
Chapter 1

Dectin-2 in Antimicrobial Immunity

and Homeostasis

Rikio Yabe and Shinobu Saijo

Abstract Dendritic cell-associated lectin-2 (Dectin-2) is one of the most well-

characterized members of the C-type lectin family. Recent studies have revealed its

indispensable functions as a pattern recognition receptor (PRR) for a wide variety

of pathogens, including fungi, bacteria, and viruses. This receptor recognizes

microbial carbohydrates as a pathogen-associated molecular pattern (PAMP).

Upon ligand ligation, Dectin-2 induces secretion of the pro-inflammatory cytokines

such as interleukin (IL)-1β, IL-6, and TNF, as well as the inhibitory cytokine IL-10.
These cytokines differentiate T cells into IL-17-producing Th17 cells to eliminate

pathogens. In addition to microbes, Dectin-2 also binds to allergens such as those of

house dust mites and helminths to activate the NLRP3 inflammasome. In vivo,

Dectin-2 plays a key role in antimicrobial infection, especially antifungal infec-

tions. Owing to these abilities, Dectin-2 agonists could be promising adjuvants in

vaccinations. In this section, we summarize the current knowledge of Dectin-2 in

detail, describing its structure, ligand recognition, signaling, and associated human

diseases.
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Inflammation • Carbohydrate • High mannose

1.1 Introduction

Dendritic cell-associated lectin-2 (Dectin-2, gene symbol: Mus musculus Clec4n,
Homo sapiens CLEC6A or CLEC4N) was originally found as a Langerhans cell-

specific C-type lectin that recognizes self-ligands expressed in CD4+CD25+ T cells

(Ariizumi et al. 2000). Subsequently, Dectin-2 expression was found in myeloid

cells, including monocytes, tissue macrophages, neutrophils, several dendritic cell

(DC) subsets, and B lymphoid cells (McDonald et al. 2012; Robinson et al. 2009;

Seeds et al. 2009; Taylor et al. 2005). The expression of the gene is rather low in
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these cells, although it is greatly enhanced with the inflammatory stimuli. Never-

theless, the molecular mechanisms underlying the regulation of Dectin-2 expres-

sion still remain to be elucidated.

Dectin-2 is encoded in the mouse chromosome 6F and in the syntenic region on

human chromosome 12q13, where several C-type lectin genes are located and form

clusters, including Dectin-1 and Dectin-2 clusters (Fig. 1.1a) (Balch et al. 2002;

Fujikado et al. 2006). In the mouse, nine members, DCIR4, DCIR3, DCIR2,

DCAR2, DCIR1, DCAR-1, Dectin-2, MCL, and Mincle (gene symbols: Clec4a1,
Clec4a3, Clec4a4, Clec4b1, Clec4a2, Clec4b2, Clec4n, Clec4d, and Clec4e), are
mapped in close vicinity on the Dectin-2 cluster of chromosome 6, sharing a

common structure (see next section). By contrast, fewer molecules are found in

the Dectin-2 cluster in humans, i.e., BDCA-2, DCIR, DECTIN-2, MCL, and

MINCLE (gene symbols: CLEC4C, CLEC4A, CLEC6A, CLECSF8, and
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Fig. 1.1 a Organization of mouse and human Dectin-1 and Dectin-2 clusters. b Dectin-2 senses

α-mannosylated chains and initiates cellular responses through association with the Fc receptor γ
chain (FcRγ), which contains immunoreceptor tyrosine-based activation motif (ITAMs). Dectin-2

is presented as a homodimer through a disulfide bond or in association with FcRγ, whereas it forms

a heterodimer with MCL linked by FcRγ. The heterodimeric complex has relatively strong affinity

to pathogen-associated molecular patterns (PAMPs) in comparison with the homodimeric complex
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CLEC4E). Due to the common gene structure shared by the receptors and the

variation of the family members between species, it is speculated that this gene

cluster may have been established by gene duplication. Interestingly, this region of

the chromosome harboring the Dectin-2 and Dectin-1 clusters has been implicated

in several autoimmune diseases by linkage studies (Fujikado et al. 2006; Wandstrat

andWakeland 2001). Therefore, it is possible that C-type lectins could be one of the

susceptibility genes for these diseases (Caliz et al. 2013).

Of note, Dectin-2 may have an immune inhibition role because of its unique

ability to produce anti-inflammatory cytokine, interleukin (IL)-10. However, com-

pared to its immune-activating or antimicrobial functions, the physiological role of

the immune-inhibiting activity of Dectin-2 remains largely unknown. In this sec-

tion, we update paradigm and summary findings on Dectin-2 and its functions that

have been made in recent years.

