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Abstract Let D be a closed unit disc in dimension two andG the group of symplec-
tomorphisms on D. Denote by G∂ the group of diffeomorphisms on the boundary
∂D and byGrel the group of relative symplectomorphisms. There exists a short exact
sequence involving with those groups, whose kernel isGrel. On such a groupGrel one
has a celebrated homomorphism called the Calabi invariant. By dividing the exact
sequence by the kernel of the Calabi invariant, one obtains a central R-extension,
called the Calabi extension. We determine the resulting class of the Calabi extension
in H 2(G∂;R) and exhibit a transgression formula that clarify the relation among the
Euler cocycle for G∂ , the Thom class and the Calabi invariant.
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1 Introduction

Let D be a closed unit disc in R
2 with a standard symplectic form ω = dx∧dy and

Symp(D) denote the group of symplectomorphisms on D. There exists the following
short exact sequence of groups:

1 −→ Grel−→Symp(D)−→G∂ −→ 1.

Here we set G∂ = Diff+(∂D), the group of diffeomorphisms on the circle ∂D that
preserves the orientation, and Grel = {g ∈ Symp(D)| g|∂D = id}, the group of rela-
tive symplectomorphisms on D. On such a group Grel one has a celebrated homo-
morphism Cal : Grel → Rwhich is called the Calabi invariant. Thus, by dividing the
sequence by the kernel of Cal, one obtains the Calabi extension:

0 −→ R−→Symp(D)/ ker(Cal)−→G∂ −→ 1,
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which turned out to be a central extension of G∂ . In general, a central extension of
Γ determines an element in the cohomology group H 2(Γ ;R), which is called the
Euler class. Thus it is natural to ask what the Euler class is in H 2(G∂;R) of the
Calabi extension. A result in Tsuboi [4] essentially gives an answer to the question
even though he has not attained the Calabi extension. In this context his result is
rephrased as follows: the Euler class of the Calabi extension is equal to that of a
universal central extension of G∂ up to a constant multiptle. To be more precise, it
is stated as follows.

Theorem (see Theorem 2) Let H be a universal covering space of G∂ and consider
a central extension

0 −→ Z−→H−→G∂ −→ 1,

called a universal central extension of G∂ . Let e(GR) denote the Euler class of H
with coefficients inR, thus e(GR) belongs to H 2(G∂;R). Then the Euler class of the
Calabi extension is equal to π2e(GR).

In order to prove the above theorem,we shall introduce anotion called a connection
cochain, which is reminiscent of connection form on circle bundles. Applying this
idea, the Euler class can be investigated at the cochain level and it turns out that the
transgression image of the Calabi invariant is the Euler class of a universal central
extension up to a constant multiple. Namely, the Euler class is equal to the negative
coboundary −δτ of a connection cochain τ and the restriction of τ to Grel coincides
with the Calabi invariant.

Moreover, to clarify a topological significance of the Calabi invariant, we employ
a double complex introduced by Bott. It provides a simplicial de Rham model for
DG, which stands for the Borel construction of the disk D. It is a universal foliated
disc bundle on the classifying space BG, where G is the group Symp(D) equipped
with a discrete topology. Now due to the presence of an invariant volume form ω,
it is able to construct the Thom class U in the simplicial model for DG. Moreover,
the integration along the fiber π∗, which induces a homomorphism on cohomology
groups from Hn(DG) to Hn−2(BG), is described in detail in terms of a simplicial
model. It is then well known that a square of the Thom class U ∪U is mapped to
the Euler class. With the description of the integration along the fiber, we can prove
on DG that a negative coboudary of the connection cochain τ is exactly the image
of U ∪U and that the restriction of τ to the fiber Grel coincides with the Calabi
invariant. This is our transgression formula for the Calabi invariant (see Theorem 5).

The paper is organized as follows. In Sect. 2, we develop the theory of a connection
cochain and the curvature. It turns out that there is a bijective correspondence between
the sections and the connection cochains and the Euler cocycle given in terms of
section is equal to the curvature of a corresponding connection cochain. In Sect. 3,
we briefly review a simplicial de Rham model due to Bott. The Sects. 4 and 5 are
the bulk of the paper. We define the Calabi extension and introduce a connection
cochain. Then an explicit formula of the curvature is obtained and related to the
Euler cocycle for a universal central extension. In the final section we obtain the
transgression formula for the Calabi invariant.
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2 The Euler Class and Connection Cochains

LetΓ be adiscrete group and A an abelian group.Recall that a p-cochain c : Γ p → A
is a function on the p-tuple product and the coboundary is defined to be

δc(g1, . . . , gp+1) = c(g2, . . . , gp+1) − c(g1g2, g3, . . . , gp+1) + · · ·
+ (−1)pc(g1, . . . , gp−1, gpgp+1) + (−1)p+1c(g1, . . . , gp).

