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Preface

Along with recent progress in genomics and proteomics, new findings in the

significance of complex carbohydrates in the regulation of cell signals have been

elucidated in a wide variety of biological events. We may call it the real glycomics.

This volume provides a comprehensive summary of glycosignals and their involve-

ment in cancer, covering numerous topics such as glycosylation machineries,

regulation of phenotypes, cell signaling, immune regulation, complex carbohydrate

organization, and clinical applications. The contents have been organized to pro-

mote ready understanding, covering basic to clinical research and studies on

micromolecules, to animal/human cells and tissues. This book is an essential read

for students and young researchers interested in cancers and carbohydrates. Spe-

cialists in glycobiology will also benefit from the new results and approaches

detailed here, which provide insights into future directions of functional studies

of sugar chains in both basic and applied research.

The incidence of cancers has been increasing and will keep doing so in the

future. The most serious issue in our life and health, i.e., cancer, is and will be the

most important theme in biomedical research, and the roles of carbohydrates in the

altered phenotypes of malignant cells will attract interest as key mechanisms and

key molecules in the construction of therapeutic strategies of cancers. I believe that

the contents of this volume should encourage young researchers to step into the

world of glycobiology and to promote integrative and novel studies fusing

glycobiology and their own specialized fields.

I deeply thank Ms. Yoshiko Shikano of Springer for her great assistance.

Nagoya, Japan Koichi Furukawa

October, 2015 Nagoya University
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Part I

Changes of Glycosylation Machineries in
Cancer Cells



Chapter 1

Roles of Fucosyltransferases in Cancer

Phenotypes

Eiji Miyoshi, Naofumi Uozumi, Tomoaki Sobajima, Shinji Takamatsu,

and Yoshihiro Kamada

Abstract Fucosylation is one of the most important types of glycosylation in

carcinogenesis. Fucosylation is linked to certain processes in cell-cell interaction

and dynamic regulation of growth factor receptor signaling on cell surface, and

changes in fucosylation result in differences of biological phenotype in cancer cells.

Eleven fucosyltransferases are involved in the synthesis of fucosylated glycans and

belong to some family of fucosyltransferases. To regulate cellular fucosylation,

GDP-fucose, a donor substrate of fucosyltransferases, and GDP-fucose transporter

are also important. Terminal fucosylation (Lewis-type fucosylation) is associated

with the synthesis of sialyl Lewis antigens, leading to cancer metastasis. In contrast,

core fucosylation is linked to the regulation of membrane-anchored glycoproteins,

such as growth factor receptors and adhesion molecules. Target glycoproteins for

each fucosyltransferase might be different in various kinds of cancer. In this

chapter, we describe the roles of fucosyltransferase in several kinds of cancer,

particularly gastroenterological cancers.

Keywords Fucosylation • Fucosyltransferases • Pancreatic cancer • Colon cancer •

HCC • Lewis antigen • Cancer biomarker • CA19-9

1.1 Introduction

Fucosylation is one of the most important types of glycosylation involved in cancer

and inflammation (Miyoshi et al. 2008). Cancer fucosylation is mainly divided into

three types: α1-2 fucosylation, α1-3/1-4 fucosylation, and α1-6 fucosylation, as

shown in Fig. 1.1. All fucosylations are regulated by orchestration of many

fucosyltransferases (FUTs), guanosine 50-diphosphate (GDP)-fucose synthetic

enzymes, and GDP-fucose transporter(s). FUT1 and FUT2 have been shown to be

responsible for α1-2 fucosylation (Larsen et al. 1990; Kelly et al. 1995). A family of
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α1-3 fucosyltransferases, including FUT3 (Kukowska-Latallo et al. 1990), FUT4

(Goelz et al. 1990), FUT5 (Weston et al. 1992), FUT6 (Koszdin and Bowen 1992),

FUT7 (Natsuka et al. 1994), and FUT9 (Kudo et al. 1998), is involved in the

synthesis of Lewis blood group antigens. FUTs 3–7 can synthesize the sialyl

Lewis X (sLex) structure, NeuAcα2-3Galβ1-4(Fucα1-3)GlcNAcβ-R, and FUTs

3–6 and FUT9 can synthesize the Lex structure, Galβ1-4(Fucα1-3)GlcNAc-
β-R. Only FUT3 exhibits α1-4 fucosyltransferase activity, resulting in the synthesis
of type 1 Lewis antigens such as Lea, Leb, and sialyl Lea (sLea) (Galβ1-3(Fucα1-4)
GlcNAcβ-R, (Fucα1-2)Galβ1-3(Fucα1-4)GlcNAcβ-R, and NeuAcα2-3Galβ1-3
(Fucα1-4)GlcNAcβ-R, respectively). Therefore, individuals with FUT3 mutations,

comprising approximately 10 % of the Japanese population, have a problem

regarding diagnosis of pancreatic cancer using the CA19-9 antigen, sLea

(Narimatsu et al. 1998). In contrast, FUT8 is the only α1-6 fucosyltransferase

involved in core fucosylation at the innermost N-acetylglucosamine on N-glycans
(Uozumi et al. 1996). Among the many fucosyltransferases, Fut8-deficient mice

show severe phenotypes, including mortality rates of 70–80 % after birth, and the

Asn

Fucose

N-Acetyl-
glucosamine

Mannose

Galactose

α1-3FucT

α1-2FucT

α3

α4

α2

α2

H type1

Lewis X

Asn

Asn

α1-6FucT (Fut8)

α6

Core fucose

β4
β3

β4

β3

β3
β4

Type2 structure

H type2

Type1 structure

α1-4FucT

β1-4GalT
β1-3GalT

Lewis a

Asn

β3
β3

β3

β3

Asnβ3
β3

β1-3GlcNAcT

Fig. 1.1 Cancer fucosylation is mainly divided into 3 groups: α1-2 fucosylation, α1-3/1-4
fucosylation, and α1-6 fucosylation. Representative biosynthetic pathways and structures of

the H, Lewis A, and Lewis X antigens. Type 1 and type 2 structures differ in the linkage of the

outermost galactose (β1-3 and β1-4, respectively) and in the linkage of the fucose moiety to the

internal GlcNAc (α1-4 and α1-3, respectively). The core fucose structure is synthesized by the

glycosyltransferase FUT8, which catalyzes the transfer of a fucose residue from the donor

substrate, guanosine 50-diphosphate (GDP)-β-L-fucose, to the reducing terminal GlcNAc of the

core structure of asparagine-linked oligosaccharide via an α1-6 linkage
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survivors show severe growth disturbances and lung emphysema (Wang

et al. 2005). The phenotype of Fut8 knockout mice is due to insufficient signaling

via membrane-anchored receptors. Mice with a deficiency of FX (GDP-4-keto-6-

deoxy-mannose-3, 5-epimerase-4-reductase), a rate-limiting enzyme for

GDP-fucose synthesis, show severe phenotypes, which are mostly caused by the

loss of Lewis-type fucosylation (Smith et al. 2002). There are two pathways of

GDP-fucose synthesis: de novo and alternative (Miyoshi et al. 2008). Because FX is

involved in the de novo pathway, the salvage pathway compensates the synthesis of

GDP-fucose in FX knockout mice (Smith et al. 2002). These reports suggest that

core fucosylation is associated with growth factor receptor-mediated cell signaling

and Lewis-type fucosylation is linked to lymphocyte/white blood cell adhesion

through selectin and sLex/a interaction. In cases of many cancers, fucosylation

levels are increased. The biological significance of increased fucosylation in each

cancer has some common and some different aspects. In this review article, we

discuss the roles of fucosyltransferase in several kinds of cancer, with a particular

focus on gastroenterological cancers.

1.2 Fucosylation in Colorectal Cancer

α1-2 Fucosylation, as seen in H, Lewis B, and Lewis Y antigens, is regulated by

FUT1 and FUT2 and plays pivotal roles in colorectal cancer. Increased α1-2
fucosylation is observed in the progression of colorectal cancer (Misonou

et al. 2009). Based on mass spectrometry analysis of neutral and acidic glycosphin-

golipids, structures of normal colorectal epithelial cells are characterized by the

dominant expression of neutral type-1 chain oligosaccharides. Three specific alter-

ations were observed in malignant transformation: increased ratios of type-2 oli-

gosaccharides, increased α2-3 and/or α2-6 sialylation, and increased α1-2
fucosylation. Pendu et al. have published several papers regarding the biological

function of α1-2 fucosylation in colorectal cancer cells (Goupille et al. 2000; Cordel
et al. 2000). They used gene manipulation techniques, but did not identify target

glycoproteins/glycolipids for α1-2 fucosylation, which regulates biological func-

tions. When the FUT1 expression vector was transfected into colorectal cancer cell

lines, the cells showed resistance to serum-starved apoptosis and anticancer drug

treatment. In contrast, transfection with antisense cDNA against FUT1 induces

apoptosis under these conditions. An increase in tumorigenicity was observed in rat

colon carcinoma cells after transfection with rat α1, 2-fucosyltransferase FTA

(human FUT1) antisense cDNA (Hallouin et al. 1999). Antisense transfection of

a cDNA fragment of the FTB enzyme (human FUT2) decreased the cell-surface

levels of H-antigen and concomitantly decreased tumorigenicity. Interestingly,

these phenomena were observed only in synergic animals but not in immunodefi-

cient mice. These results suggest that FTA and FTB fucosylate distinct glycan

chains in the same cell, leading to opposite effects, under the control of the immune

system. The immune system regulated by α1-2 fucosylation is not mediated by NK
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cell cytotoxicity, but lymphokine-activated killer cytotoxicity (Marionneau

et al. 2000). In the case of α1-3 fucosylation, increased expression of sLex in

colorectal cancer is associated with liver metastasis (Nakamori et al. 1993). This

is due to enhanced selectin-mediated cell adhesion. Selectins are intrinsic ligands

for sLex, and the interaction between selectin and oligosaccharides plays a pivotal

role in the rolling of white blood cells and the initial adhesion of cancer cells to

metastatic organs. Overexpression of FUT7 induces the expression of sLex antigen,

resulting in the promotion of cell migration and invasion in a colon cancer cell line,

LoVo (Li et al. 2010). The authors identified CD24 as a carrier molecule for the

sLex antigen, which is a well-known cell-surface marker for cancer stem cells.

Administration of disaccharides blocked colorectal cancer cells from forming

selectin ligands and inhibited adhesion to immobilized selectins, suggesting that

glycosides might prove useful for interfering with tumor cell adhesion and metas-

tasis (Brown et al. 2003). This approach opens up the possibility of clinical

glycotherapy with no gene manipulations. Apart from fucosyltransferases, the

sialidase NEU4 inhibits the synthesis of Lex antigens on O-glycans (Shiozaki

et al. 2011). Cell adhesion to and motility and growth on E-selectin are significantly

reduced by NEU4. Under hypoxia conditions, whereby sLex antigens are increased

concomitantly with several sialyl- and fucosyltransferases, NEU4 expression is

markedly decreased. These results suggest that NEU4 plays an important role in

the control of sLex expression and its impairment is involved in colon cancer

progression. The epithelial-mesenchymal transition (EMT) is involved in cancer

metastasis, and fibroblast growth factor (FGF)/basic FGF (bFGF)-mediated EMT

induced increases cancer invasion and metastasis. During the EMT, transcript

levels of the glycosyltransferase genes ST3GAL1/3/4 and FUT3 were significantly

elevated, and that of FUT2 was markedly suppressed (Sakuma et al. 2012).

GDP-mannose-4,6-dehydratase (GMDS) is a rate-limiting enzyme in GDP-fucose

synthesis, in addition to FX (Miyoshi et al. 2008). Mutation of the GMDS gene was

found in the colon cancer cell line HCT116 (Moriwaki et al. 2009). HCT116 cells

showed complete loss of all types of fucosylation, and the fucosylation level was

recovered upon transfection of a wild-type GMDS expression vector. Unexpectedly,

HCT116 cells showed higher metastatic potential through escape from NK cell-

mediated immune surveillance. The molecular mechanisms underlying the inhibition

of cell death by NK cell killing are suppressed during death signaling through the Fas

or tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. Inter-

estingly DR5, a TRAIL receptor, has neither N-glycans nor O-glycans, although
DR5-mediated cell death is inhibited in HCT116 cells, but not in fucosylation-rescued

HCT116 cells (Moriwaki et al. 2011). There is an unknown pathway in fucosylation

and receptor-mediated cell signaling. Mutation of the GMDS gene was found in

approximately 10 % of original colorectal cancer tissues and 15 % of metastatic

colorectal cancer tissues, but not in the normal colon (Nakayama et al. 2013). This

report suggests a novel type of metastatic pathway due to the loss of fucosylation in

colon carcinogenesis.

6 E. Miyoshi et al.



1.3 Fucosylation in Pancreatic Cancer

Pancreatic cancer is one of the worst diseases in terms of prognosis. The reason for the

poor prognosis of pancreatic cancer is the difficulty in early diagnosis and high

metastatic potential. Sialyl Lewis A, referred to as CA19-9, is a representative cancer

biomarker for pancreatic cancer and is a fucosylated glycan (Kannagi et al. 2004).

Measurement of serum CA19-9 levels in patients with pancreatic cancer is dependent

on the levels of several kinds of mucins that carry many sialyl Lewis A molecules.

Recently, we identified another type of CA19-9 carrier molecule, microlipid mem-

branes, in both bile and sera of patients with pancreatic cancer (Uozumi et al. 2010).

Details of the synthetic pathway of CA19-9, as well as its carrier molecules, remain

unknown, but this appears to be one of the most interesting topics in glycobiology

research. Fucosylated haptoglobin has been found in the sera of patients with pancre-

atic cancer (Okuyama et al. 2006), and we have developed a lectin ELISA system for

measuring fucosylated haptoglobin (Kamada et al. 2013b). Various screening ana-

lyses using this ELISA assay have revealed that fucosylated haptoglobin is increased

in several cancers and liver diseases (Kamada et al. 2013a; Takeda et al. 2012).

Fucosylated haptoglobin is probably produced in the liver upon metastasis of colon/

pancreatic cancers, and this is the reason why the positive rate of fucosylated hapto-

globin is much higher in pancreatic cancer, which easily metastasizes at the early

clinical stages (Okuyama et al. 2006). Detailed oligosaccharide analysis of

fucosylated haptoglobin showed that most of the fucosylation is the Lewis type, and

there are small amounts of core fucosylation. Interestingly, site 3 of the N-glycan on

haptoglobin has a unique oligosaccharide structure with unique fucosylation, com-

pared to the other 3 sites (Nakano et al. 2008). High expression of sLex antigen is

involved in the metastasis of pancreatic cancer as well as colorectal cancer (Mas

et al. 1998). The restoration of α1-2 fucosyltransferase (FUT1) activity decreases the
adhesive and metastatic properties of human pancreatic cancer cells, although the

molecular mechanisms are not clarified (Aubert et al. 2000; Mathieu et al. 2004).

1.4 Fucosylation in Hepatocellular Carcinoma

Fucosylation in the liver is different from that in other organs because the expression

of α1-6 fucosyltransferase (FUT8) is quite low in normal hepatocytes (Noda

et al. 1998a). Inflammation induces the expression of fucosylation regulatory genes,

resulting in increases in Lewis-type fucosylation on hepatic glycoproteins. FUT6 is

important in the synthesis of Lewis-type fucosylation in the liver but is a pseudogene

in the mouse. Therefore, FUT8 is the main fucosyltransferase involved in cellular

fucosylation in the mouse liver. FUT8-deficient mice show dramatic inhibition of

hepatic glycoproteins in bile (Nakagawa et al. 2006), suggesting that fucosylation

might be a sorting signal for the secretion of liver glycoproteins into bile. This

hypothesis could explain the molecular mechanisms underlying the production of

1 Roles of Fucosyltransferases in Cancer Phenotypes 7



fucosylated cancer biomarkers in hepatocellular carcinoma (HCC). α-Fetoprotein
(AFP) is clinically used as cancer biomarker but has the drawback that serum AFP

levels are increased in certain cases of chronic liver disease such as chronic hepatitis

and liver cirrhosis (Taketa 1990). In contrast, fucosylatedAFP, referred to as AFP-L3,

is specifically increased in the sera of patients with HCC. AFP-L3-positive HCC

showed worse prognosis than did AFP-L3-negative HCC (Yamashita et al. 1996).

Although it has been reported that AFP-L3 could be a cancer biomarker for earlyHCC

(Sato et al. 1993), many clinicians think that AFP-L3 is a marker for HCC with poor

prognosis and that AFP-L3-positive HCC should be treatedwith hepatic resection, but

not percutaneous radiofrequency ablation. However, a highly sensitive AFP-L3 assay

might provide another possibility as a biomarker for the early diagnosis of HCC

(Kumada et al. 2013). While FUT8 is involved in the synthesis of AFP-L3, the

expression of FUT8 is increased in chronic liver disease (Noda et al. 1998b). In

contrast, the level of GDP-fucose, a donor substrate of FUT8, is higher in HCC tissue

than in the surrounding tissue (Noda et al. 2003). Increased levels of GDP-fucose are

caused by high FX expression in HCC tissue. However, the most important factor

involved in the production of AFP-L3 seems to be an abnormal sorting system for

fucosylated proteins in HCC (Nakagawa et al. 2012). Fucosylated proteins produced

by normal hepatocytes are secreted into bile, but this system is disrupted in HCC. This

disruption might be due to the loss of the intrahepatic bile duct or the loss of cargo

receptors for core fucose in HCC. In the case of hepatitis B virus-related HCC, it is

reported that FUT8 is directly involved in the progression of HCC (Ji et al. 2013). In

this report, downregulation of FUT8 in cancer cells was found to cause a decrease in

cell growth inHCC cell lines as in other cancer cell lines. Although liver diseases have

different etiologies and each disease has a characteristic biomarker, common changes

in protein glycosylation in liver diseases are hyperfucosylation and an increase in the

branching structure ofN-glycans (Blomme et al. 2009).Moreover, mass spectrometry

analysis of N-glycans on hepatic glycoproteins in HCC tissue revealed that the

characteristic changes in glycan structure involve increases in tetra-antennary N-
linked glycan but not in core fucosylation (Mehta et al. 2012). These papers further

support the presence of an abnormal sorting system of fucosylated proteins in liver

diseases. A previous report suggests that fucosyltransferase activity in serum, plasma,

and tissue is different in patientswith liver cirrhosis andHCC (Hutchinson et al. 1991),

although its biological significance remains unknown.

1.5 Fucosylation in Other Cancers

Gastric cancer is the most popular carcinoma and the second cause of cancer-related

death in Japan. In addition to hepatocarcinogenesis, inflammation induced by

Helicobacter pylori infection plays a key role in the carcinogenesis of gastric cancer

(Wang et al. 2013). Interestingly, polymorphisms of fucosyltransferases are involved

in infection byHelicobacter pylori (Ikehara et al. 2001). Both IL-1 and IL-6, which are
associated with inflammation-related cytokines, regulate the expression of

8 E. Miyoshi et al.



fucosyltransferases in gastric cancer cell lines (Padro et al. 2011). This finding is

similar to the observed induction of fucosylation regulatory genes in HCC cell lines

with IL-6 treatment (Narisada et al. 2008). Interestingly, FUT3 gene expression,

involved in the synthesis of the sialyl Lewis A antigen, CA19-9, is regulated by

DNA methylation (Serpa et al. 2006). Hypo-methylation of the FUT3 gene promoter

in gastric cancer leads to the production of CA19-9. The expression pattern of

fucosyltransferases alters oligosaccharides of mucins produced in normal and cancer

tissue (Lopez-Ferrer et al. 2000). In the case of prostate cancer, α1-3
fucosyltransferases are very important in the regulation of cell behaviors such as

adhesion, trafficking, and cell growth (Barthel et al. 2009; Inaba et al. 2003). Further-

more, FUT6 is involved in the bonemetastasis of prostate cancer (Li et al. 2013). It has

recently been reported that the high expression of GnT-IX and FUT8 is associated

with the malignant phenotype of prostate cancer (Lange et al. 2012). Serum levels of

fucosylated haptoglobin are also increased in patients with prostate cancer (Fujimura

et al. 2008). Several papers on mammary cancer and fucosylation have been

published, and their contents are similar to observations in other cancers (Yang

et al. 2013, 2014; Julien et al. 2011). A very old article reported in Science indicates
that a decrease in human serum fucosyltransferase is an indicator of successful tumor

therapy in breast cancer (Bauer et al. 1978). A recent interesting paper on cholangio-

carcinoma suggests that FUT2 and FUT3 genotypes determine the cutoff value for

CA19-9 in differential diagnosis of cancer in patients with sclerosing cholangitis

(Wannhoff et al. 2013). The involvement of FUT8 in EMT and EGF signaling has

been reported in lung cancer (Liu et al. 2011; Chen et al. 2013).

1.6 Closing

Both FUT10 and FUT11 are novel types of α1-3 fucosyltransferases (Mollicone

et al. 2009; Kumar et al. 2013; Both et al. 2011). These FUTs might play specific

roles in carcinogenesis or may have other pathological functions that have not been

mentioned in this review. A summary of FUT genes, including their chromosomal

localization, is provided in Table 1.1. Interestingly, many fucosyltransferase genes are

localized on chromosome 19. The amino acid homology of α1-3/1-4
fucosyltransferases is shown in Fig. 1.2. Here, we should note the structural charac-

teristics of α1-3 fucosyltransferases. FUT3 is a unique glycosyltransferase that has the
enzymatic activities of both α1-3 and 1-4 fucosyltransferase. FUT3 plays an important

role in the synthesis of Lewis antigen in blood type, and loss of Fut3 activity leads to

deficiency of the Lewis antigen in blood type, as well as of the Lewis A antigen

(CA19-9). However, the amino acid sequence of FUT3 is very similar to those of other

α1-3 fucosyltransferases. PCR primers for each fucosyltransferase should be designed

carefully, due to their high gene/amino acid homologies. While this number is not so

much, compared to other research fields, the number is relatively high in glycobiology

research. Recently, O-fucosylation and notch signaling are two of the most important

issues in glycobiology (Stanley 2007). Since notch signaling is involved in EGF

1 Roles of Fucosyltransferases in Cancer Phenotypes 9



receptor-mediated cell signaling, O-fucosylation might be important in cancer biol-

ogy.Globally, if we search for all fucosyltransferases and cancer, the number is 588. If

we search for all sialyltransferases and cancer, the number is 780. We believe that

fucosylation, sialylation, and branching are three major glycosylations involved in

cancer. Taken together, each fucosylation shows commonalities in each gastroenter-

ological cancer and also shows differences in different cancers, suggesting that the

target glycoproteins for fucosylation might be different in each cancer phenotype.

Table 1.1 Papers on the chromosomal localization and cloning of fucosyltransferases (FUTs)

FUTs Official full name

Location

(Human)

Gene ID

(Human)

References (cDNA

cloning)

FUT1 Fucosyltransferase 1 (galacto-

side 2-alpha-L-

fucosyltransferase, H blood

group)

19q13.3 2523 Larsen RD, et al. Proc Natl
Acad Sci U S A
87, 6674–6678 (1990)

FUT2 Fucosyltransferase 2 (secretor

status included)

19q13.3 2524 Kelly RJ, et al. J Biol Chem
270, 4640–4649 (1995)

FUT3 Fucosyltransferase 3 (galacto-

side 3(4)-L-fucosyltransferase,

Lewis blood group)

19p13.3 2525 Kukowska-Latallo JF,

et al. Genes Dev
4, 1288–1303 (1990)

FUT4 Fucosyltransferase 4 (alpha

(1,3) fucosyltransferase, mye-

loid specific)

11q21 2526 Goelz SE, et al. Cell
63, 1349–1356 (1990)

FUT5 Fucosyltransferase 5 (alpha

(1,3) fucosyltransferase)

19p13.3 2527 Weston BW, et al. J Biol
Chem 267, 4152–4160

(1992)

FUT6 Fucosyltransferase 6 (alpha

(1,3) fucosyltransferase)

19p13.3 2528 Koszdin KL, et al. Biochem
Biophys Res Commun
187, 152–157 (1992)

FUT7 Fucosyltransferase 7 (alpha

(1,3) fucosyltransferase)

9q34.3 2529 Natsuka S, et al. J Biol
Chem 269, 16789–16794

(1994),

FUT8 Fucosyltransferase 8 (alpha

(1,6) fucosyltransferase)

14q24.3 2530 Uozumi N, et al. J Biol
Chem 271, 27810–27817

(1996)

FUT9 Fucosyltransferase 9 (alpha

(1,3) fucosyltransferase)

6q16 10690 Kudo T, et al. J Biol Chem
273, 26729–26738 (1998)

FUT10 Fucosyltransferase 10 (alpha

(1,3) fucosyltransferase)

8p12 84750 Mollicone R, et al. J Biol
Chem 284, 4723–4738

(2009)

FUT11 Fucosyltransferase 11 (alpha

(1,3) fucosyltransferase)

10q22.2 170384 Mollicone R, et al. J Biol
Chem 284, 4723–4738

(2009)
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Chapter 2

Glycosyltransferases and Gastric Cancer

Celso A. Reis and Ana Magalhães

Abstract The present chapter describes the pattern of glycosylation and the func-

tional role of glycans in gastric tissues. The mechanisms of biosynthesis of gastric

cell oligosaccharide chains and the glycosyltransferases involved in these processes

are discussed in normal and pathological settings.

Particular focus is given to the glycosyltransferases controlling the biosynthesis

of the fucosylated and sialylated histo-blood group antigens that act as receptors for

the outer membrane adhesins of the gastric pathogenic bacteriaHelicobacter pylori.
This chapter also addresses the glycosylation alterations and the underlying

molecular mechanisms occurring during the gastric carcinogenic pathways, includ-

ing the expression of simple mucin-type carbohydrate antigens, such as sialyl-Tn.

Moreover, the frequent glycosylation modifications observed in gastric carci-

noma, the glycosyltransferases regulating important cancer cell adhesion molecules

and signaling pathways, and the glycan-mediated modulation of cell biological

functions are also discussed.

The decoding of the functional role of glycans in gastric cells may constitute the

basis for defining biomarkers with potential to improve diagnosis and prognosis,

contributing for stratification of patients and the development of better therapies.

Keywords Gastric cancer • Gastric cell glycosylation • Helicobacter pylori •

Glycan receptors • Histo-blood group antigens • Sialylated antigens • E-cadherin

N-glycans • Biomarkers in cancer

C.A. Reis (*)

Institute for Research and Innovation in Health (i3S) & Institute of Molecular Pathology and

Immunology of the University of Porto (IPATIMUP), Porto, Portugal

Medical Faculty of the University of Porto (FMUP), Porto, Portugal

Institute of Biomedical Sciences of Abel Salazar (ICBAS), University of Porto, Porto, Portugal

e-mail: celsor@ipatimup.pt

A. Magalhães
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2.1 Glycosylation in Normal Gastric Mucosa

2.1.1 The Human Gastric Mucosa Glycosylation Profile

The glycosylation profile of the human gastric mucosa is partially defined by the

expression of the heavily glycosylated mucins. In healthy conditions, mucins show

a well-defined distribution pattern and the gastric superficial epithelial cells express

the membrane-associated MUC1 and secrete MUC5AC, whereas the deep glands of

the gastric mucosa produce the secreted MUC6 mucin (Reis et al. 1997, 1998, 2000;

Teixeira et al. 2002).

The mucin-type O-glycosylation is a stepwise process regulated by different

glycosyltransferases. The first step is the transfer of GalNAc from a sugar donor

UDP-GalNAc to serine and threonine residues and is controlled by UDP-GalNAc:

polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) (Clausen and

Bennett 1996; Hassan et al. 2000; Ten Hagen et al. 2003). To date, 20 distinct

members of the mammalian ppGalNAc-T family have been identified (Bennett

et al. 2012). They control the first level of complexity of O-glycosylation: the sites

and density of O-glycan occupancy of the mucin tandem repeat. This is because

ppGalNAc-Ts, although catalyzing the same enzymatic step, have different kinetic

properties and acceptor substrate specificities (Bennett et al. 1998; Ten Hagen

et al. 2003; Wandall et al. 1997).

In addition, ppGalNAc-Ts are unique among glycosyltransferases due to their

ricin-like lectin domain (Bennett et al. 2012; Ten Hagen et al. 2003). This domain

binds O-GalNAc and therefore promotes secondary GalNAc glycosylation on

neighboring positions in the polypeptide sequence (Pedersen et al. 2011; Wandall

et al. 2007). The ppGalNAc-T enzymatic specificity leads to different functions

depending on the cell type and organ in which it is expressed.

The second level of complexity in O-glycosylation is the processing of carbo-

hydrate chains by other glycosyltransferases. After the first glycan (GalNAc) is

added forming the Tn antigen, a Gal-transferase (C1GalT-1) adds Gal to GalNAc,

forming the core 1 structure. Alternatively, Tn and T antigens can be sialylated by

sialyltransferases forming the sialyl-Tn, sialyl-T, and disialyl-T antigens

(Brockhausen 1999) (Fig. 2.1).

In normal cells the O-glycans can be branched with a GlcNAc attached to core

1 and is termed core 2. This synthesis is performed by C2GnT family of enzymes

(Bierhuizen et al. 1994; Schwientek et al. 1999). This O-glycan structure can be

further elongated by galactosyltransferases and N-acetylglucosaminyltransferases

and terminated by fucosyltransferases and sialyltransferases (Fig. 2.1).

Structural analysis of the glycan composition of gastric mucins has revealed a

major expression of terminal neutral and highly fucosylated glycan structures

(Rossez et al. 2012). The regulated cell-specific mucin distribution pattern in

combination with fine-tuned glycosyltransferases expression results in

co-expression of MUC5AC and type 1 Lewis antigens (Lewis a and b) in superficial

epithelium and MUC6 and type 2 Lewis antigens (Lewis x and y) in the stomach
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deeper glandular region (Lopez-Ferrer et al. 2000; Nordman et al. 2002). MUC6 is

also frequently modified by terminal 1,4-linked N-acetylglucosamine (α1,4-
GlcNAc) (Ferreira et al. 2006; Kawakubo et al. 2004).

Although, in healthy conditions, the gastric glycosylation profile is similar

among individuals within the same blood group and sharing the same Lewis and

secretor status, individual genetic polymorphisms in glycosyltransferase genes are

associated with distinct gastric glycophenotypes.

2.1.2 Glycosyltransferases Involved in the Biosynthesis
of H-Type and Lewis Antigens

The biosynthesis of H-type and Lewis antigens depends on the expression of

specific glycosyltransferases, which is determined by the individual genotype.

The capacity to synthesize the terminal alpha1,2-fucosylated structure H-type 1 in

body secretions depends on the activity of the FUT2 enzyme (Kelly et al. 1995).

Individuals are classified as secretors, when they have this capacity, or non-

secretors, if they are unable to synthesize this structure (Mollicone et al. 1985).

Several genetic polymorphisms on the FUT2 gene have been described. The G428A

Fig. 2.1 Schematic representation of O-GalNAc glycan biosynthesis initiation pathways. For

image simplicity, only representative enzymes were included
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mutation is the most common mutation found in European and African populations

(Kelly et al. 1995; Liu et al. 1998), while the A385T mutation is found at high

frequencies in nonsecretors from East Asian populations (Soejima et al. 2008).

Secretor individuals constitute approximately 80 % of Caucasian population.

The Lewis histo-blood group antigens correspond to a group of structurally

related alpha1-3(4)-fucosylated glycans that are built up from type 1 (Galbeta1-

3GlcNAc) and type 2 (Galbeta1-4GlcNAc) precursor chains. The substitution of the

terminal Gal with an alpha1,2-fucose residue on type 1 or type 2 chains results in

the H-type 1 or H-type 2 antigens, respectively. These structures can be further

fucosylated by alpha1,4/3fucosyltransferases that add a fucose in an alpha1,4-

linkage to the type 1 GlcNAc producing the difucosylated Lewis b antigen or in

an alpha1,3-linkage to type 2 structures producing an isomer structure, the Lewis y

antigen. Alternatively, the type 1 and type 2 chain backbones may be first modified

by alpha1,4/3fucosyltransferases leading to the biosynthesis of the mono-

fucosylated Lewis a and Lewis x structures, respectively. Otherwise, the terminal

Gal residue of type 1 and type 2 chains can be first modified by sialyltransferases by

addition of an alpha2,3 sialic acid residue, followed then by fucosylation of the

GlcNAc in alpha1,4 or alpha1,3 linkage originating the sialyl-Lewis a or sialyl-

Lewis x antigens, respectively (Fig. 2.2).

The transfer of sialic acid to terminal Gal residues on type 1 and type 2 chains is

mediated by the alpha2,3 sialyltransferases ST3Gal III, ST3Gal IV, and ST3Gal VI

(Carvalho et al. 2010; Harduin-Lepers et al. 2012; Sasaki et al. 1993). The ST3Gal

III uses preferentially type 1 chains leading to sialyl-Lewis a biosynthesis, whereas

ST3Gal IV and ST3Gal VI modify preferentially type 2 sequences originating the

formation of sialyl-Lewis x structure (Harduin-Lepers et al. 2012).

Regarding the fucosyltransferase activity, both FUT3 and FUT5 can transfer

alpha1,4-linked fucose to type 1 chains, resulting in Lewis a, Lewis b, and sialyl-

Lewis a synthesis (Holgersson and L€ofling 2006). The modification with alpha1,3-

linked fucose to type 2 chains can be mediated by FUT3, FUT4-7, and FUT9

fucosyltransferases (Miyoshi et al. 2008) (Fig. 2.2).

2.1.3 Helicobacter pylori Adhesion Mediated by Glycan
Receptors

The terminal histo-blood group antigens present on gastric mucosal surface are

recognized as attachment factors for bacteria, namely, for the gastric pathogen

Helicobacter pylori (H. pylori).
H. pylori is a carcinogenic bacteria that colonizes half of the world population

(Salama et al. 2013). Infection with H. pylori causes chronic gastric mucosa

inflammation, and in a subset of infected individuals, long-term colonization is

associated with the development of gastric and duodenal ulcers, mucosa-associated
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Fig. 2.2 Schematic

representation of terminal

type 1 and type 2 Lewis

antigen biosynthesis

pathways
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lymphoid tissue (MALT) lymphoma, and gastric adenocarcinoma (Wroblewski

et al. 2010).

H. pylori attachment to the gastric epithelium constitutes an important step for

stomach colonization and establishment of a successful infection, providing bacte-

rial protection from clearance mechanisms such as liquid flow, peristaltic move-

ments, or renewal of the mucous layer. Bacterial binding to gastric mucosa is

mediated by bacterial outer membrane proteins, with lectin-like domains that

have affinity for glycan receptors expressed on the host gastric tissue.

The H. pylori glycan receptors include neutral fucosylated histo-blood group

antigens (Boren et al. 1993; Ilver et al. 1998) and di-N-acetyllactosamine

(lacdiNAc) motifs (Rossez et al. 2014), and glycans with charged groups, such as

sialic acid (Mahdavi et al. 2002) or sulfate (Namavar et al. 1998; Huesca et al. 1996).

Bacterial binding to the fucosylated histo-blood group antigens H-type 1 and

Lewis b is mediated by the blood group antigen-binding adhesin (BabA) (Boren

et al. 1993; Ilver et al. 1998). Since H-type 1 and Lewis b structures are extensively

present on the MUC5AC mucin, BabA-expressing strains have been described to

adhere to the MUC5AC-rich gastric mucus layer (Linden et al. 2002; Van de

Bovenkamp et al. 2003; Van den Brink et al. 2000). Additionally to H-type 1 and

Lewis b structures, some H. pylori strains also bind to further modified fucosylated

structures A-Lewis b (GalNAc-Lewis b) and B-Lewis b (Gal-Lewis b). The strains

displaying these broader affinity properties are named generalists. On the contrary,

strains that are only able to bind to naked Lewis b or exclusively to A-Lewis b are

termed specialists (Aspholm-Hurtig et al. 2004).

The individual secretor status has been associated with H. pylori infection

susceptibility (Azevedo et al. 2008; Ikehara et al. 2001; Lee et al. 2006). Using a

nonsecretor animal model, the homozygous FUT2-null mice, it was demonstrated

that the loss of glycans carrying the H-epitope resulted in impaired H. pylori BabA-
mediated adhesion (Magalhaes et al. 2009a) (Fig. 2.3).

Fig. 2.3 Adhesion of fluorescein (FITC)-labeled H. pylori strain 17875/Leb (green) to gastric

mucosa tissue sections of wild-type (alpha1,2-fucose positive) and Fut2-null (alpha1,2-fucose

negative) mice. Magnification �200
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Persistent H. pylori infection results in a remodeling of the gastric mucosa

glycophenotype, with de novo expression of negatively charged sialylated glycan

structures (Magalhães et al. 2015; Mahdavi et al. 2002; Ota et al. 1998). These

include sialyl-Lewis a/x, the receptors of the H. pylori sialic acid-binding adhesin

(SabA) (Mahdavi et al. 2002). The three-dimensional structure of the extracellular

adhesion domain of the SabA adhesin showed a cavity lined by conserved amino

acids at the SabA N-terminal domain that is likely to function as a highly selective

glycan-binding site (Pang et al. 2013).

Besides the very well-characterized BabA and SabA H. pylori adhesins, other
protein–glycan interactions have been described as relevant for H. pylori colon-
ization. These include the neutrophil-activating protein (NAP), which binds sul-

fated structures such as sulfo-Lewis a, sulfo-Gal, and sulfo-GalNAc expressed on

salivary mucins, and the heat shock protein Hsp70 that mediates binding to

sulfoglycosphingolipids (Huesca et al. 1996; Namavar et al. 1998). Additionally,

H. pylori proteins with affinity for heparan sulfate proteoglycans (heparan sulfate-

binding proteins, HSBPs) have been identified and demonstrated to participate in

bacterial binding to gastric cells (Guzman-Murillo et al. 2001; Ruiz-Bustos

et al. 2001). In accordance, H. pylori-infected individuals show increased expres-

sion of the heparan sulfate-rich proteoglycan syndecan-4 (Magalhaes et al. 2009b).

2.2 Alteration of Glycosylation During Gastric

Carcinogenesis

2.2.1 Expression of Terminal Sialylated Glycan Structures
in Gastritis

H. pylori chronic infection and the concomitant host inflammatory response are

associated with increased expression of terminal sialylated glycan structures, includ-

ing sialyl-Lewis a and sialyl-Lewis x, in human gastric mucosa (Mahdavi et al. 2002;

Ota et al. 1998). Similarly, it has been observed that experimentally infected rhesus

monkeys andMongolian gerbils showed increased expression of sialylated antigens in

inflamed gastric tissue (Lindén et al. 2008; Ohno et al. 2011). H. pylori infection and
host inflammatory cytokines, namely, tumor necrosis factor alpha (TNF-α), induce the
expression of the beta3GnT5 glycosyltransferase, which results in increased expres-

sion of sialyl-Lewis x in human gastric cells and favors SabA-mediated binding

(Magalhães et al. 2015; Marcos et al. 2008).

H. pylori’s ability to modulate outer membrane protein expression allows the

bacteria to adapt its adhesin expression profile to the changes in the host gastric

glycosylation profile and to escape from the inflammatory response, favoring long-

term colonization and chronic gastric mucosa inflammation.
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2.2.2 Expression of Simple Mucin-Type Carbohydrate
Antigens in Pathological Conditions

The expression of simple mucin-type Tn and sialyl-Tn antigens is frequently found in

several pathological conditions. The expression of this altered glycosylation can be

due to various molecular mechanisms that can be modified in disease. Differential

expression of ppGalNAc-Ts and variation in the Golgi localization of these enzymes

may contribute for the aberrant expression of Tn. Furthermore, the overexpression of

ST6GalNAc-I, the α2-6 sialyltransferase responsible for the biosynthesis of sialyl-Tn,
may induce the expression of this antigen in pathological tissues. Another mechanism

leading to the expression of truncated O-glycans sialyl-Tn and Tn antigens in cancer

is the deficiency in Cosmc, a chaperon protein known to stabilize T synthase, the

enzyme responsible for Core 1 synthesis. Deficiencies in this chaperone lead to the

synthesis of Tn and sialyl-Tn antigen (Ju et al. 2008; Wang et al. 2010).

2.2.2.1 Sialyltransferases and the Biosynthesis of Sialyl-Tn Antigen

The increased expression of terminal sialylated glycans in cancer results from

an altered expression of glycosyltransferases, including the increased expression of

sialyltransferases (Nakamori et al. 1999). Twenty different sialyltransferases have

been described to catalyze the transfer of sialic acid residues from a donor substrate

CMP-sialic acid to the oligosaccharide side chain of the glycoconjugates (Harduin-

Lepers et al. 2012). Sialyltransferases show cell- and tissue-specific expression

pattern and differ in substrate specificities and types of linkage formed (Harduin-

Lepers et al. 2005). Depending on these characteristics, STs are classified in four

families – ST3Gal, ST6Gal, ST6GalNAc, and ST8Sia (Harduin-Lepers et al. 2012).

Six different human GalNAc α2,6-sialyltransferases catalyze the transfer of

sialic acid residues in α2,6-linkage to the proximal GalNAc residue of

O-glycosylproteins (ST6GalNAc I, ST6GalNAc II, ST6GalNAc IV) or onto

GalNAc residues of glycolipids like GM1b (ST6GalNAc III, ST6GalNAc V,

ST6GalNAc VI) (Harduin-Lepers 2010). Among the α2,6-sialyltransferases, both
ST6GalNAc I and ST6GalNAc II have shown similar enzymatic activity in vitro,

but only ST6GalNAc I has been shown to lead to the biosynthesis of sialyl-Tn in

gastrointestinal tissues (Marcos et al. 2004, 2011) (Fig. 2.1).

2.2.2.2 Expression of Simple O-Linked Glycans in Intestinal

Metaplasia

In the human stomach, intestinal metaplasia is a premalignant lesion characterized by a

transdifferentiation of gastric epithelium into intestinal epithelium and is associated

with an increased risk for gastric carcinoma development. Intestinal metaplasia

expresses several intestinal markers, such as mucin MUC2 and sialyl-Tn, which
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co-localize at the mucinous vacuoles of goblet cells (Ferreira et al. 2006; Pinto

et al. 2012; Reis et al. 1999). The expression of ST6GalNAc-I is observed in all

intestinal metaplasia cases (Marcos et al. 2011) and co-localizes at the tissue and cell

levelwith the sialyl-Tn antigen expression (Marcos et al. 2004, 2011).At the subcellular

level, the expression of ST6GalNAc I is observed at theGolgi of the epithelial cells, and

a high expression is observed in Goblet cells of metaplastic glands (Marcos et al. 2011).

2.3 Glycosylation Alterations in Gastric Cancer

2.3.1 The Alterations of Glycosylation in Gastric Carcinoma

Different alterations of glycosylation have been described in gastric cancer cells.

These include alterations in O-glycans, N-glycans, and terminal glycan structures

present in different types of glycoconjugates (Pinho and Reis 2015).

In the case of O-glycosylation, gastric carcinoma is characterized by the expres-

sion of immature simple mucin-type carbohydrate antigens. As discussed above,

the aberrant expression of Tn and sialyl-Tn antigens may be due to the differential

expression of glycosyltransferases, variation in the Golgi localization of these

enzymes, and mutations in protein chaperones.

2.3.1.1 ppGalNAc-Transferase Expression in Gastric Cancer

Different ppGalNAc transferases have been described as being expressed in gastric

epithelial cells and gastric cell lines (Gomes et al. 2009;Marcos et al. 2003). In addition,

various studies have reported altered expression of ppGalNAc transferases in gastric

cancer, being one of the mechanisms underlying the changes in O-glycosylation during

malignant transformation. This is the case of the expression of ppGalNAc-T10 that has

been shown to be associated with the histological type of the carcinoma (Gao

et al. 2013) and ppGalNAc-T6, which has been extensively evaluated in human gastric

tissues, including in normal gastric mucosa, intestinal metaplasia, and in gastric

carcinomas. ppGalNAc-T6 is expressed in normal gastric mucosa and in intestinal

metaplasia of the stomach (Gomes et al. 2009). Furthermore, ppGalNAc-T6 has been

shown to be heterogeneous expressed in gastric carcinomas. ppGalNAc-T6 was

expressed in 79 % of gastric carcinoma cases, and its expression level was associated

with the presence of venous invasion.This associationwith clinical features of the cases

may stem from the contribution of this enzyme for the O-glycosylation of specific sites

on specific proteins that are relevant in the biology of the gastric tumor progression.

Another member of the ppGalNAc family, the ppGalNAc-T2, has been described as

inducing reduced cell proliferation, adhesion, and invasion in a gastric cancer cell line

(Hua et al. 2012), reflecting themultitude effects that variations ofO-glycosylationmay

play in the biology of cancer cells depending on different ppGalNAc transferases.
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2.3.2 Glycans in Key Molecules Controlling Gastric Cancer
Cell Biology

2.3.2.1 N-Glycans Modulating Gastric Cancer Cell Adhesion

and Invasion

The alterations of glycosylation in gastric cancer also include the modification of

N-glycosylation of key molecules involved in cancer development. This is the case

of E-cadherin, a protein codified by the CDH1 gene. This protein is involved in

epithelial cell–cell adhesion and has been shown to be a key factor in cancer

development and cancer cell invasion. In the diffuse type of gastric carcinoma,

E-cadherin has been shown to display molecular abnormalities leading to defective

intercellular adhesion (Corso et al. 2013; Paredes et al. 2012). In some cases, this is

due to germline alterations (mostly mutations) of the CDH1 gene. This is the

genetic cause of hereditary diffuse gastric cancer (HDGC) (Guilford et al. 1998).

In the sporadic setting, various mechanisms of E-cadherin deregulation have been

described, including genetic and epigenetic silencing of the CDH1 gene. Recently,

several evidences have shown that during malignant transformation, E-cadherin

displays substantial alterations of its glycans. The correct processing and glycosyl-

ation, particularly the bisecting GlcNAc N-glycans, catalyzed by GnT-III, has been

shown to contribute for the function of this molecule and increased adherens

junction stability of epithelial cells. Conversely, when E-cadherin is glycosylated

with branched N-glycans, catalyzed by GnT-V, there are major effects on its

function leading to the dysregulation in gastric carcinoma (Pinho et al. 2013).

Other key molecules involved in the biology of cancer cells are integrins, which

are glycoproteins that play a key role in the cell interaction with the extracellular

matrix. The alpha5beta1 integrin has been shown to be modulated with N-glycans

that are required for the heterodimer formation and integrin–matrix interactions

(Bellis 2004; Gu and Taniguchi 2004).

2.3.2.2 Terminal Sialylation in Gastric Cancer: Biosynthesis

and Functional Role

Another common modification of glycosylation observed in gastric cancer is the

increased expression of terminal sialylated structures, including the sialyl-Lewis

X. The expression of sialyl-Lewis X has been reported in the majority of

gastric carcinomas. In addition, this expression has been associated with features

of aggressiveness of the cases (Amado et al. 1998).

The expression of this structure depends on the expression of the various

glycosyltransferases involved in its biosynthesis (Carvalho et al. 2010). In gastric

carcinoma this expression has been shown to affect the activation of receptor

tyrosine kinases (RTK), such as the c-Met (Gomes et al. 2013b). This activation

is capable of inducing cell signaling pathways that control cell invasion and
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motility. These mechanisms are crucial for cancer cell biology. In general, solid

tumors display alterations of metabolism that, together with altered transcription of

several genes, including glycosyltransferases, may lead to increased sialylated

glycosylation, leading to the modification of key signaling pathways controlling

epithelial cell behavior, mediating cell motility, invasion, and metastasis.

2.4 Glycans as Biomarkers in Gastric Cancer

In gastric cancer, one of the major concerns of cancer clinical management is to

improve the early diagnosis and the successful rate of the therapeutic strategies.

Nowadays, most of the serological assays for detection of cancer are based on

detection of glycoconjugates (glycoproteins and glycolipids) shed from the tumor

cells into the bloodstream. Examples of these are the carcinoembryonic antigen

(CEA) and the sialyl-Lewis a (CA19-9) for gastric carcinoma, the MUC16 (CA125)

for ovarian cancer, and the MUC1 (CA15-3) for breast cancer. However, the

reduced specificity and sensitivity of some of these serological assays for early

detection of cancer set the ground for the search for novel biomarkers.

Recently, glycoproteomic strategies have revealed novel putative biomarkers

based on altered glycosylation in specific proteins present in circulation of gastric

cancer patients. The simple glycan antigen sialyl-Tn has been shown in circulating

proteins of gastric carcinoma patients and in individuals with precursor lesions,

such as intestinal metaplasia (Gomes et al. 2013a). In addition, glycomic investi-

gations have identified increases in the levels of sialyl-Lewis x present on

triantennary glycans accompanied by increased levels of core fucosylation of

N-glycans present on IgG from gastric cancer patients (Bones et al. 2011).

Recently, CD44 and GalNAc-T5 circulating with the STn glycoform were identi-

fied in gastric cancer patient’s serum and further validated in gastric tumor tissues,

supporting its biomarker potential in gastric cancer (Campos et al. 2015).

These glycosylation alterations detected in the serum of individuals may have

valuable applications as biomarkers in order to improve the early diagnosis and

prognosis of gastric cancer.
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http://dx.doi.org/10.1126/science.1098801
http://dx.doi.org/10.1126/science.1098801
http://dx.doi.org/10.1016/j.bbamem.2004.03.012
http://dx.doi.org/10.1093/glycob/cwr182
http://dx.doi.org/10.1021/pr101036b
http://dx.doi.org/10.1126/science.8018146
http://dx.doi.org/10.1016/S0304-4165(99)00170-1
http://dx.doi.org/10.1074/mcp.M114.046862
http://dx.doi.org/10.1016/j.biocel.2009.09.010
http://dx.doi.org/10.1016/j.biocel.2009.09.010
http://dx.doi.org/10.1200/jco.2012.44.4612
http://dx.doi.org/10.1369/jhc.5A6836.2006
http://dx.doi.org/10.1369/jhc.5A6836.2006
http://dx.doi.org/10.3892/ol.2012.980
http://dx.doi.org/10.3892/ol.2012.980
http://dx.doi.org/10.1369/jhc.2008.952283


Gomes C, Almeida A, Ferreira JA, Silva L, Santos-Sousa H, Pinto-de-Sousa J, Santos LL,

Amado F, Schwientek T, Levery SB, Mandel U, Clausen H, David L, Reis CA, Os�orio H

(2013a) Glycoproteomic analysis of serum from patients with gastric precancerous lesions.

J Proteome Res 12(3):1454–1466. doi:10.1021/pr301112x

Gomes C, Osorio H, Pinto MT, Campos D, Oliveira MJ, Reis CA (2013b) Expression of

ST3GAL4 leads to SLe(x) expression and induces c-Met activation and an invasive phenotype

in gastric carcinoma cells. PLoS ONE 8(6):e66737. doi:10.1371/journal.pone.0066737

Gu J, Taniguchi N (2004) Regulation of integrin functions by N-glycans. Glycoconj J 21(1–2):

9–15. doi:10.1023/b:glyc.0000043741.47559.30

Guilford P, Hopkins J, Harraway J, McLeod M, McLeod N, Harawira P, Taite H, Scoular R,

Miller A, Reeve AE (1998) E-cadherin germ line mutations in familial gastric cancer.

Nature 392(6674):402–405

Guzman-Murillo MA, Ruiz-Bustos E, Ho BOW, Ascencio F (2001) Involvement of the heparan

sulphate-binding proteins of Helicobacter pylori in its adherence to HeLa S3 and Kato III cell

lines. J Med Microbiol 50(4):320–329

Harduin-Lepers A (2010) Comprehensive analysis of sialyltransferases in vertebrate genomes.

Glycobiol Insights 2010(2):29–61. doi:10.4137/gbi.s3123, 1870-GBI-Comprehensive-Ana-

lysis-of-Sialyltransferases-in-Vertebrate-Genomes.pdf

Harduin-Lepers A, Mollicone R, Delannoy P, Oriol R (2005) The animal sialyltransferases and

sialyltransferase-related genes: a phylogenetic approach. Glycobiology 15(8):805–817. doi:10.

1093/glycob/cwi063

Harduin-Lepers A, Krzewinski-Recchi MA, Colomb F, Foulquier F, Groux-Degroote S, Delannoy

P (2012) Sialyltransferases functions in cancers. Front Biosci (Elite Ed) 4:499–515

Hassan H, Reis CA, Bennett EP, Mirgorodskaya E, Roepstorff P, Hollingsworth MA, Burchell J,

Taylor-Papadimitriou J, Clausen H (2000) The lectin domain of UDP-N-acetyl-D-galactos-

amine: polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specific-

ities. J Biol Chem 275(49):38197–38205. doi:10.1074/jbc.M005783200

Holgersson J, L€ofling J (2006) Glycosyltransferases involved in type 1 chain and Lewis antigen

biosynthesis exhibit glycan and core chain specificity. Glycobiology 16(7):584–593. doi:10.

1093/glycob/cwj090

Hua D, Shen L, Xu L, Jiang Z, Zhou Y, Yue A, Zou S, Cheng Z, Wu S (2012) Polypeptide

N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gas-

tric cancer. Int J Mol Med 30(6):1267–1274. doi:10.3892/ijmm.2012.1130

Huesca M, Borgia S, Hoffman P, Lingwood CA (1996) Acidic pH changes receptor binding

specificity of Helicobacter pylori: a binary adhesion model in which surface heat shock (stress)

proteins mediate sulfatide recognition in gastric colonization. Infect Immun 64(7):2643–2648

Ikehara Y, Nishihara S, Yasutomi H, Kitamura T, Matsuo K, Shimizu N, Inada K-i, Kodera Y,

Yamamura Y, Narimatsu H, Hamajima N, Tatematsu M (2001) Polymorphisms of two

fucosyltransferase genes (lewis and secretor genes) involving type I lewis antigens are asso-

ciated with the presence of anti-Helicobacter pylori IgG antibody. Cancer Epidemiol Bio-

markers Prev 10(9):971–977

Ilver D, Arnqvist A, Ogren J, Frick I-M, Kersulyte D, Incecik ET, Berg DE, Covacci A,

Engstrand L, Boren T (1998) Helicobacter pylori adhesin binding fucosylated histo-blood

group antigens revealed by retagging. Science 279(5349):373–377. doi:10.1126/science.279.

5349.373

Ju T, LanneauGS, GautamT,WangY, Xia B, Stowell SR,WillardMT,WangW,Xia JY, Zuna RE,

Laszik Z, Benbrook DM, Hanigan MH, Cummings RD (2008) Human tumor antigens Tn and

sialyl Tn arise frommutations inCosmc. Cancer Res 68(6):1636–1646. doi:10.1158/0008-5472.

can-07-2345

Kawakubo M, Ito Y, Okimura Y, Kobayashi M, Sakura K, Kasama S, Fukuda MN, Fukuda M,

Katsuyama T, Nakayama J (2004) Natural antibiotic function of a human gastric mucin against

Helicobacter pylori infection. Science 305(5686):1003–1006. doi:10.1126/science.1099250

2 Glycosyltransferases and Gastric Cancer 29

http://dx.doi.org/10.1021/pr301112x
http://dx.doi.org/10.1371/journal.pone.0066737
http://dx.doi.org/10.1023/b:glyc.0000043741.47559.30
http://dx.doi.org/10.4137/gbi.s3123
http://dx.doi.org/10.1093/glycob/cwi063
http://dx.doi.org/10.1093/glycob/cwi063
http://dx.doi.org/10.1074/jbc.M005783200
http://dx.doi.org/10.1093/glycob/cwj090
http://dx.doi.org/10.1093/glycob/cwj090
http://dx.doi.org/10.3892/ijmm.2012.1130
http://dx.doi.org/10.1126/science.279.5349.373
http://dx.doi.org/10.1126/science.279.5349.373
http://dx.doi.org/10.1158/0008-5472.can-07-2345
http://dx.doi.org/10.1158/0008-5472.can-07-2345
http://dx.doi.org/10.1126/science.1099250


Kelly RJ, Rouquier S, Giorgi D, Lennon GG, Lowe JB (1995) Sequence and expression of a

candidate for the human secretor blood group α(1,2)Fucosyltransferase Gene (FUT2). J Biol

Chem 270(9):4640–4649. doi:10.1074/jbc.270.9.4640

Lee HS, Choe G, Kim WH, Kim HH, Song J, Park KU (2006) Expression of Lewis antigens and

their precursors in gastric mucosa: relationship with Helicobacter pylori infection and

gastric carcinogenesis. J Pathol 209(1):88–94. doi:10.1002/path.1949

Linden S, Nordman H, Hedenbro J, Hurtig M, Thoma B, Carlstedt I (2002) Strain-and blood group

dependent binding of Helicobacter pylori to human gastric MUC5AC glycoforms. Gastro-

enterology 123(6):1923–1930

Lindén S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I, Borén T, Dubois A (2008) Role of

ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathog 4(1):e2

Liu Y, Koda Y, Soejima M, Pang H, Schlaphoff T, du Toit ED, Kimura H (1998) Extensive

polymorphism of the FUT2 gene in an African (Xhosa) population of South Africa. HumGenet

103(2):204–210. doi:10.1007/s004390050808

Lopez-Ferrer A, de Bolos C, Barranco C, Garrido M, Isern J, Carlstedt I, Reis CA, Torrado J, Real

FX (2000) Role of fucosyltransferases in the association between apomucin and Lewis antigen

expression in normal and malignant gastric epithelium. Gut 47(3):349–356

Magalhaes A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osorio H, David L, Le Pendu J,

Haas R, Dell A, Boren T, Reis CA (2009a) Fut2-null mice display an altered glycosylation

profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa.

Glycobiology 19(12):1525–1536. doi:10.1093/glycob/cwp131

Magalhaes A, Marcos NT, Carvalho AS, David L, Figueiredo C, Bastos J, David G, Reis CA

(2009b) Helicobacter pylori cag pathogenicity island-positive strains induce syndecan-4

expression in gastric epithelial cells. FEMS Immunol Med Microbiol 56(3):223–232
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Joncquel Chevalier Curt M, Léonard R, Maes E, Sperandio B, Slomianny C, Sansonetti PJ,

Michalski JC, Robbe-Masselot C (2014) The lacdiNAc-specific adhesin LabA mediates

adhesion of Helicobacter pylori to human gastric mucosa. J Infect Dis 210(8):1286–1295.

doi:10.1093/infdis/jiu239

Ruiz-Bustos E, Ochoa JL, Wadstrom T, Ascencio F (2001) Isolation and characterisation of

putative adhesins from Helicobacter pylori with affinity for heparan sulphate proteoglycan.

J Med Microbiol 50(3):215–222

Salama NR, Hartung ML, Muller A (2013) Life in the human stomach: persistence strategies of the

bacterial pathogen Helicobacter pylori. Nat Rev Microbiol 11(6):385–399. doi:10.1038/

nrmicro3016

Sasaki K,Watanabe E, KawashimaK, Sekine S, Dohi T, OshimaM,Hanai N, Nishi T, HasegawaM

(1993) Expression cloning of a novel Gal beta (1-3/1-4) GlcNAc alpha 2,3-sialyltransferase

using lectin resistance selection. J Biol Chem 268(30):22782–22787

Schwientek T, Nomoto M, Levery SB, Merkx G, van Kessel AG, Bennett EP, Hollingsworth MA,

Clausen H (1999) Control of O-Glycan branch formation: molecular cloning of human cDNA

encoding a novel β1,6-N-acetylglucosaminyltransferase forming core 2 and core 4. J Biol

Chem 274(8):4504–4512. doi:10.1074/jbc.274.8.4504

Soejima M, Nakajima T, Fujihara J, Takeshita H, Koda Y (2008) Genetic variation of FUT2 in

Ovambos, Turks, and Mongolians. Transfusion 48(7):1423–1431. doi:10.1111/j.1537-2995.

2008.01710.x

Teixeira A, David L, Reis CA, Costa J, Sobrinho-Simões M (2002) Expression of mucins (MUC1,

MUC2, MUC5AC, and MUC6) and type 1 Lewis antigens in cases with and without Helico-
bacter pylori colonization in metaplastic glands of the human stomach. J Pathol 197(1):37–43

Ten Hagen KG, Fritz TA, Tabak LA (2003) All in the family: the UDP-GalNAc:polypeptide

N-acetylgalactosaminyltransferases. Glycobiology 13(1):1R–16R. doi:10.1093/glycob/cwg007

Van de Bovenkamp JH, Mahdavi J, Korteland-Van Male AM, Buller HA, Einerhand AW,

Boren T, Dekker J (2003) The MUC5AC glycoprotein is the primary receptor for Helicobacter
pylori in the human stomach. Helicobacter 8(5):521–532

Van den Brink GR, Tytgat KMAJ, Van der Hulst RWM, Van der Loos CM, Einerhand AWC,

Buller HA, Dekker J (2000) H. pylori colocalises with MUC5AC in the human stomach.

Gut 46(5):601–607. doi:10.1136/gut.46.5.601

Wandall HH, Hassan H, Mirgorodskaya E, Kristensen AK, Roepstorff P, Bennett EP, Nielsen PA,

Hollingsworth MA, Burchell J, Taylor-Papadimitriou J, Clausen H (1997) Substrate specific-

ities of three members of the human UDP-N-acetyl-alpha-D-galactosamine:polypeptide

N-acetylgalactosaminyltransferase family, GalNAc-T1, �T2, and -T3. J Biol Chem 272(38):

23503–23514

Wandall HH, Irazoqui F, Tarp MA, Bennett EP, Mandel U, Takeuchi H, Kato K, Irimura T,

Suryanarayanan G, Hollingsworth MA, Clausen H (2007) The lectin domains of polypeptide

GalNAc-transferases exhibit carbohydrate-binding specificity for GalNAc: lectin binding to

GalNAc-glycopeptide substrates is required for high density GalNAc-O-glycosylation.

Glycobiology 17(4):374–387. doi:10.1093/glycob/cwl082

Wang Y, Ju T, Ding X, Xia B, WangW, Xia L, HeM, Cummings RD (2010) Cosmc is an essential

chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA 107(20):9228–9233.

doi:10.1073/pnas.0914004107

Wroblewski LE, Peek RM, Wilson KT (2010) Helicobacter pylori and gastric cancer: factors that

modulate disease risk. Clin Microbiol Rev 23(4):713–739. doi:10.1128/cmr.00011-10

32 C.A. Reis and A. Magalhães
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Chapter 3

Differential Roles of Mammalian Sialidases

in Cancers

Taeko Miyagi

Abstract Aberrant sialylation has been implicated in malignant properties includ-

ing invasiveness and metastasis. To cast light on the causes and the consequences of

such alteration, our studies have focused on mammalian sialidases, which regulate

the cellular sialic acid content by catalyzing the removal of sialic acid residues from

glycoproteins and glycolipids. There are four types of mammalian sialidases,

designated as NEU1, NEU2, NEU3, and NEU4, encoded by different genes differ-

ing in their major subcellular localization and enzymatic properties. Each has been

found to play a unique role depending on its particular properties and to behave in a

particular manner in cancers. Sialidases are involved in regulation of various

signaling pathways critical to normal homeostasis and control of proliferation,

differentiation, cell adhesion, and motility, so that dysregulation can contribute to

tumor initiation, promotion, and progression. Human sialidases, thus, may provide

potential targets for cancer diagnosis and therapy. The present review briefly

summarizes our recent results on aberrant expression and roles of mammalian

sialidases in cancers.

Keywords Sialidase • Sialic acid • Cancer • Progression • Invasion • Metastasis •

Ganglioside • Glycoprotein • Transmembrane signaling

3.1 Introduction

Sialic acids are considered to play important roles in various biological processes,

mainly through changing the conformation of glycoproteins, and by recognizing

and masking of biological sites of functional molecules. Sialic acids show differ-

ences in quantity as well as structure during cell differentiation, proliferation, and

carcinogenesis and may contribute as virulence factors in bacterial and viral

infection. The removal of sialic acids catalyzed by sialidase (EC 3.2.1.18, also

called neuraminidases), therefore, exerts great influence on many pathophysiolog-

ical phenomena. Sialidases exist in common in metazoan animals, from echino-

derms to mammals, and are also found in various microorganisms.
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The subject of cell surface sialic acids on cancer cells received much attention in

the 1960–1970s, and a large number of studies suggested increase in negative

surface charge determined by electrophoretic mobility to be correlated with

reduced adhesiveness of tumor cells. Incubation with bacterial sialidase can result

in decreased surface charge followed by suppression of malignancy, indicating an

importance of cell surface sialic acids to the cancer phenotype. Although bacterial

sialidases are quite different from cellular endogenous enzymes in mammals,

subsequent structural studies revealed that a general increase in branching of

asparagine-linked glycans, increase in the number and/or length of polylactosami-

noglycan chains, and increase in sialylation are often found in cell surface glyco-

proteins of malignant cells (Lau and Dennis 2008) and that altered sialylation of

glycolipids is also observed as a ubiquitous phenotype, associated with the appear-

ance of tumor-associated antigens, aberrant adhesion, and blocking of transmem-

brane signaling (Hakomori 2010). However, no definite conclusions could be drawn

on physiological links between sialic acid contents and malignant properties,

because of anomalous experimental results in many cases. To understand the causes

and consequences of aberrant sialylation, we have focused on mammalian

sialidases, which control the cellular sialic acid content in cooperation with

sialyltransferases. Sialidase expression levels indeed change in response to various

cellular phenomena and during carcinogenesis, and alteration of individual forms

can impact on tumor initiation, promotion, and progression (Miyagi et al. 2012).

Recent investigation of mammalian sialidases in cancer has uncovered important

information concerning the molecular basis of aberrant sialylation related to

malignancy.

3.2 Enzymatic Properties and Possible Functions

of Mammalian Sialidases

3.2.1 General Properties of Mammalian Sialidases

Observations on the sialidase activity of cancer cells provided the first clues that the

enzymes might be related to transformation and tumor invasiveness. However, it

remained uncertain whether the activities were due to the same or different types of

sialidase. Recent progress in molecular cloning has validated multiple forms of

mammalian sialidases and facilitated elucidation of their functional roles (Miyagi

and Yamaguchi 2012). Fundamental information on the four mammalian sialidases

is briefly covered here. They are known to be localized predominantly in lysosomes

(NEU1), cytosol (NEU2), and plasma membranes (NEU3), while a fourth sialidase

(NEU4) is found in lysosomes and/or in the mitochondria and endoplasmic retic-

ulum. However, more recent observations have revealed that they can vary their

subcellular localizations with particular cell conditions and stimuli, thereby partic-

ipating different cellular functions depending on their loci. In fact, NEU1 and
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NEU4 may mobilize to the cell surface under certain conditions, as well as NEU3,

and all contain several Asp boxes (-Ser-X-Asp-X-Gly-X- Thr-Trp-) and the Arg-

Ileu-Pro sequence, which are conserved in microbial sialidases, despite no overrid-

ing structural similarities to the mammalian enzymes. Distinctive behavioral dif-

ferences in response to inhibitors between mammalian and microbial sialidases are

suggestive of molecular variation. For example, regarding anti-influenza drugs,

Tamiflu (oseltamivir) was found to hardly affect any of the human sialidases

in vitro, even at 1 mM, and Relenza (zanamivir) significantly inhibited NEU3

and NEU2 only in the micromolar range, contrasting with the low nanomolar

concentrations in which activity of viral sialidases is blocked (Hata et al. 2008).

The sialic acid analog 2-deoxy-2,3-dehydro-N-acetylneuraminic acid (DANA),

Neu5Ac2en, is known to be a common inhibitor of almost all sialidases, but viral

and bacterial sialidases are ten times more sensitive than their mammalian coun-

terparts. Among human sialidases, the overall amino acid identity of NEU1 to the

other sialidases is relatively low (19–24 %), while NEU2, NEU3, and NEU4 show

34–40 % homology to each other. Regarding comparative expression levels, NEU1

generally shows the strongest expression, 10–20 times greater than those of NEU3

and NEU4, while NEU2 expression is extremely low and at most only four- to

ten-thousandth of the NEU1 value in a range of tissues (Hata et al. 2008), as

assessed by quantitative real-time RT-PCR using a standard curve for each

cDNA, although profiles differ among the human, rat, and mouse.

3.2.2 Sialidase NEU1

The lysosomal sialidase, NEU1, is involved in glycoconjugate catabolism in lyso-

somes, existing as a complex with a protective protein (carboxypeptidase A) and

β-galactosidase whose dissociation leads to sialidase inactivation (D’Azzo
et al. 1982; Galjart et al. 1988). The human NEU1 gene was identified as a major

histocompatibility complex (MHC)-related sialidase gene responsible for sialidase

deficiency (Bonten et al. 1996; Pshezhetsky et al. 1997; Milner et al. 1997). Taking

advantage of the SM/J inbred strain of mice carrying a defective sialidase allele, the

mouse Neu1 gene was mapped near the H-2D end of the major histocompatibility

complex (MHC) on chromosome 17 by linkage analysis, a region which is syntonic

to human MHC on chromosome 6. NEU1 is linked to two neurodegenerative

lysosomal storage disorders, sialidosis and galactosialidosis (d’Azzo and Bonten

2010). The former is caused by defects in genomic DNA, including frameshift

insertions and missense mutations, and the latter features a combined deficiency of

the sialidase and β-galactosidase due to the absence of a functional protective

protein. NEU1 possesses narrow substrate specificity, with a synthetic substrate,

4-methylumbelliferyl-neuraminic acid (4MU-NeuAc), oligosaccharides, and gly-

copeptides serving as good substrates in in vitro assays. Sialyloligosaccharides

become increased in sialidosis patients’ urine and fibroblasts. However, recent

observations revealed various subcellular distribution in plasma membrane as
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well as within lysosomes under conditions of cell stimulation. In line with these

findings, NEU1 was found to negatively regulate lysosomal exocytosis, a cellular

process for the recruitment of lysosomes to the plasma membrane, resulting in an

increase in extracellular proteolytic activity (Yogalingam et al. 2008). NEU1 is also

involved in cellular signaling for immune responses and elastic fiber assembly

through transportation to plasma membranes and contributes to the regulation of

phagocytosis in macrophages and dendritic cells through the desialylation of

surface receptors (Pshezhetsky and Hinek 2011). Furthermore, NEU1 plays an

essential role for regulation of cell migration and invasion by desialylation of cell

surface glycoproteins including β4-integrin, leading to suppression of cancer

metastasis (Uemura et al. 2009).

3.2.3 Sialidase NEU2

NEU2 was the first mammalian sialidase for which cDNA cloning was achieved

(Miyagi et al. 1993). The human ortholog was cloned from a genomic library of

human skeletal muscle (Monti et al. 1999) and the three-dimensional structure was

determined by X-ray crystallography (Chavas et al. 2005). In general, the occur-

rence of glycoconjugates in the cytosol may be considered as an unusual event,

probably because of its lack of involvement in major glycosylation pathways.

However, there are many examples of delivery of misfolded glycoproteins from

the endoplasmic reticulum (ER) into the cytosol via the ER-associated degradation

(ERAD) pathway, of free oligosaccharides deglycosylated from ERAD substrate

glycoproteins by the cytosolic peptide:N-glycanase, and of gangliosides binding to

vimentin or other intermediate filaments, suggesting that NEU2 plays physiologi-

cally significant roles in the cytosol. NEU2 is able to hydrolyze a wide range of

glycoproteins, oligosaccharides, gangliosides, as well as 4MU-NeuAc at near-

neutral pH of about 6.0–6.5. It participates in muscle cell and neuronal differenti-

ation in murine cells, and the rat Neu2 gene contains two E-box pairs in the

50-flanking enhancer/promoter region (Sato and Miyagi 1995), known to be con-

sensus binding sites for muscle-specific transcription factors, and exhibits tran-

scriptional activity in murine myogenic cells. In PC12 cells the sialidase has been

suggested to participate in neuronal differentiation on the basis of nerve-growth

factor-induced transcriptional activation of the gene (Fanzani et al. 2004).

3.2.4 Sialidase NEU3

The plasma membrane-associated sialidase, NEU3, was first cloned from a bovine

brain library, based on the peptide sequence information from the purified enzyme

protein (Hata et al. 1998), as well as from a human brain cDNA library (Miyagi

et al 1999). The bovine NEU3 and its mouse ortholog were found to be
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predominantly located in plasma membranes by Percoll density gradient centrifu-

gation of cell homogenates and by immunofluorescence staining of transfected

cells. Unlike these sialidases, the human ortholog NEU3 is not always detected

on cell surface and can be moved to and concentrated at leading edges in response

to growth stimuli. With administration of the radio-labeled ganglioside GD1a to

murine Neu3-transfected cells, the enzyme was shown to hydrolyze ganglioside

substrates in intact living cells at a neutral pH mainly through cell-to-cell interac-

tions (Papini et al. 2004), further supporting a plasma membrane topology for

NEU3. The bovine and human enzymes almost specifically hydrolyze gangliosides,

whereas the murine enzyme acts on oligosaccharides, 4MU-NeuAc, and glycopro-

teins to a certain extent. Gangliosides GD3, GM3, GD1a, and even GD1b, but not

GM1 and GM2, are good substrates in the presence of Triton X-100. Unlike

the bovine and murine enzymes, with only one activity peak at a pH near 4.6, the

human enzyme shows two peaks at pH 4.5–4.8 and pH 6.0–6.5. Interestingly, the

activity at neutral pH is elevated by phosphatidic acid (Shiozaki et al. 2015) NEU3

was proven to positively regulate neurite formation in mice and in human neuro-

blastoma cells and to enhance regeneration in rat hippocampus neurons. The

sialidase was found to be located in rafts of neuroblastoma cells and in caveolae

of HeLa cells, closely associated with caveolin-1 (Wang et al. 2002), probably

through the caveolin-binding region, and was further shown to exert a great

influence on signaling pathway including EGFR, integrin, and IL-6 signaling

through ganglioside modulation (Miyagi et al. 2008).

3.2.5 Sialidase NEU4

The fourth sialidase, NEU4, was identified based on cDNA sequences in public

databases (Comelli et al. 2003; Monti et al. 2004; Seyrantepe et al. 2004;

Yamaguchi et al. 2005). With regard to the subcellular localization of the human

ortholog, two different descriptions have been reported on the basis of gene

transfection studies: one demonstrated targeting to the lysosomal lumen and the

other to mitochondria and endoplasmic reticulum. The human enzyme seems to

consist of isoforms differing in the presence or absence of 12 N-terminal amino acid

residues which act in mitochondrial targeting, so that the long form may be in

mitochondria and the short form in endoplasmic reticulum (Yamaguchi et al. 2005).

The isoforms are also differentially expressed in a tissue-specific manner, the brain,

muscle, and kidney containing both and the liver and colon possessing predomi-

nantly the short form, as assessed by RT-PCR. The mouse enzyme also presents as

two isoforms (NEU4a and 4b) derived from alternating splicing (Shiozaki

et al. 2009a), and NEU4a possessing an additional 23 amino acid stretch at the

N-terminus exhibits lower enzymatic activity than NEU4b but interestingly more

efficient hydrolysis of polysialic acids on the neural cell adhesion molecule

(polySia-NCAM) (Takahashi et al. 2012). The mouse NEU4 gene is expressed

dominantly in the brain and is only found at very low levels in other tissues. NEU4
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possesses broad substrate specificity and, unlike other human sialidases, is capable

of acting on mucins and polySia-NCAM. It may be involved in neuronal cell

apoptosis, based on the observation that the NEU4 long form probably regulates

levels of the GD3, known to be an apoptosis-related ganglioside, in mitochondria of

neuroblastoma cells. In contrast to NEU3, NEU4 appears to negatively regulate

neurite formation in Neuro2a cells and hippocampal neuron.

3.3 Alteration of Sialidase Expression in Cancer

Previous observations on the sialidase activity of cancer cells suggested a close link

of mammalian sialidases with the malignant phenotype. For example, alterations of

the sialidase activity against gangliosides were described as associated with malig-

nancy in 3T3-transformed cells (Yogeeswaran and Hakomori 1975) and also in

BHK-transformed cells (Schengrund et al. 1973). In mouse epidermal JB6 cells

exposed to TPA and in their anchorage-independent transformants, decreased

sialidase activity in the lysosomal fractions and contrasting increased activity in

plasma membrane fractions were found as compared with the corresponding activ-

ities in the untreated JB6 cells (Miyagi et al. 1990). After validation of four types of

mammalian sialidase by the development of gene cloning, our focus has been on

identification of which sialidases are involved in alteration in cancer. Endogenous

activity levels can be estimated using a differential assay procedure for each

sialidase mainly based on its substrate specificity and major subcellular localiza-

tion, in combination with measurement of mRNA levels by RT-PCR. Sometimes it

is difficult to distinguish among forms because of their redundancy in their bio-

chemical properties, but in most cases, the activity level has been found to be

parallel the mRNA level.

When the sialidase expression level was evaluated in human cancers by activity

assays and quantitative RT-PCR, NEU3 exhibited remarkable upregulation in

colon, prostate, ovary, and renal cancers (Miyagi et al. 2012) but downregulation

in acute lymphoblastic leukemia (Mandal et al. 2010). In contrast, NEU1and NEU4

showed a tendency for reduced expression in colon cancer, and NEU2 has proved to

be hardly detectable in human normal and even cancer tissues. The mRNA level of

NEU3 in surgical specimens of human colon cancer was found to be increased in all

tissue specimens (n¼ 50) by 3- to 100-fold as compared with that in the adjacent

noncancerous mucosa (Kakugawa et al. 2002). In-situ hybridization analysis

showed NEU3 expression in the epithelial elements of adenocarcinomas. On the

other hand, NEU4 showed a marked decrease in mRNA level in tumors as com-

pared with nontumor mucosa, the average reduction being 2.8-fold, although a wide

variety of values were obtained (Yamanami et al. 2007). Significant elevation of

sialidase activity against gangliosides has also been observed in tumor tissues

(8.9� 0.2 to 5.7� 0.1 units/mg protein, relative to mucosa). Although nontumor

mucosa contained the higher gangliosides activity than expected, it is probably due

to relatively high NEU4 expression in the mucosa. This implies that most of the
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ganglioside sialidase activity observed in the cancerous tissues might actually be

relevant to NEU3. A recent study (Yamaguchi et al. 2010) on NEU3 gene expres-

sion provided evidence of diverse regulation by Sp1/Sp3 transcription factors

binding to alternative promoters. One of the mechanisms of NEU3 upregulation

in cancers, therefore, may be attributed to transcriptional regulation by Sp1/Sp3

factors, which have been documented to play critical roles in regulating the

transcription of genes involved in cell growth control and tumorigenesis (Wierstra

2008). In fact, NEU3 expression exhibits good correlations with those of Sp1 or Sp3

in cancer, implying a promoting role in the gene transcription. The mechanism of

altered expression of NEU1 and NEU4 remains largely unknown.

3.4 Sialidase in Cancer Initiation and Promotion

3.4.1 Observations in Genetically Engineered Mouse Models

A possible role of NEU3 in promoting tumorigenesis in vivo has been demonstrated

in human NEU3 transgenic mice treated with a carcinogen, azoxymethane for

induction of precancerous colonic aberrant crypt foci (ACF) as shown in Fig. 3.1

(Shiozaki et al. 2009b). ACF were induced in the mice significantly more frequently

than in their control wild-type counterparts. Enhanced phosphorylation of EGF

receptor, Akt, and ERK and upregulation of Bcl-xL protein were observed in the

transgenic colon mucosa, but no changes were found in cell proliferation,

suggesting that the increased ACF formation was due to suppression of apoptosis.

Thus, NEU3 upregulation may be important to the promotion stage of colorectal

carcinogenesis in vivo. When Neu3-deficient mice were exposed to dimethylhy-

drazine, there were no differences in the incidence or growth of tumors from wild-

type mice. On the other hand, the Neu3-deficient mice were less susceptible to

colitis-associated colon carcinogenesis induced by azoxymethane and dextran

sodium sulfate, indicating an involvement of NEU3 in inflammation-dependent

tumor development (Fig. 3.2) (Yamaguchi et al. 2012). These results suggested a

role of NEU3 in tumor promotion, and recent investigations indeed have demon-

strated the evidence for its critical involvement in all the processes in tumorigenesis

including tumor initiation, promotion, and progression (Fig. 3.3), as described

below.

3.4.2 Anchorage-Independent Growth

NEU1 and NEU3 appear to have opposing actions in initiation of anchorage-

independent growth of cancer cells. NEU1 transfection into murine melanoma

B16 cells resulted in diminished overall and anchorage- independent growth, and
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increased sensitivity to apoptosis induced by suspension culture or serum depletion,

compared with parental and control cells (Kato et al. 2001). Transfectants

expressing the highest sialidase activity exhibited the greatest reduction in

anchorage-independent growth.

In contrast to NEU1, downregulation of NEU3 in colon cancer cells was found to

cause decreased colony formation, chemosensitivity, anchorage-independent

growth, and in vivo tumor growth in nude mice. This complements the findings

for association of NEU3 with augmented malignant properties including increased

cell migration, invasiveness, and cell survival, through activation of Ras/ERK

signaling described below. Our recent data for stem-like characteristics and tumor-

igenic potential also provided evidence of a close link between NEU3 expression

and Wnt/β-catenin signaling in colon cancer cells (Takahashi et al. 2015). The

available data strongly suggests NEU3 participation in tumor initiation and promo-

tion, since constitutive activation of Wnt/β-catenin signaling is implicated in the

maintenance of cancer stem cells and initiation of the process of colon carcinogen-

esis (Clevers 2006).

AOM+ dextran sulfate treatment 
Neu3 Knock out C57BL6 Wild

wild                                          KO
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Examination of tumor incidence

wild               KO
(n=6)            (n=8)

a b

Fig. 3.2 Reduced susceptibility to colitis-associated colon carcinogenesis in Neu3 knockout mice

(Yamaguchi et al. 2012). (a) Macroscopic photograph of dissected colons of dextran sulfate and

AOM-treated wild-type and Neu3 knockout mice. Tumors that developed at the distal ends of

colons are indicated by arrowheads. (b) Micrographs of the colon adenocarcinoma. Sections from

paraffin-embedded tumors were stained with hematoxylin-eosin. Bars, 0.1 mm
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3.4.3 Cell Apoptosis

A close link between NEU3 and cell survival has been revealed by silencing or

overexpression of the encoding gene in various human cancer cells (Wada

et al. 2007). Silencing caused apoptosis without specific stimuli, accompanied by

decreased Bcl-xL and increased caspase, mda7 (melanoma differentiation associ-

ated gene-7) and GM3 synthase mRNA levels in HeLa cells, whereas

overexpression resulted in the opposite effects. Human colon and breast carcinoma

cell lines, HT-29 and MCF-7 cells, were similarly affected by treatment with NEU3

siRNA, but interestingly noncancerous human WI-38 and NHDF fibroblasts and

NHEK keratinocytes showed no significant changes. NEU3 siRNA was found to

inhibit and NEU3 overexpression to stimulate Ras activation with consequent

influence on ERK and Akt. Ras activation by NEU3 was largely abrogated by

PP2 (an src inhibitor) or AG1478 (an EGFR inhibitor), in line with the finding that

siRNA introduction reduced the phosphorylation of EGFR whereas overexpression

promoted its phosphorylation in response to EGF. The fact that NEU3

co-immunoprecipitates with EGFR and EGF stimulation yields a higher amount

of immunoprecipitable NEU3 further indicates that it suppresses apoptosis of

cancer cells by promoting EGFR phosphorylation, probably through its association

with EGFR and consequent activation of Ras cascades, especially via the Ras/ERK

pathway. Colon cancer tissue specimens and cancer cells exhibit marked accumu-

lation of lactosylceramide, a possible NEU3 product, and addition of the glycolipid

Normal cells Cancer cellsMutated cells
Initiator

NEU3

Tumor initiation Tumor promotion 
and progression

Promoter

NEU3

Invasion 
Motility 
Survival

NEU3 TG mice
(enhanced ACF formation)
Neu3  KO mice

(increased tumor incidence)

Fig. 3.3 Possible involvement of NEU3 in cancer initiation, promotion, and progression
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to the culture reduced the number of apoptotic cells during sodium butyrate

treatment (Kakugawa et al. 2002). These results indicate that high expression of

NEU3 in cancer cells leads to protection against programmed cell death, whereas

decrease in NEU3 induces apoptosis, implying a critical role in the survival of

cancer cells through ganglioside modulation. Thus, siRNA targeting of the enzy-

matic protein could have utility for gene-based therapy of human cancers.

The fact that NEU4 mRNA levels are markedly decreased in human colon

cancer may also have important implications for cell apoptosis (Yamanami

et al. 2007). In cultured human colon cancer cells, the enzyme was found to be

upregulated in early stages of apoptosis induced by either the death ligand TRAIL

or serum depletion. Transfection of NEU4 into DLD-1 and HT-15 colon adenocar-

cinoma cells resulted in acceleration of apoptosis and decreased invasiveness and

cellular motility. siRNA-mediated NEU4 targeting, on the other hand, caused a

significant inhibition of apoptosis.

NEU2 may also be involved in cell apoptosis, NEU2 gene introduction into

leukemic K562 cells being associated with increased sensitivity to apoptotic stimuli

by impairing Bcr-ABl/Src kinase signaling (Tringali et al. 2007). However, it is

uncertain how NEU2 actually functions in human tissues and cells, because of its

extremely low expression, even in cancer cells. The biological and phylogenic

significance of markedly lower expression of NEU2 in man as opposed to other

species remains to be elucidated.

3.5 Sialidase in Cancer Progression and Metastasis

Investigation of NEU3 upregulation in cancers also suggested involvement in

progression. Immunohistochemical analysis of surgical specimens using an anti-

NEU3 monoclonal antibody confirmed upregulation in several human cancers. In

prostate cancer, the intensity of the histochemical staining showed a positive

relationship with the Gleason score, related to the pathological progression stage

(Kawamura et al. 2012). Furthermore, in head and neck cancer, increase in the

mRNA and activity levels significantly correlated with the histological differenti-

ation grade, lymphatic invasion, and lymph node metastasis (Shiga et al. 2015). In

contrast to NEU3, NEU1 and NEU4 downregulation is likely to relate to increased

progression and metastasis, for example, to venous invasion involved in hematog-

enous metastasis.

3.5.1 Cell Migration and Invasion

An increased NEU3 mRNA level has been reported in renal cell carcinomas (RCC)

(Ueno et al. 2006), as compared with those in adjacent noncancerous tissues,

significantly correlated with elevation in the expression of interleukin (IL)-6, a
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pleiotropic cytokine which has been implicated in the immune responses to and

pathogenesis of several cancers. Activity of the NEU3 sialidase in RCC in connec-

tion with IL-6 function was investigated using tumor tissues obtained from RCC

patients and renal cancer ACHN cells. Upregulation of NEU3 in the tumor tissues

was strongly linked to the IL-6 expression level; NEU3 in the renal cancer ACHN

cells was activated by IL-6 in a positive feedback manner on the cytokine function,

mainly through the PI3K/Akt pathway, resulting in suppression of apoptosis and

promotion of migration. In human RCC ACHN cells, IL-6 treatment significantly

enhanced endogenous sialidase activity and also increased the NEU3 promoter

luciferase activity 2.5-fold. NEU3 transfection or IL-6 treatment both resulted in

the suppression of apoptosis or promotion of cell motility, and their combination

exerted synergistic effects. Glycolipid analysis revealed a decrease in the expres-

sion of the ganglioside GM3 and increase in that of Lac-cer after NEU3 transfec-

tion. Addition of these lipids to the culture also apparently affected the cellular

apoptosis and motility. The results indicate that NEU3 activated by IL-6 promotes

signaling largely via the PI3K/Akt cascade in a positive feedback manner and

contributes to the expression of the malignant phenotype in renal cancer.

As noted above, upregulation of NEU3 was also detected in prostate cancer,

showing a significant correlation with malignancy (Kawamura et al. 2012). In

androgen-sensitive LNCaP cells, forced overexpression of NEU3 significantly

increased levels of a progression-related transcription factor EGR-1, androgen

receptor (AR), and PSA both with and without androgen, the cells becoming

sensitive to androgen. The NEU3-mediated induction was abrogated by inhibitors

of PI-3 kinase and MAPK, increased phosphorylation of AKT and ERK1/2 in

NEU3-overexpressing cells being confirmed. To understand further how NEU3

causes activation of AKT and ERK followed by elevation of EGR-1, AR, and PSA

expression, we observed the upstream signaling including EGFR family expression,

which has been proposed to escape androgen regulation and switch to androgen-

independent cell growth (Traish and Morgentaler 2009). Consistent with other

types of cancer, NEU3 was found to activate the PI3K and MAPK pathways,

associated with increase in mRNA and protein levels of EGFR and ERBB2 under

androgen-deficient conditions. For development of hormone-refractory progres-

sion, enhanced AR mRNA and protein expression is known as a critical factor in

conversion to a hormone-refractory state in the majority of patients who do not have

AR mutations or amplification. The mechanism of increased AR expression

includes cross-talk between ARs and growth factor receptors such as EGFR and

ERBB2. In this context, NEU3 upregulation may trigger off activation of AR

pathway probably via EGFR family, leading to conversion to a hormone-refractory

state. In fact, NEU3 siRNA introduction caused reduction of growth of androgen-

independent PC-3 cells in culture and of transplanted tumors in nude mice

(Kawamura et al. 2012). These data suggest that NEU3 regulates progression of

prostate cancer through androgen receptor signaling. Interestingly, in the sera of

prostate cancer patients, ganglioside sialidase activity has been detected which is

generally low or lacking in the healthy subjects. Preliminary results have indicated

no activity with 4MU-NeuAc, a good substrate for sialidases other than human
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NEU3, and furthermore the protein responsible for the activity could be

co-immunoprecipitated with anti-NEU3 antibodies, suggesting its activity is origi-

nated from NEU3 (Hata et al. 2015). Another report by Li et al. (2011) on NEU3

effect in prostate cancer PC-3 cells also demonstrated knockdown to significantly

decrease invasion and migration accompanied with reduced expressions of the matrix

metalloproteinases MMP-2 and MMP-9, and mice injected with PC-3 cell tumors

developed fewer bone metastases on treatment with the NEU3 siRNA than controls.

While NEU4 mRNA levels showing marked decrease in human colon cancer

were not significantly correlated with the histological differentiation or the patho-

logical stage, the T/NT (tumor-to-nontumor expression ratio) value remained

significant at P¼ 0.025 with venous invasion between v0 (n¼ 28) and v1–3

(n¼ 13) (Yamanami et al. 2007). To elucidate the significance of NEU4

downregulation in colon cancer, sialyl-Lewis antigens, sialyl-Lea and sialyl-Lex,

as endogenous substrates for the sialidase were investigated (Shiozaki et al. 2011),

because they are utilized as tumor markers, and their increase in cancer is associ-

ated with tumor progression. NEU4 was found to hydrolyze the antigens in vitro

and decrease cell surface levels much more effectively than other sialidases.

Western blot, thin-layer chromatography, and metabolic inhibition studies of

desialylation products revealed NEU4 to preferentially catalyze sialyl-Lewis anti-

gens expressed on O-glycans. Cell adhesion to and motility and growth on

E-selectin were significantly reduced by NEU4. Furthermore, E-selectin stimula-

tion of colon cancer cells enhanced cell motility through activation of the p38/

Hsp27/actin reorganization pathway, whereas NEU4 attenuated the signaling. It is

interesting to note in this context that the sialidase did not change the level of a

normal glycan, disialyl-Lea, generally expressed in nonmalignant epithelial cells.

Although it has been proposed that glycosyltransferases are responsible for synthe-

sis of these antigens, expression levels of the encoding genes have not always been

found to correlate with sialyl-Lewis antigen contents, with even contradictory

expression noted. It is feasible that desialylation by NEU4 may occur specifically

with cancer-related sialyl-Lewis antigens, and thus maintenance of the normal

glycan level can be achieved in colon mucosa highly expressing NEU4. PolySia-

NCAM has been reported to be expressed in malignant tumors, including gliomas

and lung and colon cancers, as well as nervous tissue, the presence being correlated

with tumor development, invasion, and poor prognosis (Tanaka et al. 2001; Suzuki

et al. 2005). Considering regulation of polySia by NEU4 (Takahashi et al. 2012), it

is likely that downregulation of the enzyme might be involved in its presence in

cancers, at least in the colon.

3.5.2 Cancer Metastasis

Various cancers show general tendencies for decreased NEU1expression. Interest-

ingly, there is a good inverse relationship with metastatic ability, as evidenced with

the results for several cell lines of different malignant potential. After src transfor-

mation, 3Y1 fibroblasts showed decrease in the sialidase activity, and furthermore,
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v-fos transfer to the transformed cells caused even more severe effects with

acquisition of higher lung metastatic potential (Miyagi et al. 1994). In this regard,

it is interesting that various lysosomal enzymes other than sialidase were not

appreciably affected by the transformation, suggesting that the alteration was

specific for the sialidase. In mouse adenocarcinoma colon 26 cells, compared to

low metastatic NL4 and NL44 cell lines, highly metastatic NL17 and NL 22 cells

exhibited lower expression of NEU1 sialidase, accompanied by higher levels of

sialyl Lex and GM3 (Sawada et al. 2002). Introduction of the murine Neu1 gene into
Bl6 melanoma cells resulted in suppression of experimental pulmonary metastasis

and tumor progression, with reduction of anchorage-independent growth and

increased sensitivity to apoptosis (Kato et al. 2001). Since metastatic potential

did not parallel the sialic acid contents in these cells, it is likely that altered sialidase

expression was directly involved.

Overexpression of the human ortholog gene NEU1 with protective protein

brought about similar alterations of human cancer cells to those observed in the

murine cells, with suppressed cell migration and invasion in colon adenocarcinoma

HT-29 cells, whereas its knockdown resulted in the opposite. When NEU1-
overexpressing cells were injected transsplenically into mice, in vivo liver meta-

static potential was significantly reduced. One of the target molecules for NEU1

was found to be integrinβ4, undergoing desialylation and decreased phosphoryla-

tion associated with attenuation of FAK and ERK1/2 signaling and downregulation

of matrix metalloproteinase-7 (Uemura et al. 2009). Biotinylation and immunoflu-

orescence staining exhibited some NEU1 molecules to be at the cell surface

accessible to the integrin. A microRNA, miR-125b, has been found to promote

growth of prostate cancers in both intact and castrated male nude mice by

downregulating proapoptotic and tumor suppressor genes (Shi et al. 2011). Inter-

estingly, miR-125b targets eight transcripts including NEU1 as suppressor of

metastasis, consistent with the NEU1 effects described above.

When the rat Neu2 gene was transfected into highly metastatic mouse colon

26 adenocarcinoma cells, intravenous injection into syngeneic mice was associated

with marked reduction in lung metastasis, invasion, and cell motility, with a

concomitant decrease in sialyl Lex and GM3 levels (Sawada et al. 2002). Treatment

of the cells with antibodies against sialyl Lex- and GM3-affected cell adhesion

and/or cell motility, providing direct evidence that desialylation of these molecules,

as natural substrates of the sialidase, is involved in the suppression of metastasis. As

described earlier, sublines of cells featuring low spontaneous metastasis possessed a

relatively high level of endogenous NEU1 sialidase, compared with highly meta-

static cells, suggesting that even at endogenous levels, rat and murine Neu2 gene

expression may exert a negative influence on cell invasion, motility, and metastasis.

Independent of sialidase expression level, on the other hand, highly metastatic cells

exhibited rather decreased sialic acid contents, both total and cell surface, as

compared to low metastasis counterparts.

These results all together indicate that reduced levels of sialidases such as NEU1

and NEU2 may be a determining factor for metastatic ability, independent of the

cell type and the sialic acid content. In addition, NEU4 also may play a role in

regulation of metastasis through efficient hydrolysis of sialyl-Lewis antigens,
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because decreased NEU4 observed in human colon cancer was significantly corre-

lated with venous invasion and therefore to the development of hematogenous

metastasis.

3.6 Conclusions and Perspectives

Recent investigations of mammalian sialidases in cancer have greatly clarified the

molecular basis and significance of aberrant sialylation. Altered expression of the

sialidases indeed exerts marked influence on the malignancy, through desialylation

of endogenous glycoconjugates, probably not simply dependent on the sialic acid

content. In general, the three sialidases NEU1, NEU2, and NEU4 appear to be

downregulated in carcinomas, and this facilitates metastasis by changing mainly

adhesion mechanisms, whereas NEU3 upregulation observed in various carcinomas

augments probably all the processes contributing to tumorigenesis, including initi-

ation, promotion, and progression (Fig. 3.3). Alteration of sialidases, therefore,

opens up potential applications in cancer diagnosis and cure as illustrated in

Fig. 3.4. In particular, taking advantage of its limited effects on normal cells,

downregulation of NEU3, as a key regulator for cancer cell survival, by treatment

Up-regulation 
of NEU3

Down-regulation 
of NEU3

Cancer Diagnosis
Cancer Cell

Cancer progression 

Cancer regression
Cancer therapy

Enhanced malignant phenotype
Suppression of cell apoptosis and differentiation

Increased cell migration and invasion)

Reduced malignant phenotype

NEU3 specific antibody
NEU3 siRNA

NEU3 specific inhibitor

Up-regulation 
of NEU1, NEU4

Down-regulation 
of NEU1, NEU4

Fig. 3.4 Relationship of three human sialidases in human cancer and a possible role of NEU3 as a

potential target for cancer diagnosis and therapy. In colon cancer, downregulation of NEU1 and

NEU4 and upregulation of NEU3 result in tumor progression through enhancing malignant

properties, whereas downregulation of NEU3 by a specific siRNA, antibody, or inhibitor could

lead to cancer regression
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with specific siRNAs, antibodies or inhibitors, might cause cancer cell apoptosis

and lead to prevention of cancer progression.
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Chapter 4

Regulatory Mechanisms for Malignant
Properties of Cancer Cells with Disialyl
and Monosialyl Gangliosides

Koichi Furukawa, Yuki Ohkawa, Yasuyuki Matsumoto, Yuhsuke Ohmi,
Noboru Hashimoto, and Keiko Furukawa

Abstract Using mouse and human monoclonal antibodies, a number of cancer-

associated antigens were defined, and many of their epitopes have turned out to be

carbohydrates. Besides as a tumor marker, some of them really play roles as

regulatory molecules on the cell membrane. Generally, disialyl glycosphingolipids

(disialyl gangliosides) such as GD3 and GD2 transduce activating signals to

enhance malignant properties of cancer cells, while monosialyl gangliosides such

as GM1 transduce suppressive signals on cancer properties. In particular, roles of

GD3 in melanomas and GD2 in small cell lung cancers, osteosarcomas, and breast

cancers have been well investigated. Recently, roles of GM1 in the suppression of

cancer metastasis have been demonstrated using a murine lung cancer system.

These regulatory functions of cancer-associated glycolipids are performed at mem-

brane microdomains named glycolipid-enriched microdomain (GEM)/rafts. As

mechanisms for these regulatory functions, molecular interactions between glyco-

lipids and various membrane proteins existing in the vicinity of them at GEM/rafts

are of importance and now under vigorous investigation.
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4.1 Introduction

Unique carbohydrates on proteins and lipids expressed in cancer cells have been

considered to be cancer-associated antigens and some of them have been used as

tumor markers in the clinical fields (Brockhausen 1999; Hakomori 2002a; Aksoy

and Akinci 2004). Mechanisms for evolution of cancer-associated glycosylation

have been also investigated in a number of researchers (Dall’Olio et al. 2012;

Kannagi et al. 2008). Some of those antigens have been used as targets of tumor

immunotherapy (Durrant et al. 2012). Main gangliosides and their synthetic path-

way were shown in Fig. 4.1.

GD3GM3

Cer Cer
GM2 GD2

GM1

GD1a

GD1b

GT1b

Cer Cer
GM3 
synthase GD3 

synthase

Cer Cer

GM1/GD1b/GA1 
synthase

GM2/GD2 
synthase

: glucose,
: galactose,

: sialic acid

: N-acetylgalactosamine,

Cer : ceramide, 

Cer

Cer

Glc-Cer

LacCer
Gal-T5/6

GCS

Cer

a-series b-series
Fig. 4.1 Synthetic pathway of major gangliosides described in this review. GD3 synthase

(ST8SIA1) is a key enzyme for the synthesis of b-series gangliosides, such as GD3 and GD2
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Gangliosides, sialic acid-containing glycosphingolipids, have been considered

to be useful markers for many neuroectoderm-derived cancers and some kind of

leukemias (Old 1981; Siddiqui et al. 1984). For instance, ganglioside GD3 was

defined as a melanoma-associated antigen (Portoukalian et al. 1979), and GD2 was

identified as a neuroblastoma-associated ganglioside (Saito et al. 1985). GD2 was

also reported to be a characteristic antigen for small cell lung cancers (Cheresh

et al. 1986), osteosarcomas (Heiner et al. 1987), breast cancers (Cazet et al. 2010),

and metastatic stage of melanomas (Thurin et al. 1986). Many of these disialyl

gangliosides have been shown to play roles in the enhancement of malignant

properties in cancer cells with some exception (Malisan and Testi 2002). On the

other hand, monosialyl gangliosides, such as GM3 and GM1, have been reported to

play roles for the suppression of malignant properties of cancer cells (Furukawa

et al. 2012b). Thus, gangliosides appear to modulate cell signaling with positive and

negative directions (Fishman and Brady 1976; Nagai 1995; Kaucic et al. 2006).

Changes in cell signaling due to the expression of various gangliosides were

summarized in Fig. 4.2. Although details in the mechanisms for the distinct effects

between disialyl and monosialyl gangliosides on cancer properties are largely

unknown, modes of action in membrane microdomains, i.e., lipid rafts or

glycolipid-enriched microdomain (GEM)/rafts, might be crucially different

depending on the quantity of sialic acid(s) on glycosphingolipids (Hakomori

et al. 1998).

Implication of GEM/rafts in cancer cells has been increasingly recognized

(Simons and Ikonen 1997; Patra 2008; Simons and Gerl 2010). Among proposed

functions of lipid rafts (Simons and Ikonen 1997), roles in the regulation of signal

transduction have been intensively investigated. Pioneering studies on GEM/rafts

(Hakomori et al. 1998; Hakomori 2002b) have given insights into glycobiological

researches. In particular, molecular interaction between proteins and proteins or

proteins and lipids in GEM/rafts might be the most intriguing and important issue to

be solved in cancer biology (Simons and Gerl 2010).

Disialyl gangliosides Monosialyl gangliosides

GD3 (melanoma): growth signals↑, integrin signals↑
p-FAK↑, pp130Cas↑, p-paxillin↑, p-Yes↑

GD3 (PC12): cell growth↑, p-ERK1/2↑
GD2 (SCLC): growth signals↑, invasion↑ 

α-GD2 mAb → p-FAK ↓, p-p38↑ (anoikis)
GD3/GD2              invasion↑, migration↑, p-FAK↑,  
(osteosarcoma):   p-paxillin↑, p-Lyn↑

GD2 (breast ca):   p-c-MET↑, p-Akt↑, p-ERK1/2↑

GM2 (Lewis LC):   metastasis ↓,  p-FAK ↓
GM1 (melanoma): growth ↓, migration ↓
GM1 (Lewis LC):   metastasis ↓, MMP-9 secretion/activity↓

ppGalNAcT-13 ↓, integrin signals ↓
GM1 (Swiss3T3):  PDGF signals ↓
GM1 (PC12): NGF signals ↓, p-ERK1/2↓
GM3 (A431):         p-EGFR↓

ganglioside (cancer): signal change ganglioside (cancer): signal change 

Cell growth,  Invasion, Metastasis  

Fig. 4.2 Enhanced signaling under GD3 expression in melanoma cells. GD3 expression-induced

convergence of two major signals, i.e., adhesion signals mediated by integrins and growth signals

triggered by growth factor/receptors, leading to synergistic effects on cell adhesion, invasion,

growth, and migration and resistance to apoptosis
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Cancer metastasis is a major cause of death in almost all human cancers. If

metastasis can be suppressed, prognosis of cancer patients should be much better

(Yilmaz et al. 2013). However,mechanisms for the development of cancermetastasis

have not beenwell understood.Metastasis is a complex event and consists ofmultiple

steps such as expansion and invasion into surrounding tissues, release from primary

tumor tissues, intravasation, reach distant organs via blood/lymph stream, adhesion

to vascular walls, extravasation, and formation of new foci (Meng et al. 2012).

Although a number of studies on ganglioside expression and their implications in

cancer properties have been reported, clear evidence to indicate that gangliosides are

involved in cancer metastasis can be scarcely found in the past articles.

In this review, involvement of sugar chains in malignant properties of cancer

cells and molecular mechanisms for their actions were summarized with focus on

our recent results and related reports from other laboratories.

4.2 Contrastive Effects of GM1 Synthase and GD3
Synthase in PC12 Cells

In a rat pheochromocytoma line, PC12, remodeling experiments of glycolipid

expression pattern were performed. PC12 responds well to nerve growth factor

(NGF) by neurite extension and activation of Ras/Raf/MEK/MAPK signaling

pathway (Vaudry et al. 2002) and has been frequently used for the studies of the

signaling of neuronal cell differentiation (Greene and Tischler 1976). While PC12

died within several hours when serum was deprived from culture medium, addition

of ganglioside GM1 could rescue the cells from apoptosis, suggesting its role as a

neurotrophic factor (Ferrari et al. 1995). Furthermore, GM1 bound a NGF receptor,

TrkA, and enhanced differentiation of PC12 (Mutoh et al. 1995). However, these

results were obtained by observing effects of exogenously added gangliosides into

the culture medium. Effects of endogenously generated gangliosides were exam-

ined by transfecting GM1/GD1b/GA1 synthase (B3galt4) cDNA (Miyazaki

et al. 1997) and GD3 synthase (ST8SIA1) cDNA (Haraguchi et al. 1994), showing

different results from those expected based on previous experiments.

Overexpression of GM1/GD1b/GA1 synthase cDNA resulted in the unrespon-

siveness to NGF (Nishio et al. 2004). Moreover, neither phosphorylation of TrkA

nor subsequent signaling molecules could be found after NGF treatment. Interest-

ingly, a dramatic alteration in the intracellular localization of TrkA and other

signaling molecules such as p75NTR and H-Ras was observed, i.e., a shift from

inside to outside of GEM/rafts. These results were not in accordance with previous

studies (Ferrari et al. 1995; Mutoh et al. 1995). Probably, relative GM1 levels on the

cell surface might be crucial for the determination of cell signaling caused by GM1.

On the other hand, overexpression of GD3 synthase cDNA resulted in the consti-

tutive activation of TrkA and Erk1/2 and unresponsiveness to NGF (Fukumoto

et al. 2000). These cells showed uncontrolled cell growth. GD3 synthase cDNA-
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transfected cells may represent the features of “neuronal stem cells” in which GD3

is a dominant ganglioside (Yanagisawa et al. 2005). Neuronal stem cells are defined

as neural progenitor cells that are enriched in fetal brain tissues and can be

differentiated into both neurons and glial cells such as astrocytes and oligodendro-

cytes. These results demonstrated that gangliosides regulate proliferation and

differentiation of neural cells by modulating cell signaling, and GM1/GD1b

synthase and GD3 synthase exert their actions to opposite directions as summarized

in Fig. 4.2.

4.3 Enhancing Function of Disialyl Gangliosides in Various
Cancer Cells

4.3.1 Malignant Melanomas

Gangliosides GD3 and GD2 (or GM2) have been considered as melanoma-

associated glycolipid antigens (Lloyd and Old 1989). Synthetic pathway of these

gangliosides was shown in Fig. 4.1. Since early biochemical analysis was reported

(Portoukalian et al. 1979; Carubia et al. 1984; Rodeck and Herlyn 1988; Hersey

1991), immunological studies using monoclonal antibodies have been rigorously

performed (Pukel et al. 1982; Thurin et al. 1986; Ravindranath et al. 1991). Not

only mouse mAbs but many human-origin mAbs reactive with melanoma gangli-

osides were generated (Yamaguchi et al. 1987; Irie and Morton 1986; Furukawa

and Lloyd 1990). Furthermore, genetic approaches have been increasingly

performed based on the expanded availability of cDNAs of glycosyltransferases

to examine the implication of gangliosides in cancers (Daniotti et al. 2013). The

first study on activated signals in GD3-expressing melanomas was reported in 2005

(Hamamura et al. 2005). Using a GD3-lacking mutant of SK-MEL-28, GD3

synthase cDNA-transfected cells were compared with control cells transfected

with an expression vector alone, and highly tyrosine-phosphorylated molecules

were searched in the transfected cells. Consequently, adaptor molecules, p130Cas

and paxillin, were identified to undergo stronger activation in GD3þ cells than in

GD3- cells (Hamamura et al. 2005). Subsequently, focal adhesion kinase (FAK)

was also identified as a critical molecule to be activated more strongly in GD3þ
cells (Hamamura et al. 2008). Furthermore, Src family kinase, Yes, was identified

as a kinase to be constitutively activated under GD3 expression (Hamamura

et al. 2011). All these molecules were shown to form a molecular complex in the

vicinity of cell membrane (Furukawa et al. 2006), and these molecules seemed to be

candidates for the molecular-targeted therapy of melanomas (Furukawa

et al. 2008). In addition to the signaling via growth factor/receptor, another signal-

ing pathway that is critical for cancer cell natures, adhesion-mediated signaling, is

also intimately regulated by gangliosides. GD3 expression enhanced cell adhesion

to various extracellular matrices (Ohkawa et al. 2010). Gene silencing of integrin
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(β1) resulted in marked reduction of phosphorylation levels of p130Cas, FAK, and

paxillin as well as of adhesion activity (Ohkawa et al. 2008). Interestingly,

copresence of adhesion signals and FCS (growth) signals was needed to induce

definite activation of p130Cas, FAK, and paxillin, suggesting their collaborative

mode of action. Furthermore, it was demonstrated that integrins shifted to

GEM/rafts only in GD3þ cells after serum stimulation, suggesting that interaction

of GD3 with integrins and/or these signaling molecules in GEM/rafts might gener-

ate signals that drive malignant properties of melanoma cells (Furukawa

et al. 2006). GEM/rafts (lipid rafts) are microdomains formed on the cell surface

containing high levels of cholesterol, sphingolipids, GPI-anchored proteins, and

some membrane molecules. They are usually prepared as detergent-resistant frac-

tions by sucrose density gradient ultracentrifugation of cell/tissue extracts with

Triton X-100. All these results were summarized in Fig. 4.3.

Fig. 4.3 Contrastive effects of monosialyl and disialyl gangliosides on the cell signals in various

cancer cells. Generally, disialogangliosides are frequently considered as cancer-associated carbo-

hydrate antigens and enhance malignant properties such as rapid cell growth, increased invasion

activity, and metastatic potential. On the other hand, monosialyl gangliosides generally suppress

these phenotypes
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4.3.2 Ganglioside GD2 in Small Cell Lung Cancers (SCLCs)

Expression analysis of gangliosides on human lung cancer cell lines revealed that

SCLC cells express GD2, while NSCLC cells mainly express GM2 (Yoshida

et al. 2001). Although these findings were reported many years ago (Hanibuchi

et al. 1996; Grant et al. 1996), the responsible glycosyltransferase gene for each

group was demonstrated for the first time in 2001. Namely, GM2/GD2 synthase was

expressed commonly in all cell types of lung cancers, while GD3 synthase was

expressed exclusively in SCLC cell lines (Yoshida et al. 2001) as shown in Fig. 4.1.

The most intriguing point was that anti-GD2 mAb induced apoptosis by reducing

tyrosine phosphorylation levels of FAK, leading to anoikis. Anoikis means a mode

of cell death due to loss of cell attachment in adherent cells. Binding of anti-GD2

mAb eventually induced phosphorylation of p38 and DNA ladder formation

(Aixinjueluo et al. 2005). Stable expression of short hairpin (sh) RNA against

GD3 synthase gene in lung cancer cell lines also resulted in the suppression of

cell growth and migration and DNA ladder formation (Ko et al 2006). These results

strongly encouraged the application of anti-GD2 mAbs for the treatment of SCLC

patients, since mere binding of mAb could induce apoptosis of cancer cell. The

combination therapy of SCLC with anti-GD2 mAb and chemotherapy reagents also

seemed very promising (Yoshida et al. 2002). Antibody therapy of SCLC targeting

GD2 (Zhan et al. 2013) or GD3 (Blackhall and Shepherd 2007) is now being

considered.

4.3.3 GD2/GD3 in Osteosarcoma

As reported previously (Heiner et al. 1987), majority of osteosarcoma cell lines

expressed high levels of GD2. Effects of expression of these disialyl gangliosides in

osteosarcoma cells were analyzed (Shibuya et al. 2012). GD2/GD3 expression

enhanced cell invasion and motility with increased activation of either FAK or

Lyn, leading to the activation of a common target, paxillin. Simultaneous knock-

down of FAK and Lyn completely suppressed phosphorylation of paxillin and

increased cell invasion and motility based on GD2/GD3 expression. These results

suggested cooperative effects of two parallel signaling pathways in osteosarcoma

cells. In contrast with melanoma cells, cell growth was not affected by the expres-

sion of disialyl gangliosides in osteosarcoma cells (Hamamura et al. 2005).

In accordance with these differences in the effects of GD3/GD2 expression on

the tumor phenotypes, intriguing differences in the cell adhesion were demon-

strated as analyzed by RT-CES. When four glycotypes of a osteosarcoma line

(GD3+, GD2+, GD3+/GD2+, GD2-/GD3-) were compared about their phenotypes

and signaling, GD3+/GD2+ cells did not show any adhesion as presented by cell

index in RT-CES, while these cells showed the strongest phosphorylation of

paxillin during cell “adhesion.” Interestingly, the intensity in the phosphorylation
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of paxillin and that in cell adhesion was completely opposite. This paradoxical

relationship between the weakest adhesion and the strongest activation of paxillin

in GD3+/GD2+ is hard to be explained at this moment (Furukawa et al. 2012a).

These results were quite contrastive with those observed in melanomas, in which

increased phosphorylation of p130Cas, paxillin, and FAK resulted in the enhanced

cell growth, invasion, and adhesion (Ohkawa et al. 2010).

4.3.4 GD2 in Breast Cancers

GD2 expression in breast cancer cell lines resulted in the increased cell prolifera-

tion and invasion (Cazet et al. 2010). Recently, GD2 was reported to be a stem cell

marker of breast cancers (Battula et al. 2012). As a mechanism for action of GD2,

activation of HGF receptor cMET in GD2þ cells was shown (Cazet et al. 2010). In

turn, expression of GD3 in melanoma cells did not increase cMET activation after

HGF treatment (Furukawa et al. 2014). Therefore, effects of disialyl gangliosides

were largely different depending on different cell lineages. In melanoma cells, it

was shown that GD3 expression resulted in the convergence and synergy between

HGF/cMET signals and adhesion signals in melanomas (Furukawa et al. 2014).

Effects of GD2 overexpression in melanomas remain to be examined, while its role

in the metastasis has been long expected (Thurin et al. 1986).

4.3.5 GD2/GD3 in Neuroblastomas, Gliomas, and Leukemia
Cells

Gangliosides in neuroblastomas have been long examined (Schengrund and

Shochat 1988). Indeed, neuroblastoma cells specifically express GD2, and there-

fore, anti-GD2 antibody therapy has been widely tried. Antibody therapies with

human-mouse chimeric antibody or mouse mAb 3F8 have been performed. Another

option with combination of mAb and other treatment such as cytokines (Fukuda

et al. 1998) or irradiation (Matthay et al. 2012) has been tried. Consequently,

antibody therapies performed during the disease remission can cause extension of

5-year survival and/or disease-free duration in severe cases (Raffaghello et al. 2003;

Castel et al. 2010; Parsons et al. 2013). Some of gangliosides have been noted as

cancer-associated antigens in gliomas (Fredman et al. 1986; Yates 1988; Wikstrand

et al. 1994). However, no clear expression patterns of gangliosides depending on

the histopathological tumor types or clinical stages of tumors have been demon-

strated. Ganglioside expression on human leukemia cells was reported since a long

time ago. GD3 was detected in T-cell acute lymphoblastic leukemia (T-ALL) cells

(Siddiqui et al. 1984; Merritt et al. 1987) and also peripheral T lymphocytes

activated by various reagents (Welte et al. 1987; Yamashiro et al. 1995). Adult
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T-cell leukemia cell lines and human lymphotropic virus type I-infected T cells also

expressed ganglioside GD2 (Furukawa et al. 1993), while leukemia cells from

patients with adult T-cell leukemia expressed significant levels of GD2 only after

culture in vitro (Okada et al. 1996).

4.4 Suppressive Effects of Monosialyl Gangliosides
on Malignant Signals

4.4.1 Suppressive Effects of GM1 Synthase in Mouse Swiss
3T3

As for anticancer property of GM1 synthase, several examples using GM1

synthase-transfected cell lines were reported by us. Swiss3T3 cells overexpressing

GM1 synthase showed lowered growth rates and reduced responses to PDGF

stimulation (Mitsuda et al. 2002). A shift of a PDGF receptor from GEM/rafts to

non-GEM/rafts with reduced phosphorylation levels was shown in GM1 synthase

cDNA-transfected cells (Mitsuda et al. 2002). This was the first example to dem-

onstrate that GM1 expression suppressed cancer properties in contrast to GD3/GD2

as shown in Fig. 4.3.

4.4.2 Suppressive Effects of GM1 Synthase in Human
Melanomas

In human melanomas, overexpression of GM1 synthase cDNA in a melanoma cell

line SK-MEL 37 also resulted in reduced cell growth and invasion activity (Dong

et al. 2010). Along with neo-expression of GM1 and GD1b in the transfected cells

of GM1 synthase cDNA, enrichment of GD3 in GEM/rafts was reduced, leading to

the dispersion of GD3 to non-GEM/raft fractions. Accordingly, cell growth rate and

invasion activity were decreased, suggesting the suppressive roles of GM1 synthase

and/or its products. Interestingly, ratios of gangliosides with saturated fatty acids in

GEM/rafts were reduced in GM1 synthase-transfected cells. A caveolae-specific

protein, caveolin-1, has been reported to generally suppress cell signals at lipid

rafts, although reverse effects were sometimes observed in some cancers (Williams

and Lisanti 2005). Changes in the intracellular distribution of GD3 were also

observed in a melanoma cell line, SK-MEL-28 transfected with caveolin-1 cDNA

(Nakashima et al. 2007). In this study, increased ratios of GD3 with unsaturated

fatty acids outside of GEM/rafts were observed. Consequently, GM1 synthase

(or GM1) and caveolin-1 seem to have a common function in the suppression of

signaling transduced via GEM/rafts and also affect intracellular distribution pattern
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of GD3 with changes in the saturation/unsaturation patterns of fatty acids in

ceramide portion of GD3.

Thus, suppressive function of GM1 appears to be similar with that of caveolin-1

(Quann et al. 2013; Razani et al. 2001). It seems to be interesting that both GM1 and

caveolin-1 have been considered as markers of GEM/rafts, while no essential

linkages between these two molecules have been demonstrated so far.

4.5 Suppression of Metastatic Potential of Murine Lewis
Lung Cancer (LLC) by Monosialyl Gangliosides, GM2
and GM1

4.5.1 Overexpression of GM2/GD2 Synthase cDNA Resulted
in the Suppression of Metastatic Potential of Murine
LLC Cells

Lewis lung cancer has been used as a cancer metastasis model (Takenaga 1986). To

investigate roles of gangliosides in cancer metastasis, a cDNA expression vector of

GM2/GD2 synthase was transfected into a LCC subline (Chen et al. 2003). Since

GM2 has been considered as a tumor-associated antigen in lung cancers (Hanibuchi

et al. 1996) as well as in melanomas (Irie et al. 1989; Yamaguchi et al. 1990),

increase of metastatic potential in the transfectants was expected. Consequently,

they showed reduced number of metastasis foci. Phosphorylation levels of focal

adhesion kinase (FAK) were also suppressed in the transfectants compared with

controls, suggesting that newly expressed GM2 suppressed adhesion signals (Chen

et al. 2003).

Suppression of EGF signaling and phosphorylation of EGF receptor by gangli-

oside GM3 in A431 cells was also reported (Yoon et al. 2005), suggesting that

negative regulation of growth signaling by monosialyl gangliosides is a universal

phenomena as summarized in Fig. 4.2.

4.5.2 Alteration of Surface Molecules in Established High
Metastatic Sublines of LLC

To identify molecules and genes responsible for the metastatic potential, low

metastatic LLC lines were repeatedly injected into C57BL/6 mice iv or sc (Zhang

et al. 2006). Several high metastatic sublines for each of parent line were

established. In order to clarify alteration in the expression of surface molecules,

various surface antigens were analyzed, i.e., integrin families, CD44, gangliosides,

etc. None of those antigens except ganglioside GM1 showed definite changes along

with increased metastatic potential. Only GM1 showed marked reduction in
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common among all high metastatic sublines compared with individual parent lines

(Zhang et al. 2006), suggesting that GM1 suppresses metastatic phenotypes.

Indeed, silencing of GM1 synthase by transfection of RNAi expression vector

resulted in the establishment of GM1 low LLC sublines with high metastatic

potentials. Consequently, it was demonstrated that reduced GM1 expression

induced a shift of MMP-9 and integrins to GEM/rafts and promoted secretion and

activation of MMP-9, leading to the increased metastatic property (Zhang

et al. 2006).

Together with results of analysis on the surface molecules in the high metastatic

LLC sublines, all these data suggested that GM1 and/or GM1 synthase induced

suppression of cancer properties, at least partly, due to the alteration in the location

of cognate membrane receptors and modulation of their functions in GEM/rafts.

However, no clear mode of action of GM1 has yet been demonstrated.

4.5.3 Trimeric Tn on Syndecan-1 Binds Integrin α5β1
and Enhances Cell Adhesion

In order to comprehensively understand the mechanisms for the increased meta-

static potentials in high metastatic LCC sublines, gene expression profiling was

performed using DNA microarray (Matsumoto et al. 2012). Unique point in our

study among similar studies reported was to search metastasis-related genes by

multiple combinations of “high” metastatic lines and “low” metastatic lines and to

pick up genes that is commonly up- or downregulated along with increased

metastatic property (Matsumoto et al. 2012). Thus, we could identify more univer-

sal and reliable genes responsible for cancer metastasis.

One of genes identified to be upregulated in high metastatic lines both in GM1

synthase gene-silenced cells and in high metastatic sublines to lymph nodes was

ppGalNAc-T13 (Matsumoto et al. 2012). ppGalNAc-T13 is a family member of

GalNAc transferase involved in the initiation reaction of O-glycan synthesis by

transferring alpha-GalNAc to Ser/Thr residues mainly in mucin proteins (Zhang

et al. 2003). There are now 20 family members, and 16 out of them are shown to

have enzyme activities (Brooks et al. 2007). Among them, ppGalNAc-T13 is very

unique in terms of its restricted expression in brain tissues (Zhang et al. 2003). One

more unique feature of ppGalNAc-T13 is its activity to generate trimeric Tn

structure.

Tn antigen is the most famous tumor antigen (Ju et al. 2011, 2013). Although

biological functions of this cancer-associated carbohydrate antigen have been

clarified based on the genetic remodeling of carbohydrate patterns on the cell

surface membrane, concrete implication of Tn structure in tumor phenotypes has

not yet been demonstrated to date. Consequently, its role in cancer metastasis has

never been well recognized.
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Trimeric Tn structures were reported first in 1989 by Nakada et al (Matsumoto-

Takasaki et al. 2012) in colon cancer cell lines using monoclonal antibody LS186.

This unique structure was distributed in colon cancers and was shown to be

involved in their malignant properties (Morita et al. 2009), while mechanisms for

its function in malignant properties of cancers have not been clarified to date.

As described above, real function of Tn antigen in cancers has been long

unknown, while it has been considered as a representative tumor-associated anti-

gen. To investigate the implication of trimeric Tn in cancer metastasis, carrier

proteins of trimeric Tn were investigated by immunoprecipitation with an anti-

trimeric Tn antibody. Consequently, syndecan-1 was identified as a representative

carrier protein in high metastatic LCC sublines (Matsumoto et al. 2013).

Syndecan-1 has been known as a representative heparan sulfate proteoglycan

involved in various aspects of cancer cells including cell adhesion, proliferation,

and motility (Munesue et al. 2002). In many cases, roles of glycosaminoglycan on

the molecules have been recognized as key moiety in the interaction with other

molecules (Munesue et al. 2007). ppGalNAc-T13-transfected cells showed mark-

edly enhanced cell adhesion to fibronectin in an integrin-dependent manner in

RT-CES (Matsumoto et al. 2013), suggesting that syndecan and integrins were

tightly collaborating. As expected, it was eventually demonstrated that binding of

syndecan-1 to integrins via trimeric Tn in lipid rafts markedly enhanced functions

of integrins and integrin-mediated signaling. These molecular interactions were

shown in Fig. 4.4.

Furthermore, tertiary complex consisting of trimeric Tn-carrying syndecan-1,

MMP-9 and integrin β1/α5 could be found in GEM/rafts only in high metastatic

lines including ppGalNAc-T13-transfected cells. These results suggested that

strong cell adhesion promoting cancer metastasis takes place in GEM/rafts.

A number of findings on integrin-mediated signaling have been reported

(Margadant et al. 2011). Upon adhesion of cells to extracellular matrix, FAK

and/or Src family kinases are activated, and subsequent activation of p130Cas,

ILK, paxillin, etc. takes place (Margadant et al. 2011). In the case of LLC, strong

activation of FAK and phosphorylation of paxillin based on the expression of

ppGalNAc-T13 were observed as shown in Fig. 4.4.

The identification of ppGalNAc-T13 as one of the responsible genes for metas-

tasis of LCC was achieved using GM1 synthase-silenced cell lines and the parent

line (Zhang et al. 2006; Matsumoto et al. 2012). Indeed, knockdown of GM1

synthase resulted in the upregulation of ppGalNAc-T13, leading to increased cell

growth and invasion activities. Therefore, GM1-mediated signals might regulate

the gene expression of ppGalNAc-T13, while precise mechanisms are not

clear now.
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4.6 Glycosphingolipids Regulate Cell Signals and Fates by
Modulating GEM/Rafts

Since Simons reported lipid rafts (Simons and Ikonen 1997), a number of studies on

the physicochemical aspects (Brown and London 1998) and biological functions

(Simons and Gerl 2010) of rafts have been performed. Normal and disordered lipid

rafts have been reported to be associated with various biological processes and

pathological states. Among functions of lipid/rafts claimed by many researchers,

regulation of cell signaling (Simons and Toomre 2000) is the most intriguing and

universal issues particularly for the glycobiology field. This is partly because

majority of glycosphingolipids reside in lipid rafts, and they contain common

lipid moiety and polymorphic carbohydrate portions. The former determines intra-

cellular localization of glycolipids and the latter exerts interacting probes with

various extrinsic (trans) ligands and/or intrinsic (cis) ones. Moreover, alteration

of the carbohydrate moieties seems to control natures of lipid rafts and localization

of membrane molecules such as integrins and growth factor receptors. Thus,

glycolipids characteristically expressed on malignant cancer cells might play

ppGalNAc-T13 gene

Cytosol

GolgiO-glycosylation

FN

ITGα5β1

Sdc1

MMP-9

FAK

paxillin
P

P

tTn

Adhesion stimuli

Adhesion/invasion 
and metastasis

Fig. 4.4 ppGalNAc-T13 is induced by reduced expression of GM1, resulting in the expression of

trimeric Tn on syndecan-1 and enhancement of integrin function. Unique product of ppGalNAc-

T13, trimeric Tn on syndecan-1, is a key structure to bind integrins, resulting in the dramatic

increase of cell adhesion to ECM and high metastatic potential. These interactions occur mainly in

GEM/rafts and highly activate FAK and paxillin as well as MMP-9. ITG, integrin; Sdc1,

syndecan-1; FN, fibronectin; tTn, trimeric Tn; MMP-9, metalloproteinase-9
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essential roles to enhance malignant properties of cancer cells via controlling

behaviors of lipid rafts.

However, substantial mechanisms by which glycolipids control lipid rafts have

not been well understood. Even the existence of lipid rafts has long been a

controversial issue (Munro 2003). To clarify how glycosphingolipids play roles in

GEM/rafts, new challenges have been tried. For example, single molecule imaging

with ultrahigh spatiotemporal resolution should have become very efficient

approaches to address substantial natures of GEM/rafts (Suzuki et al 2013). Molec-

ular interactions in GEM/rafts can be dissected at millisecond resolution, leading to

further understanding of their dynamic physical natures (Suzuki et al 2012). Sub-

stantial basis for cluster formation of glycolipids and for molecular complex is also

being demonstrated beyond known concepts (Kusumi et al 2012). One more

example is new methods to define glycolipid-associating molecules on the living

cell membrane. Enzyme-mediated activation of radical sources (EMARS) is an

efficient method to define membrane molecules in the vicinity of cancer-associated

carbohydrates (Kotani et al 2008). In our experience, majority of molecules defined

by EMARS reaction turned out to be physically associated with glycolipids used as

a target antigen (Hashimoto et al 2012). This EMARS reaction is strongly expected

to serve in the investigation of the essential roles of glycosphingolipids in vivo.

4.7 Ending Remarks

There have been a number of reports on cancer-associated carbohydrate antigens

(Hakomori 1985; Zhang et al. 1997). In addition to their roles as tumor markers,

functional implications in cancer phenotypes of those antigens have been demon-

strated (Hollingsworth and Swanson 2004; Hamamura et al. 2005; Furukawa

et al. 2012a, b). In order to well understand mechanisms for enhancement of cancer

properties such as increased cell growth and invasion and high metastatic potential

by cancer-related glyco-chains, identification of interacting molecules with indi-

vidual sugar structures seems to be critical (Lopez and Schnaar 2009). Actually,

many membrane proteins have been considered as targets of gangliosides (Yates

et al. 1995). In particular, it is intriguing that involvement of integrins in the

functions of sugar chains has been frequently observed in our studies (Zhang

et al. 2006; Ohkawa et al. 2010; Matsumoto et al. 2013) and other studies

(Hakomori and Handa 2002; Cabodi et al. 2010; Hakomori 2010). Indeed, cell

adhesion, motility, invasion, angiogenesis, and anti-apoptosis have been considered

to be regulated via the actions of cancer-associated glycosylations. Furthermore,

cell-to-cell interaction in cancer niche via cytokines (Miyata et al. 2014) and other

unknown vesicles also seems essential for the development of micro-foci of

transformed cells (Peinado et al. 2012). Environmental factors around micro-foci

of transforming cells could be subjects of studies on carcinogenesis with focus on

the alteration in glycosylation machineries.

70 K. Furukawa et al.



References

Aixinjueluo W, Furukawa K, Zhang Q, Hamamura K, Tokuda N, Yoshida S, Ueda R (2005)

Mechanisms for the apoptosis of small cell lung cancer cells induced by anti-GD2 monoclonal

antibodies: roles of anoikis. J Biol Chem 280:29828–29836

Aksoy N, Akinci OF (2004) Mucin macromolecules in normal, adenomatous, and carcinomatous

colon: evidence for the neotransformation. Macromol Biosci 4:483–496

Battula VL, Shi Y, Evans KW, Wang RY, Spaeth EL, Jacamo RO, Guerra R, Sahin AA, Marini

FC, Hortobagyi G, Mani SA, Andreeff M (2012) Ganglioside GD2 identifies breast cancer

stem cells and promotes tumorigenesis. J Clin Invest 122:2066–2078

Blackhall FH, Shepherd FA (2007) Small cell lung cancer and targeted therapies. Curr Opin Oncol

19:103–108

Brockhausen I (1999) Pathways of O-glycan biosynthesis in cancer cells. Biochim Biophys Acta

1473:67–95

Brooks SA, Carter TM, Bennett EP, Clausen H, Mandel U (2007) Immunolocalisation of members

of the polypeptide N-acetylgalactosaminyl transferase (ppGalNAc-T) family is consistent with

biologically relevant altered cell surface glycosylation in breast cancer. Acta Histochem

109:273–284

Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological mem-

branes. J Membr Biol 164:103–114

Cabodi S, del Pilar Camacho-Leal M, Di Stefano P, Defilippi P (2010) Integrin signalling adaptors:

not only figurants in the cancer story. Nat Rev Cancer 10:858–870

Carubia JM, Yu RK, Macala LJ, Kirkwood JM, Varga JM (1984) Gangliosides of normal and

neoplastic human melanocytes. Biochem Biophys Res Commun 120:500–504

Castel V, Segura V, Ca~nete A (2010) Treatment of high-risk neuroblastoma with anti-GD2

antibodies. Clin Transl Oncol 12:788–793

Cazet A, Lefebvre J, Adriaenssens E, Julien S, Bobowski M, Grigoriadis A, Tutt A, Tulasne D, Le

Bourhis X, Delannoy P (2010) GD3 synthase expression enhances proliferation and tumor

growth of MDA-MB-231 breast cancer cells through c-Met activation. Mol Cancer Res

8:1526–1535

Chen HH, Fukumoto S, Furukawa K, Nakao A, Akiyama S, Urano T (2003) Suppression of lung

metastasis of mouse Lewis lung cancer P29 with transfection of the ganglioside GM2/GD2

synthase gene. Int J Cancer 103:169–176

Cheresh DA, Rosenberg J, Mujoo K, Hirschowitz L, Reisfeld RA (1986) Biosynthesis and

expression of the disialoganglioside GD2, a relevant target antigen on small cell lung carci-

noma for monoclonal antibody-mediated cytolysis. Cancer Res 46:5112–5118

Dall’Olio F, Malagolini N, Trinchera M, Chiricolo M (2012) Mechanisms of cancer-associated

glycosylation changes. Front Biosci (Landmark Ed) 17:670–99

Daniotti JL, Vilcaes AA, Torres Demichelis V, Ruggiero FM, Rodriguez-Walker M (2013)

Glycosylation of glycolipids in cancer: basis for development of novel therapeutic approaches.

Front Oncol 3:306

Dong Y, Ikeda K, Hamamura K, Zhang Q, Kondo Y, Matsumoto Y, Ohmi Y, Yamauchi Y,

Furukawa K, Taguchi R (2010) GM1 / GD1b / GA1 synthase expression results in the reduced

cancer phenotypes with modulation of composition and raft-localization of gangliosides in a

melanoma cell line. Cancer Sci 101:2039–2047

Durrant LG, Noble P, Spendlove I (2012) Immunology in the clinic review series; focus on cancer:

glycolipids as targets for tumour immunotherapy. Clin Exp Immunol 167:206–215

Ferrari G, Anderson BL, Stephens RM, Kaplan DR, Greene LA (1995) Prevention of apoptotic

neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors. J Biol Chem

270:3074–3080

Fishman PH, Brady RO (1976) Biosynthesis and function of gangliosides. Science 194:906–915

4 Regulatory Mechanisms for Malignant Properties of Cancer Cells with. . . 71



Fredman P, von Holst H, Collins VP, Ammar A, Dellheden B, Wahren B, Granholm L,

Svennerholm L (1986) Potential ganglioside antigens associated with human gliomas. Neurol

Res 8:123–126

Fukuda M, Horibe K, Furukawa K (1998) Enhancement of in vitro and in vivo anti-tumor activity

of anti-GD2 monoclonal antibody 220–51 against human neuroblastoma by granulocyte-

macrophage colony-stimulating factor and granulocyte colony-stimulating factor. Int J Mol

Med 2:471–475

Fukumoto S, Mutoh T, Hasegawa T, Miyazaki H, Okada M, Goto G, Furukawa K, Urano T (2000)

GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and

ERK1/2 and enhanced proliferation. J Biol Chem 275:5832–5838

Furukawa K, Hamamura K, Aixinjueluo W (2006) Biosignals modulated by tumor-associated

carbohydrate antigens: novel targets for cancer therapy. Ann N Y Acad Sci 1086:185–198

Furukawa K, Hamamura K, Nakashima H (2008) Molecules in the signaling pathway activated by

gangliosides can be targets of therapeutics for malignant melanomas. Proteomics 8:3312–3316

Furukawa K, Hamamura K, Ohkawa Y, Ohmi Y (2012a) Disialyl gangliosides enhance tumor

phenotypes with differential modalities. Glycoconj J 29:579–584

Furukawa K, Ohkawa Y, Yamauchi Y, Hamamura K, Ohmi Y (2012b) Fine tuning of cell signals

by glycosylation. J Biochem 151:573–578

Furukawa K, Kambe M, Miyata M, Ohkawa Y, Tajima O (2014) Ganglioside GD3 induces

convergence and synergism of adhesion and hepatocyte growth factor/Met signals in melano-

mas. Cancer Sci 105:52–63

Furukawa K, Lloyd KO (1990) Gangliosides in melanoma. In: Ferrone S (ed) Human melanoma:

from basic research to clinical application. Springer, Heidelberg, pp 15–30

Furukawa K, Akagi T, Nagata Y, Yamada Y, Shimotohno K, Cheung NK, Shiku H (1993) GD2

ganglioside on human T-lymphotropic virus type I-infected T cells: possible activation of beta-

1,4-N-acetylgalactosaminyltransferase gene by p40tax. Proc Natl Acad Sci USA

90:1972–1976

Grant SC, Kostakoglu L, Kris MG, Yeh SD, Larson SM, Finn RD, Oettgen HF, Cheung NV (1996)

Targeting of small-cell lung cancer using the anti-GD2 ganglioside monoclonal antibody 3F8:

a pilot trial. Eur J Nucl Med 23:145–149

Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal

pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA

73:2424–2428

Hakomori S (1985) Aberrant glycosylation in cancer cell membranes as focused on glycolipids:

overview and perspectives. Cancer Res 45:2405–2414

Hakomori S, Yamamura S, Handa AK (1998) Signal transduction through glyco- (sphingo)lipids.

Introduction and recent studies on glyco(sphingo)lipid-enriched microdomains. Ann N Y Acad

Sci 845:1–10

Hakomori S (2002a) Glycosylation defining cancer malignancy: new wine in an old bottle. Proc

Natl Acad Sci USA 99:10231–10233

Hakomori SI (2002b) The glycosynapse. Proc Natl Acad Sci USA 99:225–232

Hakomori S, Handa K (2002) Glycosphingolipid-dependent cross-talk between glycosynapses

interfacing tumor cells with their host cells: essential basis to define tumor malignancy. FEBS

Lett 531:88–92

Hakomori SI (2010) Glycosynaptic microdomains controlling tumor cell phenotype through

alteration of cell growth, adhesion, and motility. FEBS Lett 584:1901–1906

Hamamura K, Tsuji M, Ohkawa Y, Nakashima H, Miyazaki S, Urano T, Yamamoto N, Ueda M,

Furukawa K (2008) Focal adhesion kinase as well as p130Cas and paxillin is crucially involved

in the enhanced malignant properties under expression of ganglioside GD3 in melanoma cells.

Biochim Biophys Acta 1780:513–519

Hamamura K, Furukawa K, Hayashi T, Hattori T, Nakano J, Nakashima H, Okuda T, Mizutani H,

Hattori H, Ueda M, Urano T, Lloyd KO (2005) Ganglioside GD3 promotes cell growth and

72 K. Furukawa et al.



invasion through p130Cas and paxillin in malignant melanoma cells. Proc Natl Acad Sci USA

102:11041–11046

Hamamura K, Tsuji M, Hotta H, Ohkawa Y, Takahashi M, Shibuya H, Nakashima H,

Yamauchi Y, Hashimoto N, Hattori H, Ueda M, Furukawa K (2011) Functional activation of

Src family kinase yes protein is essential for the enhanced malignant properties of human

melanoma cells expressing ganglioside GD3. J Biol Chem 286:18526–18537

Hanibuchi M, Yano S, Nishioka Y, Yanagawa H, Sone S (1996) Anti-ganglioside GM2 mono-

clonal antibody-dependent killing of human lung cancer cells by lymphocytes and monocytes.

Jpn J Cancer Res 87:497–504

Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H (1994)

Isolation of GD3 synthase gene by expression cloning of GM3 alpha-2,8-sialyltransferase

cDNA using anti-GD2 monoclonal antibody. Proc Natl Acad Sci USA 91:10455–10459

Hashimoto N, Hamamura K, Kotani N, Furukawa K, Kaneko K, Honke K, Furukawa K (2012)

Proteomic analysis of ganglioside-associated membrane molecules: substantial basis for

molecular clustering. Proteomics 12:3154–3163

Heiner JP, Miraldi F, Kallick S, Makley J, Neely J, Smith-Mensah WH, Cheung NK (1987)

Localization of GD2-specific monoclonal antibody 3F8 in human osteosarcoma. Cancer Res

47:5377–5381

Hersey P (1991) Ganglioside antigens in tissue sections of skin, naevi, and melanoma-- implica-

tions for treatment of melanoma. Cancer Treat Res 54:137–151

Hollingsworth MA, Swanson BJ (2004) Mucins in cancer: protection and control of the cell

surface. Nat Rev Cancer 4:45–60

Irie RF, Morton DL (1986) Regression of cutaneous metastatic melanoma by intralesional

injection with human monoclonal antibody to ganglioside GD2. Proc Natl Acad Sci USA

83:8694–8698

Irie RF, Matsuki T, Morton DL (1989) Human monoclonal antibody to ganglioside GM2 for

melanoma treatment. Lancet 1:786–787

Ju T, Otto VI, Cummings RD (2011) The Tn antigen-structural simplicity and biological com-

plexity. Angew Chem Int Ed Engl 50:1770–1791

Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, Cutler C, Zeng J, Wang J, Sun X,

Heimburg-Molinaro J, Smith DF, Cummings RD (2013) Tn and sialyl-Tn antigens, aberrant

O-glycomics as human disease markers. Proteomics Clin Appl 7:618–631

Kannagi R, Yin J, Miyazaki K, Izawa M (2008) Current relevance of incomplete synthesis and

neo-synthesis for cancer associated alteration of carbohydrate determinants--Hakomori’s con-
cepts revisited. Biochim Biophys Acta 1780:525–531

Kaucic K, Liu Y, Ladisch S (2006) Modulation of growth factor signaling by gangliosides:

positive or negative? Methods Enzymol 417:168–185

Ko K, Furukawa K, Takahashi T, Urano T, Sanai Y, Nagino Y, Nimura Y, Furukawa K (2006)

Fundamental study of small interfering RNAs for ganglioside GD3 synthase as a therapeutic

target of lung cancers. Oncogene 25:6924–6935

Kotani N, Gu J, Isaji T, Udaka K, Taniguchi N, Honke K (2008) Biochemical visualization of cell

surface molecular clustering in living cells. Proc Natl Acad Sci USA 105:7405–7409

Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KG (2012)

Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to

membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev

Biol 23:126–144

Lloyd KO, Old LJ (1989) Human monoclonal antibodies to glycolipids and other carbohydrate

antigens: dissection of the humoral immune response in cancer patients. Cancer Res

49:3445–3451

Lopez PH, Schnaar RL (2009) Gangliosides in cell recognition and membrane protein regulation.

Curr Opin Struct Biol 19:549–557

Malisan F, Testi R (2002) GD3 ganglioside and apoptosis. Biochim Biophys Acta 1585:179–187

4 Regulatory Mechanisms for Malignant Properties of Cancer Cells with. . . 73



Margadant C, Monsuur HN, Norman JC, Sonnenberg A (2011) Mechanisms of integrin activation

and trafficking. Curr Opin Cell Biol 23:607–614

Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tsuchida A, Okajima T, Furukawa K,

Urano T (2013) Trimeric Tn antigen on syndecan 1 produced by ppGalNAc-T13 enhances

cancer metastasis via a complex formation with integrin α5β1 and matrix metalloproteinase 9. J

Biol Chem 288:24264–24276

Matsumoto Y, Zhang Q, Akita K, Nakada H, Hamamura K, Tokuda N, Tsuchida A, Matsubara T,

Hori T, Okajima T, Furukawa K, Urano T (2012) pp-GalNAc-T13 induces high metastatic

potential of murine Lewis lung cancer by generating trimeric Tn antigen. Biochem Biophys

Res Commun 419:7–13

Matsumoto-Takasaki A, Hanashima S, Aoki A, Yuasa N, Ogawa H, Sato R, Kawakami H,

Mizuno M, Nakada H, Yamaguchi Y, Fujita-Yamaguchi Y (2012) Surface plasmon resonance

and NMR analyses of anti Tn-antigen MLS128 monoclonal antibody binding to two or three

consecutive Tn-antigen clusters. J Biochem 151:273–282

Matthay KK, George RE, Yu AL (2012) Promising therapeutic targets in neuroblastoma. Clin

Cancer Res 18:2740–2753

Meng X, Zhong J, Liu S, Murray M, Gonzalez-Angulo AM (2012) A new hypothesis for the

cancer mechanism. Cancer Metastasis Rev 31:247–268

Merritt WD, Casper JT, Lauer SJ, Reaman GH (1987) Expression of GD3 ganglioside in childhood

T-cell lymphoblastic malignancies. Cancer Res 47:1724–1730

Mitsuda T, Furukawa K, Fukumoto S, Miyazaki H, Urano T (2002) Overexpression of ganglioside

GM1 results in the dispersion of platelet-derived growth factor receptor from glycolipid-

enriched microdomains and in the suppression of cell growth signals. J Biol Chem

277:11239–11246

Miyata M, Ichihara M, Tajima O, Sobue S, Kambe M, Sugiura K, Furukawa K (2014)

UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene

in melanocytes via secretion of tumor necrosis factor α and interleukin 6. Biochem Biophys

Res Commun 445:504–510

Miyazaki H, Fukumoto S, Okada M, Hasegawa T, Furukawa K (1997) Expression cloning of rat

cDNA encoding UDP-galactose: GD2 beta 1,3-galactosyltransferase that determines the

expression of GD1b/GM1/GA1. J Biol Chem 272:24794–24799

Morita N, Yajima Y, Asanuma H, Nakada H, Fujita-Yamaguchi Y (2009) Inhibition of cancer cell

growth by anti-Tn monoclonal antibody MLS128. Biosci Trends 3:32–37

Munesue S, Kusano Y, Oguri K, Itano N, Yoshitomi Y, Nakanishi H, Yamashina I, Okayama M

(2002) The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung

carcinoma-derived metastatic clones. Biochem J 363:201–209

Munesue S, Yoshitomi Y, Kusano Y, Koyama Y, Nishiyama A, Nakanishi H, Miyazaki K,

Ishimaru T, Miyaura S, Okayama M, Oguri K (2007) A novel function of syndecan-2,

suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis.

J Biol Chem 282:28164–28174

Munro S (2003) Lipid rafts: elusive or illusive? Cell 115:377–388

Mutoh T, Tokuda A, Miyadai T, Hamaguchi M, Fujiki N (1995) Ganglioside GM1 binds to the Trk

protein and regulates receptor function. Proc Natl Acad Sci USA 92:5087–5091

Nagai Y (1995) Functional roles of gangliosides in bio-signaling. Behav Brain Res 66:99–104

Nakashima H, Hamamura K, Houjou T, Taguchi R, Yamamoto N, Mitsudo K, Tohnai I, Ueda M,

Urano T, Furukawa K (2007) Overexpression of caveolin-1 in a human melanoma cell line

results in dispersion of ganglioside GD3 from lipid rafts and alteration of leading edges,

leading to attenuation of malignant properties. Cancer Sci 98:512–520

Nishio M, Fukumoto S, Furukawa K, Ichimura A, Miyazaki H, Kusunoki S, Urano T (2004)

Overexpressed GM1 suppresses nerve growth factor (NGF) signals by modulating the intra-

cellular localization of NGF receptors and membrane fluidity in PC12 cells. J Biol Chem

279:33368–33378

74 K. Furukawa et al.



Ohkawa Y, Miyazaki S, Miyata M, Hamamura K, Furukawa K (2008) Essential roles of integrin-

mediated signaling for the enhancement of malignant properties of melanomas based on the

expression of GD3. Biochem Biophys Res Commun 373:14–19

Ohkawa Y, Miyazaki S, Hamamura K, Kambe M, Miyata M, Tajima O, Ohmi Y, Yamauchi Y,

Furukawa K (2010) Ganglioside GD3 enhances adhesion signals and augments malignant

properties of melanoma cells by recruiting integrins to glycolipid-enriched microdomains. J

Biol Chem 285:27213–27223

Okada M, Furukawa K, Yamashiro S, Yamada Y, Haraguchi M, Horibe K, Kato K, Tsuji Y (1996)

High expression of ganglioside alpha-2,8-sialyltransferase (GD3 synthase) gene in adult T-cell

leukemia cells unrelated to the gene expression of human T-lymphotropic virus type I. Cancer

Res 56:2844–2848

Old LJ (1981) Cancer immunology: the search for specificity--G. H. A. Clowes Memorial lecture.

Cancer Res 41:361–375

Parsons K, Bernhardt B, Strickland B (2013) Targeted immunotherapy for high-risk neuroblas-

toma--the role of monoclonal antibodies. Ann Pharmacother 47:210–218

Patra SK (2008) Dissecting lipid raft facilitated cell signaling pathways in cancer. Biochim

Biophys Acta 1785:182–206

Peinado H et al (2012) Melanoma exosomes educate bone marrow progenitor cells toward a

pro-metastatic phenotype through MET. Nat Med 18:883–891
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Chapter 5

Regulation of Growth Factor Receptors by

Glycosphingolipids

Sen-itiroh Hakomori and Kazuko Handa

Abstract Complex glycosphingolipids (GSLs) are ubiquitous components of ani-

mal cell plasma membranes, and many have been structurally characterized. GSLs,

including gangliosides, are involved in crucial biological processes such as cell

growth, differentiation, and motility. Certain GSLs have been identified as tumor-

associated antigens in various types of cancer cells. Early studies of inhibitory

effects of gangliosides on cell growth led to the discovery that GSLs modulate

(inhibit or enhance) the activation of growth factor (GF) receptor-associated tyro-

sine kinase, which is triggered by the binding between a GF and its specific

receptor. GSLs are localized as clusters at unique microdomains of the plasma

membrane, termed glycolipid-enriched microdomains, lipid rafts, or glycosynapses.

Various GF receptors (GFRs), including epidermal GFR and hepatocyte GFR, are

localized in such membrane microdomains. There is increasing evidence that GSLs

modulate the activation of GFR kinases in such microdomains, in which other

signaling molecules and regulatory molecules such as integrins and tetraspanins

are also localized.
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5.1 Glycosphingolipids

5.1.1 Structures

Two major groups of glycosphingolipids (GSLs) have been described: (1) those

derived from GalβCer (only four members of this group are known: cerebroside

(3-O-sulfated cerebroside), sulfatide (Galα1- 4GalβCer), diGalCer

(GM4-ganglioside), and Sialα3GalβCer) and (2) those derived from GlcβCer.
This group includes ~140 members: ~80 “lacto-series GSLs” having either

Galβ3GlcNAcβ3Galβ4GlcβCer (lacto-type 1) core or Galβ4GlcNAcβ3Galβ4GlcβCer
(lacto-type 2) core; ~50 “ganglio-series GSLs” having either Sialα3Galβ4GlcβCer
core (GM3) or Sialα3[GalNAcβ4]Galβ4GlcβCer core (GM2 and other higher gan-

gliosides); and ~10 “globo-series” GSLs having Galα4Galβ4GlcβCer core (Hakomori

1983). The structural basis for these groups of GSLs is shown in Fig. 5.1.

The major contributions by our laboratory to knowledge of GSL structure are

(1) the common core structure of all types of globo-series GSLs was identified as

Galα4Galβ4GlcβCer (Hakomori et al. 1971); (2) human blood group A, B, H, and

Leb antigens and Lex (lactofucopentaosyl ceramide) were isolated and character-

ized using a large quantity of human blood cells (Hakomori and Strycharz 1968)

and human colorectal carcinoma tissue (Yang and Hakomori 1971), respectively;

and (3) the type 1 lacto-series structure (Galβ3GlcNAcβ3Galβ4GlcβCer) can be

repeated two times, but cannot be branched, with α4 fucosylation to the β3GlcNAc
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and/or α2 fucosylation to the terminal Gal. The whole antigens were well charac-

terized as Lea-Lea (Lea on Lea) (Stroud et al. 1991) and Leb-Lea (Leb on Lea)

(Stroud et al. 1992). A mouse monoclonal antibody (mAb) against Lea-Lea epitope

was found to inhibit human colon cancer cell growth and metastasis in in vitro and

in vivo xenograft assay through antibody-dependent cell-mediated cytotoxicity

(Watanabe et al. 1991). A similar study using a mAb directed to Leb-Lea epitope

revealed strong complement-dependent cell-mediated cytotoxicity against human

colonic cancer Colo205 cells (Ito et al. 1992). In contrast to type 1 lacto-series, type

2 lacto-series antigens can have three or more times repetition of the

Galβ4GlcNAcβ3Galβ4Glcβ structure and branching structures such as

R-Galβ4GlcNAcβ6[R-Galβ4GlcNAcβ2]Galβ4GlcNAcβ3Gal (R could be Sialα3
or Fucα2 as terminal structure or include further extension).

Biosynthesis of GSLs occurs in the endoplasmic reticulum or Golgi apparatus in

a stepwise fashion. Glucose (Glc) or galactose (Gal) is initially transferred to

ceramide (Cer), and subsequent sugars are added from nucleotide sugar donors by

specific glycosyltransferases. Various glycosyltransferases responsible for GSL

synthesis have been purified, and their genes identified. The GSL synthesis path-

ways catalyzed by these glycosyltransferases have been studied extensively and

described systematically in previous reviews (Taniguchi et al. 2002). Knockout

mouse models deficient in specific glycosyltransferases have been used to exten-

sively investigate the functional roles of GSLs, particularly gangliosides (Proia

2003; Furukawa et al. 2011; Yu et al. 2012).

5.1.2 Functions

The presence of GSLs as ubiquitous components of cell membranes and their

structures were well established during the first half of the twentieth century by

pioneers such as J.L.W. Thudichum, H. Thierfelder, E. Klenk, G. Blix, and

T. Yamakawa. GSLs were known initially as allogeneic histo-blood groups and

heterophile antigens, but their biological roles in defining cellular functions did not

become clear until the mid-1960s. We examined the effect of oncogenic transfor-

mation of cells on GSL expression patterns and found that ganglioside GM3

expression in polyoma virus-transformed baby hamster kidney (BHK) cells

decreased significantly along with enhanced expression of lactosyl-Cer. Such

transformation caused “incomplete or defective synthesis” of certain GSLs

(Hakomori and Murakami 1968). Around the same time, R.O. Brady and colleagues

observed a clear decrease of mono- and disialogangliosides in mouse 3 T3 cells

following oncogenic transformation by RNA viruses. Similar changes in ganglio-

side expression were observed in spontaneously transformed cells (Mora

et al. 1969). Differing expression levels of various gangliosides were found in rat
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hepatocytes and hepatomas (Brady et al. 1969). The transformation process was

shown to be reversible under defined conditions (Miura et al. 2004).

Another approach to understanding functional roles of cell surface GSLs

involved possible changes of GSL expression patterns in relation to cell population

density. Cell growth and motility were known to change following cell-to-cell

contact, and “contact inhibition” of growth and motility was displayed by many

normal cells but not by transformed cells (Abercrombie and Heaysman 1954). No

studies prior to 1970 examined the possible correlation between GSL expression

and contact inhibition. We compared GSL expression patterns in NIL and BHK

cells grown at low density (without contact inhibition) and at high density (with

contact inhibition). The gangliosides Gb3, GM3, and GD3 showed clearly

enhanced expression in contact-inhibited cells. Such enhanced expression was

lost in transformed cells without contact inhibition (Hakomori 1970). Around the

same time, other groups reported similar GSL expression changes associated with

cell social functions and oncogenic transformation (Robbins and Macpherson 1971;

Sakiyama et al. 1972).

Following introduction of mAb techniques (Kohler and Milstein 1975) in tumor

and developmental biology, a surprisingly large number of tumor-associated anti-

gens, or antigens expressed at specific stages of early embryonic development, were

identified as carbohydrate epitopes, usually expressed as GSLs (Hakomori and

Handa 2002; Hakomori 2008). These findings led to the concept that aberrant

glycosylation is associated with changes in cell phenotype, particularly malignancy

(Hakomori 2003). D. Solter and colleagues applied mAb approaches in studies of

mouse early embryonic development and established several mAbs specific to

antigens expressed at certain developmental stages, termed “stage-specific embry-

onic antigens” (SSEAs). One such antigen, SSEA-1, which is expressed only at the

8–32-cell stage and plays an essential role in cellular adhesion and autoaggregation

at the morula stage leading to compaction (Abercrombie and Heaysman 1954), was

found to carry type 2 lactofucopentaose II, i.e., Lex structure. We showed that cell

autoaggregation was inhibited by trivalent Lex but not by its stereoisomer Lea

(Hakomori 2008), indicating a functional role of SSEA-1 during the compaction

process. The structure of SSEA-1 expressed on mouse embryonic stem cells was

identified as long non-branched type 2 chain with repeated Lex (Sakiyama

et al. 1972; Kannagi et al. 1982). SSEA-3 and SSEA-4, which are expressed at an

earlier stage (0.5–1 days) following fertilization, were identified as extended globo-

series structures with a Galα4Galβ4Glc core (Kannagi et al. 1983a; Kannagi

et al. 1983b). The functional roles of SSEA-3 and SSEA-4 remain to be elucidated.

The above findings led to a concept that cell membrane GSLs, particularly

gangliosides, are involved in regulation of cellular phenotypes. This concept was

supported by studies that utilized the amphipathic property of GSLs to incorporate

certain GSLs into cell membranes (Hakomori 1981). For example, incubation of

human leukemia HL60 cells in GM3-containing culture medium led to GM3

incorporation and differentiation into monocytes/macrophages, which are charac-

terized by high GM3 expression (Nojiri et al. 1986). When sialylparagloboside

(SPG) was incorporated into HL60 cells, they underwent differentiation into
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granulocytes, which are characterized by high SPG expression (Nojiri et al. 1988).

In other studies, ganglioside GQ1b was shown to be involved in neurite formation

(neuritogenesis), a terminal differentiation process of neuronal cells (Ito

et al. 1989). To the contrary, GSL expression has been decreased by blocking

GlcCer synthesis using the UDP-Glc:ceramide Glc-transferase inhibitors 1-phenyl-

2-decanoylamino-3-morpholino-1-propanol (PDMP) (Radin et al. 1993) and

D-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (Et-P4) (Lee et al. 1999).

5.2 Effects of Glycosphingolipids on Growth Factor

Receptors

Beginning in the 1950s, many growth factors (GFs) that induce cell growth and

alter cellular phenotypes have been described. These include epidermal GF (EGF)

(Cohen 1965), nerve GF (NGF) (Levi-Montalcini and Cohen 1956), the fibroblast

GF (FGF) family (Gospodarowicz 1974), and platelet-derived GF (PDGF) (Paul

et al. 1971). Specific receptors for each type of GFs were identified subsequently

(Yarden and Ullrich 1988; Ullrich and Schlessinger 1990). The GF receptors

(GFRs) are expressed as transmembrane molecules at the cell surface. The extra-

cellular domain of each receptor has a binding site specific to the GF, and the

intracellular domain displays kinase activity. Following activation of the receptor

through binding to its specific GF, receptor tyrosine kinases phosphorylate tyrosine

residues on the receptor protein and/or specific signaling molecules. These findings

led to a steadily increasing number of studies on regulatory roles of GSLs in GFR

functions, either inhibitory or enhancing effects, depending on: GSL type, cell type,

and experimental conditions (Kaucic et al. 2006).

5.2.1 PDGF Receptor/FGF Receptor

In view of the changes of GSL composition and structure associated with cell

phenotype changes as described above, the possible effects of GSLs on cell growth

and functions of related GFs were investigated. We showed that GSLs affect cell

cycle (Lingwood and Hakomori 1977) and cell growth. GM3 and GM1 added

exogenously to BHK fibroblast cells in chemically defined culture media were

incorporated equally well by the cells. GM3, but not GM1, had a significant growth

inhibitory effect. GM3-treated cells showed a reduced response to the cell growth

stimulation by FGF, whereas the response of GM1-treated cells to FGF stimulation

was similar to that of control cells. Radiolabeled FGF accumulated on the surface of

GM3-treated cells, but not on GM1-treated cells. Neither GM3 nor GM1 showed

direct interaction with FGF (Bremer and Hakomori 1982). In contrast, PDGF-
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induced activation of PDGF receptors was inhibited strongly by GM1 but not by

other GSLs tested (GM3, NeuAcnLc4, Gb4) (Bremer and Hakomori 1984; Bremer

et al. 1984). These findings, together with those from EGF receptor studies as

described below, suggested that GSLs regulate the activity of various GFs by

modulating the activities of receptor-associated kinases.

5.2.2 EGF Receptor

Studies of human epidermoid carcinoma A431 cells demonstrated that GM3

inhibits EGF-induced autophosphorylation of EGF receptor. Analysis of

phosphoamino acids of the EGF receptor prepared by immunoaffinity purification

revealed that exogenous addition of GM3, but not GM1, greatly reduced the amount

of phosphotyrosine, a major phosphorylated amino acid of the EGF receptor

following EGF stimulation (Bremer et al. 1986). Similar effects of GM3 were

observed under more physiological conditions using ldlD cells, a UDP-Gal-4-

epimerase-deficient mutant of Chinese hamster ovary (CHO) cells that expresses

GM3 only when cultured in Gal-containing medium (Weis and Davis 1990).

Numerous studies supported the concept that gangliosides modulate cell functions

through their effect on GF-associated tyrosine kinases (see for review (Yates and

Rampersaud 1998).

We subsequently examined the effects of various modified forms of GM3

(Fig. 5.2) in comparison to regular GM3 on EGF receptor kinase activity. This

activity, determined by in vitro assays, was greatly affected by detergent concen-

tration and ATP concentration. GM3 affected the activity in a biphasic manner,

under physiological ATP concentration, i.e., GM3 was inhibitory at low detergent

concentration and stimulatory at high detergent concentration. In contrast, lyso-

GM3 displayed a monophasic inhibitory effect under a wide range of detergent

concentrations, while lyso-CDH had no detectable effect on the kinase activity. The

GM3

Lyso-GM3

De-N-acetyl-GM3

Fig. 5.2 Structures of GM3 and some of its derivatives
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present of lyso-GM3 in A431 cells suggested that de-N-fatty acylation of gangli-

osides, particularly GM3, might be an effective way to modulate EGF receptor

function in membranes (Hanai et al. 1988b). To examine this possibility, we

established mAb DH5 directed to a novel ganglioside, de-N-acetyl-GM3, which
has a neuraminosyl-lactosyl group instead of the sialosyl-lactosyl group found in

regular GM3 (Dohi et al. 1988). DH5 blotting revealed a small amount of de-N-

acetyl-GM3 in A431 cells and in mouse melanoma B16 cells. De-N-acetyl-GM3

prepared from GM3 by chemical modification (Hanai et al. 1987; Nores et al. 1988)

strongly enhanced both EGF receptor kinase activity and EGF-induced growth of

A431, Swiss 3 T3, and B16 cells. Exogenously added de-N-acetyl-GM3 had no

effect on the affinity of EGF binding to its receptor, in contrast to the notable

inhibitory effect of GM3 and lyso-GM3 (Hanai et al. 1988a). We found that GM3

inhibits tyrosine phosphorylation, whereas de-N-acetyl-GM3 enhances serine phos-

phorylation of EGF receptor (Zhou et al. 1994) (Fig. 5.3).

For further systematic studies, we synthesized de-N-acetyl-lyso-GM3, lyso-

GM3, de-N-acetyl-GM3 with N-acetyl-sphingosine, and GM3 with N-acetyl-sphin-

gosine (Nores et al. 1989). De-N-acetyl-GM3 and lyso-GM3 had been considered

as the major modulators of EGF-induced EGF receptor activity in A431 cells, but

we found that de-N-acetyl-lyso-GM3, N-acetyl-sphingosine, and N-fatty acyl-

sphingosine also function as minor modulators (Nores et al. 1988; Hanai

et al. 1988a). De-N-acetyl-GM3 was later reported to be expressed highly in

metastatic/invasive human melanoma cells and related to their high migration

(Liu et al. 2009). The findings of the 1980 studies suggested that the N-acetyl

group of sialosyl residue and the N-fatty acyl group of ceramide moiety of gangli-

osides may cause modification of essential functional organization of GSLs in cell

membrane microdomains. This concept was more clearly formulated in the 1990s

Protein – P
(Signaling Molecules)

~P

Fig. 5.3 Effects of GM3, Lyso-GM3, and de-N-acetyl-GM3 on EGFR
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and subsequently extended to the context of gangliosides, GFRs, and other signal-

ing molecules as described below.

To investigate the role of the sialosyl group of GM3 in its inhibitory activity, a

gene encoding a soluble Mr 42,000 sialidase was transfected into A431 cells. In

comparison with control cells, the transfectant cells showed reduced surface

expression of lipid-bound sialic acids, faster growth, and enhanced EGF receptor

autophosphorylation. The degree of sialidase expression had no effect on binding of

EGF to its receptor (Meuillet et al. 1999). Another group cloned mouse plasma

membrane-associated sialidase (NEU3), which degrades cell membrane GM3 and

GD1a (Hasegawa et al. 2000; Papini et al. 2004). The NEU3 gene was shown to be
upregulated in human cancers, and enhanced expression of NEU3 resulted in

suppression of apoptosis. Knockdown of NEU3 expression by small interfering

RNA (siRNA) inhibited Ras activation, such inhibition was blocked by EGF

receptor kinase inhibitor AG1478, and NEU3 overexpression enhanced

EGF-induced EGF receptor autophosphorylation (Wada et al. 2007). Enhanced

EGF receptor phosphorylation was also detected in NEU3 transgenic mice,

suggesting that upregulation of NEU3 is involved in carcinogenesis (Shiozaki

et al. 2009). NEU3 was found to be highly expressed in human melanoma cells

(Miyata et al. 2011).

Based on evidence that GM3 interacts directly with EGF receptor,

E.G. Bremer’s group measured the interaction of various gangliosides with extra-

cellular domain of recombinant human EGF receptor prepared in insect cells. The

order of binding intensity was GM3 �GM2, GD3, GM4>GM1, GD1a, GD1b,

GT1b, GD2, GQ1b> lactosyl-Cer, consistent with the inhibitory effect of these

gangliosides on EGF receptor activation (Miljan et al. 2002).

5.2.3 NGF Receptor

Glycolipids, particularly gangliosides, are accumulated in vertebrate brains, and

their expression profiles change during development (Wiegandt 1985). Various

gangliosides have been shown to play important roles in nerve system function.

GM1 has been well studied in this regard because of its abundance in brain. Brain

ganglioside structures and expression levels are generally conserved among mam-

mals (Tettamanti et al. 1973). GM1, GD1a, GD1b, and GT1b comprise >90 % of

total gangliosides in human brain.

NGF was the first identified member of a family of neurotrophic factors that

promote survival and differentiation of neuronal cells (Levi-Montalcini 1987).

NGF was found to induce differentiation of rat pheochromocytoma PC12 cells

into cells resembling sympathetic neurons (Greene and Tischler 1976), and the

PC12 model has been widely used for studies of NGF function. Gangliosides,

particularly GM1, were shown to have activities similar to those of trophic factors,

and the B subunit of cholera toxin, which binds specifically to GM1, was found to

promote NGF function (Mutoh et al. 1993). These findings suggested a functional
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connection between GM1 and Trk receptor, also known as high-affinity NGF

receptor or neurotrophic tyrosine kinase receptor, which is responsible for

NGF-induced axon outgrowth. Follow-up studies demonstrated that GM1 is asso-

ciated specifically with Trk on the PC12 cell surface and enhances NGF function.

Other tested polysialogangliosides did not bind to Trk, and GM1 did not bind to

EGF receptor (Mutoh et al. 1995).

Our systematic studies of basic (cationic) lipids in human brain using cation

exchange, Florisil, and iatrobead chromatographic procedures resulted in separa-

tion and identification of five compounds. The two major cationic lipids, found in

brain white matter but not gray matter, were identified as cyclic plasmalogens, i.e.,

aliphatic aldehyde acetals linked at different hydroxyl groups of the galactosyl

residue of psychosine (P-D-galactopyranosyl-1-sphingosine). Compound A had a

3, 4-cyclic acetal linkage, and the slower migrating compound B had a 4, 6-cyclic

acetal linkage (Fig. 5.4). Compounds A and B both had a weak inhibitory effect on

protein kinase C (PKC) and were not cytotoxic. In contrast, psychosine displayed

strong PKC inhibitory effect and cytotoxicity (Nudelman et al. 1992).

Subsequent studies using chemically synthesized compounds demonstrated the

neurotrophic activity of compound B, plasmalopsychosine (PLPS). PLPS, like

NGF, enhanced TrkA phosphorylation and mitogen-activated protein kinase

(MAPK) activity and consequently induced PC12 neurite outgrowth. Tyrosine

kinase inhibitors known to inhibit the neurotrophic effect of NGF also inhibited

that of PLPS, suggesting a common signaling cascade for the two molecules,

although PLPS did not compete with the high-affinity binding of NGF to TrkA

(Sakakura et al. 1996).

Fig. 5.4 Structures of cerebroside (β-galactosylceramide), psychosine (β-galactosyl-Sph), and
4, 6 plasmalopsychosine
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5.2.4 Met Receptor

The receptor tyrosine kinase Met was discovered in the mid-1980s (Park

et al. 1987) and shown to bind exclusively to hepatocyte GF (HGF) (Nakamura

et al. 1989; Bottaro et al. 1991), also known as scatter factor (SF) (Gherardi

et al. 1989). Later studies demonstrated the role of HGF/SF-Met signaling in

uncontrolled cell growth and enhanced cell motility (Rong et al. 1994; Bladt

et al. 1995).

Our studies on the effect of GSLs on Met receptor using human bladder cell lines

that express different levels of GM2 and/or GM3 revealed that GM2 depletion by

Et-P4 treatment significantly enhanced HGF-induced Met tyrosine kinase activity

and motility in one of the cell lines (Todeschini et al. 2007). A follow-up study

showed that GM2 and GM3 form a ganglioside heterodimer complex (GM2/GM3)

in the presence of Ca2þ, and that this complex had a stronger inhibitory effect than

GM2 alone on Met tyrosine kinase activity and HGF-induced cell motility

(Todeschini et al. 2008). The tetraspanin CD82 was shown to be involved in such

inhibitory activity, as described below.

5.3 The Mechanisms of GSL Effects on GFRs

Membrane microdomains variously termed as detergent-insoluble membrane

microdomains (Brown and London 1997, 2000), GSL-enriched microdomains

(GEM), caveolae (Stan et al. 1997), and lipid rafts (Simons and Ikonen 1997)

have been proposed to function as platforms for GF-induced signal transduction.

These microdomains are enriched in GSLs, cholesterol, glycosylphosphatidylinositol-

anchored proteins, and sphingomyelin. GSLs in cell surface membrane microdomains

are associated or complexed with signal transducers (Src family kinases and small G

proteins), tetraspanins (e.g., CD9, CD81, CD82), GFRs, and integrins. Such an

organizational framework, defining GSL-modulated or GSL-dependent cell adhesion,

motility, and growth, is termed a “glycosynapse” (Hakomori and Handa 2002;

Hakomori 2004, 2002). Tetraspanins (also called the transmembrane-4 superfamily

(TM4SF) because they have four transmembrane domains) clearly play functional

roles in cell adhesion, proliferation, differentiation, and motility. Highly ionic

detergents such as Triton X-100 are used to separate GEM or rafts from cell mem-

branes, while less polar, nonionic detergents such as Brij 98 are used to separate

glycosynapses.

GM3 significantly inhibited haptotactic motility of high-CD9-expressing but not

low-CD9-expressing human carcinoma cells. GM1 had no such inhibitory effect.

These findings suggested that haptotactic tumor cell motility is inhibited coopera-

tively by co-expression of CD9 and GM3. This concept was supported by studies

using the mutant CHO cell line ldlD14 described above and a CD9-overexpressing

variant produced by CD9 gene transfection. Because of the lack of UDP-Gal

4-epimerase, ldlD14 cells are incapable of synthesizing Gal-containing molecules
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such as GM3 unless Gal is added to the culture medium. Motility of the transfectant

cells was higher in the absence than in the presence of Gal. Follow-up studies using

photoactivatable 3H-labeled GM3 confirmed the GM3/CD9 interaction (Ono

et al. 2001).

Growth of human embryonal fibroblast WI38 cells, which display clear contact

inhibition, is highly dependent on FGF and FGF receptor. Analysis of glycosynapse

components showed that confluent, growth-inhibited WI38 cells had a lower degree

of FGF-induced MAPK activation than did actively growing cells in sparse culture

and that the level of inactive cSrk (detected with Tyr-527 phosphate) was higher in

the growth-inhibited cells. These differences were eliminated by preincubation with

Et-P4 to deplete GM3. FGF receptor in glycosynapse fraction from WI38 cells

bound to GM3-coated polystyrene beads more strongly than to beads coated with

GM2, GM1, SPG, or LacCer. Such binding was significantly reduced by

pretreatment of GM3 with sialidase (Toledo et al. 2004). A follow-up study of

WI38 cells and their oncogenic transformant VA13 showed that tetraspanins

CD9/CD81, integrin, and GM3 are jointly involved in cell adhesion and motility

induced by FGF activation of FGF receptor (Toledo et al. 2005).

We compared glycosynapse compositions of two human bladder cell lines with

high vs. low motility, associated with HGF/Met signaling. Integrins and CD9 were

expressed at similar levels in the two cell lines. The low-motility cell line showed

much higher GM3 expression and stronger α3 integrin/CD9 interaction. Exogenous
GM3 addition converted the high-motility to low-motility phenotype, while GM3

depletion by Et-P4 converted the low-motility to high-motility phenotype,

suggesting a ganglioside-based phenotype-modulating function (Mitsuzuka

et al. 2005).

A study of HGF/Met signaling showed that GM2 expressed in a human normal

bladder cell line interacted with tetraspanin CD82 and that GM2/CD82 complex

inhibited HGF-induced Met tyrosine kinase. Depletion of GM2 by preincubation

with Et-P4 or reduction of CD82 expression by siRNA significantly enhanced

HGF-induced Met tyrosine kinase and cell motility (Todeschini et al. 2007). Our

follow-up study showed that GM2/GM3 heterodimer bound more strongly to CD82

than did GM2 alone and that co-culturing of CD82-expressing cells with

GM2/GM3 dimer-coated nanoparticles reduced HGF-induced Met phosphorylation

and cell motility (Todeschini et al. 2008).

Our recent studies indicate that GM3 interacts with N-linked glycans carrying

multi-GlcNAc termini of EGF receptor through carbohydrate-carbohydrate inter-

action (CCI) (Handa and Hakomori 2012) and that the molecular mechanism

underlying the inhibitory effect of GM3 involves such interaction of GM3 with

EGF receptor glycans (Yoon et al. 2006; Kawashima et al. 2009). We use the term

cis-CCI to describe this type of CCI, because CCI occurs on membranes of a same

cell. cis-CCI may well be involved in the regulatory effects of other GSLs on other

GF receptors.

GSLs, particularly gangliosides, play key roles in organization and function of

membrane microdomains (Sonnino and Prinetti 2010). The molecular mechanism

for the inhibitory effect of GM1 on PDGF receptor activation was studied in Swiss
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3 T3 cells by establishing its GM1-expressing lines via transfection of GM2/GD2

synthase and GM1 synthase genes. The study showed the expression of GM1

inhibits PDGF-dependent cell growth and PDGF-induced ERK1/2 activation and

reduces the amount of PDGF receptors in GEM where GM1 localizes. This

suggests GM1 functions through modulating the distribution of PDGF receptors

inside and outside of GEM (Mitsuda et al. 2002). A similar role of GM1 and GM3

was observed in PDGF-induced Src signaling in NIH 3 T3 cells (Veracini

et al. 2008) and in insulin resistance induced by TNFα in 3 T3 L-1 adipocytes

(Kabayama et al. 2007), respectively.

5.4 Perspectives

Further extensive studies are needed to elucidate the precise molecular mechanism

underlying the regulatory effects of GSLs on GFRs in the context of cancer

initiation and progression. Numerous recent studies support the concept that cancer

cells in tumors are heterogeneous and include a minor subpopulation of cells termed

cancer stem cells (CSCs). The characteristic properties of CSCs include self-

renewal capability, tumor-initiating ability (assessed by the ability to efficiently

form new tumors upon inoculation into recipient immunodeficient mice), enhanced

cell motility, and resistance to various chemotherapeutic agents. CSCs have there-

fore been implicated in cancer metastasis and recurrence following therapeutic

treatments. We found recently that certain GSLs are differentially expressed in

CSC populations in human breast cancer (Liang et al. 2013). An interesting

possibility is that GSLs function to maintain CSC phenotype by modulating

specific GFRs.
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Chapter 6

Nutrient Regulation of Cancer Cells by

O-GlcNAcylation

Xin Liu and Gerald W. Hart

Abstract O-linked β-N-acetylglucosamine (O-GlcNAc) is a ubiquitous and

dynamic posttranslational modification that occurs on serine/threonine residues of

nuclear and cytoplasmic proteins. This modification is regulated by O-GlcNAc

transferase (OGT), which attaches O-GlcNAc to proteins and O-GlcNAcase

(OGA), which removes O-GlcNAc. O-GlcNAc serves as a nutrient sensor to

regulate virtually all cellular processes, as well as playing roles in various diseases,

including Alzheimer’s disease, diabetes, and cancer. In this chapter, we present an

overview of O-GlcNAcylation in different kinds of cancer.

Keywords O-GlcNAc • OGT • OGA • Cancer • O-GlcNAc transferase •

O-GlcNAcase • Nutrients

6.1 O-GlcNAc and Enzymes Controlling Its Cycling

6.1.1 O-GlcNAc

O-GlcNAc is distinct from the other common forms of protein glycosylation in

several major respects (Torres and Hart 1984). It occurs both on nuclear and

cytoplasmic proteins of the cell (Hart 1997). The GlcNAc is generally not modified

to formmore complex structures (Comer and Hart 2000). It is attached and removed

multiple times in the life of a polypeptide. In terms of its dynamics and functions,

O-GlcNAcylation is more similar to protein phosphorylation than it is to classical

protein glycosylation.

O-GlcNAc, first characterized in 1983 (Torres and Hart 1984), is an O-linked

β-N-acetylglucosamine moiety attached to the side chain hydroxyl of a serine or

threonine residue. O-GlcNAc has thus far been reported on over 3000 cytoplasmic

and nuclear proteins. The addition of O-GlcNAc to proteins is catalyzed by

O-GlcNAc transferase (OGT) (Haltiwanger et al. 1992; Kreppel and Hart 1999;
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Lubas and Hanover 2000), while the saccharide’s removal is catalyzed by O-linked

N-acetyl-β-D-glucosaminidase (O-GlcNAcase, OGA (Comtesse et al. 2001; Gao

et al. 2001). This dynamic and reversible modification is emerging as a key

regulator of various cellular processes, such as signal transduction (Wells

et al. 2001), transcription (Ozcan et al. 2010), cell cycle progression (Drougat

et al. 2012), and protein-protein interaction (Lim and Chang 2010), documenting

its importance in many basic cellular and disease processes.

It has been demonstrated that O-GlcNAc plays important roles in some human

diseases, such as cancer (Caldwell et al. 2010; Gu et al. 2010; Slawson et al. 2010;

Lynch et al. 2012; Fardini et al. 2013), diabetes (Akimoto et al. 2005; Dias and Hart

2007; Slawson et al. 2010), and neurological disorders (Lefebvre et al. 2003).

Several key oncogene and tumor suppressor proteins involved in tumorigenesis

and cancer progression have been identified to be O-GlcNAcylated, such as p53

(Shaw et al. 1996) and c-Myc (Chou et al. 1995).

6.1.2 O-GlcNAc Transferase (OGT)

OGT catalyzes the addition of a single GlcNAc moiety to serine or threonine

residues on proteins (Haltiwanger et al. 1990). In mammals, OGT is expressed in

all cell types, with the highest level of expression in the pancreas followed by the

brain (Lubas et al. 1997; Hanover et al. 1999). OGT itself is modified by O-GlcNAc

and phosphorylation. OGT exists in three forms: two nucleocytoplasmic forms and

one mitochondrial form (Love et al. 2003). In many tissues, OGT is composed of

two 110 kDa subunits and one single 78 kDa subunit. However, the ratios of each

type of subunit appear to vary depending upon the tissue.

Until now, only one single OGT gene has been identified (Shafi et al. 2000) in

mammals, which is highly conserved through evolution. The 110 kDa OGT protein

can be divided into two distinct domains, the amino-terminal half of the protein

containing multiple tetratricopeptide repeats (TPRs) and the carboxyl-terminal half

of the protein containing the catalytic domain of the enzyme. TPRs are found in a

large number of proteins of diverse functions, where they serve as protein interac-

tion sites to play a role in modulating a variety of cellular processes, including cell

cycle (Hirano et al. 1990; Lamb et al. 1994; Tugendreich et al. 1995), transcription

regulation (Schultz et al. 1990; Rameau et al. 1994; Tzamarias and Struhl 1995),

and protein transport (Haucke et al. 1996; Goebl and Yanagida 1991).

The mechanism of how OGT recognizes and glycosylates its protein substrates

remains largely unknown. However, over the past few years, there are numbers of

advances in the study of its structural and kinetic properties that may yield some

ideas to us. Two crystal structures of human OGT have been reported, one is a

binary complex with UDP (2.8A� resolution) and the other is a ternary complex

with UDP and a peptide substrate (1.95A�) which indicated that OGT employs an

ordered bi-bi kinetic mechanism where UDP-GlcNAc might bind first followed by

the substrate (Lazarus et al. 2011). Posttranslational modifications involving tyro-

sine kinases, nitrosylation of cysteine residues, and O-GlcNAc modification may
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also regulate OGT activity (Shen et al. 2012). Most recently, it has been found out

that host cell factor-1 is cleaved by OGT when the TPR domain of OGT binds to the

carboxyl-terminal portion of an HCF-1 proteolytic repeat (Lazarus et al. 2013).

Ac4-S-GlcNAc (Fig. 6.1), which can penetrate into and be converted to its active

form UDP-S-GlcNAc via the GlcNAc pathway, can be used as an OGT inhibitor

(Dorfmueller et al. 2011; Gloster et al. 2011).

6.1.3 O-Linked N-Acetyl-β-D-Glucosaminidase
(O-GlcNAcase, OGA)

OGA catalyzes the removal of O-GlcNAc from proteins. It is localized mainly to

the cytoplasm but is also found within nuclei and mitochondria (Gao et al. 2001;

Wells et al. 2002). OGA consists of two main domains: an N-terminal domain with

glycoside hydrolase activity and a C-terminal histone acetyltransferase (HAT)

domain. These domains flank a region containing a caspase-3 cleavage site

(Butkinaree et al. 2008). Analogous to OGT, the highest expression OGA occurs

in the pancreas and brain (Dong and Hart 1994; Gao et al. 2001; Whelan and Hart

2003). The HAT domain of OGA likely serves to target the enzyme to transcrip-

tional machinery, but does not appear to have HAT enzymatic activity.

Several OGA inhibitors have been developed to study the biological roles of

O-GlcNAc (Fig. 6.1). O-(2-acetamido-2-deoxy-D-glucopyranoseylidene) amino

N-phenyl carbamate (PUGNAc), GlcNAcstatin, and Thiamet G are three inhibitors

found to effectively limit OGA activity (Banerjee et al. 2013a).

OGA
----------

OGT

PUGNAc,TMG, NButGT, GlcNAcstatin G, streptozotocin…

----------

AC4SGlcNAc

O-GlcNAcOH

Protein Protein

Fig. 6.1 Inhibitors of

O-GlcNAc cycling enzymes

that have proven useful in

biological studies
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6.2 O-GlcNAc: A Nutrient Sensor

The well-known “Warburg effect” or aerobic glycolysis in which a cancer cell

relies mainly on glycolysis instead of oxidative phosphorylation, even when there is

high oxygen tension, was first described in 1956 by Otto Warburg (1956a, b). It is

now well known that glycolysis is much less efficient in producing energy com-

pared to oxidative phosphorylation. Since cancer cells often have a higher prolif-

eration rate and higher needs for metabolic precursors, the uptake of glucose has to

be increased in order to meet the basic needs of the cancer cell.

In most cells, about 2–5 % of glucose is used in the hexosamine biosynthetic

pathway (HBP). The end product of the HBP is UDP-GlcNAc, the donor substrate

used by OGT in the enzymatic addition of O-GlcNAc. Increased cancer cell glucose

uptake likely also drives increased HBP flux that leads to hyper-O-GlcNAcylation.

Indeed, increased protein O-GlcNAcylation has been observed in all types of cancer

thus far (Shi et al. 2010; Li et al. 2011; Krzeslak 2012a, b; Lynch et al. 2012;

Rozanski et al. 2012; Zhu et al. 2012).

6.3 O-GlcNAc and Cancer

Increased O-GlcNAcylation and changes in OGT/OGA expression have been

described in many different cancer types including breast, prostate, liver, pancre-

atic, colorectal, bladder, lung, colon, ovarian, and chronic lymphocytic leukemia

(Slawson and Hart 2011; Fardini et al. 2013; Ma and Vosseller 2013) (Table 6.1).

6.3.1 Breast Cancer

Breast cancer remains a major clinical problem worldwide. Most patients succumb

to the disease as a result of the metastatic spread of their primary tumor (Chambers

et al. 2001; Steeg 2006). Early in the disease process many of these tumors are

fueled by estrogen. Estrogen receptors are dynamically modified by O-GlcNAc

(Jiang and Hart 1997). Early studies by Slawson et al. documented increased OGA

activity in primary breast tumors as compared to matched adjacent breast tissues

(Slawson et al. 2001). Donadio et al. showed that glutaminase inhibition greatly

reduces glucose:fructose amidotransferase (GFAT) activity, the first committed

step in the HBP, and changes the O-GlcNAc pattern of key proteins that control

cell proliferation and differentiation (Donadio et al. 2008).

Caldwell et al. showed that OGT and O-GlcNAc levels are elevated in breast

cancer cells and that reducing high O-GlcNAcylation inhibits cancer cell growth

in vitro and in vivo and also reduces breast cancer cell invasion. They further found

that targeted deletion of OGT inhibited the growth of tumor cells and was
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Table 6.1 Summary of O-GlcNAc and cancer

Cancer

type O-GlcNAc OGT OGA (MGEA5)

Breast

cancer

Elevated in cancer,

reducing high

O-GlcNAcylation

inhibits cancer cell

growth and invasion; the

inhibition of

O-GlcNAcylation may

improve the sensitivity of

some breast cancers to

tamoxifen therapy

Elevated in cancer, dele-

tion of OGT inhibited the

growth of tumor cell;

OGT knockdown inhibi-

tion of the anchorage-

independent growth

in vitro

Increased activity in pri-

mary breast tumors, the

expression is decreased

Prostate

cancer

Elevated in cancer Elevated in cancer,

reducing OGT expression

inhibited metastasis to

bone; c-MYC is a key

target of OGT function

Elevated in cancer

Liver

cancer

Elevated in cancer;

in vitro assays demon-

strated that

O-GlcNAcylation plays

important roles in migra-

tion, invasion, and viabil-

ity of HCC cells

Not determined Lower OGA expression

level was a prognostic

factor for predicting

tumor recurrence in

HCC

Pancreatic

cancer

Hyper-O-GlcNAcylation

has also been observed in

pancreatic ductal adeno-

carcinoma cell (PDAC).

Reducing

O-GlcNAcylation

inhibited PDAC cell

growth and tumor

formation

Not determined Not determined

Colorectal

cancer

Elevated in metastatic

colorectal cancer cell line

and increased in primary

colorectal cancer tissues

OGT levels are increased

in primary colorectal

cancer tissues

Lower levels of OGA

expression in metastatic

colorectal cancer cell

line, OGA silencing

altered the expression of

about 1300 genes

Bladder

cancer

Not determined OGT transcript levels

were significantly higher

in grades II and III in

comparison to grade I BC

Poorly differentiated

bladder cancer (grade

III) showed significantly

lower MGEA5 expres-

sion than grade I tumors

Other can-

cers

1. Leuke-

mia

1.Chronic lymphocytic

leukemia (CLL) cells

expressed high levels of

O-GlcNAcylated proteins

2.The migration ability of

HO-8910PM cells was

significantly inhibited by

OGT silencing

2. The migration of

OVCAR3 cells was dra-

matically enhanced by

OGA inhibition

(continued)
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associated with reduction in the FoxM1 transcriptional target MMP-2 (Caldwell

et al. 2010). Additional studies, using immunohistochemistry analysis, observed

that the global O-GlcNAcylation levels in breast tumor tissues were significantly

elevated compared to the corresponding adjacent normal tissue (Gu et al. 2010).

Krzeslak and coworkers showed that the expression of MGEA5 (O-GlcNAcase;

OGA) decreased while the expression of OGT increased in higher-grade tumors,

suggesting that increased O-GlcNAcylation might be implicated in breast tumor

progression and metastasis (Krzeslak et al. 2012a).

By using 2D O-GlcNAc immunoblotting and LC-MS/MS analysis,

Champattanachai and colleagues identified 29 proteins (Champattanachai

et al. 2013), seven of which are O-GlcNAcylated or associated with

O-GlcNAcylation in cancer. Moreover, OGT knockdown revealed that decreasing

O-GlcNAcylation was related to inhibition of anchorage-independent growth

in vitro. Altogether the results indicate that aberrant protein O-GlcNAcylation is

associated with breast cancer. Huang et al. identified that the actin-binding protein

cofilin is O-GlcNAcylated at Ser108 and further showed that during three-

dimensional invasion, O-GlcNAcylation of cofilin is required for its localization

to invadopodia (Huang et al. 2013).

Most recently, Kanwal et al. noticed that increased O-GlcNAcylation protected

MCF-7 cells from death induced by tamoxifen; in contrast, inhibition of OGT

expression enhanced the ability of tamoxifen to induce cell death. The results

indicate that the inhibition of O-GlcNAcylation may improve the sensitivity of

some breast cancers to tamoxifen therapy (Kanwal et al. 2013).

6.3.2 Prostate Cancer

Prostate cancer is the most common type of non-cutaneous cancer found in Amer-

ican men and the second leading cause of cancer death behind lung cancer. One in

six men will get prostate cancer during his lifetime and one man in 36 will die of

this disease. Despite the enormity of these statistics, prostate cancer remains a

relatively understudied disease with respect to its biology and molecular mecha-

nisms of action (Chunthapong et al. 2004).

It has been found that OGT is overexpressed in prostate cancer tissue compared

to normal prostate epithelium and the expression of OGT and levels of O-GlcNAc

Table 6.1 (continued)

Cancer

type O-GlcNAc OGT OGA (MGEA5)

2. Ovarian

3. Lung

2. O-GlcNAcylation was

enhanced in more meta-

static human ovarian

cancer cell line

3. Elevated in cancer

tissues

3. Elevated in cancer

tissues
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modifications are elevated in prostate cancer cell lines compared to

non-transformed prostate cells. In addition, reducing OGT levels inhibits VEGF

expression and the angiogenic potential of PC3-ML cells, which is dependent on

the transcription factor FoxM1. Finally, reducing OGT expression in human pros-

tate cancer cells inhibited metastasis to bone. Thus, OGT is positioned as a novel

target for therapeutic intervention in the treatment of human prostate cancer (Lynch

et al. 2012).

Itkonen et al. found that expression of c-MYC and OGT was tightly correlated in

human prostate cancer samples. Moreover, they identified c-MYC as an upstream

regulator of OGT target genes and OGT inhibition decreased the c-MYC protein

level, which suggests that HBP acts as a modulator of prostate cancer growth and

c-MYC as a key target of OGT function in prostate cancer cells (Itkonen

et al. 2013).

Recently, our lab also found out that the level of O-GlcNAc and its enzymes is

increased in prostate cancer cells compared to normal cells. Through in vitro assays,

the results indicate that O-GlcNAc and its cycling might be an important factor

during the progression of prostate cancer (Liu et al., unpublished).

6.3.3 Liver Cancer

In 2007, it was reported that in human hepatoma cells (HCC) protein

O-GlcNAcylation modulates the promoter activities of the transcription factors

CRE and activation protein-1 (AP-1) and enhances E-selectin protein expression

(Azuma et al. 2007).

Guo et al. observed that O-GlcNAcylation of HSP27 in HCC cells might be a

novel regulatory mode of HSP27 function, particularly for its entry into the nucleus.

Crosstalk or interplay between glycosylation and phosphorylation of HSP27 could

regulate its subcellular localization and biological functions in liver cancer (Guo

et al. 2012). Zhu et al. found that global O-GlcNAcylation levels were significantly

elevated in HCC tissues compared to that in healthy ones. Global O-GlcNAcylation

was also enhanced in the tumor tissues of patients who had suffered from HCC

recurrence after liver transplant compared with those who had not. Moreover,

in vitro assays demonstrated that O-GlcNAcylation plays important roles in migra-

tion, invasion, and viability of HCC cells, partly through regulating E-cadherin,

MMP1, MMP2, and MMP3 expression. Most importantly, a lower OGA expression

level was a prognostic factor for predicting tumor recurrence in HCC (Zhu

et al. 2012).
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6.3.4 Pancreatic Cancer

Pancreatic cancer is the fourth most prevalent cancer-related cause of death in the

United States. Most pancreatic cancer patients have glucose intolerance or diabetes.

Interestingly, the pancreatic β-cells, which secrete insulin, have high levels of

O-GlcNAc. The β-cell is unique in containing much more OGT than any other

cell type (Konrad and Kudlow 2002). Park et al. revealed that increasing

O-GlcNAcylation protein levels were accompanied by enhanced apoptosis in

pancreatic β-cells, and they also identified ten new O-GlcNAcylated proteins

(Park et al. 2007). By using mass spectrometry, Kang and coworkers found that

Ser473 in Akt1 may be modified with O-GlcNAc, and that O-GlcNAc modification

and phosphorylation of Ser473 are reciprocally regulated by hyperglycemic treat-

ment in murine β-pancreatic cells (Kang et al. 2008).

Banerjee et al. partially elucidated the mechanism of action of triptolide, a

bioactive ingredient in traditional Chinese medicine that has anticancer properties.

They showed that triptolide-induced downregulation of HSP70, which leads to cell

death, is mediated by impaired O-GlcNAc modification of Sp1 in pancreatic cancer.

Triptolide decreases the expression and activity of OGT in these cells, resulting in

reduced Sp1 translocation to the nucleus and reduced Sp1 activity. In turn, Sp1

leads to lower expression of HSF1 and other HSPs, finally resulting in tumor cell

death (Banerjee et al. 2013b).

Increased HBP flux and hyper-O-GlcNAcylation has also been observed in

pancreatic ductal adenocarcinoma cell (PDAC). Reducing O-GlcNAcylation

inhibited PDAC cell growth and tumor formation, but did not affect the growth

of non-transformed pancreatic epithelial cells. They also found that the NF-κB p65

subunit and kinases IKK α/IKK βwere O-GlcNAc modified in PDAC. Reduction of

PDAC hyper-O-GlcNAcylation inhibited constitutive NF-κB activity, while eleva-

tion of O-GlcNAc activated NF-κB and suppressed apoptosis (Ma et al. 2013).

6.3.5 Colorectal Cancer

Yehezkel and colleagues noticed that the metastatic colorectal cancer cell line,

SW620, exhibited higher levels of O-GlcNAcylation and lower levels of OGA

expression compared with its parent line, SW480. Elevating O-GlcNAcylation

levels through RNA interference of OGA resulted in phenotypic alterations that

included acquisition of a fibroblast-like morphology. Microarray analysis revealed

that OGA silencing altered the expression of about 1300 genes, most of which are

involved in cell movement and growth and specifically affected metabolic path-

ways of lipids and carbohydrates (Yehezkel et al. 2012).

Very recent studies have documented that O-GlcNAcylation and OGT levels are

increased in primary colorectal cancer tissues. Using immunoblotting and LC-MS/

MS analysis, 16 proteins were successfully identified and eight proteins showed an
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increase in O-GlcNAcylation. Among all the identified proteins, annexin A2 was

further confirmed to show increased O-GlcNAcylation in all cancer samples. The

results indicate that aberrant O-GlcNAcylation of proteins is associated with

colorectal cancer and O-GlcNAc-modified proteins may provide novel biomarkers

for cancer.

6.3.6 Bladder Cancer (BC)

Cyclophosphamide-induced cystitis is an established model for the study of bladder

injury and wound healing. In 2000, the first study was reported on the alterations in

O-GlcNAcylation in bladders with cyclophosphamide-induced cystitis. They con-

cluded that O-GlcNAcylation may have a significant role in the bladder wound

healing process (Chung et al. 2010). Rozanski and colleagues analyzed mRNA

expression of genes encoding enzymes involved in O-GlcNAcylation using sam-

ples in urine obtained from 176 bladder cancer (BC) patients and 143 healthy

persons. OGT expression was not detected in the urine of healthy persons but it

was found in 51.7 % of BC samples. Positive expression of the MGEA5 gene,

encoding OGA, was found in urine of both healthy persons (47.1 %) and BC

patients (52.3 %). Poorly differentiated BC (grade III) showed significantly lower

MGEA5 expression than grade I tumors. On the contrary, OGT transcript levels

were significantly higher in grade II and III in comparison to grade I BC. Moreover,

there were significant differences in OGT expression between early bladder cancers

and invasive or advanced bladder cancers. These results suggest that analysis of

urinary content of OGA and OGT may be useful for bladder cancer diagnostics

(Rozanski et al. 2012).

6.3.7 Other Cancers

Changes in O-GlcNAc levels or expression of O-GlcNAc-cycling enzymes have

also been described in leukemia and ovarian and lung cancers.

Shi et al. found that chronic lymphocytic leukemia (CLL) cells expressed high

levels of O-GlcNAcylated proteins, including p53, c-myc, and Akt compared to

normal circulating and tonsillar B cells. Also, high baseline O-GlcNAc levels

associated with impaired signaling responses to TLR agonists, chemotherapeutic

agents, B-cell receptor cross-linking, and mitogens were observed (Shi et al. 2010).

Interestingly, while all CLL cells had higher O-GlcNAcylation, those patients with

levels at the lower end of the scale had a poor prognosis, while those with the

highest levels of O-GlcNAcylation had a better prognosis because their CLL cells

became more indolent.

Recently Jin and coworkers found that O-GlcNAcylation was enhanced in

HO-8910PM cells, which is a more metastatic human ovarian cancer cell line
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compared to OVCAR3 cells. Additionally, the migration of OVCAR3 cells was

dramatically enhanced by OGA inhibition, and the migration ability of

HO-8910PM cells was significantly inhibited by OGT silencing. Moreover,

E-cadherin, an O-GlcNAcylated protein in ovarian cancer cells, was reduced by

OGA inhibition in OVCAR3 cells and elevated by OGT silencing in HO-8910PM

cells (Jin et al. 2013).

O-GlcNAcylation levels and the expressions of OGT and OGA in human lung

and colon cancer tissues were examined by immunohistochemistry.

O-GlcNAcylation as well as OGT expression were significantly elevated in cancer

tissues compared with that in the corresponding adjacent tissues. Additionally, the

roles of O-GlcNAcylation in the malignancy of lung and colon cancer were

investigated in vitro. The results showed that O-GlcNAcylation dramatically

enhanced the anchorage-independent growth of lung and colon cancer cells and

could also enhance lung and colon cancer invasion. All together, this study suggests

that O-GlcNAcylation might play important roles in lung and colon cancer forma-

tion and progression and may be a valuable target for diagnosis and therapy of

cancer (Li et al. 2011).

In conclusion, it is now clear that altered O-GlcNAcylation occurs in most, if not

all, types of cancer. However, very little is known with respect to how O-GlcNAc

contributes to the oncogenic phenotype at a mechanistic level. The possible num-

bers of mechanisms affected by altered O-GlcNAcylation are enormous, including

altering signaling cascades, modulation of gene expression at both the transcrip-

tional and translational levels, and by regulation of cytoskeletal dynamics, includ-

ing mechanisms regulating cell adhesion and epithelial-mesenchymal transitions.

Similar to phosphorylation’s roles in cancer, elucidation of O-GlcNAc’s roles will
require focused work of many laboratories, but also these studies will undoubtedly

lead to novel and powerful therapeutics which were previously unimagined.
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Chapter 7

Function of Unique O-Glycan Structures

in Protecting Gastric Mucosa Against

Helicobacter pylori Infection and Gastric

Cancer Development

Jun Nakayama

Abstract Gastric gland mucin secreted from gland mucous cells located in lower

portions of the gastric mucosa contains unique O-linked oligosaccharides

displaying terminal α1,4-linked N-acetylglucosamine (αGlcNAc). αGlcNAc
inhibits growth and motility of Helicobacter pylori, a microbe causing gastric

cancer, by inhibiting biosynthesis of its cell wall component cholesteryl-α-D-
glucopyranoside. In addition, αGlcNAc serves as a tumor suppressor for gastric

differentiated-type adenocarcinoma, and its loss in gastric cancer cells is associated

with progression and poor prognosis of patients with this subtype of gastric cancer.

This chapter summarizes protective functions of αGlcNAc against gastric cancer

development.

Keywords α1,4-N-acetylglucosaminyltransferase • Gastric cancer • Helicobacter
pylori • Knockout mouse • Mucin • Patient prognosis • Terminal α1,4-linked
N-acetylglucosamine residue

7.1 Introduction

Gastric cancer ranks fourth in the most commonly diagnosed cancers and second in

the most common causes of cancer-related death worldwide and thus remains one

of the most common malignancies (Ferlay et al. 2010). On the other hand, gastric

mucins play important roles in forming the surface mucous gel layer, which pro-

tects tissues from the external environment (Ota and Katsuyama 1992). However,

how gastric mucins alter gastric cancer pathogenesis remains unknown. Gastric

mucins are divided into surface and gland mucins (Ota et al. 1991). The first are

secreted from surface mucous cells lining the gastric mucosa and contain surface

mucin-specific glycans such as Lewis-related blood group carbohydrates attached
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Fig. 7.1 Expression of MUC5AC, MUC6, and αGlcNAc in gastric mucosa and the αGlcNAc
biosynthetic pathway. (a) MUC5AC is expressed in surface mucous cells, while MUC6 is detected

in pyloric gland cells of human gastric mucosa. Note that αGlcNAc is coexpressed with MUC6 in

pyloric gland cells. Hematoxylin and eosin (HE) staining (upper left) and immunohistochemistry

using CLH2 antibody for MUC5AC (upper right), CLH5 antibody for MUC6 (lower left), and
HIK1083 antibody for αGlcNAc (lower right). Bar indicates 200 μm. (b) α1,4-N-Acetylglucosa-
minyltransferase (α4GnT) forms αGlcNAc primarily attached to MUC6
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to the mucin core protein MUC5AC (Nordman et al. 2002) (Fig. 7.1a). By contrast,

the latter are secreted from gland mucous cells such as pyloric gland cells and

mucous neck cells located in the lower layer of the gastric mucosa and contain

gland mucin-specific O-glycans exhibiting terminal α1,4-linked N-acetylglu-
cosamine residues (hereafter termed αGlcNAc) attached to MUC6 (Ishihara

et al. 1996; Zhang et al. 2001; Ferreira et al. 2006). αGlcNAc is a unique O-glycan,
as its distribution is limited to gastric gland mucous cells and Brunner’s glands of
the duodenal mucosa (Nakamura et al. 1998).

αGlcNAc biosynthesis is catalyzed by α1,4-N-acetylglucosaminyltransferase

(α4GnT), which transfers N-acetylglucosamine (GlcNAc) from UDP-GlcNAc to

terminal β-linked galactose (Gal) residues present in O-glycans with an α1,4-
linkage (Fig. 7.1b). Previously, we used an expression cloning to isolate α4GnT
cDNA from a human stomach cDNA library (Nakayama et al. 1999). Then, using

α4GnT cDNA as a molecular tool, we investigated αGlcNAc function in the

pathogenesis of gastric cancer. In this chapter, I describe the roles of αGlcNAc in
the gastric mucosa and focus in particular on its protective function against

Helicobacter pylori (H. pylori) infection and gastric cancer development.

7.2 Role of αGlcNAc in H. pylori Infection

7.2.1 αGlcNAc Acts as a Natural Antibiotic in Antagonizing
H. pylori

H. pylori is a gram-negative bacteria first isolated from gastric mucosa by Marshall

and Warren (1984). This microbe is known to cause various gastric diseases,

including chronic active gastritis, gastric adenocarcinoma, and gastric mucosa-

associated lymphoid tissue lymphoma (Peek and Blaser 2002). Although

H. pylori infects over half the world’s human population, only a fraction of infected

patients develop severe gastric disease. Interestingly, H. pylori largely colonizes

surface mucins, while it is rarely found in gland mucins (Hidaka et al. 2001)

(Fig. 7.2a), suggesting that αGlcNAc protects the gastric mucosa against H. pylori
infection. To test the hypothesis, we cultured H. pylori in the presence of various

levels of recombinant soluble CD43 (sCD43) carrying αGlcNAc (hereafter termed

αGlcNAc (+)) (Kawakubo et al. 2004), which were secreted from Lec2 cells, a

mutant CHO cell line defective in a sialic acid transporter (Deutscher et al. 1984).

That line had been cotransfected with three expression vectors encoding α4GnT,
core2 β1,6-N-acetylglucosaminyltransferase (C2GnT) (Bierhuizen and Fukuda

1992), and sCD43, respectively. In this assay, sCD43 serves as a glycan scaffold,

as it contains 80 O-glycosylation sites in its extracellular domain (Fukuda 1992).

Surprisingly, H. pylori growth was suppressed in a dose-dependent manner in the

presence of αGlcNAc (+) (Fig. 7.2b). In addition, we observed significantly reduced
motility and abnormal morphology, such as elongation and bending in H. pylori
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Fig. 7.2 Antimicrobial activity of αGlcNAc against H. pylori infection. (a) Histopathology of

chronic active gastritis of human gastric mucosa caused by H. pylori infection. The microbe is

rarely found in gland mucin expressing αGlcNAc (*). Hematoxylin and eosin (HE) staining (left),
immunohistochemistry using anti-H. pylori antibody (middle), and HIK1083 antibody for

αGlcNAc (right). Bar indicates 100 μm. (b) Growth curves of H. pylori cultured in the presence

of sCD43 carrying αGlcNAc (αGlcNAc (+)) or sCD43 lacking αGlcNAc (αGlcNAc (�)). One

milliunit of αGlcNAc (+) corresponds to 1 μg GlcNAcα–pNP. A600: absorbance at 600 nm. (c)

Scanning electron micrographs showing H. pylori incubated with 31.2 mU/ml αGlcNAc (+) or the
same concentration of αGlcNAc (�) protein for 3 days. Bar indicates 1 μm (Panels b and c are
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cultured with αGlcNAc (+). By contrast, when the microbe was incubated with

control sCD43 lacking αGlcNAc (hereafter termed αGlcNAc (�)) secreted from

cotransfected Lec2 cells with C2GnT and sCD43 expression vectors, we did not

observe these effects, indicating that αGlcNAc antagonizes H. pylori growth like a

natural antibiotic. Similar antibiotic effects were also obtained when H. pylori was
incubated with p-nitrophenyl-α-N-acetylglucosamine (GlcNAcα–pNP), recombi-

nant soluble CD34 carrying αGlcNAc, or αGlcNAc-containing gland mucin pre-

pared from human gastric mucosa (Kawakubo et al. 2004).

7.2.2 αGlcNAc Inhibits Cholesterol α-Glucosyltransferase
Activity

To define the molecular mechanism underlying αGlcNAc antimicrobial activity, we

focused in particular on morphological changes seen in H. pylori cultured in the

presence of αGlcNAc (Fig. 7.2c) (Kawakubo et al. 2004). We noted that those

changes were similar to those seen in H. pylori cultured in the presence of

β-lactamase inhibitors (Enroth et al. 1999). Thus, we speculated that treatment

with αGlcNAc had an effect on theH. pylori cell wall. Hirai et al. (1995) previously
demonstrated that the H. pylori cell wall contains a unique glycolipid,

cholesteryl-α-D-glucopyranoside (CGL), as well as its derivatives. CGL biosyn-

thesis is catalyzed by cholesterol α-glucosyltransferase (αCgT), which transfers

glucose (Glc) from UDP-Glc to cholesterol with an α1,3-linkage. Molecular mim-

icking between α1,4-linked GlcNAc in gland mucin and α1,3-linked Glc in CGL

suggested that αGlcNAc suppressed αCgT enzymatic activity by an end-product

inhibitory mechanism. Thus, we analyzed glycolipid fractions isolated from

H. pylori cultured in the presence of αGlcNAc (+) or αGlcNAc (�) using mass

spectrometry (Kawakubo et al. 2004). We found that CGL levels in H. pylori
cultured with αGlcNAc (+) were significantly lower than those seen in H. pylori
cultured with αGlcNAc (�), suggesting that αGlcNAc directly inhibits CGL bio-

synthesis by H. pylori in vivo. Subsequently, we used expression cloning to isolate

αCgT gene from H. pylori (Lee et al. 2006) and proved that αCgT enzymatic

activity is inhibited by core2-branched O-glycans displaying αGlcNAc in vitro

(Lee et al. 2008). We also showed that an active form of αCgT is present in the

H. pylori membrane fraction, suggesting that bacterial αCgT is likely accessible to

αGlcNAc in gland mucin (Hoshino et al. 2011).

⁄�

Fig. 7.2 (continued) from Kawakubo et al. 2004; Copyright 2004 American Association for the

Advancement of Science)
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7.2.3 CGL Is Indispensible for H. pylori Survival

H. pylori requires exogenous cholesterol for CGL biosynthesis. Thus to further

define CGL function in H. pylori, we created H. pylori lacking CGL by culturing

the microbe in the absence of cholesterol (Kawakubo et al. 2004). Resultant

H. pylori exhibited reduced growth and motility, and all microbes died following

prolonged (21-day) incubation in cholesterol-free media, indicating that CGL is

indispensable for H. pylori survival. Overall, these results show that αGlcNAc
inhibits CGL biosynthesis by H. pylori by suppressing αCgT, thus protecting the

gastric mucosa from infection. In fact, αGlcNAc does not exhibit antimicrobial

activity against bacteria lacking CGL such as E. coli and S. aureus (Kawakubo

et al. 2004). Most recently, we reported that αCgT enzymatic activity in H. pylori
was highly correlated with the degree of glandular atrophy in gastric mucosa

infected by the bacteria and that the monoacyled form of cholesteryl-6-O-
phosphatidyl-α-D-glucopyranoside (CPG), a minor constituent of CGL derivatives

in the H. pylori cell wall, is the most potent antigen for invariant natural killer T

cells, thus eliciting an immune response in gastric mucosa (Ito et al. 2013).

7.3 αGlcNAc Serves as a Tumor Suppressor for Gastric

Cancer

7.3.1 αGlcNAc Suppresses Tumorigenesis of Gastric
Differentiated-Type Adenocarcinoma

We then asked whether αGlcNAc had a more general or broader protective function

in the gastric mucosa. To address to this question, we generated mice deficient in

α4GnT by disrupting the A4gnt gene and analyzed αGlcNAc function in vivo

(Karasawa et al. 2012). Immunohistochemistry using the αGlcNAc-specific anti-

body HIK1083 and MALDI-TOF-MS analyses revealed that A4gnt-deficient mice

showed a complete lack of αGlcNAc expression in gastric gland mucin and

duodenal Brunner’s gland, formally establishing that α4GnT is the sole enzyme

catalyzing addition of αGlcNAc to O-glycans in vivo (Fig. 7.3). Surprisingly,
A4gnt-deficient mice, even in the absence of H. pylori infection, spontaneously
developed tumor in the antrum as early as 5 weeks of age, and tumor size gradually

increased as mice aged (Fig. 7.4a). Histopathology of tumors revealed that the

mutant mice exhibited hyperplasia by 5 weeks of age, low-grade dysplasia by

10 weeks, and high-grade dysplasia by 20 weeks in the glandular stomach

(Fig. 7.4b). In 30-week-old mice, gastric adenocarcinoma developed in 2 of

6 A4gnt-deficient mice, and adenocarcinoma incidence increased by 50 weeks of

age. Furthermore, all 50- and 60-week-old mice exhibited gastric adenocarcinoma.

These pathologies were consistently seen in the antrum of the glandular stomach,

and cancer cells were mostly restricted to the mucosa. No sign of distant metastasis
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was noted up to 60 weeks of age. Gastric adenocarcinoma is largely classified into

differentiated (or intestinal) or undifferentiated (or diffuse) types, based on tumor

cell morphology and histogenesis background (Lauren 1965; Nakamura

et al. 1968). Interestingly, the gastric adenocarcinoma seen in A4gnt-deficient
mice was only of the differentiated type, while undifferentiated-type adenocarci-

noma, such as signet ring cell carcinoma, never arose. This indicates that mutant

mice develop gastric differentiated-type adenocarcinoma through a hyperplasia-

dysplasia-carcinoma sequence in the absence of H. pylori infection. Intestinal

metaplasia was rarely detected in gastric mucosa of either A4gnt-deficient or

wild-type mice during the 60-week observation period, indicating that metaplasia

is not associated with gastric tumorigenesis in this model. These results establish

that αGlcNAc serves as a tumor suppressor for gastric differentiated-type

adenocarcinoma.

Fig. 7.3 αGlcNAc loss in A4gnt-deficient mice. αGlcNAc is expressed in mucous neck cells of

the gastric corpus, pyloric gland cells of the gastric antrum, and Brunner’s glands of the duodenum
of wild-type mouse (+/+), while it is completely absent in these mucous cells of A4gnt-deficient
mouse (�/�). Shown is immunohistochemistry of gastroduodenal mucosa from 1-week-old mice

with αGlcNAc-specific HIK1083 antibody. Bar indicates 100 μm
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Fig. 7.4 Gastric pathology of A4gnt-deficient mice. (a) Macroscopic appearance of the stomach

removed from wild-type mice (+/+) and A4gnt-deficient mice (�/�). Bar indicates 5 mm. (b)

Representative histopathology showing hyperplasia at 5 weeks, low-grade dysplasia at 10 weeks,

high-grade dysplasia at 20 weeks, and differentiated-type adenocarcinoma at 40 and 50 weeks in

the antral mucosa of A4gnt-deficient mice. For comparison, pyloric mucosa from a 5-week-old

wild-type mouse is shown (upper left). Bar indicates 100 μm (Panel a is from Karasawa et al. 2012;

Copyright 2012 The American Society for Clinical Investigation)
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7.3.2 αGlcNAc Suppresses Tumor-Promoting Inflammation
in A4gnt-Deficient Mice

It remained unclear why A4gnt-deficient mice develop only differentiated-type

adenocarcinoma in the gastric mucosa. To clarify molecular mechanisms underly-

ing such a specific tumor suppression function by αGlcNAc, we carried out

microarray analysis followed by quantitative RT-PCR using mRNA derived from

gastric mucosa of A4gnt–deficient and wild-type mice at 5, 10, and 50 weeks of age

(Karasawa et al. 2012). Our analysis identified eight genes upregulated in A4gnt-
deficient mice compared with wild-type mice (Fig. 7.5). Among these genes

significantly upregulated in the gastric mucosa of mutant mice older than

10 weeks were those encoding inflammatory chemokine ligands such as Ccl2,

Cxcl1, and Cxcl5; proinflammatory cytokines such as Il-11 and Il-1β; and growth

factors such as Hgf and Fgf7. In addition, Hgf was upregulated even in 5-week-old

mutant mice, indicating that altered gene expression patterns are apparent even at

low-grade dysplasia stages, prior to gastric cancer development. Of the altered

factors, Ccl2 is of particular interest as it attracts tumor-associated macrophages,

which exert pro-tumorigenic immune responses and promote tumor angiogenesis

(Grivennikov et al. 2010; Mantovani et al. 2010). In fact, both infiltration of

inflammatory cells such as mononuclear cells and neutrophils and angiogenesis

increased progressively in the gastric mucosa as A4gnt-deficient mice aged. IL-11 is

also noteworthy because it functions in progression of inflammation to gastric

tumorigenesis via gp130 signaling, followed by STAT3 phosphorylation (Ernst

et al. 2008; Howlett et al. 2009). Taken together, our results indicate that αGlcNAc
loss triggers gastric carcinogenesis through inflammation-associated pathways

in vivo.

Fig. 7.5 Genes upregulated in the gastric mucosa of A4gnt-deficient mice compared with those in

age-matched wild-type mice, as determined by quantitative RT-PCR analysis. Grem1, Gremlin 1;

Cxcl1, Chemokine (C-X-C motif) ligand 1; Ccl2, Chemokine (C-C motif) ligand 2; