
Chapter 23
Analysis of Nonideal, Interacting,
and Noninteracting Systems by Sedimentation
Velocity Analytical Ultracentrifugation

Walter F. Stafford

Abstract Analysis of ideal associating systems has been described in detail
previously (Rivas et al., Methods 19:194–212, 1999): the reader is referred to
that article for the basic theory. We will extend that analysis to nonideal and
self- and hetero-associating systems by adding terms for deviations from both
thermodynamic ideality and hydrodynamic ideality. In this chapter we will consider
several effects of non-ideality on the sedimentation process.
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23.1 Background Theory

To put things in perspective, let’s start with a quote from Williams et al. (1958):

It is a well-known fact that the sedimentation methods have enjoyed a spectacular success
in protein chemistry. It is now apparent that because of his enthusiasm for the transport
method the protein chemist has on occasion allowed himself to be carried to some excesses.
For instance, ideal equations descriptive of behavior in two-component systems with
no volume change on mixing have been used to describe the experimental observations
in multicomponent and not entirely ideal systems. Apparent single translational friction
coefficients have been combined with other data and assumptions to provide information
about the shape and volume of protein and polysaccharide molecules, when several such
coefficients must have been involved.

This problem still exists some 50 odd years later. It is especially prevalent
among the users of easy-to-use, “black-box” software packages that have become
so popular. It is hoped that this chapter will provide a rigorous approach to the
problems of treating non-ideality in associating systems. Some approximations are
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inevitably necessary to provide tractable relationships. These assumptions and their
consequences must be kept in mind when analyzing data. Mike Johnson has outlined
the “rules” that must be heeded when performing least squares analyses of any type
of data (Johnson 1992), which are as follows:

1. The model must be correct.
2. The noise must be normally distributed with mean of zero.
3. The data must be free of systematic error.
4. The data set must have a large number of data points.
5. The observations must be independent.
6. The independent variable must be free of experimental uncertainty

It should be obvious that if the model is incorrect, the parameter values obtained
from it will be meaningless. This will happen, for instance, if one were to try to
fit to an interacting system with a noninteracting model or vice versa or a nonideal
system with an ideal model.

23.1.1 Self-Associations

23.1.1.1 Self-Association: Two Species

A simple monomer to N-mer self-association can be described by two equations,
a relation for mass action and a statement of conservation of mass for this one-
component system:

nA • An (23.1)

K1;n D aAn

an
A

D
�

�An

�n
A

�
CAn

Cn
A

(23.2)

Co
A D CA C nCAn (23.3)

where a denotes the thermodynamic activity; �i, the molar activity coefficient;
C, the molar concentration; K, the molar equilibrium constant; and Co

A, the total
concentration of component A.

23.1.1.2 Self-Associations: Multispecies

Higher-order self-associations or sequential associations can, in general, be rep-
resented by a series of reactions and one conservation relation since this is a
one-component system:

2A1 • A2 (23.4)

A2CA1 • A3 (23.5)
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A3CA1 • A4 (23.6)

: : : (23.7)

An � 1CA1 • An (23.8)

Ki�1;n D
�

�An

�Ai�1�A

�
CAn

CAi�1CA
I i D 2; 3; : : : ; n (23.9)

Co
A D CA1 C 2CA2 C 3CA3 C 4CA4 C : : : C nCAn (23.10)

23.1.2 Hetero-Associations

23.1.2.1 Hetero-Association: Bimolecular, Single Step

A simple two-component hetero-associating system can be represented by a mass
action relation and two conservation of mass relations, one for each of the two
components, A and B:

A C B • AB (23.11)

KAB D
�

�AB

�A�B

�
CAB

CACB
(23.12)

Co
A D CA C MA

MAB
CAB (23.13)

Co
B D CB C MB

MAB
CAB (23.14)

23.1.2.2 Hetero-Association: Bimolecular, Two Step

A somewhat more complicated, but frequently encountered, system is a two-step
(e.g., antigen-antibody system) hetero-association of the following form:

A C B • AB (23.15)

AB C B • AB2 (23.16)

KAB D
�

�AB

�A�B

�
CAB

CACB
(23.17)

KAB2 D
�

�AB2

�AB�B

�
CAB2

CABCB
(23.18)
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Co
A D CA C MA

MAB
CAB C MA

MAB2

CAB2 (23.19)

Co
B D CB C MB

MAB
CAB C 2MB

MAB2

CAB2 (23.20)

Other more complicated single- and multicomponent systems can be derived by
simple extension of these relationships.