1.2 Structure of Dectin-2

Dectin-2 is a glycosylated type II transmembrane protein, whose C-terminal portion

encodes the extracellular region and the N-terminal portion encodes the cytoplas-

mic region of the receptor (Ariizumi et al. 2000). This protein is encoded by six

exons and has a single carbohydrate recognition domain (CRD) in the extracellular

region, a stalk region, a transmembrane region, and a short cytoplasmic domain

with no known signaling motif. These structures are shared among other C-type

lectins in the Dectin-2 cluster with the exception of DCIR and DCIR2, which have

an inhibitory motif, immunoreceptor tyrosine-based inhibitory motif (ITIM), in

their cytoplasmic region. Dectin-2 associates with an adapter molecule, Fc receptor

γ chain (FcRγ, gene symbol: Fcer1g) to transduce its signaling. Although Dectin-2

contains an arginine residue, which often mediates associations with

immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor mol-

ecules in the transmembrane region, the interaction between these two molecules is

not dependent on the arginine residue unlike other FcRγ-coupled receptors, but

instead requires the cytoplasmic tail of Dectin-2 (Sato et al. 2006). As Dectin-2 has

a conserved cysteine residue in its stalk region, which can form disulfide-linked

homodimers, it was implicated that this receptor forms homodimers by ligand

recognition. Recently, Zhu et al. demonstrated that Dectin-2 forms heterodimers

with another C-type lectin, MCL, as well as homodimers, and the heterodimers

showed stronger affinity to the ligand than the homodimers (Fig. 1.1b). Require-

ment of the cysteine residue of Dectin-2 for the heterodimerization and the molec-

ular mechanism for this dimer formation are still unknown.
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1.3 Ligands of Dectin-2

Dectin-2 contains an acid–proline–asparagine (EPN) amino acid triplet in its

extracellular CRD, a common feature that is known to facilitate binding to man-

nose, glucose/N-acetylglucosamine, and fucose in a Ca2+-dependent manner and

has attracted much attention with respect to its role as a pattern recognition receptor

(PRR) (Fernandes et al. 1999). Indeed, a study using a glycan array revealed that

Dectin-2 binds to high-mannose structures that are distributed in a wide range of

species, including fungi, parasites, bacteria, and mammals (McGreal et al. 2006).

Consistent with this, using a recombinant soluble form of Dectin-2 CRD as a probe,

or Dectin-2-expressing reporter cells, it was shown that Dectin-2 binds to a variety

of pathogenic microorganisms, including Candida spp., Saccharomyces cerevisiae,
Cryptococcus neoformans, Trichophyton rubrum, Paracoccidioides brasiliensis,
Malassezia spp., and Aspergillus fumigatus, Mycobacterium spp., Streptococcus
pneumoniae, and Ebola virus, whose cell wall polysaccharides contain a high-

mannose structure (Table 1.1) (Barrett et al. 2009; Brudner et al. 2013; McGreal

et al. 2006; Miyasaka et al. 2013; Ritter et al. 2010; Sato et al. 2006).

Among these pathogens, the best-studied interactions are with Candida albicans
(C. albicans), Malassezia, and Mycobacterium. The C. albicans cell wall is com-

posed of multiple layers, including the outermost mannans (polymers of mannose),

middle-layer β-glucans (polymers of D-glucose linked by β-glycosidic bonds), and
the inner-layer chitins (polymers of N-acetylglucosamine) (Odds 1988). Mannans

from C. albicans have β-1,2-linked mannose residues attached to their α-1,2-linked
oligomannose side chains with α-1,6-linked mannose backbone (Fig. 1.2a) (Cutler

2001; Shibata et al. 2003). Since the β-1,2-linked mannose residues are not syn-

thesized when this fungus is cultured in a carbon-limited (C-limited), low-pH

Table 1.1 Dectin-2 sensing microbial pathogens

Category Microbial pathogens Ligands

Bacteria Mycobacterium spp. Man-LAM

S. pneumonia

Fungi Candida spp. α-mannans, high-mannose-type N-glycans

Malassezia spp. O-linked mannobioses

A. fumigates

C. neoformans (non-capsulated)

Saccharomyces cerevisiae

Coccidioides spp.

