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Roles of Fucosyltransferases in Cancer

Phenotypes

Eiji Miyoshi, Naofumi Uozumi, Tomoaki Sobajima, Shinji Takamatsu,

and Yoshihiro Kamada

Abstract Fucosylation is one of the most important types of glycosylation in

carcinogenesis. Fucosylation is linked to certain processes in cell-cell interaction

and dynamic regulation of growth factor receptor signaling on cell surface, and

changes in fucosylation result in differences of biological phenotype in cancer cells.

Eleven fucosyltransferases are involved in the synthesis of fucosylated glycans and

belong to some family of fucosyltransferases. To regulate cellular fucosylation,

GDP-fucose, a donor substrate of fucosyltransferases, and GDP-fucose transporter

are also important. Terminal fucosylation (Lewis-type fucosylation) is associated

with the synthesis of sialyl Lewis antigens, leading to cancer metastasis. In contrast,

core fucosylation is linked to the regulation of membrane-anchored glycoproteins,

such as growth factor receptors and adhesion molecules. Target glycoproteins for

each fucosyltransferase might be different in various kinds of cancer. In this

chapter, we describe the roles of fucosyltransferase in several kinds of cancer,

particularly gastroenterological cancers.

Keywords Fucosylation • Fucosyltransferases • Pancreatic cancer • Colon cancer •

HCC • Lewis antigen • Cancer biomarker • CA19-9

1.1 Introduction

Fucosylation is one of the most important types of glycosylation involved in cancer

and inflammation (Miyoshi et al. 2008). Cancer fucosylation is mainly divided into

three types: α1-2 fucosylation, α1-3/1-4 fucosylation, and α1-6 fucosylation, as

shown in Fig. 1.1. All fucosylations are regulated by orchestration of many

fucosyltransferases (FUTs), guanosine 50-diphosphate (GDP)-fucose synthetic

enzymes, and GDP-fucose transporter(s). FUT1 and FUT2 have been shown to be

responsible for α1-2 fucosylation (Larsen et al. 1990; Kelly et al. 1995). A family of
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α1-3 fucosyltransferases, including FUT3 (Kukowska-Latallo et al. 1990), FUT4

(Goelz et al. 1990), FUT5 (Weston et al. 1992), FUT6 (Koszdin and Bowen 1992),

FUT7 (Natsuka et al. 1994), and FUT9 (Kudo et al. 1998), is involved in the

synthesis of Lewis blood group antigens. FUTs 3–7 can synthesize the sialyl

Lewis X (sLex) structure, NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAcβ-R, and FUTs

3–6 and FUT9 can synthesize the Lex structure, Galβ1-4(Fucα1-3)GlcNAc-
β-R. Only FUT3 exhibits α1-4 fucosyltransferase activity, resulting in the synthesis
of type 1 Lewis antigens such as Lea, Leb, and sialyl Lea (sLea) (Galβ1-3(Fucα1-4)
GlcNAcβ-R, (Fucα1-2)Galβ1-3(Fucα1-4)GlcNAcβ-R, and NeuAcα2-3Galβ1-3
(Fucα1-4)GlcNAcβ-R, respectively). Therefore, individuals with FUT3 mutations,

comprising approximately 10 % of the Japanese population, have a problem

regarding diagnosis of pancreatic cancer using the CA19-9 antigen, sLea

(Narimatsu et al. 1998). In contrast, FUT8 is the only α1-6 fucosyltransferase

involved in core fucosylation at the innermost N-acetylglucosamine on N-glycans
(Uozumi et al. 1996). Among the many fucosyltransferases, Fut8-deficient mice

show severe phenotypes, including mortality rates of 70–80 % after birth, and the

Asn

Fucose

N-Acetyl-
glucosamine

Mannose

Galactose

α1-3FucT

α1-2FucT

α3

α4

α2

α2

H type1

Lewis X

Asn

Asn

α1-6FucT (Fut8)

α6

Core fucose

β4
β3

β4

β3

β3
β4

Type2 structure

H type2

Type1 structure

α1-4FucT

β1-4GalT
β1-3GalT

Lewis a

Asn

β3
β3

β3

β3

Asnβ3
β3

β1-3GlcNAcT

Fig. 1.1 Cancer fucosylation is mainly divided into 3 groups: α1-2 fucosylation, α1-3/1-4
fucosylation, and α1-6 fucosylation. Representative biosynthetic pathways and structures of

the H, Lewis A, and Lewis X antigens. Type 1 and type 2 structures differ in the linkage of the

outermost galactose (β1-3 and β1-4, respectively) and in the linkage of the fucose moiety to the

internal GlcNAc (α1-4 and α1-3, respectively). The core fucose structure is synthesized by the

glycosyltransferase FUT8, which catalyzes the transfer of a fucose residue from the donor

substrate, guanosine 50-diphosphate (GDP)-β-L-fucose, to the reducing terminal GlcNAc of the

core structure of asparagine-linked oligosaccharide via an α1-6 linkage
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survivors show severe growth disturbances and lung emphysema (Wang

et al. 2005). The phenotype of Fut8 knockout mice is due to insufficient signaling

via membrane-anchored receptors. Mice with a deficiency of FX (GDP-4-keto-6-

deoxy-mannose-3, 5-epimerase-4-reductase), a rate-limiting enzyme for

GDP-fucose synthesis, show severe phenotypes, which are mostly caused by the

loss of Lewis-type fucosylation (Smith et al. 2002). There are two pathways of

GDP-fucose synthesis: de novo and alternative (Miyoshi et al. 2008). Because FX is

involved in the de novo pathway, the salvage pathway compensates the synthesis of

GDP-fucose in FX knockout mice (Smith et al. 2002). These reports suggest that

core fucosylation is associated with growth factor receptor-mediated cell signaling

and Lewis-type fucosylation is linked to lymphocyte/white blood cell adhesion

through selectin and sLex/a interaction. In cases of many cancers, fucosylation

levels are increased. The biological significance of increased fucosylation in each

cancer has some common and some different aspects. In this review article, we

discuss the roles of fucosyltransferase in several kinds of cancer, with a particular

focus on gastroenterological cancers.

1.2 Fucosylation in Colorectal Cancer

α1-2 Fucosylation, as seen in H, Lewis B, and Lewis Y antigens, is regulated by

FUT1 and FUT2 and plays pivotal roles in colorectal cancer. Increased α1-2
fucosylation is observed in the progression of colorectal cancer (Misonou

et al. 2009). Based on mass spectrometry analysis of neutral and acidic glycosphin-

golipids, structures of normal colorectal epithelial cells are characterized by the

dominant expression of neutral type-1 chain oligosaccharides. Three specific alter-

ations were observed in malignant transformation: increased ratios of type-2 oli-

gosaccharides, increased α2-3 and/or α2-6 sialylation, and increased α1-2
fucosylation. Pendu et al. have published several papers regarding the biological

function of α1-2 fucosylation in colorectal cancer cells (Goupille et al. 2000; Cordel
et al. 2000). They used gene manipulation techniques, but did not identify target

glycoproteins/glycolipids for α1-2 fucosylation, which regulates biological func-

tions. When the FUT1 expression vector was transfected into colorectal cancer cell

lines, the cells showed resistance to serum-starved apoptosis and anticancer drug

treatment. In contrast, transfection with antisense cDNA against FUT1 induces

apoptosis under these conditions. An increase in tumorigenicity was observed in rat

colon carcinoma cells after transfection with rat α1, 2-fucosyltransferase FTA

(human FUT1) antisense cDNA (Hallouin et al. 1999). Antisense transfection of

a cDNA fragment of the FTB enzyme (human FUT2) decreased the cell-surface

levels of H-antigen and concomitantly decreased tumorigenicity. Interestingly,

these phenomena were observed only in synergic animals but not in immunodefi-

cient mice. These results suggest that FTA and FTB fucosylate distinct glycan

chains in the same cell, leading to opposite effects, under the control of the immune

system. The immune system regulated by α1-2 fucosylation is not mediated by NK
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cell cytotoxicity, but lymphokine-activated killer cytotoxicity (Marionneau

et al. 2000). In the case of α1-3 fucosylation, increased expression of sLex in

colorectal cancer is associated with liver metastasis (Nakamori et al. 1993). This

is due to enhanced selectin-mediated cell adhesion. Selectins are intrinsic ligands

for sLex, and the interaction between selectin and oligosaccharides plays a pivotal

role in the rolling of white blood cells and the initial adhesion of cancer cells to

metastatic organs. Overexpression of FUT7 induces the expression of sLex antigen,

resulting in the promotion of cell migration and invasion in a colon cancer cell line,

LoVo (Li et al. 2010). The authors identified CD24 as a carrier molecule for the

sLex antigen, which is a well-known cell-surface marker for cancer stem cells.

Administration of disaccharides blocked colorectal cancer cells from forming

selectin ligands and inhibited adhesion to immobilized selectins, suggesting that

glycosides might prove useful for interfering with tumor cell adhesion and metas-

tasis (Brown et al. 2003). This approach opens up the possibility of clinical

glycotherapy with no gene manipulations. Apart from fucosyltransferases, the

sialidase NEU4 inhibits the synthesis of Lex antigens on O-glycans (Shiozaki

et al. 2011). Cell adhesion to and motility and growth on E-selectin are significantly

reduced by NEU4. Under hypoxia conditions, whereby sLex antigens are increased

concomitantly with several sialyl- and fucosyltransferases, NEU4 expression is

markedly decreased. These results suggest that NEU4 plays an important role in

the control of sLex expression and its impairment is involved in colon cancer

progression. The epithelial-mesenchymal transition (EMT) is involved in cancer

metastasis, and fibroblast growth factor (FGF)/basic FGF (bFGF)-mediated EMT

induced increases cancer invasion and metastasis. During the EMT, transcript

levels of the glycosyltransferase genes ST3GAL1/3/4 and FUT3 were significantly

elevated, and that of FUT2 was markedly suppressed (Sakuma et al. 2012).

GDP-mannose-4,6-dehydratase (GMDS) is a rate-limiting enzyme in GDP-fucose

synthesis, in addition to FX (Miyoshi et al. 2008). Mutation of the GMDS gene was

found in the colon cancer cell line HCT116 (Moriwaki et al. 2009). HCT116 cells

showed complete loss of all types of fucosylation, and the fucosylation level was

recovered upon transfection of a wild-type GMDS expression vector. Unexpectedly,

HCT116 cells showed higher metastatic potential through escape from NK cell-

mediated immune surveillance. The molecular mechanisms underlying the inhibition

of cell death by NK cell killing are suppressed during death signaling through the Fas

or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. Inter-

estingly DR5, a TRAIL receptor, has neither N-glycans nor O-glycans, although
DR5-mediated cell death is inhibited in HCT116 cells, but not in fucosylation-rescued

HCT116 cells (Moriwaki et al. 2011). There is an unknown pathway in fucosylation

and receptor-mediated cell signaling. Mutation of the GMDS gene was found in

approximately 10 % of original colorectal cancer tissues and 15 % of metastatic

colorectal cancer tissues, but not in the normal colon (Nakayama et al. 2013). This

report suggests a novel type of metastatic pathway due to the loss of fucosylation in

colon carcinogenesis.
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1.3 Fucosylation in Pancreatic Cancer

Pancreatic cancer is one of the worst diseases in terms of prognosis. The reason for the

poor prognosis of pancreatic cancer is the difficulty in early diagnosis and high

metastatic potential. Sialyl Lewis A, referred to as CA19-9, is a representative cancer

biomarker for pancreatic cancer and is a fucosylated glycan (Kannagi et al. 2004).

Measurement of serum CA19-9 levels in patients with pancreatic cancer is dependent

on the levels of several kinds of mucins that carry many sialyl Lewis A molecules.

Recently, we identified another type of CA19-9 carrier molecule, microlipid mem-

branes, in both bile and sera of patients with pancreatic cancer (Uozumi et al. 2010).

Details of the synthetic pathway of CA19-9, as well as its carrier molecules, remain

unknown, but this appears to be one of the most interesting topics in glycobiology

research. Fucosylated haptoglobin has been found in the sera of patients with pancre-

atic cancer (Okuyama et al. 2006), and we have developed a lectin ELISA system for

measuring fucosylated haptoglobin (Kamada et al. 2013b). Various screening ana-

lyses using this ELISA assay have revealed that fucosylated haptoglobin is increased

in several cancers and liver diseases (Kamada et al. 2013a; Takeda et al. 2012).

Fucosylated haptoglobin is probably produced in the liver upon metastasis of colon/

pancreatic cancers, and this is the reason why the positive rate of fucosylated hapto-

globin is much higher in pancreatic cancer, which easily metastasizes at the early

clinical stages (Okuyama et al. 2006). Detailed oligosaccharide analysis of

fucosylated haptoglobin showed that most of the fucosylation is the Lewis type, and

there are small amounts of core fucosylation. Interestingly, site 3 of the N-glycan on

haptoglobin has a unique oligosaccharide structure with unique fucosylation, com-

pared to the other 3 sites (Nakano et al. 2008). High expression of sLex antigen is

involved in the metastasis of pancreatic cancer as well as colorectal cancer (Mas

et al. 1998). The restoration of α1-2 fucosyltransferase (FUT1) activity decreases the
adhesive and metastatic properties of human pancreatic cancer cells, although the

molecular mechanisms are not clarified (Aubert et al. 2000; Mathieu et al. 2004).

1.4 Fucosylation in Hepatocellular Carcinoma

Fucosylation in the liver is different from that in other organs because the expression

of α1-6 fucosyltransferase (FUT8) is quite low in normal hepatocytes (Noda

et al. 1998a). Inflammation induces the expression of fucosylation regulatory genes,

resulting in increases in Lewis-type fucosylation on hepatic glycoproteins. FUT6 is

important in the synthesis of Lewis-type fucosylation in the liver but is a pseudogene

in the mouse. Therefore, FUT8 is the main fucosyltransferase involved in cellular

fucosylation in the mouse liver. FUT8-deficient mice show dramatic inhibition of

hepatic glycoproteins in bile (Nakagawa et al. 2006), suggesting that fucosylation

might be a sorting signal for the secretion of liver glycoproteins into bile. This

hypothesis could explain the molecular mechanisms underlying the production of
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fucosylated cancer biomarkers in hepatocellular carcinoma (HCC). α-Fetoprotein
(AFP) is clinically used as cancer biomarker but has the drawback that serum AFP

levels are increased in certain cases of chronic liver disease such as chronic hepatitis

and liver cirrhosis (Taketa 1990). In contrast, fucosylatedAFP, referred to as AFP-L3,

is specifically increased in the sera of patients with HCC. AFP-L3-positive HCC

showed worse prognosis than did AFP-L3-negative HCC (Yamashita et al. 1996).

Although it has been reported that AFP-L3 could be a cancer biomarker for earlyHCC

(Sato et al. 1993), many clinicians think that AFP-L3 is a marker for HCC with poor

prognosis and that AFP-L3-positive HCC should be treatedwith hepatic resection, but

not percutaneous radiofrequency ablation. However, a highly sensitive AFP-L3 assay

might provide another possibility as a biomarker for the early diagnosis of HCC

(Kumada et al. 2013). While FUT8 is involved in the synthesis of AFP-L3, the

expression of FUT8 is increased in chronic liver disease (Noda et al. 1998b). In

contrast, the level of GDP-fucose, a donor substrate of FUT8, is higher in HCC tissue

than in the surrounding tissue (Noda et al. 2003). Increased levels of GDP-fucose are

caused by high FX expression in HCC tissue. However, the most important factor

involved in the production of AFP-L3 seems to be an abnormal sorting system for

fucosylated proteins in HCC (Nakagawa et al. 2012). Fucosylated proteins produced

by normal hepatocytes are secreted into bile, but this system is disrupted in HCC. This

disruption might be due to the loss of the intrahepatic bile duct or the loss of cargo

receptors for core fucose in HCC. In the case of hepatitis B virus-related HCC, it is

reported that FUT8 is directly involved in the progression of HCC (Ji et al. 2013). In

this report, downregulation of FUT8 in cancer cells was found to cause a decrease in

cell growth inHCC cell lines as in other cancer cell lines. Although liver diseases have

different etiologies and each disease has a characteristic biomarker, common changes

in protein glycosylation in liver diseases are hyperfucosylation and an increase in the

branching structure ofN-glycans (Blomme et al. 2009).Moreover, mass spectrometry

analysis of N-glycans on hepatic glycoproteins in HCC tissue revealed that the

characteristic changes in glycan structure involve increases in tetra-antennary N-
linked glycan but not in core fucosylation (Mehta et al. 2012). These papers further

support the presence of an abnormal sorting system of fucosylated proteins in liver

diseases. A previous report suggests that fucosyltransferase activity in serum, plasma,

and tissue is different in patientswith liver cirrhosis andHCC (Hutchinson et al. 1991),

although its biological significance remains unknown.

1.5 Fucosylation in Other Cancers

Gastric cancer is the most popular carcinoma and the second cause of cancer-related

death in Japan. In addition to hepatocarcinogenesis, inflammation induced by

Helicobacter pylori infection plays a key role in the carcinogenesis of gastric cancer

(Wang et al. 2013). Interestingly, polymorphisms of fucosyltransferases are involved

in infection byHelicobacter pylori (Ikehara et al. 2001). Both IL-1 and IL-6, which are
associated with inflammation-related cytokines, regulate the expression of
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fucosyltransferases in gastric cancer cell lines (Padro et al. 2011). This finding is

similar to the observed induction of fucosylation regulatory genes in HCC cell lines

with IL-6 treatment (Narisada et al. 2008). Interestingly, FUT3 gene expression,

involved in the synthesis of the sialyl Lewis A antigen, CA19-9, is regulated by

DNA methylation (Serpa et al. 2006). Hypo-methylation of the FUT3 gene promoter

in gastric cancer leads to the production of CA19-9. The expression pattern of

fucosyltransferases alters oligosaccharides of mucins produced in normal and cancer

tissue (Lopez-Ferrer et al. 2000). In the case of prostate cancer, α1-3
fucosyltransferases are very important in the regulation of cell behaviors such as

adhesion, trafficking, and cell growth (Barthel et al. 2009; Inaba et al. 2003). Further-

more, FUT6 is involved in the bonemetastasis of prostate cancer (Li et al. 2013). It has

recently been reported that the high expression of GnT-IX and FUT8 is associated

with the malignant phenotype of prostate cancer (Lange et al. 2012). Serum levels of

fucosylated haptoglobin are also increased in patients with prostate cancer (Fujimura

et al. 2008). Several papers on mammary cancer and fucosylation have been

published, and their contents are similar to observations in other cancers (Yang

et al. 2013, 2014; Julien et al. 2011). A very old article reported in Science indicates
that a decrease in human serum fucosyltransferase is an indicator of successful tumor

therapy in breast cancer (Bauer et al. 1978). A recent interesting paper on cholangio-

carcinoma suggests that FUT2 and FUT3 genotypes determine the cutoff value for

CA19-9 in differential diagnosis of cancer in patients with sclerosing cholangitis

(Wannhoff et al. 2013). The involvement of FUT8 in EMT and EGF signaling has

been reported in lung cancer (Liu et al. 2011; Chen et al. 2013).

1.6 Closing

Both FUT10 and FUT11 are novel types of α1-3 fucosyltransferases (Mollicone

et al. 2009; Kumar et al. 2013; Both et al. 2011). These FUTs might play specific

roles in carcinogenesis or may have other pathological functions that have not been

mentioned in this review. A summary of FUT genes, including their chromosomal

localization, is provided in Table 1.1. Interestingly, many fucosyltransferase genes are

localized on chromosome 19. The amino acid homology of α1-3/1-4
fucosyltransferases is shown in Fig. 1.2. Here, we should note the structural charac-

teristics of α1-3 fucosyltransferases. FUT3 is a unique glycosyltransferase that has the
enzymatic activities of both α1-3 and 1-4 fucosyltransferase. FUT3 plays an important

role in the synthesis of Lewis antigen in blood type, and loss of Fut3 activity leads to

deficiency of the Lewis antigen in blood type, as well as of the Lewis A antigen

(CA19-9). However, the amino acid sequence of FUT3 is very similar to those of other

α1-3 fucosyltransferases. PCR primers for each fucosyltransferase should be designed

carefully, due to their high gene/amino acid homologies. While this number is not so

much, compared to other research fields, the number is relatively high in glycobiology

research. Recently, O-fucosylation and notch signaling are two of the most important

issues in glycobiology (Stanley 2007). Since notch signaling is involved in EGF
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receptor-mediated cell signaling, O-fucosylation might be important in cancer biol-

ogy.Globally, if we search for all fucosyltransferases and cancer, the number is 588. If

we search for all sialyltransferases and cancer, the number is 780. We believe that

fucosylation, sialylation, and branching are three major glycosylations involved in

cancer. Taken together, each fucosylation shows commonalities in each gastroenter-

ological cancer and also shows differences in different cancers, suggesting that the

target glycoproteins for fucosylation might be different in each cancer phenotype.

Table 1.1 Papers on the chromosomal localization and cloning of fucosyltransferases (FUTs)

FUTs Official full name

Location

(Human)

Gene ID

(Human)

References (cDNA

cloning)

FUT1 Fucosyltransferase 1 (galacto-

side 2-alpha-L-

fucosyltransferase, H blood

group)

19q13.3 2523 Larsen RD, et al. Proc Natl
Acad Sci U S A
87, 6674–6678 (1990)

FUT2 Fucosyltransferase 2 (secretor

status included)

19q13.3 2524 Kelly RJ, et al. J Biol Chem
270, 4640–4649 (1995)

FUT3 Fucosyltransferase 3 (galacto-

side 3(4)-L-fucosyltransferase,

Lewis blood group)

19p13.3 2525 Kukowska-Latallo JF,

et al. Genes Dev
4, 1288–1303 (1990)

FUT4 Fucosyltransferase 4 (alpha

(1,3) fucosyltransferase, mye-

loid specific)

11q21 2526 Goelz SE, et al. Cell
63, 1349–1356 (1990)

FUT5 Fucosyltransferase 5 (alpha

(1,3) fucosyltransferase)

19p13.3 2527 Weston BW, et al. J Biol
Chem 267, 4152–4160

(1992)

FUT6 Fucosyltransferase 6 (alpha

(1,3) fucosyltransferase)

19p13.3 2528 Koszdin KL, et al. Biochem
Biophys Res Commun
187, 152–157 (1992)

FUT7 Fucosyltransferase 7 (alpha

(1,3) fucosyltransferase)

9q34.3 2529 Natsuka S, et al. J Biol
Chem 269, 16789–16794

(1994),

FUT8 Fucosyltransferase 8 (alpha

(1,6) fucosyltransferase)

14q24.3 2530 Uozumi N, et al. J Biol
Chem 271, 27810–27817

(1996)

FUT9 Fucosyltransferase 9 (alpha

(1,3) fucosyltransferase)

6q16 10690 Kudo T, et al. J Biol Chem
273, 26729–26738 (1998)

FUT10 Fucosyltransferase 10 (alpha

(1,3) fucosyltransferase)

8p12 84750 Mollicone R, et al. J Biol
Chem 284, 4723–4738

(2009)

FUT11 Fucosyltransferase 11 (alpha

(1,3) fucosyltransferase)

10q22.2 170384 Mollicone R, et al. J Biol
Chem 284, 4723–4738

(2009)
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