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Abstract Hepatitis C virus (HCV) is a major causative agent of liver disorders and

a major risk factor for hepatocellular carcinoma. The induction of hepatocellular

carcinoma by HCV is thought to involve not only chronic inflammation, but also the

biological activity of HCV components. Structural proteins of HCV are composed

of the core protein and two envelope proteins, E1 and E2. The HCV core protein has

been reported to exhibit multiple biological functions involved in lipid synthesis,

iron metabolism, insulin response, oxidative stress and cell growth, and to thereby

contribute to the development of carcinogenesis and metabolic disorders.

Moreover, several reports suggest that envelope proteins also play an important

role in viral entry as well as HCV-related pathogenic events. However, the

mechanism by which the structural proteins induce hepatitis C-related disorders

has not been fully understood. This review focuses on the current status of

biological responses mediated by HCV structural proteins.
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Hepatitis C virus (HCV) possesses a genome consisting of a single positive strand

RNA with a nucleotide length of 9.6 kb, which encodes a single polyprotein. This

polyprotein is matured by processing dependent on host and viral proteases,

resulting in structural and nonstructural proteins (Grakoui et al. 1993a, b; Harada

et al. 1991; Hijikata et al. 1991). Structural proteins consisting of the core protein

and two envelope proteins E1 and E2 occupy one third of the N-terminal region of

the polyprotein, while the remaining viral proteins consist of the viroporin p7 and

nonstructural proteins which form a replication complex with host factors (Grakoui

et al. 1993c). The structural proteins and host lipid components are employed for
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formation of the viral particle (for review see (Moriishi and Matsuura 2012). The

nucleocapsid consisting of mature core proteins and a viral genome is surrounded

by an envelope composed of host lipids and viral envelope proteins.

The HCV core protein and envelope proteins are released from the viral

polyprotein by host proteases. HCV structural proteins may provide a host for

severe liver disorders over several decades of persistent infection. The HCV core

protein is involved in formation of the viral particle as well as the induction of liver

disorders, including metabolic diseases. In addition, it is more important that the

core protein could induce hepatocellular carcinoma in mice regardless of other

HCV viral proteins (Moriya et al. 1998). Accumulating evidence supports the

notion that envelope proteins induce a stress response during persistent infection

to lead to liver disorders. This review summarizes the biological functions of HCV

structural proteins in the development of HCV-related disorders.

1 Maturation of HCV Structural Proteins for Assembly
of Viral Particles

1.1 Processing and Modification of HCV Core Protein

Hepatitis C virus (HCV) belongs to the genus Hepacivirus of the Flaviviridae
family. The Flaviviridae family is composed of four genera, Flavivirus, Pestivirus,

Pegivirus and Hepacivirus. The viral genomic structures and the composition of

viral proteins differ among these genera. The capsid, or core, protein is encoded in

the 50-regions of the viral genomes of three of the four genera, with the exception

being Pegivirus. Pegivirus does not have a capsid protein, suggesting that unknown

viral or host proteins may be involved in formation of the viral particle. The

structure and processing of the capsid protein are variable in genera of the

Flaviviridae family. The structural proteins of HCV were detected as processed

proteins at the first time in mammal and insect cells (Matsuura et al. 1992),

contributing to identification of their cleavage sites. The capsid proteins of HCV

and GBV-B, which are classified into the genus Hepacivirus, are cleaved by signal

peptide peptidase (SPP), following signal peptidase-dependent processing

(McLauchlan et al. 2002; Targett-Adams et al. 2006), while the capsid protein of

classical swine fever virus (CSFV), which belongs to the genus Pestivirus, is

cleaved by SPP (Heimann et al. 2006). The C-terminal end of the mature HCV

core protein expressed in insect cells was reported to be Phe177 or Leu179 (Hussy

et al. 1996; Ogino et al. 2004). The C-terminal residue of the mature HCV core

protein that was expressed in a human cell line was identified as Phe177 by mass

spectrometry (Okamoto et al. 2008). Non-primate hepaciviruses have recently been

identified in dogs, horses, rodents and bats (Burbelo et al. 2012; Drexler et al. 2013;

Kapoor et al. 2011, 2013; Lyons et al. 2012; Tanaka et al. 2014). The C-terminal

hydrophobic membrane-anchoring region of HCV core protein shows high
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homology to the core protein of equine hepacivirus, which is the most closely

related homologue of HCV among non-primate hepaciviruses (Burbelo et al. 2012;

Kapoor et al. 2013; Lyons et al. 2012). We recently reported that the core protein of

equine hepacivirus was cleaved by SPP and then localized on the lipid droplets and

partially on lipid-raft like membranes in a manner similar to HCV core protein

(Tanaka et al. 2014). The secondary structures and cis-acting elements of the equine

hepacivirus genome also exhibit characteristics similar to those of the HCV genome

(Tanaka et al. 2014). The mechanism of the viral propagation may thus be con-

served between equine hepacivirus and HCV.

