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Abstract The hepatotropic hepatitis C virus (HCV) belongs to the Flaviviridae
family and chronically infects 130–150 million people worldwide. The severe

consequences the virus has for liver health, especially if left untreated, and the

lack of a vaccine continue to make HCV a relevant global health problem. A

considerable challenge in studying HCV is the virus’ host tropism, which is limited

almost exclusively to humans and chimpanzees. The lack of suitable and ethical

animal model systems has hindered our abilities to mechanistically decipher inter-

actions of HCV with its mammalian host and to develop vaccines. However,

encouraging advances, especially in the refinement of humanized mouse models,

have created new opportunities for studying HCV pathogenesis and host antiviral

responses in vivo. Additionally, the discovery of hepaciviruses in other organisms

and advances in induced pluripotent stem cell technologies have created further

avenues for exploration. The ultimate goal is to develop tractable small animal

models for HCV, which optimally recapitulate all parts of the viral life cycle and

present with clinically relevant manifestations of viral hepatitis. Such new models

would undoubtedly shed light on both the biology and clinical consequences of

chronic hepatitis C infection.

Keywords Hepatitis C • Hepatitis C virus • Animal model • Host tropism •

Vaccines • Immune response

Abbreviations

AFC8 Transgenic construct in which a FK506 binding protein/caspase

8 fusion protein is driven by a mouse albumin promoter

apoE Apolipoprotein E

Cardif Caspase activation and recruitment domain adaptor-inducing

interferon- β

M. von Schaewen • J.M. Gaska • A. Ploss (*)

Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory,

Washington Road, Princeton, NJ 08544, USA

e-mail: aploss@princeton.edu

© Springer Japan 2016

T. Miyamura et al. (eds.), Hepatitis C Virus I, DOI 10.1007/978-4-431-56098-2_12
275

mailto:aploss@princeton.edu


CD Cluster of differentiation

CIDEB Cell death-inducing DFFA-like effector b

CLND1 Claudin-1

CMV Cytomegalovirus

DAA Directly acting antiviral

EGRF Epidermal growth factor receptor

EphA2 Ephrin receptor A2

ER Endoplasmatic reticulum

ES Embryonic stem cell

FAH Fumarylacetoacetate hydrolase

GAG Glycosaminoglycan

GBV-B George Barker virus B

HBV Hepatitis B virus

HCC Hepatocellular Carcinoma

HCV Hepatitis C virus

HEAL Human ectopic artificial liver

HLA Human leukocyte antigen

HLC Hepatocyte-like cell

HSC Hematopoietic stem cell

HSPG Heparan sulfate proteoglycan

Huh Human hepatoma

IFN Interferon

IL-1 Interleukin 1

iPS Induced pluripotent stem cell

IPS-1 IFN-β promoter stimulator-1

IRF3 Interferon regulatory factor 3

LDLR Low-density-lipoprotein receptor

MAVS Mitochondrial antiviral signal protein

miR-122 MicroRNA-122

MUP Major urinary protein

NHP Non-human primate

NPC1L1 Niemann-Pick C1-like 1

NPHV Non-primate hepacivirus

NS Non-structural protein

OCLN occludin

PI4KIIIα phosphatidylinositol 4 kinase IIIα
PKR Protein kinase R

SCARB1 Scavenger receptor class B member 1

SCID Severe combined immunodeficiency

STAT1 Signal transducer and activator of transcribtion 1

TfR1 Transferrin receptor 1

TICAM Toll/IL-1 receptor domain-containing adaptor molecule

TNFα Tumor necrosis factor α
TRIF Toll/IL-1 receptor domain-containing adaptor inducing IFN-β
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uPA Urokinase-type plasminogen activator

VISA Virus-induced signaling adapter

1 Introduction

Hepatitis C virus (HCV) is an enveloped, positive-sense, single-stranded RNA virus

belonging to the genus Hepacivirus in the Flaviviridae family. While approxi-

mately 150 million people are infected with HCV worldwide, this is likely an

underestimate as almost twice as many individuals in the United States may carry

the virus, many unknowingly (Edlin 2011). HCV causes persistent infection in

70–80% of those who become exposed to the virus. While the acute disease is

usually asymptomatic, chronic carriers left untreated frequently develop fibrosis,

cirrhosis and, in some cases, hepatocellular carcinoma. Treatment for HCV has

evolved rapidly in recent years and it is now possible to cure the majority of patients

