysis of maximum entropy
states in various periodic box. When Ly (or Lz) is decreased from 2π, the method of
Arnold provides completely the same results. The two-dimensional dipole and zonal
flow solutions are shown to be stable in the Lyapunov’s sense, whereas we cannot
know the stability characteristics of other solutions from the theoretical analysis of
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Arnold’s type. In contrast, if Lz is increased, the minimum of the factor D(z) should
be larger than (Lz/2π)2 to assure the stability. As we can see in Fig. 16.11, this is
not the case at lower energy level. Thus, we are not able to judge the stability of any
solution branch based on the method by Arnold in a taller unit box.

16.6.2 Numerical Simulation of Quasi-geostrophic Equation

There are two remaining methods to study stability. The first is a linear instability
analysis, and the second is a full numerical simulation of the continuous quasi-
geostrophic equation (16.2). Since a linear modal instability analysis of the three-
dimensional flow field, treating an extremely big eigenvalue problem, is not an easy
task. So, in this subsection, we will present some preliminary results of the spectral
simulations with 643 Fourier modes. We study the time evolution of perturbations
imposed on the solutions of the mean field equation (16.18), by integrating the quasi-
geostrophic equation (16.2) numerically, just as Gurarie and Chow [4] carried out
direct numerical simulations of the two-dimensional Euler equation. We use the
fourth order Runge-Kutta method for the time-marching.

We add small perturbations to the three-dimensional dipole and zonal flow solu-
tions with the energy E = 6.4 × 10−3, and to the two-dimensional quadrupole solu-
tion with the energy E = 1.5 × 10−3 then we integrate numerically the continuous
quasi-geostrophic equation (16.2). The superposed disturbance consists of the three-
dimensional dipole and zonal distributions of very small amplitude. It is produced
by multiplying a factor 10−3 to both basic solutions and adding them up. In order to
stabilize the numerical time marching, we introduce weak dissipation in the form of
a usual viscous term νΔq with ν = 10−6. Therefore the energy decreases gradually,
and the vortex structures deviate slightly from their initial structures, even if they are
stable. Figure16.12 illustrates the time evolution of the volume integral of the differ-
ence |q − q0|2 of the potential vorticity. Here, q0 denotes the potential vorticity field
of the initial maximum entropy solutions (without perturbations). The horizontal axis
denotes the time and the vertical axis represents the deviation measure denoted by
||q − q0||2.

As for the three-dimensional zonal flow, the deviation measure grows quickly
(blue broken line), suggesting the occurrence of strong instability. After t = 10, the
zonal structure becomes wavy and an imperfect quadrupole structure develops by
t = 35. In a later stage of simulation, a two-dimensional pattern appears, which
resembles the sn-sn dipole solution (see the inserted potential vorticity fields). The
3D dipole state keeps its structure (green solid line) until about t = 40, telling that it
is weakly unstable. A drastic increase of the deviation is observed after t = 40, where
the 3D dipole structure relaxes and the coherent vortex blobs begin to move around.
By the final stage of the numerical simulation (t = 160), a two-dimensional dipole
structure seems to be forming (see the inserted potential vorticity distribution). In
contrast, the two-dimensional quadrupole solution (red solid line) seems to be stable,
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Fig. 16.12 Time evolution
of the three-dimensional
perturbed zonal flow and
dipole solutions, and the
two-dimensional perturbed
quadrupole solution
(continuous model). Inserted
figures show the potential
vorticity distributions

because the deviation norm remains very small and the quadrupole structure keeps
its initial structure up to t = 160.

Finally, we investigate the stability of the two-dimensional solutions in a tall
unit box Lx = Ly = 2π, Lz = 8π numerically, because we can’t provide any infor-
mation by the method of Arnold. The sn-sn dipole solution with E = 3.5 × 10−3,
the zonal flow solution with E = 4.5 × 10−3 and the quadrupole solution with
E = 1.5 × 10−3 are taken as basic flows. In addition, the three-dimensional dipole
solution with E = 3.5 × 10−3 is considered. The results are shown in Fig. 16.13,
where only the two-dimensional dipole structure (red solid line) is stable. Other
solutions are unstable, of which the most unstable one is the two-dimensional zonal
flow (green broken line). This may be linked with the fact that its entropy is less
than that of the three-dimensional dipole solution. At the final stage of compu-
tation (t = 160), a seemingly two-dimensional dipole structure is formed. As for
the two-dimensional quadrapole solution (denoted by blue broken line), it keeps
its initial structure until about t = 45, and after that a three-dimensional instabil-
ity mode grows and transient three-dimensional structures appear. Finally, the flow
settles down to the two-dimensional dipole as shown by the inserted figure. The
three-dimensional dipole solution (purple dotted line) is weakly unstable, keeping
its initial structure until about t = 75. Then, it is broken up into small fragments
and three-dimensionality remains until the final stage (t = 160) of the computation,
although the two-dimensional dipole structure may form gradually. We have carried
out similar computations about the three-dimensional zonal flow and quadrupole
solutions to find out that they are unstable. It will be worth mentioning that the insta-
bility of the three-dimensional dipole solution is relatively weak. In fact, a seemingly
three-dimensional dipole structure appears even in the time evolution starting from
the three-dimensional zonal flow and keep the structure for a while, before it changes
to the two-dimensional dipole structure finally. Anyway, only the two-dimensional
dipole solution is stable in a tall box, and therefore it seems to be a common final
structure starting from any initial flow field.
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Fig. 16.13 Time evolution of the two-dimensional perturbed dipole, zonal flow and quadrupole
solutions, and the three-dimensional perturbed dipole solution (continuous model). Inserted figures
show the potential vorticity distributions. The z axis is shrunk by a factor 4, and the unit box is
represented by a cubic box

The stability analysis presented here, is quite insufficient andmuchmore extensive
investigation is required to understand the stability of each solution branch and to
complete the bifurcation diagram in the E–S plane. Instead of the highly elaborate
normal mode analysis, a linear instability analysis using the Krylov subspacemethod
might be helpful, which is left for future work.

The above observations are consistent with the results of the previous dissipative
simulations of geostrophic turbulence, as well as with the results of our inviscid
simulations of point vortices. We may conclude that the three-dimensional solution
branches are unstable. As the depth of the box is increased, the two-dimensional
zonal flow and quadrupole solution branches may become unstable. It is commonly
observed that a two-dimensional dipole structure appears at a later stage of numerical
simulations starting from unstable initial conditions. It took longer for the continuous
system to reach the two-dimensional end state than for point vortices. The dynamical
system of point vortices is less constrained compared with the system governed by
the continuous quasi-geostrophic equation. In fact, the latter system has an infinite
number of conserved quantities in the inviscid limit, whereas the energy is a single
conserved quantity of point vortices. Then, the system of point vortices is subject to
strong fluctuations, and it reaches the maximum entropy state sooner.

16.7 Summary

We have investigated the statistical mechanics of quasi-geostrophic point vortices of
mixed sign under periodic boundary conditions. In the direct numerical simulations of
the point vortices, two-dimensional dipole structures are found to form as end states.
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Themean field equation, whichwas derived as an extension of the sinh-Poisson equa-
tion, is solved to obtain the most probable states for the case with the uniform vertical
distributions P±(z) = 1/2π. The two- and three-dimensional solutions in a periodic
unit box of various size are determined in a considerably wide energy range. The
two-dimensional sn-sn dipole solution has the largest Shannon entropy, among all
solutions in a cubic box,whereas the two-dimensional zonal flowhas larger entropy at
lower energy level, if the aspect ratio Ly/Lx is less than unity. When Lz is decreased
while keeping Lx = Ly = 2π, the entropy of three-dimensional solutions decreases
in comparison with that of two-dimensional solutions, while it increases if Lz is
increased. The stability of these solutions is investigated theoretically and numeri-
cally. The two-dimensional sn-sn dipole and zonal flow solutions are shown to be
stable in a cubic (and smaller) box, but their stability cannot be assured theoretically
in a taller box. Numerical simulations of the continuous quasi-geostrophic equation
suggest that the two-dimensional quadrupole solution is stable in a cubic box, but
the three-dimensional solutions are unstable against small disturbances. In a tall box
with Lz/Lx = 4, even the two-dimensional zonal flow and quadrupole solutions are
found to be unstable. Unstable solutions change their structure rather abruptly and
transitions to two-dimensional dipole structures take place, which is in accord with
the observation in the direct numerical simulations of the quasi-geostrophic point
vortices, i.e., the equilibrium states are on the sn-sn dipole solution branch.
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Chapter 17
Heat Convection of Compressible Viscous
Fluids. III

Takaaki Nishida, Mariarosaria Padula and Yoshiaki Teramoto

Abstract Heat convection problems of the compressible viscous fluids are
considered. The initial and boundary value problem of the linearized system is
solved globally in time and is examined about the comparisonwith its incompressible
Oberbeck-Boussinesq limit.

Keywords Heat convection · Compressible viscous and heat-conducting fluids ·
Incompressible Oberbeck-Boussinesq model

17.1 Introduction

This article is the third of a series of papers on mathematical aspects of perturbations
to an equilibrium configuration Se of a heat conducting compressible viscous fluid
in a horizontal rigid layer. Se is also known as Benard rest state. In our perspective
the rest state is considered a parameter-dependent physical system, where there are
several parameters: theRayleigh and thePrandtl numbers, a typical length scale L and
many other variables. In the first part we have proved the existence of steady motions
around Se, in the presence of small steady external forces by taking as independent
variables the pressure, the velocity and the temperature. These variables have been
chosen because they are more suitable to make a comparison with the more known
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results for the simpler incompressible Oberbeck-Boussinesq model. The existence
has been proved for Rayleigh number smaller than a critical value Rc(L). In the
second part we have studied the stability and the bifurcation of flows close to Se. Our
aim has been the study of elementary local stationary bifurcation from Rc(L) with
comparison to that of the well known Oberbeck-Boussinesq model.

In this paper we consider the initial boundary value problem for the linearized
system with fixing the Prandtl number and all other variables confining our atten-
tion to study the non-stationary motions for Rayleigh number less than the critical
Rayleigh number Rc(L), and letting the length scale L go to infinity.

The main results consist in the proof of existence of global in time linearized
un-steady flows around Se, and in the analysis of the limit flow as L goes to infinity.
In particular it is proved thatmore thin the layer becomesmore close to theOberbeck-
Boussinesq solution the non-stationary solutions become with a small correction
term.

17.2 Formulation

Following Spiegel’s dimensionalization [2] and [7] with the vertical axis (e3) point-
ing downward, we consider the system in the horizontal domain z0 < z < z0 + 1,
where

R2 = P2βR∗cp(m + 1)3d2m+3

g2μκ
, z0 = Tu

β0d
, β0 = Tl − Tu

d
,

d is the width of the layer and Pr is the Prandtl number. The non-dimensional sys-
tem for the heat convection problem of the compressible viscous and heat conducting
fluids is the following [4, 5].

The mass conservation:

∂ ρ

∂ t
+ R ∇ · (ρu) = 0 ,

The momentum conservation:

1

Pr
ρ

∂ u

∂ t
− Δ u − 1

3
∇(∇ · u) + R

bγ (m + 1)
∇ p + R

Pr
ρ u · ∇ u = R

b γ
ρ e3 ,

The energy conservation:

ρ
∂ T

∂ t
− Δ T + R(γ − 1) p∇ · u + R ρ u · ∇ T

= 2 g b γ

β0 cv
{ D : D − 1

3
(∇ · u )2} .
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The equilibrium solution in the horizontal strip domain z0 � z � z0 + 1 is the
heat conduction state:

u = 0 , ρ = zm , T = z , p = zm+1 ,

where and hereafter we use the state equation of fluid p = ρ T .

We consider the non-stationary problem in [ 0, +∞ ) × Ω , where

Ω = { 0 � x � 2π/a , 0 � y � 2π/b , z0 � z � z0 + 1 }

with the periodic boundary condition with respect to x, y and the boundary condi-
tions.

u (z0) = u (z0 + 1) = 0 , T (z0) = z0 , T (z0 + 1) = z0 + 1 ,

We use the unknown variables p∗, u∗ = (u, v, w), T∗ for the above system and
rewrite the system for the perturbation p, u = (u, v, w), θ from the equilibrium
state by

u∗ → u , p∗ → zm+1 + p , T∗ → z + θ , ρ∗ → zm + ρ ,

where p = (z + θ) ρ + zm θ , i.e., ρ = ( p − zm θ) / ( z + θ ). Then u and θ

vanish on the horizontal boundaries and
∫

ρ d Ω = 0 .

We notice that nonlinearities depend on the choice of the variables.

The mass conservation law has the form:

∂

∂ t

(
p − zm θ

z + θ

)
+ R ∇ ·

(
zm+1 + p

z + θ
u

)
= 0 . (17.1)

We rewrite it as follows:

1

z + θ

∂ p

∂ t
− zm+1 + p

(z + θ)2

∂ θ

∂ t
+ R ∇ · ( zm u )

+ R ∇ ·
(

p

z + θ
u

)
− R ∇ ·

(
zm θ

z + θ
u

)
= 0 . (17.2)

If we multiply (17.2) by ( z + θ ), we have
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∂ p

∂ t
− zm+1 + p

z + θ

∂ θ

∂ t
+ R ∇ · ( zm+1 u ) + R ∇ · ( p u )

− R

(
zm+1 + p

z + θ
u · ∇ ( z + θ )

)
= 0 . (17.3)

The momentum equation is the following:

1

Pr

zm+1 + p

z + θ

∂ u

∂t
− Δ u − 1

3
∇ (∇ · u) + R

bγ (m + 1)
∇ p

− R

b γ

p − zmθ

z
e3 + R

Pr

zm+1 + p

z + θ
u · ∇ u = 0 . (17.4)

The energy equation is the following:

zm+1 + p

z + θ

∂ θ

∂ t
− Δθ + R(γ − 1) ( zm+1 + p )∇ · u

+ R
zm+1 + p

z + θ
u · ∇ ( z + θ ) = 2gbγ

β0cv

(
D : D − 1

3
(∇ · u )2

)
.

The energy equation can be rewritten by the mass conservation (17.3) in the
following form:

γ (
zm+1 + p

z + θ
)
∂ θ

∂ t
− ( γ − 1 )

∂ p

∂ t
− Δθ + R ( 1 − m(γ − 1)) zm w

− R ( γ − 1 ) u · ∇ p = − R γ (
zm+1 + p

z + θ
) u · ∇ θ

− R γ
p − zm θ

z + θ
w + 2gbγ

β0cv

(
D : D − 1

3
(∇ · u )2

)
.(17.5)

We are considering the system in the horizontal domain z0 � z � z0 + 1, and
we use the following scale for the time, velocity and pressure, which is the same as
[4] and [5], where L = z0 + 1

2 .

t = Lm τ , u = ũ√
L

, p = Lm−1 p̃ , θ = θ̃ .

Thenwe have the following system in the horizontal strip L − 1
2 � z � L + 1

2 :

1

L (z + θ)

∂ p̃

∂ τ
−

(
1

L
(
z

L
)m−1 z2

(z + θ)2
+ p̃

L (z + θ )2

)
∂ θ

∂ τ

+ Rm ∇ ·
(

(
z

L
)m ũ

)
+ Rm ∇ ·

(
p̃

L (z + θ)
ũ

)

− Rm ∇ ·
(

θ

z + θ
(
z

L
)m ũ

)
= 0 ,
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1

Pr

(
(
z

L
)m

z

z + θ
+ p̃

L (z + θ)

)
∂ ũ

∂ τ
− Δ ũ

− 1

3
∇(∇ · ũ) + Rm

b γ (m + 1)
∇ p̃ − Rm

b γ

p̃

z
e3 + Rm

b γ
(
z

L
)m−1 θ e3

= − Rm

Pr

(
(
z

L
)m

z

z + θ
+ p̃

L (z + θ)

)
ũ · ∇ ũ ,

γ

γ − 1

(
(
z

L
)m

z

z + θ
+ p̃

L ( z + θ )

)
∂ θ

∂ τ
− 1

L

∂ p̃

∂ τ

− 1

γ − 1
Δθ + Rm

( 1 − m(γ − 1) )

γ − 1
(
z

L
)m w̃

= − Rm
γ

γ − 1

(
(
z

L
)m

z

z + θ
+ p̃

L (z + θ)

)
ũ · ∇ θ

− Rm
γ

γ − 1

(
p̃

L (z + θ)
− (

z

L
)m

θ

z + θ

)
w̃

− Rm

L
ũ · ∇ p̃ + 2 g b γ

L β0 cv (γ − 1)

(
D̃ : D̃ − 1

3
(∇ · ũ )2

)
,

where we are using the Rayleigh number which was pointed out by [7]

Rm = R Lm− 1
2 .

If we neglect those terms of 1
L × nonliner, we have the following system.

1

L z

∂ p̃

∂ τ
− 1

L
(
z

L
)m−1 ∂ θ

∂ τ
+ Rm ∇ ·

(
(
z

L
)m ũ

)
= 0 ,

1

Pr
(
z

L
)m

∂ ũ

∂ τ
− Δ ũ − 1

3
∇(∇ · ũ) + Rm

bγ (m + 1)
∇ p̃

− Rm

b γ

p̃

z
e3 + Rm

b γ
(
z

L
)m−1 θ e3 = − Rm

Pr
(
z

L
)m ũ · ∇ ũ ,

γ

γ − 1
(
z

L
)m

∂ θ

∂ τ
− 1

L

∂ p̃

∂ τ
− 1

γ − 1
Δθ

+ Rm
( 1 − m(γ − 1) )

γ − 1
(
z

L
)m w̃ = − Rm

γ

γ − 1
(
z

L
)m ũ · ∇ θ.

This system has the same nonlinear terms as those of the Oberbeck-Boussinesq
system as L → +∞.
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17.3 Linearized System

Thus we have the following linearized system that we want to solve here, where tilde
is omitted and τ is replaced by t .

1

L z

∂ p

∂ t
− 1

L
(
z

L
)m−1 ∂ θ

∂ t
+ Rm ∇ ·

(
(
z

L
)m u

)
= 0 , (17.6)

b γ (m + 1)

Pr
(
z

L
)m

∂ u

∂ t
− b γ (m + 1)

(
Δ u + 1

3
∇(∇ · u )

)

+ Rm ∇ p − Rm (m + 1)
p

z
e3 + Rm (m + 1) (

z

L
)m−1 θ e3 = 0 , (17.7)

γ

γ − 1
(
z

L
)m

∂ θ

∂ t
− 1

L

∂ p

∂ t
− 1

γ − 1
Δθ

+ Rm
1 − m(γ − 1)

γ − 1
(
z

L
)m w = 0 . (17.8)

It follows from the mass conservation (17.6) that the constraint of mass conservation∫
ρ d Ω = 0 for the linearized system is the following.

∫
p

z
d Ω −

∫
(
z

L
)m−1 θ d Ω = 0 for any t � 0 . (17.9)

We are going to consider the case that L tends to +∞ and z/L tends to 1, we
use the following rescale for the unknown variables:

(
L

z
)m+1 p = p̃ , (

z

L
)m u = ũ , (

z

L
)m−1 θ = θ̃ . (17.10)

If we notice the following identity in the Eq. (17.7)

∇ p − (m + 1)
p

z
e3 = (

z

L
)m+1 ∇ ( (

L

z
)m+1 p ) ,

the system can be rewritten in the following form, where we omit the tilde.

1

L 2 (
z

L
)m

∂ p

∂ t
− 1

L

∂ θ

∂ t
+ Rm ∇ · u = 0 , (17.11)
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b γ (m + 1)

Pr
(
L

z
)m+1 ∂ u

∂ t
− b γ (m + 1) (

L

z
) 2m+1

(
Δ u + 1

3
∇ ( ∇ · u )

− 2m

z

∂ u

∂ z
− m

3 z
( ∇ · u ) e3 − m

3 z
∇ w + m(m + 1)

z2
( u + w

3
e3 )

)

+ Rm ∇ p + Rm (m + 1) (
L

z
)m+1 θ e3 = 0 , (17.12)

γ

γ − 1
(
L

z
)m

∂ θ

∂ t
− 1

L

∂ p

∂ t
− 1

(γ − 1)
(
L

z
) 2m

(
Δ θ − 2(m − 1)

z

∂ θ

∂ z

+ (m − 1)m

z2
θ

)
+ Rm

1 − m(γ − 1)

γ − 1
(
L

z
)m+1 w = 0 . (17.13)

The constraint of mass conservation
∫

ρ d Ω = 0 for this linearized system is the
following.

∫
1

L
(
z

L
)m p d Ω −

∫
θ d Ω = 0 for any t � 0 . (17.14)

This systemwith γ > 1 and L � 1 in the domain L − 1
2 < z < L + 1

2 is similar
to the symmetric hyperbolic-parabolic systems which are considered in Kawashima
and Shizuta [3] and in Galdi and Padula [1].

Lemma 1 We have the following energy estimates uniformly for L � L0 and
Rm � R0.

∂

∂t

∫ (
1

L2
(
z

L
)m

p2

2
− p θ

L
+ γ

γ − 1
(
L

z
)m

θ2

2
+ b γ (m + 1)

Pr
(
L

z
)m+1 | u |2

2

)

d Ω

+ C0

∫ (
b γ (m + 1) (

L

z
)2m+1 ( | ∇u |2 + 1

3
| ∇ · u |2 ) + 1

γ − 1
(
L

z
)2m | ∇ θ |2

)
d Ω

� 0 . (17.15)

Proof Multiply (17.11) by p, (17.12) by u and (17.13) by θ , add them and integrate
it in Ω:

∂

∂t

∫ (
1

L2 (
z

L
)m

p2

2
− p θ

L
+ γ

γ − 1
(
L

z
)m

θ2

2
+ b γ (m + 1)

Pr
(
L

z
)m+1 | u |2

2

)
d Ω

+
∫ (

b γ (m + 1) (
L

z
)2m+1 ( | ∇u |2 + 1

3
| ∇ · u |2 ) + 1

γ − 1
(
L

z
)2m | ∇ θ |2

)
d Ω

+ Rm
γ

γ − 1

∫
(
L

z
)m+1 θ w d Ω − b γ (m + 1)

∫
(
L

z
)2m+1

(
1

z
u · ∂ u

∂ z

+ m + 1

3 z
w∇ · u − m

3 z
u · ∇ w + m(m + 1)

z2
( |u |2 + w2

3
)

)
d Ω

− 1

γ − 1

∫
(
L

z
)2m

(
2

z
θ

∂ θ

∂ z
− (m − 1)m

z2
θ2

)
d Ω . (17.16)

Here we know that the integrand of the first term is positive definite with respect to
p, θ, u for γ > 1. Since the second integral term is positive definite with respect to
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∇ θ, ∇ u, the last three integrals can be absorbed in the second integral term for
L � L1 and for Rm � R1. Time derivatives have the similar estimates.

The dissipation for the pressure can be obtained by considering Padula’s auxiliary
vector function Ψ and Bogovskii lemma.

∇ · Ψ = p −
∫

p d Ω , Ψ |z=L±0.5 = 0 , Ψ is periodic in x, y.

|| ∇ Ψ || � C1 || p −
∫

p d Ω || , || Ψ || � C0 || p −
∫

p d Ω || .

(17.17)

Multiply the momentum equation (17.12) by Ψ and integrate it by integration by
parts, then we have

Lemma 2 We have the following energy estimates uniformly for L � L1 and
Rm � R1.

Rm || p −
∫

p d Ω ||

� C

(
|| ∂ u

∂ t
|| + || ∇ u || + 1

3
|| ∇ · u || + Rm || θ ||

)
. (17.18)

If we combine the estimates of Lemmas1 and 2 and those estimates for time
derivatives, we can obtain the uniform estimate for L � L2 and Rm � R2 in
0 � t < ∞.

∫ ∞
0

∫ (
C1Rm ( p −

∫
p d Ω )2 + b γ (m + 1) (

L

z
)2m+1 ( | ∇u |2 + 1

3
| ∇ · u |2 )

+ 1

γ − 1
(
L

z
)2m | ∇ θ |2

)
d Ω dt � C2 . (17.19)

Time derivatives have the similar estimates.
If we use this estimate for the dissipation and those estimates for time derivatives,

we can take the limit of L → ∞ in the system (17.11), (17.12), (17.13) and get
the following theorem for the limit system.

Theorem

Rm ∇ · u = 0 , (17.20)

1

Pr

∂ u

∂ t
− Δ u − 1

3
∇ ( ∇ · u ) + Rm

b γ (m + 1)
∇ p + Rm

b γ
θ e3 = 0 , (17.21)

γ
∂ θ

∂ t
− ( γ − 1 )

∂

∂ t

∫
θ d Ω − Δ θ + Rm ( 1 − m(γ − 1) )w = 0 . (17.22)
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Proof The first and second terms in (17.11) decay on 0 < t < ∞ as L → ∞,

because of the estimate (17.19) and those for the time derivatives. Thus we have
the equation (17.20). The second equations (17.21) are obtained from (17.12) by the
uniform estimates (17.19) for u. The second term of the third equation (17.22) comes
from the second term of (17.13) and by the constraint for the mass conservation from
(17.14) as follows.

1

L

∂ p

∂ t
= 1

L

∂

∂ t
( p −

∫
p d Ω ) + 1

L

∂

∂ t

∫
p d Ω

= 1

L

∂

∂ t
( p −

∫
p d Ω ) +

∫
∂

∂ t
θ d Ω + 1

L

∂

∂ t

∫ (
1 −

( z

L

)m )
p d Ω .

The energy equation (17.22) can be rewritten also in the form:

γ
∂ θ

∂ t
− Δθ + Rm ( 1 − m(γ − 1) )w

− ( γ − 1 )

(∫
Δθ − Rm ( 1 − m(γ − 1) )

∫
w

)
= 0 . (17.23)

This gives a correction to the Oberbeck-Boussinesq system from the system of the
compressible viscous and heat-conductive fluids. The pressure effect remains in the
energy equation (17.22) or (17.23) as L → +∞. It is remarked by the asymptotic
expansion in [6].
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Chapter 18
Error Estimates of a Stabilized
Lagrange–Galerkin Scheme of Second-Order
in Time for the Navier–Stokes Equations

Hirofumi Notsu and Masahisa Tabata

Abstract Error estimates with optimal convergence orders are proved for a sta-
bilized Lagrange–Galerkin scheme of second-order in time for the Navier–Stokes
equations. The scheme is a combination of Lagrange–Galerkin method and Brezzi–
Pitkäranta’s stabilization method. It maintains the advantages of both methods; (i) It
is robust for convection-dominated problems and the system of linear equations to be
solved is symmetric. (ii) Since the P1 finite element is employed for both velocity and
pressure, the number of degrees of freedom is much smaller than that of other typical
elements for the equations, e.g., P2/P1. Therefore, the scheme is efficient especially
for three-dimensional problems. The second-order accuracy in time is realized by
Adams-Bashforth’s (two-step) method for the discretization of the material deriv-
ative along the trajectory of fluid particles. The theoretical convergence orders are
recognized by two- and three-dimensional numerical results.

Keywords Error estimates · Stabilized Lagrange-Galerkin scheme · Second-order
scheme · Navier-Strokes equations

18.1 Introduction

In this paper, a stabilized Lagrange–Galerkin scheme of second-order in time for
the Navier–Stokes equations is presented and its stability and convergence with
optimal error estimates are proved. It is a higher-order scheme in time of a stabilized
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Lagrange–Galerkin scheme of first-order in time for the Navier–Stokes equations
proposed and analyzed in [14, 15, 17], and is a combination of a Lagrange–Galerkin
(LG) method and Brezzi–Pitkäranta’s stabilization method [5]. The second-order
accuracy in time is realized by Adams-Bashforth’s (two-step) method, which has
been introduced for convection-diffusion equations in [9] and applied to the Navier–
Stokes equations in [3].

The LG method is a combined finite element method with the method of charac-
teristics, and has such common advantages that robustness for convection-dominated
problems and symmetry of the resulting matrix. The well-known LG schemes for the
Navier–Stokes equations have been mathematically studied in [1, 3, 18, 23], where
error estimates have been proved in [18, 23] for the first-order schemes (in time),
in [3] for the second-order scheme and in [1] for a first-order projection scheme. The
schemes in these literature require a stable element, e.g., P2/P1 finite element [11],
which leads to a large number of degrees of freedom (DOF).

A stabilized LG scheme of first-order in time for the Navier–Stokes equations has
been proposed in [14, 15] in order to reduce the number of DOF. It is one of the
earliest works of LG schemes combined with the so-called stabilization method. The
conditional stability and convergence with optimal error estimates have been proved
for the scheme in [17], where such a condition is not required for a corresponding
scheme for the Oseen equations [16].

The scheme to be proposed and analyzed in this paper has second-order accuracy
in time realized by Adams-Bashforth’s method in addition to the advantages of the
first-order stabilized LG scheme, i.e., robustness for convection-dominated problems,
symmetry of the resulting matrix and the small number of DOF. The stability and
convergence with optimal error estimates are proved for the velocity in the H1-
norm and the pressure in the L2-norm (Theorem 1) and for the velocity in the L2-
norm (Theorem 2) under a condition ofΔt = O(hd/6), which is the same form as in [3]
for a stable LG scheme of second-order in time for the Navier–Stokes equations.

This paper is organized as follows. Our stabilized LG scheme of second-order in
time for the Navier–Stokes equations is presented in Sect. 18.2. The main results on
the stability and convergence with optimal error estimates are stated in Sect. 18.3,
and they are proved in Sect. 18.4. The theoretical convergence orders are recognized
numerically by two- and three-dimensional computations in Sect. 18.5. The conclu-
sions are given in Sect. 18.6. In the Appendix three lemmas used in Sect. 18.4 are
proved.

18.2 A Lagrange–Galerkin Scheme of Second-Order
in Time

We prepare the function spaces and the notation to be used throughout the paper.
Let Ω be a bounded domain in R

d(d = 2, 3), Γ ≡ ∂Ω the boundary of Ω , and T a
positive constant. For an integer m � 0 and a number p ∈ [1,∞] we use the Sobolev
spaces W m,p(Ω), W 1,∞

0 (Ω), Hm(Ω)(= W m,2(Ω)), H1
0 (Ω) and H−1(Ω). For any

normed space X with norm ‖ · ‖X , we define function spaces Cm([0, T ]; X) and
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Hm(0, T; X) consisting of X-valued functions in Cm([0, T ]) and Hm(0, T), respec-
tively, and the superscript “0” is often omitted from C0([0, T ]; X). We use the same
notation (·, ·) to represent the L2(Ω) inner product for scalar-, vector- and matrix-
valued functions. The dual pairing between X and the dual space X ′ is denoted by
〈·, ·〉. The norms on W m,p(Ω)d and Hm(Ω)d are simply denoted as

‖ · ‖m,p ≡ ‖ · ‖W m,p(Ω)d , ‖ · ‖m ≡ ‖ · ‖Hm(Ω)d (= ‖ · ‖m,2)

and the notation ‖ · ‖m is employed not only for vector-valued functions but also for
scalar-valued ones. We also denote the norm on H−1(Ω)d by ‖ · ‖−1. L2

0(Ω) is a
subspace of L2(Ω) defined by

L2
0(Ω) ≡ {

q ∈ L2(Ω); (q, 1) = 0
}
.

We often omit [0, T ], Ω and/or d if there is no confusion, e.g., we shall write C(L∞)

in place of C([0, T ]; L∞(Ω)d). For t0 and t1 ∈ R we introduce the function space

Zm(t0, t1) ≡ {
v ∈ Hj(t0, t1; Hm−j(Ω)d); j = 0, . . . , m, ‖v‖Zm(t0,t1) < ∞}

with the norm

‖v‖Zm(t0,t1) ≡
{ m∑

j=0

‖v‖2
Hj(t0,t1;Hm−j(Ω)d )

}1/2

,

and set Zm ≡ Zm(0, T). The abbreviation LHS means left-hand side.
We consider the Navier–Stokes problem; find (u, p) :Ω × (0, T) → R

d × R such
that

Du

Dt
− ∇ · [2νD(u)

] + ∇p = f in Ω × (0, T), (18.1a)

∇ · u = 0 in Ω × (0, T), (18.1b)

u = 0 on Γ × (0, T), (18.1c)

u = u0 in Ω, at t = 0, (18.1d)

where u is the velocity, p is the pressure, f : Ω × (0, T) → R
d is a given external

force, u0 : Ω → R
d is a given initial velocity, ν > 0 is a viscosity, D(u) is the

strain-rate tensor defined by

Dij(u) ≡ 1

2

(
∂ui

∂xj
+ ∂uj

∂xi

)
, i, j = 1, . . . , d,

and D/Dt is the material derivative defined by

D

Dt
≡ ∂

∂t
+ u · ∇.



500 H. Notsu and M. Tabata

Letting V ≡ H1
0 (Ω)d and Q ≡ L2

0(Ω), we define the bilinear forms a on V × V ,
b on V × Q and A on (V × Q) × (V × Q) by

a(u, v) ≡ 2ν
(
D(u), D(v)

)
, b(v, q) ≡ −(∇ · v, q),

A
(
(u, p), (v, q)

) ≡ a(u, v) + b(v, p) + b(u, q),

respectively. Then, we can write the weak formulation of (18.1) as follows; find
(u, p) : (0, T) → V × Q such that, for t ∈ (0, T),

(Du

Dt
(t), v

)
+ A

(
(u, p)(t), (v, q)

) = (f (t), v), ∀(v, q) ∈ V × Q, (18.2)

with u(0) = u0.
Let Δt be a time increment and tn ≡ nΔt for n ∈ N ∪ {0}. For a function g defined

in Ω × (0, T) we denote generally g(·, tn) by gn. Let g(n−1)∗ be a second-order
approximate function of gn defined by

g(n−1)∗ ≡ 2gn−1 − gn−2.