A hydrophocity/hydrophilicity plot suggests that the core protein consists of

three domains, domain 1 (2–118), 2 (119–174), and 3 (175–191) (Hope and

McLauchlan 2000; McLauchlan 2000). The helix-loop-helix structure located in

domain 2 is critical for association of the core protein with lipid droplets and shares

common features with the core proteins of GBV-B (Hope et al. 2002). Three

hydrophobic amino acid residues, Leu139, Val140, and Leu144, in domain 2 exhibit

hydrophobic peaks within domain 2 and are responsible for SPP-dependent cleav-

age, membrane anchoring and virus production (Okamoto et al. 2004, 2008).

Furthermore, comparative analysis between the JFH1 and Jc1 strains suggests

that the efficiency of virus assembly is determined by the binding ability of domain

2 to lipid droplets (Shavinskaya et al. 2007). Cysteine residue 172 of HCV core

protein is palmitoylated. Palmitoylation of the core protein is responsible for the

virus production but not for SPP-dependent processing or LD localization of the

core protein (Majeau et al. 2009). These results suggest that the hydrophobicity of

domains 2 and 3 is critical for intracellular localization and SPP cleavage of the

core protein and viral production.

Recently, herpesviruses and other pathogens have been reported to employ SPP

for their life cycles and pathogenesis. Human cytomegalovirus protein US2 pro-

moted dislocation of the class I major histocompatibility complex (MHC) heavy

chain from the endoplasmic reticulum (ER) by direct interaction with SPP, resulting

in proteasome-dependent degradation of the MHC class I heavy chain (Loureiro

et al. 2006). Herpes simplex virus-1 exploited SPP by binding to the viral glyco-

protein gK for its own replication (Allen et al. 2014). The human malaria Plasmo-
dium falciparum expresses its own SPP on the cell surface. The malaria SPP

recognizes Band3 in the red blood cells for invasion (Li et al. 2008). SPP inhibitors,

L-685,458, NITD731 and LY411.575, were shown to block the growth of

P. falciparum and the rodent malarial parasite P. berghei (Li et al. 2009c; Harbut
et al. 2012; Parvanova et al. 2009). SPP or SPP-like proteases may be employed by

other pathogens for their propagation and will be target molecules for the develop-

ment of therapeutic compounds against several pathogens.
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1.2 Structure of Envelope Proteins for the Viral Entry
and Assembly

HCV envelope proteins E1 and E2 are cleaved from the polyprotein by signal

peptidase (Hijikata et al. 1991). Both E1 and E2, each of which consists of a large

ectodomain with a C-terminal transmembrane region, are classified into a group of

type I membrane proteins and are reported to form non-covalent heterodimers

(Deleersnyder et al. 1997). The envelope proteins are highly modified post-

translationally at 6 and 11 potential sites for N-glycosylation (Goffard and

Dubuisson 2003; Zhang et al. 2004), some of which are responsible for infectivity

(Goffard et al. 2005). The core domain (the ectodomain E2 lacking HVR1) of the

HCV E2 protein shares some basic characteristics with other class II fusion pro-

teins, such as an immunoglobulin-like fold consisting of a β-sheet structure (Kong
et al. 2013; Khan et al. 2014). However, the precise function of E1 and E2 in

membrane fusion has not yet been fully clarified. Two hydrophobic regions span-

ning from 504 to 522 and from 604 to 624 in E2 are predicted to be potential fusion

peptides (Khan et al. 2014; Lavillette et al. 2007; Krey et al. 2010), while the region

spanning from 262 to 290 in E1 is reported to be important for membrane fusion

(Li et al. 2009b). E2 should be responsible for the HCV entry step in cooperation

with E1, but the mechanism underlying this step remains unclear.

