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Chapter 18
Effects of Nitrogen Load on Asian Trees

Tatsuro Nakaji and Takeshi Izuta

Abstract The effects of increasing nitrogen (N) load on Asian forest trees have been 
studied mainly in Japan and China during the past decade. In this chapter, we sum-
marize the expected mechanisms of the harmful effects of excessive N load on the 
eco-physiological function of trees, and introduce experimental studies on the growth 
responses and foliar nutrient status of young Asian tree seedlings to increasing N 
loads. By comparing the growth responses to various N loads in 12 tree species in 
Japan and China, we confirmed that: (1) the threshold of the N load that induced 
growth reduction was quite different among the species; (2) the threshold value 
ranged between 50 and 100 kg N ha−1 year−1 in relatively sensitive (low- tolerance) 
species. Furthermore, a significant relationship between foliar nutrient balance and 
growth indicated that (3) the threshold N/P ratio for growth reduction was slightly 
higher than that in European tree species, and (4) an Mn/Mg ratio of over 0.8 was 
observed, together with growth reduction, in the sensitive tree species.

Keywords Excessive N load • Growth response • Mn/Mg ratio • N/P ratio • Nutrient 
imbalance • Species difference • Tree

18.1  Nitrogen Saturation in Forest Ecosystems

Generally, nitrogen (N) is a limiting nutrient factor in many temperate forests 
(Ingestad and Kähr 1985; Crane and Banks 1992). In forest ecosystems where N 
limits primary production, because most of the N supplied by atmospheric deposi-
tion is absorbed and assimilated by microbes and plants, N output as nitrate (NO3

−) 
in stream water is lower than N input by atmospheric deposition (Stoddard 1994). 
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However, several researchers have observed relatively high N outputs in stream 
water, exceeding the N input, and they have suggested that the N status of some 
forests in Central Europe and North America is changing from ‘N-limited’ to 
‘N-saturated’ (Skeffington and Wilson 1988; Stoddard 1994; Fenn et al. 1996). In 
Europe, harmful effects of excessive N load have been expected with increasing 
N-dominated acid deposition (see Chap. 3). High nitrate deposition is a risk in forest 
ecosystems, since a high input of ammonium (NH4

+) to the soil induces soil acidifi-
cation and nutrient imbalance, and the risk of excessive ammonium load has also 
been been predicted in some forested areas (Nihlgård 1985).

18.2  Effects of Excessive N Load on Asian Trees

Several researchers have investigated the effects of increasing inputs of nitrate and 
ammonium on tree health to clarify these phenomena and their mechanisms (e.g. 
Wilson and Skeffington 1994b; Seith et al. 1996; Izuta and Nakaji 2003; Wang and Liu 
2014). Most of these studies dealt with young (few-years-old) tree seedlings, and the N 
effects on photosynthesis (Nakaji et al. 2002; Azuchi et al. 2004; Guo et al. 2014), 
growth (Nakaji et al. 2005; Izuta et al. 2005; Mao et al. 2014), mycorrhizal roots, and 
nutrient status (e.g. Wallenda and Kettle 1998; Seith et al. 1996; George et al. 1999; 
Sogn and Abrahamsen 1998; Nakaji et al. 2005) were investigated experimentally. 
Furthermore, based on the results of fertilizer experiments and monitoring studies, 
mainly in Europe, an empirical critical load of N and a nutrient index were proposed 
(De Vries et al. 2000a, b; WHO 2000). In European forest ecosystems, the thresholds 
of the N load for the appearance of N saturation and forest damage were approximately 
10 kg N ha−1 year−1 and 25 kg N ha−1 year−1, respectively (Wright et al. 1995). Bobbink 
et al. (2015) have reported that the empirical critical load of N that would not cause 
nutrient imbalance, reduction in root biomass, or species change showed large varia-
tions among ecosystem types, and it ranged from 3 to 20 kg N ha−1 year−1. In Asian 
countries such as China, Japan, India, and South Korea, high atmospheric N deposi-
tion, similar to or higher than that in Central Europe and North America, has been 
observed (Dentener et al. 2014; Kulshrestha et al. 2014). For example, in Japan, 
although the mean wet N deposition by precipitation over Japan has been maintained 
at 7 to 10 kg N ha−1 year−1 (Katoh et al. 1990; Hara 1992), the N input by wet deposi-
tion in coniferous forests near suburban areas ranged from 10 to 20 kg N ha−1 year−1 
(Ohrui and Mitchell 1997), and sometimes it reached 40 kg N ha−1 year−1 near urban 
areas (Okita et al. 1993; Baba and Okazaki 1998). In China, wet N deposition has been 
observed at a range of 9 to 23 kg N ha−1 year−1 (Du and Liu 2014), and dry N deposition 
in North China has been estimated to be about 25 kg N ha−1 year−1 (Shen et al. 2014). 
These reports suggested that the N deposition in these countries would already reach 
the threshold range of N saturation. In Europe, thresholds of element concentration and 
element balance in tree leaves were proposed in the 1990s by European Commission 
-United Nations/Economic Commission for Europe EC-UN/ECE et al. (1997) for 
evaluating the nutrient status of major tree species, such as spruce, pine, oak, and beech 
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(Table 18.1). Because these nutrient indices have not been extensively examined in 
Asian countries, studies on the critical N load and nutrient balance are needed for eval-
uating the current status and sufficient management of Asian forests.

