
Chapter 2
Zero-Shear Viscosities of Polysaccharide
Solutions

Takahiro Sato

Abstract Solution viscosities are strongly dependent on the molecular weight, the
concentration, and the chain conformation of polymers added. We have formulated
the intrinsic viscosity [�] at infinite dilution and the zero-shear viscosity � at
finite concentrations using the molecular theory based on the wormlike chain and
fuzzy cylinder models. In the theory, the solution viscosity at finite concentrations
is affected by both hydrodynamic and entanglement interactions. The formulated
viscosity equations quantitatively predict [�] and � as functions of the wormlike
chain parameters and the strength of the hydrodynamic interaction and demonstrated
that the relative importance of the hydrodynamic and entanglement interactions
in the solution viscosity depends on the chain stiffness. We have compared the
formulated viscosity equations with experimental results for solutions of three
polysaccharides and two synthetic polymers covering a wide range of the chain
stiffness.

Keywords Intrinsic viscosity • Zero-shear viscosity • Hydrodynamic interac-
tion • Entanglement interaction • Wormlike chain model • Fuzzy cylinder model

2.1 Introduction

Various polysaccharides are contained in foods and drinks and provide unique rhe-
ological properties. In many cases, foods and drinks need suitable viscosity to taste
comfortably, and polysaccharides are utilized as rheology control reagents for foods
and drinks. The addition of polysaccharides remarkably changes viscosities of foods
and drinks, and it is well known that the viscosities are strongly dependent on the
molecular weight, the concentration, and the chain conformation of polysaccharides
added [1].

To understand the viscosity behavior of polysaccharide solutions, the present
chapter deals with the molecular theory on the solution viscosity of linear-chain
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polymers. The polymer conformation ranges from the rigid rod to flexible random
coil, and the solution concentration covers from the dilute limit to the concentrated
regime just below the phase boundary concentration where the liquid crystal phase
appears.

Linear-chain polymers are usually viewed as the wormlike chain model [2] and
characterized by the persistence length (or the stiffness parameter) q, the contour
length h per monomer unit, and the thickness (or the diameter) b of the wormlike
chain, as well as the monomer unit molar mass M0 and the molecular weight M.
The intrinsic viscosity [�] characterizing the viscosity of infinitely dilute polymer
solution is calculated in terms of these wormlike chain parameters. With increasing
the polymer concentration, the intermolecular interaction contributes to the solution
viscosity. We can divide the intermolecular interaction into the hydrodynamic
interaction and the entanglement interaction. The latter interaction can be treated
by the fuzzy cylinder model [3], which is explained below. The Huggins coefficient
k0 consists of the two interaction terms. The relative importance of the two terms
depends on the persistence length q and the contour length L D hM/M0. Finally, the
zero-shear viscosity � over a wide concentration range is quantitatively predicted by
a viscosity equation derived by a molecular theory.

The present chapter consists of seven sections. After briefly mentioning the
solution viscosity behavior of a polysaccharide as a typical example (Sect. 3.2),
we present an introduction of viscometry (Sect. 2.3) and definition of the viscosity
coefficient (Sect. 2.4) as a basic background to explain the molecular theory.
Sections 2.5 and 2.6 deal with the molecular theory for polymer solution viscosity
at infinite dilution and at finite concentrations, respectively. In Sect. 2.7, we
compare the molecular theory explained with viscosity data for five polymer
solution systems of which chain stiffness is largely different and discuss how the
concentration, molecular weight, and chain stiffness affect the polymer solution
viscosity. Section 2.8 summarizes the results and conclusions explained in this
chapter.

2.2 Polysaccharides Used as the Viscosity Enhancement
Reagent

Polysaccharides are biopolymers abundant in nature, produced by plants, animals,
fungus, algae, and microorganisms [4]. Human beings have used the natural poly-
mers for long years, even before chemists did not verify the existence of polymers.
Polysaccharides produced by industrial fermentation, say xanthan (xanthan gum),
scleroglucan, and succinoglycan, are utilized as viscosity enhancement reagents
adding to foods, cosmetics, paints, cements, and so on. Viscosities of aqueous
solutions of xanthan and scleroglucan are stable against changes of temperature,
added salt, and pH, while the solution viscosity of succinoglycan is known to
collapse at a melting temperature, where this polysaccharide undergoes a structural

http://dx.doi.org/10.1007/978-4-431-56080-7
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Fig. 2.1 Polymer concentration dependences of the zero-shear viscosity of xanthan in aqueous
NaCl solutions; (a) data for different molecular weight samples; (b) data at different NaCl
concentrations [3].

order-disorder transition. The above three polysaccharides are all multistranded
helical polymers, and their solution viscosities strongly change by the denaturation
of their native helical conformations.

Figure 2.1a shows concentration dependences for 0.1 M aqueous NaCl solutions
of xanthan double helices of different molecular weights. In the figure, 5400 k
(D5.4� 106) indicates the weight-average molecular weight of the original xanthan
sample, and lower molecular weight samples were prepared by sonication of the
original sample. For the original xanthan sample, the addition to the aqueous salt
solution only by 0.5 wt.% enhances the solution viscosity 106 times as high as that
of the solvent, but the strong concentration dependence remarkably diminishes with
decreasing the molecular weight of the xanthan sample. As mentioned above, the
aqueous xanthan solution viscosity is stable by adding salt, in spite of the fact that
xanthan is a polyelectrolyte, which is demonstrated in Fig. 2.1b. This is a sharp
contrast with the viscosity collapse of aqueous solutions of normal polyelectrolytes
by addition of salt. This contrast comes from the stiff double-helical conformation
of xanthan.

Because of the strong concentration and molecular weight dependences such
as shown in Fig. 2.1a, we can control the viscosity of liquids by adding a small
amount of viscosity enhancement reagents. To give a suitable viscosity to liquid
products, we have to properly select the kind of viscosity enhancement reagent,
as well as its molecular weight and concentration. In what follows, we present a
viscosity equation, which gives us a guideline for the selection. Before explaining
the viscosity equation, we will review basic knowledge of rheology and molecular
theory of polymer solution viscosity.
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2.3 Viscometry Using Various Types of Flow

2.3.1 Various Types of Viscometers

There are various types of viscometers, of which principles are illustrated in Fig. 2.2.
To determine the viscosity coefficient �, one measures the flow time t for the
capillary viscometer (Panel a), falling time t of the ball for falling ball viscometer
(Panel b), and the torsional angle ‚ of the wire for the coaxial cylinder and corn-
and-plate viscometers (Panels c and d). The basic equations to determine � are
given by
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Fig. 2.2 Schematic diagrams of four types of viscometers: (a) the capillary viscometer, where l
and a are the length and inner radius of the capillary, P is the pressure difference between the inlet
and outlet of the capillary, and Q is the volume of the sample liquid flowing out per unit time (VtD
Qt is the volume of the liquid flowing during time t); (b) the falling ball viscometer, where a and
¤ are the radius and the falling velocity of the ball in the sample liquid (L D ¤t is the distance for
the ball to fall during time t); (c) the coaxial cylinder viscometer, where l and r1 are the length and
radius of the inner cylinder and r2 and � are the radius and angular velocity of the outer cylinder;
(d) the corn-and-plate viscometer, where R and � are the radius and angular velocity of the corn
and � is the gap angle between the corn and plate
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where m is the mass of the ball, g is the gravitational acceleration, k is the torsional
elastic constant of the wire suspending the inner cylinder (Panel c) or the corn (Panel
d), and other parameters appearing the equations are explained in the caption of
Fig. 2.2. In Fig. 2.1, the data of � lower and higher than 1 mPa.s were obtained by a
capillary viscometer in Panel a and by a ball viscometer in Panel b, respectively.

