
Chapter 3

Neural Stem Cells/Neuronal Progenitor Cells

Nobutaka Horie

Abstract Neural stem/progenitor cells (NSCs) are defined as cells with the poten-

tial for self-renewal and differentiation into neurons, astrocytes, and oligodendro-

cytes. These cells can be derived from several sources, including embryonic stem

cells and fetal tissue. NSCs have been found to exist not only in the developing

brain but also in the mature mammalian brain. NSCs were initially cultured as

floating neurospheres in the presence of epidermal growth factor from adult and

embryonic murine forebrain. Cell transplantation using these cells has evolved as a

promising experimental treatment approach for stroke. Additionally, the activation

of endogenous neural stem/progenitor cells has recently been employed for stroke

treatment. This review provides an introduction to neural stem/progenitor cells and

briefly describes some advances in neural stem cell transplantation for stroke.
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3.1 Cell Biology

As initially observed by the pioneering neuroscientist Santiago Ramon y Cajal, the

mature central nervous system (CNS) was thought to be distinguished from the

developing nervous system by the lack of growth and cellular regeneration; it was

believed that nerve paths were something fixed, ended, and immutable and had no

regeneration potential in the adult CNS [1]. However, recent advances in neurosci-

ence have revealed the falsehoods in this myth. In 1992, Reynolds, Weiss, and

colleagues for the first time isolated neural stem cells (NSCs) and propagated them

in the presence of epidermal growth factor (EGF) to give rise to large cellular

spheres that they termed “neurospheres” [2, 3]. Neurons and glial cells are derived

from common immature NSCs, which are defined as self-renewing and multipo-

tential cells (Fig. 3.1). NSCs have been found to exist not only in the developing
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brain but also in the mature mammalian brain. Cultured NSCs derived from murine

embryonic brains can be propagated by incubation in serum-free medium

containing EGF and subsequently differentiated into neurons and astrocytes by

incubating in low-serum medium (e.g., 1% fetal bovine serum-containing medium

without EGF) [4].

NSCs exist in at least two regions of the adult brain – the subventricular zone of

the lateral ventricle and the subgranular zone of the hippocampus. Newborn

neurons are incorporated into existing functional networks and are thought to

have important innate and adaptive roles in cognition, behavior, and tissue repair

[5]. Notch signaling, which is highly active in quiescent NSCs in these areas, plays

a pivotal role in maintaining the undifferentiated and quiescent state of NSCs [6–

8]. Interestingly, NSCs give rise to their own niche cells through asymmetric

segregation of Notch ligand Delta-like 1 during mitosis, a process that may con-

tribute to initialization of activated NSCs to return to a basal NSC state

(undifferentiated and quiescent) [9]. Conversely, transcription factors including

basic helix-loop-helix (bHLH) transcription factors regulate NSC proliferation

and differentiation of each cell type [10]. Proneural bHLH genes, such as Ascl

1 (as Mash 1) and Neurogenin 2, promote neuronal fate determination and suppress

astrocytic gene expression [11, 12]. The bHLH gene Olig 2 regulates oligodendro-

cyte specification, whereas the bHLH genes Hes 1 and Hes 5 maintain NSCs by

repressing proneural gene expression [13, 14]. In addition, Ascl 1 and Olig 2 reg-

ulate oligodendrocyte and motor neuron development, respectively [13, 14]. A
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recent report showed that oscillatory control of these factors determines NSC

multipotency and fate [15].

NSCs first expand by rapid cell division to generate a large number of different

types of neurons during the early stage of brain development. After this neurogenic

period, NSCs mostly lose their neurogenic potential and begin to preferentially

generate glial cells during postnatal stages (astrogenic phase). Early stage NSCs

have a greater capacity to proliferate and self-renew than late-stage NSCs [16]. This

suggests that NSCs lose their neurogenic potential during development, which

might be a disadvantage for neuronal repair in adult CNS. Kishi et al. found that

neocortical NSC chromatin becomes globally condensed in a stage-dependent

manner and that high-mobility group A (HMGA) proteins, which are chromatin

architectural proteins, are necessary for the open chromatin state in early stage

NSCs [17]. They also found that reduced HMGA protein levels and resultant global

chromatin condensation are involved in restriction of the NSC differentiation

potential during neocortical development [17]. Thus, HMGA proteins are capable

of reprogramming late-stage NSCs into cells with early stage-specific capacities.

Developmental studies and experimental data have enabled us to determine that

the terminal cell differentiation state is reversible and that altering the balance of

specific transcription factors could be a powerful strategy for inducing pluripotency

[18]. It has recently been demonstrated that induced neural stem cells (iNSCs) can

be obtained from rodent and human somatic cells, such as fibroblasts, through

forced expression of defined transcription factors [Sox2, Klf4, and Myc (also

known as c-Myc) and Pou3f4 (also known as Brn4)] [19]. To date, two different

approaches have been successfully used to obtain iNSCs: a direct method and an

indirect method that involves an intermediate destabilized state. The possibility to

induce characterized iNSCs from human cells, e.g., fibroblasts, has opened new

horizons for research in human disease modeling and cellular therapeutic applica-

tions in the neurological field [20].

