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Abstract Gastric gland mucin secreted from gland mucous cells located in lower

portions of the gastric mucosa contains unique O-linked oligosaccharides

displaying terminal α1,4-linked N-acetylglucosamine (αGlcNAc). αGlcNAc
inhibits growth and motility of Helicobacter pylori, a microbe causing gastric

cancer, by inhibiting biosynthesis of its cell wall component cholesteryl-α-D-
glucopyranoside. In addition, αGlcNAc serves as a tumor suppressor for gastric

differentiated-type adenocarcinoma, and its loss in gastric cancer cells is associated

with progression and poor prognosis of patients with this subtype of gastric cancer.

This chapter summarizes protective functions of αGlcNAc against gastric cancer

development.
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7.1 Introduction

Gastric cancer ranks fourth in the most commonly diagnosed cancers and second in

the most common causes of cancer-related death worldwide and thus remains one

of the most common malignancies (Ferlay et al. 2010). On the other hand, gastric

mucins play important roles in forming the surface mucous gel layer, which pro-

tects tissues from the external environment (Ota and Katsuyama 1992). However,

how gastric mucins alter gastric cancer pathogenesis remains unknown. Gastric

mucins are divided into surface and gland mucins (Ota et al. 1991). The first are

secreted from surface mucous cells lining the gastric mucosa and contain surface

mucin-specific glycans such as Lewis-related blood group carbohydrates attached
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Fig. 7.1 Expression of MUC5AC, MUC6, and αGlcNAc in gastric mucosa and the αGlcNAc
biosynthetic pathway. (a) MUC5AC is expressed in surface mucous cells, while MUC6 is detected

in pyloric gland cells of human gastric mucosa. Note that αGlcNAc is coexpressed with MUC6 in

pyloric gland cells. Hematoxylin and eosin (HE) staining (upper left) and immunohistochemistry

using CLH2 antibody for MUC5AC (upper right), CLH5 antibody for MUC6 (lower left), and
HIK1083 antibody for αGlcNAc (lower right). Bar indicates 200 μm. (b) α1,4-N-Acetylglucosa-
minyltransferase (α4GnT) forms αGlcNAc primarily attached to MUC6
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to the mucin core protein MUC5AC (Nordman et al. 2002) (Fig. 7.1a). By contrast,

the latter are secreted from gland mucous cells such as pyloric gland cells and

mucous neck cells located in the lower layer of the gastric mucosa and contain

gland mucin-specific O-glycans exhibiting terminal α1,4-linked N-acetylglu-
cosamine residues (hereafter termed αGlcNAc) attached to MUC6 (Ishihara

et al. 1996; Zhang et al. 2001; Ferreira et al. 2006). αGlcNAc is a unique O-glycan,
as its distribution is limited to gastric gland mucous cells and Brunner’s glands of
the duodenal mucosa (Nakamura et al. 1998).

αGlcNAc biosynthesis is catalyzed by α1,4-N-acetylglucosaminyltransferase

(α4GnT), which transfers N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to

terminal β-linked galactose (Gal) residues present in O-glycans with an α1,4-
linkage (Fig. 7.1b). Previously, we used an expression cloning to isolate α4GnT
cDNA from a human stomach cDNA library (Nakayama et al. 1999). Then, using

α4GnT cDNA as a molecular tool, we investigated αGlcNAc function in the

pathogenesis of gastric cancer. In this chapter, I describe the roles of αGlcNAc in
the gastric mucosa and focus in particular on its protective function against

Helicobacter pylori (H. pylori) infection and gastric cancer development.

7.2 Role of αGlcNAc in H. pylori Infection

7.2.1 αGlcNAc Acts as a Natural Antibiotic in Antagonizing
H. pylori

H. pylori is a gram-negative bacteria first isolated from gastric mucosa by Marshall

and Warren (1984). This microbe is known to cause various gastric diseases,

including chronic active gastritis, gastric adenocarcinoma, and gastric mucosa-

associated lymphoid tissue lymphoma (Peek and Blaser 2002). Although

H. pylori infects over half the world’s human population, only a fraction of infected

patients develop severe gastric disease. Interestingly, H. pylori largely colonizes

surface mucins, while it is rarely found in gland mucins (Hidaka et al. 2001)

(Fig. 7.2a), suggesting that αGlcNAc protects the gastric mucosa against H. pylori
infection. To test the hypothesis, we cultured H. pylori in the presence of various

levels of recombinant soluble CD43 (sCD43) carrying αGlcNAc (hereafter termed

αGlcNAc (+)) (Kawakubo et al. 2004), which were secreted from Lec2 cells, a

mutant CHO cell line defective in a sialic acid transporter (Deutscher et al. 1984).