with largely well-tolerated therapies that include a combination of pegylated

interferon (IFN)-α, ribavirin and direct acting antiviral (DAA) drugs. However,

despite their potency, it remains to be seen whether even the newest DAAs will

drastically reduce the global burden of disease due to the high associated costs,

logistical challenges of mass deployment and risk of drug resistance. A vaccine,

which would prevent infection or delay the onset of pathogenesis during a chronic

infection, does not exist. Development of effective therapies has been delayed by

the lack of both suitable cell culture systems and animal models. While

hepaciviruses similar to HCV have been found in a variety of species, including

dogs, horses and outbred mice, HCV appears to have a much more limited host

range. Robust infection has only been described in humans and experimentally

infected chimpanzees, but some studies have provided evidence for transient and

intermittent viremia in a more exotic mammal, tree shrews. The narrow host range

of HCV is not completely understood but can in part be explained by differences

between species in the sequences of essential host factors at the level of entry as

well as in innate antiviral responses. This growing understanding of the barriers to

interspecies transmission has aided the development of inbred models with inher-

itable susceptibility to HCV. As will be discussed here, genetic host adaptation has

been and continues to be part of a multipronged approach to develop more tractable

animal models for studying HCV infection, immunity and pathogenesis (Fig. 1).

2 Hepatitis C Virus Infection in Non-Human Primates

For many years, studies of hepatitis C were limited to experimentally infected

chimpanzees or patient volunteers. While chimpanzees have been instrumental in

analyzing HCV infection (reviewed in (Bukh 2004), Fig. 2), studies in this species

are challenging due to high costs, genetic heterogeneity, small cohort sizes, limited
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access to relevant tissue compartments, the inability to genetically manipulate large

apes and growing ethical concerns.

The other non-human primate (NHP) species tested for susceptibility to HCV

infection – including cynomolgus monkeys, rhesus monkeys, Japanese monkeys,

Green monkeys, Doguera (Abe et al. 1993) and Chacma baboons (Sithebe

et al. 2002), cottontop tamarins (Garson et al. 1997) and marmosets – do not

seem to support infection. The blocks in HCV transmission in these and potentially

other NHP species are not well defined and are likely due to a combination of

factors. For example, simian orthologs of essential host factors required for the viral

life cycle may be absent or incompatible. Similarly, dominant restriction factors, as

observed with HIV, may actively antagonize uptake, replication and/or viral

assembly and release. In addition, differences in the kinetics and magnitude of

antiviral defenses in many cells may interfere with viral RNA replication. This may

be a result of less efficient viral evasion mechanisms that usually enable HCV to

establish persistent infection in human cells. For example, in various primate

species, differences in the amino acid sequence of the mitochondrial antiviral signal

Fig. 1 Host adaptation and viral adaptation approaches to create new animal models for the study

of hepatitis C. Host adaptation through transplantation of human hepatocytes to create HEALmice

or human liver chimeric mice and/or hematopoietic stem cells (HSCs) to (co-) engraft components

of a human immune system (left column). Genetic humanization can be accomplished by identi-

fication and expression of human-specific factors or by ablation of restriction factors (middle
column). Cell culture passaging strategies are used to adapt HCV to murine or simian hosts (right
column). iPS Induced pluripotent stem cells, ES embryonic stem cells, HSC hematopoietic stem

cells, HEAL human ectopic artificial liver
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Fig. 2 Phylogenetic relationship of members of the hepacivirus genus and susceptible host

species. Phylogenetic tree of the hepaciviruses is adapted from (Pfaender et al. 2014a) and

(Firth et al. 2014) and is based on the nucleotide sequence analysis of the NS3 protease domain

and the complete NS5B gene. GHV Guereza hepacivirus, GBV-B George Barker virus B, NPHV
non-primate hepacivirus, CHV canine hepacivirus, NrHV Norway rat hepacivirus, RHV rodent

hepacivirus, BHV bat hepacivirus
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protein (MAVS, also known as IPS1, VISA or Cardif) prevent its proteolytic

cleavage by the HCV NS3/4A protease, leaving host antiviral signaling intact

(Patel et al. 2012). These incompatibilities may also result in more effective cellular

and humoral immune responses in NHPs, contributing to clearance of HCV.

