
Chapter 7

Introduction to Heart Rate Variability

Junichiro Hayano

Abstract Beat-to-beat intervals of cardiac sinus rhythm are not constant but show

complex and continuous fluctuations called heart rate variability (HRV). Because

HRV disappears with cardiac denervation by complete autonomic blockades or

cardiac transplantation, HRV is thought to originate from the brain and to transfer to

the heart through the autonomic nervous system. HRV includes a plenty of infor-

mation not only about autonomic neural cardiac regulations but also about health

state and hazard that are captured by the brain. To extract information that meets

with particular purposes, various methods have been developed for the analysis of

HRV. This chapter explains the basic mechanisms generating HRV and introduces

the purposes and corresponding methods for HRV analyses.

Keywords Time series analysis • Power spectral analysis • Complex

demodulation • Heart rate dynamics

7.1 What Is Heart Rate Variability?

7.1.1 Definitions

The rhythm of heart beat at rest is essentially regular, and irregularity of the rhythm

is called arrhythmia. In fact, however, cardiac cycle length even under sinus rhythm

shows continuous fluctuations, as indicated by the presence of term “physiological

arrhythmia.” Respiratory sinus arrhythmia (RSA) is the representative among such

physiological arrhythmias, and it has first been described by Ludwig [1] in 1847.

Cardiac cycle length shows various physiological fluctuations ranging from circa-

dian rhythm of heart rate to such changes in beat-to-beat intervals as RSA.

Cardiac cycle length and its physiological fluctuations are mediated by the

neurohumoral factors, particularly autonomic nervous system, that regulates the

rate of discharge of the sinus node. Under complete pharmacological autonomic
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blocking with sufficient doses of sympathetic and vagal blockades, the beat-to-beat

fluctuations of cardiac cycle length disappear, and the heart ticks a regular rhythm

like a metronome [2, 3]. This is also the case for transplanted heart that has no

neural connections with the recipient [4]. These indicate that physiological fluctu-

ations in beat-to-beat cardiac cycle length are mediated by the fluctuations in

autonomic neural outflow to the sinus node.

In a narrow sense, the term heart rate variability (HRV) is defined as the amount

of variability in beat-to-beat fluctuations of cardiac cycle length under normal sinus

rhythm. The term is also used as almost the same meaning as physiological

arrhythmia. In contrast, fluctuations in cardiac cycle length that are caused by

ectopic rhythms and beats, conduction blocks, and sinus dysfunction are not

included in HRV and should be excluded from the analysis of HRV. In a broad

sense, however, cardiac cycle length fluctuations caused by a part of pathological

arrhythmias have also been categorized as studies of HRV. For example, heart rate

turbulence (HRT) that is known as a powerful predictor of mortality risk after acute

myocardial infarction analyzes the cardiac cycle length fluctuations flowing ectopic

beats observed during Holter ECG monitoring [5, 6]. The methods developed for

HRV analysis have been used for ventricular response cycle length fluctuations

during atrial fibrillation and have produced useful indices for both pathophysiologic

understandings and clinical risk stratifications of this arrhythmia [7–11].

7.1.2 HRV and Autonomic Nervous Functions

Heart rate is regulated antagonistically by the sympathetic and vagal divisions of

autonomic nervous system. Heart rate reflects the static balance between their

activities to the sinus node, and HRV reflects the fluctuations in the balance.

HRV, however, includes information that cannot be obtained from heart rate itself,

i.e., pure vagal modulation of heart rate separated from sympathetic influence.

The principle of autonomic functional assessment by HRV may be compared to

the estimation of driver’s manipulations of accelerator and brake pedals from the

time series recording of changes in vehicle’s speed, where heart rate corresponds to
vehicle’s speed, sympathetic activity to accelerator, and vagal activity to brakes.

Different from automatic transmission vehicles that creep when the driver takes off

both accelerator and brake pedals, heart rate increases to a value called “intrinsic

heart rate” when both sympathetic and vagal activities are blocked. The intrinsic

heart rate is higher in young people and declines with aging; the means are 107 bpm

for 20-year, 101 bpm for 30-year, 90 bpm for 50-year, and 78 bpm for 70-year olds.