The cochain complex (C p(Γ ; A), δ) with coefficients in A is given by the pair

C p(Γ ; A) = {c : Γ p → A}, δ : C p(Γ ; A) → C p+1(Γ ; A).

The cohomology group H∗(C•(Γ ; A)) is called a cohomology group of Γ with
coefficients in A, which is denoted by H∗(Γ ; A). Let BΓ be a classifying space of
Γ . It is known that the singular cohomology group of BΓ is isomorphic to that of
Γ with the same coefficients:

H∗(BΓ ; A) ∼= H∗(Γ ; A).

On the other hand, there is an alternative definition for low-dimensional cohomology
groups, in particular for dimension 2. Recall that a central A-extension ofΓ is a short
exact sequence of groups

0 −→ A−→G−→Γ −→ 1

such that A is contained in the center of G. It then turns out that the cohomology
group H 2(Γ ; A) is isomorphic to the equivalence classes of central A-extensions
of Γ ;

H 2(Γ ; A) ∼= {central A-extensions of Γ }/{splitting extensions}.

The resulting class in H 2(Γ ; A) ∼= H 2(BΓ ; A), denoted by e(G), is called the ex-
tension class or the Euler class of a central extension. It is defined in terms of a
section s : Γ → G, that is, a map satisfying π ◦ s = id with π : G → Γ the surjec-
tive homomorphism in the central extension. Namely, e(G) is defined by a 2-cocycle
χ called a Euler cocycle:

χ(γ1, γ2) = s(γ1)s(γ2)s(γ1γ2)
−1 = s(γ1γ2)

−1s(γ1)s(γ2) ∈ A (1)

for γ1, γ2 ∈ Γ . Note that A is contained in the center. It is also verified that the Euler
class is independent of the choice of section.

There is the third method to define the Euler class, which is quite reminiscent of a
characteristic class constructed from a connection form as in the Chern-Weil theory.
In order to introduce this, we first define a notion, called a connection cochain.
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Definition 1 Suppose that there is a central A-extension 0 −→ A−→G−→Γ −→
1. A cochain τ : G → A that satisfies the condition

τ (ga) = τ (g) + a ∈ A

for g ∈ G, a ∈ A is called a connection cochain. Here we write the product multi-
plicatively in G and additively in A. The coboundary δτ is called a curvature of τ .

Proposition 1 The following holds.

(1) There exists a 2-cocycleσ onΓ such that δτ (g, h) = σ(π(g),π(h)) for g, h ∈ G
with π : G → Γ , in other words, the curvature is a basic cocycle.

(2) The Euler class e(G) coincides with [−σ] ∈ H 2(Γ ; A).
(3) The cohomology class of a curvature in H 2(Γ ; A) is independent of the choice

of connection cochain.

Proof Let us take a ∈ A, which is central in G. One has

δτ (ga, h) = τ (h) − τ (gha) + τ (ga) = τ (h) − τ (gh) + τ (g) = δτ (g, h)

due to the property τ (ga) = τ (g) + a. Similarly δτ (g, ha) = δτ (g, h). This proves
that there is a cochain σ onΓ such that δτ = π∗σ. It is straightforward to see δσ = 0.

Note that there is a bijective correspondence between the connection cochains
and the sections. In fact, a section s gives an identification of G with the product
Γ × A in such a way that g ∈ G corresponds to (γ, a) ∈ Γ × A where γ = π(g)
and g = s(γ) a = a s(γ). A connection cochain τ is then uniquely determined by
the formula τ (g) = s(γ)−1g. In other words, a connection cochain τ is given by the
projection map Γ × A → A. Take lifts g1, g2 ∈ G of γ1, γ2 ∈ Γ , respectively. Since
gi−1s(γi ) (i = 1, 2) is central, one has

χ(γ1, γ2) = s(γ1γ2)
−1s(γ1)s(γ2)

= g1
−1s(γ1)g2

−1s(γ2)s(γ1γ2)
−1g1g2

= τ (g1)
−1τ (g2)

−1τ (g1g2),

which is equal to−τ (g2) + τ (g1g2) − τ (g1) = −δτ (g1, g2) once written additively.
Thus it proves χ(γ1, γ2) = −σ(γ1, γ2) and hence e(G) = [−σ].

Let θ be another connection cochain. The property of connection cochain implies
that there exists a cochain ξ : Γ → A such that ξ(γ) = τ (g) − θ(g) with γ = π(g).
Thus one has δξ = δτ − δθ, which proves that a curvatures is cohomologous to each
other in the cochain complex of Γ . This completes the proof. �

The argument above also proves the following:

Proposition 2 Let us take a section s : Γ → G and the Euler cocycle χ as in (1).
Let τ be a connection cochain given by the formula τ (g) = s(γ)−1g. Then one has
χ = −δτ .
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Remark 1 Let B be an abelian group with a homomorphism ι : A → B. A map-
ping τ : G → B satisfying τ (ga) = τ (g) + ι(a) ∈ B is called a connection cochain
with values in B. In fact, given a central extension 0 −→ A−→G−→Γ −→ 1,
we can extend it to a central extension 0 −→ B−→GB−→Γ −→ 1 so that GB

is the quotient G × B/ ∼ with the equivalence relation (g, b) ∼ (ga, b − ι(a)) for
(g, b) ∈ G × B, a ∈ A. The multiplication in GB is given by (g1, b1) · (g2, b2) =
(g1g2, b1 + b2)with (gi , bi ) ∈ G × B (i = 1, 2). In terms of cohomology theory, the
construction corresponds to a natural homomorphism ι∗ : H 2(Γ ; A) → H 2(Γ ; B)

induced by ι. It is easy to verify that τ : G → B yields a connection cochain
τB : GB → B defined by τB(g, b) = τ (g) + b. Thus, a connection cochain with
values in B determines the Euler class e(GB) in H 2(Γ ; B).

Remark 2 Given a central extension 0 −→ Z−→G−→Γ −→ 1, there is a method
to construct a fiber bundle BZ → BG → BΓ consisting of classifying spaces. This
is a homotopy S1-bundle on BΓ . It is known that the (topological) Euler class of
such a bundle coincides with the extension class in H∗(BΓ ;Z) ∼= H∗(Γ ;Z). This
is the reason why they are called the Euler class. Thus, it is reasonable to consider a
connection cochain as a counterpart of connection form on S1-bundle.

Example 1 (A universal central extension for homoemorphisms) Let S1 be a circle,
which is identified with the quotient space R/2πZ. Let Homeo+(S1) be the group
of all homeomorphisms that preserve the orientation. There exists the following
extension, called a universal central extension of Homeo+(S1):

0 −→ Z−→H
ρ−→ Homeo+(S1) −→ 1.

Here H denotes the universal covering space of a topological group Homeo+(S1),
where an element f ∈ H is considered as an homeomorphism of R satisfying
f (x + 2π) = f (x) + 2π for x ∈ R. With T the translation T (x) = x + 2π, it
is equivalent to say f ◦ T (x) = T ◦ f (x). In other words, f is an orientation-
preserving homeomorphism which is equivariant with T . It naturally induces a
homeomrophism on R/2πZ and thus yields a surjective homomorphism ρ : H →
Homeo+(S1). The kernel of ρ consists of the translations by 2nπ (n ∈ Z), which is
identified with the additive group Z in such a way that T corresponds to 1 ∈ Z.

Then a connection cochain τ : H → Z is given by τ ( f ) = [ f (0)/2π], where [x]
denotes the largest integer that does not exceed x ∈ R. In fact, one has

τ ( f ◦ T n) = [ f (2nπ)/2π] = [ f (0)/2π + n] = τ ( f ) + n

since f is equivariant. Thus, τ is a connection cochain once n ∈ Z is identified with
T n . Given γ1, γ2 ∈ Homeo+(S1), we take respective lifts h1, h2 in H . The Euler
class of the universal central extension is then given by a cocycle

χ(γ1, γ2) = [h1 ◦ h2(0)/2π] − [h1(0)/2π] − [h2(0)/2π].
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It is known that it coincides with the (topological) Euler class of a universal
Homeo+(S1)δ-bundle, where Homeo+(S1)δ denotes the homeomorphism group
equipped with discrete topology. In addition,χ is a bounded cocycle. Such a property
is crucial in the theory of bounded cohomology groups due to Gromov; see Ghys [5]
for more detail.