23.2 General Discussion of Non-ideality

Sedimentation velocity analysis of nonideal systems requires taking into account
both hydrodynamic and thermodynamic non-ideality (Stafford and Sherwood 2004).
Hydrodynamic non-ideality arises due to the displacement of solvent by the
sedimenting macromolecules. Because the centrifuge cell is a closed system, the
result is a “backflow” (a countercurrent, if you will) of solvent displaced by the
macromolecule, which impedes its transport relative to the cell’s coordinate system.
The backflow is affected by the shape of the macromolecule and its charge and
the ionic strength, which in turn determine its effective Stokes radius (Fuoss and
Onsager 1961). This backflow leads to a decrease in both sedimentation coefficient
and diffusion coefficient with increasing concentration. The backflow contribution
is proportional to the concentration of macromolecule. It affects both sedimentation
and diffusional transport equally (see Appendix 1). The reader is also referred to
the monograph by Katchalsky and Curran, Chapter 9, especially Equations 9–19
(Katchalsky and Curran 1967) for further enlightenment.

23.2.1 Hydrodynamic Non-ideality

23.2.1.1 Single Macromolecular Component, Single-Species Systems

We can express the hydrodynamic non-ideality through the frictional coefficient.
The frictional coefficient, f o, at infinite dilution is given by

f o D NA6��oRs (23.21)

where Rs is the Stokes radius, NA is Avogadro’s number, and �o is the viscosity of
water at 20 ıC.

The concentration dependence of f is given by

f D f o.1 C ksc/ (23.22)
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as a first-order function of concentration. From the definition of the sedimentation
coefficient as

s D M.1 � v�/

f
(23.23)

we can express the concentration dependence of the sedimentation coefficient as

s.c/ D so

.1 C ksc/
(23.24)

where so is the value of s at infinite dilution, and in the absence of thermodynamic
concentration dependence, we can likewise express the hydrodynamic concentration
dependence of the diffusion coefficient as

D.c/ D Do

.1 C ksc/
(23.25)

23.2.2 Thermodynamic Non-ideality

The chemical potential, �i, for species i, is given by

�i D �o
i C RTln.yici/ (23.26)

Taking the total differential of both sides and dividing through by RT, we have

d�i

RT
D dln.ci/ C dln.yi/ (23.27)

Expanding in terms of the corresponding partial derivatives, we have an expression
for the concentration dependence of the activity coefficient as a function of the
concentration of all species present.

dln.yi/ D
nX

jD1

@ln.yi/

@ln.cj/
dln.cj/ (23.28)

This can be rewritten as

dln.yi/ D @ln.yi/

@ln.ci/
dln.ci/ C

nX
jD1
j¤i

@ln.yi/

@ln.cj/
dln.cj/ (23.29)
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Now, substituting Eq. 23.29 into Eq. 23.27 , we have

d�i=RT D dln.ci/ C @ln.yi/

@ln.ci/
dln.ci/ C

nX
jD1
j¤i

@ln.yi/

@ln.cj/
dln.cj/ (23.30)

and rearranging

d�i=RT D dln.ci/

�
1 C @ln.yi/

@ln.ci/

�
C

nX
jD1
j¤i

@ln.yi/

@ln.cj/
dln.cj/ (23.31)

This equation is essentially Equation 9 of Goldberg (1953).
The driving force for diffusion is the gradient of the chemical potential, and so

the diffusional flux, Jd
i , is proportional to the gradient of the chemical potential.

From Fick’s first law in terms of the chemical potential gradient, we can write:

Jd
i D �Dici

RT

�
@�i

@r

�
t

(23.32)

Thermodynamic non-ideality, as we mentioned above, is manifest through the
concentration dependence of the activity coefficient according to the following
equations relating the gradient of the chemical potential to the concentration
gradients. In cylindrical coordinates, in the case of diffusion in the absence of
sedimentation, the continuity equation can be written as

�
@c

@t

�
�

D �rJd
i (23.33)

rJd
i D 1

r

@

@r

�
rJd

i

� D @

@�

�
�r

Dici

RT

�
@�i

@r

�
t

�
(23.34)