Let X : (0, T) → R
d be a solution of the system of ordinary differential equations,

dX

dt
= u(X, t). (18.3)

Then, it holds that

Du

Dt
(X(t), t) = d

dt
u
(
X(t), t

)
,

when u is smooth. Let X(·; x, tn) be the solution of (18.3) subject to an initial condi-
tion X(tn) = x. For a velocity w : Ω → R

d let X1(w,Δt) : Ω → R
d be a mapping

defined by

X1(w,Δt)(x) ≡ x − w(x)Δt. (18.4)

Since the positions X1(u(n−1)∗,Δt)(x) and X1(u(n−1)∗, 2Δt)(x) are approximations
of X(tn−1; x, tn) and X(tn−2; x, tn) for n � 2, respectively, we can consider a second
order approximation of the material derivative at (x, tn),

Du

Dt
(x, tn) = d

dt
u
(
X(t; x, tn), t

)∣∣∣
t=tn

= 3un
(
X(tn; x, tn)

) − 4un−1
(
X(tn−1; x, tn)

) + un−2
(
X(tn−2; x, tn)

)

2Δt
+ O(Δt2)

= 3un − 4un−1 ◦ X1(u(n−1)∗,Δt) + un−2 ◦ X1(u(n−1)∗, 2Δt)

2Δt
(x) + O(Δt2),
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where the symbol ◦ stands for the composition of functions,

(v ◦ w)(x) ≡ v
(
w(x)

)
,

for v : Ω → R
d and w : Ω → Ω . X1(w,Δt)(x) is called an upwind point of x with

respect to the velocity w and the time increment Δt. The next proposition gives a
sufficient condition to guarantee that all upwind points by X1(w,Δt) are in Ω .

Proposition 1 ([20, Proposition 1]) Let w ∈ W 1,∞
0 (Ω)d be a given function, and

assume that

Δt‖w‖1,∞ < 1.

Then, it holds that

X1(w,Δt)(Ω) = Ω.

For the sake of simplicity we assume that Ω is a polygonal (d = 2) or polyhedral
(d = 3) domain. Let Th = {K} be a triangulation of Ω̄ (= ⋃

K∈Th
K), hK a diam-

eter of K ∈ Th, and h ≡ maxK∈Th hK the maximum element size. Throughout this
paper we consider a regular family of triangulations {Th}h↓0 satisfying the inverse
assumption [6], i.e., there exists a positive constant α0 independent of h such that

h

hK
� α0, ∀K ∈ Th, ∀h. (18.5)

We define the function spaces Xh, Mh, Vh and Qh by

Xh ≡ {vh ∈ C(Ω̄)d; vh|K ∈ P1(K)d, ∀K ∈ Th},
Mh ≡ {qh ∈ C(Ω̄); qh|K ∈ P1(K), ∀K ∈ Th},

Vh ≡ Xh ∩ V and Qh ≡ Mh ∩ Q, respectively, where P1(K) is the space of linear
functions on K ∈ Th. Let NT ≡ �T/Δt� be a total number of time steps, δ0 a small
positive constant fixed arbitrarily and (·, ·)K the L2(K)d inner product. We define the
bilinear forms Ch on H1(Ω) × H1(Ω) and Ah on (V × H1(Ω)) × (V × H1(Ω)) by

Ch(p, q) ≡ δ0

∑

K∈Th

h2
K(∇p,∇q)K ,

Ah
(
(u, p), (v, q)

) ≡ a(u, v) + b(v, p) + b(u, q) − Ch(p, q). (18.6)

The bilinear form Ch corresponds to Brezzi–Pitkäranta’s pressure-stabilization [5].
Suppose f ∈ C([0, T ]; L2(Ω)d) and that approximate functions ui

h ∈ Vh of ui ∈
V , i = 0, 1, are given. Our stabilized LG scheme for (18.1) is to find {(un

h, pn
h)}NT

n=2 ⊂
Vh × Qh such that, for n = 2, . . . , NT ,



502 H. Notsu and M. Tabata

1

2Δt

(
3un

h − 4un−1
h ◦ X1(u

(n−1)∗
h ,Δt) + un−2

h ◦ X1(u
(n−1)∗
h , 2Δt), vh

)

+Ah
(
(un

h, pn
h), (vh, qh)

) = (f n, vh), ∀(vh, qh) ∈ Vh × Qh. (18.7)

Remark 1 (i) For the P1/P1 finite element, while the conventional inf-sup condi-
tion [11],

inf
qh∈Qh

sup
vh∈Vh

b(vh, qh)

‖vh‖1‖qh‖0
� β∗,

does not hold, the bilinear form Ah satisfies a generalized version [10],

inf
(uh,ph)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

Ah((uh, ph), (vh, qh))

‖(uh, ph)‖V ×Q‖(vh, qh)‖V ×Q
� γ ∗,

thanks to Brezzi–Pitkäranta’s stabilization, where β∗ and γ ∗ are positive constants
independent of h.

(ii) If the inequality 2Δt‖u(n−1)∗
h ‖1,∞ < 1 is satisfied for given un−1

h and un−2
h ∈ Vh,

we have X1(u
(n−1)∗
h ,Δt)(Ω) = X1(u

(n−1)∗
h , 2Δt)(Ω) = Ω by Proposition 1. Then,

there exists a unique solution (un
h, pn

h) ∈ Vh × Qh of (18.7), since the resulting matrix
is invertible. The invertibility is obtained from the fact that (un

h, pn
h) = (0, 0) when

un−1
h = un−2

h = f n = 0 since we have

3

2Δt
‖un

h‖2
0 + 2ν‖D(un

h)‖2
0 + δ0

∑

K∈Th

h2
K‖∇pn

h‖2
L2(K)d = 0 (18.8)

by substituting (un
h,−pn

h) ∈ Vh × Qh into (vh, qh) in (18.7).

18.3 Main Results

In this section we state the main results, conditional stability and optimal error esti-
mates for the scheme (18.7), which are proved in Sect. 18.4.

We use the following norms and a seminorm, ‖ · ‖Vh ≡ ‖ · ‖V ≡ ‖ · ‖1, ‖ · ‖Qh ≡
‖ · ‖Q ≡ ‖ · ‖0,

‖u‖l∞(X) ≡ max
n=0,...,NT

‖un‖X , ‖u‖l2(X) ≡
{
Δt

NT∑

n=1

‖un‖2
X

}1/2
,

|p|h ≡
{ ∑

K∈Th

h2
K(∇p,∇p)K

}1/2
,
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for X = L∞(Ω), L2(Ω) and H1(Ω). Let DΔt and D
(2)

Δt be backward difference oper-
ators defined by

DΔtu
n ≡ un − un−1

Δt
, D

(2)

Δt un ≡ 3un − 4un−1 + un−2

2Δt
= 3

2
DΔtu

n − 1

2
DΔtu

n−1,

which correspond to the first-order backward difference formula (BDF1) and the
second-order backward difference formula (BDF2), respectively.

Definition 1 (Stokes projection) For (w, r) ∈ V × Q we define the Stokes projection
(ŵh, r̂h) ∈ Vh × Qh of (w, r) by

Ah
(
(ŵh, r̂h), (vh, qh)

) = A
(
(w, r), (vh, qh)

)
, ∀(vh, qh) ∈ Vh × Qh. (18.9)

Remark 2 The Stokes projection is well-defined, since when (w, r) = (0, 0), we
have an equation corresponding to (18.8), 2ν‖D(ŵh)‖2

0 + δ0
∑

K∈Th
h2

K‖∇ r̂h‖2
L2(K)d

= 0, which derives (ŵh, r̂h) = (0, 0).

Hypothesis 1 The solution (u, p) of (18.2) satisfies u ∈ C([0, T ]; V ∩ W 1,∞(Ω)d)

∩ Z3 and p ∈ H1(0, T; Q ∩ H1(Ω)).

Remark 3 (i) It is known that the regularity assumption such as Hypothesis 1 leads
to the “nonlocal compatibility condition” on the given data [12, 13]. Here we do not
touch on the behavior of the solution close to the initial time and consider only the
ideal case.

(ii) The regularity assumptions for the velocity, u ∈ C(W 1,∞) and u ∈ Z3, are
used in the condition (18.26) and the estimate (18.29a) below, respectively, which
imply that the mappings X1(u(n−1)∗,Δt) and X1(u(n−1)∗, 2Δt) are bijective and that
scheme (18.7) has second-order accuracy in time for the material derivative.

Let (ûh, p̂h)(t) ∈ Vh × Qh be the Stokes projection of (u, p)(t) by (18.9) for t ∈
[0, T ], and let

en
h ≡ un

h − ûn
h, εn

h ≡ pn
h − p̂n

h, η(t) ≡ (u − ûh)(t).

It is known that there exists δ1 ∈ (0, 1) such that

J(x) ≡ det
∂X1(a,Δt)

∂x
(x) � 1

2
, ∀x ∈ Ω, (18.10)

for anyΔt and a ∈ W 1,∞
0 (Ω)d satisfyingΔt‖a‖1,∞ � δ1, since Jij = δij − Δt∂ai/∂xj,

i, j = 1, . . . , d. Hereafter, let δ1 be the constant above. In [24, Lemma 5.7] the
inequality (18.10) is proved under the condition Δt|a|1,∞ � 1/4, which implies that
δ1 can be taken as δ1 = 1/4.
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Hypothesis 2 (ui
h, pi

h) ∈ Vh × Qh, i = 0, 1, satisfy

‖u0
h‖0,∞, ‖u1

h‖0,∞, ‖u1∗
h ‖0,∞ � ‖u‖C(L∞) + 1, (18.11a)

Δt‖u0
h‖1,∞, Δt‖u1

h‖1,∞, 2Δt‖u1∗
h ‖1,∞ � δ1, (18.11b)

b(u1
h, qh) − Ch(p

1
h, qh) = 0, ∀qh ∈ Qh, (18.11c)

∑

i=0,1

(√
ν‖D(ei

h)‖0 +
√

δ0

2
|εi

h|h
)

+
√

Δt

8
‖DΔte

1
h‖0 + √

Δt‖ε1
h‖0 � cI(Δt2 + h),

(18.11d)

where cI is a positive constant independent of h and Δt.

Remark 4 Hypothesis 2 is satisfied by, e.g., (u0
h, p0

h) and (u1
h, p1

h) ∈ Vh × Qh prepared
by the Stokes projection (18.9) of (u0, 0) and the stabilized LG scheme of first-order
in time, cf. (18.47), respectively.

Theorem 1 Suppose Hypotheses 1 and 2 hold. Then, there exist positive constants h0

and c0 such that for any pair (h,Δt) with

h ∈ (0, h0], Δt � c0hd/6, (18.12)

the following hold.

(i) Scheme (18.7) has a unique solution (uh, ph) = {(un
h, pn

h)}NT
n=2 ⊂ Vh × Qh.

(ii) There exists a positive constant c̄ independent of h and Δt such that

‖uh − u‖l∞(H1), ‖ph − p‖l2(L2) � c̄(Δt2 + h). (18.13)

Hypothesis 3 The Stokes problem is regular, i.e., for any g ∈ L2(Ω)d the solution
(w, r) ∈ V × Q of the Stokes problem,

A
(
(w, r), (v, q)

) = (g, v), ∀(v, q) ∈ V × Q,

belongs to H2(Ω)d × H1(Ω) and the estimate

‖w‖2 + ‖r‖1 � cR‖g‖0

holds, where cR is a positive constant independent of g, w and r.

Remark 5 Hypothesis 3 holds, e.g., if Ω is convex in R
2, cf. [11].
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Hypothesis 4 ui
h ∈ Vh, i = 0, 1, satisfy

∑

i=0,1

‖ei
h‖0 � c̃I(Δt2 + h2), (18.14)

where c̃I is a positive constant independent of h and Δt.

Theorem 2 Suppose Hypotheses 1–4 hold. Then, there exists a positive constant c̃0

such that for any pair (h,Δt) with

h ∈ (0, h0], Δt � c̃0hd/6, (18.15)

the estimate

‖uh − u‖l∞(L2) � c̃(Δt2 + h2), (18.16)

holds, where h0 is the constant in Theorem1, uh = {un
h}NT

n=2 ⊂ Vh is the first component
of the solution of scheme (18.7), and c̃ is a positive constant independent of h and Δt.

18.4 Proofs of Theorems 1 and 2

We use c, cu and c(u,p) to represent the generic positive constants independent of the
discretization parameters h and Δt. cu and c(u,p) are constants depending on u and
(u, p), respectively. The symbol “′ (prime)” is sometimes used in order to distinguish
between two constants, e.g., cu and c′

u.

18.4.1 Preparations

We recall some lemmas and a proposition, which are directly used in our proofs. The
next lemma is derived from Korn’s inequality [8].

Lemma 1 Let Ω be a bounded domain with a Lipschitz-continuous boundary. Then,
there exists a positive constant α1 and the following inequalities hold.

‖D(v)‖0 � ‖v‖1 � α1‖D(v)‖0, ∀v ∈ H1
0 (Ω)d . (18.17)

We use inverse inequalities and interpolation properties.
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Lemma 2 ([6]) There exist positive constants α2i, i = 0, . . . , 4, independent of h
and the following inequalities hold.

|qh|h � α20‖qh‖0, ∀qh ∈ Qh, (18.18a)

‖vh‖0,∞ � α21h−d/6‖vh‖1, ∀vh ∈ Vh, (18.18b)

‖vh‖1,∞ � α22h−d/2‖vh‖1, ∀vh ∈ Vh, (18.18c)

‖Πhv‖0,∞ � ‖v‖0,∞, ∀v ∈ C(Ω̄)d, (18.18d)

‖Πhv‖1,∞ � α23‖v‖1,∞, ∀v ∈ W 1,∞(Ω)d, (18.18e)

‖Πhv − v‖1 � α24h‖v‖2, ∀v ∈ H2(Ω)d, (18.18f)

where Πh : C(Ω̄)d → Xh is the Lagrange interpolation operator.

Remark 6 (i) Although (18.18b) is not optimal for d = 2, it is sufficient in this paper.
(ii) The inequality α23 � 1 holds.

Lemma 3 ([10, Lemma 3.2]) There exists a positive constant α30 independent of h
such that for any h

inf
(wh,rh)∈Vh×Qh

sup
(vh,qh)∈Vh×Qh

Ah
(
(wh, rh), (vh, qh)

)

‖(wh, rh)‖V ×Q‖(vh, qh)‖V ×Q
� α30. (18.19)

Remark 7 The stability inequality (18.19) holds for the P1/P1 finite element spaces,
while we do not have the conventional inf-sup condition [11] for the spaces.

Proposition 2 ([4]) (i) Suppose (w, r) ∈ (V ∩ H2(Ω)d) × (Q ∩ H1(Ω)). Then,
there exists a positive constant α31 independent of h such that for any h the Stokes
projection (ŵh, r̂h) of (w, r) by (18.9) satisfies

‖ŵh − w‖1, ‖r̂h − r‖0, |r̂h − r|h � α31h‖(w, r)‖H2×H1 . (18.20a)

(ii) Suppose Hypothesis 3 additionally holds. Then, there exists a positive constant
α32 independent of h such that for any h

‖ŵh − w‖0 � α32h2‖(w, r)‖H2×H1 . (18.20b)

For the evaluation of composite functions we recall Lemma 4 of [17], which is
mainly due to Lemma 4.5 in [1] and Lemma 1 in [7]. In the next lemma a and b are
any functions in W 1,∞

0 (Ω)d satisfying

Δt‖a‖1,∞, Δt‖b‖1,∞ � δ1.
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Lemma 4 ([17, Lemma 4]) There exist positive constants α4i, i = 0, . . . , 3, inde-
pendent of Δt such that the following inequalities hold.

‖g − g ◦ X1(a,Δt)‖0 � α40Δt‖a‖0,∞‖g‖1, ∀g ∈ H1(Ω)d,

(18.21a)

‖g − g ◦ X1(a,Δt)‖−1 � α41Δt‖a‖1,∞‖g‖0, ∀g ∈ L2(Ω)d,

(18.21b)

‖g ◦ X1(b,Δt) − g ◦ X1(a,Δt)‖0 � α42Δt‖b − a‖0‖g‖1,∞, ∀g ∈ W 1,∞(Ω)d,

(18.21c)

‖g ◦ X1(b,Δt) − g ◦ X1(a,Δt)‖0,1 � α43Δt‖b − a‖0‖g‖1, ∀g ∈ H1(Ω)d .

(18.21d)

At the end of this subsection we prepare a lemma on a discrete Gronwall’s inequal-
ity, which is proved in Appendix.

Lemma 5 Let a0 be a non-negative number, and Δt ∈ (0, 1/(2a0)] a number. Let
{xn}n�0, {yn}n�1, {zn}n�2 and {bn}n�2 be non-negative sequences. Suppose that

1

Δt

(3

2
xn − 2xn−1 + 1

2
xn−2 + yn − yn−1

)
+ zn � a0(xn−1 + xn−2) + bn, ∀n � 2,

(18.22)

holds. Then, it holds that

xn + 2

3
yn + 2

3
Δt

n∑

i=2

zi � 3

2
exp(2a0nΔt)

(
x1 + 2

3
y1 + 2

3
Δt

n∑

i=2

bi

)
, ∀n � 2.

(18.23)

18.4.2 An Estimate at Each Time Step

We have that for n � 2

(
D

(2)

Δt en
h, vh

) + Ah
(
(en

h, ε
n
h), (vh, qh)

) = 〈Rn
h, vh〉, ∀(vh, qh) ∈ Vh × Qh, (18.24)

where

Rn
h ≡

4∑

i=1

Rn
hi,

Rn
h1 ≡ Dun

Dt
− 1

2Δt

{
3un − 4un−1 ◦ X1(u

(n−1)∗,Δt) + un−2 ◦ X1(u
(n−1)∗, 2Δt)

}
,
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Rn
h2 ≡ 1

2Δt

[{−4un−1 ◦ X1(u
(n−1)∗,Δt) + un−2 ◦ X1(u

(n−1)∗, 2Δt)
}

−{ − 4un−1 ◦ X1(u
(n−1)∗
h ,Δt) + un−2 ◦ X1(u

(n−1)∗
h , 2Δt)

}]
,

Rn
h3 ≡ 1

2Δt

{
3ηn − 4ηn−1 ◦ X1(u

(n−1)∗
h ,Δt) + ηn−2 ◦ X1(u

(n−1)∗
h , 2Δt)

}
,

Rn
h4 ≡ 1

2Δt

[{−4en−1
h + en−2

h

} − {−4en−1
h ◦ X1(u

(n−1)∗
h ,Δt) + en−2

h ◦ X1(u
(n−1)∗
h , 2Δt)

}]
.

(18.24) is derived from (18.7), (18.9) and (18.2).

Proposition 3 (i) Let n ∈ {2, . . . , NT } be a fixed number and let un−1
h and un−2

h ∈ Vh

be known. Suppose the inequality

2Δt‖u(n−1)∗
h ‖1,∞ � δ1 (18.25)n

holds. Then, there exists a unique solution (un
h, pn

h) ∈ Vh × Qh of (18.7).

(ii) Furthermore, suppose Hypothesis 1 and the inequality

6Δt‖u‖C(W 1,∞) � δ1 (18.26)

hold. Let pn−1
h ∈ Qh be known and suppose the equation

b(un−1
h , qh) − Ch(p

n−1
h , qh) = 0, ∀qh ∈ Qh, (18.27)n

holds. Then, it holds that

DΔt

(
ν‖D(en

h)‖2
0 + δ0

2
|εn

h|2h
)

+ 1

2
‖DΔte

n
h‖2

0

� A1(‖u(n−1)∗
h ‖0,∞)ν

(‖D(en−1
h )‖2

0 + ‖D(en−2
h )‖2

0

) + 1

8
‖DΔte

n−1
h ‖2

0

+ A2(‖u(n−1)∗
h ‖0,∞)

[
Δt3‖u‖2

Z3(tn−2,tn) + h2
( 1

Δt
‖(u, p)‖2

H1(tn−2,tn;H2×H1) + 1
)]

,

(18.28)n

where Ai, i = 1, 2, are functions defined by

Ai(ξ) ≡ ci(ξ
2 + 1)

and ci, i = 1, 2, are positive constants independent of h and Δt. They are defined
by (18.35) below.

For the proof we use the next lemma, which is proved in Appendix.
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Lemma 6 Suppose Hypothesis 1 holds. Let n ∈ {2, . . . , NT } be a fixed number and
let un−1

h and un−2
h ∈ Vh be known. Then, under the conditions (18.25)n and (18.26)

it holds that

‖Rn
h1‖0 � cuΔt3/2‖u‖Z3(tn−2,tn), (18.29a)

‖Rn
h2‖0 � c(u,p)(‖en−1

h ‖0 + ‖en−2
h ‖0 + h), (18.29b)

‖Rn
h3‖0 � ch√

Δt
(‖u(n−1)∗

h ‖0,∞ + 1)‖(u, p)‖H1(tn−2,tn;H2×H1), (18.29c)

‖Rn
h4‖0 � c‖u(n−1)∗

h ‖0,∞(‖en−1
h ‖1 + ‖en−2

h ‖1). (18.29d)

Proof of Proposition 3. (i) is obtained from (18.25)n and Remark 1-(ii).
We prove (ii). Substituting (DΔten

h, 0) into (vh, qh) in (18.24) and using the inequal-
ities (ab � a2/4 + b2 and

(D
(2)

Δt en
h, DΔte

n
h) =

(3

2
DΔte

n
h − 1

2
DΔte

n−1
h , DΔte

n
h

)

= 3

2
‖DΔte

n
h‖2

0 − 1

2
(DΔte

n−1
h , DΔte

n
h)

� 3

2
‖DΔte

n
h‖2

0 − 1

2

(1

4
‖DΔte

n−1
h ‖2

0 + ‖DΔte
n
h‖2

0

)

= ‖DΔte
n
h‖2

0 − 1

8
‖DΔte

n−1
h ‖2

0,

we have

‖DΔte
n
h‖2

0 − 1

8
‖DΔte

n−1
h ‖2

0 + DΔt
(
ν‖D(en

h)‖2
0

) + b(DΔte
n
h, ε

n
h) �

4∑

i=1

〈Rn
hi, DΔte

n
h〉.

(18.30)

Here, we have noted that both X1(u(n−1)∗,Δt) and X1(u(n−1)∗, 2Δt) in Rn
hi, i = 1, 2,

map Ω onto Ω , since we have

2Δt‖u(n−1)∗‖1,∞ = 2Δt‖2un−1 − un−2‖1,∞ � 2Δt(2‖un−1‖1,∞ + ‖un−2‖1,∞)

� 6Δt‖u‖C(W 1,∞) � δ1 (by (18.26)).

From (18.27)n and (18.7) with vh = 0 ∈ Vh we have

b(uk
h, qh) − Ch(p

k
h, qh) = 0, ∀qh ∈ Qh, (18.31)
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for k = n − 1 and n. Since (ûn
h, p̂n

h) is the Stokes projection of (un, pn) by (18.9), we
have

b(ûk
h, qh) − Ch(p̂

k
h, qh) = b(uk, qh) = 0, ∀qh ∈ Qh, (18.32)

for k = n − 1 and n. The equalities (18.31) and (18.32) imply

b(DΔte
n
h, qh) − Ch(DΔtε

n
h, qh) = 0, ∀qh ∈ Qh,

which leads to

−b(DΔte
n
h, ε

n
h) + Ch(DΔtε

n
h, ε

n
h) = 0 (18.33)

by putting qh = −εn
h ∈ Qh. Adding (18.33) to (18.30) and using Lemma 6 and the

inequality ab � βa2/2 + b2/(2β) (β > 0), we have

‖DΔte
n
h‖2

0 + DΔt

(
ν‖D(en

h)‖2
0 + δ0

2
|εn

h |2h
)

�
4∑

i=1

〈Rn
hi, DΔte

n
h〉 + 1

8
‖DΔte

n−1
h ‖2

0

�
( 4∑

i=1

βi

)
‖DΔte

n
h‖2

0 + c(u,p)

α2
1
ν

(
1

β2
+ ‖u(n−1)∗

h ‖2
0,∞

β4

)
ν(‖D(en−1

h )‖2
0 + ‖D(en−2

h )‖2
0)

+ 1

8
‖DΔte

n−1
h ‖2

0 + c′
(u,p)

[
Δt3

β1
‖u‖2

Z3(tn−2,tn)

+ h2
(

1

β2
+ ‖u(n−1)∗

h ‖2
0,∞ + 1

β3Δt
‖(u, p)‖2

H1(tn−2,tn;H2×H1)

)]
(18.34)

for any positive numbers βi, i = 1, . . . , 4, where the inequality ‖en−1
h ‖0 � ‖en−1

h ‖1

has been used. By setting βi = 1/8 for i = 1, . . . , 4 in (18.34) we have

DΔt

(
ν‖D(en

h)‖2
0 + δ0

2
|εn

h |2h
)

+ 1

2
‖DΔte

n
h‖2

0

� c(u,p)

ν
(‖u(n−1)∗

h ‖2
0,∞ + 1)ν

(‖D(en−1
h )‖2

0 + ‖D(en−2
h )‖2

0

) + 1

8
‖DΔte

n−1
h ‖2

0

+ c′
(u,p)(‖u(n−1)∗

h ‖2
0,∞ + 1)

[
Δt3‖u‖2

Z3(tn−2,tn)
+ h2

( 1

Δt
‖(u, p)‖2

H1(tn−2,tn;H2×H1)
+ 1

)]
.

Putting

c1 ≡ c(u,p)/ν, c2 ≡ c′
(u,p), (18.35)

we obtain (18.28)n. �
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18.4.3 Proof of Theorem1

The proof is performed through three steps.

Step 1 (Setting c0 and h0): Let cI and Ai, i = 1, 2, be the constant in Hypothesis 2 and
the functions in Proposition 3, respectively. Let a1, a2 and c∗ be constants defined by

a1 ≡ A1(3‖u‖C(L∞) + 1), a2 ≡ A2(3‖u‖C(L∞) + 1),

c∗ ≡ α1√
ν

exp(a1T)

× max
{[

2(c2
I + a2‖u‖2

Z3)
]1/2

,
[
2c2

I + a2(2‖(u, p)‖2
H1(H2×H1) + T)

]1/2
}
.

We can choose sufficiently small positive constants c0 and h0 such that

3α21
{
c∗(c2

0hd/6
0 + h1−d/6

0 ) + (α24 + α31)h
1−d/6
0 ‖(u, p)‖C(H2×H1)

}

+c2
0hd/3

0 ‖u‖C2(L∞) � 1, (18.36a)

6c0
[
α22

{
c∗(c2

0 + h1−d/3
0 ) + (α24 + α31)h

1−d/3
0 ‖(u, p)‖C(H2×H1)

}

+α23hd/6
0 ‖u‖C(W 1,∞)

]
� δ1, (18.36b)

since all the powers of h0 are positive in (18.36a) and non-negative in (18.36b). In
the following we consider a pair (h,Δt) satisfying (18.12) with c0 and h0 above.

For the induction in Step 2 we define a property P(n), n ∈ {2, . . . , NT }, by

P(n) : ν‖D(en
h)‖2

0 + δ0

2
|εn

h|2h + 3

8
Δt

n−1∑

i=2

‖DΔte
i
h‖2

0 + 1

2
Δt‖DΔte

n
h‖2

0

� exp
{
a1(2n − 3)Δt

}[∑

i=0,1

(
ν‖D(ei

h)‖2
0 + δ0

2
|εi

h|2h
)

+ 1

8
Δt‖DΔte

1
h‖2

0

+ a2

{
Δt4

n∑

i=2

‖u‖2
Z3(ti−2,ti) + h2

( n∑

i=2

‖(u, p)‖2
H1(ti−2,ti;H2×H1) + (n − 1)Δt

)}]
,

which can be rewritten as

xn + 3

4
Δt

n−1∑

i=2

yi + Δtyn � exp
{
a1(2n − 3)Δt

}(
X0 + Δt

n∑

i=2

bi

)
, (18.37)n

where

xn ≡ ν‖D(en
h)‖2

0 + δ0

2
|εn

h|2h, yi ≡ 1

2
‖DΔte

i
h‖2

0, X0 ≡ x0 + x1 + 1

4
Δty1,

bi ≡ a2

[
Δt3‖u‖2

Z3(ti−2,ti) + h2
( 1

Δt
‖(u, p)‖2

H1(ti−2,ti;H2×H1) + 1
)]

.
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Let us note the following four facts.

(F1): The condition (18.26) is satisfied.
(F2): For any k ∈ {2, . . . , NT }, P(k) implies

‖ek
h‖1 � c∗(Δt2 + h). (18.38)k

(F3): For any k ∈ {2, . . . , NT − 1}, (18.38)k and (18.38)k−1 imply

∥∥uk∗
h

∥∥
0,∞ � 3‖u‖C(L∞) + 1, 2Δt

∥∥uk∗
h

∥∥
1,∞ � δ1, (18.39)k

and there exists a unique solution (uk+1
h , pk+1

h ) of Eq. (18.7) with n = k + 1, where
the latter inequality of (18.39)k is nothing but (18.25)k+1.

(F4): For any k ∈ {2, . . . , NT }, under ‖u(k−1)∗
h ‖0,∞ � 3‖u‖C(L∞) + 1, the inequal-

ity (18.28)k implies

xk + Δtyk � (1 + a1Δt)xk−1 + a1Δtxk−2 + 1

4
Δtyk−1 + Δtbk. (18.40)k

(F1) is derived from the estimate,

6Δt‖u‖C(W 1,∞) � 6c0hd/6
0 ‖u‖C(W 1,∞) � 6c0α23hd/6

0 ‖u‖C(W 1,∞) � δ1,

where (18.12), Remark 6-(ii) and (18.36b) are used.
(F2) is obtained from the estimate,

ν‖D(ek
h)‖2

0 + δ0

2
|εk

h|2h + 3

8
Δt

k−1∑

i=2

‖DΔte
i
h‖2

0 + 1

2
Δt‖DΔte

k
h‖2

0

� exp
{
a1(2k − 3)Δt

}[
c2

I (Δt2 + h)2

+ a2

{
Δt4

k∑

i=2

‖u‖2
Z3(ti−2,ti) + h2

( k∑

i=2

‖(u, p)‖2
H1(ti−2,ti;H2×H1) + (k − 1)Δt

)}]

(by P(k)and Hypothesis 2)

� exp(2a1T)
[
c2

I (Δt2 + h)2 + a2

{
2Δt4‖u‖2

Z3 + h2
(

2‖(u, p)‖2
H1(H2×H1) + T

)}]

� exp(2a1T)
[
2Δt4(c2

I + a2‖u‖2
Z3) + h2

{
2c2

I + a2
(
2‖(u, p)‖2

H1(H2×H1) + T
)}]

� ν

α2
1

{
c∗(Δt2 + h)

}2
, (18.41)

which implies (18.38)k as ‖ek
h‖1 � α1‖D(ek

h)‖0 � c∗(Δt2 + h).
We show (F3). Let us remind that Πh is the Lagrange interpolation operator stated

in Lemma 2. Noting that ‖uk∗‖X � 2‖uk‖X + ‖uk−1‖X � 3‖u‖C(X) for X = L∞(Ω)d

and W 1,∞(Ω)d , we have
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∥
∥uk∗

h

∥
∥

0,∞ � ‖uk∗
h − Πhuk∗‖0,∞ + ‖Πhuk∗‖0,∞

� 2‖uk
h − Πhuk‖0,∞ + ‖uk−1

h − Πhuk−1‖0,∞ + ‖Πhuk∗‖0,∞
� α21h−d/6(2‖uk

h − Πhuk‖1 + ‖uk−1
h − Πhuk−1‖1) + ‖Πhuk∗‖0,∞

� α21h−d/6{
2(‖uk

h − ûk
h‖1 + ‖ûk

h − uk‖1 + ‖uk − Πhuk‖1)

+ (‖uk−1
h − ûk−1

h ‖1 + ‖ûk−1
h − uk−1‖1 + ‖uk−1 − Πhuk−1‖1)

} + ‖uk∗‖0,∞
� α21h−d/6[

2
{
c∗(Δt2 + h) + α31h‖(u, p)k‖H2×H1 + α24h‖uk‖2

}

+ {
c∗(Δt2 + h) + α31h‖(u, p)k−1‖H2×H1 + α24h‖uk−1‖2

}] + 3‖u‖C(L∞)

(by (18.38)k and (18.38)k−1)

� 3α21h−d/6{
c∗(Δt2 + h) + (α24 + α31)h‖(u, p)‖C(H2×H1)

} + 3‖u‖C(L∞)

� 3α21
{
c∗(c2

0hd/6
0 + h1−d/6

0 ) + (α24 + α31)h1−d/6
0 ‖(u, p)‖C(H2×H1)

} + 3‖u‖C(L∞)

(by (18.12))

� 3‖u‖C(L∞) + 1 (by (18.36a)),

and

2Δt
∥
∥uk∗

h

∥
∥

1,∞ � 2Δt(2‖uk
h − Πhuk‖1,∞ + ‖uk−1

h − Πhuk−1‖1,∞ + ‖Πhuk∗‖1,∞)

� 2Δt
{
α22h−d/2(2‖uk

h − Πhuk‖1 + ‖uk−1
h − Πhuk−1‖1) + ‖Πhuk∗‖1,∞

}

� 2Δt
[
α22h−d/2{

2(‖uk
h − ûk

h‖1 + ‖ûk
h − uk‖1 + ‖uk − Πhuk‖1)

+ (‖uk−1
h − ûk−1

h ‖1 + ‖ûk−1
h − uk−1‖1 + ‖uk−1 − Πhuk−1‖1)

} + α23‖uk∗‖1,∞
]

� 2Δt
[
α22h−d/2

{
2
(

c∗(Δt2 + h) + α31h‖(u, p)k‖H2×H1 + α24h‖uk‖2

)

+
(

c∗(Δt2 + h) + α31h‖(u, p)k−1‖H2×H1 + α24h‖uk−1‖2

)}
+ 3α23‖u‖C(W 1,∞)

]

(by (18.38)k and (18.38)k−1)

� 6Δt
[
α22h−d/2{

c∗(Δt2 + h) + (α24 + α31)h‖(u, p)‖C(H2×H1)

} + α23‖u‖C(W 1,∞)

]

� 6c0
[
α22

{
c∗(c2

0 + h1−d/3
0 ) + (α24 + α31)h1−d/3

0 ‖(u, p)‖C(H2×H1)

}

+ α23hd/6
0 ‖u‖C(W 1,∞)

]
(by (18.12))

� δ1 (by (18.36b)),

which lead to (18.39)k .
We derive (F4). Since Ai(‖u(k−1)∗

h ‖0,∞) � ai, i = 1, 2, hold, the inequality (18.28)k

implies

DΔtxk + yk � a1(xk−1 + xk−2) + 1

4
yk−1 + bk,

which is equivalent to (18.40)k .
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Step 2 (Induction): We prove P(n) for n ∈ {2, . . . , NT } by induction. Let us note that
(F1) ensures (18.26) in the sequel.

Firstly, we prove P(2) and P(3) for given (ui
h, pi

h), i = 0, 1, satisfying Hypothesis 2.
Since the last inequality of (18.11b) is nothing but (18.25)2, there exists a unique
solution (u2

h, p2
h) of (18.7) from Proposition 3-(i).

We prove P(2). (18.11c) is equivalent to (18.27)2. Hence, (18.28)2 holds from
Proposition 3-(ii). The last inequality of (18.11a) and (F4) imply the estimate,

x2 + Δty2 � (1 + a1Δt)x1 + a1Δtx0 + 1

4
Δty1 + Δtb2 (by (18.40)2)

� (1 + a1Δt)(X0 + Δtb2) � exp(a1Δt)(X0 + Δtb2),

which is (18.37)2, i.e., P(2).
Since (18.38)2 and (18.38)1 are obtained from (F2) and (18.11d) with (α1/

√
ν)cI �

c∗, respectively, we have (18.39)2 and there exists a unique solution (u3
h, p3

h) of (18.7).
We prove P(3). (18.27)3 is obtained from (18.7), and Proposition 3-(ii) implies

(18.28)3. From (F4) we have (18.40)3 and the estimate,

x3 + 3

4
Δty2 + Δty3 �

{
(1 + a1Δt)x2 + a1Δtx1 + 1

4
Δty2 + Δtb3

}
+ 3

4
Δty2

� (1 + a1Δt)(x2 + Δty2) + a1Δtx1 + Δtb3

� (1 + a1Δt) exp(a1Δt)(X0 + Δtb2) + a1ΔtX0 + Δtb3 (by P(2))

� (1 + 2a1Δt) exp(a1Δt)
(

X0 + Δt
3∑

i=2

bi

)
� exp(3a1Δt)

(
X0 + Δt

3∑

i=2

bi

)
.

Thus we get P(3).
Secondly, we prove the general step in the induction. Supposing that P(n − 1)

and P(n − 2) hold true for an integer n ∈ {4, . . . , NT }, we prove that P(n) also holds.
P(n − 1) and P(n − 2) imply (18.38)n−1 and (18.38)n−2 from (F2), respectively. From
(F3) we have (18.39)n−1 and there exists a unique solution (un

h, pn
h) of (18.7).

We prove P(n). (18.39)n−1 implies (18.40)n from (F4). Noting P(n − 1) and
P(n − 2), i.e.,

xn−1 + 3

4
Δt

n−2∑

i=2

yi + Δtyn−1 � exp
{
a1(2n − 5)Δt

}(
X0 + Δt

n−1∑

i=2

bi

)
, (18.42a)

xn−2 + 3

4
Δt

n−3∑

i=2

yi + Δtyn−2 � exp
{
a1(2n − 7)Δt

}(
X0 + Δt

n−2∑

i=2

bi

)
, (18.42b)
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we have

xn + 3

4
Δt

n−1∑

i=2

yi + Δtyn = (xn + Δtyn) + 3

4
Δt

n−1∑

i=2

yi

� (1 + a1Δt)xn−1 + a1Δtxn−2 + 1

4
Δtyn−1 + Δtbn + 3

4
Δt

n−1∑

i=2

yi (by (18.40)n)

� (1 + a1Δt)
(

xn−1 + 3

4
Δt

n−2∑

i=1

yi + Δtyn−1

)
+ a1Δtxn−2 + Δtbn

� (1 + a1Δt) exp
{
a1(2n − 5)Δt

}(
X0 + Δt

n−1∑

i=2

bi

)

+ a1Δt exp
{
a1(2n − 7)Δt

}(
X0 + Δt

n−2∑

i=2

bi

)
+ Δtbn (by (18.42))

� (1 + 2a1Δt) exp
{
a1(2n − 5)Δt

}(
X0 + Δt

n−1∑

i=2

bi

)
+ Δtbn

� exp
{
a1(2n − 3)Δt

}(
X0 + Δt

n∑

i=2

bi

)
,

which is (18.37)n, i.e., P(n). Thus, the induction is completed.

Step 3: Finally we derive the results (i) and (ii) of the theorem. The induction com-
pleted in the previous step implies that P(NT ) holds true. Hence, we have (i). The
first inequality of (18.13) in (ii) is obtained from (F2) and the estimate,

‖uh − u‖l∞(H1) � ‖eh‖l∞(H1) + ‖η‖l∞(H1) � ‖eh‖l∞(H1) + α31h‖(u, p)‖C(H2×H1).

We prove the second inequality of (18.13). We have

‖εn
h‖0 � ‖(en

h, ε
n
h)‖V ×Q � 1

α30
sup

(vh,qh)∈Vh×Qh

Ah
(
(en

h, ε
n
h), (vh, qh)

)

‖(vh, qh)‖V ×Q

= 1

α30
sup

(vh,qh)∈Vh×Qh

〈Rn
h, vh〉 − (D

(2)

Δt en
h, vh)

‖(vh, qh)‖V ×Q

� c(u,p)

{
Δt3/2‖u‖Z3(tn−2,tn) + h

( 1√
Δt

‖(u, p)‖H1(tn−2,tn;H2×H1) + 1
)

+ ‖en−1
h ‖1 + ‖en−2

h ‖1 + ‖D
(2)

Δt en
h‖0

}

� c(u,p)

{
Δt3/2‖u‖Z3(tn−2,tn) + h

( 1√
Δt

‖(u, p)‖H1(tn−2,tn;H2×H1) + 1
)

+ ‖en−1
h ‖1 + ‖en−2

h ‖1 + 3

2
‖DΔte

n
h‖0 + 1

2
‖DΔte

n−1
h ‖0

}
(18.43)
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for n = 2, . . . , NT , where we have used Lemmas 3 and 6 and the inequality ‖en−1
h ‖0 �

‖en−1
h ‖1. We obtain the result by combining (18.43), (18.41) and (18.11d) with the

estimate

‖ph − p‖l2(L2) � ‖εh‖l2(L2) + ‖p̂h − p‖l2(L2) � ‖εh‖l2(L2) + √
Tα31h‖(u, p)‖C(H2×H1).

�

Remark 8 The former estimate of (18.39)k can be improved as

∥∥uk∗
h

∥∥
0,∞ � ‖u‖C(L∞) + 1

under the additional condition u ∈ C1([0, T ]; L∞(Ω)d) for Δt ∈ (0, 1/‖u‖C1(L∞)].

18.4.4 Proof of Theorem2

We use the next lemma, which is proved in Appendix.

Lemma 7 Suppose Hypotheses 1 and 3 hold. Let n ∈ {2, . . . , NT } be a fixed number
and let un−1

h and un−2
h ∈ Vh be known. Then, under the conditions (18.25)n and (18.26)

we have

‖Rn
h2‖0 � c(u,p)

{
‖en−1

h ‖0 + ‖en−2
h ‖0 + h2

( 1√
Δt

‖(u, p)‖H1(tn−2,tn;H2×H1) + 1
)}

,

(18.44a)

‖Rn
h3‖V ′

h
� c(u,p)

(‖en−1
h ‖0 + ‖en−2

h ‖0 + h2
)
, (18.44b)

‖Rn
h4‖V ′

h
� c(u,p)

2∑

k=1

(
1 + h−d/6‖en−k

h ‖1
)(‖en−k

h ‖0 + h2
)
. (18.44c)

Proof of Theorem 2. Since we have‖eh‖l∞(H1) � c∗(Δt2 + h) � c∗(c2
0hd/6

0 + h1−d/6
0 )

hd/6 from (F2) in the proof of Theorem 1, Hypothesis 2 and (18.12), (18.44c) implies

‖Rn
h4‖V ′

h
� c(u,p)

(‖en−1
h ‖0 + ‖en−2

h ‖0 + h2
)
. (18.45)

Substituting (en
h,−εn

h) into (vh, qh) in (18.24) and using (18.17), (18.29a), (18.44a),
(18.44b), (18.45) and the identity [19],

(D
(2)

Δt en
h, en

h) = 1

Δt

{3

4
‖en

h‖2
0 − ‖en−1

h ‖2
0 + 1

4
‖en−2

h ‖2
0 + 1

4
‖en

h − 2en−1
h + en−2

h ‖2
0

+ 1

2

(‖en
h − en−1

h ‖2
0 − ‖en−1

h − en−2
h ‖2

0

)}
,
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we have

1

Δt

{3

4
‖en

h‖2
0 − ‖en−1

h ‖2
0 + 1

4
‖en−2

h ‖2
0 + 1

2

(‖en
h − en−1

h ‖2
0 − ‖en−1

h − en−2
h ‖2

0

)}

+ 2ν

α2
1

‖en
h‖2

1 + δ0|εn
h|2h �

4∑

i=1

〈Rn
hi, en

h〉

�
( 4∑

i=1

βi

)
‖en

h‖2
1 + c(u,p)

( 4∑

i=2

1

βi

)(‖en−1
h ‖2

0 + ‖en−2
h ‖2

0

)

+ c′
(u,p)

[Δt3

β1
‖u‖2

Z3(tn−2,tn) + h4
{ 1

β2Δt
‖(u, p)‖2

H1(tn−2,tn;H2×H1) +
( 4∑

i=2

1

βi

)}]

for anyβi > 0 (i = 1, . . . , 4), where the inequality‖en
h‖0 � ‖en

h‖1 has been employed.
Hence, we have

1

Δt

{3

4
‖en

h‖2
0 − ‖en−1

h ‖2
0 + 1

4
‖en−2

h ‖2
0 + 1

2

(‖en
h − en−1

h ‖2
0 − ‖en−1

h − en−2
h ‖2

0

)}

+ ν

α2
1

‖en
h‖2

1 + δ0|εn
h|2h

� c(u,p)(‖en−1
h ‖2

0 + ‖en−2
h ‖2

0)

+ c′
(u,p)

{
Δt3‖u‖2

Z3(tn−2,tn) + h4
( 1

Δt
‖(u, p)‖2

H1(tn−2,tn;H2×H1) + 1
)}

by setting βi = ν/(4α2
1) (i = 1, . . . , 4). From Lemma 5 with

xn = 1

2
‖en

h‖2
0, yn = 1

2
‖en

h − en−1
h ‖2

0, zn = ν

α2
1

‖en
h‖2

1 + δ0|εn
h|2h,

a0 = 2c(u,p), bn = c′
(u,p)

{
Δt3‖u‖2

Z3(tn−2,tn) + h4
( 1

Δt
‖(u, p)‖2

H1(tn−2,tn;H2×H1) + 1
)}

,

and the inequality y1 � ‖e0
h‖2

0 + ‖e1
h‖2

0 there exists a positive constant c4 independent
of h and Δt such that

‖eh‖l∞(L2) � c4(‖e1
h‖0 + ‖e0

h‖0 + Δt2 + h2) (18.46)

under the condition Δt � 1/(2a0). We note that there exists a positive constant
c̃0 � c0 independent of h and Δt such that

(Δt �)c̃0hd/6
0 � 1

2a0
.
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Combining (18.46) and (18.14) with the inequality

‖uh − u‖l∞(L2) � ‖eh‖l∞(L2) + ‖η‖l∞(L2) � ‖eh‖l∞(L2) + α32h2‖(u, p)‖C(H2×H1),

we obtain (18.16). �

18.5 Numerical Results

In this section two- and three-dimensional test problems are computed by scheme
(18.7) in order to recognize the theoretical convergence orders numerically.

We set u0
h as the first component of the Stokes projection of (u0, 0) ∈ V × Q

by (18.9). The approximation (u1
h, p1

h) ∈ Vh × Qh is obtained by the stabilized LG
scheme of first-order in time [14, 15, 17] with a time increment τ ≡ Δt2, i.e., (u1

h, p1
h)

is defined by (u1
h, p1

h) ≡ (ũÑT
h , p̃ÑT

h ) for the solution {(ũm
h , p̃m

h )}ÑT
m=1 ⊂ Vh × Qh such

that, for m = 1, . . . , ÑT ,

( ũm
h − ũm−1

h ◦ X1(ũ
m−1
h , τ )

τ
, vh

)
+ Ah((ũ

m
h , p̃m

h ), (vh, qh)) = (f̃ m, vh),

∀(vh, qh) ∈ Vh × Qh, (18.47)

where ũ0
h ≡ u0

h, ÑT ≡ �Δt/τ� = �1/Δt� and f̃ m ≡ f (·, mτ). Then, Hypotheses 2
and 4 are satisfied. In the rest of this section we consider the above complete scheme,
i.e., scheme (18.7) with u0

h, the first component of the Stokes projection of (u0, 0) ∈
V × Q by (18.9), and (u1

h, p1
h) obtained by (18.47). We simply call it scheme (18.7)

with (18.47), and the error estimates (18.13) and (18.16) hold for the scheme.
Numerical quadrature formulae [22] of degree five for d = 2 (seven points)

and 3 (fifteen points) are employed for the computation of the integrals of com-
posite functions in (18.7) and (18.47), e.g.,

∫

K
un−1

h ◦ X1(u
(n−1)∗
h ,Δt)(x)vh(x) dx.

Theorems 1 and 2 hold for any fixed δ0. Here we set δ0 = 1. The system of linear
equations is solved by MINRES [2, 21].

Example 1 In problem (18.1) we set Ω = (0, 1)d , T = 1 and we consider four values
of ν,

ν = 10−k, k = 1, . . . , 4.

The functions f and u0 are given so that the exact solution is as follows:
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for d = 2:

u(x, t) =
( ∂ψ

∂x2
,− ∂ψ

∂x1

)
(x, t), p(x, t) = sin{π(x1 + 2x2 + t)},

ψ(x, t) ≡
√

3

2π
sin2(πx1) sin2(πx2) sin{π(x1 + x2 + t)},

for d = 3:

u(x, t) = rot Ψ (x, t), p(x, t) = sin{π(x1 + 2x2 + x3 + t)},

Ψ1(x, t) ≡ 8
√

3

27π
sin(πx1) sin2(πx2) sin2(πx3) sin{π(x2 + x3 + t)},

Ψ2(x, t) ≡ 8
√

3

27π
sin2(πx1) sin(πx2) sin2(πx3) sin{π(x3 + x1 + t)},

Ψ3(x, t) ≡ 8
√

3

27π
sin2(πx1) sin2(πx2) sin(πx3) sin{π(x1 + x2 + t)}.

These solutions are normalized so that ‖u‖C(L∞) = ‖p‖C(L∞) = 1.

Let N be the division number of each side of the domain. We set N = 16, 32,
64, 128, 256 and 512 for d = 2 and N = 16, 32 and 64 for d = 3, and (re)define
h ≡ 1/N . The meshes of N = 16 are shown in Fig. 18.1 for d = 2 (left) and 3 (right).
Example 1 is solved by scheme (18.7) with (18.47), and for the solution (uh, ph) we
define the relative errors Er1 and Er2 by

Er1 ≡ ‖uh − Πhu‖l2(H1) + ‖ph − Πhp‖l2(L2)

‖Πhu‖l2(H1) + ‖Πhp‖l2(L2)

, Er2 ≡ ‖uh − Πhu‖l∞(L2)

‖Πhu‖l∞(L2)

,

where for the pressure we have used the same symbol Πh as its scalar version,
i.e., Πh : C(Ω̄) → Mh. We employ two relations between Δt and h, (i) Δt =
λ1h1/2 for λ1 = 0.25 and (ii) Δt = h, in order to observe the convergence orders
of (18.13) and (18.16), respectively. The orders are calculated as O(Δt2 + h) =
O(Δt2) and O(Δt2 + h2) = O(Δt2) for (i), and O(Δt2 + h) = O(Δt) and O(Δt2 +
h2) = O(Δt2) for (ii). The results of the cases (i) and (ii) are shown in Figs. 18.2

Fig. 18.1 Sample meshes
for d = 2 (left) and 3 (right),
N = 16
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Fig. 18.2 Er1 versus Δt (the left two, left: d = 2, right: d = 3) and Er2 versus Δt (the right two,
left: d = 2, right: d = 3) for Δt = λ1h1/2 (λ1 = 0.25)
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Fig. 18.3 Er1 versus Δt (the left two, left: d = 2, right: d = 3) and Er2 versus Δt (the right two,
left: d = 2, right: d = 3) for Δt = h

and 18.3, respectively, and they exhibit the graphs of Er1 versus Δt (the left two)
and Er2 versus Δt (the right two) in logarithmic scale for d = 2 and 3, where the
symbols are summarized in Table 18.1. The values and the slopes of the graphs in
Figs. 18.2 and 18.3 are given in Tables 18.2 and 18.3, respectively.
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Table 18.1 Symbols used in Figs. 18.2 and 18.3

d ν

10−1 10−2 10−3 10−4

2 ◦ � � �
3 • � � �

In Fig. 18.2 and Table 18.2, i.e., the results of (i), Er1 is almost of second order
for d = 2 and is of better order than second one for d = 3, and the results of Er2
are similar to those of Er1. In Fig. 18.3 and Table 18.3, i.e., the results of (ii), Er1 is
almost of first order for d = 2 and is of better order than first one for d = 3 and Er2
is almost of second order for both d = 2 and 3. All numerical results are consistent
with Theorems 1 and 2.

18.6 Conclusions

We have proposed and analyzed a stabilized Lagrange–Galerkin scheme of second-
order in time for the Navier–Stokes equations. The stabilization and the second-order
accuracy in time have been realized by Brezzi–Pitkäranta’s stabilization method and
Adams-Bashforth’s (two-step) method, respectively. Since it is a higher-order version
in time of a stabilized LG scheme of first-order in time for the equations [14, 15,
17], the scheme has the same advantages of the first-order one, i.e., robustness for
convection-dominated problems, symmetry of the resulting matrix and the small
number of DOF. We note that the scheme is a fully discrete stabilized LG scheme
in the sense that the exact solvability of ordinary differential equations describing
the particle path is not required. Convergence with the optimal error estimates of
order O(Δt2 + h) for the velocity in the H1-norm and the pressure in the L2-norm
(Theorem 1) and of order O(Δt2 + h2) for the velocity in the L2-norm (Theorem 2)
have been proved. The theoretical convergence orders have been recognized by two-
and three-dimensional numerical results.
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Appendix

Proof of Lemma5

From (18.22), there exists a non-negative sequence {z̃n}n�2 such that

1

Δt

(3

2
xn − 2xn−1 + 1

2
xn−2 + yn − yn−1

)
+ z̃n = a0(xn−1 + xn−2) + bn, ∀n � 2,

where z̃n satisfies

zn � z̃n, ∀n � 2. (18.48)

Let p and q ∈ R (q < p) be the roots of the quadratic equation (3/2)x2 − 2x + 1/2 =
a0Δt(x + 1) and λ ≡ 2/3. We note that p and q satisfy

0 � q < 1 � p (18.49)

from Δt ∈ (0, 1/(2a0)]. Let any n � 2 be fixed. We have

xn − pxn−1 + λ(yn − yn−1) + λΔtz̃n = q(xn−1 − pxn−2) + λΔtbn,

xn − qxn−1 + λ(yn − yn−1) + λΔtz̃n = p(xn−1 − qxn−2) + λΔtbn,

which lead to

xn − pxn−1 + λ
{ n∑

i=2

qn−iyi −
n−1∑

i=1

qn−1−iyi

}
+λΔt

n∑

i=2

qn−i z̃i

= qn−1(x1 − px0) + λΔt
n∑

i=2

qn−ibi, (18.50a)

xn − qxn−1 + λ
{ n∑

i=2

pn−iyi −
n−1∑

i=1

pn−1−iyi

}
+λΔt

n∑

i=2

pn−i z̃i

= pn−1(x1 − qx0) + λΔt
n∑

i=2

pn−ibi. (18.50b)

Multiplying (18.50a) by q and (18.50b) by p and subtracting the first equation from
the second, we get
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(p − q)xn + λ
{ n∑

i=2

(pn+1−i − qn+1−i)yi −
n−1∑

i=1

(pn−i − qn−i)yi

}

+ λΔt
n∑

i=2

(pn+1−i − qn+1−i)z̃i

= (pn − qn)x1 − pq(pn−1 − qn−1)x0 + λΔt
n∑

i=2

(pn+1−i − qn+1−i)bi.

(18.51)

The definition of p and q and (18.49) imply that

(p − q)yn − (pn − qn)y1 �
n∑

i=2

(pn+1−i − qn+1−i)yi −
n−1∑

i=1

(pn−i − qn−i)yi,

(18.52a)

2

3
� p − q � pn+1−i − qn+1−i � pn−1 − qn−1 � pn − qn, i ∈ {2, . . . , n},

(18.52b)

pn − qn � pn =
{1

3

(
2 + a0Δt +

√
1 + 10a0Δt + a2

0Δt2
)}n

� {1 + 2a0Δt}n � exp(2a0nΔt). (18.52c)

Combining (18.51) with (18.52), we have

(p − q)
(

xn + λyn + λΔt
n∑

i=2

z̃i

)

� (pn − qn)x1 − pq(pn−1 − qn−1)x0 + λ(pn − qn)y1 + λΔt(pn − qn)

n∑

i=2

bi

� (pn − qn)
(

x1 + λy1 + λΔt
n∑

i=2

bi

)

� exp(2a0nΔt)
(

x1 + λy1 + λΔt
n∑

i=2

bi

)
, (18.53)
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and obtain the desired result as follows:

LHS of (18.23) � xn + λyn + λΔt
n∑

i=2

z̃i (by (18.48))

�
3

2
exp(2a0nΔt)

(
x1 + λy1 + λΔt

n∑

i=2

bi

)
(by (18.53), (18.52b)).

�

Proof of Lemma6

Let t(s) ≡ tn−1 + sΔt (s ∈ [0, 1]). We prove (18.29a). Let y(x, s) ≡ x − (1 − s)
u(n−1)∗(x)Δt. Using the identities

g′(1) −
{3

2
g(1) − 2g(0) + 1

2
g(−1)

}
= 2

∫ 1

0
sds

∫ s

2s−1
g′′′(s1)ds1,

g̃(1) − 2g̃(0) + g̃(−1) =
∫ 1

0
ds

∫ s

s−1
g̃′′(s1)ds1,

for g(s) = u(y(·, s), t(s)) and g̃(s) = u(·, t(s)), we have

Rn
h1(x) =

{( ∂

∂t
+ un(x) · ∇

)
u
}
(x, tn)

− 1

2Δt

{
3un − 4un−1 ◦ X1(u

(n−1)∗,Δt) + un−2 ◦ X1(u
(n−1)∗, 2Δt)

}
(x)

=
{( ∂

∂t
+ u(n−1)∗(x) · ∇

)
u
}
(x, tn)

− 1

2Δt

{
3un − 4un−1 ◦ X1(u

(n−1)∗,Δt) + un−2 ◦ X1(u
(n−1)∗, 2Δt)

}
(x)

+ {(
(un − u(n−1)∗)(x) · ∇)

un
}
(x)

= 2Δt2
∫ 1

0
sds

∫ s

2s−1

{( ∂

∂t
+ u(n−1)∗(x) · ∇

)3
u
}(

y(x, s1), t(s1)
)
ds1

+ Δt2
∫ 1

0
ds

∫ s

s−1

{(∂2u

∂t2

(
x, t(s1)

) · ∇
)

un
}
(x)ds1,
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and

‖Rn
h1‖0 � 2Δt2

∫ 1

0
sds

∫ s

2s−1

∥∥
∥
{( ∂

∂t
+ u(n−1)∗(·) · ∇

)3
u
}(

y(·, s1), t(s1)
)∥∥
∥

0
ds1

+ Δt2
∫ 1

0
ds

∫ s

s−1

∥
∥
∥
(∂2u

∂t2
(·, t(s1)

) · ∇
)

un
∥
∥
∥

0
ds1

� cuΔt2
∫ 1

−1

(∥
∥
∥
{( ∂

∂t
+ ∇

)3
u
}(·, t(s1)

)∥∥
∥

0
+

∥
∥
∥

∂2u

∂t2
(·, t(s1)

)∥∥
∥

0

)
ds1 (by (18.10))

� c′
uΔt3/2(‖u‖Z3(tn−2,tn) + ‖u‖H2(tn−2,tn;L2)

)
� 2c′

uΔt3/2‖u‖Z3(tn−2,tn),

which implies (18.29a).
Inequality (18.29b) is obtained as follows:

‖Rn
h2‖0 � α42‖u(n−1)∗ − u(n−1)∗

h ‖0(2‖un−1‖1,∞ + ‖un−2‖1,∞)

� 3α42‖u‖C(W 1,∞)‖2(ηn−1 − en−1
h ) − (ηn−2 − en−2

h )‖0

� cu(‖en−1
h ‖0 + ‖en−2

h ‖0 + ‖ηn−1‖0 + ‖ηn−2‖0) (18.54)

� cu{‖en−1
h ‖0 + ‖en−2

h ‖0 + α31h(‖(u, p)n−1‖H2×H1 + ‖(u, p)n−2‖H2×H1)}
� c(u,p)(‖en−1

h ‖0 + ‖en−2
h ‖0 + h).

We prove (18.29c). Let y(x, s) ≡ x − (1 − s)u(n−1)∗
h (x)Δt. Since we have

Rn
h3 = 1

Δt

{3

2

[
η
(
y(·, s), t(s)

)]1

s=0
− 1

2

[
η
(
y(·, s), t(s)

)]0

s=−1

}

= 3

2

∫ 1

0

{( ∂

∂t
+ u(n−1)∗

h (·) · ∇
)
η
}(

y(·, s), t(s)
)
ds

− 1

2

∫ 0

−1

{( ∂

∂t
+ u(n−1)∗

h (·) · ∇
)
η
}(

y(·, s), t(s)
)
ds,

(18.29c) is obtained as follows:

‖Rn
h3‖0 � 3

2

∫ 1

0

∥∥∥
{( ∂

∂t
+ u(n−1)∗

h (·) · ∇
)
η
}(

y(·, s), t(s)
)∥∥∥

0
ds

+ 1

2

∫ 0

−1

∥∥∥
{( ∂

∂t
+ u(n−1)∗

h (·) · ∇
)
η
}(

y(·, s), t(s)
)∥∥∥

0
ds

� 3

2

∫ 1

−1

(∥
∥∥
∂η

∂t

(
y(·, s), t(s)

)∥∥∥
0
+ ‖u(n−1)∗

h ‖0,∞
∥∥∇η

(
y(·, s), t(s)

)∥∥
0

)
ds
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� 3√
2

∫ 1

−1

{∥∥∥
∂η

∂t

(·, t(s)
)∥∥∥

0
+ ‖un−1

h ‖0,∞
∥∥∇η

(·, t(s)
)∥∥

0

}
ds (by (18.10))

� 3√
2Δt

(∥∥∥
∂η

∂t

∥∥∥
L2(tn−2,tn;L2)

+ ‖u(n−1)∗
h ‖0,∞

∥∥∇η
∥∥

L2(tn−2,tn;L2)

)

� 3α31h√
2Δt

(‖u(n−1)∗
h ‖0,∞ + 1)‖(u, p)‖H1(tn−2,tn;H2×H1)

� ch√
Δt

(‖u(n−1)∗
h ‖0,∞ + 1)‖(u, p)‖H1(tn−2,tn;H2×H1).

We get (18.29d) from the estimate

‖Rn
h4‖0 = 1

2Δt

∥∥−4
{
en−1

h − en−1
h ◦ X1(u

(n−1)∗
h ,Δt)

} + {
en−2

h − en−2
h ◦ X1(u

(n−1)∗
h , 2Δt)

}∥∥
0

� cα40‖u(n−1)∗
h ‖0,∞(‖en−1

h ‖1 + ‖en−2
h ‖1).

�

Proof of Lemma7

Inequality (18.44a) is obtained by combining (18.20b) with (18.54). For (18.44b) we
divide Rn

h3 into three terms,

Rn
h3 = D

(2)

Δt η
n + 1

2Δt

[
4
{
ηn−1 − ηn−1 ◦ X1(u

(n−1)∗,Δt)
}

− {
ηn−2 − ηn−2 ◦ X1(u

(n−1)∗, 2Δt)
}]

+ 1

2Δt

[
4
{
ηn−1 ◦ X1(u

(n−1)∗,Δt) − ηn−1 ◦ X1(u
(n−1)∗
h ,Δt)

}

− {
ηn−2 ◦ X1(u

(n−1)∗, 2Δt) − ηn−2 ◦ X1(u
(n−1)∗
h , 2Δt)

}]

≡ Rn
h31 + Rn

h32 + Rn
h33.

We have, by virtue of (18.20b),

‖Rn
h31‖V ′

h
� ‖D

(2)

Δt η
n‖0 � 3

2
‖DΔtη

n‖0 + 1

2
‖DΔtη

n−1‖0

� 3

2
√

Δt

∥∥∥
∂η

∂t

∥∥∥
L2(tn−1,tn;L2)

+ 1

2
√

Δt

∥∥∥
∂η

∂t

∥∥∥
L2(tn−2,tn−1;L2)

� cα32h2

√
Δt

‖(u, p)‖H1(tn−2,tn;H2×H1) � ch2

√
Δt

‖(u, p)‖H1(tn−2,tn;H2×H1), (18.55a)

‖Rn
h32‖V ′

h
� α41‖u(n−1)∗‖1,∞(2‖ηn−1‖0 + ‖ηn−2‖0)

� α41‖u(n−1)∗‖1,∞3α32h2‖(u, p)‖C(H2×H1) � c(u,p)h
2, (18.55b)
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‖Rn
h33‖V ′

h
= sup

vh∈Vh

1

‖vh‖1

1

2Δt

{
4
(
ηn−1 ◦ X1(u

(n−1)∗
h ,Δt) − ηn−1 ◦ X1(u

(n−1)∗,Δt), vh

)

−
(
ηn−2 ◦ X1(u

(n−1)∗
h , 2Δt) − ηn−2 ◦ X1(u

(n−1)∗, 2Δt), vh

)}

� sup
vh∈Vh

1

‖vh‖1

1

2Δt

(
4‖ηn−1 ◦ X1(u

(n−1)∗
h ,Δt) − ηn−1 ◦ X1(u

(n−1)∗,Δt)‖0,1

+ ‖ηn−2 ◦ X1(u
(n−1)∗
h , 2Δt) − ηn−2 ◦ X1(u

(n−1)∗, 2Δt)‖0,1
)‖vh‖0,∞

� 2α43‖u(n−1)∗
h − u(n−1)∗‖0(‖ηn−1‖1 + ‖ηn−2‖1)α21h−d/6 (18.55c)

� ch−d/6(‖ηn−1‖1 + ‖ηn−2‖1)(‖en−1
h ‖0 + ‖en−2

h ‖0 + ‖ηn−1‖0 + ‖ηn−2‖0)

� c′α32h1−d/6‖(u, p)‖C(H2×H1)

(‖en−1
h ‖0 + ‖en−2

h ‖0 + α32h2‖(u, p)‖C(H2×H1)

)

� c(u,p)

(‖en−1
h ‖0 + ‖en−2

h ‖0 + h2). (18.55d)

From (18.55a), (18.55b) and (18.55d) we obtain (18.44b).
For (18.44c) we use the bound on Rn

h3. Rn
h4 is obtained by replacing ηn−1 with

−en−1
h in Rn

h32 + Rn
h33. Hence, from (18.55b) and (18.55c) we have

‖Rn
h4‖V ′

h
� α41‖u(n−1)∗‖1,∞(2‖en−1

h ‖0 + ‖en−2
h ‖0)

+ 2α21α43h−d/6‖u(n−1)∗
h − u(n−1)∗‖0(‖en−1

h ‖1 + ‖en−2
h ‖1)

� c
{‖u(n−1)∗‖1,∞(‖en−1

h ‖0 + ‖en−2
h ‖0) + h−d/6(‖en−1

h ‖1 + ‖en−2
h ‖1)

× (‖en−1
h ‖0 + ‖en−2

h ‖0 + α32h2‖(u, p)‖C(H2×H1))
}

� c(u,p)

{
1 + h−d/6(‖en−1

h ‖1 + ‖en−2
h ‖1)

}(‖en−1
h ‖0 + ‖en−2

h ‖0 + h2
)
,

which implies (18.44c). �
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Chapter 19
Chaotic Dynamics in an Integro-Differential
Reaction-Diffusion System in the Presence
of 0:1:2 Resonance

Toshiyuki Ogawa and Takashi Okuda Sakamoto

Abstract The dynamics and bifurcation structure of the normal form in the presence
of 0:1:2 resonance are studied. It is proved that connecting orbits (heteroclinic cycles
or homoclinic orbits) exist on the center manifold of the normal form. Moreover, to
study the dynamics around the triple degeneracy of the normal form, we apply the
results in Dumortier and Kokubu [4]. The sufficient conditions for the existence of
heteroclinic cycles in a scaling family (blow-up vector field) of the 0:1:2 normal
form are obtained. These results give a reasonable explanation for the behaviors of
the solutions to an integro-reaction-diffusion system.