Figure 18.1 shows schematic images of the negative effects of excessive N load to 
the soil on sensitive (i.e., low-tolerant) tree species. Although NO3

− and NH4
+ in soil 

generally play roles as plant fertilizers, over-nutrition of N by the forms of NO3
− and 

NH4
+ induces soil acidification by H+ originating from HNO3 and the nitrification of 

NH4
+ (Nilsson 1986). Soil acidification causes leaching of base cations such as Ca and 

Mg from soil to the watershed and enhances the solubility of Mn and Al (Van Breemen 
et al. 1982; Ulrich and Sumner 1991). This change can induce a lack of mineral nutri-
ents and cause the excessive accumulation of Mn and toxic Al ions in plants. High 
concentrations of soil NO3

− and acidity affect the species component of mycorrhiza 
and reduce the mycorrhizal infection rate in fine roots (i.e., mycorrhizal roots), as well 
as reducing mycorrhizal lifespan (Majdi and Nylund 1996; Wallenda and Kottke 1998; 
Wöllecke et al. 1999). Mycorrhizal roots play important roles in the uptake of water 
and nutrients such as Mg and phosphorus (P) (Marschner and Dell 1994). Because high 

Reduction in photosynthetic 
potential

Assumption of 
photosynthate due 
to N assimilation

Reduced mass and 
lifespan of mycorrhizal 

roots

Nutritional deficiency and 
imbalances of BCs and P 

relative to high N
Increasing Mn/Mg ratio

Leaching and 
reduction in  BCs

Leaching of Al

Leaching of 
excessive Mn

Soil 
acidification 

due to 
enhanced 
nitrification

Reductions in uptakes 
of P, BCs and water

Antagonism of 
NH4

+–Mg2+ and/or 
NO3

-–PO4
3-

Increasing N
deposition to forest

High load of NO3
- and NH4

+

ions to soil

NH4
+

Soil

Tree leaf

Tree
roots

NH4
+ , NO3

-

H+, NH4
+ , 

NO3
-

Reduced allocation 
of C to fine roots

High accumulations of N 
and Mn

Fig. 18.1 Schematic images of the negative effects of increasing N deposition in sensitive forest 
tree species

