
Chapter 8

Comprehensive Assessment of Aortopathy
Using Catheterization

Hirofumi Saiki and Hideaki Senzaki

Abstract Aortopathy is represented by aortic wall histological alterations, which

are translated into alterations of mechanical property of the aortic wall. Because

aortic pressure waveform in itself contains comprehensive information about aortic

wall mechanical property, analysis of aortic pressure waveform either alone or

coupled with aortic flow provides important diagnostic and therapeutic information

about aortopathy. Catheter examination is the only way to precisely obtain the

aortic waveform and thus plays an independent role compared to numerous nonin-

vasive imaging modalities, such as echocardiogram, computed tomography, and

magnetic resonance imaging. In this chapter, we summarize our knowledge about

the aortic wall mechanical properties in several forms of aortopathy elegantly

assessed by catheter examination.
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8.1 Introduction

Although the advancement of imaging technology has greatly contributed to the

better understanding of hemodynamics in a variety of cardiac diseases, cardiovas-

cular pressure waveform is still a fundamental factor that well characterizes car-

diovascular properties. Invasive catheter insertion is the only method for obtaining

actual pressure waveform in a specific location of the cardiovascular system, and

the utility of alternative methods, such as applanation tonometry or MRI, has not

yet been fully validated to estimate actual pressure waveform for patients with

cardiovascular diseases [1, 2]. Pathology of the tunica media of the aortic wall is

reportedly responsible for the onset of aortopathy in congenital or acquired cardio-

vascular diseases [3, 4], and hemodynamic stress as well as genetic backgrounds

can induce it by activating inflammatory cascade and tissue permeability, which is
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called mechanotransduction [5–11]. Accumulating evidence elucidated that intra-

vascular blood pressure flow dynamics are closely related to the molecular mech-

anisms of the evolving aortopathy, particularly in patients with structural heart

diseases [7, 10, 12, 13]. Accordingly, a precise understanding of cardiovascular

mechanical properties and their interaction with aortic hemodynamics may allow us

to identify optimal hemodynamic management that may ameliorate the clinical

course of aortopathy, even under the significant influence of genetic factors. Thus,

catheter examination has advantages over noninvasive assessments in terms of

understanding the pathophysiology of aortopathy. This further understanding will

contribute to the improvement of current hemodynamic management.

8.2 Aortic Hemodynamics and Pathology (Fig. 8.1, Details
in Chaps. 2 and 3)

Elastic fiber disruption and fatigue of aortic tunica media are fundamental pathol-

ogies of the aortic dilatation in aortopathy. Although the elastic fibers in the aorta

are considered to tolerate pulsatile stress by an intermittent ventricular ejection for

more than decades [14], early disruption can be induced by inflammation or
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Fig. 8.1 Mechanisms for developing aortic dilatation
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perturbation of the protein maintenance system, which is regulated by local gene

expression [15, 16]. Although Marfan syndrome is the typical systemic disease that

causes accelerated degradation of the aortic elastic fibers, mainly due to gene

mutation encoding microfibril protein, fibrillin-1 [15, 17], similar pathology of

the tunica media is also observed in patients with congenital heart disease, includ-

ing bicuspid aortic valve, tetralogy of Fallot (TOF), and others [4]. Not limited to

genetic factors or direct surgical vascular insults, characteristic hemodynamics such

as excessive volume overload, augmented pressure load, or accelerated blood

velocity induce vascular stress that activates inflammatory gene expression via

mechanotransduction [10]. Mounting evidence has suggested a significant contri-

bution of hemodynamics to the development of aortopathy [5, 7, 12]. Vascular

mechanical stress, which can affect the aortic structure, mainly consists of normal

stress and shear stress. Normal stress, which represents excessive vascular stretch,

induces alteration of myosin–actin interaction and conformational changes of its

linker proteins. Interaction with integrin, which connects the endothelial myosin–

actin complex and extracellular matrix, ultimately stimulates TGF-β production, its
release, and cellular growth [10]. When vascular endothelium senses an increase in