B. dermatitidis

H. capsulatum

T. rubrum

P. brasiliensis

Virus Ebola

Others S. mansoni

House dust mite allergen
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medium at a low temperature, only α-1,2-mannose residues are synthesized and

secreted into the medium as a water-soluble fraction (Shinohara et al. 2006)

(Fig. 1.2b). When Dectin-2-deficient bone marrow-derived DCs (BMDCs) are

stimulated with these α-mannans, the production of cytokines such as interleukin

(IL)-6 and TNF was abolished, indicating that Dectin-2 is a receptor for C. albicans
α-mannans. C. albicans is a dimorphic fungus that can exist in yeast or hyphal form

depending on its growth environment (Saijo et al. 2010). A previous study revealed

that Dectin-2 selectively binds to the hyphal form of C. albicans (Sato et al. 2006).

Indeed, significant, but not complete, reduction in cytokine secretion was found in

Dectin-2-deficient BMDCs upon stimulation with the hyphal form of C. albicans.
Notably, cytokine production of Dectin-2-deficient BMDCs was eradicated in

response to the yeast form of C. albicans, indicating that Dectin-2 is the only

receptor to produce cytokines for the yeast form of the fungus.

Malassezia, which is found in the normal flora of the human skin, is another

opportunistic fungal pathogen. Ishikawa et al. identified the O-linked mannoprotein

fractionated from the Malassezia cell wall as a distinct Dectin-2 ligand. By using

Dectin-2-expressing reporter cells, they also showed that α-1,2-mannosyl residues

were necessary and sufficient for recognition by the receptor (Table 1.1) (Ishikawa

et al. 2013). Recently, Dectin-2 was found to recognize a cell wall component of

Mycobacterium, mannose-capped lipoarabinomannan (Man-LAM), which consists

of a mannosyl-phosphatidyl-myo-inositol anchor, a mannose backbone, and an

Fig. 1.2 The structure of the mannosyl residues of an N-linked mannoprotein. a C. albicans
cultured at 37 �C with normal medium. b C. albicans cultured at 27 �C with C-limiting medium.

α-1,6-linked mannose (pink circles), α-1,2-linked mannose (yellow circles), β-1,2-linked mannose

(gray circles), α-1,3-linked mannose (green) (Adapted from Hobson et al. 2004)
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arabinan domain with mannose capping (Yonekawa et al. 2014). Interestingly, a

distinct mycobacterial cell wall component, trehalose-6,60-dimycolate (TDM), is

recognized by MINCLE and MCL, whose genes are closely located to the Dectin-2

locus (Ishikawa et al. 2009; Miyake et al. 2013).

1.4 Dectin-2 Signaling

Upon recognition of the carbohydrate structures in pathogens, Dectin-2 initiates a

series of cellular responses beginning with the association of the ITAM-containing

adaptor molecule FcRγ, followed by recruitment of phosphorylated Syk (Fig. 1.3).

Subsequently, phosphorylated Syk activates a CARD9–BCL10–MALT1 (CBM)

complex, resulting in activation of nuclear factor (NF)-κB (Hara et al. 2007; Saijo

et al. 2010). The activated NF-κB induces expression of inflammatory cytokines

such as IL-23 and pro-IL-1β. At the same time, Syk activation induces reactive

oxygen species (ROS) production. ROS are important for the direct killing of

pathogens and activation of the NLRP3 inflammasome that enhances processing

of pro-IL-1β into mature IL-1β (Ritter et al. 2010). The mitogen-activated protein

kinase (MAPK) pathway is also activated simultaneously, although the biological

significance of this pathway in the host defense mechanism is not known (Fig. 1.3).

It is noteworthy that Dectin-2 signaling also induces the production of an

inhibitory cytokine, IL-10, by the stimulation of α-mannans of the C. albicans
cell wall as well as Man-LAM of the Mycobacterium tuberculosis cell wall (Saijo
et al. 2010; Yonekawa et al. 2014). Since the capping moieties at the terminal

extremity of the arabinan domain in LAM differ among Mycobacterium species,

Man-LAM is rather unique to pathogenic mycobacteria such as M. tuberculosis. In
this context, it has been shown that M. tuberculosis suppresses the host immune

system and phagosome–lysosome fusion, suggesting that IL-10 production via the

Man-LAM–Dectin-2 interaction might be an explanation for the severe pathoge-

nicity of M. tuberculosis.