Keywords Normal form · 0:1:2 resonance · Connecting orbit · Heteroclinic loop

19.1 Introduction

The dynamics of patterns right after non-trivial instability can be characterized by
the so-called normal form equations for critical modes. The dynamics observed in
the standard normal form with O(2) symmetry can be classified by simple calcula-
tions (for instance, see [7, 8]). However, there are exceptional cases in the normal
form with O(2) symmetry. One of the well-known example is the normal form with
respect to 1 : 2 mode interaction. It has quadratic resonance terms, and moreover, if
the sign of coefficients of the resonance terms are opposite, then the time-periodic
solutions, travelingwaves, andmodulated travelingwaves exist with a suitable choice
of parameters [1, 14, 16]. The typical application of these results is the Kuramoto-
Shivasinsky dynamics [2]. The O(2)-symmetric normal form (which has quadratic
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terms) with respect to 0:1:2 mode interaction is also one of exceptional examples
and studied in [15]:

⎧
⎨

⎩

ż0 = μ0z0 + 2(B1|z1|2 + B2|z2|2),
ż1 = (μ1 − B1z0)z1 + z1z2,
ż2 = (μ2 − B2z0)z2 − z21,

(19.1)

where zj(t) ∈ C and · denotes complex conjugate. This system has a “more rich
structure”: symmetry breaking pitchfork bifurcations, standing wave heteroclinic,
chaotic heteroclinic cycles, torus bifurcations.

However, if the system has up-down symmetry, then the normal form does not
have any quadratic term. In fact, O(2)-symmetric normal form with Z2-symmetry in
the presence of 0 : 1 : 2 resonance is given by the following:

⎧
⎨

⎩

ż0 = (μ0 + a1|z0|2 + a2|z1|2 + a3|z2|2)z0 + a4z1
2z2,

ż1 = (μ1 + b1|z0|2 + b2|z1|2 + b3|z2|2)z1 + b4z0z1z2,
ż2 = (μ2 + c1|z0|2 + c2|z1|2 + c3|z2|2)z2 + c4z0z21,

(19.2)

where zj(t) ∈ C. It has been revealed that the system exhibits another types of com-
plex behaviors even when we consider the following system of Eqs. (19.3) on the
invariant real sub-space of the system (19.2) (see [13]):

⎧
⎨

⎩

ż0 = (μ0 + a1z20 + a2z21 + a3z22)z0 + a4z21z2,
ż1 = (μ1 + b1z20 + b2z21 + b3z22)z1 + b4z0z1z2,
ż2 = (μ2 + c1z20 + c2z21 + c3z22)z2 + c4z0z21,

(19.3)

where zj(t) ∈ R. Let us introduce, as an example, the following integro-differential
reaction-diffusion system which is studied in [5, 12, 13]:

⎧
⎪⎪⎨

⎪⎪⎩

ut = D1uxx + au + bv + F(u, v) + s

L

∫ L

0
u(t, x) dx, x ∈ (0,L), t > 0,

vt = D2vxx + cu + dv + G(u, v), x ∈ (0,L), t > 0,
ux = vx = 0 at x = 0,L, t > 0.

(19.4)

It should be noted that the cases when the global feedback is negative (s < 0)
and positive (s > 0) are studied in [5, 12] and [13], respectively. We consider the
dynamical system (19.4) in a phase space

X := {
(u, v) ∈ [H2(Ω)]2; ux = vx = 0 at x = 0,L

}
,

where Ω denotes an interval (0,L) ⊂ R. And we assume the following:

• (A1) The functions (higher order terms) F and G are sufficiently smooth;
• (A2) F(u, v) ≡ −F(−u,−v) and G(u, v) ≡ −G(−u,−v) hold;
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• (A3) The coefficients of linear parts satisfy a, c > 0, b, d < 0, a + d < 0 and
Δ := ad − bc > 0;

• (A4)
bc

d
+ d < 0 holds.

The integro-differential reaction-diffusion system (19.4) has a 0:1:2 - triple degener-
ate point around a trivial stationary solution (u(t, x), v(t, x)) ≡ (0, 0) by a suitable
choice of the diffusion coefficientsD2, system size L and coefficients of global feed-
back s. And then the dynamics on the center manifold of (19.4) is given by the
dynamics of (19.3). We briefly explain how to derive the system (19.3) from (19.4)
in the Appendix A (see also [13]).

Definition Let (U�(x), V�(x))be a stationary solution of (19.4). If there exist nonzero
constants ξ� and η� such that the stationary solution (U�(x), V�(x)) has the form

U�(x) = ξ� cos(k0�x) + o(3), V�(x) = η� cos(k0�x) + o(3),

then, we call (U�(x), V�(x)) is an �-mode stationary solution (or � -mode solution)

of (19.4). Here, o(3) denotes o

(√
ξ 2
� + η2

�

3
)
and k0 denotes π/L.

It is known that the system (19.3) has oscillating solutions around 1-mode stationary
solutions [13]. Moreover, it has “chaotic” behavior around 1-mode as well (see
Sect. 19.1.1 in more details). Therefore, the purpose of this paper is to study the
detailed dynamics around 1-mode stationary solutions of the normal form (19.3). It
should be noted that this behavior can not be observed in the quadratic case (19.1)
since the system (19.1) dose not have 1-mode stationary solutions with any choice of
parameters. While in (19.3), we will see that there are double zero degenerate point
as a secondary bifurcation point on a branches of 1-mode stationary solutions by a
suitable choice of parameters. Such a degenerate point include the Hopf instability
point which has been studied in [13].

19.1.1 Numerical Results

In [13], not only the stationary bifurcation but also the Hopf bifurcation around
1-mode stationary solutions to the system (19.3) have been studied. In addition,
the chaotic behavior was shown numerically. We can observe this fact numerically
as shown in the Figs. 19.1, 19.2, 19.3 and 19.4 (Figs. 19.1 and 19.2 are numerical
results for the normal form, while Fig. 19.3 and 19.4 are numerical results for the
integro-differential reaction-diffusion system (19.4)). In those figures, the parameters
in (19.4) are chosen as follows:

D1 = 1/4, a = 1, b = −10, c = 2, d = −5,

F(u, v) = −u3 and G(u, v) = −0.9u3.
(19.5)
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Fig. 19.1 Bifurcation diagram of the Poincaré map of (19.3) on the section z1 = 0 with the coef-
ficients in (19.6) and μ1 = 1.524579805 × 10−2, μ2 = −10−3. The vertical and horizontal axes
correspond to z1 and μ0, respectively. [Above μ0 ∈ [−0.127,−0.12617]] [Below Close-up view of
the above figure in μ0 ∈ [−0.12633,−0.12625]]
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Fig. 19.2 The attractors in the phase space (left) and the R
3-norm

√
z0(t)2 + z1(t)2 + z2(t)2

with respect to time (right) for (19.3) with the typical parameter values μ0 = −0.126217,
μ1 = 1.524579805 × 10−2 and μ2 = −0.001, and the coefficients (19.6). The above and below
figures correspond to the periodic orbit bifurcate from the 1-mode stationary solution and chaotic
solution, respectively

Then we have s∗ = 3 and (k1,20 ,D1,2
2 ) ≈ (0.87, 25.88), where s∗ is the critical

value for s so that the system (19.4) has 0:1:2 triple degeneracy at (k0,D2) =
(k1,20 ,D1,2

2 )(see Appendix A for the details). Using the explicit forms of coefficients
shown in the Appendix B, they can be obtained as follows.

a1 ≈ 100.00, a2 ≈ 14644.17, a3 ≈ 1.69 × 105, a4 ≈ 2.45 × 105,
b1 ≈ −49.29, b2 ≈ −1203.01, b3 ≈ −27695.10, b4 ≈ −1652.32,
c1 ≈ −67.14, c2 ≈ −3277.22, c3 ≈ −18861.66, c4 ≈ −97.761.

(19.6)

19.1.2 Main Results

Before stating the main results, let us classify the equilibria of (19.3): if μ0a1 < 0,
μ1b2 < 0,μ2c3 < 0 then the system (19.3) has equilibria±e0 := ±(

√−μ0/a1, 0, 0),
±e1 := ±(0,

√−μ1/b2, 0), ±e2 := ±(0, 0,
√−μ2/c3), respectively. And they cor-

respond to the pure mode stationary solutions (the equilibria ±e� correspond to
the �-mode stationary solutions). If (a3μ2 − c3μ0)(a1c3 − c1a3) > 0 and (c1μ0 −
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Fig. 19.3 Numerical solutions for the integro-differential reaction-diffusion system (19.4) with
D2 = 27.13 in the case of (19.5). The initial values are stable1-mode stationary solutions at
D2 = 27.0. [Above The left and right figures correspond to the graph of u(t, x) and v(t, x), (t ∈
[4500, 5000], x ∈ [0,L]), respectively.] [Below left The graph of ‖(u, v)‖L2 (t), t ∈ [4500, 5000].
Vertical axis L2 norm of u, horizontal axis t.] [Below right Graph of u0(t) (black line), u1(t) (green
line) and u2(t) (blue line), where uj(t) denotes the j-th Fourier coefficients of u(t, x).]
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Fig. 19.4 Numerical solutions of (19.4) with D2 = 26.5, k0 = 0.874919, s = 2.98212, and the
other parameters and nonlinear terms F and G are chosen as (19.5). (Above) The orbit of
(u0(t), u1(t), u2(t)) on Fourier space (Here, uj(t) denotes j-th Fourier mode of u(t, x)). (Below
left) The profile of u(t, x). (Below right) The graph of ‖(u, v)‖L2 (t) with respect to time
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a1μ2)(a1c3 − a3c1) > 0, then the system (19.3) has equilibria (z0, z1, z2) = ±
(z∗0, 0, z∗2) and (z0, z1, z2) = ±(z∗0, 0,−z∗2), where z∗0 := [(a3μ2 − c3μ0)/(a1c3 −
c1a3)]1/2 and z∗2 := [(c1μ0 − a1μ2)/(a1c3 − a3c1)]1/2. They correspond to doubly
mixed mode stationary solutions. In addition, if (z0∗, z1∗, z2∗), zj∗ 	= 0 is a root of

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ0 + a1z20 + a2z21 + a3z22 + a4
z21z2
z0

= 0,

μ1 + b1z20 + b2z21 + b3z22 + b4z0z2 = 0,

μ2 + c1z20 + c2z21 + c3z22 + c4
z0z21
z2

= 0,

(19.7)

then, it corresponds to a triple mixed mode stationary solution.
Now we can see that the onset of chaotic patters in (19.4) is the Hopf bifurcation

around a stationary solution, and moreover, the leading Fourier mode of u(t, x) in
Fig. 19.4 seems to be 1-mode.

Based on this consideration, we study the detailed dynamics around the equilib-
rium e1 of the normal form (19.3). We can see that there are double zero degenerate
point as a secondary bifurcation point on a branches of 1-mode stationary solutions
by a suitable choice of parameters. Such a degenerate point include the Hopf insta-
bility point which has been studied in [13]. However, it is not sufficient to understand
thewhole dynamics. In fact, the analysis around the double degenerate point could be
necessary to explain the “complex” patterns appearing in (19.4) near triple degenerate
point. Our analysis in Sect. 19.2 yields the following results (see Fig. 19.5):

Proposition 19.1 Letμ1 be fixed so thatμ1b2 < 0 (then, 1-mode statically solutions
exist). Generically, the followings hold with a suitable choice of parameters μ0 and
μ2:

(I) If a4c4 	= 0, then there exist non-zero constants ηj, ξj, j = 0, 1, 2 (they depend
on the parameters and coefficient of (19.4)) such that the integro-differential
reaction-diffusion system (19.4) has the (small amplitude) triple mixed mode
stationary solutions:

u(x) = ±U±
mix := ±( ± ξ0 + ξ1 cos

(π

L
x
)

± ξ2 cos
(
2
π

L
x
)) + o(3),

v(x) = ±V±
mix := ±( ± η0 + η1 cos

(π

L
x
)

± η2 cos
(
2
π

L
x
)) + o(3)

which bifurcate from the 1-mode stationary solutions ±(U1(x), V1(x)) through

the pitchfork bifurcations. Here, o(3) denotes o

(√∑2
j=0(ξ

2
j + η2

j )
3
)
.

(II) Moreover, if a4c4 < 0, then there exist time-periodic solutions Ω± on the phase
space X such that Ω+ and Ω− bifurcate from the 1-mode stationary solutions
(U1(x), V1(x)) and (−U1(x),−V1(x)) through the Hopf bifurcations, respec-
tively. Moreover, one of the followings holds:
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(i) There exist heteroclinic cycles Γ1, Γ2 on the phase space X such that Γ1

connects (U+
mix, V

+
mix) and (U−

mix, V
−
mix), and Γ2 connects (−U+

mix,−V+
mix)

and (−U−
mix,−V−

mix);
(ii) There exist two pairs of homoclinic orbits Γ ±

3 and Γ ±
4 on the phase

space X such that Γ ±
3 connects (U1(x), V1(x)) to itself, and Γ ±

4 connects
(−U1(x),−V1(x)) to itself.

We also analyze the triple degenerate point of (19.3) in Sect. 19.3. The system (19.3)
can be re-normalized as follows:

Proposition 19.2 Let μ1 be fixed so that μ1b2 < 0. Then, there are coordinate and
parameter changes, and a scaling with respect to coordinate, parameters and time,
such that the system (19.3) can be transformed into the following system:

⎧
⎨

⎩

ẋ = y,
ẏ = λx + μy + axz + byz,
ż = ν + x2 + z2.

(19.8)

This system is well studied by Dumortier and Kokubu [4]. They proved the existence
of heteroclinic cycles and chaotic dynamics around the singularities of (19.8). We
study the dynamics of (19.3) around the 1-mode equilibria by applying their results
in Sect. 19.3.

This paper is organized as follows: in the next section, we study the dynamics
around the 1-mode stationary solutions by using the center manifold theory and
normalizing technic. The section is divided into three parts: in the first part, we
state that the normal form (19.3) can exhibit double zero degenerate points around
the 1-mode stationary solutions. In the second part (Sect. 19.2.1), we compute the
bifurcation equations in the case when the system has simple 0-eigenvalue. The
existence of periodic orbits and connecting orbits (heteroclinic cycles and homoclinic
orbits) stated in Proposition19.1 is the consequence of Theorem19.3. Moreover,
we will also discuss existence of the another types of time-periodic orbits and the
stabilities of solutions. We also consider the blow-up vector fields associated with

Fig. 19.5 Schematic
pictures of heteroclinic
cycles and homoclinic orbits
stated in Proposition19.1.
The left and right figures
correspond to the situation
(I) and (II) of
Proposition19.1,
respectively
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the normal form (19.3) in Sect. 19.3. We can find a scaling family of (19.3) which
have heteroclinic cycles around the 1-mode equilibria of (19.3).

19.2 Bifurcation Structure Around a 1-Mode Stationary
Solutions

In this section, we study the bifurcation structure around a 1-mode equilibria

(z0, z1, z2) = ±e1 := (0,±√−μ1/b2, 0).

Since the normal form (19.3) is invariant under the mapping

(z0, z1, z2) −→ (z0,−z1, z2),

it is sufficient to consider the bifurcation structure only around e1. Let M̃e1 be a 2 × 2
matrix defined by

M̃e1 :=
(

α β
−c4μ1/b2 γ

)
,

where

α = μ0 − a2μ1/b2, β = −a4μ1/b2 and γ = μ2 − c2μ1/b2.

We also define the setsSD and ST as follows:

SD := {(μ0, μ2) ; det M̃e1 = 0}, ST := {(μ0, μ2) ; tr M̃e1 = 0}.

Then we have the following lemma.

Lemma 19.1 Let μ1 be fixed so that μ1b2 < 0. Then the followings hold:

• If a4c4 > 0 then, then the linearized matrix around 1-mode equilibrium e1 has a
zero eigenvalue if and only if (μ0, μ2) ∈ SD.

• If a4c4 < 0, then the linearized matrix around 1-mode equilibrium e1 has a zero
eigenvalue if and only if (μ0, μ2) ∈ SD \ ST .

• If a4c4 < 0, then the linearized matrix of (19.3) around 1-mode equilibrium e1 has
a double degenerate point

(μ0, μ2) = P+ := (μ+
0 , μ+

2 ) and (μ0, μ2) = P− := (μ−
0 , μ−

2 ), (19.9)

where

μ±
0 := −μ1

b2
(−a2 ± √−a4c4) and μ±

2 := μ1

b2
(c2 ± √−a4c4).
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Proof Let us rewrite the system (19.3) as follows:

⎛

⎝
ż1
ż0
ż2

⎞

⎠ =
⎛

⎝
μ1 0 0
0 μ0 0
0 0 μ2

⎞

⎠

⎛

⎝
z̃1
z0
z2

⎞

⎠ +
⎛

⎝
F1(z1, z0, z2)
F0(z1, z0, z2)
F2(z1, z0, z2)

⎞

⎠ , (19.10)

where

F0(z1, z0, z2) = (a1z
2
0 + a2z

2
1 + a3z

2
2)z1 + a4z

2
1z2,

F1(z1, z0, z2) = (b1z
2
0 + b2z

2
1 + b3z

2
2)z1 + b4z0z1z2,

F2(z1, z0, z2) = (c1z
2
0 + c2z

2
1 + c3z

2
2)z2 + c4z0z

2
1.

Then, linearized matrix of e1 is given by

Me1 :=
⎛

⎝
−2μ1 0 0
0 α β
0 −c4μ1/b2 γ

⎞

⎠ ,

where

α = μ0 − a2μ1/b2, β = −a4μ1/b2 and γ = μ2 − c2μ1/b2.

We can see that if a4c4 > 0, then the line

ST = {(μ0, μ2) ; tr M̃e1} = {(μ0, μ1) ; μ0 + μ2 − (a2 + c2)μ1/b2 = 0}

and the set

SD = {(μ0, μ2) ; det M̃e1 = 0}
= {(μ0, μ2) ; (μ0 − a2μ1/b2)(μ2 − c2μ1/b2) − a4c4μ

2
1/b

2
2 = 0}

don’t intersect each other on μ0-μ2 plane. Therefore, the matrix Me1 has a zero
eigenvalue if and only if det M̃e1 = 0. In addition, if a4c4 < 0, then the matrix Me1
has a zero eigenvalue if and only if det M̃e1 = 0 and tr M̃e1 	= 0.

On the other hand, two setsSD andST intersect each other at two points P+ and
P− if a4c4 < 0. Moreover, the Jordan block of the matrixMe1 at the degenerate point
P± is given by the following:

T−1Me1T =
⎛

⎝
−2μ1 0 0
0 0 1
0 0 0

⎞

⎠ , where T =
⎛

⎝
1 0 0
0 −2β 0
0 α − γ −2

⎞

⎠ .

This completes the proof. �
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Fig. 19.6 Schematic picture of the set of critical points on the μ0−μ2 plane. The solid and doted
lines correspond to Tr M̃e1 = 0. The dashed lines correspond to det M̃e1 = 0. (Left) Two sets SD
andST intersect each other atP+ andP− when a2 > 0, b2, c2 < 0, a2 + c2 > 0 and a4c4 < 0 hold.
Solid line corresponds to the set ofHopf bifurcation points: {(μ0, μ2); tr M̃e1 = 0 and det M̃e1 > 0}.
(Right) Two sets SD and ST don’t intersect each other when a2 > 0, b2, c2 < 0, a2 + c2 > 0 and
a4c4 > 0 hold

This lemma gives a set of critical points on the μ0-μ2 plane (see Fig. 19.6). We
study the detailed dynamics and bifurcation structures on the center manifold of
(19.3) in the case when a4c4 > 0 and a4c4 < 0 in Sects. 19.2.1 and 19.2.2, respec-
tively.

19.2.1 The Case When a4c4 > 0

Let us study the bifurcations in the case when a4c4 > 0. We note again that the set
of critical points in (μ0, μ2) space is given by

SD = {(μ0, μ2) ; (μ0 − a2μ1/b2)(μ2 − c2μ1/b2) − a4c4μ
2
1/b

2
2 = 0}.

Let z̃1 be a new variable defined by

z̃1 = z1 − z∗, where z∗ = √−μ1/b2.

Then, (z̃1(t), z0(t), z2(t)) satisfies the following system:

⎛

⎝
˙̃z1
ż0
ż2

⎞

⎠ =
⎛

⎝
−2μ1 0 0
0 α β
0 −c4μ1/b2 γ

⎞

⎠

⎛

⎝
z̃1
z0
z2

⎞

⎠ +
⎛

⎝
N1(z̃1, z0, z2)
N0(z̃1, z0, z2)
N2(z̃1, z0, z2)

⎞

⎠ , (19.11)
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where

N0(z̃1, z0, z2) = 2a4z
∗z̃1z2 + 2a2z

∗z̃1z0 + F0(z̃1, z0, z2),

N1(z̃1, z0, z2) = b1z
∗z20 + 3b2z

∗z̃21 + b3z
∗z22 + b4z

∗z0z2 + F1(z̃1, z0, z2),

N2(z̃1, z0, z2) = 2c2z
∗z̃1z2 + 2c4z

∗z̃1z0 + F2(z̃1, z0, z2).

Let us introduce new variables as follows:

(
z̃0
z̃2

)
=

(
β β

−α γ

)−1 (
z0
z2

)
.

If (μ∗
0, μ

∗
2) ∈ SD, then (z̃1, z̃0, z̃2) satisfies the following system

⎛

⎝
z̃1
z̃0
z̃2

⎞

⎠ =
⎛

⎝
−2μ1 0 0
0 0 0
0 0 α + γ

⎞

⎠

⎛

⎝
z̃1
z̃0
z̃2

⎞

⎠ + T(μ∗
0,μ

∗
2)

⎛

⎜
⎝
N

(μ∗
0,μ

∗
2)

1 (z̃1, z̃0, z̃2)

N
(μ∗

0,μ
∗
2)

0 (z̃1, z̃0, z̃2)

N
(μ∗

0,μ
∗
2)

2 (z̃1, z̃0, z̃2)

⎞

⎟
⎠ , (19.12)

where N (μ∗
0,μ

∗
2) = Nj(z̃1, β(z̃0 + z̃2),−αz̃0 + γ z̃2) and T(μ∗

0,μ
∗
2)
is a 3 × 3 matrix:

T(μ∗
0,μ

∗
2)

=
⎛

⎝
1 0 0
0 β β
0 −α γ

⎞

⎠ .

Applying the center manifold theory for this system, we have the following theorem.

Theorem 19.1 Let (μ∗
0, μ

∗
2) ∈ SD be a pair of constants. Then, there exists a posi-

tive constant ε such that if

|(μ0, μ2) − (μ∗
0, μ

∗
2)| + |(z̃1, z̃0, z̃2)| < ε,

then the dynamics of (19.3) on the center manifold is topologically equivalent to the
dynamics of the following system

˙̃z0 = (ν + C(μ∗
0,μ

∗
2)
z̃20)z̃0,

where

ν =

⎧
⎪⎪⎨

⎪⎪⎩

(
α + γ − √

(α + γ )2 − 4(αγ + βc4μ1/b2
)

/2, α + γ > 0,

(
α + γ + √

(α + γ )2 − 4(αγ + βc4μ1/b2
)

/2, α + γ < 0,

C(μ∗
0,μ

∗
2)

= 1

β(α + γ )

[{β(c4β − c2α) − γ (a2β − a4α)}(b1β2 + b3α
2 − b4αβ)/b2

+γ (a1β
3 + a3α

2β) + β(c1αβ2 + α3c3)
]
.
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Proof We can prove the theorem by applying the center manifold theory for (19.12)
as follows: there exist functions z̃1 = h1(z̃0) and z̃2 = h2(z̃0) satisfying

dhj
dz̃0

(0) = 0, j = 1, 2

such that the center manifold of (19.12) is given by the graph on R
3:

{(z̃1, z̃0, z̃2) ; (z̃1, z̃0, z̃0) = (h1(z̃0), z̃0, h2(z̃0))}.

Moreover, the dynamics on the center manifold is topologically equivalent to the
dynamics of the ordinary differential equation

z̃0 = ν z̃0 + N
(μ∗

0,μ
∗
2)

0 (h1(z̃0), z̃0, h2(z̃0)).

To prove the theorem, it is necessary to compute the functions hj approximately.
Differentiating z̃j = hj(z̃0) with respect to t, we have

λjhj + N
(μ∗

0,μ
∗
2)

j (z̃1, z̃0, z̃2) = dhj
dz̃0

dz̃0
dt

,

where

λj =
{−2μ1 (j = 1),

α + γ (j = 2).

Since |z̃0| < ε and |(μ0, μ2) − (μ−
0 , μ∗

2)| < ε, it holds that

dhj
dz̃0

dz̃0
dt

= O(ε3).

Substituting hj = Hjz̃20 + · · · , and taking terms up to O(z̃20), we have

h1(z̃0) = z∗

2μ1
(b1β

2 − b4αβ + b3α
2)z20 + O(|z0|3),

h2(z̃0) = O(|z0|3).

Substituting these approximations into the second equation of (19.12), and taking
terms up to the third order of z̃0, we obtain the bifurcation equation stated in the
theorem. �

Therefore, if a4c4 > 0, the bifurcation structure near the set of critical points on
SD is as follows: the stationary triple mixed mode solutions of (19.4) bifurcate from
the 1-mode stationary solutions through the pitchfork bifurcation. Thesemixedmode
solutions are stable if and only if C(μ∗

0,μ
∗
2)

< 0 and α + γ < 0 hold. Moreover, the
leading term of the triple mixed mode stationary solutions are given by
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u(x) ≈ ±2

[
− dβ

√
−ν

C(μ∗
0,μ

∗
2)

+ B1

√−μ1

b2
cos

(π

L
x
)

− B2α

√
−ν

C(μ∗
0,μ

∗
2)

cos
(
2
π

L
x
)]

,

v(x) ≈ ±2c

[
β

√
−ν

C(μ∗
0,μ

∗
2)

+
√−μ1

b2
cos

(π

L
x
)

− α

√
−ν

C(μ∗
0,μ

∗
2)

cos
(
2
π

L
x
)]

.

Remark 19.1 We can conclude that the bifurcation structure around the points
(μ∗

0, μ
∗
2) ∈ SD even when a4c4 < 0 except the case when (μ∗

0, μ
∗
2) is either P+

or P−.

19.2.2 The Case When a4c4 < 0

In this subsection, we study the bifurcation structures of (19.3) around the double
degenerate points P± of (19.3) (see Fig. 19.6).

Let (z, x, y) be a coordinate defined by

⎛

⎝
z
x
y

⎞

⎠ = T−1

⎛

⎝
z̃1
z0
z2

⎞

⎠ .

Then, near the singular point, there exists constants p1 and p2 satisfying |pj| � 1
such that the system (19.11) can be transformed into the following system:

⎛

⎝
ż
ẋ
ẏ

⎞

⎠ =
⎛

⎝
−2μ1 0 0
0 p1 1
0 0 p2

⎞

⎠

⎛

⎝
z
x
y

⎞

⎠ +
⎛

⎝
Ñ1(z, x, y)
Ñ0(z, x, y)
Ñ2(z, x, y)

⎞

⎠ , (19.13)

where

⎛

⎝
Ñ1(z, x, y)
Ñ2(z, x, y)
Ñ3(z, x, y)

⎞

⎠ = T−1

⎛

⎝
N1(z,−2βx, (α − γ )x − 2y)
N0(z,−2βx, (α − γ )x − 2y)
N2(z,−2βx, (α − γ )x − 2y)

⎞

⎠ , T =
⎛

⎝
1 0 0
0 −2β 0
0 α − γ −2

⎞

⎠

By applying the center manifold theory to the system (19.13), we can study
detailed dynamics around the double degenerate point P±.

Theorem 19.2 If |pj| < 2μ1 for j = 1, 2, then there exists a local invariant manifold
M c of (19.3). Moreover, the dynamics of (19.13) onM c is given by the dynamics of
the following system:

(
ẋ
ẏ

)
=

(
p1 1
0 p2

) (
x
y

)
+

∑

j,k∈N
j+k=3

(
fjk xjyk

gjk xjyk

)
+ O(‖(x, y)‖4), (19.14)
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where

f30 = 2z∗(a2 − a4α/β)H20 + 4(a1β
2 + a3α

2),

f21 = 2a4z
∗H20/β + 2z∗(a2 − a4α/β)H11 − 8a3α,

f12 = 2a4z
∗H11/β + 2z∗(a2 − a4α/β)H02 + 4a3,

f03 = 2a4z
∗H02/β,

g30 = 2z∗[(a2 − c2)αβ − a4α
2 + c4β

2]H20/β + 4α[(a1 − c1)β
2 + (a3 − c3)α

2],
g21 = 2z∗(a4α/β + c2)H20 + 2z∗[α(a2 − c2) − a4α

2/β + c4β]H11

+ 4[α2(3c3 − 2a3) + β2c1],
g12 = 2z∗[(a2 − c2)α − a4α

2/β + c4β]H02 + 2z∗(a4α/β + c2)H11 + 4α(a3 − 3c3),

g03 = 2z∗(a4α/β − c2)H02 + 4c3,

H20 = 2z∗(β2b1 + b3α
2 − βb4α)/μ1,

H11 = [2z∗(βb4 − 2αb3) − H20]/μ1,

H02 = z∗[2b3(μ1 + α) + b4β]/μ2
1 − H11/2μ

2
1.

Proof Proof is a simple application of the center manifold theory.
There exists a function h(x, y) satisfying

h(0, 0) = hx(0, 0) = hy(0, 0) = 0

such that the M c can be characterized as a graph on R
3 near the origin:

M c = {(z, x, y); z = h(x, y)}.

Differentiating z = h(x, y) with respect to t, we have

−2μ1h(x, y) + Ñ1(h(x, y), x, y) = (∂h/∂x)ẋ + (∂h/∂y)ẏ.

Since h(x, y) = O(|(x, y)|2), we also have

−2μ1h(x, y) + Ñ1(h(x, y), x, y))

= (∂h/∂y)ẏ + O(|(x, y)|3) + O(|p1 + p2| · |(x, y)|2)). (19.15)

Substituting h(x, y) = h20x2 + h11xy + h02y2 into (19.15), we can conclude hjk =
Hjk (j + k = 2).

Then, the dynamics on the manifoldM c is given by the following system

(
ẋ
ẏ

)
=

(
p1 1
0 p2

) (
x
y

)
+

(
Ñ0(h(x, y), x, y)
Ñ2(h(x, y), x, y)

)
(19.16)

We obtain explicit form (19.14) by taking terms up to the third order in (19.16). �
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Now, similarly to [11], we can normalize the system (19.16) by introducing the
new variable (u, v):

u = x, w = y + p1x + f30 x3 + f21 x2y + f12 xy2 + f03 y3.

Then, (19.16) can be transformed into

u̇ = w,

ẇ = p̃1u + p̃2w + σ1 u
3 + σ2u

2w + (g12 + 2f21)uw
2

+(g03 + f12)w
3 + O(|(x, y)|5) + (|p1 + p2||(x, y)|3), (19.17)

where
p̃1 = −p1p2, p̃2 = p1 + p2, σ1 = g30, σ2 = (g21 + 3f30).

We take the scaling for a small positive parameter ε as follows:

u = ε

√|σ1|
|σ2| U, w = ε2

|σ1|3/2
σ 2
2

W, T = ε

∣∣∣∣
σ1

σ2

∣∣∣∣ t

p̃1 = ε2
σ 2
1

σ 2
2

P1, p̃2 = ε2
∣∣
∣∣
σ1

σ2

∣∣
∣∣P2.

Then, we have

{
UT = W,
WT = P1U + ε P2W + (sign σ1)U3 + ε (sign σ2) U2W + O(ε2).

If sign σ2 = +1, then by reversing the time and the variable W ,

T → −T , W → −W,

we have the following theorem.

Theorem 19.3 Let μ1 be fixed so that b2μ1 < 0. Then, there are coordinate and
parameter changes and a time scaling so that the system (19.14) (which gives dynam-
ics of (19.11) on the center manifold M c) is transformed into the following system

{
u̇ = w,
ẇ = p1u + p2w + ςu3 − ε u2w + O(‖(x, y)‖4), (19.18)

where p1 = P1 and p2 = εP2 are bifurcation parameter, and ε is a positive small
parameter and

ς = sign σ1 = sign g30.

By direct computations, we have the following results:
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Lemma 19.2 At the critical point P± = (μ±
0 , μ±

2 ), the coefficients σ1 and σ2 in
(19.17) can be written by the Taylor series with respect to μ1 as follows.

σ1 = 4a4μ
3
1[c4a4{2(a4b1 − b3c4) + b4(a2 − c2)}

±√−a4c4{a4c1b2 − 2c4a4b4 − a1a4b2 + a4b1a2 − a4b1c2
+ a3b2c4 − c3b2c4 − b3a2c4 + b3c4c2}]/b42 + O(μ4

1),

σ2 = 4μ2
1a4[2c24a4b3 − 3c3c4b

2
2 − a3c4b

2
2 − 2c4a4

2b1
− 3a2a4b1b2 − c2a4b1b2 + c4a4b4 ∗ c2 + 3c2c4b3b2
− c4a4b4a2 + c4a2b3b2 + 3a1a4b

2
2 + c1a4b

2
2

±√−a4c4(−b3c4c2 + b3a2c4 + 2c4a4b4 + 2a2b4b2
+ 2c2b4b2 + 2c4b3b2 − a4b1a2 + a4b1c2 + 2a4b1b2)]/b42 + O(μ3

1).

The dynamics of the system (19.18) is well studied: for instance, see Chap.4 of
[3], Chap. 7.3 of [6]. We show the phase diagram in Figs. 19.7 and 19.8.

These analysis yields that the non-generic conditions of proposition 1 are C(μ∗
0,μ

∗
2)= 0 and σ1 = 0, for the case when a4c4 > 0 and a4c4 < 0, respectively. More pre-

cisely, we have the following results with respect to the existence and stabilities of
the time-periodic solutions, heteroclinic cycles and Homoclinic orbits.

Fig. 19.7 Bifurcation diagram on phase plane when ς > 0. The sets of critical points for the
Hopf bifurcation, stationary bifurcation and heteroclinic bifurcation are {(p1, p2) ; p1 < 0, p2 = 0},
{(p1, p2) ; p1 = 0} and L1 := {(p1, p2) ; p2 = −p1/5 + O(p21)}, respectively
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L3

L2

L3

L4

L2

Fig. 19.8 Bifurcation diagram on phase plane when ς < 0. The sets of critical points for Hopf
and stationary bifurcations are the same as Fig. 19.7. The typical set of critical points is as follows:
The set of critical points for the Hopf bifurcation around the nontrivial solutions of (19.18) is
the curve L2 := {(p1, p2) ; p2 = p1}. The critical sets for the homoclinic bifurcation is the curve
L3 := {(p1, p2) ; p2 = 4p1/5 + O(p21)}. In the region between the p1 axis and the curve L3, there is
the set of critical points L4 := {(p1, p2) ; p2 ≈ 0.752p1}. Between L3 and L4, there are two different
periodic orbits

Proposition 19.3 If b2 < 0, a4c4 < 0, σ2 < 0 and σ1 	= 0, then, the time periodic
solutions Ω± of (19.4) are asymptotically locally stable, and bifurcate on the line
{(p1, p2) ; p1 < 0, p2 = 0} through the Hopf bifurcation from the 1-mode station-
ary solutions ±(U1(x), V1(x)). Moreover, if σ1 > 0, then (II)–(i) of Proposition19.1
holds by a suitable choice of parameters p1 and p2, and if σ1 < 0, then (II)–(ii) of
Proposition19.1 holds by a suitable choice of parameters p1 and p2. In addition, the
heteroclinic cycles Γ1 and Γ2 are locally stable, and the homoclinic orbits Γ ±

3 and
Γ ±
4 are unstable.

Remark 19.2 By phase plane analysis, if b2 < 0, a4c4 < 0 and σ2 < 0 hold, then we
can obtain the stabilities of the stationary solutions as follows:

• If σ1 > 0, then the unstable triple mixed mode stationary solutions bifurcate from
unstable1-mode stationary solutions through subcritical pitchfork bifurcations,
and 1-mode stationary solutions become stable after the bifurcation.

• If σ1 < 0, then the locally asymptotically stable triple mixed mode stationary
solutions bifurcate form locally asymptotically stable1-mode stationary solutions
through super critical pitchfork bifurcation, and 1-mode stationary solutions lose
its stability after the bifurcation.

Remark 19.3 If σ1 < 0, then there exist not only the periodic orbits Ω± but also
another type of periodic orbits: for instance, there are periodic orbits which bifurcate
from triplemixedmode stationary solutions throughHopf bifurcation (see Fig. 19.8).
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Remark 19.4 If σ2 > 0, then the dynamics of (19.18) is topologically equivalent to
the dynamics of (19.10) by the time reverse transformation.

Remark 19.5 Ifb2 > 0, then the centermanifolds of (19.3) is not attractive, therefore,
all solutions of (19.4) corresponding to the solutions of (19.18) are unstable on the
phase space X of (19.4).

19.2.3 Case Study

Since it is complicated to determine the sign of coefficients σj, we compute them
numerically. Let us take the constants in (19.4) as (19.5). Then, the coefficients of
the normal form can be obtained as listed in (19.6). Take the parameter μ1 = 0.01,
then we have

P+ ≈ (−0.081048, −0.013440) and P− ≈ (−0.162411, 0.067923).

Substituting then into the explicit form of f30, g12 and g30, we have

σ1 ≈
{

38.67 at (μ0, μ2) = P+,
1287.74 at (μ0, μ2) = P−,

, σ2 ≈
{

4221.37 at (μ0, μ2) = P+,
−1.84 × 105 at (μ0, μ2) = P−.

Therefore, σ1 > 0 for both double degenerate critical point P±, and sign σ2 = +1 at
P+, and sign σ2 = −1 at P− (Fig. 19.9).

Fig. 19.9 Bifurcation structure of the system (19.10), where p1 = P1, p2 = εP2. (Left) Bifurcation
diagram on phase plane when σ1 > 0, σ2 < 0. (Right) Bifurcation diagram on phase plane when
σ1 > 0, σ2 > 0
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19.3 Heteroclinic Cycles on a Blow-Up Vector Field

In this section, we consider the blow-up vector field of the normal form (19.3) around
the equilibrium (z0, z1, z2) = (0, z∗, 0), where z∗ = √−μ1/b2. To do that, we rescale
the system (19.13) around an equilibrium (0, 0, 0). We begin this section with the
system (19.13):

⎛

⎝
ż
ẋ
ẏ

⎞

⎠ =
⎛

⎝
−2μ1 0 0
0 p1 1
0 0 p2

⎞

⎠

⎛

⎝
z
x
y

⎞

⎠ +
⎛

⎝
Ñ1(z, x, y)
Ñ0(z, x, y)
Ñ2(z, x, y)

⎞

⎠ ,

where

Ñ1(z, x, y) = B1x
2 + B2y

2 + B3z
2 + B4xy + B5z

3 + B6x
2z + B7y

2z + B8xyz,

Ñ0(z, x, y) = A1xz + A2yz + A3x
3 + A4x

2y + A5xy
2 + A6xz

2 + A7yz
2, (19.19)

Ñ2(z, x, y) = C1xz + C2yz + C3x
3 + C4y

3 + C5x
2y + C6xy

2 + C7xz
2 + C8yz

2.

The coefficients Aj, Bj and Cj are as follows:

A1 = z∗{2a2β − a4(α − γ )}/β, A2 = 2a4z
∗,

A3 = 4a1β
2 + a3(α − γ )2, A4 = −4a3, A5 = 4a3,

B1 = 4b1z
∗β2 + b3z

∗(α − γ )2 − 2b4z
∗(α − γ )β, B2 = 4b3z

∗, B3 = 3b2z
∗,

B4 = 4z∗{b4β − b3(α − γ )}, B5 = b2, B6 = 4b1β
2 + b3(α − γ )2 − 2b4β(α − γ ),

B7 = 4b3, B8 = −4b3(α − γ ) + 4b4β,

C1 = [z∗(α − γ ){2a2β − a4(α − γ )}]/(2β) + (2c4β − c2(α − γ ))z∗,
C2 = (α − γ )a4z

∗/(β) + 2c2z
∗,

C3 = (α − γ )
{
2a1β

2 + a3(α − γ )2/2
}

−
{
2c1β

2 + c3(α − γ )2/2
}

(α − γ ), C4 = 4c3,

C5 = (−2a3 + 3c3)(α − γ )2 + 4c1β
2, C6 = 2(a3 − 3c3)(α − γ ),

C7 = (α − γ ){2a2β − a4(α − γ )}/(4β) − 1

2
c2(α − γ ) + c4β, C8 = (α − γ )a4/(2β) + c2.
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19.3.1 Transformation to the Dumortier-Kokubu’s Normal
Form

In this subsection, we find the invertible coordinate, parameter changes, time re-
parameterization and scaling of variables and parameters such that the system (19.13)
can be rescaled into the system (19.8):

⎧
⎨

⎩

ẋ = y,
ẏ = λx + μy + axz + byz,
ż = ν + x2 + z2.

<Step 1: Near identity transformation>

We introduce new valuables by

u = x, w = y + p1x + Ñ0(z, x, y).

Then, we have ẋ = u̇ = w and

ẇ = ẏ + p1ẋ + A1(ẋz + xż) + A2(ẏz + yż) + 3A3x
2ẋ + A4(2xyẋ + x2ẏ)

+A5(ẋy
2 + 2xyẏ) + A6(ẋz

2 + 2xzẋ) + A7(ẏz
2 + 2yzż)

= p2y + C1xz + C2yz + C3x
3 + C4y

3 + C5x
2y + C6xy

2 + C7xz
2 + C8yz

2

+ p1w + A1[wz + (−2μ1zx + B1x
3 + B2xy

2 + B3xz
2 + B4x

2y) + O(4)]
+A2[(p2yz + C1xz

2 + C2yz
2) + (−2μ1yz + B1x

2y + B2y
3 + B3z

2y + B4xy
2) + O(4)]

+ 3A3wx
2 + A4(2xyw + p2x

2y + O(4)) + A5(p1xy
2 + y3 + O(4))

+A6(p1wz
2 − 4μ1xz

2 + O(4)) + A7(p2yz
2 − 4μ1z

2y + O(4))

Moreover, we obtain

ẇ = − p1p2u + (p1 + p2)w + (A1 + C2)wz + C1uz + (C3 + A1B1)u
3

+ h(p1, p2, μ1, u,w, z),

where

h(p1, p2, μ1, u,w, z) = O(‖(p1, p2, μ1)‖‖(u,w, z)‖2) + O(‖(u,w, z)‖3).

Here, we can assume that h does not contain the cubic term u3. Therefore,

⎧
⎪⎨

⎪⎩

u̇ = w,

ẇ = −p1p2u + (p1 + p2)w + (A1 + C2)wz + C1uz + (C3 + A1B1)u
3 + h(p1, p2, μ1, u,w, z),

ż = −2μ1z + B1u
2 + B2w

2 + B3z
2 + B4uw + O(‖(p1, p2, μ1)‖‖(u,w, z)‖2) + O(‖(u,w, z)‖3).

(19.20)
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Let us use the following coordinate scaling:

u = �ũ, w = �w̃, z = �z̃, � > 0 (19.21)

and set
Ãj = �2Aj, B̃j = �2Bj, C̃j = �2Cj.

Then, the same system of (19.20) is obtained by dropping the tildes.

<Step 2: Changes of coordinates>

Substituting
z(t) = ζ(t) − δ

into 3rd equation of (19.20), we have

ζ̇ = 2μ1δ + B3δ
2 + (−2μ1 − 2B3δ)ζ + B3ζ

2 + B1u
2 + B2w

2 + B4uw.

By taking δ = −μ1/B3, then we have

⎧
⎨

⎩

u̇ = w,

ẇ = λu + μw + auζ + bwz + O(�3) + h,
ζ̇ = ν + B1u2 + B2w2 + B3ζ

2 + B4uw + O(‖(p1, p2, μ1)‖‖(u,w, z)‖2) + O(‖(u,w, ζ )‖3),
(19.22)

where

λ = aμ1

B3
− p1p2, μ = p1 + p2 + bμ1

B3
,

a = C1, b = A1 + C2, ν = −μ2
1

B3
.

<Step 3: First scaling>

Let us scale the valuables and parameters as follows:

u = r3x, w = r5y, , ζ = r4z, λ = r4λ̃, μ = r2μ̃, ν = r8ν̃.

Then, we have

⎧
⎨

⎩

x′ = y,
y′ = λ̃x + μ̃y + axz + br2yz + O(�3r2) + O(r4),
z′ = r2ν̃ + r2B3z2 + B1x2 + r2B4xy + O(r4).

(19.23)

Here, · ′ denotes the derivative
d

dτ
where τ = t/r2.
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Remark 19.6 The coefficients of quadratic terms Aj,Bj and Cj in (19.19) are depen-
dent on the parameters μj. Therefore, these coefficients in (19.23) depend on the
scaling parameter r also. This means that if a quadratic term with the coefficient
which is O(r), we can consider it as a higher order term. However, we can take a
scaling parameter � > 0 in (19.21) so that the cubic term with respect to (x, y, z)
goes to higher order terms, and the quadratic terms can be considered as leading
terms.

<Step 4: Coordinate changes in the scaling family>

We can transform the 3rd equation of (19.23) as follows:

dz

dτ
= B1

(
x + r2B4

2B1
y

)2

− r4B2
4

4B1
y2 + r2ν̃ + r2B3z

2 + O(r4)

Let us put

X(τ ) = x(τ ) + r2
B4

2B1
y(τ )

then, we have

X ′ = x′ + r2
B4

2B1
y′ = y + O(r2),

and

y′ = λ̃X + (μ + O(r2))y + aXz + r2
(
b − B4

2B1

)
yz + r2cx3 + O(�3r2) + O(r4).

We rewrite X = x and drop the tildes, we have

⎧
⎪⎪⎨

⎪⎪⎩

x′ = y + O(r2),

y′ = λx + μy + axz + r2
(
b − B4

2B1

)
yz + O(�3r2) + O(r4),

z′ = r2ν + r2B3z2 + B1x2 + O(r4).

(19.24)

Remark 19.7 The system (19.24) can be normarized as follows: the O(r2) term in
the first equation can be written as follows:

O(r2)y + r2
B4

2B1
λ̃X + r2aXz + O(r4).

Let us set

w = (1 + O(r2))y + r2
B4

2B1
λ̃X + r2aXz + O(r4).

Then we have
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w′ = (μ + O(r2))w + (1 + O(r2)(λ̃ + O(r4))X + (1 + O(r2))aXz

+ r2
(
b − B4

2B1

)
zw + O(�3r2) + O(|μ|r2) + O(r4) + O(‖(x,w, z)‖3).

The system (19.24) now becomes

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x′ = w,

w′ = (μ + O(r2))w + (λ̃ + O(r2))x + (1 + O(r2))axz

+ r2
(
b − B4

2B1

)
zw + O(�3r2) + O(|μ|r2) + O(r4) + O(‖(x,w, z)‖3),

z′ = r2ν + r2B3z2 + B1x2 + O(r4).

<Final step: Coordinate changes, re-parametarization of time, and final
scaling>

Putting

r2
(
b − B4

2B1

)
= b̄, r2ν = ν̄, r2B3 = B̄3,

and truncating the O(ρ3), O(r2) and O(r4) terms, the system (19.24) is

⎧
⎨

⎩

x′ = y,
y′ = λx + μy + axz + b̄yz,
z′ = ν̄ + B̄3z2 + B1x2.

(19.25)

Let us moreover introduce the following scaling:

x = |a||B1B̄
3
3|−

1
2 x̃, y = δ |a||B1B̄

3
3|−

1
2 ỹ, z = − a

B̄2
3

z̃.

Then, we have ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x̃′ = δỹ,

δỹ′ = λx̃ + μδỹ − a2

B̄2
3

x̃z̃ − b̄
δa

B̄2
3

ỹz̃,

−z̃′ = ν̄ + a

B̄3
z̃2 + a

B̄3
x̃2.

Let s = −B̄3τ/a be a new time variable, and take δ = −B̄3τ/a, then we have

⎧
⎨

⎩

x̃s = ỹ,
ỹs = λ̃ x̃ + μ̃ ỹ − x̃z̃ + b̃ ỹz̃,
z̃s = ν̃ + z̃2 + x̃2,

(19.26)

where
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λ̃ = λ
B̄2
3

a2
, μ̃ = −μ

B̄3

a
, b̃ = − b̄

B̄3
, ν̃ = ν̄

B3

a
.

This system is a system studied by Dumortier and Kokubu [4]. Let us rescale the
system (19.26) by

x̃ = ε3 x̄, ỹ = ε5 ȳ, z̃ = ε4 ȳ,

λ̃ = ε4 λ̄, μ̃ = ε2 μ̄, ν̃ = ε8 ν̄.

Then, we obtain

⎧
⎨

⎩

x̄′ = ȳ,
ȳ′ = λ̄ x̄ + μ̄ ȳ − x̄z̄ + O(ε2)O(x̄, ȳ),
z̄′ = x̄2 + ε2 ν̄ + ε2 z̄2 + O(ε4)O(x̄, ȳ, z̄).

(19.27)

Now we have the following theorem.

Theorem 19.4 ([4], Theorem 3.1) Suppose ν̄ < 0. There exists a smooth curve λ̄ =
h(μ̄) for sufficiently small μ̄ < 0 with h(μ̄) ∈ (−1, 1) such that for any (λ̄0, μ̄0) =
(h(μ̄0), μ̄0) and for any sufficiently small neighborhood Λ of (λ̄0, μ̄0), there exist
ε0 > 0 and a smooth function H(μ̄, ε) defined for ε ∈ [0, ε0] and for μ̄0 < 0 with
H(μ̄0, 0) = h(μ̄) for which the following statements are equivalent:

(1) there exists a connecting orbit from (0, 0, z̄−) to (0, 0, z̄+) in (19.27) with
(λ̄, μ̄, ε) ∈ Λ × [0, ε0], where z̄± = ±√−ν̄ + O(ε2).

(2) λ̄ = H(μ̄, ε).

19.3.2 Heteroclinic Cycles in the Scaling Family

The parameters in (19.26) can be represented by the parameters in (19.13) as follows:

μ̄ = −ε−2B3[α + γ + bμ1/B3]/C1, ν̄ = −ε−8r−4μ2
1/C1,

where

α = μ0 − a2μ1/b2, β = −a4μ1/b2 and γ = μ2 − c2μ1/b2.

For a given μ1 satisfying b2μ1 < 0, we can take μ̄ < 0 with a suitable choice of
parameters μ0 and μ2. We can compute sign of ν̄ as follows: we have sign ν̄ =
−signC1, where

C1 = [z∗(α − γ ){2a2β − a4(α − γ )}]/(2β) + (2c4β − c2(α − γ ))z∗.

In addition, simple computation yields
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C1 = − 1

2z∗
[(μ0 − μ2)

2 − {(a2 − c2)
2 + 4a4c4)}(z∗)4]. (19.28)

It should be noted that a4c4 < 0 is necessary for the existence of double degenerate
points P±. At the degenerate points, we have

C1 = ±2(z∗)3(a2 − c2)
√−a4c4 at (μ0, μ2) = P±,

where

P± := (μ±
0 , μ±

2 ) =
(

μ1

b2
(a2 ∓ √−a4c4),

μ1

b2
(c2 ± √−a4c4)

)
.

Moreover, we have

ε2μ̄ = −2μ1(a2 + c2)/C1 at (μ0, μ2) = P±.

It is easy to see that if b2(a2 + c2) < 0 and b2μ1 < 0 hold, then (a2 + c2)μ1 > 0
and b2μ1 < 0 hold, and vice versa. Therefore, we have the following proposition:

Proposition 19.4 If a4c4 < 0 and b2(a2 + c2) < 0, then for a given μ1 satisfying
|μ1| � 1 and b2μ1 < 0, the following hold: if sign (a2 − c2) = +1 (resp. −1),
then the scaling family (19.26) of (19.3) has the connecting orbit from (0, 0, z̄−)
to (0, 0, z̄+) with a suitable choice of parameters around the degenerate point P+
(resp. P−).

In [4], the following result was also given: there are infinitelymany horseshoes for the
Poincaré map around the hetroclinic cycles given in Theorem19.4 (see Sect. 4 of [4]
for the details). Therefore, we can conclude that Proposition19.4 gives a reasonable
explanation for the numerical results shown in introduction: chaotic dynamics in the
integro-reaction-diffusion system (19.4). Indeed, the parameters given in (19.5) yield
the following (see (19.6) and Sect. 19.2.3):

a2 > 0, c2 < 0, a2 + c2 > 0, b2 < 0, a4c4 < 0, μ+
0 < 0 and μ+

2 < 0.

Acknowledgements The authors would like to express their sincere gratitude to Professor Hiroshi
Kokubu (Kyoto University) for valuable discussions and comments.

Appendix A

Here we show how to derive the normal form (19.3) from (19.4).
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Let u(t, x) = (u(x, t), v(x, t)) be a solution of (19.4). Define the function ũ(t, x),
t > 0, x ∈ (−L,L) by

ũ(t, x) =
{
u(t, x) x ∈ (0,L),
u(t,−x) x ∈ (−L, 0).

Then ũ is a solution of the system

⎧
⎨

⎩
ut = D1uxx + au + bv + F(u, v) + s

2L

∫ L

−L
u(t, x) dx, x ∈ (−L,L), t > 0,

vt = D2vxx + cu + dv + G(u, v), x ∈ (−L,L), t > 0
(19.29)

with Neumann boundary conditions at the boundary of interval [−L,L] ⊂ R. Simi-
larly, the solution ũ of (19.4) can be extended to the solution of (19.29) with periodic
boundary conditions with period 2L onR. Conversely, if the function u(t, x) satisfy-
ing u(t, x) = u(t,−x) is a solution of (19.29) with period 2L, then it satisfies (19.29)
and Neumann boundary condition at x = 0,L. Therefore, the solution of (19.4) can
be identified to the “even” solution of (19.29) with periodic boundary conditions
with period 2L. This implies the solution can be expressed by the Fourier series:

u(t, x) =
∑

n∈Z
um(t)eimπx/L, v(t, x) =

∑

n∈Z
vm(t)eimπx/L, (um, vm) = (u−m, v−m) ∈ R

2.

Substituting into (19.29), we have

d

dt

(
um
vm

)
= Mm

(
um
vm

)
+

(
fm
gm

)
,m ≥ 0, (19.30)

where

fm =
∑

m1+m2+m3=m
m1,m2 ,m3∈Z

(f30um1um2um3 + f21um1um2vm3 + f12um1vm2vm3 + f03vm1vm2vm3),

gm =
∑

m1+m2+m3=m
m1,m2 ,m3∈Z

(g30um1um2um3 + g21um1um2vm3 + g12um1vm2vm3 + g03vm1vm2vm3),

fj� = 1

j!�!
∂ j�F

∂uj∂v�
(0, 0), gj� = 1

j!�!
∂ j�G

∂uj∂v�
(0, 0), j + � = 3, j, � ∈ N,

Mm =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
a + s b
c d

)
(m = 0),

(
a − D1m2k20 b

c d − D2m2k20

)
(m 	= 0),

(19.31)
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and k0 = π/L. We consider the system (19.30) in a phase space

XF :=
{
{(um, vm)}m∈Z; (um, vm) = (u−m, v−m) ∈ R

2,

‖{(um, vm)}m∈Z‖2XF
=

∑

m∈Z
(1 + m2)2|(um, vm)|2 < ∞

}

Solving detM0 = detM1 = detM2 = 0 for s, k0 and D2, a triply degenerate point of
0:1:2-modes is given by the following:

k0 = k1,20 :=
[

1

8dD1

{
5Δ −

√
25Δ2 − 16adΔ

} ]1/2

,

D2 = D1,2
2 := {dD1(k∗

0 )
2 − Δ}

(k∗
0)

2{D1(k∗
0 )

2 − a} ,

s = s∗ := −Δ/d,

where Δ = ad − bc. Near this degenerate point, we can apply the center manifold
theory (for instance, see [3, 9, 10]). To compute the dynamics on the center manifold
of (19.4),wediagonalize the equations in (19.30) form = 0, 1 and2. Set (k0,D2, s) =
(k1,20 ,D1,2

2 , s∗). Then changing variables t(um, vm) = Tm t(ũm, ṽm), (m = 0, 1, 2) by
the matrix

T0 =
(−d bc/d

c c

)
, Tm =

(−d + D1,2
2 m2(k1,20 )2 a − D1m2(k1,20 )2

c c

)
,m = 1, 2,

we have ( ˙̃um˙̃vm
)

=
(
0 0
0 μ−

m

) (
ũm
ṽm

)
+ T−1

m

(
f̃m
g̃m

)
,m = 0, 1, 2.

Here,

μ−
0 := d + bc/d, μ−

m := (a + d) − m2(D1 + D1,2
2 )(k1,20 )2,

f̃m := fm|t(umj ,vmj )=Tm t(ũmj ,ṽmj )
, g̃m := gm|t(umj ,vmj )=Tm t(ũmj ,ṽmj )

.

Set

ρ := (k1,20 ,D1,2
2 , s∗) − (k0,D2, s), μ+

m :=
{
tr Mm +

√
(tr Mm)2 − 4 detMm

}
/2.

We define a neighborhood Uε of XF × R
3:

Uε := {
({(um, vm)}m∈Z, ρ) ∈ XF × R

3; ||{(um, vm)}m∈Z||XF + |ρ| < ε
}
.

Then we have the following theorem.
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Theorem A ([13]) For given constants a, b, c, d,D1, there exists a positive constant
ε such that the local center manifold W c

loc of (19.30) is contained in Uε. Moreover,
the dynamics of (19.30) on the manifold W c

loc is governed by the following system:

⎧
⎨

⎩

ż0 = (μ+
0 + a1z20 + a2z21 + a3z22)z0 + a4z21z2 + o(3),

ż1 = (μ+
1 + b1z20 + b2z21 + b3z22)z1 + b4z0z1z2 + o(3),

ż2 = (μ+
2 + c1z20 + c2z21 + c3z22)z2 + c4z0z21 + o(3).

(19.32)

Here, zj(t) ∈ R denote ũj(t) (j = 0, 1, 2), and o(3) denotes o(|(z0, z1, z2)|3). In addi-
tion, the coefficients μ+

j , aj, bj, cj are dependent on the coefficients and parameters
appearing in (19.30).

Proof The first statement of the theorem follows from standard center manifold
theory. It also states that for m 	= 0, 1, 2, there exist functions

hum(ũ0, ũ1, ũ2; ρ),m ≥ 3, hvm(ũ0, ũ1, ũ2; ρ), m ≥ 0,

satisfying

∂hum
∂ ũj

(0, 0, 0; 0) = ∂hvm
∂ ũj

(0, 0, 0; 0) = 0, (j = 0, 1, 2)

and

∂hum
∂ρ

(0, 0, 0; 0) = ∂hvm
∂ρ

(0, 0, 0; 0) = 0

such that the local invariant manifold W c
loc is expressed by

W c
loc = {{(ũ�, ṽ�), (um, vm)}|�|≤2, |m|≥3 ∈ XF; ṽ� = hv�(ũ0, ũ1, ũ2; ρ),

(um, vm) = (hum(ũ0, ũ1, ũ2; ρ), hvm(ũ0, ũ1, ũ2; ρ)), |�| ≤ 2, |m| ≥ 3
}
.

We can check that if |(ũ0, ũ1, ũ2; ρ)| < ε then hum = hvm = o(ε3). Then, the cubic
truncated equations for ũm, (m = 0, 1, 2) are given by the following:

˙̃u0 = μ+
0 ũ0 − 1

μ−
0

{
f̃0 − b

d
g̃0

}
,

˙̃um = μ+
mũm − 1

cμ−
m

{cf̃m + (−a + D1m
2(k1,20 )2)g̃m},m = 1, 2,

where

f̃m :=
∑

m1+m2+m3=m
mj∈{0,±1,±2}

(f30Bm1Bm2Bm3 ũm1 ũm2 ũm3

+ cf21Bm1Bm2 ũm1 ũm2 ũm3 + c2f12Bm1 ũm1 ũm2 ũm3 + c3f03ũm1 ũm2 ũm3)
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and

g̃m :=
∑

m1+m2+m3=m
mj∈{0,±1,±2}

(g30Bm1Bm2Bm3 ũm1 ũm2 ũm3

+ cg21Bm1Bm2 ũm1 ũm2 ũm3 + c2g12Bm1 ũm1 ũm2 ũm3 + c3g03ũm1 ũm2 ũm3).

Here, Bj = −d + j2D1,2
2 (k1,20 )2. This gives the cubic truncated system (19.32). We

show the explicit form of coefficients in Appendix B.

Appendix B

We show the coefficients of system (19.3) explicitly. We put

μ−
0 := d + bc/d, μ−

m := (a + d) − m2(D1 + D1,2
2 )(k1,20 )2,

Am := −a + D1,2
1 m2(k1,20 )2, Bm = −d + D1,2

2 m2(k1,20 )2.

Then we have the following,

μm :=
{
trMm + √

(trMm)2 − 4 detMm

}
/2, aj = − 1

μ+
0

P
aj
f + b

dμ+
0

P
aj
g , j = 1 . . . 4,

bj = − 1

μ−
1

P
bj
f − A1

cμ−
1

P
bj
g , j = 1 . . . 4, cj = − 1

μ−
2

P
cj
f − A2

dμ−
2

P
cj
g , j = 1 . . . 4.

Here,

(
P
a1
f

P
a1
g

)

:= B30

(
F30
G30

)
+ cB20

(
F21
G21

)
+ c2B0

(
F12
G12

)
+ c3

(
F03
G03

)
,

(
P
a2
f

P
a2
g

)

:= 6B21B0

(
F30
G30

)
+ 2cB1(B1 + 2B0)

(
F21
G21

)
+ 2c2(B0 + 2B1)

(
F12
G12

)
+ 6c3

(
F03
G03

)

(
P
a3
f

P
a3
g

)

:= 6B22B0

(
F30
G30

)
+ 2cB2(B2 + 2B0)

(
F21
G21

)
+ 2c2(B0 + 2B2)

(
F12
G12

)
+ 6c3

(
F03
G03

)
,

(
P
a4
f

P
a4
g

)

:= 6B21B2

(
F30
G30

)
+ 2cB1(B1 + 2B2)

(
F21
G21

)
+ 2c2(B2 + 2B1)

(
F12
G12

)
+ 6c3

(
F03
G03

)
,
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(
P
b1
f

P
b1
g

)

:= 3B20B1

(
F30
G30

)
+ cB0(B0 + 2B1)

(
F21
G21

)
+ c2(B1 + 2B0)

(
F12
G12

)
+ 3c3

(
F03
G03

)
,

(
P
b2
f

P
b2
g

)

:= 3B31

(
F30
G30

)
+ 3cB21

(
F21
G21

)
+ 3c2B1

(
F12
G12

)
+ 3c3

(
F03
G03

)
,

(
P
b3
f

P
b3
g

)

:= 6B22B1

(
F30
G30

)
+ 2cB2(B2 + 2B1)

(
F21
G21

)
+ 2c2(B1 + 2B2)

(
F12
G12

)
+ 6c3

(
F03
G03

)
,

(
P
b4
f

P
b4
g

)

:= 6B0B1B2

(
F30
G30

)
+ 2c(B0B1 + B1B2 + B2B0)

(
F21
G21

)

+ 2c2(B0 + B1 + B2)

(
F12
G12

)
+ 6c3

(
F03
G03

)
,

(
P
c1
f

P
c1
g

)

:= 3B20B2

(
F30
G30

)
+ cB0(B0 + 2B2)

(
F21
G21

)
+ c2(B2 + 2B0)

(
F12
G12

)
+ 3c3

(
F03
G03

)
,

(
P
c2
f

P
c2
g

)

:= 6B21B2

(
F30
G30

)
+ 2cB1(B1 + 2B2)

(
F21
G21

)
+ 2c2(B2 + 2B1)

(
F12
G12

)
+ 6c3

(
F03
G03

)
,

(
P
c3
f

P
c3
g

)

:= 3B32

(
F30
G30

)
+ 3cB22

(
F21
G21

)
+ 3c2B2

(
F12
G12

)
+ 3c3

(
F03
G03

)
,

(
P
c4
f

P
c4
g

)

:= 3B21B0

(
F30
G30

)
+ cB1(B1 + 2B0)

(
F21
G21

)
+ c2(B0 + 2B1)

(
F12
G12

)
+ 3c3

(
F03
G03

)
.
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Chapter 20
L∞-Stability of Discontinuous Traveling
Waves in a Radiating Gas Model

Masashi Ohnawa

Abstract In the present article, we prove the L∞-stability of discontinuous or super-
critical shock waves which appear in a model system of radiating gases if the shock
strength is greater than a certain critical value. The author has recently shown (SIAM
J.Math. Anal. (2014), 2136–2159.) that all subcritical shockwaves are stable to small
perturbations while the critical shock wave blows up the first order derivative in a
finite time if certain types of perturbations are added whatever small the perturba-
tions may be. In the supercritical case, we show that the convection contributes to
recover the stability by virtue of discontinuity in the asymptotic state compensating
the insufficient smoothing effect of radiation.