T. Nakaji and T. Izuta



275

concentrations of NO3
− and NH4

+ can cause chemical antagonism with Mg2+ and PO3
− 

at root uptake sites (Boxman and Roelofs 1988; Wilson and Skeffington 1994a), these 
biotic and chemical changes in the soil environment could cause deteriorated nutrient 
status in trees via the excessive accumulation of Mn and/or deficiencies in Mg and 
P. This nutrient imbalance may also increase sensitivity to other environmental stress-
ors such as drought and frost (Nihlgård 1985; Cowling et al. 1988; Schulze 1989; Izuta 
and Nakaji 2003). In sensitive tree species such as Pinus densiflora (Japanese red pine), 
excessive N-induced low foliar concentrations of Mg and P reduced photosynthetic 
activity, due to the reduction of foliar chlorophyll and ribulose-1,5-bisphosphate 
(RuBP) carboxylase/oxygenase (Rubisco), despite a high foliar N concentration 
(Nakaji et al. 2001, 2002). Furthermore, a high foliar Mn concentration compared with 
Mg (i.e., a high Mn/Mg ratio) tends to inhibit the activation of Rubisco (Nakaji et al. 
2001; Manter et al. 2005). Consequently, in sensitive tree species and acid soil, exces-
sive N will reduce tree growth via an imbalance of nutrients.

The nutrient imbalances and growth reduction of below-ground organs have 
been reported in many experimental studies of European tree species. For example, 
Seith et al. (1996) investigated growth and foliar nutrients in Picea abies (Norway 
spruce) seedlings grown in two N treatments (150 mg and 300 mg N kg−1 soil), and 
they reported N-induced reductions in needle concentrations of N, Ca, Mg, and Mn 
and increases in those of P and K. They also reported that experimental N addition 
to the soil induced reduction of fine root growth in Picea abies seedlings (Seith et al. 
1996; George et al. 1999). Sogn and Abrahamsen (1998) reported that a 5-year 
experiment with varied N supply at 30 kg and 90 kg N ha−1 year−1 reduced needle 
concentrations of K, Mg, and P in Pinus sylvestris (Scotch pine) seedlings without 
growth reduction. Figure 18.2 shows comparisons of growth response to increasing 
N load in 12 tree species in Japan and China (Nakaji et al. 2005; Izuta et al. 2005; 
Guo et al. 2010, 2014; Liu et al. 2011; Mao et al. 2014; Wang and Liu 2014). These 
studies conducted manipulation experiments during one to three growing seasons, 
using natural forest soil and 1- to 2-year-old seedlings. In this comparison, the rela-
tive growth of whole-plant dry mass was calculated in each experiment. The results 
show interesting trends in regard to threshold and species differences in tolerance to 
excessive N load. None of the 12 tree species showed growth reduction by N addi-
tion below 50 kg N ha−1 year−1, but the threshold for growth reduction was quite 
different among the tree species. For example, the whole-plant dry mass of three 
species, Fagus crenata (Japanese beech), Castanopsis sieboldii (Sudajii, a Japanese 
evergreen oak), and Pinus densiflora (Japanese red pine) tended to be reduced at 
values between 50 and 100 kg N ha−1 year−1 (Fig. 18.2). These species can be clas-
sified as N-sensitive (low-tolerant) species. On the other hand, Cryptomeria japon-
ica (Japanese cedar), Picea asperata (dragon spruce), and Quercus acuta (Japanese 
red oak) can be classified as N-tolerant tree species, because they showed enhanced 
growth rates even with very high N loads, over 200 kg N ha−1 year−1 (Fig. 18.2). 
Although the threshold for two tree species was not known, the four remaining 
 species, Acer truncatum (purple brow maple), Pinus tablaeformis (Chinese pine), 
Lithocarpus edulis (Matebashii, a Japanese evergreen oak species), and Quercus 
glauca (ring-cup oak) seemed to be intermediate in response, with a threshold of 
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growth reduction at over 100 kg N ha−1 year−1. The responsible mechanism has not 
yet been clarified; however, this result suggests that we must pay attention to species 
differences in N sensitivity when estimating the empirical critical load of N in Asian 
forests for maintaining tree growth and biodiversity.