This indicates that young people maintain their cardiac vagal activity at a certain

level continuously during rest to keep their heart rate below the intrinsic heart rate.

During vehicles are moving, if you tap the accelerator rapidly, vehicle’s speed
shows almost no changes. In contrast, if you tap the brake pedals, the speed changes

faithfully with the manipulations. This is explained as the difference in frequency

characteristic of transfer functions between two systems. Similar difference in
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frequency characteristic exists between sympathetic and vagal modulations of heart

rate. Changes in sympathetic activity cause the effects through several phosphor-

ylating enzymatic processes in the intracellular signal transduction mechanisms

existing downstream of beta-adrenergic receptors. Consequently, the sympathetic

modulation of heart rate cannot transfer fluctuations at frequencies>0.15 Hz (cycle

length <6.7 s) [12]. While on the other hand, changes in vagal activity cause the

effects simply by the conformation change of the membrane potassium channels

with Ach. Consequently, the vagal modulation of heart rate can transfer fluctuations

at frequency up to 1 Hz [12].

When a decrease was observed in the speed of a vehicle, there may be three

possibilities that the driver (1) took his/her foot off accelerator, (2) pressed the

brake pedal, or (3) both. If the deceleration was faster than a certain level, however,

it is attributable only to the effect of (2). Similarly, when heart rate fluctuations at

frequencies>0.15 Hz were observed, it is not explained by sympathetic modulation

and it is attributable only to the effect of vagal modulation. These indicate that we

can separate frequency components of heart rate fluctuations purely mediated by

the vagal activities from those affected by sympathetic activities.

Methods for analyzing the fluctuations of time series data by resolving them into

components by the difference in frequency are called power spectral analyses.

Although there are several methods for this analysis, including fast Fourier trans-

formation (FFT) [13], autoregressive (AR) model [14], and maximum entropy

methods (MEM), the principle is the same as spectroscopic analysis by prisms

that separate light into components with their colors (wave frequencies). Power

spectral analyses resolve fluctuation into frequency components and quantify the

power or amplitude of each component.

7.1.3 Purposes of HRV Analysis

The analysis of HRV is currently used for two major purposes: (1) assessment of

cardiac autonomic functions and (2) risk stratification of patients with cardiac and

other diseases.

The former includes the assessment of stress or arousal level, relaxation depth,

and sleep quality as well as clinical evaluation for autonomic dysfunctions. For

these purposes, short-term (5–10 min) ECG data that are recorded under standard-

ized conditions (room temperature, body posture, time after food, alcohol and

caffeine intake, exercise and smoking, and breathing frequency according to the

circumstances) are used. HRV analyzed from short-term ECG data thus obtained is

referred to as short-term HRV.

The risk stratification includes the prediction of mortality and adverse prognosis.

For these purposes, long-term (24 h) ambulatory ECG data recorded under daily

activities are used. HRV analyzed from long-term ECG data thus obtained is

referred to as long-term HRV.
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7.2 Mechanisms Generating HRV

7.2.1 Short-Term HRV

Power spectrum of short-term HRV at rest includes two major frequency compo-

nents (Fig. 7.1): low-frequency (LF) component (0.04–0.15 Hz) and high-

frequency (HF) component (>0.15 Hz) [2, 15–17]. This is a characteristic of

HRV that is unlike vehicle’s speed indicating that HRV does not comprise only

random fluctuations but includes frequency components with specific frequencies.

The cutoff frequency (0.15 Hz) separating between two components has been

defined from the frequency characteristic of transfer function for sympathetic

heart rate modulation discussed above [12]. Although the frequency of LF compo-

nent has been defined as 0.04–0.15 Hz, it usually appears between 0.06 and 0.11 Hz.

7.2.1.1 HF Component of HRV

The HF component of HRV usually corresponds to RSA, and thus, its frequency is

identical to breathing frequency (e.g., when breathing frequency is 15 cycle/min,

the frequency of HF component is 15 cycle/60 s ¼ 0.25 Hz). This means that when

breathing frequency decreases below 9 cycle/min (0.15 Hz), HRV caused by RSA

is detected as a part of LF component and physiologic HF component disappears;

HF component under such conditions, if observed, should be interpreted as a

different physiologic entity from RSA or an artifact.