The synthesized viral genome is wrapped with the core proteins to form a

nucleocapsid on lipid droplets close to the ER, on which the viral genome is

synthesized (Miyanari et al. 2007). A nucleocapsid egresses with envelope proteins

into the ER membrane in close proximity to the lipid droplets. HCV particles in the

patients’ sera have been reported to exhibit densities of 1.03–1.25 g/ml (Thomssen

et al. 1992, 1993). HCV particles with a density of lower than 1.06 g/ml are

infectious to chimpanzees, while those with a higher density exhibit lower infec-

tivity (Bradley et al. 1991; Hijikata et al. 1993). HCV particles interacting with

lipoproteins in the sera of patients (Andre et al. 2002) were prepared from the

fractions with very low to low buoyant densities (1.03–1.25 g/ml), and have been

designated lipo-viro-particles (LVP) (Andre et al. 2002; Nielsen et al. 2006). LVP

are composed of HCV particle components and very low-density lipoproteins

(VLDL), including apolipoprotein B (ApoB) and apolipoprotein E (ApoE) (Andre

et al. 2002). The HCV entry process on the surface of hepatocytes has been reported

to be carried out by using entry factors including LDLR, CD81, scavenger receptor

class B type I (SR-BI), and the tight junction proteins claudin-1 and occludin

(Bartosch et al. 2003; Evans et al. 2007; Pileri et al. 1998; Ploss et al. 2009). Lectin

receptors including DC-SIGN, L-SIGN, and langerin may be responsible for the

invasive step from sinusoidal endothelial cells (Lozach et al. 2003; Pohlmann

et al. 2003; Gardner et al. 2003; Chen et al. 2014). Envelope proteins with Man8/

9 N-glycans exhibit higher binding to lectin receptors (DC-SIGN, L-SIGN and

langerin) than to non-lectin receptors (CD81, SRBI, claudin-1, and occludin) in the

presence of calcium ions, while HCV envelope proteins with Man5 N-glycans

bound to non-lectin receptors at a higher affinity than lectin receptors (Chen
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et al. 2014). The HCV viral particle may be captured by lectin receptors on

sinusoidal endothelial cells at a high affinity followed by infection to hepatocytes

via non-lectin receptors. HCV envelope proteins interact with ApoE and ApoB in

ER (Boyer et al. 2014). Intracellular and extracellular infectious particles also

associate with ApoE and ApoB (Boyer et al. 2014). ApoE, but not E2, on the

surface of LVP mediates the SR-BI-dependent entry step via the lipid transfer

activity of SR-BI, although the HVR1 of E2 affects this step (Dao Thi

et al. 2012). These results suggest that E2 HVR1 enhances the SR-BI-ApoE

interaction for HCV entry. Further study will be required to clarify the mechanism

by which HCV utilizes SR-BI for its entry step.

2 Biological Functions of Structural Proteins

2.1 Modulation of Lipid Metabolism by HCV Core Protein

Liver steatosis is frequently found in persistent HCV infection and results in

accumulation of triglyceride and fatty acids in hepatocytes (see Negro 2010).

However, the involvement of HCV infection in the development of fatty liver has

not yet been clarified completely. Several reports support the notion that HCV core

protein contributes to the accumulation of lipid droplets and hepatic steatosis in

transgenic mice and cultural cells (Barba et al. 1997; Hope and McLauchlan 2000;

Moriya et al. 1997). The lipid profiling of a core transgenic mouse of genotype 1b

showed a similar composition to that of a hepatitis C patient (Koike et al. 2010;

Miyoshi et al. 2011). Syntheses of triglycerides and fatty acids are transcriptionally

regulated by the sterol regulatory element-binding proteins (SREBPs) (Horton

et al. 2002). An HCV cell culture system derived from the genotype 3a strain

showed that lipid accumulation was enhanced in cells infected with HCV genotype

3a compared to those infected with the genotype 2a strain JFH-1 (Kim et al. 2014).

Patients infected with HCV genotype 3a exhibited progression of steatosis at a

significantly higher rate than those with genotype 1a or 1b (Adinolfi et al. 2011;

Mihm et al. 1997). Expression of the HCV core protein derived from genotype 3a

induced lipid accumulation in lipid-free cultured cells at a higher level than

expression of other genotype core proteins (Abid et al. 2005). The HCV core

protein of genotype 3a stimulated activity of the fatty acid synthetase promoter at

a significantly higher level than that of genotype 1b (Abid et al. 2005).