The rate of each flow is characterized by the shear rate
:
� of which definition will

be given in the next subsection. While the shear rate of the flow in Panel d is uniform
within the sample liquid,

:
� of the flows in Panels a–c are not uniform. The typical

shear rate of each viscometer is given below:

:
� D
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�=� .Panel d/

(2.2)

As mentioned in the next section, Sect. 2.4, � may depend on
:
� , and the shear rate

dependence is most accurately measured by the corn-and-plate viscometer, where
the shear rate is constant within the sample liquid.

2.3.2 Simple Shear Flow

Though we have mentioned various flow types used for rheometry, all the flow can
be regarded locally as the simple shear flow, which is defined as the flow in the
sliding parallel planes illustrated in Fig. 2.3. In what follows, we consider this simple
shear flow. The rate of this flow can be specified by the shear rate

:
� , the velocity

V of the upper plane relative to the bottom place divided by the thickness d of the
liquid between the two parallel planes.

Let us define the Cartesian coordinate system where the x and y axes are parallel
to the flow direction and vertical to the sliding planes, respectively, and the z axis is

Fig. 2.3 Simple shear flow of the sample liquid sandwiched between the parallel plates
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chosen to be vertical to both x and y axes to form the right-hand coordinate system
(i.e., the upper side of the paper of Fig. 2.3 is chosen to be the positive z). Then, the
velocity vector ¤ of the liquid can be written as
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where the 3� 3 matrix in the third side of the above equation is the shear rate matrix,
which is divided into the two 3� 3 matrices in the fourth side. As shown in Fig. 2.4,
the two matrices in the fourth side represent the extension and rotation, respectively.
Oppositely speaking, the simple shear flow consists of the vortex and rotation. We
will discuss the effect of the rotation matrix on the polymer solution viscosity in the
following.

To slide the upper plane by the velocity V, we need to apply the force F to the
plane, and we define the shear stress � by F/A where A is the area of the plane. The
force is proportional to V, so that we can write

� � F

A
D �

V

d
D �

:
� (2.4)

where � is the proportional constant and we have used the definition of
:
� in the

last equation. This is the definition of the viscosity coefficient �. Since we apply the
force F to the plane and the plane moves the distance V per unit time, we make the
work FV per unit time to the flowing liquid. Using � and

:
� , we can write the work

Fig. 2.4 Extensional and rotational components of the simple shear flow
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w per unit time and unit volume in the form

w D FV

Ad
D �

:
� D �

:
�

2
(2.5)

The last equation was obtained from Eq. 2.4.

2.4 Viscosity Coefficient

The viscosity coefficient � for a given polymer-solvent system depends on not only
the shear rate

:
� of the flow, the temperature, and the pressure but also the polymer

concentration c (the mass concentration with the units of g/cm3) and the molecular
weight M. Although we mostly deal with the c and M dependences in this chapter,
we briefly mention the dependences on the shear rate and temperature.

If the shear rate of the solution flow is low enough, � is independent of
:
� . This

flow behavior is referred to as the Newtonian, and the viscosity coefficient at the low
shear rate limit is called as the zero-shear viscosity. When the shear rate is increased
in the rodlike and flexible polymer solutions, the orientation of rodlike polymer
becomes anisotropic, and the conformation of the flexible polymer chain deforms
from the thermally equilibrium one, respectively, in the solutions, which reduces the
viscosity coefficient (the shear thinning effect). For aggregating polymer solutions,
the shear flow may dissociate the aggregates, which also brings about the shear
thinning effect. Although the shear thinning effect is important in some cases, we
consider only the zero-shear viscosity in what follows.

The solvent viscosity strongly depends on the temperature. According to the hole
theory of Cohen and Turnbull [5], the flow of the solvent composed of spherical
particles occurs by the jump of the particle into a hole nearby, which is an activation
process of a relatively high activation energy, leading to the strong temperature
dependence. The conformation of the polymer chain is also dependent on the
temperature, but its contribution to the temperature dependence of the solution
viscosity is usually minor. If the heating dissociates polymer aggregates or thermal
denaturation, the solution viscosity can reduce remarkably.

It is well known that the addition of the polymer to the solvent can increase
remarkably the solution viscosity. For dilute polymer solutions, the c dependence of
the zero-shear viscosity � is usually written as

� D �s

�
1 C Œ�	 c C k0Œ�	2c2 C � � �

�
(2.6)

where �s is the solvent zero-shear viscosity, [�] is the intrinsic viscosity, and k0 is
the Huggins coefficient. The intrinsic viscosity [�] is a measure of the ability of the
viscosity enhancement of the polymer species, which we will consider theoretically
later. The concentration dependence for the polymer solution viscosity is usually
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so strong that terms with higher order than c2 in Eq. 2.6 become important with
increasing c.

The zero-shear viscosity also strongly depends on the molecular weight M of
the solute polymer. Historically, the M dependence of the intrinsic viscosity [�] has
been important because one can determineM from [�]. The famousMark-Houwink-
Sakurada equation given by

Œ�	 D KMa (2.7)

with two constants specific to the polymer-solvent system was proposed for this
purpose. However, it should be noticed that this equation was originally proposed
for flexible polymers and does not hold for stiff polymers over a wide M range.
On the basis of the scaling concept [6, 7], many polymer solution properties in
the semi-dilute regime can be expressed as a universal function of c/c*, where c*

is the overlap concentration. Since c* may be equated to the reciprocal of [�],
�0 becomes a universal function of c[�]. Using Eq. 2.6, we can say that both c
and M dependences of �0 can be expressed as a function of c[�]. We should note
again that the scaling concept was proposed for flexible polymer solutions, and it is
questionable to apply the above argument to stiff polymer solutions.

2.5 Intrinsic Viscosity [2, 8]

2.5.1 Friction Between Polymer and Solvent

Let us calculate the intrinsic viscosity of a rodlike and flexible polymer chains
composed by N beads of a diameter b suspended in the simple shear flow of the
solvent (cf. Fig. 2.5). As mentioned in the previous section, the simple shear flow
can be divided into the extension and rotation. At a sufficiently low shear rate, the
former flow component does not affect the motion of the polymer chain, but the
latter flow component rotates the polymer chain around the center of mass of the
polymer chain with the angular velocity of

:
�=2. (The center of mass itself moves

along the x direction, but this motion does not contribute to �. We choose the center
of mass as the origin of the Cartesian coordinate system and consider the relative
motion of each bead to the center of mass.)