Expressing Eq. 23.33 in cylindrical coordinates and multiplying top and bottom of
the right hand side by r, we have

rJd
i D @

@�

�
�2�

Dici

RT

d�i

d�

�
(23.35)

where � D r2=2.
Now, expanding the gradient of �i in terms of concentrations and activity

coefficients, we have

1

RT

d�i

d�
D dln.ci/

d�
C

nX
jD1

@ln.yi/

@ln.cj/

dln.cj/

d�
(23.36)
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This can be factored:

1

RT

d�i

d�
D dln.ci/

d�
C @ln.yi/

@ln.ci/

dln.ci/

d�
C

nX
jD1
j¤i

@ln.yi/

@ln.cj/

dln.cj/

d�
(23.37)

1

RT

d�i

d�
D dln.ci/

d�

�
1 C @ln.yi/

@ln.ci/

�
C

nX
jD1
j¤i

@ln.yi/

@ln.cj/

dln.cj/

d�
(23.38)

For a single species the concentration dependence of the activity coefficient has been
treated historically by representing the concentration dependence with a polynomial
in powers of concentration. This polynomial is often truncated after the first-order
term, so that:

ln.yi/ D 2BiMici C 0c2 C : : : (23.39)

@ln.yi/

@ci
D 2BiMi (23.40)

substituting

�
1 C ci

@ln.yi/

@ci

�
D .1 C 2BiMici/ (23.41)

Both hydrodynamic non-ideality and thermodynamic non-ideality affect the
diffusion coefficient, and we can write

Di.ci/ D Do
i

"
1 C ci

@ln.yi/

@ci

1 C ks;ic

#
D Do

i

�
1 C 2BMci

1 C ks;ici

�
(23.42)

However, in general, in a solution containing multiple species, we must include
cross-terms to reflect the influence of all other species on each other. Expanding the
non-ideality term in a first-order power series, we can write

ln.yi/ D 2

nX
jD1

Bi;jMjcj (23.43)

For example, for n D 3; j D 1; 2; 3, we have

ln.y1/ D 2B1;1M1c1 C 2B1;2M2c2 C 2B1;3M3c3 (23.44)

ln.y2/ D 2B2;1M1c1 C 2B2;2M2c2 C 2B2;3M3c3 (23.45)

ln.y3/ D 2B3;1M1c1 C 2B3;2M2c2 C 2B3;3M3c3 (23.46)
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taking the total differential of each side:

dln.y1/ D 2B1;1M1dc1 C 2B1;2M2dc2 C 2B1;3M3dc3 (23.47)

dln.y2/ D 2B2;1M1dc1 C 2B2;2M2dc2 C 2B2;3M3dc3 (23.48)

dln.y3/ D 2B3;1M1dc1 C 2B3;2M2dc2 C 2B3;3M3dc3 (23.49)

So now we can write that

@ln.yi/

@ln.cj/
D 2Bi;jMjcjI (23.50)

giving nine, n2, partial derivative terms relating the second virial self and cross
coefficients, so that the so-called thermodynamic factor, let’s call it Ni,

Ni D
0
@1 C

nX
jD1

@ln.yi/

@ln.cj/

1
A

after substituting, becomes

Ni D
0
@1 C

nX
jD1

2Bi;jMjcj

1
A (23.51)

Now, for three species:

N1 D .1 C f2B1;1M1c1 C 2B1;2M2c2 C 2B1;3M3c3g/ (23.52a)

N2 D .1 C f2B2;1M1c1 C 2B2;2M2c2 C 2B2;3M3c3g/ (23.52b)

N3 D .1 C f2B3;1M1c1 C 2B3;2M2c2 C 2B3;3M3c3g/ (23.52c)

in matrix form

N D �
1 C B0c

	
(23.53)

and for 3 species, we have

N D
2
4N1

N2

N3

3
5 (23.54)

B0 D
ˇ̌̌
ˇ̌
ˇ
1 B0

11 B0
12 B0

13

1 B0
21 B0

22 B0
23

1 B0
31 B0

32 B0
33

ˇ̌̌
ˇ̌
ˇ (23.55)
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where B0
i;j D 2Bi;jMj

and

c D

ˇ̌
ˇ̌
ˇ̌̌
ˇ

1

c1

c2

c3

ˇ̌
ˇ̌
ˇ̌̌
ˇ

(23.56)

The full expressions for the diffusion coefficients become

D1 D D0
1

�
1 C B0

1;1c1 C B0
1;2c2 C B0

1;3c3

	
.1 C k1;1c1 C k1;2c2 C k1;3c3/

(23.57a)

D2 D D0
2

�
1 C B0

2;1c1 C B0
2;2c2 C B0

2;3c3

	
�

.1 C k2;1c1 C k2;2c2 C k2;3c3/
(23.57b)

D3 D D0
3

�
1 C B0

3;1c1 C B0
3;2c2 C B0

3;3c3

	
.1 C k3;1c1 C k3;2c2 C k3;3c3/

(23.57c)

It should be noted that in this treatment we have assumed that the cross diffusion
coefficients, Di;j, are sufficiently small that they can be ignored (see below).

