Chapter 1
Important and Essential Theoretical Aspects

of AUC

Susumu Uchiyama and Fumio Arisaka

Abstract Analytical ultracentrifugation (AUC) is a powerful method to reveal
biophysical behavior of solute in solution. AUC has a long history and is based
on well-established and concrete thermodynamic and hydrodynamic theory. AUC
provides valuable parameters such as the sedimentation and diffusion coefficients,
from which molar mass and information on hydrodynamic shape and solvation of
the solute can be derived. Here, important and essential theoretical aspects of AUC
are described.

Keywords Analytical ultracentrifugation ¢ Sedimentation equilibrium e Sedi-
mentation velocity ¢ Theory

1.1 Introduction

This chapter is devoted to the basics of analytical ultracentrifugation. Efforts
have been made to cover the minimum essentials and to make it qualitatively
but precisely understandable. Two fundamentally important concepts in analytical
ultracentrifugation are sedimentation and diffusion. Detailed theories can be found
in the published literature (Fujita 1962; Cantor and Schimmel 1980; van Holde et al.
2005).

There are two modes of experiments, namely, sedimentation velocity (SV)
and sedimentation equilibrium (SE). In SV experiments, both sedimentation and
diffusion take place simultaneously. In SE experiments, sedimentation and diffusion
are balanced and reach equilibrium.
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1.2 Principle for Sedimentation and Diffusion

1.2.1 Sedimentation

Suppose we suspend some homogeneous fine grains of sand in water and stir and
leave it still (Fig. 1.1). The boundary between the air and the solution is called
“meniscus.” The sand will leave the meniscus and slowly sediment and the moving
boundary will appear. Above the moving boundary, sand grains have sedimented
down and are already gone. Below the boundary, the same concentration or the same
number of grains per unit volume of sand is still there sedimenting with the same
velocity. The speed of the moving boundary, v, is proportional to the acceleration of
gravity, and the proportionality constant, s, will define the sedimentation coefficient
of the sand particle.

vV =sg (1.1)

If all the sand particles have the same s-value, they sediment with the same velocity
toward the bottom and the concentration at plateau region is kept constant. The
particles that have reached at the bottom accumulate there.

Now, s is related to the mass, m, and specific volume, v, of the particle and the
density of water, p:

5 = M (1.2)

f

where f is the frictional coefficient of the particle. The term vp is the excluded
volume of the particle and mvp is the mass of the excluded water, leading to the
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Fig. 1.1 Sedimentation of homogeneous grains in a cylinder under gravity
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buoyancy. The term m (1 — Vp) is called the buoyant mass. If the sand particles are
not homogeneous, each size of the sand grain sediments with its own sedimentation
coefficient, and we may observe the distribution of sedimentation coefficients.

Before invention of the analytical ultracentrifuge, Thé Svedberg measured the
size distribution of colloidal gold which he was studying by the method as described
above. In order to measure the position of the moving boundary precisely, he
observed the boundary using a microscope. Eventually, Svedberg got interested in
measuring the size of proteins which had been recognized to be very important
in biological organisms. However, s-values of proteins are too small and do not
sediment at all under the normal gravity due to the overwhelming diffusion. In order
to let them sediment in spite of diffusion, the gravity has to be much increased, and
he decided to utilize the centrifugal force of a centrifugation. Special devices, then,
had to be developed in order to observe the moving boundary or the concentration
gradient in the cell in a revolving rotor. Thus, Svedberg designed and constructed a
prototype of analytical ultracentrifuge.

The velocity, v, of sedimentation of the moving boundary, 3, is proportional to
the centrifugal force, and the sedimentation coefficient is defined as the proportion-
ality constant:

v = srw?, (1.3)

where 7, is the position of the moving boundary from the center of revolution and
 is the angular velocity. It is noted that g in Eq. (1.1) is now replaced by rw?, the
acceleration of centrifugal force. The sedimentation coefficient is related to the mass
of the particle, m, and the frictional coefficient, f:

_ m(1—=vp) _ M (1 —vp)

= 1.2
S Naf (1.2

where Ny is the Avogadro’s number, p is the density of the solvent, and M is the
molar mass. s has the dimension of time and commonly used with the unit of S,
where 1 S is 107!3s. Simple classical mechanics treatment shows v to be a specific
volume, but more rigorous treatment of the transport process by nonequilibrium
thermodynamics shows that it is a partial specific volume or

_ (v
v = (a_m)m,’ (1.4)

where V is a volume increase of a solution of a large volume when 1 g of lyophilized
protein or other solute molecules had been dissolved. If the concentration of
the solute is low enough, it is close to the specific volume. From Eq. (1.3) or
(drp/dt) = srpw?,

In (rp) = In (1) + sw*t (1.5)
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where r,,, denotes the position of the meniscus.