The simple shear flow behavior introduced in Sect. 3 does not depend on the z
coordinate. Therefore, we omit the z component of vectors and matrices appearing
in what follows, just for simplicity. The (relative) velocity ¤i of the i-th bead located
at riD (xi, yi) and the (unperturbed) solvent flow velocity ¤ı

s at the same position
are given by
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�
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Fig. 2.5 Bead models for the rodlike polymer and the Gaussian chain and a bead under the simple
shear flow

The difference between ¤i and ¤ı
s produces the frictional force fi D 
(¤ı

s – ¤i)
ri, where 
 (D3��sb) is the frictional coefficient of the bead. The energy dissipation
by this frictional force per unit time is given by fi.¤ı

s, and their sum over beads
in a unit volume of the solution should be equal to w in Eq. 2.5 from the energy
conservation rule, and we have the following relation:

w D cNA

M

NX

iD1

fi � �ı
s D 3��sbcNA

2M

:
�

2
NX

iD1

yi
2 (2.9)

where NA is the Avogadro constant and the prefactor cNA/M is the number of
polymer chains per unit volume of the solution. Combining this equation with
Eq. 2.5, we obtain the molecular expression for the zero-shear viscosity induced
by the friction between polymer and solvent (the viscous component of �) in the
form

�V D 3��sbcNA

2M

NX

iD1

yi
2 (2.10)

In the above calculation of w, we did not consider the interchain hydrodynamic
interaction, so that Eq. 2.10 should be applied to dilute solution where c2 and the
higher-order terms are neglected. Thus, the comparison between Eqs. 3.4.1 and 3.5.3
gives us the equation:

Œ�	 D 3�bNA

2M

NX

iD1

yi
2 (2.11)

http://dx.doi.org/10.1007/978-4-431-56080-7_3\#Equ4.1
http://dx.doi.org/10.1007/978-4-431-56080-7_3\#Equ5.3
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Applying this equation to the rodlike polymer and the Gaussian chains, we obtain
the following expressions:

Œ�	 D
(

�NA.bN/3

8M .rodlike polymer/
�NAb3N2

12M .Gaussian chain/
(2.12)

From the latter equation, it turns out that the exponent a in Eq. 2.7 is 1 for
the Gaussian chain, which is the famous Staudinger equation for [�]. Ironically,
Staudinger himself believed for a long time that all polymer chains are rodlike,
but a for the rodlike polymer is 2 in Eq. 2.12, instead of his equation. Moreover,
experimental M dependences of [�] reported for many flexible polymer-solvent
systems did not obey the Eq. 2.7 for the Gaussian chain.

2.5.2 Intramolecular Hydrodynamic Interaction

The above calculation, however, has not taken into account the perturbation of
the solvent flow by motions of beads surrounding each bead. But actually this
perturbation is important, and we have to modify Eq. 2.12 considering this effect.
Figure 2.6 illustrates the solvent flow around the bead moving at the velocity ¤ by

Fig. 2.6 Solvent flow field around a moving bead at the velocity ¤ in the x direction
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the external force FD 3��s¤. Mathematically, the perturbation of the solvent flow
¤0

s at the position r from the moving bead can be expressed by

¤0
s D TF; T � 1

8��sr

�
I C rr

r2

�
(2.13)

where r� jrj, I is the unit tensor, rr is the dyadic [(rr)˛ˇ D ˛ˇ; ˛, ˇ D x, y, z],
and T is called as the Oseen tensor. By this perturbation, the solvent flow velocity
¤s at the position of the i-th bead must be written as

¤s D ¤ı
s C

X

j¤i

¤0
s;j (2.14)

instead of Eq. 2.8, where ¤0
s,j is the perturbation by the j-th bead calculated by

Eq. 2.13 with rD ri – rj (rj: the position vector of the j-th bead).
Using this equation for ¤s, Kirkwood and Riseman calculated [�] for the rodlike

polymer and the Gaussian chain both with sufficiently large N. Their results are
written as

Œ�	 D
8
<

:

�NAL3

90M ln.L=b/
.rodlike polymer/

63=2ˆ
hS2i3=2

M .Gaussian chain/
(2.15)

where L (D bN) is the length of the rod, hS2i (D b2N/6) is the square radius of
gyration of the Gaussian chain, and ˆ is the Flory viscosity constant (D2.87� 1023).
The Mark-Houwink-Sakurada exponent a is 0.5 for the Gaussian chain, which
agrees with experimental results. Compared with the Einstein viscosity equation for
a hard sphere, it can be seen that the Gaussian chain with the radius of gyration of
hS2i1/2 is equivalent to the sphere with the radius of 0.87hS2i1/2, giving the same [�].
Because the solvent inside the Gaussian chain rotates together with the chain by the
intramolecular hydrodynamic interaction, the Gaussian chain behaves like a sphere.
The double logarithmic plot of [�] againstM for rodlike polymer follows a concave
curve due to the factor 1/ln(L/b) in Eq. 2.15, and the slope approaches ca. 1.7 at high
M, which is also consistent with experimental results, as mentioned below. Thus, for
the rodlike polymer, [�] does not obey the Mark-Houwink-Sakurada equation.

2.5.3 Contribution of the Elastic Stress

It is well known that polymer molecules move and rotate randomly by thermal
agitation in solution, but so far we have not taken into account this Brownian motion,
which may contribute to the solution viscosity. When a stepwise shear deformation
is exerted on the rodlike polymer solution, the extension component (cf. Eq. 2.2) of
the very fast shear flow orients rods to the direction along the line y D x. After the
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deformation, the shear flow is stopped and the orientation of the rods is randomized
by the rotational diffusion. Thus, the stepwise deformation provides the transient
orientational entropy loss. According to the theory of rubber elasticity, the entropy
loss induces the force (or the stress) to recover the system to the original state
before the deformation (the Le Chatelier principle), and the transient stress after
the stepwise shear deformation is written as

� D kBT

5

cNA

M
exp .�2Drt/ (2.16)

for thin rods (L >>b), where kBT is the Boltzmann constant multiplied by the
absolute temperature, t is the time elapsing after the deformation, and Dr is the
rotational diffusion coefficient of the rodlike polymer in the solution.