However, these blocks do not appear absolute as stem cell-derived hepatocyte-

like cells from pig-tailed macaques (Macaca nemestrina) (Sourisseau et al. 2013)

and primary rhesus macaque (Macaca mulatta) hepatocytes can support the entire

HCV life cycle (Scull et al. 2015). Additionally, HCV RNA replication in rhesus

macaque hepatocytes is enhanced upon blunting antiviral immunity, which is

consistent with the observation that the rhesus MAVS ortholog is not cleaved by

HCV NS3/4A (Scull et al. 2015). Nonetheless, HCV can establish persistent

replication in simianized mice, i.e. immunocompromised xenorecipients engrafted

with rhesus hepatocytes (Scull et al. 2015). Yet it still remains to be shown whether

rhesus or pig-tailed macaques are actually susceptible to HCV in vivo and if viral

persistence can be achieved.

Tree shrews (Tupaia belangeri) – once designated as small, squirrel-like pri-

mates but now classified in the separate order Scandentia – have been shown to

support intermittent, transient viremia, becoming more permissive to HCV infec-

tion when immunosuppressed (Xie et al. 1998). In follow-up studies, acute infec-

tion did progress to persistent viremia (Xu et al. 2007; Amako et al. 2010), resulting

in clinically symptomatic liver disease, including steatosis, fibrosis and cirrhosis

after 3 years (Amako et al. 2010). While these more recent data are promising and

may enable studies of HCV immunity and pathogenesis, there are still limitations to

their utility as tree shrews are an outbred, genetically diverse organism and few

reagents are available for investigating their immune response to viral infection.

3 Potential Surrogate Models: Non-Primate Hepaciviruses

With such a limited host tropism, other closely related viruses have been considered

as a proxy for studying HCV. The best characterized of these viruses, GB viruses,

named after the surgeon George Barker (Deinhardt et al. 1967), have been used in

NHP studies. GB virus B was able to cause hepatitis in marmosets (Callithrix
jacchus) (Simons et al. 1995; Lanford et al. 2003) (Fig. 2) as well as other New

World monkeys, including tamarins (Saguinus spp.) (Karayiannis et al. 1989;

Schaluder et al. 1995) and owl monkeys (Aotus trivirgatus) (Bukh et al. 2001).

GBV-B belongs to the genus Hepacivirus in the Flaviviridae family and has the

same overall genome organization as HCV. However, the polyproteins of HCV and

GBV-B share only 28 % amino acid identity and differ even more in their 50 and 30

non-coding regions. The discovery of a GBV-B-like virus, called guereza
hepacivirus (GHV) after the colobus species it was identified in, is the first

hepacivirus found in a wild NHP and has led to further questions concerning the

evolution of hepaciviruses (Lauck et al. 2013).

280 M. von Schaewen et al.



Other related viruses of either the Pegivirus genus, also a part of the Flaviviridae
family, or Hepacivirus genus have been identified in dogs (Kapoor et al. 2011),

horses (Burbelo et al. 2012; Kapoor et al. 2013a), wild mice (Kapoor et al. 2013b),

bats(Quan et al. 2013) and rats (Firth et al. 2014). Of the non-primate hepaciviruses

(NPHV), those observed in horses are the most genetically similar to HCV

(Pfaender et al. 2014b) (Fig. 2). However, it remains to be shown whether these

viruses indeed cause hepatitis in experimentally inoculated animals before it can be

determined whether they might be surrogates for modeling HCV. Importantly, there

is currently no experimental evidence of NPHV transmission between horses and

humans (Pfaender et al. 2015).

4 Rodent Models

Mice are widely used in biomedical research, with many existing analytical tools

for dissecting their responses to infection. Furthermore, mice of genetically defined

backgrounds are available which are amenable to genetic manipulations. In the

following sections, we will summarize the previously established rodent models

and discuss some of the recent developments that have been explored to model

HCV infection and pathogenesis in rodents.

4.1 HCV Transgenic Mice

HCV does not readily infect mice, and thus early attempts to model aspects of HCV

pathogenesis in mice were performed by expressing individual or multiple HCV

gene products (Table 1 and reviewed in Kremsdorf and Brezillon (2007)). How-

ever, depending on the mouse background, the HCV gene product(s) expressed, and

the promoter driving expression of these proteins, the histopathological features

observed in these mice differed considerably. When HCV core was expressed under

the control of a hepatitis B virus (HBV) promoter, animals developed severe liver

disease, culminating in hepatocarcinogenesis (Moriya et al. 1997, 1998). In con-

trast, driving HCV core and/or E1/E2 expression with a major urinary protein

(MUP) or CMV promoter produced a less pronounced and more variable disease

phenotype (Pasquinelli et al. 1997; Chiyo et al. 2011; Satoh et al. 2010; Naas

et al. 2005; Benali-Furet et al. 2005; Chang et al. 2008, 2009; Lerat et al. 2009;