shear stress, which is determined by both blood viscosity and blood flow velocity,

relaxation of medial smooth muscle compensates to decrease it. Although shear

stress regulates vascular dilatation in conductance arteries [18, 19], it also promotes

endothelial permeability [20], proliferation of endothelial cells, and aortic

remodeling [12]. A stiffened arterial system due to remodeling increases pulse

pressure and ventricular afterload [21]. In addition, aortic remodeling decreases

nutritional feed to the aortic wall from the aortic cavity, making it more dependent

on the vasa vasorum, resulting in malnutrition of the tunica media. As reported by

Stefanadis, the decrease of the aortic wall blood feed by removal of the vasa

vasorum resulted in acute tunica media degradation and increased stiffness [22],

suggesting a fundamental role of blood feeding for the maintenance of the tunica

media. This is also supported by the fact that improper perfusion of the vasa

vasorum relates to aortic wall stiffness [23]. Thus, degradation of the aortic tunica

media is initiated by combined effects from inflammatory responses, pressure

augmentation, and insufficient aortic wall blood supply; then, the aortic wall starts

to dilate by a loss of elastic fibers. Eventually, the aortic wall becomes predomi-

nantly supported by the collagens, which are much stiffer than elastic fibers, and the

characteristic features of aortopathy, including aortic dilatation and stiffness, are

constructed. Accordingly, management of hemodynamics might be fundamentally

important in preventing the development of aortopathy, because aortic mechanical

stress is determined by blood pressure, velocity, and viscosity, which are factors of

cardiac output, vascular resistance, and oxygen saturation.
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8.3 Impedance Mismatch

Characteristic features of aortopathy, including augmented stiffness, aortic dilata-

tion, and subsequent distal narrowing, result in heterogeneity of aortic properties,

both in histological feature and aortic diameter. Although energy transmission

between two locations of the vessel is maximized if the vascular property is uniform

(known as impedance match), part of the blood energy can reflect at any part of the

vessel and increase proximal input impedance if a vascular property difference

exists [24–26]. In normal circulation, discontinuity of vascular properties in the

peripheral arterial system, including relative narrowing and higher stiffness of the

peripheral artery compared to that of the aorta, prevents end organs from exposure

to high systolic blood energy by reflecting part of the energy. At the same time, it

preserves redundant energy in the aortic wall as potential energy so that blood can

be delivered to peripheral organs evenly during diastole [27]. In contrast, if central

aortic stiffness becomes close to the level of that in peripheral arteries, then more

pulsatile energy is delivered to the end organs and can impair their function

[28, 29]. This also decreases reserved energy of the aorta, leading to decreased

diastolic blood flow. Such discontinuity of vascular properties is called “impedance

mismatch,” and this can also accelerate the onset as well as progress of aortopathy

by improper augmentation of proximal aortic waveform (Fig. 8.2). In addition to

affecting the aorta and systemic circulation, an arising reflection wave in the

proximal part of the aorta can be an additional ventricular afterload [21] and can

impair ventricular function as well as myocardial energetic efficiency by affecting

ventricular–arterial (VA) coupling [30, 31].
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Fig. 8.2 Aortic pressure waveform consists of forward and backward pressure flows. The aortic

pressure waveform can be factorized into forward-traveling flow and backward flow [44, 45]
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8.4 Practical Utility of the Catheter Examination
in Aortopathy

Although the shapes of the aorta are easily recognized using MRI or other imaging

modalities of three-dimensional images, cardiovascular contrast imaging during

catheter examination is two-dimensional and angle dependent, so its utility for

morphological assessment is considerably limited in the current era. Meanwhile,

having actual pressure waveform is a significant advantage in the assessment of

vascular properties in catheter assessment. Catheter examination is commonly

performed in patients with congenital heart diseases, so being conversant with

such methods would highly support logical decision-making in the clinical setting.

8.4.1 Pulse Wave Velocity

One simple but reliable index for arterial stiffness assessed by catheter examination

is pulse wave velocity (PWV). The American Heart Association identified PWV as

a noninvasive and reliable marker of aortic stiffness [32]. Although noninvasive

PWV is widely used in the clinical setting, PWV is also available during cardiac

catheterization. During catheter drawback in the aorta, wave traveling distance is

easily obtained by measuring the catheter extraction distance. The time gaps from

the ECG Rwave to the upstroke of aortic pressure at the starting point and at the end

point of extraction represent wave traveling time. Thus, PWV can be calculated as

extraction distance divided by wave traveling time [33]. As represented by the

Moens–Korteweg equation (Eq. 8.1), PWV increases with the stiffening of the

vascular wall, assuming that both vascular wall thickness and vessel area are almost

the same.

PWV ¼ √E*√h
� �

= √ρ*√D
� � ð8:1Þ

where E is Young’s modules, h is vascular wall thickness, ρ is blood density, and

D is vessel radius diameter. PWV is a predictor of cardiovascular events in heart

failure or ischemic heart disease [34, 35]. Higher PWV is reported in patients with

Marfan syndrome regardless of aortic dilatation [36], suggesting a possible rela-

tionship between PWV and histological change of the tunica media, as well as the

predictive value for future aortopathy [37]. As represented in Eq. 8.1, PWV should

theoretically decrease with the increase of aortic diameter. Accordingly, the

increase of PWV in the dilated aorta further highlights significant stiffening of

the aorta. In sharp contrast, PWV in bicuspid aortic valve patients without aortic

dilatation was similar to that in tricuspid valve patients [38]. Even though PWV and

arterial elastance were similar, aortic wall shear rate was significantly higher in

bicuspid aortic valve patients than in tricuspid valve patients [38]. Although
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prospective observation is required, this result implies a significant contribution of

hemodynamics.

We also reported increased aortic stiffness using catheter-based PWV in tetral-

ogy of Fallot (TOF) both before and after anatomical repair compared to control

patients [5, 39]. This trend was rather similar to that of Marfan syndrome, and it also

implies the possible contribution of genetic factors for the development of

aortopathy in TOF. Increased aortic stiffness was also observed in patients with a

single ventricular heart, with close correlation with diameter of the ascending aorta

[40]. Together, PWV can be a potential predictor for aortopathy, and it may also

relate to aortic medial histology. Although those analyses might have been

performed even with noninvasive methods [41, 42], catheter assessment allows

the consideration of vascular morphological variety, which cannot be assessed with

noninvasive methods. More importantly, aortic stiffness in a specific segment is

also available if catheter-based PWV is utilized. In TOF patients, ascending aortic

stiffness was significantly heightened, whereas that of descending aortic stiffness

was not augmented, consistent with the reported distribution of tunica media

degradation in similar patient cohorts [3, 43]. Because this method allows us to

use PWV of the descending aorta as the internal control, catheter-based PWV is

anticipated to be applied to a wide range of cardiovascular conditions.

8.4.2 Assessment of Blood Pressure Waveforms

The other advantage of invasive catheter examination is the availability of a blood

pressure waveform at any site of the vessel. Pressure waveform consists of the sum

of a forward-traveling pressure wave and a reflected wave (Fig. 8.2) [44, 45]. PWV

increases with aortic stiffening, thus allowing the reflection wave to overlap earlier

on the subsequent forward pressure wave in the proximal aorta. Because the local

blood pressure waveform can be affected by any vascular property change (imped-

ance mismatch) from the distal part of vessel, its morphology identifies how caliber

change or stiffness change alters the actual blood pressure waveform. The augmen-

tation index (AI), which is calculated as the augmentation pressure divided by pulse

pressure, is the index of the vascular property found by observing the arrival of the

wave reflex at a specific site (Fig. 8.3) [46]. Although AI can be affected by the

length of the aorta (i.e., patient’s height), heart rate, or cardiac output due to its