This stress relaxation followed by the stepwise deformation can be expressed by
the Maxwell model consisting of an elastic spring with the spring constant k and a
dashpot including a fluid of the viscosity coefficient �d in a series, which writes the
transient stress as

� D k exp .�t=�/ (2.17)

where � is the relaxation time given by �d/k. Comparing Eqs. 2.16 and 2.17, we have
the relations kD (kBT/5)(cNA/M) and � D 1/2Dr. On the other hand, for the steady
shear flow, the Maxwell model gives the equation for the shear stress as

� D k�
:
� (2.18)

Compared this equation with Eq. 2.3, the elastic component of the zero-shear
viscosity �E is related to Dr by

�E D RTc

10MDr
(2.19)

with the gas constant R (DkBNA).
The hydrodynamic calculation gives us the rotational diffusion coefficient Dı

r,0

at infinite dilution in the form

Dı
r;0 D 3kBT ln .L=b/

��sL3
(2.20)

in the condition of L >>b. By adding the elastic component to Eq. 2.15 of [�] for the
rod with L >>b, we obtain the total intrinsic viscosity as

Œ�	 D 2�NAL3

45M ln .L=b/
(2.21)
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The elastic component enlarges [�] by the factor 4, but the M dependence does not
change.

The Gaussian chain has a lot of internal degrees of freedom, and the micro-
Brownian motion with respect to the degrees of freedom can be treated by using
the bead-spring model where N beads are connected by N � 1elastic springs. Zimm
calculated [�] for the bead-spring model including the effect of the intramolecular
hydrodynamic interaction and micro-Brownian motion. The result is given in the
same form as the second line of Eq. 2.15, where ˆ is written as

ˆ D �

4

r
�

3
NA

NX

jD1

1

�0
j

(2.22)

where �0
j is the eigenvalue of the transformationmatrix into the normal coordinates.

The numerical calculation of �0
j gives us ˆ to be 2.84� 1023, which is in a

good agreement with ˆ obtained by Kirkwood and Riseman (Eq. 2.15), but this
agreement may be just by accident, because the two theories used the different
polymer models. For the bead-spring model in solution, � cannot be divided into
the viscous and elastic components. We can say from Eq. 2.22 that the normal mode
jD 1, which approximately corresponds to the end-over-end rotation of the chain,
contributes to � ca. 42%.

2.5.4 Wormlike Chain Model and Excluded Volume Effect

Cellulose and its derivatives are known to be semiflexible polymers. The double-
helical polysaccharide xanthan, triple-helical polysaccharide schizophyllan, and so
on are typical stiff polymers. Their molecular conformation can be represented as
the wormlike chain model, which interpolates between the Gaussian chain and
rodlike polymer. This model is characterized by the contour length L and the
persistence length q. The latter quantity is larger for the stiffer polymer. When this
model is applied to a polysaccharide with the molecular weightM, we can calculate
L by hM/M0, where h and M0 are the (average) contour length and molar mass per
monosaccharide unit of the polysaccharide main chain, respectively. This model
becomes identical with the Gaussian chain, if M tends to infinity. The parameters
b and N of the Gaussian chain correspond to 2q and NK �L/2q of the wormlike
chain, where 2q and NK are sometimes referred to as the length and number of
Kuhn’s statistical segments, respectively. The radius of gyration of the wormlike
chain is written as

˝
S2

˛ D .2q/2

�
1

6
NK � 1

4
C 1

4NK

	

1 � 1

2NK

�
1 � e�2NK

�

�

(2.23)
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At low and highM limits, the above equation tends to

˝
S2

˛ D
�

1
12
L2 .M ! 0/

1
6
.2q/2NK .M ! 1/

(2.24)

that is, the rod and Gaussian chain limits, respectively.
The intrinsic viscosity for the wormlike chain model (the wormlike cylinder or

wormlike touched-bead model) was formulated by Yamakawa et al. The intrinsic
viscosity equation is not given in a simple analytic equation but in a complex form
of the empirical interpolation formulas. The molecular weight dependence of [�] for
the wormlike chain model obeys that for the rodlike polymer in the low M region
and the GaussianM1/2 relation in the highM region. The double logarithmic plot of
[�] vs.M thus does not follow the Mark-Houwink-Sakurada equation.

Parts of a polymer chain cannot overlap, but the above equations for hS2i and
[�] of the wormlike chain do not consider this excluded volume effect. While this
effect disappears at the rod limit because of no possibility of the self-interaction, it
becomes important with increasing the chain flexibility. The excluded volume effect
for the wormlike chain was considered also by Yamakawa et al. By this effect, the
polymer chain expands, and the degree of the expansion is expressed in terms of the
expansion factor ˛S defined by the radius of gyration divided by the unperturbed one
or ˛� defined by [�]1/3 divided by the unperturbed one. The strength of the excluded
volume effect is characterized by the excluded volume strength B, and the expansion
factors ˛S and ˛� are given as functions of B/2q andNK. When B/2q or NK increases
from zero, the excluded volume effect becomes important, and ˛S and ˛� increase
from unity. At the Gaussian chain limit (NK ! 1), ˛S and ˛� are proportional to
NK

1/10 in a good solvent, where the chain has a positive value of B, and hS2i1/2 and
[�] are proportional to M0.6 andM0.8, respectively.

2.6 Zero-Shear Viscosity at Finite Concentrations [3, 7]

2.6.1 Rodlike Polymer Solutions

As already mentioned above, the zero-shear viscosity of rodlike polymer solutions
consists of the solvent, viscous, and elastic components:

� D �s C �V C �E (2.25)

The viscous component �V is related to the rotational diffusion coefficient Dr,0

by

�V D RTc

30MDr;0
(2.26)
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Fig. 2.7 Rods in a concentrated solution, where a rotating rod (a) or a longitudinally moving rod
(b) collides with surrounding rods

From Eqs. 2.15 to 2.20, Dr,0 DDı
r,0 at the infinite dilution. With increasing the

polymer concentration, the motion of surrounding rods perturbs the solvent flow at
the rod taking into consideration, which affects the rotational diffusion coefficient,
and then �V. Although there are many hydrodynamic calculations, the long-
range nature of the intermolecular hydrodynamic interaction makes mathematical
calculations difficult, and rigorous calculation has not been performed yet. Here,
the intermolecular hydrodynamic interaction is empirically expressed using an
adjustable parameter k0

HI, and Dr,0 is written as

Dr;0
�1 D Dı

r;0

�1 �
1 C k0

HI Œ�	 c
�

(2.27)

For the elastic component �E, Eq. 2.19 holds even at finite polymer concentra-
tions. The rotational motion of each rod is affected by surrounding rods at finite
concentration through not only the intermolecular hydrodynamic interaction but
also the direct collision among rods (cf. Fig. 2.7a). Because �V arises from the
friction between the polymer and solvent, we do not consider the effect of the direct
collision, but we have to consider both effects on �E through Dr.

2.6.2 Rotational Diffusion Coefficient and Viscosity Equation

As illustrated in Fig. 2.7a, the rotational diffusion motion of a rodlike polymer
(enclosed by the circle in the figure) is hindered by the collision with surrounding
rods in solution. This hindered rotational diffusion motion can be treated as the
two-dimensional translational diffusion motion of a circular object on the spherical
surface, where ribbonlike objects (the projection of the hindering rod onto the
spherical surface) hinder the translational diffusion motion.