The mechanisms generating RSA is discussed in Chap. 8 in detail. Briefly, RSA

is mediated by the vagus originated from the nucleus ambiguus in the medulla

oblongata that is modulated by the input from the respiratory center and generates

Fig. 7.1 Power spectrum of

short-term HRV and

frequency ranges modulated

by sympathetic and vagal

heart rate controls. While

cardiac vagal control

system can modulate heart

rate in the entire frequency

band, cardiac sympathetic

control system can

modulate heart rate at

frequencies <0.15 Hz.

Consequently, while the LF

component of HRV is

mediated by both

sympathetic and vagal

nerves, the HF component is

mediated purely by the

vagus
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vagal outflow fluctuating with respiration [18]. By this mechanism, vagal flow

increases during expiration and decreases during inspiration, generating RSA.

Although respiratory fluctuation exists also in sympathetic outflow, it does not

transfer to HRV when the breathing frequency is above 0.15 Hz.

7.2.1.2 LF Component of HRV

The LF component of HRV is thought to be heart rate variation caused by Mayer

wave [19] in blood pressure fluctuation through the arterial baroreceptor reflex

mechanism (Fig. 7.2) [20, 21]. Mayer wave is a component of physiological arterial

blood pressure fluctuation with a period around 10 s. It is also called the third-order

variation of blood pressure and has been found by Cion in 1874 and described by

Mayer in 1876 [19].

The mechanisms generating Mayer wave are still controversial, and there are

theories proposing peripheral, central, and resonance origins. Blood vessel contrac-

tion by sympathetic vasomotor function is known to occur with 5-s delay after

sympathetic neural activation. Simulation studies have reported that such delay

systems cause spontaneous fluctuation in the baroreceptor reflex feedback loop at a

period of 10 s [20]. The LF component of HRV is decreased in patients with low

baroreceptor reflex sensitivity independently of the presence of sympathetic inner-

vation to the heart [21].

Fig. 7.2 Arterial blood pressure and R-R interval of ECG in a healthy subject. Mayer wave is

observed in the compressed strip of arterial blood pressure (upper panel after 5 s) at a period

around 13 s. In the trend of R-R intervals (lower panel), fluctuations corresponding HF (period

around 3 s) and LF (period around 13 s) components are observed. The LF fluctuation of R-R

interval shows several-second delay behind Mayer wave of arterial blood pressure
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7.2.2 Long-Term HRV

Although the LF and HF components are the major constituents of short-term HRV,

long-term HRV comprises nonperiodic components with a broad range of spectrum

as the major constituents [22]. For descriptive purposes, fluctuations at frequencies

lower than LF component are divided into two components: very-low-frequency

(VLF) component (0.003–0.04 Hz) and ultralow frequency (ULF) component

(�0.003 Hz). Unlike LF and HF components, VLF and ULF are nonperiodic

components that form no distinct peaks in power spectrum. The nonperiodic

component of long-term HRV is also called 1/f fluctuation or fractal component,

because it has power negatively correlated with frequency in the power spectrum

and it furnishes the properties of fractal dynamics including long-term negative

correlation and scale-independent self-affine structure [23].

Long-term HRV from ambulatory ECG recordings under daily activities

includes the influences of circadian and ultradian variations in physiological func-

tions, physical and mental activities, and environmental factors. Accordingly,

analysis of long-term HRV does not suit for the evaluations of specific autonomic

functions, but it may be useful for the evaluations of overall performance of

autonomic regulations. In fact, long-term HRV provides prognostic information,

particularly all-cause mortality risk in patients with cardiac and other diseases,

which have stronger predictive power than short-term HRV indices [24–26].

7.3 Data Collection for HRV

7.3.1 Data Sources of HRV

HRV can be analyzed when at least one lead of continuous ECG recording is

available. The ECG needs to be stored as digital data at a sampling frequency of

no less than 125 Hz (desirably, 500–1000 Hz) to avoid artificial cycle length

fluctuations caused by under sampling. The ECG data are converted into time

series of beat-to-beat cycle length by measuring all R-R intervals (Fig. 7.3). For

this purpose, accurate automated classifications (normal sinus rhythm, atrial or

ventricular ectopic beat, and artifact) are requited for all beats, the results of

classification should be reviewed, and all errors in the annotation need to be edited

completely.