That line had been cotransfected with three expression vectors encoding α4GnT,
core2 β1,6-N-acetylglucosaminyltransferase (C2GnT) (Bierhuizen and Fukuda

1992), and sCD43, respectively. In this assay, sCD43 serves as a glycan scaffold,

as it contains 80 O-glycosylation sites in its extracellular domain (Fukuda 1992).

Surprisingly, H. pylori growth was suppressed in a dose-dependent manner in the

presence of αGlcNAc (+) (Fig. 7.2b). In addition, we observed significantly reduced
motility and abnormal morphology, such as elongation and bending in H. pylori
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Fig. 7.2 Antimicrobial activity of αGlcNAc against H. pylori infection. (a) Histopathology of

chronic active gastritis of human gastric mucosa caused by H. pylori infection. The microbe is

rarely found in gland mucin expressing αGlcNAc (*). Hematoxylin and eosin (HE) staining (left),
immunohistochemistry using anti-H. pylori antibody (middle), and HIK1083 antibody for

αGlcNAc (right). Bar indicates 100 μm. (b) Growth curves of H. pylori cultured in the presence

of sCD43 carrying αGlcNAc (αGlcNAc (+)) or sCD43 lacking αGlcNAc (αGlcNAc (�)). One

milliunit of αGlcNAc (+) corresponds to 1 μg GlcNAcα–pNP. A600: absorbance at 600 nm. (c)

Scanning electron micrographs showing H. pylori incubated with 31.2 mU/ml αGlcNAc (+) or the
same concentration of αGlcNAc (�) protein for 3 days. Bar indicates 1 μm (Panels b and c are
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cultured with αGlcNAc (+). By contrast, when the microbe was incubated with

control sCD43 lacking αGlcNAc (hereafter termed αGlcNAc (�)) secreted from

cotransfected Lec2 cells with C2GnT and sCD43 expression vectors, we did not

observe these effects, indicating that αGlcNAc antagonizes H. pylori growth like a

natural antibiotic. Similar antibiotic effects were also obtained when H. pylori was
incubated with p-nitrophenyl-α-N-acetylglucosamine (GlcNAcα–pNP), recombi-

nant soluble CD34 carrying αGlcNAc, or αGlcNAc-containing gland mucin pre-

pared from human gastric mucosa (Kawakubo et al. 2004).

7.2.2 αGlcNAc Inhibits Cholesterol α-Glucosyltransferase
Activity

To define the molecular mechanism underlying αGlcNAc antimicrobial activity, we

focused in particular on morphological changes seen in H. pylori cultured in the

presence of αGlcNAc (Fig. 7.2c) (Kawakubo et al. 2004). We noted that those

changes were similar to those seen in H. pylori cultured in the presence of

β-lactamase inhibitors (Enroth et al. 1999). Thus, we speculated that treatment

with αGlcNAc had an effect on theH. pylori cell wall. Hirai et al. (1995) previously
demonstrated that the H. pylori cell wall contains a unique glycolipid,

cholesteryl-α-D-glucopyranoside (CGL), as well as its derivatives. CGL biosyn-

thesis is catalyzed by cholesterol α-glucosyltransferase (αCgT), which transfers

glucose (Glc) from UDP-Glc to cholesterol with an α1,3-linkage. Molecular mim-

icking between α1,4-linked GlcNAc in gland mucin and α1,3-linked Glc in CGL

suggested that αGlcNAc suppressed αCgT enzymatic activity by an end-product

inhibitory mechanism. Thus, we analyzed glycolipid fractions isolated from

H. pylori cultured in the presence of αGlcNAc (+) or αGlcNAc (�) using mass

spectrometry (Kawakubo et al. 2004). We found that CGL levels in H. pylori
cultured with αGlcNAc (+) were significantly lower than those seen in H. pylori
cultured with αGlcNAc (�), suggesting that αGlcNAc directly inhibits CGL bio-

synthesis by H. pylori in vivo. Subsequently, we used expression cloning to isolate

αCgT gene from H. pylori (Lee et al. 2006) and proved that αCgT enzymatic

activity is inhibited by core2-branched O-glycans displaying αGlcNAc in vitro

(Lee et al. 2008). We also showed that an active form of αCgT is present in the

H. pylori membrane fraction, suggesting that bacterial αCgT is likely accessible to

αGlcNAc in gland mucin (Hoshino et al. 2011).