Tanaka et al. 2008; Kamegaya et al. 2005; Jeannot et al. 2012). Likewise, NS5A

expression was directly cytopathic in some transgenic lines (Wang et al. 2009), but,

when under the control of an apoE or MUP promoter, liver pathologies were not

observed (Majumder et al. 2003). Similarly, expression of the HCV serine protease

NS3/NS4A or NS4B in mouse models has not been shown to induce liver injury

(Desai et al. 2011; Frelin et al. 2006; Wang et al. 2006).
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In addition to modeling aspects of HCV-induced liver disease, expression of

HCV proteins has been utilized for studying HCV-specific adaptive immune

responses in the liver (Disson et al. 2004; Alonzi et al. 2004; Tsukiyama-Kohara

et al. 2011; Wegert et al. 2009; Tumurbaatar et al. 2007; Ernst et al. 2007; Furutani

et al. 2006; Takaku et al. 2003; Naas et al. 2010; Kriegs et al. 2009; Kanda

Table 1 HCV transgenic mouse models

Transgene

C NS5BNS5ANS4BNS3

NS
4Ap7E2E1 NS2 Phenotype References

C Hepatic steatosis, HCC,

hepatocyte apoptosis,

lipogenesis, cell cycle

perturbation and ER

stress

Benali-Furet

et al. (2005), Chang

et al. (2008, 2009), Lerat

et al. (2009), Moriya

et al. (1997, 1998a), and

Tanaka et al. (2008)

C E2 No evidence for liver

disease

Pasquinelli et al. (1997)

C E2E1 Contradicting findings

ranging from lacking

liver pathology to devel-

opment of HCC

Kamegaya et al. (2005),

and Naas et al. (2005,

2010)

C p7E2E1 NS2 Reduced liver inflamma-

tion in transgenic mice

compared to controls

Chiyo et al. (2011),

Satoh et al. (2010), and

Jeannot et al. (2012)

p7E2E1 Induction of liver tumors

by aflatoxin B1

Jeannot et al. (2012)

E2E1 NS2 Liver injury due to

induction of CTL

responses

Takaku et al. (2003)

NS3

N
S4

A Resistance to TNF-

α-induced liver disease,

differential IFN-induced

autophagy

Ahlen et al. (2009),

Desai et al. (2011), and

Frelin et al. (2006)

NS4B No evidence for liver

disease

Wang et al. (2006)

NS5A Contradicting findings

regarding the occurrence

of liver pathology, inhi-

bition of IFNγ induction

Kanda et al. (2009),

Kriegs et al. (2009),

Majumder et al. (2003),

and Wang et al. (2009a)

C NS5BNS5ANS4BNS3

N
S4

A

p7E2E1 NS2 Impaired clearance of

HCV trangsgene-positive

hepatocytes, hepatic

steatosis and lymphocyte

infiltratates,

lymphomagenesis, inter-

ruption of type1 IFN pro-

duction, ER stress and

hepatocyte apoptosis

Alonzi et al. (2004),

Disson et al. (2004),

Ernst et al. (2007),

Furutani et al. (2006),

Tsukiyama-Kohara

et al. (2011),

Tumurbaatar

et al. (2007), and Wegert

et al. (2009)
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et al. 2009). Pre-natal expression of HCV proteins in mice causes the murine

immune system to become tolerized to viral gene products, but this tolerance can

be disrupted via DNA vaccination, which primes CD8 T cells to target hepatocytes

expressing HCV NS3/4A (Ahlen et al. 2009). This model lends itself to testing T

cell based vaccine candidates.

Undoubtedly, HCV transgenic mice have helped analyze HCV immune

responses and viral pathogenesis, but a number of factors still diminish their utility.

Transgene copy numbers, and consequently levels and distribution of HCV protein

expression, can vary considerably due to random integration in the mouse genome.

When driven by strong viral or cellular promoters, expression of HCV gene

products can surpass the levels of viral proteins that would be reached by actual

infection. Furthermore, interpreting data acquired in transgenic mice is further

complicated since HCV proteins are being expressed outside of the inflammatory

context of acute and chronic viral infection.