Example 2 (A universal central extension for diffeomorphisms) In a similar way to
the above, one has a central extension for the orientation-preserving diffeomorphism
group Diff+(S1):

0 −→ Z−→H
ρ−→ Diff+(S1) −→ 1,

which is also called a universal central extension for the diffeomorphisms. Here an
element f ∈ H is an orientation-preserving diffeomorphism of R satisfying f (x +
2π) = f (x) + 2π for x ∈ R, and a surjective homomorphism ρ : H → Diff+(S1)
is defined as well. Then there exists a connection cochain τ : H → R such that

τ ( f ) = 1

4π2

∫ 2π

0
f (x)dx .

In fact, one has

τ ( f ◦ T n) = 1

4π2

∫ 2π

0
f (x + 2nπ)dx

= 1

4π2

∫ 2π

0
( f (x) + 2nπ)dx = τ ( f ) + n.

Thus, due to Remark 1, it determines e(HR) in H 2(Diff+(S1)δ;R), the Euler class
of H with coefficients inR. With h1, h2 ∈ H and γ1 = π(h1), γ2 = π(h2), the Euler
cocycle is then given by the formula

χ(γ1, γ2) = 1

4π2

∫ 2π

0
(h1 ◦ h2(x) − h1(x) − h2(x)) dx . (2)

3 Simplicial de Rham Model of Classifying Spaces

In this section we briefly review a simplicial de Rham model due to Bott [1], which
plays a key role in our study on the Calabi invariant. Let M be a smooth manifold
and Γ a discrete group acting on M . Let Γ p denote the p-tuple product and Ωq(M)

the space of q-forms on M . We define C p(Γ,Ωq(M)) to be the set of arbitrary
mappings c : Γ p → Ωq(M), which is called the space of group cochains of degree
p with values in Ωq(M) or cochains of type (p, q). We then introduce a double
complex
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C p,q = C p(Γ,Ωq(M))

with the (total) differential D = δ + (−1)pd onC p,q ,whered the exterior differential
operator and δ a coboundary map for group cochains. To be precise, δ is given by

δc(g1, . . . , gp+1) = c(g2, . . . , gp+1) − c(g1g2, g3, . . . , gp+1) + · · ·
+ (−1)pc(g1, . . . , gp−1, gpgp+1) + (−1)p+1c(g1, . . . , gp)

gp+1,

where c : Γ p → Ωq(M) with Ωq(M) a right Γ -module by the action on M . We
also observe that there is a cup product given by

(c1 ∪ c2)(g1, . . . , gp+r ) = c1(g1, . . . , gp)
gp+1gp+2···gp+r ∧ c2(gp+1, . . . , gp+r )

for c1 ∈ C p,q , c2 ∈ Cr,s .Weknow that the exterior differentiation is a skew-derivation
and the same for the coboundary map:

δ(c1 ∪ c2) = δc1 ∪ c2 + (−1)pc1 ∪ δc2.

Let MΓ denote the Borel construction of M , namely, a quotient space

MΓ = (EΓ × M)/ ∼

obtained from the equivalence relation (x,m) ∼ (xγ−1, γm) with (x,m) ∈ EΓ ×
M and γ ∈ Γ . It turns out that MΓ is a classifying space for foliated M-bundles
with the structure group Γ. Now we assemble a total complex Ω∗(MΓ ) in such a
way that

Ωn(MΓ ) =
⊕
p+q=n

C p(Γ,Ωq(M)).

It is called a simplicial de Rhammodel of MΓ due to the following theorem by Bott:

Theorem 1 [1] Let H∗(Ω(MΓ )) be the cohomology group of a simplicial de Rham
model Ω∗(MΓ ). Then there is an isomorphism

H∗(Ω(MΓ )) ∼= H∗(MΓ ),

where H∗(MΓ ) stands for the singular cohomolgy group of MΓ .