⁄�

Fig. 7.2 (continued) from Kawakubo et al. 2004; Copyright 2004 American Association for the

Advancement of Science)
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7.2.3 CGL Is Indispensible for H. pylori Survival

H. pylori requires exogenous cholesterol for CGL biosynthesis. Thus to further

define CGL function in H. pylori, we created H. pylori lacking CGL by culturing

the microbe in the absence of cholesterol (Kawakubo et al. 2004). Resultant

H. pylori exhibited reduced growth and motility, and all microbes died following

prolonged (21-day) incubation in cholesterol-free media, indicating that CGL is

indispensable for H. pylori survival. Overall, these results show that αGlcNAc
inhibits CGL biosynthesis by H. pylori by suppressing αCgT, thus protecting the

gastric mucosa from infection. In fact, αGlcNAc does not exhibit antimicrobial

activity against bacteria lacking CGL such as E. coli and S. aureus (Kawakubo

et al. 2004). Most recently, we reported that αCgT enzymatic activity in H. pylori
was highly correlated with the degree of glandular atrophy in gastric mucosa

infected by the bacteria and that the monoacyled form of cholesteryl-6-O-
phosphatidyl-α-D-glucopyranoside (CPG), a minor constituent of CGL derivatives

in the H. pylori cell wall, is the most potent antigen for invariant natural killer T

cells, thus eliciting an immune response in gastric mucosa (Ito et al. 2013).

7.3 αGlcNAc Serves as a Tumor Suppressor for Gastric

Cancer

7.3.1 αGlcNAc Suppresses Tumorigenesis of Gastric
Differentiated-Type Adenocarcinoma

We then asked whether αGlcNAc had a more general or broader protective function

in the gastric mucosa. To address to this question, we generated mice deficient in

α4GnT by disrupting the A4gnt gene and analyzed αGlcNAc function in vivo

(Karasawa et al. 2012). Immunohistochemistry using the αGlcNAc-specific anti-

body HIK1083 and MALDI-TOF-MS analyses revealed that A4gnt-deficient mice

showed a complete lack of αGlcNAc expression in gastric gland mucin and

duodenal Brunner’s gland, formally establishing that α4GnT is the sole enzyme

catalyzing addition of αGlcNAc to O-glycans in vivo (Fig. 7.3). Surprisingly,
A4gnt-deficient mice, even in the absence of H. pylori infection, spontaneously
developed tumor in the antrum as early as 5 weeks of age, and tumor size gradually

increased as mice aged (Fig. 7.4a). Histopathology of tumors revealed that the

mutant mice exhibited hyperplasia by 5 weeks of age, low-grade dysplasia by

10 weeks, and high-grade dysplasia by 20 weeks in the glandular stomach

(Fig. 7.4b). In 30-week-old mice, gastric adenocarcinoma developed in 2 of

6 A4gnt-deficient mice, and adenocarcinoma incidence increased by 50 weeks of

age. Furthermore, all 50- and 60-week-old mice exhibited gastric adenocarcinoma.

These pathologies were consistently seen in the antrum of the glandular stomach,

and cancer cells were mostly restricted to the mucosa. No sign of distant metastasis
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was noted up to 60 weeks of age. Gastric adenocarcinoma is largely classified into

differentiated (or intestinal) or undifferentiated (or diffuse) types, based on tumor

cell morphology and histogenesis background (Lauren 1965; Nakamura

et al. 1968). Interestingly, the gastric adenocarcinoma seen in A4gnt-deficient
mice was only of the differentiated type, while undifferentiated-type adenocarci-

noma, such as signet ring cell carcinoma, never arose. This indicates that mutant

mice develop gastric differentiated-type adenocarcinoma through a hyperplasia-

dysplasia-carcinoma sequence in the absence of H. pylori infection. Intestinal

metaplasia was rarely detected in gastric mucosa of either A4gnt-deficient or

wild-type mice during the 60-week observation period, indicating that metaplasia

is not associated with gastric tumorigenesis in this model. These results establish

that αGlcNAc serves as a tumor suppressor for gastric differentiated-type

adenocarcinoma.

Fig. 7.3 αGlcNAc loss in A4gnt-deficient mice. αGlcNAc is expressed in mucous neck cells of

the gastric corpus, pyloric gland cells of the gastric antrum, and Brunner’s glands of the duodenum
of wild-type mouse (+/+), while it is completely absent in these mucous cells of A4gnt-deficient
mouse (�/�). Shown is immunohistochemistry of gastroduodenal mucosa from 1-week-old mice

with αGlcNAc-specific HIK1083 antibody. Bar indicates 100 μm
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Fig. 7.4 Gastric pathology of A4gnt-deficient mice. (a) Macroscopic appearance of the stomach

removed from wild-type mice (+/+) and A4gnt-deficient mice (�/�). Bar indicates 5 mm. (b)

Representative histopathology showing hyperplasia at 5 weeks, low-grade dysplasia at 10 weeks,

high-grade dysplasia at 20 weeks, and differentiated-type adenocarcinoma at 40 and 50 weeks in

the antral mucosa of A4gnt-deficient mice. For comparison, pyloric mucosa from a 5-week-old

wild-type mouse is shown (upper left). Bar indicates 100 μm (Panel a is from Karasawa et al. 2012;

Copyright 2012 The American Society for Clinical Investigation)
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7.3.2 αGlcNAc Suppresses Tumor-Promoting Inflammation
in A4gnt-Deficient Mice

It remained unclear why A4gnt-deficient mice develop only differentiated-type

adenocarcinoma in the gastric mucosa. To clarify molecular mechanisms underly-

ing such a specific tumor suppression function by αGlcNAc, we carried out

microarray analysis followed by quantitative RT-PCR using mRNA derived from

gastric mucosa of A4gnt–deficient and wild-type mice at 5, 10, and 50 weeks of age

(Karasawa et al. 2012). Our analysis identified eight genes upregulated in A4gnt-
deficient mice compared with wild-type mice (Fig. 7.5). Among these genes

significantly upregulated in the gastric mucosa of mutant mice older than

10 weeks were those encoding inflammatory chemokine ligands such as Ccl2,

Cxcl1, and Cxcl5; proinflammatory cytokines such as Il-11 and Il-1β; and growth

factors such as Hgf and Fgf7. In addition, Hgf was upregulated even in 5-week-old

mutant mice, indicating that altered gene expression patterns are apparent even at

low-grade dysplasia stages, prior to gastric cancer development. Of the altered

factors, Ccl2 is of particular interest as it attracts tumor-associated macrophages,

which exert pro-tumorigenic immune responses and promote tumor angiogenesis

(Grivennikov et al. 2010; Mantovani et al. 2010). In fact, both infiltration of

inflammatory cells such as mononuclear cells and neutrophils and angiogenesis

increased progressively in the gastric mucosa as A4gnt-deficient mice aged. IL-11 is

also noteworthy because it functions in progression of inflammation to gastric

tumorigenesis via gp130 signaling, followed by STAT3 phosphorylation (Ernst

et al. 2008; Howlett et al. 2009). Taken together, our results indicate that αGlcNAc
loss triggers gastric carcinogenesis through inflammation-associated pathways

in vivo.

Fig. 7.5 Genes upregulated in the gastric mucosa of A4gnt-deficient mice compared with those in

age-matched wild-type mice, as determined by quantitative RT-PCR analysis. Grem1, Gremlin 1;

Cxcl1, Chemokine (C-X-C motif) ligand 1; Ccl2, Chemokine (C-C motif) ligand 2; Cxcl5,
Chemokine (C-X-C motif) ligand 5; Il11, IL-11; Hgf, HGF; Il1b, IL-1β; Fgf7, FGF7. *P< 0.05;

**P< 0.01 (From Karasawa et al. 2012; Copyright 2012 American Society for Clinical

Investigation)
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7.3.3 αGlcNAc Loss in Gland Mucin Is Associated
with Progression of Human Gastric Differentiated-
Type Adenocarcinoma

Lastly, we asked whether αGlcNAc loss occurred in human gastric adenocarcinoma

and whether such loss was associated with tumor progression. To do so, we used

immunohistochemistry to assess expression of αGlcNAc and its scaffold MUC6 in

214 surgically resected gastric adenocarcinomas and then compared those expres-

sion patterns with clinicopathological parameters such as vessel invasion and stage

and cancer-specific survival (Shiratsu et al. 2014). MUC6 was detected in gastric

cancer cells in 102 (47.6 %) of 214 patients. In differentiated-type adenocarcinoma,

33 (58.9 %) of 54 MUC6-positive cancer lacked αGlcNAc expression, while in

undifferentiated-type adenocarcinoma, 22 (45.8 %) of 48 MUC6-positive cancer

lacked αGlcNAc expression, indicating that there was no significant difference

between absence of αGlcNAc expression in differentiated and undifferentiated

tumor types. However, when the comparison was made between a subtype of

undifferentiated-type adenocarcinoma, signet ring cell carcinoma, and

differentiated-type adenocarcinoma (Fig. 7.6a), only 6 (26.1 %) of 23 signet ring

cell carcinoma patients lacked αGlcNAc expression, significantly at lower fre-

quency compared with differentiated-type adenocarcinoma (P¼ 0.0049). Notably,

αGlcNAc loss was significantly correlated with depth of invasion, stage, venous

invasion, and more importantly, poorer patient prognosis in MUC6-positive differ-

entiated-type adenocarcinoma (Fig. 7.6b). On the other hand, no significant corre-

lation between αGlcNAc loss in tumor cells and any clinicopathological variable or

cancer-specific survival of patients with undifferentiated-type adenocarcinoma was

observed. Thus, αGlcNAc loss in MUC6-positive cancer cells is significantly

associated with progression and poor prognosis in differentiated-type but not

undifferentiated-type adenocarcinomas of the stomach, consistent with phenotypes

seen in A4gnt-deficient mice (Karasawa et al. 2012). As described in Sect. 7.3.2,

inflammatory chemokine ligands, proinflammatory cytokines, and growth factors

were upregulated in mutant mice, and these molecules are also thought to function

in human gastric cancer development. For example, Ohta et al. (2003) reported that

CCL2 expression by human gastric carcinoma cells increases with tumor cell

invasiveness, and its expression level is positively correlated with angiogenesis

and macrophage recruitment. Verbeke et al. (2012) demonstrated that CXC

chemokines, including CXCL1/CXCL5, facilitate progression of gastric cancer

tumors. Nakayama et al. (2007) observed that IL-11 expression is significantly

higher in differentiated compared to undifferentiated types of adenocarcinoma and

that IL-11 functions in gastric carcinoma progression. HGF and FGF7 play impor-

tant roles in gastric epithelial proliferation. Mohri et al. (2012) suggest that HGF

expression is an important prognostic factor in gastric cancer. FGF7 is upregulated
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Fig. 7.6 αGlcNAc expression in human gastric adenocarcinoma and correlation with cancer-

specific survival of gastric cancer patients. (a) Hematoxylin and eosin (HE) staining (left) and
αGlcNAc (middle) and MUC6 (left) expression in differentiated-type adenocarcinoma (upper
panels) and signet ring cell carcinoma (lower panels). Bar indicates 200 μm. (b) Cancer-specific

survival in patients with MUC6-positive gastric cancer. In differentiated-type adenocarcinoma,

patients with αGlcNAc-negative tumors had a significant poorer outcome than did patients with

αGlcNAc-positive tumors (P¼ 0.048). By contrast, in undifferentiated-type adenocarcinoma,

there was no significant difference in survival rate of patients harboring αGlcNAc-positive or

αGlcNAc-negative tumors (P¼ 0.549) (Modified from Shiratsu et al. 2014)
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by IL-1β (Palmieri et al. 2003). Kai et al. (2005) demonstrated that tumor IL-1β
expression levels are elevated more than 50-fold over those seen in normal gastric

mucosa and significantly higher in nonscirrhous compared with scirrhous carcino-

mas. Thus, all of these factors likely promote tumor-promoting inflammation.

Accordingly, our results suggest that αGlcNAc loss is correlated with gastric cancer
progression in inflammation-related pathways in humans. It remains to be deter-

mined how αGlcNAc loss in gastric cancer enhances tumor-promoting inflamma-

tion in the stomach. Recently, we demonstrated that reduced αGlcNAc in Barrett’s
esophagus could also predict its potential to develop into Barrett’s adenocarcinoma

(Iwaya et al. 2014).

7.4 Conclusion

We conclude that gastric gland mucin-specific αGlcNAc has a protective function
against gastric cancer development in two ways: first, as a natural antibiotic against

H. pylori and second, as a tumor suppressor for gastric differentiated-type adeno-

carcinoma. Based on these findings, we anticipate future development of new

strategies to detect, diagnose, treat, and prevent gastric cancer.
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