3.2 Ischemia-Induced NSC Activation

In vitro studies have shown that hypoxia enhances proliferation of cultured NSCs

and modifies the ability of the cells to differentiate [21–24]. Conversely, reduced

glucose has been shown to suppress proliferation and increase differentiation of

murine neural stem cells [25]. It is now well known that endogenous neurogenesis

occurs in certain brain areas after cerebral ischemia, such as the subgranular zone of

the dentate gyrus in the hippocampus [26], subventricular zone of the lateral

ventricle in the striatum [27], and cortical layer [28]. Some evidence indicates

that these neurons reestablish connections and contribute to functional recovery

[29, 30]. These new neurons migrate into the impaired lesion, where they express

markers of projection neurons. However, the majority of new neurons die during

the first weeks after stroke and are only capable of replacing a small fraction of

necrotic mature neurons [31]. Recently, electrical stimulation has been reported to
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elicit NSC activation and strengthen intrinsic neurogenesis as well as chemical

stimulation, which could be suitable for the clinical application to stroke, because it

is well established and its potential complications are manageable [32].

3.3 NSC Transplantation for Stroke

3.3.1 Interaction Between Transplanted NSC and Host Brain

Transplantation of NSCs has been proposed as a promising therapeutic strategy in

almost all neurological disorders, including Parkinson’s disease [33], Huntington’s
disease [34], Alzheimer’s disease [35], multiple sclerosis [36], amyotrophic lateral

sclerosis [37], spinal cord injury [38], and ischemic stroke [39], which are charac-

terized by the failure of CNS endogenous repair mechanisms to restore damaged

tissue and rescue lost functions [40]. If the use of NSC transplantation is to be

translated to clinical use, it is important to understand the mechanisms of action for

improved recovery. The initial hypothesis assumed that NSCs would replace lost

neurons and circuits. However, evidence for widespread afferent and efferent

neuronal projections is lacking. NSCs prevent neuronal-programmed cell death

and glial scar formation mainly via paracrine secretion of nerve growth factor,

brain-derived neurotrophic factor, ciliary neurotrophic factor, and glial cell-derived

neurotrophic factor. Recent preclinical data confirmed that transplanted NSCs may

exert a “bystander” neuroprotective effect. Results also identified a series of

molecules – immunomodulatory substances, neurotrophic growth factors, stem

cell regulators, and guidance molecules secreted from NSCs, which are temporally

and spatially orchestrated by environmental cues [41]. The bystander effect is a

multistep process that depends on the timing of cell injection and route of cell

transplantation [42]. Once injected, NSCs migrate and home to injured sites

[43, 44], likely due to constitutively expressed chemokine receptors, such as

CXCR4, cell adhesion molecules, and integrins, which allows the NSCs to follow

chemoattractant gradients and reach damaged lesion sites [45]. Following migra-

tion to the injured areas, transplanted NSCs survive in close proximity to blood

vessels (Fig. 3.2), where they interact with inflammatory cells, endothelial cells,

astrocytes, and microglia. If the NSCs are transplanted into a non-injured brain,

NSC migration does not occur [43, 44]. Conversely, NSCs have the potential to

integrate into the injured brain after differentiation into appropriate cells. However,

this remains undetermined and it is unclear whether this contributes to functional

recovery. The major concern in utilizing these cells is the capacity of NSCs to form

tumors, although tumorigenicity is less for fetal-derived NSCs than for embryonic-

derived NSCs [46].
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3.3.2 Endogenous Brain Repair After NSC Transplantation

3.3.2.1 Angiogenesis/Neovascularization

Transplanted NSCs migrate toward infarct lesions along existing vessels.

Chemoattractants, such as stromal cell-derived factor-1 [45] and monocyte

chemoattractant protein 1 [47], are reported to be critical factors associated with

cell migration and homing to lesions, although the interaction between transplanted

NSCs and existing vessels has not been fully elucidated. Nevertheless, the increased

vascularization in the peri-infarct area after stroke is associated with functional

recovery [48, 49]. Subacute NSC transplantation enhances neovascularization, and

stem cell-induced vascular endothelial growth factor (VEGF) plays a critical role,

as well as an anti-inflammatory effect [42]. Moreover, these vascular events

correspond with two patterns of functional recovery: an early mode of recovery

independent of neovascularization and delayed recovery that is NSC secreted and

VEGF dependent and coincides with increased vascularization [42].

Transplanted NSCs upregulate expression of tight junction proteins, such as

occludin, claudin 5, and Zo-1, and contribute to blood-barrier integrity by reducing

leakage [42]. Although the functional role for neovessels has not been fully

established, in addition to tissue perfusion, neovessels express trophic factors that

remodel damaged tissues in the brain after ischemia, form new synapses, and attract

endogenous neuroblasts originating in the subventricular zone [50].