The collision effect on Dr, sometimes called as the entanglement effect, can
be treated by the mean-field Green function method. Originally, this method
was applied by Edwards and Evans to the longitudinal diffusion motion in the
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concentrated rodlike polymer solution and then extended by Teraoka and Hayakawa
to the transverse and rotational diffusion motions.

Although the rotational diffusion motion is two-dimensional, we briefly explain
the mean-field Green function method for the one-dimensional diffusion motion of a
particle. The extension to the rotational diffusion motion of a rod is straightforward,
but mathematically more complex, which is the reason why we explain the method
in the one dimension.

The diffusion motion is stochastic, so that we can discuss only the probability of
the motion. Let x be the coordinate of the diffusing particle in its one-dimensional
path. If no barriers are present in the path, the unperturbed conditional probability
G0(x, x0; t, t0) that the particle at the position x0 at time t0 moves to the position x at
time t is given by

G0

�
x; x0I t; t0� D 1

p
4�D0 .t � t0/

exp

"

� .x � x0/2

4D0 .t � t0/

#

(2.28)

where D0 is the unperturbed diffusion coefficient of the particle. Mathematically,
this conditional probability is referred to as the Green function. Figure 2.8 illustrates
functional forms of G0(x, x0; t, t0) given by Eq. 2.28 at three different t – t0. If one
drops ink in water at x0, ink diffuses and the concentration distribution of ink changes
with time according to the functional forms in the figure.

Fig. 2.8 Unperturbed Green function (the conditional probability) of the one-dimensionally
diffusing particle
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Suppose now a single reflecting point barrier is placed at position R in the path at
time tR and removed at time tQ. Following Edwards and Evans, the Green function
perturbed by this barrier can be expressed by

G
�
x; x0I t; t0� D

� 1
�1dx1

� 1
�1dx2G0

�
x; x2I t; tQ

�
Q0 �

x2; x1I tQ; tR
�
G0

�
x1; x

0I tR; t0
�

(2.29)

whereQ0(x2, x1; tQ, tR) is the transition probability that the particle at the position x1
at time tR moves to the position x2 at time tQ. After averaging the Fourier transform
of Eq. 2.29 with respect to the random variables R, tR, and tQ, and making some
mathematical manipulations, we obtain

D
bG

�
kI t; t0�

E
�

� 1
�1G

�
x; x0I t; t0� eik.x�x0/d

�
x � x0� D e�D0.t�t0/k2 C

D

bG

�
kI t; t0�

E

(2.30)

with the perturbed part h
Ĝ(k; t, t0)i given by
D

bG

�
kI t; t0�

E
D 8

3
p

�l
.D0�/3=2k2 C O

�
k4

�
(2.31)

for a sufficiently long time interval t � t0. Here, l is a path length comparable to
the maximum distance that the particle can diffuse during t � t0, and � is the mean
lifetime of the barrier. The brackets h : : : i represent the average with respect to R, tR,
and tQ. The effective diffusion coefficient D can be calculated from

D D � lim
t�t0!1

1

2 .t � t0/

@2
D
bG .kI t; t0/

E

@k2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
kD0

(2.32)

From Eqs. 2.31 to 2.32, we get D in the presence of a single reflecting barrier as

D D D0 � 8.D0�/3=2

3
p

�l .t � t0/
(2.33)

Next, we consider the case where more than one barrier appears in the diffusion
path, and particle receives multiple perturbations. Teraoka and Hayakawa assumed
that the Green function for this case satisfies the following Dyson equation:

hGi D G0 C G0

DXM

iD1
Qi

E
hGi (2.34)

whereQi is the i-th perturbation element andM is the number of elements appearing
on the path length l between t and t0. In Eq. 2.34, we have omitted the arguments of
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the Green functions and Qi as well as the integral symbol; the second term on the
right-hand side of Eq. 2.34 involves the same integration as in Eq. 2.29. When the
whole right-hand side is inserted into hGi on the right- hand side, it turns out that
Eq. 2.34 gives a Green function perturbed by any number of sequential independent
elements. Eq. 2.34 can be solved recursively, and the Fourier transform of the solved
hGi is inserted into Eq. 2.32 to obtain

D D D0

�

1 C 4

3
p

�
�B�3=2D0

1=2

��2

(2.35)

where �B [� M/l(t – t0)] is the number of the barriers appearing per unit path length
and unit time. If only a barrier appears for a sufficiently long time interval t � t0,
Eq. 2.35 reduces to Eq. 2.33 for the first-order perturbation.

We can extend the above theory to the two-dimensional rotational diffusion
motion. The perturbed rotational diffusion coefficient Dr can be written as

Dr D Dr;0

"

1 C
s

6

ˇ

NAcL3

M

�
Djj;0
Djj

�1=2
#�2

(2.36)

where ˇ is a constant and Djj is the perturbed longitudinal diffusion coefficients
of the rod. To obtain this equation, we have assumed � / L2/Djj, because the
hindrance of the rotational motion by surrounding rods is released mainly through
the longitudinal motion of the hindering or rotating rod. Teraoka calculated ˇ to be
1350 by simulation for entangled rods.

We need an equation for Djj to calculate Dr from Eq. 2.36. Edwards and Evans
formulated Djj by the mean-field Green function method, but their equation can
be only applied to very concentrated solutions of rodlike polymers, where the
transverse motion of each rod is almost completely prohibited.We want to formulate
the viscosity equation for rodlike polymers in less concentrated solutions. Sato and
Teramoto proposed to formulateDjj by the hole theory. This method is similar to that
used by Cohen and Turnbull to obtain an expression of the self-diffusion coefficient
in liquids of small molecules and metals. The basic assumption in our hole theory is
that the longitudinal diffusion of a test chain occurs only when a “hole” that is larger
than a critical hole exists in front of the test chain. Here the hole means a region that
contains no chain segments in the solution (not true vacuum region), and then one
should not confuse that with the free volume that often appears in the literature on
polymer melts and solutions.

From Cohen and Turnbull’s argument [5], it turns out that Djj is proportional
to the total probability Ph of finding a hole that is larger than the critical hole.
The probability Ph is written in terms of the average mutual excluded volume Vex

*

between the critical hole and the solute molecule as

Ph D exp
��Vex

�c0� (2.37)
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and thus Djj is given by

Djj D Djj;0 exp
��Vex

�c0� (2.38)

When the critical hole for the rodlike polymer with the length L and diameter d
is assumed to be a cylinder of the length L* D �*L and diameter d* D �*d, where
�* is the constant similitude ratio (cf. Fig. 2.7b), Vex

* is written as

Vex
� D �

4

h
LL� .d C d�/ C Ld2 C L�d�2 C 1

2

�
Ld�2 C L�d2

�
C �

2
.L C L�/ dd�

C�
4

.d C d�/ dd�
i

(2.39)

Combining all the results (Eqs. 2.25–2.27, 2.19, 2.36, and 2.38), we obtain the
viscosity equation for rodlike polymer solutions:

� � �s

�s
D Œ�	 c

�
1 C k0

HI Œ�	 c
�

8
<

:

1

4
C 3

4

"
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s

6

ˇ

NAcL3

M
exp

�
1

2
Vex

�c0
�#2

9
=

;

(2.40)

Expanding the above equation in the power series of c and comparing the second-
order term with Eq. 2.6, we can express the Huggins coefficient k0 in the form

k0 D k0
HI C k0

EI (2.41)

where k0
EI is the contribution of the entanglement interaction to k0, given by

k0
EI D 135

4�
p

ˇ
ln .L=b/ (2.42)

On the other hand, the contribution k0
HI of the hydrodynamic interaction for

rodlike polymer solutions has formulated by Riseman and Ullman. However, their
calculation contains an improper integration, and thus the results are not conclusive.