HCV infection or expression of the genotype 3a core protein was found to

enhance the cleavage of SREBPs, leading to posttranslational activation of SREBPs

(Waris et al. 2007). The recent report by Bose et al. suggested that the forkhead box

transcription factor FoxO1 was activated by the HCV core protein or infection

followed by activation of srebp-1c promoter activity, leading to the accumulation of

lipids (Bose et al. 2014). However, controversial results were reported from hepa-

titis C patients. McPherson reported that SREBP-1c was not involved in
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HCV-related steatosis (McPherson et al. 2008), whereas Lima-Cabello

et al. reported that LXRα, SREBP-1c and -2, and fatty acid synthetase were

overexpressed in the livers of HCV patients with steatosis (Lima-Cabello

et al. 2011), suggesting that LXRα transcriptionally upregulates SREBP-1c expres-

sion followed by fatty acid synthetase expression. It has been reported that most of

the genes under the control of SREBPs were upregulated during the early stage of

HCV infection in the livers of chimpanzees (Bigger et al. 2004). Our previous data

indicated that the core protein potentiates the binding ability of the LXRα-RXRα
complex to the srebp-1c promoter in cultured cells and in the livers of core-

transgenic mice (Moriishi et al. 2007). Upregulation of srebp-1c promoter activity

may be associated with direct interaction between the core protein and RXRα
(Tsutsumi et al. 2002b). Cholesterol and ApoB were significantly reduced in

patients with severe hepatitis C or core-transgenic mice (Perlemuter et al. 2002).

The microsomal triglyceride transfer protein (MTP) positively regulates the forma-

tion and secretion of very low-density lipoproteins. In core-transgenic mice,

MTP-specific activity is significantly decreased (Perlemuter et al. 2002), resulting

in accumulation of lipids in the liver. The gene related to the synthesis and secretion

of lipids may be regulated by HCV infection or the core protein at a transcriptional

and/or post-translational step.

Peroxisome proliferator activated receptors are nuclear receptors that transcrip-

tionally regulate metabolic signaling (Halilbasic et al. 2013). PPARα regulates the

genes encoding enzymes associated with peroxisomal microsomal and mitochon-

drial γ oxidation (Halilbasic et al. 2013). PPARα is expressed in the liver and down-

regulated in the HCV-infected liver and the core-expressing HepG2 cells

(Dharancy et al. 2005). PPARα was decreased in mice infected with adenovirus

expressing the HCV core protein (Yamaguchi et al. 2005). In an earlier study,

severe liver steatosis was induced in core-transgenic mice (Moriya et al. 1997).

HCV replication transcriptionally induced the expression of miR-27 in cell culture

and an in vivo mouse model (Singaravelu et al. 2014). Both the HCV core protein

and NS4B promote the expression of miR-27 through a PI3-K-dependent pathway.

Transfection of miR-27 enhances the size and volume of lipid droplets in cultured

cells and also impairs PPARα signaling. PPARα transcriptionally increases the

genes regulating mitochondrial and peroxisomal fatty acid oxidation (Desvergne

and Wahli 1999). An increase in miR-27 in infected cells also downregulates

ANGPTL3, which is an inhibitor of lipoprotein lipase responsible for fatty acid

uptake (Mattijssen and Kersten 2012). These data suggest that induction of miR-27

by HCV infection downregulates fatty acid oxidation via impairment of PPARα
signaling and up-regulates fatty acid uptake via inhibition of ANGPTL3 expression,

leading to development of liver steatosis. Unexpectedly, PPARα-knockout core-
transgenic mice did not show steatosis (Tanaka et al. 2008). Furthermore, PPARα
expression was required for induction of hepatocellular carcinoma by HCV core

protein (Tanaka et al. 2008). Therefore, the HCV core protein may require a small

amount of PPARα for the development of liver disorders and may maintain PPARα
at a steady level.
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PPARγ is involved in adipocyte differentiation and energy storage by adipocytes
mediating an anabolic energy state (Halilbasic et al. 2013). In addition, PPARγ
plays an important role in the development of liver steatosis (Gavrilova et al. 2003;

Yu et al. 2003). The HCV core protein has been shown to potentiate PPARγ activity
and transcriptionally upregulate SREBP1 activity, resulting in lipid accumulation.

Furthermore, HCV core protein expression induced leptin receptor activation in

hepatic stellate cells and contributed to transcriptional upregulation of MMP-1,

PAPRγ and SREBP-1c, leading to promotion of hepatic fibrogenesis

(Wu et al. 2013). PPARγmay thus be involved in HCV core-induced liver steatosis,

in cooperation with PPARα.