Although pulse wave signal may be used as a surrogate of ECG, several

limitations should be recognized, which include difficulty in beat classifications,

limited accuracy in measurement of beat-to-beat cycle length, and modifications by

the frequency characteristic of pulse wave conduction [27].
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Fig. 7.3 Measurement of HRV from ECG. For the analysis of HRV, time series of beat-to-beat

cycle lengths are measured as R-R intervals under sinus rhythm. The temporal position of each

R-R interval is usually defined as the position of subsequent R wave. For the purpose of frequency
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7.3.1.1 Standardization for Short-Term HRV Measurement

HRV is affected by various intrinsic and extrinsic factors such as environmental

temperature, physical activities [28, 29], mental activities [30, 31], food intake [32],

smoking [33, 34], and sleep/awake rhythm. For the assessment of autonomic

function, subjects need to avoid strenuous exercise, smoking, alcohol and caffeine

intake from the previous night, and food intake from 3 h before the study, and the

measurement should be performed at constant time of day in an air-conditioned and

calm experimental room after >15 min supine rest for equilibrium. Although the

length of recording is determined by the purposes, continuous 5-min recording after

the stabilization of heart rate is the standard.

For short-term HRV, controlled breathing with metronome signal may be used

so that breathing frequency of subjects is kept at >0.15 Hz and heart rate to

respiration ratio at >2. There are three reasons for this:

1. To evaluate cardiac vagal function separately from sympathetic influences,

breathing frequency needs to be kept at >0.15 Hz (the upper frequency limit

of sympathetic heart rate control).

2. The magnitude of HF component decreases with increasing breathing frequency

independently of cardiac vagal activity.

3. If heart rate to respiration ratio decreases to<2, respiratory fluctuation in cardiac

vagal activity, if exists, is not reflected by HRV.

Thus, when breathing frequency is not controlled, the frequency of HF component

and heart rate should be checked if these conditions are satisfied.

7.3.1.2 ECG Recordings for Long-Term HRV

For the assessment of long-term HRV, 24-h Holter ECG recordings are useful. ECG

signals are digitized at 125–500 Hz in the recorders, and all R waves are classified

automatically. Recent Holter ECG scanners have software for HRV analysis as the

standard or optional function. For 24-h long-term HRV, there may be defect of data

due to insufficient recording length or to temporary electrode troubles. In such case,

care should be needed for the effects of day/night difference in HRV. Because the

long-term HRV indices have been standardized as 24-h data, when the substantial

data defects occurred disproportionally during daytime or nighttime, it causes bias

of sampling.

Fig. 7.3 (continued) domain analyses, R-R interval time series are interpolated and resampled

at equidistantly devided time points
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7.4 Methods for HRV Analysis

A variety of measures have been used for quantifying the characteristics of HRV.

They are classified by the method of analysis as shown in Table 7.1. From time

domain analysis, statistical and geometric measures are calculated. These measures

mainly applied to 24-h long-term recordings and used for risk stratification for

mortality and adverse prognosis among patients with cardiac and other diseases.

Frequency domain analysis is used for both short-term and long-term recordings.

Short-term measures of HRV are used for the assessment of autonomic function,

and long-term measures are used for risk stratification among patients with cardiac

and other diseases. Nonlinear and fractal dynamics analyses are used mainly for

long-term recordings and provide prognostic indices such as α1 of detrended

fluctuation analysis (DFA) [36, 37], which is a powerful predictor of mortality

risk in patients after myocardial infarction [39] and those with end-stage renal

disease on chronic hemodialysis therapy [40].