4.2 Xenotransplantation Models

To overcome some of the challenges of HCV transgenic mice, xenotransplantation

models have been established in which the murine host is rendered susceptible to

HCV infection by xenoengraftment of permissive human cells in the mouse liver

(Fig. 1). As described below, a variety of approaches have been taken to accomplish

this goal.

4.2.1 Engraftment of Human Hepatoma Cells In Vivo

The simplest mouse models of xenoengraftment are made by intrahepatic injection

of human hepatoma cells. To quantify RNA replication and responses to antiviral

treatment such as interferon-α (IFN-α) in vivo, Huh7 cells containing an HCV

replicon expressing luciferase have been injected into severe combined immuno-

deficient (SCID)/beige mice and analyzed by whole-body bioluminescence imag-

ing (Zhu et al. 2006). This system is simple with minimal intra- and

interexperimental variation but is not a bona fide infection model.

To actually enable the study of anti-HCV immune responses, immunocompetent

fetal rats have been tolerized in utero to Huh7 cells and, after birth, transplanted

with a larger number of the same cells (Wu et al. 2005). Remarkably, Huh7 cells,

which are usually not readily susceptible to HCV infection in vitro, supported

viremia of a patient-derived genotype 1a isolate. However, the low levels of

observed viremia, complex nature of these experiments, and potential inability of

rat T cells to recognize HCV antigens due to the presence of human leukocyte

antigen (HLA) on the transplanted Huh7 cells make this model less than ideal.
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4.2.2 Ectopic Liver Implantation Models

While it is more desirable to engraft hepatocytes instead of hepatoma cells in the

human parenchyma, this is not readily accomplished with primary human hepato-

cytes. However, pieces of human liver and even artificial human liver organoids

have been successfully implanted in ectopic sites. In the so-called “Trimera mouse”

(Ilan et al. 2002), small pieces of human liver were maintained under the kidney

capsule or the ear of SCID mice. When the liver tissue was taken from HCV

positive donors or naı̈ve tissue was infected with HCV prior to transplantation,

viremia was maintained for several weeks. This model has been subsequently used

to assess the efficacy of neutralizing antibodies (Eren et al. 2006), but the techni-

cally and logistically challenging experimental set-up, fairly rapid graft failure and

low levels of HCV viremia have hampered the utility of the model.

To overcome the need for primary liver tissue, bioengineering approaches have

been undertaken to reconstruct increasingly more complex tissue organoids suitable

for transplantation. Human ectopic artificial livers (HEALs) have been created

where cryopreserved primary human hepatocytes are supported by polymeric scaf-

folds, which aid maintenance of the microenvironment and thus stablize these cells.

While simpler, polyethylene glycol (PEG)-based polymers were used initially

(Chen et al. 2011), newer models allow for even greater control of the scaffold

architecture, improving vascularization and, consequently, hepatocyte survival

(Miller et al. 2012; Stevens et al. 2013). In mice engrafted intraperitoneally with

HEALs (Fig. 1), humanized liver functions could be monitored for several weeks

but susceptibility to hepatotropic pathogens, including HCV, has yet to be shown.

4.2.3 Human Liver Chimeric Mice

The most commonly used and best characterized humanized xenotransplantation

models for HCV are human liver chimeric mice (Fig. 1). Suitable xenorecipient

strains are immunodeficient to avoid graft rejection and also have endogenous liver

injury to both promote hepatocyte proliferation and give the donor hepatocytes a

growth advantage over the mouse hepatocytes. Donor cells, including hepatoma

cell lines, primary hepatocytes and, more recently, stem-cell derived hepatocytes,

are injected intrasplenically. Traveling via the portal venous system, the donor cells

pass through the liver sinusoidal endothelial cells and form clusters that expand

upon induction of liver injury. This can be done via partial hepatectomy or

treatment with hepatotoxic chemicals, like retrorsine and carbon tetrachloride.

Genetic approaches have also been utilized as they allow for more control over

the severity of the liver injury and can limit hepatotoxicity to specifically mouse

hepatocytes.

Robust engraftment of human hepatocytes has been shown in a number of

immunodeficient liver injury models, including Alb-uPA (Meuleman et al. 2005;

Mercer et al. 2001), FAH�/� (Bissig et al. 2010; de Jong et al. 2014), AFC8
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(Washburn et al. 2011), MUP-uPA (Tesfaye et al. 2013) and HSV-TK (Kosaka

et al. 2013) mice. The resultant human liver chimeric mice are susceptible to

several human-tropic pathogens, including HBV, HCV and parasites that cause

malaria in humans (reviewed in (Meuleman and Leroux-Roels 2008). Additionally,

these mice can be used for monitoring human-like metabolic and toxicological

responses in testing antimicrobial compounds.