When both hydrodynamic interaction and the concentration dependence of Djj
are neglected in Eq. 2.40, � of the rodlike polymer solution at high concentrations
depends on the molecular weight and concentration as � / c3M6/ln(L/b). These
dependences were predicted by Doi and Edwards [7]. However, these M and c
dependences are modified by the effects of the hydrodynamic interaction and the
concentration dependence of Djj. If the effect of the hydrodynamic interaction
is taken into account, � depends on M and c as � / c4M8/ln2(L/b) at high
concentrations.
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Fig. 2.9 Fuzzy cylinder model for semiflexible polymers in a concentrated solution

2.6.3 Flexibility and Finite Thickness Effects

The left illustration of Fig. 2.9 depicts semiflexible polymers in an isotropic concen-
trated solution. Each polymer chain rotates, translates, and changes its conformation
in the solution. Among those molecular motions, the conformational change is
rapidest, which smears the segment distribution as shown in the right illustration of
Fig. 2.9. To formulateDr of the semiflexible polymer in a concentrated solution, we
view the polymer chain as this smeared cylindrical segment distribution, called as
the fuzzy cylinder. The effective length Le and diameter de of the fuzzy cylinder are
defined using the mean square end-to-end distance hR2i and mean square distance
hH2i between the midpoint and the end-to-end axis of the wormlike chain by

Le D ˝
R2

˛1=2
; de D �˝

H2
˛ C b2

�1=2
(2.43)

where b is the thickness of the wormlike chain polymer. Both hR2i and hH2i can be
calculated from q and NK of the wormlike chain; Le D L and de D b in the rod limit,
and Le D 61/2de in the Gaussian coil limit. (Strictly speaking, hH2i has not been
formulated for the wormlike chain, but for the Tagami model, allowing the chain
contour to stretch in contrast to the wormlike chain. However, the Tagami model
provides the identical expressions of hR2i and hS2i, so that we can expect its hH2i is
a good approximation of that for the wormlike chain.)

Using the fuzzy cylinder model, we may extend the viscosity equation for
the rodlike polymer solution in the previous subsection to semiflexible one by
replacing L with Le. However, we have to consider the finite thickness effect on
the viscosity equation, because the axial ratio Le/de of the fuzzy cylinder decreases
with increasing the chain flexibility. The extension of Eq. 2.36 for Dr to the fuzzy
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cylinder system can be written as

Dr

Dr0
D

"

1 C
s

6

ˇ

NAcLe4

ML
F

�
Djj;0
Djj

�1=2
#�2

(2.44)

where F is a factor relating to the finite thickness effect, empirically given by
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The final viscosity equation for semiflexible polymer solutions at finite concen-
tration is given by
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(2.46)

instead of Eq. 2.40. Here, Vex
* is calculated by Eq. 2.39, using L* D �*Le and

diameter d* D �*de. (Sato et al. further extended the viscosity equation, including
the finite thickness effect of the polymer chain on frictional properties, but this effect
is not important if L >>b.)

Expanding the above equation in the power series of c, we have the expression for
the Huggins coefficient k0 as the sum of the contributions of the entanglement and
hydrodynamic interactions as in Eq. 2.41. The contribution k0

EI of the entanglement
interaction to k0 is given by

k0
EI D 3

2

s
6

ˇ

NALe4

Œ�	ML
F (2.47)

instead of Eq. 2.42.
When the concentration dependence of Djj is neglected in Eq. 2.46, the polymer

concentration dependence � at high concentrations is not affected by the chain
flexibility, i.e., � / c3 and c4, when the hydrodynamic interaction is neglected and
not neglected, respectively. The molecular weight dependence of � for semiflexible
polymer solutions does not obey any power law, because the polymer chain
conformation changes from the rodlike to random coil with increasing M. In the
coil limit, both Le and [�] are proportional toM1/2 (without considering the excluded
volume effect); Eq. 2.46 at Vex

* D 0 gives us the relation � / M1/2 andM in the dilute
and concentrated limits, respectively. The dependence in the concentrated limit is
very much different from the M dependence of � for the rodlike polymer solution,
mentioned in the previous subsection [� / M8/ln2(L/b)]. It is noted however that
when the polymer concentration is high enough, the fuzzy cylinder model becomes
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inappropriate, and we have to consider the reptation-like motion of the flexible chain
in the entangled polymer network. We expect the well-known relation, � / M3.4, for
very concentrated flexible polymer solutions.

2.7 Comparison with Experimental Polymer Solution
Viscosities [9]

2.7.1 Polymers with Different Chain Stiffness

While most of synthetic polymers are flexible, except for conjugated polymers,
e.g., polyacetylenes and aromatic polyamides, biopolymers have a variety of the
chain stiffness. Here, since we are mostly interested in the chain stiffness effect
on the polymer solution viscosity, we show experimental solution viscosity data of
different chain stiffness polymers shown in Fig. 2.10. In the figure, schizophyllan
(SPG) is an extracellular polysaccharide produced by a fungus Schizophyllum
commune. This polysaccharide forms a rigid triple helix in aqueous solution, which
is one of the stiffest polymers we know so far. Xanthan is a bacterial polysaccharide
produced by the Xanthomonas campestris, which forms a stiff double helix in
aqueous salt solution. Cellulose is known to be a semiflexible polymer, and cellulose

Fig. 2.10 Chemical structures and molecular characteristics of polymers with different chain
stiffness
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tri(phenylcarbamate) (CTC) is its derivative dissolved in organic solvents, say,
tetrahydrofuran (THF).

The chain stiffness of those polysaccharides (and the derivative) is represented
in terms of the persistence length q, which is listed in Fig. 2.10, as well as other
molecular parameters, the molar massM0 and contour length h per glucose residue,
and the diameter or thickness of the polymer chain d. While the values of M0 and h
were determined from the chemical structure, q was estimated from the molecular
weight dependence of the radius of gyration or of the hydrodynamic properties
(the hydrodynamic radius, sedimentation coefficient, or intrinsic viscosity). The
diameter d may be calculated from both the partial specific volume of the polymer
and the hydrodynamic properties. The d values estimated from the latter are
sometimes slightly larger than those from the former. To fill up the gap between
q of xanthan and CTC, I add a synthetic polymer, poly(hexyl isocyanate) (PHIC),
which is a main-chain conjugated polymer with qD 21 nm in dichloromethane
(DCM). Furthermore, I add also polystyrene (PS) as the typical flexible polymer, to
examine the chain stiffness effect on the polymer solution viscosity. The molecular
parameters were determined in the same way.