Study of HRV has started in 1970s, but new methods of analysis and novel

measures have been still proposed almost every year. Non-Gaussianity index of λ
reflects an increase in large abrupt changes in heart rate, and an increase in this

measure predicts increased mortality risk among patients with chronic heart failure

[38, 41]. This measure is discussed in Chap. 9 in detail. Among most of other

measures of HRV whose decrease is associated with increased health risk, λ is the

only measure whose increase predicts increased risk. Because λ decreases with

β-blockers, this measure is thought to be a unique index reflecting sympathetic over

activities. Deceleration capacity (DC) [26] and heart rate turbulence (HRT) [5, 6]

are currently the most powerful predictors of mortality risk after acute myocardial

infarction. Figure 7.4 shows examples of analysis of long-term HRV in male

patients after acute myocardial infarction; one survived >5 years, and the other

died suddenly 25 months after the Holter monitoring.

7.4.1 Time Domain Analysis

For time domain analysis, N-N interval data were used without interpolation.

Because time domain analysis depends only on the order of data but not on the

temporal positions, the statistical and geometric measures are less affected by the

defect of data caused by the removal of abnormal data caused by ectopic beats, etc.

Conversely, such abnormal data need to be removed because the contaminations of

such data could affect substantially to statistical measures. Geometric measures are

robust to the contaminations of abnormal data.

To select and interpret the time domain measures appropriately, the knowledge

of crude correspondences between time domain and frequency domain measures is

useful, although the relationships are affected by heart rate. SDNN, HRV triangular

index, and TINN correspond to total power and SDNN index to the mean of the
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Table 7.1 Measures of HRV

Variable Unit Definition

1. Time domain analysis

1.1 Statistical measures

Mean NN ms Mean of all N-N intervalsa during 24 h

SDNN ms Standard deviation of all N-N intervals during 24 h

SDANN ms Standard deviation of the averages of N-N intervals in

all 5 min segments during 24 h

RMSSD ms The square root of the mean of squared differences

between adjacent N-N intervals during 24 h

SDNN index ms Mean of the standard deviations of all N-N intervals

for all 5 min segments during 24 h

SDSD ms Standard deviation of differences between adjacent

N-N intervals during 24 h

NN50 count Number of pairs of adjacent N-N intervals differing

by more than 50 ms during 24 h

pNN50 % NN50 count divided by the total number of all N-N

intervals during 24 h

1.2 Geometric measures

HRV triangular index ms Total number of all N-N intervals during 24 h divided

by the height of the histogram of all N-N intervals

measured on a discrete scale with bin width of

7.8125 ms (1/128 s)

TINN ms Baseline width of the minimum square difference

triangular interpolation of the highest peak of the

histogram of all N-N intervals during 24 h

2. Frequency domain analysis

2.1 Measures for analysis of

short-term recordings (5 min)

Total power ms2 The variance of N-N intervals during 5 min

VLF ms2 Power in very-low-frequency range (�0.04 Hz)

LF ms2 Power in low-frequency range (0.04–0.15 Hz)

LF amp ms Mean amplitude of LF: sqrt (2*LF)

LF norm n.u. LF power in normalized unit: LF/(Total power –

VLF)*100

HF ms2 Power in high-frequency range (0.15–0.4 Hz)

HF amp ms Mean amplitude of HF: sqrt (2*HF)

HF norm n.u. HF power in normalized unit: HF/(Total power –

VLF)*100

LF/HF Power ratio between LF and HF: LF(ms2)/HF(ms2)

2.2 Measures for long-term recordings (24 h)

Total power ms2 The variance of N-N intervals during 24 hb

VLF ms2 Power in very-low-frequency range (�0.04 Hz)b

LF ms2 Power in low frequency range (0.04–0.15 Hz)b

HF ms2 Power in high-frequency range (0.15–0.4 Hz)b

(continued)
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total powers for all 5 min segments during 24 h. RMSSD, SDSD, NN50 count, and

pNN50 reflect N-N interval variations in the frequency band analyzed as HF

component.

7.4.2 Frequency Domain Analysis

Frequency domain analysis in general indicates spectral analysis. In spectral anal-

ysis, fluctuations observed in time series data are recognized as a set of elementary

waves (Fig. 7.5). Spectral analysis provides the mean frequency and amplitude (�
sqrt [2*power]) of each elementary wave averaged over the entire length of data

segment that was analyzed. In case of HRV, VLF, LF, and HF components are

elementary waves, and the waveform of original time series data is the ensemble of

these elementary waves.