Equations 23.57a, 23.57b, and 23.57c can be written in matrix notation as

D D D0 .1 C B0c/

.1 C ksc/
(23.58)

where B0 is called the “BM matrix” and ks the “ks” matrix

f1 D f o
1 .1 C k1;1c1 C k1;2c2 C k1;3c3/ (23.59)

f2 D f o
2 .1 C k2;1c1 C k2;2c2 C k2;3c3/ (23.60)

f3 D f o
3 .1 C k3;1c1 C k3;2c2 C k3;3c3/ (23.61)

For the ks matrix for hydrodynamic non-ideality, we have

f D fo .1 C ksc/ (23.62)

Let

F D .1 C ksc/ (23.63)
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where (e.g., for 3 species)

F D
ˇ̌
ˇ̌̌
ˇ
f1=f o

1

f2=f o
2

f3=f o
3

ˇ̌
ˇ̌̌
ˇ (23.64)

ks D
ˇ̌
ˇ̌̌
ˇ
1 ks;11 ks;12 ks;13

1 ks;21 ks;22 ks;23

1 ks;31 ks;32 ks;33

ˇ̌
ˇ̌̌
ˇ (23.65)

c D

ˇ̌
ˇ̌
ˇ̌̌
ˇ

1

c1

c2

c3

ˇ̌
ˇ̌
ˇ̌̌
ˇ

(23.66)

The ks matrix and the B0 matrices are implemented in SEDANAL as known, fixed
parameters that must be obtained by independent measurements of the concentration
interdependence of binary mixtures of the components in separate experiments.
Experiments are underway to use these terms for the studies of proteins at high
concentration (Correia 2015). These experiments are being carried out on model
systems comprising binary mixtures of purified proteins in pairs initially to measure
both the B’ matrix and the Ks matrix with plans to apply them to proteins in serum.

23.2.3 Cross Diffusion Coefficients

Here we attempt to accommodate the cross diffusion coefficients Di;j. Generally, the
cross diffusion coefficients have been assumed to be insignificant and, therefore,
mostly ignored. However, they may become important at higher concentrations
found in biological fluids like serum. The cross diffusion coefficients might need to
be included because the gradient of any one component in a mixture will become a
driving force for diffusion of the other components in the mixture. First we consider
the ideal case and then add in the thermodynamic non-ideality terms:

J1
d D �D11

c1

RT

@�1

@r
� D12

c2

RT

@�2

@r
� D13

c3

RT

@�3

@r
(23.67a)

J2
d D �D21

c1

RT

@�1

@r
� D22

c2

RT

@�2

@r
� D23

c3

RT

@�3

@r
(23.67b)

J3
d D �D31

c1

RT

@�1

@r
� D32

c2

RT

@�2

@r
� D33

c3

RT

@�3

@r
(23.67c)
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Ordinarily, we assume that

Di;j D ıi;jDi;j (23.68)

where ıi;j is the Kronecker delta.
Under nonideal conditions, taking into account the activity coefficients by

expanding the chemical potential gradient in terms of concentrations and activity
coefficients, we have

J1
d D �D11

c1

RT

@ln.y1c1/

@r
� D12

c2

RT

@ln.y2c2/

@r
� D13

c3

RT

@ln.y3c3/

@r
(23.69a)

J2
d D �D21

c1

RT

@ln.y1c1/

@r
� D22

c2

RT

@ln.y2c2/

@r
� D23

c3

RT

@ln.y3c3/

@r
(23.69b)

J3
d D �D31

c1

RT

@ln.y1c1/

@r
� D32

c2

RT

@ln.y2c2/

@r
� D33

c3

RT

@ln.y3c3/

@r
(23.69c)

expanding

J1
d D �D11

c1

RT

@ln.c1/

@r

0
@1 C

nX
jD1

@ln.y1/

@ln.cj/

1
A

�D12

c2

RT

@ln.c2/

@r

0
@1 C

nX
jD1

@ln.y2/

@ln.cj/

1
A

�D13

c3

RT

@ln.c3/

@r

0
@1 C

nX
jD1

@ln.y3/

@ln.cj/

1
A

(23.70a)