2.2 Regulation of Iron Metabolism by HCV Core Protein

Iron overload has been reported as a common hallmark of chronic hepatitis C

infection (Bonkovsky 2002; Boucher et al. 1997; Di Bisceglie et al. 1992). Accu-

mulation of iron in the liver by HCV infection promotes liver inflammation and

interferon resistance due to inhibition of the JAK-STAT pathway by oxidative

stress (Olynyk et al. 1995; Bassett et al. 1999; Nishina et al. 2008; Fujita

et al. 2007). Iron is involved in induction of reactive oxygen species (ROS). Iron Fe
2+ reacts with hydrogen peroxide (H2O2) to yield Fe

3+, hydroxyl radical (˙OH), and

hydroxide ion (OH�) (Fenton reaction) (Graf et al. 1984). Hydroxyl radical reacts

with lipids, resulting in lipid peroxidation (Okada 1996). Iron concentration in the

liver is regulated by an import protein transferrin receptor and an export protein

ferroportin (Pantopoulos et al. 2012). Imported iron atoms are enclosed with ferritin

in cells and stored as iron-ferritin complexes (Ganz and Nemeth 2012; Liu and

Theil 2005). Another iron-regulating protein, hepcidin, which is encoded on the

gene HAMP, is a short peptide inducing internalization and degradation of

ferroportin and regulates plasma iron concentration and iron metabolism in the

liver (Ganz and Nemeth 2012; Nemeth et al. 2004, 2006). Expression of hepcidin is

stimulated by iron overload and inflammation, and is suppressed by anemia and

hypoxia (Nemeth and Ganz 2006). BMP6 is produced and secreted by various cell

types and is a main regulator of hepcidin expression (Andriopoulos et al. 2009).

BMP6 binds and stimulates dimers of BMP-RI/II to cooperate with the coreceptor

hemojuvelin (Andriopoulos et al. 2009; Meynard et al. 2009; Xia et al. 2008),

leading to downstream signaling including dimerization of Smad4 with Smad1/5/

8 (Wang et al. 2005). Smad dimers transcriptionally induce expression of hepcidin.

Screening of a whole genome using an siRNA library revealed that hepcidin-

knockdown reduced HCV replication significantly (Tai et al. 2009), suggesting

that hepcidin expression is required for HCV replication and control of iron

metabolism. Hepcidin was shown to be transcriptionally enhanced by the HCV

core protein through Smad4, STAT3 and CK2 (Foka et al. 2014). Knockdown of

hepcidin impaired HCV replication in a replicon cell line (Bartolomei et al. 2011).

Iron upregulates HCV replication by enhancement of IRES-dependent translation
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and expression of eIF3 and La (Cho et al. 2008; Theurl et al. 2004; Wang

et al. 2012). However, knockdown of hepcidin suppressed IRES- as well as

CAP-dependent translation (Tai et al. 2009). Hepcidin may contribute to transla-

tional regulations of the viral proteins and host proteins by accumulation of iron in

HCV-infected cells.

2.3 Quality Control of HCV Structural Proteins

The core protein is modified with ubiquitin by host enzymes. The host E3 ligase

E6AP catalyzes ubiquitination of the core protein to suppress viral production

(Shirakura et al. 2007). The poly-ubiquitinated core protein is degraded in the

cytosol in a proteasome-dependent manner. HCV core protein is also degraded in

a ubiquitin-independent PA28γ-dependent pathway, leading to upregulation of the

viral production by suppression of cytosolic ubiquitin-dependent degradation of the

core protein (Moriishi et al. 2003, 2007). The host mechanisms of protein degra-

dation may regulate HCV production and control the quality of the core protein for

viral propagation. Although qualitative limitations of HCV envelope proteins have

been regulated by an ER-associated degradation (ERAD) system (Saeed

et al. 2011), inhibition of ER enhanced the viral production (Saeed et al. 2011),

suggesting that unfolded envelope proteins positively regulate the HCV production.

The unfolded protein response (UPR) is carried out by three pathways, an

IRE1α, a PERK and an ATF6-dependent pathway (Gardner et al. 2013). The

luminal domains of the PERK, ATF6 and IRE1α proteins interact with the ER

resident chaperone BiP (Bertolotti et al. 2000). BiP renders PERK, ATF6 and

IRE1α inactive without accumulation of unfolded protein (Bertolotti et al. 2000),

while the accumulation of unfolded proteins stimulates release of BiP from PERK,

ATF6 or IRE1α, leading to the induction of genes related to protein folding, cell

survival, autophagy and so on (Bertolotti et al. 2000). UPR stimulates expression of

both MAP1LC3B and ATG5 by ATF4 and CHOP, which are induced by activation

of PARK and ATF6 (Rouschop et al. 2010; Wang et al. 2014). ATF4 also activates

transcription of CHOP (Kojima et al. 2003). The HCV core protein was recently

shown to activate both the PERK and ATP6 pathways, but not the IRE1α pathway,

to stimulate expression of MAP1LC3B, ATG12 and ATG5 (Wang et al. 2014),

suggesting that autophagy is induced by the upregulation of ATG proteins through

the UPR of HCV core protein. Expression of HCV envelop proteins induced the

expression of CHOP through PERK and IRE1α pathways (Chan and Egan 2005).