Periodic wave elements form peaks in spectrum; the position of peak represents

frequency, and the height (in FFT spectrum) or area (in AR model and MEM

spectra) represents amplitude/power of the elementary wave. The term “power”

Table 7.1 (continued)

Variable Unit Definition

β Power-law scaling exponent: slope of the linear

regression of the spectrum in a log-log scale below

0.04 Hz

3. Nonlinear and fractal dynamics

ApEn Complexity of fluctuation measured by approximate

entropy [35]

DFA index Measures of short-term (4–11 beats, α1) and long-

term (>11 beats, α2) fractal correlations calculated by
detrended fluctuation analysis (DFA) [36, 37]

λ Non-Gaussianity index of probability density func-

tion for abrupt changes in heart rate [38]

4. Others

DC ms Deceleration capacity measured by phase rectified

signal averaging [26]

HRT Heart rate turbulence measured by the decrease in

R-R interval immediately after ectopic beats (turbu-

lence onset, TO) and the following recovery slop

(turbulence slope, TS) [5, 6]
aN-N interval indicates R-R interval between two consecutive sinus QRS waves
bThese measures are often presented in natural logarithmic values
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Fig. 7.4 Long-term 24-h HRV in patients after acute myocardial infarction. The patient on the left

side survived for >5 years, while the patients on the right side died suddenly 25 months after

Holter ECG monitoring. (a) 24-h trend graphs of N-N intervals, (b) histograms of N-N intervals

and time domain measures, (c) power spectra of N-N intervals and frequency domain measures,
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means variance caused by the wave, and when the wave can be assumed as a

sinusoid, power and amplitude can be transformed to each other by the equation

Amplitude ¼ sqrt 2*powerð Þ:

Waves and their spectra are summable. Thus, even if two waves with different

frequencies are added, the characteristics (such as frequency and amplitude) of

individual wave are preserved. Also, the variance or total power of combined wave

is the sum of the power of two original waves.

⁄�

Fig. 7.4 (continued) (d) power spectra in log-log scale and spectral exponent β, (e) detrended
fluctuation analysis (DFA) and short-term and long-term fractal scaling exponents, α1 and α2, (f)
heart rate turbulence and turbulence onset (TO) and turbulence slope (TS), and (g) deceleration

capacity (DC). See Table 7.1 for the explanation of measures

Fig. 7.5 Power spectral analysis of HRV. In spectral analysis, fluctuation observed in time series

data is recognized as a set of elementary waves. As the results of analysis, the mean frequency and

amplitude (� sqrt [2*power]) of each elementary wave averaged over the entire length of segment

analyzed. In case of HRV, VLF, LF, and HF components are elementary waves, and the waveform

of original time series data is the ensemble of these elementary waves
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7.4.3 Interpolation and Resampling

Frequency domain analyses of HRV require interpolation and resampling of time

series data before analysis. Including N-N interval and arterial blood pressure, time

series data of the circulatory system arise one datum per heartbeat. Because the

intervals of heartbeat are fluctuating as HRV, the sampling intervals of data points

become unequal, which causes problem in spectral analysis that requires equidis-

tantly sampled time series data.

Data interpolation is the method for estimate value at time points between two

consecutive observations. Many methods have been proposed as the methods for

interpolating N-N intervals, which include step, linear, and spline interpolations.

Although there is no ideal method for interpolation, the difference in the interpo-

lation method is known to cause no substantial difference in the final results of

spectral analysis. Interpolation is also used for the portions of data defect caused by

removal of ectopic beats and noise. The interpolated N-N interval time series data

are resampled at appropriate frequency (such as 2 Hz), yielding equidistantly

sampled N-N interval time series for which spectral analysis is performed.

7.4.4 Analysis of Dynamic Autonomic Functions

7.4.4.1 Limitation of Spectral Analysis

Autonomic nervous system shows dynamic responses to various stimuli. Although

such responses are reflected in HRV, they are not detected by the conventional

methods of spectral analysis. This is because spectral analysis assumes that data are

in a steady state throughout the analyzed period, and it provides the characteristics

of waves representing their averages over the period. To overcome this limitation,

methods such as spectral analysis for overlapping shifting windows have been

devised, but there are limitations for detecting rapid autonomic responses with

high temporal resolution.