With the exception of AFC8 mice, all the above-mentioned xenorecipient strains

have demonstrated robust human hepatic chimerism when using adult hepatocytes.

Due to genetic differences between hepatocyte donors, host responses can differ. To

minimize inter-experimental variations and create a renewable resource for human

donor cells, stem cell-derived hepatocytes have been explored as a possible solu-

tion. Hepatocyte-like cells (HLCs) can now be routinely generated from embryonic

stem (ES) or induced pluripotent stem (iPS) cells (Touboul et al. 2010; Si-Tayeb

et al. 2010). These HLCs express hepatocyte-specific markers, support hepatocyte-

specific metabolic functions and can be infected with HCV (Schwartz et al. 2012;

Wu et al. 2012; Roelandt et al. 2012). Recent studies suggest that HLCs can also be

engrafted reasonably well in vivo and support persistent HCV infection (Carpentier

et al. 2014). However, engraftment efficiency seems to depend strongly on the

xenorecipient strain, as immunodeficient MUP-uPA mice, but not other liver injury

models, support robust in vivo expansion.

4.2.4 HCV Immunity and Pathogenesis in Humanized

Xenotransplantation Models

Human liver chimeric mice are currently the only experimental models besides

chimpanzees that are readily susceptible to HCV. These mice have been used to

study innate host responses to HCV and for testing the efficacy of novel therapeutic

regimens. To expand the use of these mice in analyzing human immune responses

to HCV, protocols are being refined so that mice are co-engrafted with human

hepatocytes and components of a human immune system (Fig. 1). Initial attempts

co-injected a mixture of human fetal hepatoblasts, non-parenchymal cells and

hematopoietic stem cells (HSCs) into AFC8 mice, yielding reasonable immune

cell engraftment but low human hepatic chimerism (Washburn et al. 2011). None-

theless, dually engrafted mice did become chronically infected following inocula-

tion with HCV patient isolates and exhibited an HCV-specific T cell response,

which appeared to be responsible for observed signs of early liver fibrosis. While

these data are encouraging, protocols need to be refined further to improve dual

chimerism and minimize inter- and intravariability of experiments. More recent

reports have demonstrated that extensive double humanization of both the liver and

immune system can be achieved with mature hepatocytes and HSCs (Gutti

et al. 2014; Wilson et al. 2014). Long-term dual reconstitution, without any

evidence of hepatocyte rejection by the human immune system, was sustained

even when the human cells were mismatched in their major histocompatibility

complex (MHC, (Gutti et al. 2014). The latter observation is consistent with the
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limited HLA matching in human liver transplantations, presumably due to the

tolerogenic microenvironment of the liver. However, the limited function of the

transplanted human immune system at least partially contributes to the lack of

allogeneic graft rejection in dually engrafted humanized mice. To improve both the

cellular complexity and functionality of the engrafted human immune system,

several modifications are being tested. These include, but are not limited to: the

expression of human orthologs of non-redundant cytokines with limited biological

cross-reactivity to foster development of human immune cell lineages which

currently do not develop efficiently in conventional humanized mice; expression

of human MHC in the absence of mouse MHC to ensure faithful presentation of

self- and virally derived peptides to human T cells and to reduce graft-versus-host-

disease; co-transplantation of HSC donor-matched human thymic cortical epithe-

lium to facilitate proper T cell selection; the improvement of lymphoid architecture

organization, especially in the spleen and lymph-nodes, to allow for adequate T and

B cell priming; genetic replacement of non-compatible immune cell receptors and

chemokines expressed on non-hematopoietically derived cells to improve

e.g. immune cell trafficking; the introduction of a human microbiome to account

for effects of species-specific commensals on the immune system (reviewed in

Shultz et al. 2012).

5 Genetically Humanized Mouse Models for HCV

Infection

An inbred mouse model with inheritable susceptibility to HCV would overcome the

technical difficulties of the xenotransplantation model (Fig. 1). The challenge is to

systematically identify and overcome any restrictions to HCV infection in murine

cells. HCV’s narrow host range is not completely understood, and the viral life

cycle is blocked or insufficiently supported in murine cells at multiple steps.