J2
d D �D21

c1

RT

@ln.c1/

@r

0
@1 C

nX
jD1

@ln.y1/

@ln.cj/

1
A

�D22

c2

RT

@ln.c2/

@r

0
@1 C

nX
jD1

@ln.y2/

@ln.cj/

1
A

�D23

c3

RT

@ln.c3/

@r

0
@1 C

nX
jD1

@ln.y3/

@ln.cj/

1
A

(23.70b)
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J3
d D �D31

c1

RT

@ln.c1/

@r

0
@1 C

nX
jD1

@ln.y1/

@ln.cj/

1
A

�D32

c2

RT

@ln.c2/

@r

0
@1 C

nX
jD1

@ln.y2/

@ln.cj/

1
A

�D33

c3

RT

@ln.c3/

@r

0
@1 C

nX
jD1

@ln.y3/

@ln.cj/

1
A

(23.70c)

Now we can substitute the first-order approximate virial expansions:

nX
jD1

@ln.yi/

@ln.cj/
D

nX
jD1

2Bi;jMjcj

Expanding as above (Eqs. 23.52a, 23.52b, and 23.52c) and substituting, we can
write out explicitly for the flux of each component including both cross diffusion
coefficients and cross second virial coefficients:

J1
d D �D11

c1

RT

@ln.c1/

@r
.1 C 2B1;1M1c1 C 2B1;2M2c2 C 2B1;3M3c3/

�D12

c2

RT

@ln.c2/

@r
.1 C 2B2;1M1c1 C 2B2;2M2c2 C 2B2;3M3c3/

�D13

c3

RT

@ln.c3/

@r
.1 C 2B3;1M1c1 C 2B3;2M2c2 C 2B3;3M3c3/

(23.71a)

J2
d D �D21

c1

RT

@ln.c1/

@r
.1 C 2B1;1M1c1 C 2B1;2M2c2 C 2B1;3M3c3/

�D22

c2

RT

@ln.c2/

@r
.1 C 2B2;1M1c1 C 2B2;2M2c2 C 2B2;3M3c3/

�D23

c3

RT

@ln.c3/

@r
.1 C 2B3;1M1c1 C 2B3;2M2c2 C 2B3;3M3c3/

(23.71b)

J3
d D �D31

c1

RT

@ln.c1/

@r
.1 C 2B1;1M1c1 C 2B1;2M2c2 C 2B1;3M3c3/

�D32

c2

RT

@ln.c2/

@r
.1 C 2B2;1M1c1 C 2B2;2M2c2 C 2B2;3M3c3/

�D33

c3

RT

@ln.c3/

@r
.1 C 2B3;1M1c1 C 2B3;2M2c2 C 2B3;3M3c3/

(23.71c)
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In summary, in general, for n components, we have a total of n2 diffusion coefficients
and n2 first-order virial coefficients giving a total of 2n2 parameters to characterize
diffusion in a nonideal n component system to first order in concentration. The
total number of diffusion coefficients cannot be reduced by invoking the Onsager
reciprocal relations (Onsager 1931a,b) which do not allow us to say that Di;j D Dj;i.

Since, in general,

ˇ̌
ˇ̌̌
ˇ
D11 D12 D13

D21 D22 D23

D31 D32 D33

ˇ̌
ˇ̌̌
ˇ D

ˇ̌
ˇ̌̌
ˇ
L11 L12 L13

L21 L22 L23

L31 L32 L33

ˇ̌
ˇ̌̌
ˇ
ˇ̌
ˇ̌̌
ˇ
�11 �12 �13

�21 �22 �23

�31 �32 �33

ˇ̌
ˇ̌̌
ˇ

where the Li;j are the Onsager phenomenological coefficients, and

�i;j � @�i

@cj

For sedimentation velocity, we have Katchalsky and Curran (1967) (Eqns 9–29
through 9–50) the case that the observed sedimentation coefficients are functions of
the chemical potential gradients of the other components leading to the following set
of relations between the phenomenological coefficients, Li;j, and the sedimentation
coefficients. These equations result from a consideration of the gradient of the
total potential gradient including both diffusion and sedimentation since for each
component

�i D �o
i C �c

i � Mi.1 � � Nvi/!
2r2=2 (23.72)

where �c
i is the chemical potential, and the last term is the centrifugal potential. The

standard reference potential term, �o
i , drops out upon differentiation, and we have