The growth reduction in sensitive tree species caused by excessive N load has been 
explained mainly by the depression of photosynthesis due to nutrient imbalances of N/P 
and Mn/Mg appearing with reduced mycorrhizal infection (Nakaji et al. 2001, 2002; 
Izuta and Nakaji 2003; Izuta et al. 2005). Figure 18.3 shows the relationship between 
foliar nutrient status and growth response to an increasing N load in eight Japanese tree 
species (Izuta et al. 2005; Nakaji et al. 2005; Izuta et al. 2002, unpublished data). When 
the data were pooled for all tree species, significant correlations were observed in the 
relationships of dry-mass responses and P (r = 0.41, P = 0.010), the N/P ratio (r = −0.34, 
P = 0.035), Mn (r = −0.53, P < 0.001), and Mn/Mg (r = −0.53, P < 0.001). There was no 
significant relationship in regard to other foliar elements such as K and Ca. This suggests 
that P and Mn are important  nutrient factors related to the N sensitivity of Japanese tree 

Fig. 18.2 Growth 
responses of 12 Asian tree 
species to increasing N 
load in soil. In each growth 
experiment, the response 
was calculated as the 
relative whole-plant dry 
mass of seedlings grown 
under varied N loads 
compared with that in 
seedlings grown in 
non-N-added natural soil 
(control = 100 %). The 
lengths of the experimental 
periods varied: one 
growing season, A. 
truncatum (Guo et al. 
2014), A. fabri (Guo et al. 
2010), and L. gmelinii x L. 
kaempferi (Mao et al. 
2014); two growing 
seasons, P. asperata (Liu 
et al. 2011), F. crenata 
(Izuta et al. 2002, 
unpublished data), C. 
sieboldii, L. edulis, Q. 
glauca, and Q. acuta (Izuta 
et al. 2005); three growing 
seasons, P. tabulaeformis 
(Wang and Liu 2014), C. 
japonica, and P. densiflora 
(Nakaji et al. 2005)

T. Nakaji and T. Izuta



277

seedlings. When we compared the criteria for nutrient balance for European tree species 
and these data, we found that foliar N levels in the Japanese tree species were lower than 
the European criteria for high nutrient balance (pine = 17 mg N g−1, oak and beech = 
25 mg N g−1), and the foliar P concentration was lower than the criteria for P deficit in 
European tree species (1 mg g−1) (Fig. 18.3a, b). Lower P in Japanese tree species could 
be related to the fact that the origin of most soil in Japan is volcanic ash. As for the nutri-
ent balances, 10 % growth reduction in P. densiflora (pine), F. crenata (beech), and C. 
sieboldii (evergreen oak) was observed with higher N/P ratios of about 20, 35, and 55, 
respectively. Mn/Mg ratios over 0.8, 1.0, and 1.3 were observed with growth reduction 
in P. densiflora, F. crenata, and C. sieboldii (Fig. 18.3). Since the Mn/Mg ratio is related 
to the activation of Rubisco (Nakaji et al. 2001; Manter et al. 2005), this imbalance is 
also important. As the species are different in Europe and Japan, European data would 
not be appropriate, and these comparison results indicate that an original N threshold 
value is needed for Japanese tree species.

r = -0.28 r = 0.41 * r = -0.34 *

r = -0.53 *** r = 0.23 r = -0.53 ***

P O, B P O, BP, O, B

O, BP

a

d e f

b c

Fig. 18.3 The relationship between foliar nutrient status and growth response to increasing N load 
in eight Japanese tree species. The nutrient concentration and nutrient balance were investigated in 
current-year leaves (a) N; (b) P; (c) N/P; (d) Mn; (e) Mg; (f) Mn/Mg. Correlation coefficients for 
all the plant species and significance levels of the relationship are shown in each panel (* P < 0.05, 
*** P < 0.001). Vertical dashed lines indicate threshold values showing optimal-to-high nutrient 
status for N or low nutrient status for P and Mg in European pine (P), oak (O), and beech (B) spe-
cies (see Table 18.1) (EC-UN/ECE et al. 1997). Symbols: + L. gmelinii × L. kaempferi (Mao et al. 
2014), ● F. crenata (Izuta et al. unpublished data), ■ C. sieboldii, □ L. edulis, ◆ Q. glauca, ◇ Q. 
acuta (Izuta et al. 2005), △ C. japonica, ▲ P. densiflora (Nakaji et al. 2005)
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