Svedberg noticed at the early stage of the development of his analytical ultracen-
trifuge (AUC) that the cell has to be sector shaped instead of rectangular, because
the particle sediments in the direction of radius and if the cell is rectangular some
particles will collide with the wall and the moving boundary will be distorted. The
consequence of the sector-shaped cell is that the concentration of the solute at the
plateau region, c,, will gradually decrease due to the fact that the cross section of
the flow of the solute will expand proportionally to the distance, r, from the center
of revolution (Fig. 1.2):

C, = Coe 2" (1.6)

The analysis of moving boundary will be described more in detail when we
introduce the Lamm equation which describes the time course of the concentration
gradient in sedimentation velocity. 1y, is then defined as the position of r, where the
concentration is half that of the plateau region.

The value of sedimentation coefficient thus determined depends on the buffer
conditions and temperature. The buffer condition changes the density and viscosity
and the temperature mainly affecting the viscosity of water. In order to obtain
the intrinsic physical parameter of the solute, the density and viscosity have to be
corrected to reflect the experimental conditions.

It may be noted that in the above discussion, we are not looking at the behavior
of each sedimenting molecule in solution but looking at the moving boundary or the
concentration gradient at the boundary. All the information we extract concerning
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the characteristics of the solute molecules are contained in the shape and its change
during time course of the moving boundary. In fact, the moving boundary contains
abundant information concerning homogeneity/heterogeneity, sedimentation coeffi-
cients and their distribution, diffusion coefficient and interactions between solute
molecule, non-ideality, etc. Measurement of moving boundary is similar to the
frontal analysis of the size exclusion chromatography.

1.2.2 Diffusion

Sedimentation coefficient and frictional coefficient are related through Eq. (1.2a).
Now, there is a simple relation between diffusion coefficient and frictional coeffi-
cient for ideal solution which is called the Einstein-Sutherland equation:

RT
D=— 1.7
Naf
Replacing f in Eq. (1.2a) with f in Eq. (1.7) will give the Svedberg equation:
M-y
s _Md-v) (18)
D RT

This equation indicates that if we have the values for s and D, we can determine

the molar mass, M, with the advance knowledge of vV and p. The molar mass thus

determined does not depend on the shape of the molecule as the equation implies.
In the case of non-ideality, D can be expressed as

p= BT, ooy (1.9)
ONAf aC '

and the corresponding Svedberg equation is

s__MU-vw) (1.10)

D Rrit+ctprd
where y is the activity coefficient of the solute.

Now, assume a cell of uniform cross section with infinite length and that a sharp
concentration gradient or boundary is present at x =0 at time t =0 (Fig. 1.3). The
time course of the change of concentration gradient can be predicted by the Fick’s
second law (diffusion equation):

IC(x.0)\ _ [PCx.1)
(), =250, o
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Fig. 1.3 Change of concentration gradient of solute due to diffusion

where D is the translational diffusion coefficient. Equation (1.6) can be solved
with the initial condition and boundary condition. Under these conditions of free
diffusion, the solution of Eq. (1.6) is

C() 2 X/2«/E _yZdy
C(x,t)—T{l—ﬁfo e (1.12)
and the derivative of C(x,f) with respect to r is simply a Gaussian “error” curve:
(ac (x, t)) N (1.13)
ox x 2+/mDt

where ¢ is the concentration of the solute at r = 0. We can get the gradient either
by calculating from the experimental concentration gradient data or measure the
gradient by traditional so-called schlieren optical system. The height of the bell-
shaped curve, H, is given by

(BC(“)) -G _y (1.14)
ox  J.—y 247Dt
and
(&)
R (1.15)
H

We can thus determine D by plotting (Co/H)? with respect to . There is a special cell,
synthetic boundary cell, which can be used to form a sharp boundary to determine
the diffusion coefficient by the method as described above. In current practice, both



1 Important and Essential Theoretical Aspects of AUC 9

sedimentation coefficient and diffusion coefficient are determined by direct curve
fitting to the Lamm equation solution to the raw data of sedimentation velocity.