J1 D s1c1!2r � D11

@c1

@r
� D12

@c2

@r
C D13

@c3

@r
(23.73)

J2 D s2c2!2r � D21

@c1

@r
� D22

@c2

@r
C D23

@c3

@r
(23.74)

J3 D s3c3!2r � D31

@c1

@r
� D32

@c2

@r
C D33

@c3

@r
(23.75)

Leading to:

s1 D 1

c1

ŒL11M1.1 � Nv1�/ C L12M2.1 � Nv2�/ C L12M3.1 � Nv3�/�

s2 D 1

c2

ŒL21M1.1 � Nv1�/ C L22M2.1 � Nv2�/ C L22M3.1 � Nv3�/�

s3 D 1

c3

ŒL31M1.1 � Nv1�/ C L32M2.1 � Nv2�/ C L32M3.1 � Nv3�/�
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where Li;j=ci D Di;j=RT, and we have

s1 D
�

D11

RT
M1.1 � Nv1�/ C D12

RT
M2.1 � Nv2�/ C D13

RT
M3.1 � Nv3�/

�

s2 D
�

D21

RT
M1.1 � Nv1�/ C D22

RT
M2.1 � Nv2�/ C D23

RT
M3.1 � Nv3�/

�

s3 D
�

D31

RT
M1.1 � Nv1�/ C D32

RT
M2.1 � Nv2�/ C D33

RT
M3.1 � Nv3�/

�

Under conditions (e.g., high concentrations) in which the Li;j; i ¤ j, are not negli-
gible, it will be necessary to include the Di;j in simulations using Lamm equation
modeling. For cases in which the cross-terms are negligible, these equations reduce
to the familiar Svedberg equations for each component.

23.2.4 Nonideal, Interacting Systems: Effects of Non-ideality
on the Equilibrium Constant

We can write the equilibrium expression in terms of either molar or mass concentra-
tions: in terms of activities and molar concentrations and then converting to weight
concentrations we have, for a monomer-dimer system:
Molar:

K1;2 D a2

a2
1

D �2C2

.�1C1/2
(23.76)

Weight:

k1;2 D K1;2

M2

M2
1

D y2c2

.y1C1/2
(23.77)

k1;2;obs D c2

c2
2

D k1;2

�
y2

y2
1

��1

(23.78)

It is general practice, without much justification, to assume that

y2 D y2
1 (23.79)

And in general for a multispecies self-associating system, it is mathematically
convenient to assume

yn D yn
1 (23.80)
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This approximation assumes that all species contribute the same non-ideality
per unit mass (Tanford 1961) and obviously will not be valid if there is a
significant change of overall charge or change in excluded volume upon association-
disassociation. However, this approximation allows us to write, for the monomer-
dimer case, that

k1;2;obs D k1;2 (23.81)

and for the general monomer to n-mer case:

k1;n;obs D k1;n (23.82)

The reader is referred to the papers by Dennis Roark and David Yphantis (Roark
and Yphantis 1969, 1971; Yphantis and Roark 1972) for a more thorough treatment
of non-ideality in associating systems.

The situation is somewhat more complicated for hetero-associating systems since
such an approximation generally cannot be easily made if the two proteins have
significantly different charges and/or excluded volumes or if charges are canceled
upon association. In the simplest bimolecular association, the three species will
in general have sufficiently different properties (charge and/or excluded volume)
that a simple relationship between activity coefficients usually cannot be written.
One would need specific information concerning each species in the reaction.
The necessary information could, in principle, be obtained by confined membrane
electrophoresis (CME) (Filoti et al. 2015) for each of the species in the reaction for
the effective charge on the macromolecule. Excluded volume differences would be
more difficult to describe.

Nevertheless, some reasonable assumptions can be made in many cases. For
example, in the two-component system

A C B • AB

assuming there are no significant changes in charge or excluded volume upon
association, the non-ideality of species AB can be assumed to be the mass weighted
average of the contributions from species A and B.

For mixtures of noninteracting components, the species (i.e., components) can
be separated and studied independently to measure their individual properties and in
pairs to study their mutual effects on each other to obtain the cross-terms. Measuring
the cross-terms for an interacting system would be extremely difficult.