7.4.4.2 Analysis of Time-Dependent Changes in Frequency Component

of HRV

The methods for analyzing continuous changes in frequency and amplitude of HRV

are divided into two categories:

1. Analysis of time/frequency distributions

2. Complex demodulation (CDM)

The former includes short-term FFT, wavelet transformation, and instantaneous

AR spectral analysis. These methods estimate information in three dimensions
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(time, frequency, and power) from N-N interval time series, that is, information in

two dimensions (time and N-N interval). Thus, they need to assume the conditions

of analysis. Also, even if time/frequency distribution is determined by these

methods, time-dependent changes in frequency and amplitude of LF and HF

components need to be extracted from that after all. In this view point, CDM that

is a simpler and directly extracts necessary results may be often advantageous.

7.4.4.3 Complex Demodulation of HRV

The principle of CDM analysis of HRV is compared with the demodulation of

electric wave by radios in amplitude modulation (AM) broadcasting system

[42, 43]. In AM broadcasting, audio signal is converted into the changes in

amplitude of carrier electric wave whose frequency is unique to each broadcast

Fig. 7.6 Complex demodulation (CDM) of simulated data with time-dependent changes in

amplitude (left-side panels a–f) and in frequency (right-side panels g–l). Lt, simulated

low-frequency (LF) components with a fluctuating amplitude and a fixed frequency of 0.09 Hz

and (a) with a constant amplitude and a fluctuating frequency between 0.06 and 0.12 Hz; (g) Ht,

simulated high-frequency (HF) components with a fluctuating amplitude and a fixed frequency of

0.25 Hz and (b) with a constant amplitude and a fluctuating frequency between 0.16 and 0.44 Hz;

(h) Ht + Lt: time series data generated by adding two component signals above (C ¼ A + B, I ¼ G

+ H); PSD, autoregressive power spectral density of the generated time series (panels d and j); and

CDM LF and CDM HF, instantaneous amplitude (AMP, solid line) and frequency (FREQ, dashed
line) of the LF (panels e and k); and the HF (panels f and l) components obtained by CDM

(Modified from reference [43])
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station. This relationship is similar to vagal modulation of the amplitude of HF

component of HRV. AM radio obtains audio signals of selected broadcast station by

extracting time-dependent changes in amplitude of the electric wave of the station.

Fig. 7.7 CDM of R-R interval variability and spirogram (RESP) signal obtained during a supine

ergometer exercise test with increasing workload (20 W/min) in a healthy young male subject.

Panels a and b: R-R interval (RR) and spirogram (RESP). Panels c–g: autoregressive power

spectral density (PSD) of R-R interval (solid line, RR) and spirogram (dashed line, RESP). Panels
h, i, and j: instantaneous amplitude (solid line) and frequency (dashed line) of spirogram (RESP),

and the LF and HF components of R-R interval variability (RR LF and RR HF) (Modified from

reference [43])
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If similar procedure is done for HRV in HF frequency band, time-dependent

changes in vagal modulation can be obtained as continuous data.

Figure 7.6 shows simulation of CDM analysis. On both sides, simulated time

series data of N-N intervals were generated by combining two time series data

simulating LF and HF components, on which spectral analysis and CDM were

performed. On the left side, the amplitude of LF and HF components shows time-

dependent changes, while on the right side, the frequency of both components

shows time-dependent changes. CDM detects the changes in amplitude and fre-

quency in each component faithfully.

Figure 7.7 shows CDM analysis of R-R interval and respiration signals during

symptom-limited rump exercise in a healthy young male subject. Progressive

decreases in the amplitude of HF and LF components with increasing workload

are observed.

CDM detects time-dependent changes in amplitude and frequency of LF com-

ponent of HRV at a time resolution of 15 s and those of HF component at a higher

resolution [42]. This method is useful for the analysis of autonomic responses to

stress and those accompanying various pathologic episodes [44].

7.5 Conclusion

Although analysis of HRV provide powerful, useful, and unique tools for the

assessment of autonomic functions, understandings of its physiology and method-

ology are important for the selection of suitable methods and measures and for the

appropriate interpretation of results.
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