Keywords Radiation gas system ·Discontinuous shockwave ·Asymptotic stability

20.1 Introduction

In the present paper, we study an initial value problem to a hyperbolic-elliptic coupled
system called the Hamer model [3] arising in a gas dynamics including a radiation
effect. The model system reads

ut + uux + qx = 0, (20.1)

−qxx + q + ux = 0, (20.2)

where u(t, x) and q(t, x) are scalar-valued functions satisfying

u(0, x) = u0(x) with lim
x→±∞ u0(x) = u±, (20.3)

lim
x→±∞ q(t, x) = 0 for an arbitrary t � 0. (20.4)
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We are particularly concerned with the stability of shock waves or traveling wave
solutions to the Hamer model, which are expressed in the form of

(u, q)(t, x) = (U, Q)(η), η = x − st

for a certain constant s. An interesting feature is that the traveling wave solutions are
discontinuous if the shock strength:

δS := u− − u+

is greater than a certain constant. Here we summarize conditions for the existence of
shock waves and their properties clarified by Kawashima and Nishibata [5].

Proposition 20.1 [5] If δS > 0, there exists a traveling wave solution to
(20.1)–(20.4) uniquely up to a shift with s = (u− + u+)/2. The function U is
monotonically decreasing and is odd in a suitable coordinate. Moreover, it holds
that

|U(x) − uS(x)| ≤ 1

2
δSe−c|x|, where uS(x) := u± for ± x > 0 (20.5)

and c is a positive constant depending only on δS.

(i) (subcritical/critical cases) If δS ∈ (0,
√
2], the solution satisfies

(U, Q) ∈ C1(R) × C2(R), and

0 > U ′(x) � U ′(0) =
(

−1 +
√
1 − δ2S/2

)
/2. (20.6)

(ii) (supercritical case) If δS >
√
2, the solution is discontinuous at only one point.

Setting the point of discontinuity at x = 0, it holds that

0 > U ′(x) > U ′(±0) = −1 for x ∈ R0 := R \ {0}. (20.7)

The stability of traveling wave solutions to the Hamer model has been studied exten-
sively in the last two decades. In L1-topology, Serre [14, 15] showed that any shock
wave is stable to arbitrary large L1-initial perturbations. While in L∞-topology, the
earliest result was obtained in [5], which showed the L∞-stability of shock waves
with δS <

√
6/2 ≈ 1.22 using L2 energy method. Extension of this work include

multidimensional problem [2], general flux function problem [13], general systems
[9, 10] to cite just a few. In a recent paper [12], the author showed that all subcritical
shock waves (the case with δS <

√
2) are L∞-stable to small perturbations, while the

critical shock wave (the case with δS = √
2) blows up the first order derivative in a

finite time if certain types of perturbations are addedwhatever small the perturbations
may be.

The difference in the behaviors between subcritical and critical shock waves indi-
cates that the continuity of the profile of traveling waves might be related to the
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stability in C1 framework. The objective of the present work is to show how the dis-
continuities in the supercritical shock waves help to recover the L∞-stability. (Note
that the result in [12] does not exclude the possibility of L∞-stability of the critical
shock wave, as inferred from [8, 14].) The importance of the appearance of discon-
tinuous shock waves in the gas dynamics with radiation (in the present problem, the
case with δS >

√
2) has been addressed in [16] from the physical point of view.

Notation: For a constant p ∈ [1,∞], |f |p denotes the canonical Lp norm of a
function f . For a nonnegative integer m � 0, Hm denotes the m-th order Sobolev
space in the L2 sense, equipped with the norm ‖ · ‖Hm . We often simplify it as ‖ · ‖m.
For a function f which is continuous except for discontinuities of the first kind, [[f ]](x)
and [[f ]](t, x) denote the jump amplitude in the spatial direction of f at x, i.e.,

[[f ]](x) := f (x − 0) − f (x + 0), [[f ]](t, x) := f (t, x − 0) − f (t, x + 0)

and f (x) and f (t, x) denote the mean of the left and the right limit of f at x, i.e.,

f (x) := (f (x − 0) + f (x + 0))/2, f (t, x) := (f (t, x − 0) + f (t, x + 0))/2.

Finally, c and C denote generic positive constants.

We consider smooth initial data except for a single discontinuity at x = d0 and
observe the pointwise behavior of solutions perturbed around discontinuous shock
waves. In order to treat discontinuities, notion of an admissible solution is introduced
in [5, 6] following the method of Kružkov [7].

If u(t, x) is smooth except at x = d(t), the entropy condition

[[u]](t, d(t)) > 0 (20.8)

and the Rankine-Hugoniot conditions

[[q]](t, d(t)) = 0, (20.9)

[[u − qx]](t, d(t)) = 0, (20.10)

ḋ(t) = 1
2 (u(t, d(t) − 0) + u(t, d(t) + 0)) = u(t, d(t)) (20.11)

hold, where ḋ(t) is a derivative of d(t) in t.
To state our main results precisely, we define some quantities and functions.
When

u0 − uS ∈ L1, (20.12)

is satisfied, we define the ‘center of mass’ of u0 in the following way. Setting the
shift of the traveling wave solution so that U is discontinuous at the origin, the center
of mass x0 of the initial data u0 is given by
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x0 := 1

u− − u+

∫ ∞

−∞
(u0(x) − U(x)) dx,

which is equivalent to

∫ ∞

−∞
(u0(x) − U(x − x0)) dx = 0.

Letting s0 = (u− + u+)/2, we change variables as

û(t, x̂) = u(t, x̂ + x0 + s0t) − s0, q̂(t, x̂) = q(t, x̂ + x0 + s0t),

so that wemay assume s0 = 0 i.e. u− + u+ = 0 without loss of generality. In the new
coordinate, the center of mass of the initial data is located at the origin. Hereafter we
denote new variables û, q̂, x̂ simply by u, q, x respectively and fix the shift of U so
that U(x) is discontinuous at x = 0.

The initial perturbation is

φ0(x) := u0(d0 + x) − U(x) for x ∈ R0

and we define its potential or in other words anti-derivative by

�0(x) :=
∫ x

±∞
φ0(y) dy for ± x > 0.

�0 is well-defined by (20.5) and (20.12). In the case u0 is odd, u(t, ·) is also odd for
an arbitrary t � 0 and d(t) is identically zero. Our main theorem is the following.

Theorem 20.1 Suppose u0 is an odd function which is smooth except at x = 0, and
satisfies the entropy condition

[[u0]](0) > 0. (20.13)

If
φ0 ∈ L1(R0), and �0 ∈ H3(R0) (20.14)

are satisfied, where R0 := R \ {0}, the initial value problem (20.1)–(20.4) with suf-
ficiently small ‖�0‖3 has a unique global solution in the sense of Kružkov verifying

u(t, x) − U(x) ∈
2⋂

k=0

Ck([0,∞); H2−k(R0)), (20.15)

and

q(t, x) − Q(x) ∈
2⋂

k=0

Ck([0,∞); H3−k(R0)). (20.16)
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Moreover, the solution converges uniformly to the shock wave:

sup
x∈R0

(u(t, x) − U(x), q(t, x) − Q(x)) → 0 as t → ∞. (20.17)

Outline of the Paper

In Sect. 20.2, we prove the existence of a local solution and see that the solution
exists arbitrarily long if the initial perturbation is sufficiently small. The first part of
Sect. 20.3 is devoted to giving a bound to |(�, φ)|2 and L2-norms of φx and φxx in a
domain away from the discontinuity in the usualmanner. Finally, in the second part of
Sect. 20.3, we bound |(φx, φxx)|2 noting that perturbations close to the discontinuity
are ‘swept away’ thanks to the presence of the discontinuity and complete the proof
of our main results.

20.2 Local Solvability

In order to construct Kružkov’s admissible solutions to (20.1)–(20.4), we recall (see
e.g. [1]) that a piecewise smooth data is admissible if it satisfies (20.1) and (20.2)
classically where it is smooth while at the discontinuities it verifies the entropy con-
dition (20.8) and the Rankine-Hugoniot conditions (20.9)–(20.11). The uniqueness
of admissible solutions to (20.1)–(20.4) is shown in [4].

Besides stated in Proposition 20.1, we also recall facts about traveling wave solu-
tions [5] that (U, Q) ∈ C∞(R0) × C∞(R0) and it satisfies

UU ′ + Q′ = 0, (20.18)

−Q′′ + Q + U ′ = 0, (20.19)

in the classical sense at x 
= 0 and

[[Q]](0) = 0, [[Q′ − U]](0) = 0, Q(±∞) = 0. (20.20)

In the next lemma, we construct a local solution to (20.1)–(20.4) for initial value
around (U, Q) in a suitable functional space. Due to the entropy condition at the
discontinuities, this is proved by appealing to the Kato theory in a standard manner
(see e.g. [11]).

Lemma 20.1 Suppose φ0 ∈ H2(R0) is an odd function satisfying [[U + φ0]](0) > 0.
Then there exist a positive constant T depending only on ‖φ0‖2 and a unique φ ∈⋂2

k=0 Ck([0, T ]; H2−k(R0)) which solves
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φt(t, x) + (U(x) + φ(t, x))φx(t, x) + U ′(x)φ(t, x) + φ(t, x) − K ∗ φ(t, x) = 0,
(20.21)

φ(0, x) = φ0(x). (20.22)

The solution satisfies φ(t,−x) = −φ(t, x) for x 
= 0, ‖φ(t, ·)‖2 � 2‖φ0‖2 and

[[U + φ]](t, 0) > [[U + φ0]](0)/2 (20.23)

for an arbitrary t ∈ [0, T ]. Here, K(x) := e−|x|/2 is a fundamental solution to the
operator 1 − ∂xx. Defining ψ ∈ ⋂2

k=0 Ck([0, T ]; H3−k(R0)) by ψ = −(K ∗ φ)x (the
derivative is defined classically a.e.x since K ∗ φ is Lipschitz continuous), (20.21) is
equivalent to

φt(t, x) + (U(x) + φ(t, x))φx(t, x) + U ′(x)φ(t, x) + ψx(t, x) = 0, (20.24)

−ψxx(t, x) + ψ(t, x) + φx(t, x) = 0, (20.25)

and
[[ψ]](t, 0) = 0, [[ψx − φ]](t, 0) = 0. (20.26)

By the Sobolev embedding, we see that (u, q)(t, x) := (φ,ψ)(t, x) + (U, Q)(x)
is piecewise smooth and satisfies (20.1)–(20.4) in the classical sense except at
x = 0. The Rankine-Hugoniot conditions (20.9)–(20.11) and the entropy condition
[[u]](t, 0) > 0 are also satisfied. Hence (u, q) is the unique admissible solution to
(20.1)–(20.4).

In order to evaluate temporal evolution of integrals of certain time-dependent
variables over domains which also change with time, we frequently use the so called
Reynolds transport theorem stated as follows.

Lemma 20.2 Suppose a(t) and b(t) are C1 functions defined over t ∈ [t0, t1]
which satisfy a(t) < b(t). If f is a C1 function defined over {(t, x) | t ∈ [t0, t1], x ∈
(a(t), b(t))}, it holds

d

dt

∫ b(t)

a(t)
f (t, x)dx =

∫ b(t)

a(t)
ft(t, x)dx + f (b(t))ḃ(t) − f (a(t))ȧ(t).

The proof is elementary and we omit it.

Lemma 20.3 Assuming (20.12), the solution φ obtained in Lemma 20.1 satisfies
φ(t, ·) ∈ L1(R) for t ∈ [0, T ]. Defining the potential or the anti-derivative of φ by

�(t, x) :=
∫ x

±∞
φ(t, y)dy for ± x > 0, (20.27)
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it satisfies

�t(t, x) + U(x)�x(t, x) + 1

2
φ2(t, x) + ψ(t, x) = 0 for x ∈ R0. (20.28)

Furthermore, if �0 ∈ L2(R0), it holds that �(t, ·) ∈ L2(R0) for t ∈ [0, T ].
Proof The integrability of φ(t, ·) is proved by similar arguments to those in [5]. The
governing equation for � and the final statement are obtained following arguments
in [12] (the proof of Lemma 2.4) with the help of Lemma 20.2.

Lemma 20.4 Define a positive constant L0 by L0 := |(U ′)−1(−1/3)|. There exists
a positive constant δ0 such that ‖φ0‖2 � δ0 implies that the local solutions have a
sufficiently long life span T so that characteristic curves emanating from x = ±L0

at t = 0 reach x = ±0 by t = T/2.

Proof Let δ1 be an arbitrary positive constant. By Lemma 20.1, we may assume that
for an initial data satisfying ‖φ0‖2 � δ1, there exist a positive constant T0 and a local
solution over [0, T0] with supt�T0

‖φ(t)‖2 � 2‖φ0‖2. Therefore we can prolong the
life span of the local solution arbitrary long by letting ‖φ0‖2 be suitably small.

By letting δ1 further small if necessary, it holds that supt�T0
|φ|∞(t) � |U(±0)|/2

thanks to the Sobolev embedding theorem. The conclusion follows easily from these
considerations.

20.3 Asymptotic Stability

In this section, assuming the existence of a solution (φ,ψ) to (20.24) and (20.25)
over t ∈ [0, T ] with the properties stated in Lemma 20.1, we give a-priori estimates
to the solution. Let

N(T) := sup
t∈[0,T ]

‖�(t, ·)‖3.

20.3.1 Energy Estimates Away from the Discontinuity

Lemma 20.5 If N(T) is sufficiently small, it holds that

|�,φ|2(t)2 +
∫ t

0
|(φ,ψ,ψx)|2(s)2ds � C|�0, φ0|22 (20.29)

for an arbitrary t ∈ [0, T ], where C is a positive constant independent of T .

Proof By modifying the proof of Lemma 2.5 in [11] noting infx U ′(x) = −1 in the
supercritical case, we arrive at the conclusion.
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Lemma 20.6 Let a domain �0 be defined by �0 := {x ∈ R0 | U ′(x) > −1/3}. If
N(T) is sufficiently small, it holds for an arbitrary t ∈ [0, T ] that

|(�, φ)|2(t)2 +
∫

�0

(
φ2

x + φ2
xx

)
(t, x)dx

+
∫ t

0

(
|(φ,ψ,ψx)|2(s)2 +

∫

�0

(φ2
x + φ2

xx)(s, x)dx

)
ds � C‖�0‖23,

(20.30)

where C is a positive constant independent of T .

Proof Differentiate (20.24) in x and multiply the result by φx and use (20.25) to
obtain

∂t

(
1

2
φ2

x

)
+ ∂x

(
1

2
(φ + U)φ2

x

)
+

(
1 + 3

2
U ′ + 1

2
φx

)
φ2

x + φxψ + U ′′φφx = 0.

(20.31)

Nowwe integrate (20.31) over�0. SinceU ′′ ∈ L∞, the integrals of the last two terms
are estimated as

∣
∣∣∣

∫

�0

(
φxψ + U ′′φφx

)
dx

∣
∣∣∣ � ε

∫

�0

φ2
x dx + Cε−1

∫

�0

(
ψ2 + U ′′2φ2

)
dx

� ε

∫

�0

φ2
x dx + Cε−1|(φ,ψ)|22, (20.32)

where ε is an arbitrary positive constant. Noting 1 + 3U ′(x)/2 > 1/2 for x ∈ �0, if
N(T) � 1 so that |φ|∞ � |U(±0)| (� |U(±L0)|) and |φx|∞ � 1 hold, letting ε in
(20.32) suitably small and integrating in time yield

∫

�0

φx(t, x)2dx +
∫ t

0

∫

�0

φx(s, x)2dxds � C
∫

�0

φ′
0(x)

2dx + C
∫ t

0
|(φ,ψ)|2(s)2ds.

(20.33)

In the similar way, the second order derivative is estimated as

∫

�0

φxx(t, x)2dx +
∫ t

0

∫

�0

φxx(s, x)2dxds

� C
∫

�0

φ′′
0 (x)

2dx + C
∫ t

0

(
|(φ,ψx)|2(s)2 +

∫

�0

φx(s, x)2dx

)
ds.

(20.34)

Combination of (20.29), (20.33), and (20.34) yields the desired estimate.
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20.3.2 Energy Estimates over the Entire Domain

In this section we assume that ‖�0‖3 is sufficiently small so that the conclusion of
Lemma 20.4 holds true.

For an arbitrary s � 0, we solve an ordinary differential equation

dX(t)/dt = U(X(t)) + φ(t, X(t)) for t > s with X(s) = −L0, (20.35)

and define T1(y; s) for an arbitrary y ∈ [−L0, 0) so that X(T1(y; s)) = y holds. The
solvability of (20.35) is assured by the boundedness of U ′ and φx. Due to Lemma
20.4, the smallness of ‖�0‖3 implies the existence of a limit limy→−0 T1(y; 0), which
we denote by T0 (Fig. 20.1).

For an arbitrary t > 0, consider a characteristic curve subject to (20.35) arriving
at x = 0 from left at time t, and denote its location at an arbitrary time τ ∈ [0, t) by
a−(τ ; t). For an arbitrary t(� T0), we define s0(t) (� 0) such that a−(s0(t); t) = −L0

holds, and we set s0(t) = 0 for t ∈ [0, T0). Letting T be the existence time of the
solution, for an arbitrary s � s0(T) define t1(s) by limy→−0 T1(y; s).

Lemma 20.7 If N(T) is sufficiently small, there exists a positive constant Tc inde-
pendent of T such that

t − s0(t) < Tc for an arbitrary t ∈ (0, T ],

Fig. 20.1 Definitions of T1,
a−, s0 and t1. Solid lines
represent characteristic
curves following (20.35)
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and

t1(s) − s < Tc for an arbitrary s ∈ [0, s0(T)]

hold. Moreover, the function t1(s) is differentiable almost everywhere in s ∈ [0, s0(T)

/2] and its derivative is bounded by a constant which is independent of T .

Proof Similar arguments to those in the proof of Lemma 20.4 deduce the first two
statements. By the definition of T1, it holds for y ∈ [−L0, 0) that

T1(y; s) = s +
∫ y

−L0

dz

U(z) + φ(T1(z; s), z)
.

Taking the difference quotient of this equality with respect to s, standard arguments
lead us to the conclusions.

Lemma 20.8 If N(T) is sufficiently small, it holds that

‖�‖3(t) � C‖�0‖3 for an arbitrary t ∈ [0, T ],

where C is a positive constant independent of T .

Proof For arbitrary t ∈ (0, T ] and τ ∈ [0, t), define a time dependent domain�(τ ; t)
by �(τ ; t) := {x < a−(τ ; t)|x ∈ R}. Applying Lemma 20.2 to (20.31), we have

d

dτ

∫

�(τ ;t)
1

2
φ2

x dx = −
∫

�(τ ;t)
∂x

(
1

2
(φ + U)φ2

x

)
dx −

∫

�(τ ;t)

(
1 + 3

2
U ′ + 1

2
φx

)
φ2

x dx

−
∫

�(τ ;t)
(
φxψ + U ′′φφx

)
dx + 1

2
φ2

x (τ, a−(τ ; t))∂τ a−(τ ; t).

(20.36)

Since ∂τ a−(τ ; t) = U(a−(τ ; t)) + φ(τ, a−(τ ; t)), the first and the last terms in the
right hand side cancel. Integrating (20.36) in τ over [s0(t), t] and using Lemma 20.7,
we have

∫ 0

−∞
φ2

x (t, x)dx � eC(t−s0(t))
∫

�(s0(t),t)
φx(s0(t), x)2dx + C

∫ t

s0(t)
eC(t−τ)|(φ,ψ)|2(τ )2dτ

� C
∫

�(s0(t),t)
φx(s0(t), x)2dx + C

∫ t

s0(t)
|(φ,ψ)|2(τ )2dτ (20.37)

for an arbitrary t ∈ [0, T ], where C is independent of T . In the same way, we have

∫ 0

−∞
(φ2

x + φ2
xx)(t, x)dx

� C
∫

�(s0(t),t)

(
φ2

x + φ2
xx

)
(s0(t), x)dx + C

∫ t

s0(t)
|(φ,ψ,ψx)|2(s)2ds. (20.38)
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By Lemma 20.6, the last term in the right hand side of (20.38) is bounded above by
C‖�0‖23. In the case of t � T0, then s0(t) = 0 and �0 ⊂ �(s0(t), t) ⊂ (−∞, 0).
Therefore the first term in the right hand side of (20.38) is not greater than
C‖�0‖23. In the case of t > T0, this term appears in the left hand side of (20.30)
because a−(s0(t), t) = −L0 for t > T0 and hence �(s0(t), t) = �0. In any case,∫ 0
−∞(φ2

x (t, x) + φ2
xx(t, x))dx � C‖�0‖23 holds for an arbitrary t ∈ [0, T ], where C is

independent of T . Combined with the estimate for |�,φ|2(t) in Lemma 20.6, we
have the desired estimate.

Lemma 20.9 If N(T) is sufficiently small, it holds for an arbitrary t ∈ [0, T ] that

‖�‖23(t) +
∫ t

0
‖(φ,ψ)‖2(s)2ds � C‖�0‖23,

where C is a positive constant independent of T .

Proof Choose an arbitrary interval [0, t] ⊂ [0, T ] and integrate (20.38) with t
replaced by τ over [0, t] to get

∫ t

0

∫ 0

−∞
(φ2

x (τ, x) + φ2
xx(τ, x))dxdτ

� C
∫ t

0

∫

�(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ

+ C
∫ t

0

∫ τ

s0(τ )

|(φ,ψ,ψx)|2(s)2dsdτ. (20.39)

The first term in the right hand side of (20.39) is estimated as

∫ t

0

∫

�(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ

=
∫ T0

0

∫

�(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ +

∫ t

T0

∫

�(s0(τ ),τ )

(
φ2

x + φ2
xx

)
(s0(τ ), x)dxdτ

� T0

∫ 0

−∞
(
(φ′

0)
2 + (φ′′

0 )2
)
(x)dx +

∫ s0(t)

0

∫

�0

(
φ2

x + φ2
xx

)
(s, x)dx

dt1(s)

ds
ds

� C‖�0‖23, (20.40)

where we used s0(τ ) = 0 for τ � T0, �(s0(τ ), τ ) = �0 for τ > T0, s−1
0 (s) = t1(s)

for s > 0, and Lemmata 20.6 and 20.7. The second term in the right hand side of
(20.39) is estimated by using Lemmata 20.6 and 20.7 as
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∫ t

0

∫ τ

s0(τ )

|(φ,ψ,ψx)|2(s)2dsdτ

=
∫ T0

0

∫ τ

0
|(φ,ψ,ψx)|2(s)2dsdτ +

∫ t

T0

∫ τ

s0(τ )

|(φ,ψ,ψx)|2(s)2dsdτ

� T0

∫ T0

0
|(φ,ψ,ψx)|2(s)2ds + sup

s�s0(t)
(t1(s) − s)

∫ t

T0

|(φ,ψ,ψx)|2(s)2ds

� (T0 + TC)

∫ t

0
|(φ,ψ,ψx)|2(s)2ds � C‖�0‖23. (20.41)

Substituting (20.40) and (20.41) into (20.39), we obtain

∫ t

0

∫ 0

−∞
(φ2

x (τ, x) + φ2
xx(τ, x))dxdτ � C‖�0‖23 for an arbitrary t ∈ [0, T ],

(20.42)

whereC does not depend onT . Combining (20.25), Lemmata 20.6, 20.8, and (20.42),
we complete the proof.

Proof of Theorem 20.1
Lemmata 20.1, 20.4 and 20.8 readily conclude the unique existence of the global

solution. Passing t → ∞, Lemma 20.9 gives |φ|2(t)2, |φx|2(t)2 ∈ L1(0,∞). Also by
Lemma 20.9, it is easy to see that

d

dt
|φ|2(t)2, d

dt
|φx|2(t)2 ∈ L1(0,∞).

Therefore we have

|φ|2(t), |φx|2(t) → 0 as t → ∞.

This convergence and the boundedness of ‖�‖3 given in Lemma 20.8 give

|�,φ, φx|∞(t) → 0 as t → ∞

with the help of the Sobolev embedding theorem.
The uniform convergence of q to Q is obtained using (20.25) with the help of the

Young inequality. �
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Chapter 21
Mathematical Analysis and Numerical
Simulations for a Model of Atherosclerosis

Telma Silva, Jorge Tiago and Adélia Sequeira

Abstract Atherosclerosis is a chronic inflammatory disease that occurs mainly in
large and medium-sized elastic and muscular arteries. This pathology is essentially
caused by the high concentration of low-density-lipoprotein (LDL) in the blood.
It can lead to coronary heart disease and stroke, which are the cause of around
17.3 million deaths per year in the world. Mathematical modeling and numerical
simulations are important tools for a better understanding of atherosclerosis and
subsequent development of more effective treatment and prevention strategies. The
atherosclerosis inflammatory process can be described by a model consisting of
a system of three reaction-diffusion equations (representing the concentrations of
oxidized LDL, macrophages and cytokines inside the arterial wall) with non-linear
Neumann boundary conditions. In this work we prove the existence, uniqueness and
boundedness of global solutions, using the monotone iterative method. Numerical
simulations are performed in a rectangle representing the intima, to illustrate the
mathematical results and the atherosclerosis inflammatory process.

Keywords Atherosclerosis · Reaction-diffusion equations · Nonlinear boundary
conditions ·Upper and lower solutions ·Monotone sequences ·Existence-comparison
theorem

21.1 Introduction

Atherosclerosis is a systemic disease affecting the entire arterial tree, but lesions
involving the coronary, cerebral, and lower extremity circulations have the most clin-
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Fig. 21.1 Atherosclerosis schematics. The LDL penetrates the intima where it is oxidized. The
oxLDL in the intima leads to monocytes recruitment. The monocytes penetrate the intima and
differentiate into macrophages which phagocyte the ox-LDL leading to the formation of the foam
cell and consequently to the chronic inflammatory reaction inside the intima. After a while, smooth
muscle cells (SMCs) will migrate from media to intima creating a fibrous cap over the lipid deposit

ical significance for medical doctors. The pathogenesis of atherosclerosis involves a
complex series of events, similar to a chronic inflammatory process, with the forma-
tion of atherosclerotic plaque as consequence [1, 2].

The genesis of atherosclerosis is still not known, but many researchers believe
that the atherosclerosis starting point is the endothelial dysfunction, caused by
high plasma concentration of cholesterol, in particular, the low-density-lipoprotein,
(LDL), hyperglycemia, hypertension, infectious agents and/or smoking [1, 3]. High
LDL concentration changes the permeability of the endothelial layer leading to sub-
sequent deposition of lipids in the intima (the inner layer of the blood vessel) [4].

Intra intimal LDL undergoes oxidation (oxLDL) by oxidant mechanisms. Oxi-
dized LDL is considered as a dangerous agent, hence an inflammatory reaction is
launched: monocytes adhere to the endothelium, then they penetrate into the intima,
where they differentiate into active macrophages (Fig. 21.1).

Active macrophages recognize and absorb oxLDL in the intima by the phago-
cytosis process. The ingestion of large amounts of oxLDL transforms the fatty
macrophages into foam cells (lipid-laden cells) which in turn have to be removed
by the immune system. Hence, they set up a chronic inflammatory reaction (auto-
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amplification phenomenon) by secreting pro-inflammatory cytokines that promote
the recruitment of new monocytes and the production of new pro-inflammatory
cytokines.

The inflammation process involves the proliferation (growth or production of cells
by multiplication of their parts) and the migration of smooth muscle cells (SMCs) to
create a fibrous cap over the lipid deposit. This fibrous cap changes the geometry of
the vessel and consequently modifies the blood flow.

Although atherosclerosis is asymptomatic in the beginning, with time can lead to
cardiovascular diseases, such as coronary artery diseases, cerebrovascular diseases
or peripheral arterial diseases, which are responsible for around 17.3 million deaths
per year in the world [5]. Therefore, a deep understanding of this pathogenesis and
subsequent development of more effective treatment and prevention strategies are
essential. Mathematical modeling and numerical simulations are two powerful tools
which have a key role in this framework.

Mathematical modeling of the atherosclerosis processes leads to complex sys-
tems of flow, transport, chemical reactions, interactions of fluid and elastic struc-
tures, movement of cells, coagulation and growth processes and additional complex
dynamics of the vessel walls.

Partial differential equations have been used to model this complex process. As
an example found in the literature, we can cite [6], where the authors present a
model consisting of reaction-diffusion equations, describing how the concentration
of macrophages and cytokines in the intima (a vessel layer) leads to an inflam-
matory disease. A model leading to the atherosclerotic plaque formation and the
early atherosclerotic lesions was suggested in [7] and [8], respectively. Systems of
convection-reaction-diffusion equations were used to describe the transport and the
concentration of oxidized low densities lipoproteins (LDL), macrophages, foam cells
and the pro-inflammatory signal emission in the intima.Recently, amore complex and
realistic model was presented in [9]. The authors used reaction-diffusion equations
to describe the distribution of substance in the intima, such as LDL, high densities
lipoproteins (HDL), oxidized LDL, and free radicals, among others, and convection-
reaction-diffusion equations for each species of cells, such as macrophages, T cells
or foam cells.

Manyworks have been devoted to the understanding of the atherosclerosis process
through numerical simulations [7–12]. Nevertheless, concerning the mathematical
analysis there are still many open problems. In 2009, Khatib et. al. presented results
of existence of traveling waves for a system with two reaction-diffusion equations
in a strip with nonlinear boundary conditions [13] and in 2012, for the same model,
they proved the existence and uniqueness of global solutions in Hölder spaces, [6].
Results of existence, uniqueness and boundedness of global solutions, based on the
monotone sequences method, as well as the analysis of stability and the long time
behavior of the solutions for a system of three reaction-diffusion equations in 1D
with homogeneous Neumann boundary conditions was presented in [14].

The main contribution of the present paper consists in extending the results given
in [14] for the two-dimensional case. Based on the monotone sequences method,
we prove the existence, uniqueness and boundedness of global solutions for a sys-
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tem of three reaction-diffusion equations in 2D with non-linear Neumann boundary
conditions. In fact, this result can directly be applied to the 3D case, without any
additional restriction. The monotone iterative method consists in using an upper or
a lower solution as the initial iteration in a suitable iterative process, to obtain a
monotone sequence that converges to a solution of the problem [15].

To illustrate the mathematical results, we perform numerical simulations for the
concentration of oxLDL, macrophages and cytokines in a 2D geometry representing
the intima.

This paper is organized as follows. In Sect. 21.2, we present the description of a
2D atherosclerosis model imposing some mathematical assumptions. In Sect. 21.3
we describe the core results of this work. We start by introducing some notations
and rewriting the mathematical model as a parabolic problem with nonlinear bound-
ary conditions. These will be used to describe the monotone iterative method, that
appears thereafter. We then prove the existence, uniqueness and boundedness of
global solutions and we make some comments about the simplified model with lin-
ear boundary conditions. Finally, in Sect. 21.4, numerical results are presented to
illustrate the mathematical model.

21.2 Atherosclerosis Mathematical Modeling

Let the inner layer of the blood vessel (the intima) be defined as a two-dimensional
domain, Ω = (0, L) × (0, h), where L and h are respectively, the length and the
height of the intima. Let the boundary of Ω be denoted by, ∂Ω = Γin ∪ Γend ∪
Γmed ∪ Γout , where Γend represents the interface between the intima and the lumen
(the endothelium layer), Γmed is the interface between the intima and the media, Γin

and Γout are respectively the proximal and distal sections (see Fig. 21.2).

Fig. 21.2 A rectangular representation of the intima layer
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The atherosclerosis inflammatory process can be described by the following sys-
tem of three reaction-diffusion equations,

∂t Ox − doxΔOx = −βOx · M (21.1a)

∂t M − dMΔM = −βOx · M (21.1b)

∂t S − dSΔS = βOx · M − λS + γ
(
Ox − Oxth

)
(21.1c)

in Ω , for all t ∈ R
+, with the boundary conditions

∇Ox · n = τ (x)CLDL on Γend and ∇Ox · n = 0 on ∂Ω\Γend (21.1d)

∇M · n = g (S) on Γend and ∇M · n = 0 on ∂Ω\Γend (21.1e)

∇S · n = 0 on ∂Ω (21.1f)

for all t ∈ R
+, where n is the outward unit normal vector to ∂Ω , and with the initial

conditions

Ox (x, 0) = Ox0 (x) , M (x, 0) = M0 (x) , S (x, 0) = S0 (x) in Ω. (21.1g)

The functions Ox ,M and S are, respectively, the concentrations of oxidized LDL,
macrophages and inflammatory signal (a generic chemoattractant which gathers the
cytokines), which are continuously differentiable in t and twice continuously differ-
entiable in x .

The second term on the left-hand side of each reaction-diffusion equation of
system (21.1), represents the diffusion term, and dox , dM and dS are the diffusion
coefficients, which are positive constants. The first term on the right-hand side rep-
resents the ingestion of oxLDL by the macrophages. The parameter β is a positive
constant of proportionality.