1.5 Role of Dectin-2 in Diseases

The importance of Dectin-2 in antifungal immunity has been clearly shown in

mouse models (Robinson et al. 2009). Dectin-2-deficient mice showed decreased

survival against C. albicans infection, because of increased fungal growth in the

kidney (Saijo et al. 2010). This demonstrated the important role of Dectin-2 in

pathogen elimination; however, the in vivo mechanism remains unclear. One

possibility is that the pro-inflammatory cytokines secreted from Dectin-2-

expressing myeloid cells enhance IL-17 expression in lymphocytes. Indeed,

IL-17A-deficient and IL-23-p19-deficient mice are more vulnerable to

C. albicans infection, suggesting that IL-17A is crucial for the host protection
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against this fungus (Kagami et al. 2010; Saijo et al. 2010). Although single

nucleotide polymorphisms (SNPs) or inborn errors in the human Dectin-2 gene

have not been reported yet, mutations that affect human IL-17F and IL-17 receptor

A (IL-17RA) functions cause the development of chronic mucoepithelial fungal

infection (CMC), which is due to impaired IL-17-mediated immunity (Puel

et al. 2011). Consistent with these observations, Dectin-2-induced cytokines pref-

erentially promote the differentiation of Th17 cells in vitro, although the specific

IL-17A- and IL-17F-producing cells upon fungal infection remain to be elucidated.
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Fig. 1.3 Upon ligand binding, Dectin-2 recruits phosphorylated Syk to ITAM of the FcRγ,
leading to activation of the CARD9–BCL10–MALT1 (CBM) complex. At the same time, reactive

oxygen species (ROS) production is induced in a Syk-dependent manner, resulting in the direct

killing of pathogens and activation of the NLRP3 inflammasome. The CBM complex activates

NF-κB, which induces the production of cytokines such as pro-IL-1β, IL-6, and IL-23. In contrast,
the NLRP3 inflammasome activates caspase 1 and/or caspase 8 to process pro-IL-1β into mature

IL-1β. IL-1β, IL-6, and IL-23 preferentially induce the differentiation of Th17 cells, which play an
important role in the host defense against microbes by recruiting neutrophils
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On the other hand, it was recently reported that Dectin-2-induced IL-6 and IL-23

enhanced IL-17A production in neutrophils that constitutively express the tran-

scription factor RORγt, upon infection with A. fumigatus. IL-6 and IL-23 also

induce the expression of IL-17RC and Dectin-2 in an autocrine manner, resulting

in the production of ROS and increased fungal killing (Taylor et al. 2014) (Fig. 1.3).

Regarding Th17 differentiation caused by Dectin-2-mediated signaling, as

described above, Dectin-2 recognizes Mycobacterium Man-LAM, which has been

known to have both inhibitory and stimulatory effects on host immunity (Briken

et al. 2004; Chan et al. 2001; Gringhuis et al. 2009; Mazurek et al. 2012).

Man-LAM stimulation of BMDCs cocultured with T cells led to increased produc-

tion of IL-17 in T cells. More importantly, Man-LAM stimulation was sufficient to

promote host immunity for the development of experimental autoimmune enceph-

alomyelitis (EAE), a mouse model of multiple sclerosis. Given that Th17 cells play

a pivotal role in the pathogenesis in these mice, this Mycobacterium component or

other Dectin-2 agonists might serve as a beneficial adjuvant (Yonekawa

et al. 2014).

Dectin-2 also senses mannan-containing parasites, including house dust mite and

Schistosoma mansoni (Barrett et al. 2011; Norimoto et al. 2014; Ritter et al. 2010).

In these cases, Dectin-2 seems to induce Th1, Th2, as well as Th17 differentiation,

suggesting a broader swath of its immunological roles.

1.6 Concluding Remarks

The significant functions of Dectin-2 in the host defense against pathogen infection

have been studied and are described in this review. However, the in vivo roles of

Dectin-2 remain to be unveiled. Interestingly, some other C-type lectins have

redundant biological functions to Dectin-2. For example, MCL senses the same

ligand, C. albicans α-mannan, as Dectin-2, and, more importantly, MCL and

Dectin-2 form heterodimers as well as homodimers (Zhu et al. 2013). On the

other hand, MCL also stabilizes Mincle expression, and both receptors sense

mycobacterial TDM (Miyake et al. 2013, 2015). These findings suggest that the

C-type lectin system provides a sophisticated and fail-safe method to respond to

pathogens using a limited number of molecules. Determining the collaboration

between C-type lectins and other innate immune receptors such as toll-like recep-

tors (TLRs), retinoic acid-inducible gene-I-like receptors (RLRs), or nucleotide

oligomerization domain-like receptors (NLRs) could be another interesting area of

research. For instance, Dectin-1 and TLR-2 collaboratively enhance IL-12 produc-

tion to induce Th1 differentiation, which is important for fungal and bacterial

protection (Dennehy et al. 2009; Gerosa et al. 2008). These studies could help to

elucidate the whole picture of the role of the C-type lectin system in host defense,

with valuable implications for the development of new therapeutic and vaccine

strategies.
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