4 The Calabi Invariant

Let D be a disk of radius 1 in R
2, D = {(x, y) ∈ R

2| x2 + y2 ≤ 1} and take the
standard symplectic form ω = dx ∧ dy on D. Let Symp(D) be the group of sym-
plectomorphisms on D, which is simply denoted by G. We also denote by Grel
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the group of relative symplectomorphisms; Grel = {g ∈ G| g|∂D = id}, where g|∂D
denotes the restriction of g to ∂D. Set G∂ = Diff+(∂D), which is the group of
orientation-preserving diffeomorphisms on ∂D. Then there exists a short exact
sequence:

1 −→ Grel−→G−→G∂ −→ 1. (3)

We also choose a 1-from η on D such as ω = dη once for all.

Definition 2 The Calabi invariant1 is defined to be a mapping Cal : Grel → R such
that

Cal(g) =
∫
D
(η ∪ δη)(g)

for g ∈ Grel, where the integrand is equal to

(η ∪ δη)(g) = ηg ∧ (η − ηg) = ηg ∧ η.

Here we denote by ηg the pullback g∗η induced by g. In the sequel, we frequently
use this notation even for functions: ϕg(x) = ϕ(g(x)).

Proposition 3 The Calabi invariant yields a homomorphism on Grel.

Proof Note that

δCal(g, h) =
∫
D
(δη ∪ δη)(g, h) =

∫
D
(η − ηg)h ∧ (η − ηh).

Since ω is G-invariant, one has d(η − ηg) = 0 and (η − ηg)|∂D = 0 for g ∈ Grel.
Recall that the relative cohomology group H 1(D, ∂D) vanishes. Thus, there exists a
smooth function fg ∈ C∞(D) such that δη(g) = η − ηg = d fg and fg|∂D = 0. This
implies

δCal(g, h) =
∫
D

δη(g)h ∧ δη(h) =
∫
D
(d fg)

h ∧ δη(h) =
∫

∂D
f hg ∧ δη(h) = 0

(4)
since fg|∂D = 0. Therefore, one obtains

δCal(g, h) = Cal(g) − Cal(gh) + Cal(h) = 0,

which proves that the Calabi invariant is a homomoprhism. �
It is possible to extend the Calabi invariant from Grel to G by the same formula.

Namely, thers is a cochain τ : G → R defined by

τ (g) =
∫
D
(η ∪ δη)(g) = −

∫
D

η ∧ ηg (5)

1The definition in McDuff-Salamon [6] is negative one half of the above and that in Tsuboi [4]
coincides with ours.
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for g ∈ G. However, there is a significant distinction between the Calabi invariant
and τ . It is known that the value of Calabi invariant is independent of the choice of
η such as ω = dη; see McDuff-Salamon [6]. On the other hand, τ does depend on
the choice of η at the outside of Grel. Thus τ seems to be less interesting from the
viewpoint of Symplectic Topology. Nevertheless, it turns out that τ is still relevant
since it admits the following properties similar to a connection cochain.

Proposition 4 For g ∈ Grel and h ∈ G, one has:

(1) Cal(g) = Cal(hgh−1);
(2) τ (gh) = τ (h) + Cal(g) and τ (hg) = τ (h) + Cal(g).

Proof SinceGrel is a normal subgroup, one has hgh−1 ∈ Grel. Note that d(η − ηh) =
ω − ωh = 0, thus there exist f ∈ C∞(D) such that η − ηh = d f since H 1(D;R) =
0. Then we obtain

−Cal(hgh−1) =
∫
D

ηh ∧ ηhg

=
∫
D
(η − d f ) ∧ (η − d f )g

=
∫
D
(η ∧ ηg − η ∧ d f g − d f ∧ ηg + d f ∧ d f g)

=
∫
D
(η ∧ ηg + d(η ∧ f g) − dη ∧ f g − d( f ∧ ηg) + f ∧ dηg + d( f ∧ d f g))

=
∫
D
(η ∧ ηg − dη ∧ f g + f ∧ dηg).

The last equality follows from the Stokes theorem and the property g|∂D = id. Hence
we finally have

Cal(hgh−1) = −
∫
D
(η ∧ ηg − ω ∧ f g + f ∧ ω) = Cal(g)

since ωg = ω. This prove the first equation.
Recall the proof for the Eq. (4). The argument holds as long as either g or h is an

element of Grel. Thus, in the case of g ∈ Grel and h ∈ G, we obtain

δτ (g, h) = Cal(g) − τ (gh) + τ (h) = 0,

which prove the second equation. The same argument applies to the third. �

Proposition 5 Set K = ker[Cal : Grel → R]. It is a normal subgroup in G.