innate nature, patients with a bicuspid aortic valve were reported to have increased

aortic stiffness and high AI, both of which were correlated with aortic dilatation [8],

suggesting aortopathy as the source of pressure augmentation. Lee et al. investi-

gated AI using applanation tonometry in bicuspid aortic valve patients and revealed

close correlation with E/e0 [47]. Because increased afterload can be a predisposing

factor for ventricular stiffening [31], its finding endorses the impact of aortopathy to

exert afterload that relates to the reflection wave. Together, the aortic pressure

waveform might be a feasible index to determine VA interaction for patients with

aortopathy.
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Fig. 8.3 Identification of pressure augmentation. AP augmentation pressure, PP pulse pressure.

The onset of pressure augmentation by reflection (Ri) was identified by the fourth differentiate of

the pressure waveform (Kelly et al.) [73]. (a) Upper panel: Ascending aortic pressure waveform in

a patient with a normal aortic arch. The time interval between upstroke of pressure and Ri in the

ascending aorta is relatively long, and peak aortic pressure is close to the time of dicrotic notch,

allowing higher diastolic pressure. This is suitable for maximizing coronary driving pressure.
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Pressure assessment using invasive catheterization is increasing its utility in the

assessment of aortopathy. The case report published by Murakami et al. suggested

aortopathy as a possible source of supra vena cava (SVC) stenosis [48]. Because SVC

is a compliant vein and is considered to be durable against compression in general, we

need to carefully interpret this case regarding whether surgical scars and postopera-

tive adhesions associated with SVC/aortic cannulation contributed to functional

stenosis of SVC pressure. Even with such limitations, catheter insertion is helpful

for understanding whether morphological stenosis is hemodynamically problematic,

particularly in a lesion where echocardiogram assessment can be inaccurate. Because

SVC pressure can affect cerebral circulation [42, 49], assessment of SVC compres-

sion and its hemodynamic impact might be of further importance in preventing

neurodevelopment or onset of dementia in patients with aortopathy.

8.4.3 Subendocardial Viability Ratio

Due to surgical scars or aortic caliber changes originating from specific operations

(i.e., Norwood procedure or Damus–Kaye–Stansel procedure), aortic stiffness or

aortic input impedance can be diverse in congenital heart diseases. A similar caliber

change is observed in patients with aortopathy even without operation, and the

bicuspid aortic valve is often complicated with complex heart diseases. Increased

aortic stiffness is a burden for heart failure due to augmented afterload [50], and it

also impairs coronary blood flow [51]. This is due to increased ventricular oxygen

demand and decreased coronary arterial blood supply, as represented by augmented

tension time index (TTI) and decreased diastolic time index (DTI), respectively

[52]. Although the subendocardial viability ratio (SEVR) [53] is the simple result of

the blood pressure waveform of the ascending aorta, its utility in clinical decision-

making is sufficiently validated [52, 54, 55]. The SEVR is not limited to hearts with

normal structures. We investigated SEVR in patients after the Norwood procedure,

which reconstructs the ascending aorta using the pulmonary trunk and native aorta

[54]. In our cohort without aortopulmonary shunts, SEVR was markedly lower than

Fig. 8.3 (continued) Lower panel: Descending aortic pressure waveform in a patient with a normal

aortic arch. The interval between upstroke and Ri in the descending aorta is shorter than that of the

ascending aorta, with systolic pressure higher than that of the ascending aorta. High pressure is

suitable for preserving potential energy in the aortic elastic fiber to effectively deliver blood to the

peripheral organ. (b) Upper panel: Ascending aortic pressure waveform in a patient who

underwent the Norwood procedure. There were two possible inflection points. The first inflection

represented the reflection from proximal impedance mismatch, which heightened early systolic

pressure. The second reflection wave appeared to be derived from the distal part of the aorta.