CHOP stimulates IP3R through Ero1α activation, followed by accumulation of Ca
2+ in mitochondria (Li et al. 2009a). UPR-induced accumulation of Ca2+ in mito-

chondria may be associated with ROS production in HCV infected cells, as

described later.
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2.4 Effect of HCV Infection on Mitochondria

The HCV core protein can enhance the production of ROS by damaging the

mitochondrial electron transport system, and thereby contribute to the emergence

of hepatocellular carcinoma (Moriya et al. 2001; Nunez et al. 2004; Okuda

et al. 2002), suggesting that accumulation of lipids advances the occurrence of

hepatocellular carcinoma by enhancing ROS production. Expression of HCV

polyproteins in cultured sarcoma cells promoted the production of ROS and nitro-

gen species and inhibited complex I activity, resulting in activation of mitochon-

drial calcium uptake (Piccoli et al. 2007). The HCV core protein is localized in the

lipid droplets, ER and mitochondria (Okuda et al. 2002) and could induce ROS,

leading to accumulation of lipid peroxidation products and enhancement of anti-

oxidant gene expression (Okuda et al. 2002). Upregulation of lipid peroxidation

was observed in core-transgenic mice but not in wild type mice following treatment

with CCl4 (Okuda et al. 2002). The mitochondria of transgenic mice expressing

HCV polyprotein exhibited enhancement of glutathione oxidation, decrease in

NADPH contents, impairment of complex I activity and promotion of ROS pro-

duction (Korenaga et al. 2005). Glutathione oxidation and ROS upregulation were

also found in isolated mitochondria in the presence of recombinant core protein

(Korenaga et al. 2005). Ca2+ uptake was increased by the recombinant core protein

in isolated mitochondria (Korenaga et al. 2005). HCV core protein induced ER

stress via an unfolded protein response and then potentiated production of ER

chaperone proteins and release of Ca2+ from the ER store (Benali-Furet

et al. 2005; Bergqvist et al. 2003). In addition, the HCV core protein was found

to enhance mitochondrial Ca2+ uptake via the Ca2+ uniporter, which is localized in

the mitochondrial inner membrane (Li et al. 2007). Furthermore, HCV core protein

interacted with the mitochondria chaperone prohibitin to upregulate prohibitin

stability in cultured cells and the transgenic mouse liver (Tsutsumi et al. 2009).

HCV core protein inhibited the interaction between prohibitin and COX, resulting

in the impairment of COX activity (Tsutsumi et al. 2009). These reports suggest

that HCV core protein induces ER stress and Ca2+ release from the ER and then

stimulates mitochondrial Ca2+ uptake to upregulate ROS production. In addition,

the HCV core protein may impair COX activity by both sequestering prohibitin and

decreasing glutathione, leading to further enhancement of ROS production.

2.5 Insulin Resistance

Epidemiological studies have clearly established an association between type

2 diabetes mellitus and HCV infection (Cavaghan et al. 2000; Kahn 1998). Type

2 diabetes is a complex disease characterized by the high-level production of

hepatic glucose due to insulin resistance, resulting in glucose tolerance hypergly-

cemia (Cavaghan et al. 2000; Kahn 1998). Insulin is ordinarily produced at a
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sufficient level in type 2 diabetes mellitus patients; however, the glucose level

cannot be decreased due to a disorder in insulin signaling. Insulin receptor is a

tyrosine kinase composed of two subunits (Draznin 2006; Youngren 2007). Binding

of insulin activates insulin receptor, which triggers Tyr phosphorylation of insulin

receptor substrate 1 (IRS1) (Draznin 2006; Youngren 2007). The phosphorylated

IRS1 and IRS2 positively regulate PI3K, which phosphorylates

phosphatidylinositol 4, 5-bisphophate into phosphatidylinositol-3,4,5-triphosphate

(PIP3). PDK1 and PDK2 are recruited by the resulting PIP3 with Akt and then

phosphorylate Akt at Thr308 and Ser 473 (Burgering and Coffer 1995; Taniguchi

et al. 2006; Alessi et al. 1996; Manning and Cantley 2007), resulting in activation of

Akt. Phosphorylated Akt itself phosphorylates a glucose transporter, GLUT-4,

contributing to translocation of GLUT-4 to the plasma membrane for upregulation

of glucose uptake (Taniguchi et al. 2006; Thirone et al. 2006).

Elevation of TNFα production is one of the risk factors for insulin resistance

(Gurav 2012). TNFα can indirectly mediate phosphorylation of IRS1at multiple

sites through the activation of several Ser kinases, including JNK, IKKβ and ERK

(Gao et al. 2003; Solinas and Karin 2010). TNFα stimulates activation of MEKK1,

ASK1 and TAK1, which phosphorylate MKK7 for activation (Nakajima

et al. 2006). In the same study, phosphorylated MKK7 was able to phosphorylate

JNK (Nakajima et al. 2006). JNK1 has been shown to interact with IRS1 through

the region spanning from the residues 555–898 (Aguirre et al. 2000). Phosphory-

lation of IRS1 Ser307 was detected in cultured cells treated with a JNK agonist,

resulting in a decrease in Tyr phosphorylation of IRS1(Aguirre et al. 2000). Rui

et al. suggested that a TNFα-dependent, JNK-independent mechanism may also be

associated with phosphorylation of IRS1 Ser307 (Rui et al. 2001). Insulin was

shown to stimulate the PI3K pathway to enhance phosphorylation of IRS1 Ser307

(Aguirre et al. 2002; Rui et al. 2001). Insulin-stimulated JNK phosphorylates IRS1

S307 may be a negative feedback pathway of insulin signaling (Lee et al. 2003).

Phosphorylation of IRS1 Ser307 by JNK impairs the binding ability of IRS1 to

insulin receptor (Aguirre et al. 2002), while phosphorylation of IRS1 Ser302 by

JNK may also be involved in the negative feedback of insulin signaling (Werner

et al. 2004). An increase in TNFα and a decrease in Tyr phosphorylation of IRS1

were observed in both the livers of HCV core gene transgenic mice and hepatitis C

patients (Shintani et al. 2004; Miyamoto et al. 2007). Furthermore, JNK and its

downstream factor AP-1 have been shown to be activated in core gene transgenic

mice (Tsutsumi et al. 2002a). The HCV core protein also activated JNK and

enhanced phosphorylation of IRS1 Ser312, leading to a decrease in Tyr phosphor-

ylation of IRS1 and inhibition of insulin signaling (Banerjee et al. 2008). HCV core

protein may activate JNK through upregulation of TNFα production, leading to

insulin resistance through Ser phosphorylation of IRS1.

Evidence of the involvement of suppressor of cytokine signaling (SOCS) pro-

teins in HCV-associated insulin resistance has been accumulating. SOCS-1 and

SOCS-3 show relatively high homology and share similar functions. Both SOCS-1

and SOCS-3 can bind to insulin receptors irrespective of their phosphorylation

status and impair Try phosphorylation of IRS-1 (Ueki et al. 2004). Further, SOCS-1
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and SOCS-3 were shown to promote the degradation of IRS-1/2 via the ubiquitin-

proteasome pathway (Rui et al. 2002). SOCS-1, but not SOCS-3, was decreased in

the livers of core gene transgenic mice and hepatitis C patients, as well as in HepG2

cells expressing HCV core protein (Miyoshi et al. 2005). Expression of SOCS-3

was promoted after IFN treatment in HCV-infected chimpanzees, whereas the

human liver showed variable responses to different treatments (Huang

et al. 2007). SOCS-3 expression was significantly promoted in peripheral lympho-

cytes prepared from genotype 1b-infected IFN-non-responders (Persico

et al. 2007). HCV core protein stimulated the expression of SOCS-3 and then

enhanced ubiquitination of IRS1 and IRS2, leading to a decrease in IRS1/2 in a

proteasome-dependent pathway (Kawaguchi et al. 2004). Induction of SOCS3

expression by the HCV core protein may be associated with the core protein

mutations of Met70 and Leu91 (Funaoka et al. 2011), which are statistical pre-

dictors of low response to IFN/ribavirin therapy (Akuta et al. 2005, 2010). The

regulation of IRS1 by HCV core protein may be accomplished by a genotype-

specific pathway. Ubiquitin-dependent degradation of IRS1 was observed by the

HCV core protein of genotypes 1b and 3a (Pazienza et al. 2007). In addition, IRS1

was decreased transcriptionally by downregulation of PPARγ and post-

translationally by upregulation of SOCS-7 (Pazienza et al. 2007), while the core

protein of genotype 1b activated mTOR, which suppresses IRS1 by Ser/Thr phos-

phorylation (Pazienza et al. 2007). E2 transcriptionally promoted the expression of

SOCS3 and ubiquitination-dependent downregulation of IRS1, resulting in the

impairment of Akt and GSK3 (Hsieh et al. 2012). The HCV core protein may

regulate SOCS proteins cooperating with E2 under infectious conditions.