Productive HCV uptake into human hepatocytes relies on a large number of

human host molecules (reviewed in Ding et al. 2014). These include glycosamino-

glycans (GAGs) present on heparan sulfate proteoglycans (HSPGs), low-density-

lipoprotein receptor (LDLR) (Agnello et al. 1999), CD81 (Pileri et al. 1998),

scavenger receptor class B member 1 (SCARB1) (Scarselli et al. 2002), the tight

junction proteins claudin-1 (CLDN1) (Evans et al. 2007) and occludin (OCLN)

(Liu et al. 2009; Ploss et al. 2009), the receptor tyrosine kinases epidermal growth

factor receptor (EGFR) and ephrin receptor A2 (EphA2) (Lupberger et al. 2011),

the cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) (Sainz et al. 2012),

transferrin receptor 1 (TfR1) (Martin and Uprichard 2013) and the cell death-

inducing DFFA-like effector b (CIDEB) (Wu et al. 2014). The block of HCV

entry in rodent cells can be explained by differences in critical residues in the

second extracellular loops of CD81 (Flint et al. 2006; Higginbottom et al. 2000) and

OCLN (Michta et al. 2010). Consequently, expression of human CD81 and OCLN,
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along with human or mouse SCARB1 and CLDN1, facilitates HCV uptake in

mouse cells in vitro (Ploss et al. 2009). Other human entry factors appear to

contribute minimally to HCV species tropism at the level of entry, but their

individual roles still need to be experimentally tested.

Establishing HCV glycoprotein-mediated uptake into mouse livers adenovirally

transduced with CD81 and OCLN opened the door for genetically overcoming the

barrier to HCV entry in mice. Indeed, expression of human CD81 and OCLN

appears sufficient for HCV entry into hepatocytes of fully immunocompetent

inbred mice. This genetically humanized mouse model allows dissection of the

HCV entry process in the 3D context of the liver in vivo and has been applied to test

pre-clinically the efficacy of neutralizing antibodies and vaccine candidates (Giang

et al. 2012; Dorner et al. 2011; de Jong et al. 2014). Transgenic mice have also been

developed in which human CD81, SCARB1, CLDN1 and OCLN expression are

driven by liver-specific promoters (Hikosaka et al. 2011). However, initial reports

have suggested that these lines are resistant to HCV infection in vivo (Hikosaka

et al. 2011). This observation is likely due to the lower level of entry factor

expression in the transgenic mice and the need for a very sensitive reporter system

to quantify viral entry (Dorner et al. 2011).

As an alternative to the genetic host adaptations described above, previous

studies have shown that the block of HCV at the level of entry can also be overcome

through viral adaptation (Fig. 1). Using an in vitro selection approach, mutations

within HCV E1 and E2 that increased the affinity of the viral envelope for mouse

CD81 were identified. These mutations appeared to more broadly affect the con-

formation of the viral envelope, as the resulting mouse CD81-adapted strain is also

less dependent on human OCLN and can enter cell lines expressing only mouse

CD81, SCARB1, CLDN1 and OCLN (Bitzegeio et al. 2010). It has yet to be

demonstrated if this mouse-adapted HCV strain can enter mouse primary hepato-

cytes in vitro or in vivo.

Establishing HCV entry in vivo has some utility, but what is ultimately needed is

a model that supports all steps of the viral life cycle. More than a decade ago, it was

shown that HCV RNA is translated, but not readily replicated, following entry into

murine cells (Dorner et al. 2011; McCaffrey et al. 2002). Subsequent studies in cell

culture demonstrated that dominant negative inhibitors are not present and that the

murine orthologs of host factors critical for HCV replication cooperate sufficiently

with the viral replication machinery, as HCV replicons, i.e. selectable HCV RNA

genomes, can replicate in murine cell lines (Zhu et al. 2003; Uprichard et al. 2006;

Frentzen et al. 2011). Nevertheless, the efficiency of post-entry steps of the viral life

cycle could conceivably be improved with human host factors important for HCV

replication, assembly and/or egress. However, previous gain- and loss-of-function

studies converged on only a few critical host factors, namely miR-122,

cyclophilin A, phosphatidylinositol 4 kinase IIIα (PI4KIIIα), and apolipoprotein

E (reviewed in (Bartenschlager et al. 2010)) – all of whose sequences are largely

conserved between mice and humans. Thus, additional proviral factors that enhance