Lower panel: Descending aortic pressure waveform in a patient who underwent a Norwood

procedure. In contrast to Fig. 8.3a, peak aortic pressure was biased to the late systolic phase,

which resulted in less systolic pressure. This means impaired preservation of potential energy in

the aorta
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that of control patients with neither significant heart disease nor aortopulmonary

shunt in whom all pulmonary blood flow was supplied from the aorta (Fig. 8.4).

Accordingly, we concluded that post-Norwood aortas predisposed patients to being

more susceptible to coronary ischemia, even without significant coronary stenosis.

In this study, aortic impedance mismatch, as was represented by descending aortic

relative narrowing compared to that in the ascending aorta, was a significant

determinant of SEVR. Furthermore, SEVR was negatively correlated with the

renin–angiotensin–aldosterone system and natriuretic peptides (atrial natriuretic

peptide [ANP] and brain natriuretic peptide [BNP]), suggesting a promising marker

for fibrosis or heart failure. This was further supported by the fact that patient

outcome was also associated with SEVR. Our novel finding regarding the role of

SEVR emphasizes the importance of guiding proper aortic reconstruction in hypo-

plastic left heart syndrome, and this might be extrapolated to other congenital heart

diseases. The aortic reservoir function in the TOF with aortopathy is expected to be

decreased. Although impaired coronary perfusion reserve in patients with

decreased aortic distensibility was identified using simultaneous measures of aortic

and coronary pressure/flow [56], the possibility that SEVR might also detect similar

myocardial blood flow demand–supply imbalances as well as late complications,

such as arrhythmias, will be further investigated.

8.4.4 Estimation of Aortic Volume Flow

As mentioned, aortic blood flow velocity is closely related to shear stress. Guzzardi

et al. investigated aortopathy patients using MR flow mapping and actual aortic

SEVR 0.6SEVR 2.2

Control NorwoodPA+AP shunt

SEVR 1.0

Fig. 8.4 Anatomical features of the subendocardial viability ratio. Mesh area, tension time index

(TTI); dotted area, diastolic time index (DTI); filled area, pressure time integral of systemic

ventricle. The ratio of DTI to TTI denotes the subendocardial viability ratio (SEVR). SEVR in a

patient who underwent the Norwood procedure (RV-PA conduit) was significantly lower than that

of controls and even lower than that of patients with pulmonary atresia plus aortopulmonary shunt
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wall tissue sampled during surgery, and they elucidated that TGF-β1 and its

downstream matrix metalloproteinases are upregulated in the aortic wall exposed

to high shear stress but less so in the aortic wall, where less shear stress was

observed [12]. Despite the advantages of MRI, which accurately assesses blood

flow velocity at a specific location, heart rate variability due to room temperature,

the small number of available beats for assessments, and existence of turbulence

flow (i.e., pressure recovery in aortic stenosis) are limiting factors for obtaining

clinically relevant aortic volume flow. Using cardiac catheterization, the Fick

formula also allows us to estimate net aortic blood flow regardless of hemodynamic

characteristics or existence of arrhythmias. Although available aortic flow, flow

velocity, and shear stress itself cannot be directly estimated using the Fick method,

they represent averaged volume loading to the aorta. Our previous data and those of

others suggest the significant impact of aortic volume loading on the development

of aortic dilatation [5, 6, 13].

The use of simultaneous Doppler flow and pressure wire further allow us to

obtain actual blood flow velocity in a beat-by-beat manner with simultaneous

measurements of the pressure waveform. Having both the pressure and flow

waveforms allows us to factorize pressure/flow waveforms into forward (cardiac

contribution) and backward (reflection) flow [44, 57]. The existence of backward

flow that overlaps the systolic pressure is attributable to augmented ventricular

pulsatile afterload. Accordingly, identifying backward flow and avoiding overlap of

the upslope of forward pressure flow by pharmacological intervention will contrib-

ute to better management of aortopathy. Westerhof et al. reported the possibility of

factorizing the pressure waveform into forward and backward pressure without

measuring the flow waveform, but further validation is needed [45].