1.3 Sedimentation Velocity

1.3.1 Lamm Equation

As soon as the solute molecules leave the meniscus and start to sediment, a
concentration gradient will appear. In the concentration gradient (moving bound-
ary), sedimentation and diffusion take place simultaneously. It was Ole Lamm, a
Ph.D. student of Thé Svedberg, who reported a partial differential equation which
describes the time course of the concentration gradient of the solute in sedimentation
velocity (Lamm 1929):

aC (O] 5, aC

This equation, called the Lamm equation after Ole Lamm, precisely describes
the time course of the sedimentation together with diffusion. Detailed derivation
of the Lamm equation is described elsewhere. Due to the consideration of the
sector-shaped cell, the right-hand side of the equation is somewhat complicated,
but, basically, it consists of two terms in the brackets [ ]. The first term has the
coefficient s, and the second term contains D. The former describes sedimentation
and the latter diffusion. In current methods of SV analysis, s and D are determined
by nonlinear least squares curve fitting to the raw data.

Equation (1.16) assumes that s and D are constants (i.e., there is no hydrodynamic
non-ideality) under the same conditions. The measured s- and D-value are usually
corrected to a standard condition which is traditionally in water at 20 °C, s29.,,, D20,y0-
If the actual measurements were made in a buffer solution at temperature 7, sz,
(1.2a) and (1.7) contain the frictional coefficient, which is related to the viscosity of
the solvent by the Stokes law:

f = 67nR,, (1.17)

where Ry is the Stokes radius and has been worked out for particles of various
shapes. In any event, it is directly proportional to the viscosity of the solvent. The
measured s, and Dy, are, therefore, corrected for viscosity and the density of the
solvent:

1—v ,
S20 = ( _P)zo,w Nr.p . (1.18)
(1 =vp)rp Mow

293.1 nr.»
20w = T

T 1n20,w

D1, (1.19)
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Correction for viscosity is mainly due to the temperature dependence of that of
water. For example, the viscosity of water at 4°C is about 1.3 times larger than
that of water at 20°C. The s- and D-values thus corrected are known to depend on
the concentration of the solute and need to be extrapolated to zero concentration in
order to obtain the real intrinsic physical parameter of the solute 53, ,,. For common
spherical soluble proteins, extrapolation to zero concentration may not be necessary
if the concentration is below 1 mg/mL or so. However, care has to be taken for
extremely elongated proteins such as triple-helical collagen or highly negatively or
positively charged molecules such as nucleic acids. In fact, the s-value of nucleic
acids has a much higher concentration dependence than proteins and has to be
measured at very low concentration. Fortunately, nucleic acids, DNA and RNA,
have much higher extinction coefficients than proteins, and, as a result, they can
be measured at much lower concentration. Extinction coefficient of nucleic acids is
about 20 times larger than those of proteins. Much less frequently, sedimentation
coefficients may decrease as the concentration decreases. In such a case, subunit
dissociation may be anticipated.

1.3.2 Relationship Between s and M

The molar mass, M, of the sedimenting particle can be estimated by Svedberg Eq.
(1.18), which requires the s- and D-values. The s-value can be determined rather
accurately with the error of one or two percent. On the contrary, D-values are more
difficult to evaluate precisely, and they have been frequently obtained from DLS
measurement and combined with the s-value from SV experiments. However, recent
software, such as c(s) analysis in SEDANAL, SEDFIT, or ULTRASCAN, utilizes
the relationship of D and f/fy, called the scaling law:

D(s) = lgiikTs—‘”(nwmw)—”((l —vp) /1) (120)

The rationale of using this equation for analysis is discussed by Peter Schuck. In
c(s) analysis, a common value for f/fy value is assumed, but there is another mode
of analysis c(s, f/fo) in SEDFIT or 2DSA in ULTRASCAN, where s and f/fy are
independently fitted for each molecular species. SEDANAL fits directly for s and
D for each species with or without constraints relating the frictional coefficients of
each component.

1.3.3 Molecular Shape and f/f,

Molecular shape may be discussed based on the frictional ratio, f/fy. The frictional
ratio, obtained from the SV analysis, may be related to the molecular shape of the
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Fig. 1.4 Relationship between axial ratio and frictional ratio

assumed prolate, oblate, or rod, through Perrin’s equations (Fig. 1.4). As shown in
Fig. 1.4, a small increase of f/fy increases the axial ratio quite a bit, but a large
change in the axial ratio does not affect the f/fy very much, which is the rationale of
using Eq.(1.21) independent of the molecular species. Note that spherical protein
will give the f/fy of about 1.2 instead of 1.0, which is because f; is estimated
for a protein without solvation, whereas the experimentally determined f includes
solvation. We cannot discuss the molecular shape in detail but can decide if the
molecule is close to sphere or elongated (or flattened). For example, native triple-
helical collagen has a large f/fy value, larger than 2.