2.6 Involvement of Envelope Proteins in Biological
Functions

Envelope proteins may control tight junction and facilitate secondary invasion of

HCV after primary infection. Occludin, claudin-1 and ZO-1, which are tight

junction proteins, are localized in the baso-lateral membrane position of Huh7,

while these tight junction proteins were defused in Huh7 harboring a full-genomic

but not a sub-genomic HCV replicon (Benedicto et al. 2008). Exogenous expression

of HCV structural proteins, but not core alone, resulted in the translocation of tight

junction proteins irrespective of the viral replication (Benedicto et al. 2008). HCV

envelope proteins may facilitate subsequent virus infection by disruption of tight

junction.

HCV envelope proteins may regulate ROS production and cell death. HCV

infection was shown to stimulate production of ROS and NO and to reduce

mitochondrial transmembrane potential (Machida et al. 2006), leading to double-

stranded DNA breaks and apoptosis. Although expression of core, E1, or NS3 could

induce ROS production in cultured cells (Machida et al. 2006), regulation of
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apoptosis by E2 is controversial. Chiou et al. reported that E2 induces apoptosis by

cytoplasmic release of cytochrome c, upregulation of Bax and downregulation of

Bcl-2 followed by activations of caspases-3, 8, and 9 (Chiou et al. 2006), whereas

apoptosis induced by the death ligand TRAIL was suppressed by the expression of

E2 (Lee et al. 2005). The expression of E2 may be capable of supporting the HCV

replication by inhibiting apoptosis (Lee et al. 2005).

Phosphorylation and activation of STAT1 were enhanced by the expression of

both HCV E2 and HIV gp120 (Balasubramanian et al. 2006). Lyn kinase, p38MAP

kinase and protein kinase C δ are responsible for STAT1 phosphorylation

(Balasubramanian et al. 2006). An increase in STAT1 might contribute to apoptosis

in the hepatocytes of patients co-infected with HCV and HIV. HCV infection down-

regulated the amounts of miR181c, which targets homeobox A1 (HOXA1), by

modulating C/EBP-β (Mukherjee et al. 2014). In the same study, HOXA1 expres-

sion was potentiated in HCV-infected cells (Mukherjee et al. 2014). In addition,

miR-181c was shown to bind directly to the E1 or NS5A gene (Mukherjee

et al. 2014). Finally, HOXA1 promotes cell growth through upregulation of

STAT3 and STAT5 (Mohankumar et al. 2007). These data suggest that the tran-

scriptional and posttranscriptional down-regulation of miR-181c by HCV infection

might contribute to activation of HOXA1 followed by upregulation of STA3 and

STAT5.

3 Conclusions

The structural proteins of HCV are basically employed for formation of a viral

particle like structural proteins of other enveloped viruses. The HCV core proteins

is processed by host proteases, and then associated with lipid droplets and intracel-

lular compartments for formation of nucleocapsid, while HCV glycoproteins, E1

and E2, are localized in ER membrane in close proximity to the lipid droplets. Both

envelope proteins are classified into a group of type I membrane proteins, and are

reported to form non-covalent heterodimers. The recent report of structural analysis

revealed that HCV E2 protein is classified into the family of class II fusion protein.

The envelope proteins play an important role in an entry step cooperating with

several host entry factors, lectin and lipoproteins. In this text, we also summarized

the biological functions of HCV structural proteins (Fig. 1). To date, it has not been

fully clarified how HCV can cause hepatocellular carcinoma in humans. Persistent

inflammation over a long period of time is expected to be associated with the

development of hepatocellular carcinoma, due to both genomic alterations and

biological functions of the HCV proteins. HCV core protein upregulates uptake

of free fatty acids and the transcriptional activities of SREBPs, and down-regulates

MTP function and β-oxidation, leading to liver steatosis. In addition, the structural

proteins induce accumulation of mitochondrial Ca2+ and iron via ER stress and

functions of hepcidin and Ca2+ uniporter, resulting in an increase in ROS. Oxidative

stress induced by HCV infection may be one of the causative agents related to the
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genetic alterations, including DNA double-strand breaks. In addition,

retrotransposition targeting specific genes is predicted to be one of the potential

causative agents of hepatocellular carcinoma in hepatitis B and C patients (Shukla

et al. 2013). However, the mechanism by which HCV-related retrotransposition is

induced has not been fully understood. Further study will be required to understand

how carcinogenesis is related to hepatitis viruses and to develop antiviral agents for

the eradication of these viruses in humans.
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