Proof As observed, Grel is a normal subgroup in G. Thus it is straightforward from
the property (1) in Proposition 4.
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Due to Proposition 4, a cochain τ : G → R can be considered as a connection
cochain with values in R even though the exact sequence (3) is not central. In fact τ
will amount to a connection cochain of the Calabi extension, which will be defined
in the next section.

5 The Calabi Extension

Recall fromProposition 5 that K = ker(Cal) is a normal subgroup inG = Symp(D).
By dividing G by K , one obtains the following short exact sequence:

0 −→ Grel/K−→G/K−→G∂ −→ 1.

Note that the quotient group Grel/K is isomorphic to R since the Calabi invariant is
surjective. With the identification to R fixed, we prove the following:

Proposition 6 The short exact sequence 0 −→ R−→G/K−→G∂ −→ 1 is a cen-
tral extension.

Proof it suffices to show thatGrel/K is contained in the center ofG/K . Let gi K be a
coset of Grel/K with gi ∈ Grel (i = 1, 2). It is obvious that g1K = g2K if and only
if Cal(g1) = Cal(g2). Thus, Proposition 4 implies hgh−1K = gK for g ∈ Grel, h ∈
G. Therefore, one obtains hgK = hgh−1K · hK = gK · hK = ghK , which proves
that gK is central in G/K for g ∈ Grel. �

Definition 3 The central extension 0 −→ R−→G/K−→G∂ −→ 1 is called the
Calabi extension.

Let τ be a cochain defined in (5). It is obvious that τ induces a connection cochain
on G/K due to the second property in Proposition 4. We denote it by the same letter
as τ : G/K → R. Then a formula for the curvature will be derived. Recall that there
exists a smooth function fg ∈ C∞(D) for g ∈ G such that

δη(g) = η − ηg = d fg.

Thus, the curvature amounts to

δτ (g, h) =
∫
D

δη ∪ δη(g, h) =
∫
D

δη(g)h ∧ δη(h) =
∫

∂D
f hg d fh

by the Stokes theorem.
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Proposition 7 Choose smooth functions fg as above.

(1) The curvature is given by

δτ (g, h) =
∫
D

δη ∪ δη(g, h) =
∫

∂D
f hg d fh .

(2) Let ϕ and ψ be arbitrary smooth functions on ∂D such that (η − ηg)|∂D = dϕ,
(η − ηh)|∂D = dψ. It then follows

∫
∂D

ϕhdψ =
∫

∂D
f hg d fh .

Proof We have already proved the first statement. For the second, note that there
exist constants a, b such that ϕ = fg|∂D + a,ψ = fh |∂D + b by the assumption.
Thus one has

∫
∂D

ϕhdψ =
∫

∂D
f hg d fh +

∫
∂D

ad fh =
∫

∂D
f hg d fh

due to the Stokes theorem. �

The second formula reminds us of a linking form. Functions ϕ and ψ are deter-
mined up to constant from g, h ∈ G, however, the value of integral has no ambigu-
ity. In fact, it depends only on the restrictions g|∂D and h|∂D , or (η − ηg)|∂D and
(η − ηh)|∂D with η fixed.

Recall that we have chosen η such that ω = dη. Now we deal with a specific η,
nemely, η = r2dθ/2 with the polar coordinate (r, θ) in R2. Given γ ∈ G∂ , let g ∈ G
be a lift of γ, which is equivalent to say γ = g|∂D. We then obtain (η − ηg)|∂D =
(dθ − dθγ)/2 on ∂D (dθ denotes the angular form restricted to ∂D). In Example 2
we constructed a universal central extension of G∂ = Diff+(S1):

0 −→ Z−→H
π−→ G∂ −→ 1.

An element in H is an orientation-preserving diffeomorphism h : R → R satisfying
h(x + 2π) = h(x) + 2nπ for x ∈ R, where ∂D is identifiedwithR/2πZ. Denote the
respective coordinates by θ on ∂D and x on R/2πZ. Set φh(x) = x − h(x) + h(0)
with x ∈ R (we consider x as a function on R), where h is a lift of γ ∈ G∂ to H . For
another lift k ∈ H of γ, there exists an integer n ∈ Z such that k(x) = h(x) + 2πn.

Hence one has φk(x) = x − (h(x) + 2πn) + (h(0) + 2πn) = φh(x), which implies
that φh(x) is independent of the choice of lift. We denote it by φγ(x) from now
on. One further has φγ(x + 2πn) = x + 2πn − h(x + 2πn) + h(0) = φγ(x) since
h is equivariant. This implies that φγ is a smooth function on R/2πZ. Shifting
the coordinate from x to θ ∈ ∂D, one then obtains dφγ = dθ − dθγ . Summarizing,
we proved that there is a smooth function φγ(x) = x − h(x) + h(0) on ∂D, which
depends only on γ, and that (η − ηg)|∂D = dφγ(x)/2 with g ∈ G and g|∂D = γ.
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Employing Proposition 7, we obtain an explicit formula for a curvature of the
Calabi extension. Set γi = gi |∂D for gi ∈ G and denote by hi a lift of γi to H
(i = 1, 2). One has

δτ (g1, g2) = 1

4

∫
∂D

(φγ1)
γ2dφγ2

= 1

4

∫ 2π

0
(θ − h1(θ) + h1(0))

h2(dθ − dθh2)

= 1

4

∫ 2π

0
(h2(θ)dθ − h1 ◦ h2(θ)dθ − θdθ + h1(θ)dθ)

= 1

4

∫ 2π

0
(h2(θ)dθ − h1 ◦ h2(θ)dθ + h1(θ)dθ) − π2/2

= −π2χ(γ1, γ2) − π2/2,

where χ is the Euler cocyle in (2). Since a constant 2-cochain is a coboundary, it
proves that −δτ is cohomologous to π2χ. Thus we have proved the following:

Theorem 2 Let e(HR) denote the Euler class in Example 2 of a universal central
extension with coefficients inR. Then the Euler class of the Calabi extension is equal
to π2e(HR) in H 2(G∂;R).

Remark 3 If one has the opposite signature with the Calabi invariant, the same for
the identification to R and the Euler class is multiplied by negative one.

Remark 4 Suppose that a symplectic formω on D has the form of dρ(r) ∧ dθ, where
ρ is a smooth function of radius r with ρ(0) = 0 and the derivative ρ′(0) vanishes.
Then one can choose η = ρ(r) ∧ dθ and obtain

−δτ = π2ρ(1)2χ + π2/2

by the same argument. Note that 2πρ(1) is the symplectic volume of D. Thus, for
such a symplectic form, the Euler class of the Calabi extension turns out to be equal
to π2ρ(1)2e(GR).

The identity above also proves the following:

Theorem 3 Recall a connection cochain τ : G → R in (5). Then the curvature δτ
is bounded and thus τ gives rise to a quasi homomorphism on G, namely, δτ is a
bounded cocycle.

Proof Let h : R → R be an element of H and set nh = [h(0)/2π]. It is the largest
integer that does not exceed h(0)/2π as in Example 1. Then one can easily
verify 2πnh <

∫ 2π
0 h(x)dx < 2π(nh + 2) and nh1 + nh2 ≤ nh1◦h2 < nh1 + nh2 + 2.

This implies that |χ(γ1, γ2)| < 2/π, which proves that δτ is a bounded since
−δτ = π2χ + π2/2. �
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6 Transgression Formula for the Calabi Invariant

In this section we shall prove a transgression formula for the Calabi invariant. Let
Ω∗(DG) be a simplicial de Rham model of DG, where D is a closed unit disk and
G = Symp(D). Denote also by Ω∗(∂DG) a simplicial de Rham model of ∂DG, by
letting G act on the boundary ∂D (the action is not faithful). Recall the definition of
relative de Rham complex in Bott-Tu [2]. It is defined by

Ωn(DG, ∂DG) = Ωn(DG) ⊕ Ωn−1(∂DG), d(α,β) = (Dα, α|∂D − Dβ)

for (α,β) ∈ Ωn(DG) ⊕ Ωn−1(∂DG), where D is the differential on a simplicial
de Rham model. Denote by H∗(Ω(DG, ∂DG)) a cohomology group of the relative
complex and by DG a flat disk bundle on the classifying space BG. Here we assume
that G is equipped with a discrete topology. Due to Theorem 1 by Bott [1], there is
an isomorphism H∗(Ω(DG, ∂DG)) ∼= H∗(DG, ∂DG;R), thus it plays the role of
cohomology group for the Thom space of DG.

Proposition 8 LetU denote the Thom class in H 2(Ω(DG, ∂DG)). It is represented

by cocycles
1

π
(ω, 0) and − 1

π
(δη, η|∂DG), which are cohomologous to each other.

Proof It is easy to verify that (ω, 0) is a cocycle sinceω isG-invariant. Note thatω =
dη. Thus one has d(η, 0) = (ω, 0) + (δη, η|∂DG), which proves that above cocycles
are cohomologous.

Recall that the Thom class is characterized by the property that
∫
U = 1, where∫

denotes the integration along the fiber, a homomorphism Hn(DG, ∂DG;R) →
Hn−2(BG;R). On a simplicial model, it is defined explicitly on a cochain level by
the following formula

∫
: Ωn(DG, ∂DG) → Cn−2(G;R),

∫
(α,β) =

∫
D

α − (−1)r
∫

∂D
β

with α of type (p, q) and β type (r, s). Thus one has
∫
(ω, 0) = ∫

D ω = π, which
implies that the cohomology class of (ω, 0)/π is the Thom class. This completes the
proof. �

The cup product on the relative complex is given by

(α1,β1) ∪ (α2,β2) = (α1 ∪ α2,β1 ∪ α2|∂D).

We often denote β1 ∪ α2|∂D simply by β1 ∪ α2. The square of Thom class U ∪U
is then represented by a cocycle (δη ∪ δη, η ∪ δη|∂D)/π2, where η ∪ δη|∂D van-
ishes due to the dimensional reason. Thus, U ∪U is represented by a cocycle
(δη ∪ δη, 0)/π2. Let χtop be a 2-cocycle obtained as the image of (δη ∪ δη, 0)/π2

by the integration along the fiber. One then has
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χtop = 1

π2

∫
(δη ∪ δη, 0) = 1

π2

∫
D

δη ∪ δη = 1

π2
δτ ,

where τ : G → R the connection cochain in (5). Therefore, it turns out that χtop is
cohomologous to zero. On the other hand, it is known that the cohomology class of
χtop is equal to the Euler class of the disk bundle DG → BG; see Milnor-Stasheff
[3]. Thus this implies that the Euler class vanishes for DG. Summarizing, we have
proved the following:

Theorem 4 Let e(DG) denote the (topological) Euler class for a universal flat disc
bundle DG → BG. Then e(DG) vanishes in H 2(G;R) ∼= H 2(BG;R). In fact, a
representative cocycle χtop of e(DG) is a coboundary of τ : G → R up to a constant
multiple:

χtop = 1

π2

∫
D

δη ∪ δη = 1

π2
δτ .

Remark 5 The vanishing of e(DG) can be proved in a simple way. It is proved
in Proposition 8 that the Thom class for DG is represented by (ω, 0)/π. Thus, a
representative of U ∪U is given by (ω, 0) ∪ (ω, 0)/π2, which vanishes due to the
dimensional reason. Therefore, e(DG) also vanishes by the same argument in the
above.

The formula in Theorem 4 tells us thatχtop is a coboundary onG such as π2χtop =
δτ . However, it descends to a cocycle on the quotient group G∂ by Proposition 1,
namely, there is a 2-cocycle σ on G∂ such that ρ∗σ = δτ with ρ : G → G∂ the
surjective homomorphism. Moreover, we know that the cohomology class of −σ is
the Euler class of the Calabi extension, thus nontrivial. Putting these together, we
proved the following transgression formula for σ:

Theorem 5 (Transgression formula for the Calabi invariant) Recall the short exact
sequence in (3):

1 −→ Grel−→G
ρ−→ G∂ −→ 1.

Let Cal be the Calabi invariant defined on Grel and τ : G → R the connection
cochain in (5). Let σ be a curvature of τ considerd as a cocycle on G∂ . Then σ
is the transgression image of Cal, namely, we obtain the transgression formula:

σ(ρ(g1), ρ(g2)) = δτ (g1, g2) =
∫
D

δη ∪ δη(g1, g2),

Cal(h) = τ (h) =
∫
D

η ∪ δη(h)

for g1, g2 ∈ G and h ∈ Grel.

Proof The first identity is nothing but Proposition 7. The second one is obvious from
the definition of τ in (5). �
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