The intramolecular excluded volume effect for PS does not play any role in the
theta solvent cyclohexane (CH). Furthermore, the same effect is also not important
for stiff polymers because of the scarce probability of the self-interaction. Only the
excluded volume effect of CTC in the good solvent THF may be appreciable at high
molecular weights.

2.7.2 Dilute Region

As already shown in Fig. 2.1 for aqueous NaCl solutions of xanthan, the polymer
concentration dependence of the zero-shear viscosity � strongly depends on the
polymer molecular weight. Figure 2.11 illustrates the concentration dependences
in a dilute region in the form of the linear plot.

From the initial slope, one obtains the intrinsic viscosity [�] (cf. Eq. 2.6), but
[�] are usually determined by the use of the Huggins plot, [(�/�s) – 1]/c vs. c, or
the Mead-Fuoss plot, [ln (�/�s) – 1]/c vs. c, although those plots are not shown in
Fig. 2.11. The molecular weight dependence of [�] for xanthan in 0.1 M aqueous
NaCl is shown in Fig. 2.12a, along with the results of the other four polymers in
dilute solution. In the abscissa, Mw is the weight-average molecular weight. Data
points for PS in cyclohexane obey the straight line with the slope of 0.5 in the double
logarithmic plot, which agrees with the prediction of Eqs. 2.15 and 2.24 for the
Gaussian chain. On the other hand, data points for the other stiffer polymers follow
convex curves, not obeying the Mark-Houwink-Sakurada equation (Eq. 2.7) with
constant K and a over the whole Mw ranges investigated. The curves for xanthan
and SPG at Mw < 5� 105 have a slope of 1.6, which indicates that the xanthan
double helix and SPG triple helix exist as rigid rods (cf. Eq. 2.15) in theMw region.
However, data points at the higherMw follow the convex curves with smaller slopes,
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Fig. 2.11 Linear plots of the concentration c dependence of � for 0.1 M aqueous NaCl solutions
of xanthan double helices with different molecular weights

Fig. 2.12 Molecular weight dependence of [�] for the five polymers; (a) plots of [�] against Mw

with theoretical curves (solid curves) calculated by the wormlike chain model using the parameters
listed in Fig. 2.10; (b) universal plots of [�]M0/(2q)2h against NK � Mw= Œ2q .M0=h/	 with
theoretical curve (solid curve) calculated by the wormlike chain model for SPG

which reflect the flexibility of the helices. The curves for CTC and PHIC have slopes
of 1.0 and 1.3 at Mw <105, respectively, slightly smaller than that for xanthan and
SPG, and the slopes decrease with increasingMw. The slopes at the highestMw are
0.85 (PHIC) and 0.7 (CTC), which are close to the slope (0.5) for PS in cyclohexane.
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Figure 2.12b replots the [�] data for the five polymers in the form of [�]M0/(2q)2h
vs. NK � Mw/[2q(M0/h)] (the number of Kuhn’s statistical segments). All the data
points except for PS at low Mw almost obey a single composite curve (the solid
curve) with slopes of 1.7 at low NK (for the rod limit) and 0.5 at higher NK (for the
Gaussian limit). Deviations of data points for PS and CTC in low Mw regions from
the composite curve come from the finite thickness effect on [�]. Because this effect
is not important at sufficiently large axial ratio L/b, all the data points (except for
CTC) approach to the composite curve in the high NK region. Deviations of data
points for CTC in highMw region are due to the excluded volume effect.

From the curvature in the plot of � vs. c as shown in Fig. 2.11 or from the initial
slope of the Huggins orMead-Fuoss plots, we can determine the Huggins coefficient
k0. The results for the five polymers are shown in Fig. 2.13a. Most of the data of k0
are in between 0.3 and 0.5, irrespective ofMw and the chain stiffness. Therefore, k0
is sometimes called as the Huggins constant, although it is not a constant, strictly
speaking. Data of k0 for PS at lowMw exceed 0.5 slightly.

According to Eq. 2.41, k0 can be divided into the contributions of the entan-
glement and hydrodynamic interactions. The latter contribution k0

EI is calculated
by Eq. 2.47, but the former contribution k0

HI cannot be calculated theoretically.
Figure 2.13b shows k0

EI calculated by Eq. 2.47 for the five polymers by solid
curves, and k0

HI estimated by subtracting k0
HI from the experimental k0 in Panel

a by symbols, as functions of NK. (The theoretical values of k0
EI include the finite

thickness effect of the polymer chain, which is neglected in Eq. 2.47.)
For stiff polymers, k0

EI exhibits a broad peak aroundNK D 1� 10. The peak shifts
to larger NK, and the peak height decreases with increasing the flexibility. On the
other hand, k0

HI, except for PS, shows a broad minimum in the same NK region and
increases monotonically with NK at large NK, obeying a common asymptotic line.
The deviation from the common line starts at larger NK for more flexible polymers.
When k0

EI and k0
EI for the same polymer are compared, k0

EI is superior to k0
HI for

Fig. 2.13 (a) Molecular weight dependence of the Huggins coefficient k0 and (b) contributions to
the Huggins coefficient of the entanglement interaction k0

EI (solid curves) and of the hydrodynamic
interaction k0

HI (symbols) for the five polymers
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SPG and xanthan, they are comparable for PHIC, and k0
HI is predominant for CTC

in the peak region. The hydrodynamic interaction term is much larger for PS over
the entire NK region.

2.7.3 Zero-Shear Viscosity Over a Wide Concentration Range

Figure 2.14a shows the concentration dependence of � for aqueous solution of
seven schizophyllan (SPG) samples with different molecular weights, from 128 k
(D1.28� 105) to 4300 k (D4.3� 106), over a wide concentration range. (Numbers
in the parentheses in Fig. 2.14a indicate NK values of the samples.) Solid curves in
the figure indicate theoretical values calculated by Eq. 2.46 derived for the fuzzy
cylinder model. In the equation, parameters Le, de, L, and [�] were estimated from
the wormlike chain parameters listed in Fig. 2.10, and strengths of the hydrodynamic
interaction k0

HI were estimated by subtracting k0
HI calculated by Eq. 2.47 (cf.

Fig. 2.13b) from the experimental k0. Thus, the unknown parameter in Eq. 2.46 is
only �* in Vex

* (cf. Eq. 2.39). When �* is chosen to be 0.04, the theoretical curves
nicely fit the experimental data points.