3.3.2.2 Immunomodulation

Inflammation also plays an important role in ischemic stroke. Experimentally and

clinically, the brain responds to ischemic injury with an acute and prolonged

inflammatory process characterized by rapid activation of resident microglia,

a b

Fig. 3.2 NSCs survive in close proximity to blood vessels. Human NSCs (a red, SCS212) and
NSC-derived astrocytes (b red, hGFAP) attached to vessels (green)
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production of proinflammatory mediators, and infiltration of various types of

inflammatory cells into the ischemic brain tissue. However, these cellular events

collaboratively contribute to secondary brain injury.

Interestingly, experimental stroke leads to splenic atrophy and spleen-derived,

proinflammatory, monocyte, and macrophage mobilization into the circulation, as

well as subsequent accumulation in the ischemic brain. The decreased splenic size

inversely correlates with the extent of infarct volume [51, 52]. Therefore, removal

of the spleen might be effective for reducing infarct volume after stroke.

Transplanted NSCs have an anti-inflammatory effect even after 2–3 weeks

poststroke, and interestingly, this effect is associated with the development of

neovessels [42]. Similarly to other stem cell types, NSCs exert immunomodulatory

effects outside the brain upon systemic transplantation, occurring within secondary

lymphoid organs [53]. NSC-secreted leukemia inhibitory factor inhibits differenti-

ation of pathogenic Th17 cells through the extracellular signal-regulated MAP

kinase suppression of the cytokine signaling 3 inhibitory signaling cascade that,

in turn, antagonizes interleukin 6-mediated phosphorylation of signal transducer

and activator of transcription 3, both of which are required for Th17 cell differen-

tiation in peripheral lymphoid organs [54].

3.3.2.3 Axonal Sprouting, Dendritic Branching, and Synaptogenesis

Following ischemia, enhanced axonal sprouting takes place in the vicinity of the

lesion, which extends from the intact cortex toward the deafferented cortical area

[55, 56]. In rats, NSC grafts demonstrated increased corticocortical, corticostriatal,

corticothalamic, and corticospinal axonal rewiring from the contralesional hemi-

sphere, with transcallosal and corticospinal axonal sprouting correlating with func-

tional recovery [57, 58]. Functional imaging has also shown similar remapping of

the brain after stroke, indicating recruitment of both ipsi- and contralesional brain

areas at least during the first few weeks following injury [59, 60].

Chronic changes in dendritic structural plasticity after stroke have also been

reported with increased contralesional layer V dendritic branching peaking at

18 days poststroke, while ipsilesional layer III branching decreases at 9 weeks

poststroke [61, 62]. NSCs enhance dendritic branching, length, and arborization at

3 weeks poststroke in layer V cortical neurons in both the ipsi- and contralesional

cortex [57]. In vitro and in vivo studies have demonstrated that VEGF,

thrombospondins 1 and 2, and slit act as mediators and are partially responsible

for the NSC-induced effects on dendritic sprouting, axonal plasticity, and axonal

transport [57, 63].

Some studies have shown that NSC transplantation enhances synaptophysin

immunoreactivity in the ischemic boundary area after transplantation, suggesting

that NSC transplantation enhances synaptogenesis [64–66]. Satisfactory functional

recovery as a result of transplantation has been associated with increased expres-

sion of synaptogenesis markers [65]. Daadi et al. showed that NSCs increase

expression of synaptic markers and enhance axonal reorganization in injured
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areas at 4 weeks after transplantation [67]. This was also confirmed with initial

patch-clamp recording [67] and electron microscopy [66].

3.3.3 Modification of NSC Grafts for Transplantation

One of the main problems with NSC transplantation is the massive graft cell death,

which is possibly due to a hostile host brain environment and reduced the effec-

tiveness of this approach. It has been reported that only 1–3% of grafted cells

survive in the ischemic brain after grafting [68, 69], mainly due to inflammatory

responses in the host brain after ischemia. To address these issues, approaches to

modify NSCs for longer survival have been proposed. Minocycline-preconditioned

NSCs have been reported to tolerate oxidative stress after ischemic reperfusion

injury and express higher levels of paracrine factors [70]. Genetic manipulation of

NSCs to overexpress copper/zinc-superoxide dismutase (SOD1) was also reported

to enhance graft survival in an animal model with intracerebral hemorrhage

[71]. This strategy could be a highly effective approach, although its safety should

be validated.

3.4 Activation of Endogenous Neural Stem/Progenitor

Cells

Animal studies have demonstrated that stem cell transplantation reduces ischemic

brain injury by increasing endogenous neurogenesis and angiogenesis [50, 72, 73],

even in the aging brain. Functional recovery has also been achieved using cell

transplantation therapy, and results show that transplanted NSCs influence the host

brain by increasing endogenous striatal neurogenesis [50]. It is important to note

that graft-evoked neurogenesis varies depending on graft location and stroke type

[74]. Nevertheless, it remains unclear how much stroke-induced or transplanted

NSC-induced neurogenesis contributes to recovery or endogenous angiogenesis,

axonal sprouting, dendritic branching, and synaptogenesis.
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