The second term in the Eq. (21.1c) denotes the natural death of the cells and λ is
the degradation rate. The starting point of the signal emission is assumed to be a too
high oxidized LDL concentration in the intima. This is described by the third term
γ

(
Ox − Oxth

)
, where Oxth corresponds to a given oxLDL quantity and γ is the

activation rate. In order to have an inflammatory response Ox should be greater than
Oxth .

In the boundary conditions on Γend , we assume that LDL and monocytes enter the
tunica intima through the endothelial layer. The function τ in the boundary condition
(21.1d) is the permeability of the vessel wall, which depends on the wall shear stress
(WSS), the mechanical force imposed on the endothelium by the flowing blood. As
we know, lowWSS favors the penetration of both LDL and monocytes [2]. The per-
meability function τ is defined to be a smooth and nonnegative function of WSS.1

The parameterCLDL is a given LDL-cholesterol concentration, which is positive.We

1The wall shear stress function, WSS, is computed using the solution of the blood flow model (for
instance a generalized Navier-Stokes model).
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assume that the incoming monocytes immediately differentiate into macrophages
and the recruitment of new monocytes depends on a general pro-inflammatory sig-
nal which gathers both chemokines and cytokines. The boundary condition (21.1e)
considers that this signal acts through the function g, which is defined to impose a
limit in the macrophages recruitment. There are many ways to define the function g,
see for instance [6, 8, 15]. Here, for simplicity, we have, g (S) = S/ (1 + S) and

g(S) > 0 for S > 0, g(0) = 0, and g(S) → 1 as S → ∞.

The functions Ox0 (x), M0 (x) and S0 (x) defined in (21.1g) are smooth and
nonnegative functions satisfying the boundary conditions (21.1d)–(21.1f) at t = 0.

21.3 Existence, Uniqueness and Boundedness of Solutions

System (21.1) is coupled through the boundary conditions, as well as through
the differential equations themselves and, in this sense, the analysis becomes
more complex than the one performed in [14] for homogeneous Neumann bound-
ary conditions. Nevertheless, the monotone iterative method used to establish the
existence-comparison theorem in [14] can be extended to system (21.1), which is
a two-dimensional model with nonlinear boundary conditions. But in this case,
we should require the quasimonotone property of the boundary function G =
(G1,G2,G3) together with the quasimonotone property of the reaction function
Φ = (Φ1, Φ2, Φ3). For the 3D case, we can use the same argument as in 2D, without
any additional requirement.

The results in this section are based in the general theory of parabolic problems
presented in [15].

21.3.1 Notations

LetΩ be an open set inRd .We denote by ∂Ω the boundary ofΩ and byΩ its closure.
For each T > 0, let ΩT = Ω × (0, T ] be a domain in R

d+1, ∂ΩT = ∂Ω × (0, T ]
and ΩT the closure of ΩT .

We denote by C2,1(ΩT ) the space of all functions that are twice continuously
differentiable in x and once continuously differentiable in t , for all (x, t) in ΩT .

The product function space
(
Ck(Q)

)3
, where Q can be ΩT or ΩT is denoted

by C k(Q). For any vector function U = (U1,U2,U3) in C k(Q) the components
U1,U2,U3 are each one inCk(Q), which is the set of all continuous functions whose
partial derivatives up to the kth order are continuous in Q. When Q = ΩT we denote
by C 2,1(ΩT ) the product space whose components are in C2,1(ΩT ).
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21.3.2 Parabolic Problem with Nonlinear Boundary
Conditions

Let ΩT = Ω × (0, T ] and ∂ΩT = ∂Ω × (0, T ], for an arbitrary finite T > 0.
We define the concentrations

(C1,C2,C3) = (Ox, M, S) , (21.2)

the diffusion coefficients

(d1, d2, d3) = (dox , dM , dS) , (21.3)

the reaction functions

Φ1 = Φ2 = −βC1 · C2 and Φ3 = βOx · M − λS + γ
(
Ox − Oxth

)
(21.4)

and the boundary functions

G1 = τ(x)CLDLψ(x), G2 = g(C3)ψ(x) and G3 = 0 on ∂Ω, (21.5)

where ψ(x) is a bump function.2

With these notations, system (21.1) with the boundary conditions (21.1d)–(21.1f)
and the initial conditions (21.1g) can be rewritten, as follows

∂tCi − diΔCi = Φi in ΩT

∂nCi = Gi on ∂ΩT

Ci (x, 0) = Ci,0 (x) in Ω

(21.6)

for i = 1, 2, 3, where the functions
(
C1,0,C2,0,C3,0

) = (Ox0, M0, S0) and ∂nCi

denotes the outward normal derivative of Ci on ∂ΩT .
Let

C = (
Ci , [C]ai , [C]bi

)
(21.7)

be the split notation of the vector function C, where, [C]ai and [C]bi denote, respec-
tively, the ai and bi -components of the vector C. We rewrite the function Φi as

Φi (C) = Φi
(
Ci , [C]ai , [C]bi

)
, for i = 1, 2, 3, (21.8)

2Let K be an arbitrary compact set andU anopen subset ofΓend , taken as a very small neighbourhood
of K , containing K . There exists a bump functionψ(x)which is equal to 1 on K and falls off rapidly
to 0 outside of K , while still being smooth.
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and the function Gi as

Gi (C) = Gi
(·,Ci , [C]αi

, [C]ρi

)
, for i = 1, 2, 3, (21.9)

where ai , bi , αi and ρi are nonnegative integers with ai + bi = αi + ρi = 2.
Considering the split notations (21.7), (21.8) and (21.9), the reaction-diffusion

system (21.6) can be written as

∂tCi − diΔCi = Φi
(
Ci , [C]ai , [C]bi

)
in ΩT

∂nCi = Gi
(·,Ci , [C]αi

, [C]ρi

)
on ∂ΩT

Ci (x, 0) = Ci,0 (x) in Ω

(21.10)

for i = 1, 2, 3.

Since the initial conditions Ci,0 and the boundary functions Gi , for i = 1, 2, 3,
are nonnegative, and for all C1,C2,C3 � 0 we have

Φ1 (0,C2) = 0,

Φ2 (C1, 0,C3) = 0,

Φ3 (C1,C2, 0) = βC1 · C2 + γ
(
C1 − Cth

ox

)
� 0,

the nonnegativity of the solutions of (21.6) is preserved in time [15, 16].

21.3.3 Monotone Iterative Method

The monotone iterative method consists in using an upper or a lower solution as the
initial iteration in a suitable iterative process, in order to obtain a monotone sequence
which converges to a solution of the problem.

The definition of upper and lower solutions and the construction of monotone
sequences depend on the quasimonotone property of the reaction function Φ and the
boundary function G.

A function F = ( f1, f2, ..., fn) is said to possess the quasimonotone property
if for each i there exist nonnegative integers ai , bi with ai + bi = n − 1 such that
fi

(
Ci , [C]ai , [C]bi

)
is monotone nondecreasing in [C]ai and monotone nonincreas-

ing in [C]bi , (see [15]).

We need to see if Φ = (Φ1, Φ2, Φ3) and G = (G1,G2,G3) possess the quasi-
monotone property. Considering the reaction functions Φi , for i = 1, 2, 3, and for
all C � 0, we have

[C]a1 = 0 and [C]b1 = C2

[C]a2 = 0 and [C]b2 = C1

[C]a3 = (C1,C2) and [C]b3 = 0.
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Looking at the boundary functions Gi (with i = 1, 2, 3), since G1 is linear and
G3 = 0, we just need to take into account G2. Therefore, for all C � 0,

[C]α2
= C3 and [C]ρ2

= 0.

Hence, we conclude that Φ and G defined in (21.6), are quasimonotone in C, for
all C � 0.

Based on the quasimonotone property of Φ = (Φ1, Φ2, Φ3) and G =
(G1,G2,G3) we have the following definition of upper and lower solutions.

Definition 21.1 Two smooth functions C̃ = (
C̃1, C̃2, C̃3

)
, Ĉ = (

Ĉ1, Ĉ2, Ĉ3
)
in

C
(
ΩT

) ∩ C 2,1 (ΩT ) are called a pair of coupled upper and lower solutions of
(21.6) if C̃ � Ĉ and if they satisfy the inequalities

∂t C̃i − diΔC̃i � Φi

(
C̃i ,

[
C̃

]
ai

,
[
Ĉ

]
bi

)
in ΩT (21.11a)

∂t Ĉi − diΔĈi � Φi

(
Ĉi ,

[
Ĉ

]
ai

,
[
C̃

]
bi

)
in ΩT (21.11b)

∂nC̃i � Gi

(
·, C̃i ,

[
C̃

]
αi

,
[
Ĉ

]
ρi

)
on ∂ΩT (21.11c)

∂nĈi � Gi

(
·, Ĉi ,

[
Ĉ

]
αi

,
[
C̃

]
ρi

)
on ∂ΩT (21.11d)

C̃i (x, 0) � Ci,0 (x) � Ĉi (x, 0) in Ω (21.11e)

for i = 1, 2, 3.

The differential inequalities (21.11a) and (21.11b) can be written explicitly as

∂t C̃1 − d1ΔC̃1 � −βC̃1 · Ĉ2 (21.12a)

∂t C̃2 − d2ΔC̃2 � −βĈ1 · C̃2 (21.12b)

∂t C̃3 − d3ΔC̃3 � βC̃1 · C̃2 − λC̃3 + γ
(
C̃1 − Oxth

)
(21.12c)

∂t Ĉ1 − d1ΔĈ1 � −βĈ1 · C̃2 (21.12d)

∂t Ĉ2 − d2ΔĈ2 � −βC̃1 · Ĉ2 (21.12e)

∂t Ĉ3 − d3ΔĈ3 � βĈ1 · Ĉ2 − λĈ3 + γ
(
Ĉ1 − Oxth

)
(21.12f)

in ΩT and the boundary inequalities (21.11c) and (21.11d) as

∂nC̃1 � τ (x)CLDLψ(x) (21.13a)

∂nC̃2 � g
(
C̃3

)
ψ(x) (21.13b)

∂nC̃3 � 0 (21.13c)
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∂nĈ1 � τ (x)CLDLψ(x) (21.13d)

∂nĈ2 � g
(
Ĉ3

)
ψ(x) (21.13e)

∂nĈ3 � 0 (21.13f)

on ∂ΩT .
For a given pair of coupled upper and lower solutions C̃, Ĉ, the sector

〈
Ĉ, C̃

〉
is

defined by the functional interval

〈
Ĉ, C̃

〉 ≡ {
C ∈ C

(
ΩT

) : Ĉ � C � C̃
}

(21.14)

where the inequalities between vectors should be interpreted in the componentwise
sense.

The reaction function Φ and the boundary function G are continuous in ΩT ×〈
Ĉ, C̃

〉
and in ∂ΩT × 〈

Ĉ, C̃
〉
, respectively, and continuously differentiable in

(
R

+)3

with respect to C. Therefore, they satisfy the Lipschitz condition,

∣∣Φi (C) − Φi
(
C′)∣∣ � Ri

∣∣C − C′∣∣ , for C, C′ ∈ 〈
Ĉ, C̃

〉

∣∣Gi (·, C) − Gi
(·, C′)∣∣ � Ri

∣∣C − C′∣∣ , for C, C′ ∈ 〈
Ĉ, C̃

〉 (21.15)

where Ĉi � C ′
i � Ci � C̃i and the Lipschitz constant, Ri , are given by

Ri = sup

{∣∣
∣∣
∂Φi

∂Ci

∣∣
∣∣ : Ĉi � Ci � C̃i ,

}
, for i = 1, 2, 3. (21.16)

Consequently the one-sided Lipschitz conditions

Φi
(
Ci , [C]ai , [C]bi

) − Φi
(
C ′
i , [C]ai , [C]bi

)
� −Ri

(
Ci − C ′

i

)

Gi
(·,Ci , [C]αi

, [C]ρi

) − Gi
(·,C ′

i , [C]αi
, [C]ρi

)
� −Ri

(
Ci − C ′

i

) (21.17)

are also satisfied.

Below, we describe the construction of monotone sequences by an iterative
process, choosing as initial iterations

C
(0) = (

C̃1, C̃2, C̃3
)

and C(0) = (
Ĉ1, Ĉ2, Ĉ3

)
. (21.18)

The upper and lower sequences

{
C

(k)
}

=
{
C

(k)
1 ,C

(k)
2 ,C

(k)
3

}
and

{
C(k)

} =
{
C (k)

1 ,C (k)
2 ,C (k)

3

}
(21.19)
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are obtained through the following iterative process

∂tC
(k)
i − diΔC

(k)
i + RiC

(k)
i = RiC

(k−1)
i + Φi

(
C

(k−1)
i ,

[
C(k−1)

]

ai
,
[
C(k−1)

]

bi

)
in ΩT

(21.20a)

∂tC
(k)
i − diΔC(k)

i + RiC
(k)
i = RiC

(k−1)
i + Φi

(
C(k−1)
i ,

[
C(k−1)

]

ai
,
[
C(k−1)

]

bi

)
in ΩT

(21.20b)

and

∂nC
(k)
i + RiC

(k)
i = RiC

(k−1)
i + Gi

(
·,C (k−1)

i ,
[
C

(k−1)
]

αi

,
[
C(k−1)

]
ρi

)
on ∂ΩT

(21.21a)

∂nC
(k)
i + RiC

(k)
i = RiC

(k−1)
i + Gi

(
·,C (k−1)

i ,
[
C(k−1)

]
αi

,
[
C

(k−1)
]

ρi

)
on ∂ΩT

(21.21b)

with initial conditions

C
(k)
i (x, 0) = Ci,0 (x) = C (k)

i (x, 0) in Ω (21.22)

for k = 1, 2, ... and i = 1, 2, 3. Here, Ri (with i = 1, 2, 3) are the Lipschitz constants
defined in (21.16) and in this case they are given by

R1 = sup
Ĉ2�C2�C̃2

{βC2} ,

R2 = sup
Ĉ1�C1�C̃1

{βC1} ,

R3 = λ.

Since for each k, (21.20)–(21.22) are uncoupled scalar linear problems (which
have a unique solution in ΩT ) and by the properties of Φi and Gi , the sequences{

C
(k)

}
and

{
C(k)

}
are well defined (for the proof see [15] pp. 58, 493). The following

lemma gives the monotone property of these sequences.

Lemma 21.1 The upper and the lower sequences
{

C
(k)

}
,
{
C(k)

}
given by the iter-

ative process (21.20)–(21.22), with C
(0) = C̃ and C(0) = Ĉ, possess the monotone

property

Ĉ � C(k) � C(k+1) � C
(k+1) � C

(k) � C̃ in ΩT (21.23)

for every k.
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Proof Let U(0) = C
(0) − C

(1) = C̃ − C
(1)
. By the property of upper solutions

(21.11a) and (21.11c), and using the sequences (21.20), we have

∂tU
(0)
i − diΔU (0)

i + RiU
(0)
i = ∂t C̃i − diΔC̃i − Φi

(
C̃i ,

[
C̃

]
ai

,
[
Ĉ

]
bi

)
� 0 in ΩT

∂nŨ
(0)
i + RiU

(0)
i = ∂nC̃i − Gi

(
·, C̃i ,

[
C̃

]
αi

,
[
Ĉ

]
ρi

)
� 0 on ∂ΩT

for i = 1, 2, 3.
From the initial conditions (21.11e), we obtain

U (0)
i (x, 0) = C̃i (x, 0) − Ci,0 (x) � 0.

By the maximum principle [15, 16], U (0)
i � 0 or equivalently

C
(1) � C

(0)
.

Similarly, using the property of lower solutions (21.11b) and (21.11d), and by the
sequences (21.21), we have

C(1) � C(0).

Now, letU(1) = C
(1) − C(1), then, by the sequences (21.20)–(21.21), the one-sided

Lipschitz condition (21.17) and the monotone property of Φi and Gi , we have

∂tU
(1)
i − diΔU (1)

i + RiU
(1)
i = Ri

(
C

(0)
i − C (0)

i

)
+

+
[
Φi

(
C

(0)
i ,

[
C

(0)
]

ai
,
[
C(0)

]
bi

)
− Φi

(
C (0)

i ,
[
C(0)

]
ai

,
[
C

(0)
]

bi

)]
� 0 in ΩT

and

∂nU
(1)
i + RiU

(1)
i = Ri

(
C

(0)
i − C (0)

i

)
+

+
[
Gi

(
C

(0)
i ,

[
C

(0)
]

αi

,
[
C(0)

]
ρi

)
− Gi

(
C (0)

i ,
[
C(0)

]
αi

,
[
C

(0)
]

ρi

)]
� 0 on ∂ΩT

for i = 1, 2, 3.
It follows from the initial conditions U (1)

i (x, 0) = 0 that U (1)
i > 0 for each i =

1, 2, 3. This shows that

C(0) � C(1) � C
(1) � C

(0)
in ΩT . (21.24)

For a fixed k ∈ N, the function U (k+1)
i = C

(k)
i − C

(k+1)
i satisfies the relations
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∂tU
(k)
i − diΔU (k)

i + RiU
(k)
i = Ri

(
C

(k−1)
i − C

(k)
i

)
+

+
[
Φi

(
C

(k−1)
i ,

[
C

(k−1)
]

ai
,
[
C(k−1)

]

bi

)
− Φi

(
C

(k)
i ,

[
C

(k)
]

ai
,
[
C(k)

]

bi

)]
� 0 in ΩT

∂nU
(k)
i + RiU

(k)
i = Ri

(
C

(k−1)
i − C

(k)
i

)
+

+
[
Gi

(
C

(k−1)
i ,

[
C

(k−1)
]

αi
,
[
C(k−1)

]

ρi

)
− Gi

(
C

(k)
i ,

[
C

(k)
]

αi
,
[
C(k)

]

ρi

)]
� 0 on ∂ΩT

for i = 1, 2, 3. These relations and U (k)
i (x, 0) = 0 ensure that C

(k+1) � C
(k)
.

A similar argument yields C(k+1) � C(k) and C
(k+1) � C(k).

By induction, we prove that the sequence
{

C
(k)

}
is monotone nonincreasing and

{
C(k)

}
is monotone nondecreasing. And so, the monotone property

Ĉ � C(k) � C(k+1) � C
(k+1) � C

(k) � C̃ in ΩT

follows, for every k = 0, 1, 2, . . ..

21.3.4 Existence of Upper and Lower Solutions

The main condition for the existence of a unique solution to problem (21.6) is the
existence of a pair of coupled upper and lower solutions when the reaction function
Φi and the boundary function Gi are quasimonotone.

Since

Φ1
(
0, [0]ai , [C]bi

) = 0
Φ2

(
0, [0]ai , [C]bi

) = 0
Φ3

(
0, [0]ai , [C]bi

) = 0
(21.25)

the function Φi satisfies the additional condition

Φi
(
0, [0]ai , [C]bi

)
� 0 when [C]bi � 0, (21.26)

for i = 1, 2, 3, where [C] � 0 stands for C � 0.

Remark 21.1 The last equality in (21.25) becomes true due to the relation C1 �
Oxth , considered as an assumption in order to have an inflammatory process. So, if
C1 = 0 then Oxth also vanishes.
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SinceG1 is linear and nonnegative,G3 = 0 andG2
(
0, [0]ai , [C]bi

) = 0, each bound-
ary function Gi satisfies the condition

Gi
(·, 0, [0]αi

, [C]ρi

)
� 0 when [C]ρi

� 0 (21.27)

for i = 1, 2, 3.
From (21.26) and (21.27), we conclude that the trivial function C = 0 is a lower

solution.
Any positive function C̃ = (

C̃1, C̃2, C̃3
)
satisfying

∂t C̃i − diΔC̃i � Φi

(
C̃i ,

[
C̃

]
ai

, [0]bi
)

in ΩT

∂nC̃i � Gi

(
·, C̃i ,

[
C̃

]
αi

, [0]ρi

)
on ∂ΩT

C̃i (x, 0) � Ci,0 (x) in Ω

(21.28)

for i = 1, 2, 3, also satisfies the upper and lower inequalities (21.11). Therefore, the
requirement of an upper solution is reduced to

∂t C̃1 − d1ΔC̃1 � 0 in ΩT

∂t C̃2 − d2ΔC̃2 � 0 in ΩT

∂t C̃3 − d3ΔC̃3 � βC̃1 · C̃2 − λC̃3 + γ
(
C̃1 − Oxth

)
in ΩT

∂nC̃1 � τ (x)CLDLψ(x) on ∂ΩT

∂nC̃2 � g
(
C̃3

)
ψ(x) on ∂ΩT

∂nC̃3 � 0 on ∂ΩT

C̃i (x, 0) � Ci,0

in Ω for i = 1, 2, 3.

(21.29)

21.3.5 Existence-comparison Theorem

By the monotone property (21.23), the pointwise and componentwise limits

lim
k→∞ C

(k)
(x, t) = C (x, t) , lim

k→∞ C(k) (x, t) = C (x, t)

exist and satisfy the relation

Ĉ � C � C � C̃ in ΩT . (21.30)

Due to the quasimonotone property of Φi and Gi , the one-sided Lipschitz con-
dition (21.17), the Lipschitz condition (21.15) and the monotone property relation
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(21.23) we can conclude, by applying the existence-comparison theorem for par-

abolic problems proved in [15] (pp. 494), that the limits of
{

C
(k)

}
and

{
C(k)

}
coincide

and yield to a unique solution of problem (21.6).
These conclusions can be summarized in the following result.

Theorem 21.1 Let C̃ = (
C̃1, C̃2, C̃3

)
and Ĉ = (

Ĉ1, Ĉ2, Ĉ3
)
be a pair of nonnegative cou-

pled upper and lower solutions of (21.6) and let Φ = (Φ1, Φ2, Φ3) and G =
(G1,G2,G3) be quasimonotone functions satisfying the global Lipschitz condition
(21.15). Then, the upper and lower sequences

{
C

(k)
}
,
{
C(k)

}
given by (21.20)–(21.22),

converge monotonically to a unique solution C = (C1,C2, C3) with
(
Ĉ1, Ĉ2, Ĉ3

)
� (C1,C2, C3) �

(
C̃1, C̃2, C̃3

)
in ΩT . (21.31)

The existence-comparison theorem can directly be applied to the 3D case, impos-
ing similar conditions.

21.3.6 The Case of Linear Boundary Conditions

In the literature it has also been suggested to describe atherosclerosis using mathe-
matical models with linear boundary conditions [7, 11]. In the case of homogeneous
Neumann boundary conditions, suchmodels can be seen as simplified versions of the
parabolic problemwith nonlinear boundary conditions (21.6), presented in Sect. 21.2.

The mathematical model of the atherosclerosis inflammatory process, under
homogeneous Neumann boundary conditions, can be described as follows

∂tCi − diΔCi = Fi in ΩT

∂nCi = 0 on ∂ΩT

Ci (x, 0) = Ci,0 (x) in Ω

(21.32)

for i = 1, 2, 3, where the reaction functions (F1, F2, F3) are defined as

F1 (x,C1,C2) = −βC1 · C2 + τ (x)CLDL , (21.33a)

F2 (C1,C2,C3) = −βC1 · C2 + g (C3) , (21.33b)

F3 (C1,C2,C3) = βC1 · C2 − λC3 + γ
(
C1 − Oxth

)
, . (21.33c)

If the term τ(x)CLDL in the function F1 is defined only on the boundary Γ end
T =

Γend × (0, T ], we have

∂tC1 − d1ΔC1 = −βC1 · C2 in ΩT

∂nC1 = τ(x)CLDL on Γ end
T

∂nC1 = 0 on ∂ΩT \ Γ end
T

C1 (x, 0) = C1,0 (x) in Ω

(21.34)
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Problem (21.34) with C2 and C3 defined as in (21.32) leads to a 2D model, with
linear Neumann boundary conditions.

The existence, uniqueness and boundedness of global solutions of these problems
can be proved by the monotone iterative method following the same reasoning as
in the one dimensional case presented in [14], since the boundary conditions are
independent of Ci and the function F = (F1, F2, F3) is quasimonotone.

21.4 Numerical Simulations

Numerical simulations are an important tool to better understand the atherosclerosis
mechanism and to improve the mathematical models. In this section we present
numerical results concerning the concentrations of oxidized low density lipoproteins,
macrophages and signal path between cells inside the intima. To represent the intima,
we consider a rectangle (0, L) × (0, h), with length L = 0.5 cm and height h =
0.167 cm and the following physical and biological parameters, taken from [1]:

dox = dS = 102 × dM = 10−3 cm/s
λ = 10 s−1

β = 1 cm/ (g · s)
γ = 1 s−1

The model (21.1a)–(21.1g) presented in Sect. 21.2 assumes that atherosclerosis
starts with the penetration of LDL into the intima, through the endothelial cells,
where they are oxidized (oxLDL). Choosing a region of LDL penetration, Γ p

end , we
can define the permeability function τ as a smooth step function that is equal to one
in Γ

p
end and zero otherwise. We consider that CLDL = 0.1g/cm3 is a given quantity

of LDL that enters in the region where τ(x) = 1. Figure21.3 shows the evolution in
time of oxLDL concentration in the intima.

As we expected, in the region Γ
p
end , the concentration of Ox is higher and will

spread out in time across the domain.
The model also considers that if the concentration of oxLDL (Ox) exceeds a

threshold Oxth , an inflammatory reaction will set up promoting the recruitment of
monocytes, whichwill transform in activemacrophages (M) to phagocyte the danger-
ous product, oxLDL. In Fig. 21.4we can observe how themacrophages concentration
depends on the concentration of oxLDL. Moreover, we can also observe the effect
of diffusion over time.

The recruitment of monocytes depends on a general pro-inflammatory signal (S)
which acts through the function g. The time evolution of signal concentration in the
intima is presented in Fig. 21.5.
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Fig. 21.3 The concentration of oxLDL in the intima for time values T = 1, 10, 50 and 100 s
(respectively, fist, second, third and last image starting from the top). Defining a region of LDL
penetration, Γ p

end , the concentration of Ox will spread out in time through all the domain

Fig. 21.4 The concentration of macrophages in the intima for time values T = 30, 50 and 100 s
(respectively, fist, second, and last image starting from the top). A high concentration of Ox in the
Γ

p
end leads to an high value of M in the same region

Comparing the results of Figs. 21.3 and 21.5 we can notice a strong relation
between the oxLDL and the signal near the endothelium, as well as the diffusion
effect over time in all the domain.
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Fig. 21.5 The concentration of cytokines in the intima for time value T = 30, 50 and 100 s (respec-
tively, fist, second and last image starting from the top). An elevated value of Ox in the Γ

p
end

contributes to high concentration of S in the same region

21.5 Conclusions

In this work, we presented the existence, uniqueness and boundedness of solutions
for an atherosclerosis mathematical model, which describes how the variations in
the concentration of oxLDL, macrophages and cytokines in the intima can lead to
an inflammatory disease.

The model consists of a system of three reaction-diffusion equations with non-
linear Neumann boundary conditions, defined in a two-dimensional domain, repre-
senting the intima.

Since the reaction and the boundary functions are quasimonotone, we could define
a pair of upper and lower solutions and use an iterative process to construct monotone
sequences. The smoothness of the reaction and boundary functions andmonotonicity
arguments have been used to prove the existence, uniqueness and boundedness of
global solutions in 2D. However, the existence-comparison theorem can directly be
applied to the 3D case, without any additional condition.

Numerical simulations have been performed to better understand the atheroscle-
rosis mechanism described by the model.
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Chapter 22
Regularity for the Solution of a Stochastic
Partial Differential Equation
with the Fractional Laplacian

Satoshi Yokoyama

Abstract We study the regularity properties for the mild solution of a stochastic
partial differential equation in Rd with the fractional Laplacian −(−Δ)

γ
2 under the

condition where its solution exists uniquely as a function valued process. To show its
regularity, we estimate the fundamental solution and use the Kolmogorov-Centsov
theorem. Due to the unboundedness of the domain, we need to check the behavior
of the fundamental solution for sufficiently large |x|, x ∈ Rd .

Keywords Stochastic partial differential equations · Mild solutions · Regularity ·
Fractional Laplacian

22.1 Introduction

Stochastic partial differential equations (SPDEs) appear in many fields such as
physics, biology and economy. For example, in the field of fluid dynamics, Navier-
Stokes and Euler equations with random forces such as an additive or amultiplicative
colored noise have been studied. In this paper, we consider the solution u = u(t, x)
of the initial value problem of the following stochastic partial differential equation
(22.1):

∂u

∂t
= −(−Δ)

γ
2 u + R(t, u(t, x)) + F(t, u(t, x))ẇ(t, x), (t, x) ∈ R+ × Rd,

(22.1)
where −(−Δ)

γ
2 is the fractional Laplacian which will be defined later in Sect. 22.2

and ẇ(t, x) is a two-parameter white noise defined on a probability space (Ω,F ,P).
We assume that bothR andF are boundedLipschitz continuous functions onR+ × R.
In the case γ = 2m, m ∈ N, 2m > d, it is known that a unique solution exists. Un-
less 2m > d, its solution does not live in a function space, see also Funaki [6] or
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Kotelenez [9] for the details. It is known that u is a random field which has a contin-
uous modification. Concerning the spatial variable x, it is known that its α-th differ-
ential Dα

x u(t, ·) = ∂|α|
∂

α1
x1 ...∂

αd
xd

u(t, ·), where α = (α1, . . . ,αd) ∈ (N+)d , N+ = N ∪ {0},
|α| = α1 + · · · + αd , belongs toDα

x u(t, ·) ∈ ⋂
ε>0 C

2m−d−2|α|
2 −ε(Rd), a.s. The regular-

ity of the solution of SPDEs has been discussed by many authors. In the case α = 2
with Neumann boundary condition, the regularity of the unique solution is discussed
by Walsh [13]. Funaki [6] considers the case of whole region in Rd and shows that
the solution exists uniquely and its spacial regularity. Peszat and Szymon [12] studies
SPDEs in a bounded domain inRd and [9] discusses SPDEs in an unbounded domain
with a pseudo-differential operator with symbol of order γ, γ > d.

In addition, Debbi and Dozzi [3] and Niu and Xie [11] study SPDEs in one dimen-
sion with a certain fractional operator which is different from our paper. Burgers’
equation with a fractional Laplacian is studied by Biler, Funaki and Woyczynski
[1]. Furthermore, Chang and Lee [2] study the existence and uniqueness of the so-
lution of SPDEs in the sense of generalized solutions in L2(Rd) with the fractional
Laplacian (−Δ)

γ
2 with γ ∈ (0, 2) and investigate the regularity of the solution by

using the Sobolev space theory. As discussed in [6], for the second order SPDEs
with the space-time white noise to be well-posed, the space dimension d must be
equal to 1. In the case of d � 2, the solution is no longer a function and exists in
only distribution sense. These facts are related to the condition 2m > d (m = 1 in the
second order). On the other hand, if we consider higher order differential operators,
the associated solution has better regularity. In this paper, we define the solution of
(22.1) as the mild solution which lives in a class of L2

ρ(R
d), which will be stated

in Sect. 22.2, then discuss the regularity of the solution with respect to the spatial
variable and the relationship between the regularity of the solution of the case 2m-th
order and that of the fractional order. To find the function spaces where the solution
lives, we investigate the differentiability for the associate fundamental solution and
apply Kolmogorov-Centsov theorem for our solution (see also Appendix). Recently,
Hairer [7] established an innovative method for the solutions of SPDEs such as KPZ
equation by using the framework of so called the regularity structure. His method
brings us to another concept for solutions to the equation of the second order dif-
ferential operator with space-time white noise in higher space dimension. The paper
is organized as follows: In Sect. 22.2, we formulate our problem and state our main
result. In Sect. 22.3, we give the proof of the main result.

22.2 Formulation of Our Problem

22.2.1 Notations

Let us denote by S = S (Rd) a family of Schwartz’s rapidly decreasing functions
on Rd . Set
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û(ξ) =
∫

Rd

e−√−1x·ξu(x)dx, u ∈ S . (22.2)

We define the fractional Laplacian −(−Δ)
γ
2 as

−(−Δ)
γ
2 u(x) = 1

(2π)d

∫

Rd

e
√−1x·ξ(−|ξ|γ)û(ξ)dξ. (22.3)

Note that if γ = 2, the above definition coincides with the usual Laplacian. Further-
more, set

G(t, r, q) = 1

(2π)d

∫

Rd

e
√−1(r−q)·ξg(t, ξ)dξ, t > 0, r, q ∈ Rd, (22.4)

where

g(t, ξ) = e−t|ξ|γ , γ > d, (22.5)

and
√−1 is i with i2 = −1 and a · b, (resp. |a|), a, b ∈ Rd denotes the inner product

onRd (resp. the Euclidean norm onRd). Note that if γ = 2,G(t, r, q) is the Gaussian
kernel. To use later, we set λ(x) = (1 + |x|2) 1

2 , x ∈ Rd and

L2
ρ(R

d) =
{
u : Rd → R

∣∣∣ |u|2ρ :=
∫

Rd

|u(x)|2λ−ρ(x)dx < ∞
}
, ρ � 0.