8.4.5 Cardiac Property

Progression of aortopathy implies afterload increase as well as coronary circulatory

insufficiency [9, 21, 51]. Because both affect cardiac performance and geometry

[9, 47], assessments of cardiac properties and ventricular–arterial coupling should

be considered fundamental constituents of physiology in aortopathy. Venous con-

gestion, which is often accompanied by heart failure, is known to predispose to

fibrogenesis and inflammation [58]; therefore, coexistence of cardiac malfunction

may accelerate aortic degradation. Using ventricular pressure and simultaneous

ventricular volume measurements, the ventricular pressure–volume loop can be

constructed either in structurally normal hearts or in those with congenital heart

diseases (Fig. 8.5) [59–61]. Load-independent measurements for cardiac contrac-

tility (end-systolic pressure–volume relationship [ESPVR]) and diastolic passive

stiffness (end-diastolic pressure–volume relationship [EDPVR]) can be determined,

and those data allow us to determine therapeutic targets of hemodynamics to

improve cardiac function or metabolism [62]. The ratio of end-systolic elastance

(Ees) to arterial elastance (Ea) provides VA coupling (Ees/Ea), which is the
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measure of cardiac performance in relation to afterload [63]. Both ESPVR and

coupling ratio (Ees/Ea) are associated with ventricular oxygen consumption in an

experimental model [30]. As discussed in the previous section, myocardial circu-

lation in the aortopathy might be impaired, so an energy-preserving strategy might

be needed in cases in which unfavorable ventricular energetics is identified.

Although aortopathy and ventricular stiffening appear to relate to ventricular

diastolic properties, as was suggested by the close relationship between E/e0 and
AI in the work by Lee et al. [47], they could not verify how relaxation or passive

stiffness relates to arterial property. In addition, the utility of E/e0 was not fully

validated in congenital heart diseases [64]; accordingly, more accurate and vali-

dated assessments of ventricular diastolic function further support the use of

catheter assessment. Accumulating evidence suggests that the coronary microvas-

culature might be responsible for ventricular diastolic stiffness [65, 66]. In addition

to innate cardiac function, external force derived from the pericardium or right

ventricle can affect left ventricular preload and stroke volume, which can also be

identified by the pressure–volume relationship during right ventricular unloading

[67]. While high ventricular diastolic pressure derived from right ventricular

dilatation or ventricular stiffening can hinder coronary circulation by decreasing

Fig. 8.5 Pressure–volume relationship of the ventricle. Ea effective arterial elastance, Ees
end-systolic elastance, EDPVR end-diastolic pressure–volume relationship, EDV end-diastolic

volume, SV stroke volume. (a) Pressure–volume relationship. Each loop represents the ventricular

pressure–volume relationship during volume reduction (IVC occlusion), and the width of each

loop represents stroke volume (SV). Ventricular pressure and volume at end systole construct a

straight slope, and the end-systolic pressure–volume relationship (ESPVR) and its slope are called

the end-systolic elastance (Ees), a load-independent measurement of ventricular contractility.

Effective arterial elastance (Ea), a measurement of ventricular afterload, is calculated as the

end-systolic pressure divided by the SV. The ventricular diastolic property is characterized by

the slope of the pressure–volume relationship of the end diastole (end-diastolic pressure–volume

relationship [EDPVR]). (b) Increase of afterload. Aortic stiffening augments the ventricular

pulsatile load. Stroke volume declines with the increase of afterload (Red). Even without sup-

pression of Ees, the increase of Ea reduces the Ees/Ea ratio; therefore, ventricular efficiency

declines and cardiac energetic consumption increases (pressure–volume area"). (c) Impaired

cardiac contractility. Due to aortopathy and aortic stiffness, coronary perfusion can be suppressed;

therefore, the decline of contractility (Ees#) and the decline of SV can occur
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the aorto-ventricular pressure gradient in the diastole, an increase of the RV load

demands more coronary flow [68], causing a coronary supply–demand imbalance.