The contribution of Vex
* or the effect of the concentration dependence of Djj is

not however so important, as demonstrated by dotted curves in Fig. 2.14b. Because
this contribution becomes important exponentially with c, we might expect the
importance at higher c. But the SPG solutions form a liquid crystal phase at high c,
of which viscosity cannot be described by Eq. 2.46. We can say that the effect of the

Fig. 2.14 (a) Concentration dependence of � for aqueous solutions of seven schizophyllan (SPG)
samples with different molecular weights (NK in the parentheses) along with theoretical curves
calculated by Eq. 2.46; dotted and thin solid curves in Panel (b), calculated by Eq. 2.46 with
Vex

� D �� D 0 and with Vex
� D �� D k0

HI D 0, respectively; thick solid curves in Panel (b) are
the same as the solid curves in Panel (a) calculated by Eq. 2.46 with �* D 0.04 and k0

HI given in
Fig. 2.13b
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concentration dependence of Djj (the so-called jamming effect) is not important in
� for SPG isotropic solutions.

Figure 2.14b also displays thin solid curves calculated by Eq. 2.46 with
Vex

* D �* D k0
HI D 0. These curves deviate remarkably downward, indicating that

the effect of the hydrodynamic interaction plays an important role in � at high c.
Equation 2.46 predicts c4 and c3 dependences of � for the dotted and thin solid
curves, respectively, in the high c region. The actual concentration dependence is
slightly stronger than the c4 dependence, because of the jamming effect.

Comparisons between theory and experiment for the solution viscosity of the
remaining four polymers are shown in Fig. 2.15. The solid curves in each Panel are
the theoretical curves calculated by Eq. 2.46 in the same way as in Fig. 2.14a. It
is noted that there are no adjustable parameters in Eq. 2.46, if we select the same
value for �* as in the case of SPG (D0.04). The agreement between the theory and
experiment is good except for the highestM sample of PHIC (NK � 100), the lowest
M sample of CTC (L/b <10), as well as all the samples of PS (NK >50). We can say

Fig. 2.15 Comparisons between theory and experiment for � of xanthan, PHIC, CTC, and PS
solutions with different polymer molecular weights over wide concentration ranges; solid curves
in each Panel, calculated by Eq. 2.46 with �* D 0.04 and k0

HI given in Fig. 2.13b; dotted curves,
calculated by Eq. 2.48
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that the viscosity equation (Eq. 2.46) predicts quantitatively the polymer solution
viscosity if NK <50 and L/b >10.

As indicated in Fig. 2.13b, the hydrodynamic interaction is more important in the
Huggins coefficient than the entanglement interaction at NK >50. In Eq. 2.46, the
effect of the hydrodynamic interaction is considered only up to the linear order of
c (cf. Eq. 2.27), but the higher-order term may be important at NK >50. Beenakker
[10] calculated � for spherical particle solutions up to the order of c3. Applying
his result to consider the higher-order effect of the hydrodynamic interaction, we
modify Eq. 2.46 by

���s
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The dotted curves in Fig. 2.15 (Panels b–d) indicate theoretical values of �

calculated by Eq. 2.48. The agreement between theory and experiment is improved
by the modification for PHIC with NK D 97 at intermediate c (Panel b) and for PS
with NK > 50 (Panel d). However, data points for PHIC with NK D 97 at high c and
with NK D 4.3 and 0.80 in the whole c range (Panel b) are closer to the solid curve,
indicating that the original Eq. 2.46 is better. In Panel c, data points for CTC with
NK D 15 are fitted to the solid curve, but data points with NK D 0.82 and L/bD 7.8
to the dotted curve. From these comparison, we can say that the modified Eq. 2.48
improves the agreement with experimental data with NK >50 and L/b <10, but
not otherwise. The hydrodynamic interaction affects the polymer solution viscosity
delicately, depending on the stiffness and the axial ratio of the polymer chain.

The viscosity equation Eq. 2.46 or 2.48 possesses two factors originated from the
hydrodynamic interaction ƒHI and the entanglement interaction ƒEI, defined by

8
<

:

�HI � 1 C k0
HI Œ�	 c or 1 C k0

HI Œ�	 c C �
k0
HI Œ�	 c

�2

�EI � 1
4

C 3
4

h
1 C

q
6
ˇ
NAcLe4

ML F exp
�

1
2
Vex

�c0�
i2 (2.49)

Figure 2.16 shows the ratio ƒHI/ƒEI for SPG (solid curves), PHIC (dot-dash curve),
CTC (dotted curves), and PS (dashed curves). For stiff polymers, SPG and PHIC, the
factor ƒEI is superior to the factor ƒHI at high concentrations. Although not shown
in the figure, ƒEI is predominant also for PHIC with higherM as well as for xanthan
over the entire M. On the other hand, for the flexible polymer PS, the factor ƒHI is
superior to the factor ƒEI at high concentrations. For the semiflexible polymer CTC
with an intermediate chain stiffness, the importance of the two interactions depends
on the molecular weight; ƒHI is more important at lowM but ƒEI is more important
at higher M. In Fig. 2.13b, we can see that k0

HI >k0
EI for PHIC, CTC, and PS over

the entire NK (or M). Therefore, the predominance of the entanglement interaction
is enhanced in solution viscosity at higher concentrations.
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Fig. 2.16 Ratio of the factor ƒHI originated from the hydrodynamic interaction to the factor ƒEI

from the entanglement interaction for SPG (solid curves), PHIC (dot-dash curve), CTC (dotted
curves), and PS (dashed curves) in solution. ƒHI for PS and CTC at 20 k were calculated by
Eq. 2.49 including c2 term

2.8 Conclusions

Naturally occurring polysaccharides have a variety of the chain conformation.
Schizophyllan (or scleroglucan with the same chemical structure but different
origin), xanthan (xanthan gum), and succinoglycan are rigid helical polymers with
large persistence length q, On the other hand, amylose and pullulan are flexible
polymers, of which persistence length is as small as that of PS. Cellulose and its
derivatives (including CTC), as well as hyaluronic acid, are known as semiflexible
polymers with intermediate q values.

The present chapter introduced molecular theories to formulate the intrinsic
viscosity [�], the Huggins coefficient k0, and the zero-shear viscosity � at finite
concentrations. According to the theories, [�] for the rigid helical polymers are
more strongly dependent on the molecular weight than those of more flexible
polysaccharides. Therefore, the stiffer polysaccharides with high molecular weights
are more suitable as the viscosity enhancement reagent.

Polysaccharide solution viscosities exhibit strong molecular weight and polymer
concentration dependences. The molecular theory explained in the present chap-
ter teaches us that those strong dependences arise from both entanglement and
hydrodynamic interactions among polymer chains in the solution. The contribution
of the entanglement interaction to the solution viscosity is more important than
the contribution of the hydrodynamic interaction for stiff polymer solutions, but
opposite for flexible polymer solutions. We can anticipate the effectiveness of
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newly found polysaccharides as the viscosity enhancement reagent, if we know the
molecular characteristics of the polysaccharides.
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