(22.6)

22.2.2 Definition of Solutions

Here, we formulate the solution of (22.1). We denote by X(Rd) the family of
Ft-adapted stochastic processes Xt ≡ {X(t, x), x ∈ Rd} defined on some proba-
bility space (Ω,F ,P) on which the Ft-cylindrical Brownian motion on L2(Rd)

w = {wt(ψ), t � 0, ψ ∈ L2(Rd)} with its covariance operator Q = Id(=identity op-
erator) is defined and the map (t,ω) �→ X(t, ·,ω) ∈ L2

ρ(R
d) is measurable. We say

X ∈ XT (L2
ρ(R

d)) if X belongs to X(Rd) and satisfies

sup0�t�T E
[
|X(t)|2ρ

]
< ∞. (22.7)

Definition 22.2.1 We say u is a solution of (22.1) with an initial value u0 with
|u0|ρ < ∞ if
(s.1) u ∈ XT (L2

ρ(R
d)) for some T > 0 and ρ > d.

(s.2)For almost every t ∈ (0,T ] and x ∈ Rd ,
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u(t, x) =
∫

Rd

G(t, x, q)u0(q)dq +
∫ t

0

∫

Rd

G(t − s, x, q)R(s, u(s, q))dsdq, (22.8)

+
∫ t

0

∫

Rd

G(t − s, x, q)F(s, u(s, q))w(dsdq),

≡ S1(t, x) + S2(t, x) + S3(t, x), a.s.,

holds.

22.2.3 Existence and Uniqueness of Solutions of (22.1)

The solutions defined in Definition 22.2.1 are usually called mild solutions. It is
known that the generalized solution, namely, as the definition by the duality with test
functions, is equivalent to the mild solution. We assume

γ > d. (22.9)

Concerning G(t, r, q), the following proposition holds:

Proposition 22.2.1 There exist a Borel measurable function P(r) on Rd and ρ > d
such that the following three inequalities

|G(t, r, q)| � t−
d
γ P((q − r)t−

1
γ ), t > 0, (22.10)

∫

Rd

P(r)λρ(r)dr < ∞, (22.11)

sup
0�s<t�T

sup
r∈Rd

P(r(t − s)−
1
γ )λ2ρ(r) < ∞, T > 0, (22.12)

hold. In particular, ρ can be chosen as d < ρ <
γ+3d
4 (<

γ+d
2 ).

Proof Concerning (22.10), from change of variables, we have

|G(t, r, q)| = (
1

2π
)dt−

d
γ

∣∣∣
∫

Rd

e
√−1(r−q)t−

1
γ ·ξe−|ξ|γdξ

∣∣∣. (22.13)

Thus if we set

P(r) = (
1

2π
)d

∣∣
∣
∫

Rd

e
√−1r·ξe−|ξ|γdξ

∣∣
∣, (22.14)

(22.10) holds indeed as an equality.
Next wewill show (22.11). Clearly,P(r) and λρ(r) are continuous in r. SinceP(r)

andλρ(r) are bounded in |r| � 1, it suffices to check the integral over |r| � 1 satisfies
the estimate like (22.11). As will be shown later in the proof the Theorem 22.3.1,
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there exists a constant c > 0 such that |P(r)| � c|r|−k , |r| � 1 holds for k < γ + d
and k can be chosen as k = γ + d − ε0 for arbitrarily small ε0 > 0 (see (22.53) with
|α| = 0). Using λρ(r) � (

√
2|r|)ρ, we have

|
∫

|r|�1
P(r)λρ(r)dr| � 2

ρ
2 c

∫

|r|�1
|r|ρ−kdr, (22.15)

which is finite if ρ < k − d, that is, ρ < γ − ε0. Let us set ε0 = γ−d
2 , which is positive

by (22.9), then it follows that ρ should satisfy ρ <
γ+d
2 . From this and using (22.9)

again, we can find ρ satisfying

d < ρ <
γ + d

2
. (22.16)

Thus, (22.11) holds for such ρ.
Concerning (22.12), we only need to see |r| � 1 since P(r(t − s)−

1
γ ) and λρ(r)

are bounded in |r| � 1 for each 0 � s < t � T . For |r| � 1, by similar argument, we
obtain P(r(t − s)−

1
γ ) � c|r(t − s)−

1
γ |−k for k < γ + d, where c is some constant.

Recall k = γ + d − ε0 and ε0 = γ−d
2 , namely, k = γ+3d

2 . Using λρ(r) � (
√
2|r|)ρ

again, we have

P(r(t − s)−
1
γ )λ2ρ(r) � cT

γ+3d
2γ |r|2ρ−(

γ+3d
2 ), |r| � 1. (22.17)

Choose ρ as

d < ρ � γ + 3d

4
. (22.18)

Indeed, this set is not empty due to (22.9) and 2ρ − (
γ+3d
2 ) � 0 holds for such ρ.

Thus, (22.12) holds and (22.11) also holds for ρ satisfying (22.18). The proof is
complete.

Combined Proposition 22.2.1 with Theorem 3.1 in [9], we have the unique exis-
tence of solutions of (22.1), that is,

Theorem 22.2.2 Let

γ > d. (22.19)

Suppose that there exists some ρ with d < ρ <
γ+d
2 such that (22.10), (22.11) and

(22.12) are satisfied and that for each T > 0, there exist K0 and K > 0 such that

|R(t, 0)| + |F(t, 0)| � K0, ∀t ∈ [0,T ], (22.20)

|F(t, x) − F(t, y)| + |R(t, x) − R(t, y)| � K|x − y|, ∀t ∈ [0,T ], x, y ∈ R.

(22.21)
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Then, there exists a unique solution u ∈ XT (L2
ρ(R

d)) with the initial value u0 satis-
fying |u0|ρ < ∞.

Remark 22.2.1 In the above theorem, even when F is constant, it is essential to
introduce the weighted L2-space, that is, L2

ρ(R
d) as the state space. On the other

hand, it is not necessary to introduce such function space in the setting of [8].

22.3 Regularity of the Solution

In this section, we will study the regularity with respect to the spatial variable x ∈ Rd

of the solution u(t, x) of (22.1). We assume that F and R are bounded in addition
to (22.19)–(22.21). By Theorem 22.2.2, a unique solution u ∈ XT (L2

ρ(R
d)) exists.

Under these settings, we will show the following result:

Theorem 22.3.1 If γ /∈ 2N,

Dα
x u(t) ∈

⋂

ε>0

C
(

γ−2|α|−d
2 ∧(1− d

γ+|α|+d )

)
−ε

(Rd), |α| = [γ − d

2
], a.s., (22.22)

where α = (α1, . . . ,αd) ∈ (N+)d, |α| = α1 + · · · + αd, Dα
x = ∂|α|

∂
α1
x1 ...∂

αd
xd

and the no-

tation [a] represents the maximal integer which is not over a.

Proof First, we will study the regularity of the stochastic integral part S3(t, x) by
computing its 2m-th moment. In what follows, for simplicity, C denotes a positive
constantwhose valuemight change fromone formula to another. Concerning S3(t, x),
we have

E
[∣∣∣Dα

x (S3(t, x + h) − S3(t, x))
∣∣∣
2m]

(22.23)

= E
[∣∣∣

∫ t

0

∫

Rd

(
Dα

x G(t − s, x + h, q) − Dα
x G(t − s, x, q)

)
F(s, u(s, q))w(dsdq)

∣∣∣
2m]

� C
(
E

[∫ t

0

∫

Rd

(
Dα

x G(t − s, x + h, q) − Dα
x G(t − s, x, q)

)2
F(s, u(s, q))2dsdq

])m

� C
(∫ t

0

∫

Rd

(
Dα

x G(t − s, x + h, q) − Dα
x G(t − s, x, q)

)2
dsdq

)m
,

where we have used the Burkholder-Davis-Gundy’s inequality at the first inequality
and the boundedness of F at the last line. Since

Dα
x G(t − s, x, q) = 1

(2π)d

∫

Rd

e
√−1(x−q)·ξ√−1

|α|
ξαg(t − s, ξ)dξ, (22.24)
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for t > s > 0, x, q ∈ Rd , where ξ = (ξ1, . . . , ξd) and ξα = ξα1
1 . . . ξαd

d ,

∣∣∣Dα
x G(t − s, x + h, q) − Dα

x G(t − s, x, q)
∣∣∣ (22.25)

= C
∣∣∣
∫

Rd

(
e
√−1(x+h−q)·ξ − e

√−1(x−q)·ξ)ξαg(t − s, ξ)dξ
∣∣∣,

� C
∫

Rd

∣∣e
√−1h·ξ − 1

∣∣|ξ||α||g(t − s, ξ)|dξ,

= C(t − s)−
d+|α|

γ

∫

Rd

∣
∣e

√−1h(t−s)−
1
γ ·ξ − 1

∣
∣|ξ||α||g(t − s, (t − s)−

1
γ ξ)|dξ.

Using |e√−1x·ξ − 1| � C|x||ξ| and
∫

Rd

|ξ|1+|α||g(t − s, (t − s)−
1
γ ξ)|dξ is finite

since

g(t − s, (t − s)−
1
γ ξ) = e−|ξ|γ , (22.26)

we have
∣∣
∣Dα

x G(t − s, x + h, q) − Dα
x G(t − s, x, q)

∣∣
∣ � C(t − s)−

d+|α|+1
γ |h|. (22.27)

On the other hand, for every p ∈ [0, 1], we have
(∣∣Dα

x G(t − s, x + h, q)
∣∣ + ∣∣Dα

x G(t − s, x, q)
∣∣
)2(1−p)

(22.28)

= 1

(2π)2d(1−p)
(t − s)−

2(d+|α|)
γ (1−p)

(∣∣∣
∫

Rd

e
√−1(x+h−q)(t−s)−

1
γ ·ξξαe−|ξ|γdξ

∣∣∣

+
∣∣∣
∫

Rd

e
√−1(x−q)(t−s)−

1
γ ·ξξαe−|ξ|γdξ

∣∣∣
)2(1−p)

� C(t − s)−
2(d+|α|)

γ (1−p)
(∣∣∣

∫

Rd

e
√−1(x+h−q)(t−s)−

1
γ ·ξξαe−|ξ|γdξ

∣∣∣
2(1−p)

+
∣∣
∣
∫

Rd

e
√−1(x−q)(t−s)−

1
γ ·ξξαe−|ξ|γdξ

∣∣
∣
2(1−p))

,

where we have used (a + b)k � C(ak + bk), a, b � 0, k � 0 and (22.26). From
(22.27) and (22.28), we have
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∫ t

0

∫

Rd

(
Dα

x

(
G(t − s, x + h, q) − G(t − s, x, q)

))2
dsdq (22.29)

=
∫ t

0

∫

Rd

(
Dα

x

(
G(t − s, x + h, q) − G(t − s, x, q)

))2p

(
Dα

x

(
G(t − s, x + h, q) − G(t − s, x, q)

))2(1−p)
dsdq

� C|h|2p
∫ t

0
(t − s)−

d+|α|+1
γ 2p− 2(d+|α|)

γ (1−p)ds

×
∫

Rd

∣
∣∣
∫

Rd

e
√−1(x+h−q)(t−s)−

1
γ ·ξξαe−|ξ|γdξ

∣
∣∣
2(1−p)

+
∣∣∣
∫

Rd

e
√−1(x−q)(t−s)−

1
γ ·ξξαe−|ξ|γdξ

∣∣∣
2(1−p)

dq.

Furthermore, by change of variables (x + h − q)(t − s)−
1
γ = z and (x − q)(t −

s)−
1
γ = z, we obtain from (22.29),

∫ t

0

∫

Rd

(
Dα

x

(
G(t − s, x + h, q) − G(t − s, x, q)

))2
dsdq (22.30)

� Cp|h|2p
∫ t

0
(t − s)−

d+|α|+1
γ 2p− 2(d+|α|)

γ (1−p)+ d
γ ds

×
∫

Rd

∣∣∣
∫

Rd

e
√−1z·ξξαe−|ξ|γdξ

∣∣∣
2(1−p)

dz.

Set

φ(z) =
∣∣
∣
∫

Rd

e
√−1z·ξξαe−|ξ|γdξ

∣∣
∣. (22.31)

In particular, for each n ∈ N, j = 1, . . . , d and |z| � 1, we have

∣∣∣
∫

Rd

e
√−1z·ξξαe−|ξ|γdξ

∣∣∣ = 1

|zj|n
∣∣∣
∫

Rd

(Dn
ξj
e
√−1z·ξ)ξαe−|ξ|γdξ

∣∣∣, (22.32)

where Dn
ξj

= ∂n

∂ξnj
. Let us decompose φ into two parts as follows:

φ(z) =
∣∣∣
∫

Rd

e
√−1z·ξξαe−|ξ|γdξ

∣∣∣1{|z|<1} (22.33)

+ 1

|zj|n
∣∣∣
∫

Rd

(Dn
ξj
e
√−1z·ξ)ξαe−|ξ|γdξ

∣∣∣1{|z|�1} ≡ φ1(z) + φ2(z),
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for j = 1, . . . , d. We will check the integrability of the integral:

∫

Rd

|φ(z)|2(1−p)dz. (22.34)

To this end, since φ(z) is continuous and
∫
|z|<1 |φ1(z)|2(1−p)dz < ∞ holds for every

p ∈ [0, 1], let us check the behaviour of φ2(z) for large |z|. Note that in the case
of γ /∈ 2N and k > γ, Dk

ξj
e−|ξ|γ diverges as |ξ| tends to 0. Note also that for any

k ∈ N ∪ {0}, there is no diverging terms in Dk
ξj
e−|ξ|γ in a neighborhood of ξ = 0.

Indeed, no terms of ξ with negative exponent appear. When γ /∈ 2N,

∫

Rd

|Dk
ξj
(ξαe−|ξ|γ )|dξ < ∞, k ∈ N ∪ {0}, (22.35)

holds if k satisfies k < γ + |α| + d. To see this, it suffices to check the behavior of the
integrand of (22.35) near ξ = 0. Indeed, using the polar coordinate (r, θ1, . . . , θd−1)

of (ξ1, . . . , ξd) with ξ1 = r cos θ1, ξi = r
(∏i−1

j=1 sin θj
)
cos θi, i = 2, . . . , d − 1, ξd =

r
∏d−1

j=1 sin θj and noting that its Jacobian is given by rd−1g(θ1, . . . , θd), where
g(θ1, . . . , θd) is some bounded function, the condition of k for which (22.35) holds
is obtained by direct computation.

Let us assume
∫

Rd

∣∣∣Dk
ξj
(ξαe−|ξ|γ )

∣∣∣dξ < ∞, (22.36)

for some k ∈ N+. Then,
∫

Rd

Dξj e
√−1z·ξDk

ξj
(ξαe−|ξ|γ )dξ (22.37)

= lim
e→0
N→∞

∫

Rd

Dξj e
√−1z·ξDk

ξj
(ξαe−|ξ|γ )1[−N,−ε]∪[ε,N](ξj)1Bj

ε,N
(ξ̃)dξ

= lim
ε→0
N→∞

∫

Rd−1
e
√−1z̃·ξ̃1Bj

ε,N
(ξ̃)dξ̃

×
∫

R
(Dξj e

√−1zjξj )Dk
ξj
(ξαe−|ξ|γ )1[−N,−ε]∪[ε,N](ξj)dξj

= lim
ε→0
N→∞

∫

Rd−1
e
√−1z̃·ξ̃

[
e
√−1zjξjDk

ξj

(
ξαe−|ξ|γ )

]ξj=−ε

ξj=−N
1Bj

ε,N
(ξ̃)dξ̃

+
∫

Rd−1
e
√−1z̃·ξ̃

[
e
√−1zjξjDk

ξj

(
ξαe−|ξ|γ )

]ξj=N

ξj=ε
1Bj

ε,N
(ξ̃)dξ̃

−
∫

Rd−1
e
√−1z̃·ξ̃

(∫

R
e
√−1zjξjDk+1

ξj

(
ξαe−|ξ|γ )1[−N,−ε]∪[ε,N](ξj)dξj

)
1Bj

ε,N
(ξ̃)dξ̃,
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where z̃ = (z1, . . . , zj−1, zj+1, . . . , zd), ξ̃ = (ξ1, . . . , ξj−1, ξj+1, . . . , ξd) ∈ Rd−1,

1[a,b] is the indicator function on [a, b], [a(ξ)]ξj=N

ξj=ε
= a(ξ)

∣∣∣
ξj=N

−a(ξ)
∣∣∣
ξj=ε

andBj
ε,N =

{ξ̃ | ε � |ξ̃| � N}, |ξ̃| = (∑
1�i�d,

i �=j
ξ2i

) 1
2 . On the other hand, since

[
e
√−1zjξjDk

ξj

(
ξαe−|ξ|γ )

]ξj=N

ξj=ε
(22.38)

= 1

N − ε

∫

R

[
e
√−1zjξjDk

ξj

(
ξαe−|ξ|γ )

]ξj=N

ξj=ε
1[ε,N](ξj)dξj,

(22.37) is rewritten as

lim
ε→0
N→∞

[∫

Rd−1
e
√−1z̃·ξ̃ (22.39)

×
( 1

N − ε

∫

R

[
e
√−1zjξjDk

ξj

(
ξαe−|ξ|γ )

]ξj=−ε

ξj=−N
1[−N,−ε](ξj)dξj

)
1Bj

ε,N
(ξ̃)dξ̃

+
∫

Rd−1
e
√−1z̃·ξ̃

( 1

N − ε

∫

R

[
e
√−1zjξjDk

ξj

(
ξαe−|ξ|γ )

]ξj=N

ξj=ε
1[ε,N](ξj)dξj

)
1Bj

ε,N
(ξ̃)dξ̃

−
∫

Rd−1
e
√−1z̃·ξ̃

(∫

R
e
√−1zjξjDk+1

ξj

(
ξαe−|ξ|γ )1[−N,−ε]∪[ε,N](ξj)dξj

)
1Bj

ε,N
(ξ̃)dξ̃

]

≡ lim
ε→0
N→∞

( 1

N − ε
(I) + 1

N − ε
(II) + (III)

)
.

Suppose that k + 1 < γ + |α| + d holds. Then, (22.36) holds for k + 1. Concern-
ing (II), using the polar coordinate (r, θ1, . . . , θd−2) for ξ̃, it is easy to check
limN→∞(N − ε)−1(II) = 0. For sufficiently small r, we obtain that rγ+|α|−k+(d−2) is
the fastest divergent term in the terms contained in (II). From k + 1 < γ + |α| + d,
we get γ + |α| − k + (d − 2) > −1, which implies that rγ+|α|−k+(d−2) is inte-
grable near 0. So limε→0,N→∞(N − ε)−1(II) = 0 for z̃. Similarly, limε→0,N→∞(N −
ε)−1(I) = 0 for z̃.

Concerning (III), when k + 1 < γ + |α| + d, we obtain

lim
ε→0
N→∞

1

N − ε

∣
∣∣(III)

∣
∣∣ =

∣
∣∣
∫

Rd

e
√−1z·ξDk+1

ξj
(ξαe−|ξ|γ )dξ

∣
∣∣, (22.40)

for z. As a result, when k + 1 < γ + |α| + d, we have

∣∣∣
∫

Rd

Dξj e
√−1z·ξDk

ξj
(ξαe−|ξ|γ )dξ

∣∣∣ =
∣∣∣
∫

Rd

e
√−1z·ξDk+1

ξj
(ξαe−|ξ|γ )dξ

∣∣∣. (22.41)
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Suppose that an integer l satisfies l < γ + |α| + d and l + 1 � γ + |α| + d. By
proceeding similarly to the previous argument, for all m � l,

∣
∣∣
∫

Rd

Dm
ξj
e
√−1z·ξ(ξαe−|ξ|γ )dξ

∣
∣∣ =

∣
∣∣
∫

Rd

Dm−l
ξj

e
√−1z·ξDl

ξj
(ξαe−|ξ|γ )dξ

∣
∣∣. (22.42)

However, (22.42) does not hold for l + 1. Set

n =
{

γ + |α| + d − 1, γ ∈ 2N − 1,
[γ + |α| + d] , γ /∈ N.

(22.43)

Applying (22.42) with m = l = n to φ2(z), we have

φ2(z) = 1

|zj|n
∣∣∣
∫

Rd

e
√−1z·ξDn

ξj
(ξαe−|ξ|γ )dξ

∣∣∣. (22.44)

Since the integral of the right hand sideof (22.44) is finite,wehave
∫
|z|�1 φ2(z)2(1−p)dz

< ∞ if 2(1 − p)(−n) < −d.
Thus,

∫
Rd |φ(z)|2(1−p)dz < ∞ holds for p satisfying 2(1 − p)n > d, that is, p ∈(

0, 1 − d
2n

)
.

Although (22.44) does not hold for n + 1, we can obtain faster decay of φ2(z) as
|zj| → ∞. The definition of φ2 of (22.33) is written as

1

|zj|n+1

∣
∣∣
∫

Rd

(Dn+1
ξj

e
√−1z·ξ)ξαe−|ξ|γdξ

∣
∣∣1{|z|�1}. (22.45)

For the time being, we omit the notation 1{|z|�1} for simplicity. Then, (22.45) is
rewritten to

ψ(z) ≡ 1

|zj|n+1

∣∣∣
∫

Rd

(Dξj e
√−1z·ξ)Dn

ξj

(
ξαe−|ξ|γ )dξ

∣∣∣ (22.46)

= 1

|zj|n+1

∣∣∣
∫

Rd−1
e
√−1z̃·ξ̃

(∫

R
Dξj

(
e
√−1zjξj − 1

)
Dn

ξj

(
ξαe−|ξ|γ )dξj

)
dξ̃

∣∣∣

= 1

|zj|n+1
lim
ε→0
N→∞

∣∣∣
∫

Rd−1
e
√−1z̃·ξ̃

(∫

R
Dξj

(
e
√−1zjξj − 1

)
Dn

ξj

(
ξαe−|ξ|γ )

1[−N,−ε]∪[ε,N](ξj)dξj

)
1Bj

ε,N
(ξ̃)dξ̃

∣∣∣.

By integration by parts and recalling (22.38), we have
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ψ(z) = 1

|zj|n+1 lim
ε→0
N→∞

[∫

Rd−1
e
√−1z̃·ξ̃

×
( 1

N − ε

∫

R

[(
e
√−1zjξj − 1

)
Dn

ξj

(
ξαe−|ξ|γ )]ξj=−ε

ξj=−N
1[−N,−ε](ξj)dξj

)
1
Bjε,N

(ξ̃)dξ̃

+
∫

Rd−1
e
√−1z̃·ξ̃

×
( 1

N − ε

∫

R

[(
e
√−1zjξj − 1

)
Dn

ξj

(
ξαe−|ξ|γ )]ξj=N

ξj=ε
1[ε,N](ξj)dξj

)
1
Bjε,N

(ξ̃)dξ̃

−
∫

Rd−1
e
√−1z̃·ξ̃

×
(∫

R

(
e
√−1zjξj − 1

)
Dn+1

ξj

(
ξαe−|ξ|γ )

1[−N,−ε]∪[ε,N](ξj)dξj

)
1
Bjε,N

(ξ̃)dξ̃
]

≡ 1

|zj|n+1 lim
ε→0
N→∞

( 1

N − ε
(IV ) + 1

N − ε
(V ) + (V I)

)
.

Note thatn satisfies (22.43).Concerning (V ), by thepolar coordinate (r, θ1, . . . , θd−2)

for ξ̃, using |e√−1zjξj − 1| � C|zj||ξj| and similar argument done in (22.39), we have
limε→0,N→∞(N − ε)−1(IV ) = 0 and limε→0,N→∞(N − ε)−1(V ) = 0 for z̃. Con-
cerning (V I), if the function

(
e
√−1zjξj − 1

)
Dn+1

ξj

(
ξαe−|ξ|γ ) is integrable on Rd , we

have

lim
ε→0
N→∞

|(V I)| =
∣∣
∣
∫

Rd−1
e
√−1z̃·ξ̃

(∫

R

(
e
√−1zjξj − 1

)
Dn+1

ξj

(
ξαe−|ξ|γ )dξj

)
dξ̃

∣∣
∣. (22.47)

Using the polar coordinate (r, θ1, . . . , θd−1) and

|ezjξj − 1| � C|zj|δ|ξj|δ, δ ∈ [0, 1], (22.48)

for some constant C > 0, we obtain that the right hand side of (22.47) is bounded
from above by

C|zj|δ
∫ ∞

0
rγ+|α|−(n+1)+(d−1)+δe−rγ

dr h(θ1, . . . , θd−1), (22.49)

where h(θ1, . . . , θd−1) is some bounded function. If γ + |α| − n + (d − 1) + δ > 0,
the integral of (22.49) is finite. Thus, we need to choose δ ∈ [0, 1] satisfying

1 − (γ + |α| + d) + n < δ � 1. (22.50)
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As a result, for such δ, we have

ψ(z) = 1

|zj|n+1

∣∣∣
∫

Rd−1
e
√−1z̃·ξ̃

(∫

R

(
e
√−1zjξj − 1

)
Dn+1

ξj

(
ξαe−|ξ|γ )dξj

)
dξ̃

∣∣∣ (22.51)

� C

|zj|n+1−δ
.

Therefore, we set

δ = 1 − (γ + |α| + d) + n + ε0, (22.52)

for arbitrary small ε0 > 0 and n the integer defined as (22.43). As a result, we have

ψ(z) � C
|zj |γ+|α|+d−ε0

, |z| � 1. (22.53)

Consequently, we obtain better estimate:
∫
Rd |φ(z)|2(1−p)dz < ∞ holds for p sat-

isfying −2(1 − p)(γ + |α| + d − ε0) < −d, that is,

p ∈
(
0, 1 − d

2(γ + |α| + d − ε0)

)
. (22.54)

Thus, since ε0 is arbitrary, from (22.30) and (22.31), we have

∫ t

0

∫

Rd

(
Dα

x G(t − s, x + h, q) − Dα
x G(t − s, x, q)

)2
dsdq (22.55)

� C|h|2p
∫ t

0
(t − s)−

d+|α|+1
γ 2p− 2(d+|α|)

γ (1−p)+ d
γ ds,

for p ∈ (
0, 1 − d

2(γ+|α|+d)

]
. Furthermore, the integral of the right hand side of

(22.55) is finite if p ∈ (0, γ−2|α|−d
2 ). From (22.23) and (22.30), as a result, for all

p ∈
(
0, γ−2|α|−d

2 ∧ (1 − d
2(γ+|α|+d)

)
)
,

E
[∣∣∣Dα

x

(
S3(t, x + h) − S3(t, x)

)∣
∣∣
2m]

� C|h|2pm, (22.56)

holds for any m ∈ N, thus we have obtained the evaluate for S3(t, x).
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Next, we will compute the 2m-th moment of S2(t, x). Indeed, we have

E
[∣∣
∣Dα

x (S2(t, x + h) − S2(t, x))
∣∣
∣
2m]

(22.57)

� CE
[(∫ t

0

∫

Rd

∣∣∣Dα
x G(t − s, x + h, q) − Dα

x G(t − s, x, q)
∣∣∣dsdq

)2m]

� CE
[(∫ t

0
ds

∫

Rd

∣∣∣Dα
x

(
G(t − s, x + h, q) − G(t − s, x, q)

)∣∣∣
r

×
(∣∣∣Dα

x G(t − s, x + h, q)
∣∣∣ +

∣∣∣Dα
x G(t − s, x, q)

∣∣∣
)1−r

dq
)2m]

,

for r ∈ [0, 1]. By proceeding similarly to the estimate of S3, we obtain that the right
hand side of (22.57) is bounded from above by

C|h|2rm
( ∫ t

0
(t − s)−

d+|α|+1
γ r− (d+|α|)

γ (1−r)+ d
γ ds (22.58)

×
∫

Rd

∣∣∣
∫

Rd

e
√−1z·ξξαe−|ξ|γdξ

∣∣∣
(1−r)

dz
)2m

.

Recall thatφ(z) is defined as (22.33). Similarly to the argument for S3,
∫
Rd |φ(z)|1−rdz

< ∞ holds if −(1 − r)(γ + |α| + d − ε0) < −d. Noting that ε0 is arbitrarily small,
r should be

r ∈
(
0, 1 − d

γ + |α| + d

]
. (22.59)

On the other hand, if r ∈ (0, γ − |α|),
∫ t

0
(t − s)−

d+|α|+1
γ r− (d+|α|)

γ (1−r)+ d
γ ds < ∞. (22.60)

Clearly, (γ − |α|) > 1 − d
(γ+|α|+d)

. Therefore, we have

E
[∣∣∣Dα

x

(
S2(t, x + h) − S2(t, x)

)∣
∣∣
2m]

� Cp,m|h|2rm, (22.61)

for any m ∈ N and r ∈
(
0, 1 − d

γ+|α|+d

]
. Equations (22.56) and (22.61) hold for

each x, x + h ∈ Rd . Finally, S1(t, x) is clearly of C∞-class. As a result, the assertion
follows from Kolmogorov-Centsov theorem.

Remark 22.3.1 Our result implies better estimate than that shown in [9]. Indeed, [9]
shows

Dα
x u(t, ·) ∈

⋂

ε>0

C
(

γ−2|α|−d
2 ∧ 1

4

)
−ε

(Rd), |α| = [γ − d

2
], a.s., (22.62)
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Remark 22.3.2 In the case γ = 2m, m ∈ N, 2m > d with (22.1), we have

Dα
x u(t, ·) ∈

⋂

ε>0

C
2m−2|α|−d

2 −ε(Rd), |α| = [2m − d

2
], a.s.. (22.63)

This is obtained by changing slightly the proof of Theorem 22.3.1. Indeed, (22.35)
holds for any k ∈ N ∪ {0}. Thus, (22.42) holds for allm, l withm � l. By proceeding
similarly to the case of γ /∈ 2N, we can choose arbitrary integer n in (22.43) if γ ∈ 2N,
hence, we have

∫
Rd |φ(z)|2(1−p)dz < ∞ for all p ∈ (0, 1 − 1

2n ). It suffices to choose

n arbitrary large in such a way that γ−2|α|−d
2 < 1 − 1

2n holds, which leads to (22.63).

Remark 22.3.3 Funaki [6] shows

Dα
x u(t) ∈

⋂

ε>0

C
2m−2|α|−d

2 −ε(Rd), |α| = [2m − d

2
], a.s., (22.64)

by using the estimate of the fundamental solution q(t, x, y) of ∂t + A , where A is
a 2m-th order elliptic differential operator, namely,

| ∂j+α+β

∂tj∂xα∂yβ
q(t, x, y)| � t−

|α|+|β|
2m −j q̄(t, x, y),

for t ∈ (0,T ], x, y ∈ Rd , j ∈ Z+ and α, β ∈ Zd+, where

q̄(t, x, y) = K1t
− d

2m e−K2(
|x−y|2m

t )
1

2m−1
,

whereK1 andK2 are positive constants depending on T , j, α and β and they are taken
uniformly in (j,α,β) such that 0 � j, |α|, |β| � c, for any c ∈ Z+, see also [4] or
Chap.9 in [5]. In our case (γ /∈ 2N), the estimate for the fundamental solution of the
2m-th order parabolic type as above is not obvious, however, our result in the case
γ = 2m coincides with that of [6].

Finally, we consider more special case:

∂u

∂t
= −(−Δ)

γ
2 u + f (x)R(t, u(t, x)) + g(x)ẇ(t, x) (t, x) ∈ R+ × Rd, (22.65)

where f , g ∈ C∞
0 (Rd), where C∞

0 (Rd) is a family of functions whose support are
compact in Rd . In this case, we have

Corollary 22.3.2

Dα
x u(t) ∈

⋂

ε>0

C
γ−2|α|−d

2 −ε(Rd), |α| = [γ − d

2
], a.s. (22.66)
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Proof The solution u of (22.66) is given by

u(t, x) =
∫

Rd

G(t, x, q)u0(q)dq (22.67)

+
∫ t

0

∫

|q|�K
G(t − s, x, q)R(s, u(s, q))f (q)dsdq

+
∫ t

0

∫

|q|�K
G(t − s, x, q)g(q)w(dsdq), a.s.

In this case, it suffices to take the consideration of

∫

|x|�K
|ψ(x)|ldx, (22.68)

into account, for l = 2(1 − p) or 1 − r, where

ψ(x) =
∫

Rd

e
√−1z·ξξαe−|ξ|γdξ. (22.69)

Seeing (22.68), it follows that (22.55) and (22.58) hold for p, r ∈ [0, 1] by the
argument in the proof of Theorem 22.3.1. Thus the assertion is obtained.
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Appendix

For the convenience of the readers, we briefly recall the Kolmogorov-Centsov theo-
rem for random fields without its proof (see e.g. Theorem 1.4.4 in [10]).

Theorem 22.3.3 Let X(x, y), x ∈ D1, y ∈ D2 be a random field with values in a
Banach space B with its norm || · ||, where D1, D2 are domains in Rd1 and Rd2 ,
respectively. Suppose that there exist constants C, γ > 0 and α1 > d1, α2 > d2 such
that
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E
[
||(X(x′, y′) − X(x, y′)) − (X(x′, y) − X(x, y))||γ

]
� C|x − x′|α1 |y − y′|α2 ,

(22.70)

E
[
||X(x′, y) − X(x, y)||γ

]
� C|x − x′|α1 , (22.71)

E
[
||X(x, y′) − X(x, y)||γ

]
� C|y − y′|α2 (22.72)

hold for any x, x′ ∈ D1 and y, y′ ∈ D2. Then, X(x, y) has a continuous modifi-
cation Y(x, y), which is (β1,β2)-Hölder continuous for any β1 ∈ (0, α1−d1

γ
) and

β2 ∈ (0, α2−d2
γ

).
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