Together, PV loops allow us to identify the issues predisposing to cardiac dysfunc-

tion coupled with aortopathy. Ventricular mechanics in patients with aortopathy is

not well recognized, particularly when there is additional ventricular load. Further

investigation is warranted in this field.

8.4.6 Possible Role of Impedance Analysis

Although PWV and aortic waveforms (AI) are simple but reliable indexes of aortic

properties and impedance mismatch, they are relatively sensitive to blood pressure,

aortic caliber change, and heart rate. Plenty of evidence that relates aortopathy to its

fundamental constituents of focal aortic stiffening is available using PWV or AI;

therefore, the additive role of relatively load-independent measurements of vascular

properties, such as input impedance, may not be particularly needed in clinical

practice. However, advances in noninvasive technology for measuring pressure and

flow waveforms in the ascending aorta may expand the utility of input impedance

for the management or better understanding of aortopathy.

Impedance denotes the sum of all types of opposition, which is confined to

oscillatory motion (alternating current) to blood flow distal to the measurement site

in the cardiovascular circuit. Whereas a few types of impedance (longitudinal

impedance, input impedance, characteristic impedance, terminal impedance) are

defined in the arterial system, input impedance, which defines the relationship

between pulsatile flow and pulsatile pressure provided to the particular vascular

system, is commonly used in cardiovascular research. Similar to the electrical

circuit, it denotes the transfer function between blood flow and pressure waveforms.

Impedance can be calculated using simultaneous measurements of blood flow and

pressure waveforms at any site of the vessel. Advantages of having input impedance

are the feature of comprehensive assessment in the entire vascular system distal to

the measurement site (thus, resistance, characteristic impedance, and reflection

coefficient can be evaluated at the same time) [27, 33] and relative independence

of the caliber change or vascular wall thickness (includes segmental change of

vascular property). Input impedance can be factorized into each harmonic property,

where each harmonic represents a relatively specific vascular property, including

proximal, distal, or pulsatile load. Taking advantage of this feature, the impedance

of aortopathy can be evaluated regardless of stenosis or dilatation. In previous

publications, aortic impedance in patients with Marfan syndrome was investigated

in relation to aortic dilatation. Interestingly, most of the study concluded that the

aortic characteristic impedance and reflection coefficient of Marfan syndrome were

normal, even though aortic dilatation was significant [69, 70]. Assuming aortic

dilatation is the result of compensation to maintain aortic impedance within a

normal range under the condition of augmented aortic stiffness [10], analyses in

these studies were cross-sectional; therefore, impedance analysis may still provide
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a predictive value for future development of aortopathy in Marfan syndrome and

possibly other diseases susceptible to aortopathy. We evaluated pulmonary arterial

properties in TOF patients utilizing input impedance and revealed that impedance at

a fundamental frequency and pulmonary arterial compliance were significantly

correlated with right ventricular eccentric hypertrophy [71]. We also found

increased aortic input impedance in postoperative TOF patients. Increased imped-

ance was associated with increased aortic diameter and reduced left ventricular

ejection [72].

8.5 Conclusions

As reviewed in this chapter, catheter examination provides indispensable informa-

tion regarding vascular properties of aortopathy even more so than advanced

imaging modalities. Although the indication for catheter insertion in patients with

a fragile aortic wall needs to be considered carefully, the assessments we introduced

here are recommended for patients with congenital heart diseases who are at risk for

aortopathy. Those patients require catheter examinations often for perioperative

assessment and/or catheter interventions, so they have more opportunities for the

insertion of catheters. In addition, hemodynamic assessments performed using

catheters are the gold standard that is necessary to verify the appropriateness of

noninvasive images, including echocardiograms or MRI scans. Extensive knowl-

edge regarding hemodynamics is required for maximizing catheter examinations as

the standard for hemodynamic assessments that contribute robust evidence regard-

ing aortopathy. The goal of this chapter is to help others understand hemodynamics

in aortopathy.
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