HCV replication and/or assembly in mouse cells have yet to be identified.
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Numerous studies have shown that innate antiviral responses play a critical role

in limiting HCV infection in human cells, including hepatoma cell lines and human

primary hepatocytes (Andrus et al. 2011; Marukian et al. 2011). Likewise, HCV

replication is drastically enhanced in cell lines with strong impairments in type I

and III interferon signaling, such as mouse cells lacking MAVS (Frentzen

et al. 2014), protein kinase R (PKR; (Chang et al. 2006)), interferon regulatory

factor 3 (IRF3; (Lin et al. 2010)) or STAT1 (Vogt et al. 2013). Known mechanisms

by which HCV evades antiviral defenses, such as the cleavage of MAVS (Meylan

et al. 2005) or Toll/IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF
or TICAM; (Li et al. 2005)), appear to function in mouse cells (Vogt et al. 2013).

However, differences in the kinetics and/or magnitude of virally induced innate

defenses may restrict HCV RNA replication more efficiently in mouse compared to

human cells. Consistent with these in vitro data, mice expressing human HCV entry

factors crossed to genetic backgrounds impaired in antiviral innate defenses support

low level HCV RNA replication (Dorner et al. 2013). In these genetically human-

ized mice, infectious HCV is detectable in circulation, confirming previous studies

that demonstrated late stages of the HCV life cycle are supported in mouse cells if

sufficient ApoE is present (Long et al. 2011).

Recapitulating the entire HCV lifecycle in inbred immunocompetent mice is an

important next step in developing a mouse model suitable for mechanistic studies of

HCV immunity and pathogenesis. The previously published model required

immune-suppression to establish low-level viremia. However, more recent work

suggests that this may be strain-dependent. In fact, mice expressing human CD81,

SCARB1, CLDN1 and OCLN on the fully immunocompetent ICR mouse back-

ground not only supported persistent infection with various HCV isolates very

efficiently but also developed clinically apparent liver disease (Chen et al. 2014).

While these data are somewhat difficult to reconcile with most previously published

literature, it is conceivable that a fortuitous allele combination in the genetically

variable outbred ICR stock favors susceptibility to HCV.

6 Summary and Outlook

The advent of highly potent DAAs holds promise to effectively treat the great

majority of patients. However, current treatments are very expensive and mandate

strict adherence to dosing to prevent the outgrowth of resistant viral variants. To

provide simpler and more cost-effective interventions and to optimally prevent

infections, a HCV vaccine may ultimately be needed. Testing and prioritization of

immunotherapies and vaccines is delayed by the lack of (a) readily accessible

animal model(s). More tractable in vivo platforms could also be deployed to answer

questions of basic virology, HCV pathogenesis, and correlates of protective immu-

nity (Fig. 3). A variety of partially complementary approaches are currently being

pursued to develop better small animal models for HCV infection. While most other

NHP species besides chimpanzees were thought to be resistant to HCV infection,
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recent studies show that the HCV life cycle can be established in HLCs derived

from pig-tailed macaques and primary hepatocytes from rhesus macaques. This

suggests that certain NHP species may indeed be permissive to HCV infection. In

addition, the discovery of hepaciviruses genetically closely related to HCV in

outbred mice, rats, dogs and horses may provide further avenues for studying

HCV. The barriers of HCV’s narrow host tropism are now better understood and

have spurred a combination of viral adaptations and/or genetic host humanizations

to establish inbred rodent models with inheritable susceptibility to HCV infection.

Xenotransplantation approaches are being continuously refined, and it has become

possible to reproducibly generate human liver chimeric mice at fairly high through-

put. These mice can then be used to analyze all aspects of the viral life cycle with

genetically diverse HCV isolates. Improvements in protocols yielding HLCs from

directed differentiation of ES and iPS cells hold promise to develop renewable

hepatocyte sources of genetically defined backgrounds. Furthermore, these

advances may enable the generation of humanized mouse avatars engrafted with

patient-specific hepatocytes to model clinically relevant disease phenotypes. In

proof-of-concept studies, human liver and components of a human immune system

were robustly engrafted in a single xenorecipient, paving the way for modeling

HCV-associated hepatitis, including relevant co-infections with HBV and/or HIV.

Undoubtedly, as new techniques and protocols are perfected, it will remain impor-

tant to continue evaluating the ability of any new HCV model to faithfully recapit-

ulate aspects of HCV pathogenesis and its consequences in humans.

Fig. 3 Comparison of different animal models for hepatitis C
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