Sedimentation transport is described by the Lamm equation (Lamm 1929). For a
single macromolecular species, i, we have for ci D ci.r; t/ that

�
@ci

@t

�
r

D � @

r@r

�
!2si.ci/ci � rDi.ci/

�
@ci

@r

�
t

�
(23.83)
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where ci is the mass concentration of species i, r is the radius, t is the sedimentation
time in seconds, ! is the angular velocity of the rotor in radians-sec�1, s is
the sedimentation coefficient in seconds, and D is the diffusion coefficient in
centimeters2-sec�1

At this point it is useful to define some terms and point out the differences
between a species and a component. A component, in the thermodynamic sense,
is a chemical entity that can, in principle, be added to or removed from a solution
independently of other species. A species is an individual chemical entity that may
be a component or be a constituent of a component.

The Gibbs phase rule applied to the systems ordinarily encountered in the context
of analytical ultracentrifugation tells us that, at constant temperature and pressure or
in an incompressible solution, the number of macromolecular components is equal
to the number of species minus the number of chemical reactions between them. For
example, a monomer-dimer, self-associating system is a single-component system
comprising two species. It’s a single component because if one could remove
the dimers, the remaining monomers would self-associate to form a mixture of
monomer and dimers, and conversely, the dimers would dissociate to form a mixture
of monomers and dimers. That is, monomers and dimers cannot be separated. At
constant temperature and pressure, this system has one degree of freedom, namely,
the total macromolecular concentration, which alone determines the composition
(i.e., the fraction of monomers and dimers at equilibrium) given a particular value
of the equilibrium constant.

For a two-component system, the number of degrees of freedom is 2. Again, at
constant temperature and pressure, the composition of the solution is determined by
the total concentration of each component given the equilibrium constants.

23.3 Curve Fitting: Numerical Solutions to the Lamm
Equation

Curve fitting techniques allow us to combine data from several optical systems to
fit to data from solutions that contain components that have different extinction
properties. Model-independent methods, i.e., those not involving curve fitting, give
us only the sum total of all the contributions from all species added together in
one signal. For example, absorbance optics give us only the total absorbance for any
particular solution of several species that may have quite different optical properties.
Model-dependent methods, such as least squares curve fitting, allow us to extract the
contributions from several species having different optical properties as long as we
know the extinction coefficients of each species in a mixture.

To allow us to combine data sets from several optical systems, each of which
may have different units and noise levels, we compute the sum of the weighted
squares of the residuals, WSSR, over all the radial points, scans, and cells in a
combined global fit (Stafford and Sherwood 2004), where the weighting factors are
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the inverse of the variance of the data which, in general, is a function of radius. For
example, the absorption optical system of the Beckman XL-A records the standard
deviation of the absorbance or intensity along with its standard deviation at each
radial position. The inverse of the square of the standard deviation can be used by
SEDANAL to weight the squared residuals. With the interference optical system,
the standard variation of the scan is essentially independent of position, and so a
single weighting factor equal to the inverse of the standard deviation of the fringe
displacement can be used. For fluorescence optics, both the magnitude and the
standard deviation are much larger numerically than data from the other systems.
However, when those data are normalized by weighting the squared residuals by
the inverse of their variance, the signal-to-noise becomes comparable to weighted
residuals from the other optical systems and they can be compared. Because the
dimensionless weighted squares of the residuals are non-denominate numbers, they
can be added together without violating any laws of mathematics.

WSSR D 1

LMN

LX
iD1

MX
jD1

NX
kD1

 
dev2

i;j;k

	2
i;j;k

!
(23.84)

where N is the number of points over the range being fitted in each cell; M is the
number of scans in each cell; L is the number of cells; devi;j;k is the residual; and
	i;j;k is the standard deviation of the data. Thus, .1=devi;j;k/

2, i.e., the inverse of the
variance, becomes the weighting factor wi;j;k.

WSSR D 1

LMN

LX
iD1

MX
jD1

NX
kD1

�
wi;j;kdev2

i;j;k

	
(23.85)

For example, in SEDANAL we curve fit the Lamm equation to time difference
curves, and so the residual is computed as

devi;j;k D 
Si;j;k.ri; tj; tjCM=2/ �
lDnX
lD1

˛l
Ci;j;k;l.ri; tj; tjCM=2/ (23.86)

where 
Si;j;k.ri; tj; tjCM=2/ is the time difference curve computed from the signal; n
is the number of species in the model being fitted; ˛l is the extinction coefficient
for species l; and 
Ci;j;k;l.ri; tj; tjCM=2/ is the corresponding time difference curve
computed from the current guesses in the solution of the Lamm equation. The reader
is referred to the original paper for the details (Stafford and Sherwood 2004).

The time difference curves are computed as follows:
For the signal, S:


Si;j;k.ri; tj; tjCM=2/ D Si;j;k.ri; tjCM=2/ � Si;j;k.ri; tj/ (23.87)
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And likewise, for the solutions, C, to the Lamm equation:

lDnX
lD1

˛l
Ci;j;k;l.ri; tj; tjCM=2/ D
lDnX
lD1

˛lCi;j;k;l.ri; tjCM=2/

�
lDnX
lD1

˛lCi;j;k;l.ri; tj/

(23.88)

Weighting the residuals from different optical systems normalizes the residuals
so that residuals from different optical systems can be combined in a global fit.
Effectively, the result is that we minimize the reduced chi-square values over all
the data sets. Since there are a large number of data points (usually several tens of
thousands) and the noise on the data is normally distributed, this fitting procedure is
the method of maximum likelihood (Bevington and Robinson 2003). This procedure
maximizes the probability that the guesses for the parameters are correct.

Appendix 1: Hydrodynamic Non-ideality

It has been well established that at infinite dilution, the frictional coefficients for
sedimentation and diffusion are equal (Schachman 1959). Above we claim that their
dependence on concentration is also the same. We can show this to be true with a
proof by contradiction, namely, that the hydrodynamic concentration dependencies
of sedimentation and diffusion, ksed and kdiff, are equal. We start by assuming they
are not equal (i.e., ksed ¤ kdiff) and proceed to show that this assumption leads to a
contradiction. This hydrodynamic concentration dependence arises purely because
of the frame of reference we are using, i.e., the cell is of constant volume, and
so displaced solvent has to move against the macromolecule and into the volume
that was occupied by the macromolecule while the macromolecule is translating
in response to the forces acting upon it, whether or not the force arises from
the gradient of the centrifugal potential (the driving force for sedimentation) or
the gradient of the chemical potential (the driving force for diffusional transport)
(Katchalsky and Curran 1967). This relationship has been postulated in the past
(Harding and Johnson 1985) but never explicitly proven.

Consider the fluxes arising from sedimentation and diffusion:

Jsed D !2rc

�
so

1 C ksedc

�
(23.89)

Jdiff D �Do

2
4


1 C @ln.y/

@ln.c/

�
1 C k1diffc

3
5�@c

@r

�
t

(23.90)
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At sedimentation equilibrium, the flux due to sedimentation is equal to the flux due
to diffusion throughout the cell. And we have that

Jsed D Jdiff (23.91)

and we have

!2rc

�
so

1 C ksedc

�
D �Do

2
4


1 C @ln.y/

@ln.c/

�
1 C kdiffc

3
5�@c

@r

�
t

(23.92)

This can be seen from the Lamm equation (Eq. 23.83) by setting .@c=@t/r D 0 and
rearranging:

!2 so

Do
D
�

1 C ksedc

1 C kdiffc

�
1

rc

�
@c

@r

�
t

�
1 C @ln.y/

@ln.c/

�
(23.93)

This equation agrees with the standard thermodynamic derivation if and only if ksed

is equal to kdiff.

!2 so

Do
D 1

rc

�
@c

@r

�
t

�
1 C @ln.y/

@ln.c/

�
(23.94)

Invoking the Svedberg equation, we have

M.1 � Nv�/!2

RT
D 1

rc

�
@c

@r

�
t

�
1 C @ln.y/

@ln.c/

�
(23.95)

which agrees with the thermodynamic derivation given by Williams et al. (1958).
And so, it must be the case that

�
1 C ksedc

1 C kdiffc

�
D 1

Therefore, our initial assumption that ksed ¤ kdiff must have been false, and we
have proven that ksed is equal to kdiff and that any difference in the concentration
dependence of sedimentation and diffusion arises only through the thermodynamic
non-ideality term which in turn arises from the concentration dependence of the
activity coefficients (cf. Eq. 23.41) of each of the species present in the solution
(Goldberg 1953; Sherwood and Stafford 2016). The equality of ksed and kdiff has
been demonstrated experimentally for sucrose (LaBar and Baldwin 1963). It should
be pointed out that ksedc and kdiffc (i.e., linear dependence on concentration) can
be replaced by any function of concentration, g.c/, that describes the concentration
dependence of the observed frictional coefficient.
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