1.3.4 Sedimentation Coefficients Estimated from the X-ray
Structure of the Proteins

If the atomic structure of a protein is known, one can estimate the hydrodynamic
values including the sedimentation coefficient and diffusion constant. Although it
is not so simple to predict the structure from the sedimentation coefficient, if a
number of possible model structures are available, one could assess each structure
by estimating each s-value and judge which model would fit the measured s-value
(Rocco and Byron 2015).

1.4 Sedimentation Equilibrium

When solution is centrifuged at a relatively low speed as compared with that of
the SV experiments, both sedimentation and diffusion contribute significantly to
the concentration distribution. As a result, the moving boundary which we see
in SV experiments will not be seen. Instead the concentration of the solute at
the meniscus will decrease and that at the bottom will increase and eventually
reach the equilibrium, when sedimentation and diffusion are balanced. The resultant



12 S. Uchiyama and F. Arisaka

concentration gradient will be used to estimate the molar mass:

dinC  M(1 —Vp) w?
dr?) 2RT

(1.22)

Equation (1.22) can be derived by assuming that the total chemical potential
including centrifugal potential is common everywhere in the cell. It can be also
derived from Lamm Eq. (1.16) by setting dC/dt = 0.

Integration of Eq. (1.22) gives

C(r) = C(ry) exp (My.qpp (1 —Vp) (r2 — raz)) + baseline (1.23)

c(r) = ci(ra) exp (M; (1 = ¥;p) (* — r2) /2RT) (1.24)

i=1

In signal units:

S(r) = Soasetine(r) + Y_eici (ra) exp (M; (1 = Vip) (* —r2) /2RT) ~ (1.25)

i=1

Currently, most programs utilize nonlinear fitting of the raw data to Eq. (1.25)
to obtain the molar masses, M;. Here, it should be noted that the fitting data from
a mixture of molecules using the model of a single ideal component results in an
“average” M that is closer to Mz (z-average molecular weight) than Mw but falls
between these and is not equal to either. As in the case of SV experiment to obtain
the molar mass, which utilizes Svedberg Eq. (1.8), the values of v and p are required.
The partial specific volume vV can be measured by precision densitometry using a
densitometer, e.g., Anton Paar DMAS5000, but in many cases the requirement of
the amount of proteins, on the order of 10 mg, may not be realistic and the values
are commonly calculated based on the weighted average of the values for amino
acid residues as listed in Cohn and Edsall (1943). The protocol for calculation is
implemented in SEDNTERP.

At early times, sedimentation equilibrium was thought to be unrealistic due to
the prolonged time required for equilibration. It was van Holde and Baldwin (1958)
who showed that the required time to reach equilibrium is proportional to the square
of the solution column length and is inversely proportional to the diffusion constant:

_ 2
7 (ro —ra)
D

t~0 , (1.26)
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where r, and r, are, respectively, the distance of meniscus and the bottom from
the center of rotation and D is the diffusion coefficient of the solvent. Since then,
shorter columns have been used for SE experiments, and the time of measurement
became more realistic. Experiment at lower temperature requires longer time to
reach equilibrium. Traditionally, judgment of equilibration was made if three or
four scans are superimposed. There are some programs with which one could
decide if the system reached equilibrium, like HeteroAnalysis, which includes the
program Match that uses a least squares fitting procedure to determine whether or
not equilibrium has been achieved, available from Jim Cole. Also a calculator is
available to predict the time to attain equilibration in ULTRASCAN and SEDFIT.
It should be noted that the time to equilibrium may be seriously underestimated for
reversibly associating systems.

It is the usual case that the mass average molar mass, M, 4y, has concentration
dependence due to nonideal behavior of the solute and thus can be expressed using
second virial coefficients, B, and third virial coefficients, D, as

1 1
=— (14+B,C+D,C*>+--- 1.19
Mo Mw( + B,C+ D,C* +--+) (1.19)

At concentrations below 10 mg/mL, usually M,, ., is linearly dependent on the
concentration; thus molar mass at infinite dilution, M,, and B;, can be estimated by
fitting of M,,,.p, at different concentrations.

When the solute is not homogeneous, it is shown that the obtained molar mass is
that of the weight average:

M, = Xn:CiMi/Xn:Ci (1.20)

In the case of interacting systems, the association-dissociation equilibrium
between or among species is achieved at any position, r; nonlinear fitting of the
Ciota1 () gives equilibrium dissociation constants between or among species.

1.5 Conclusions

In this chapter, the basics of analytical ultracentrifugation including theoretical
background and essential mathematical expression used for understanding SV-AUC
and SE-AUC were introduced. More details will be described in the following
chapters dealing different topics.
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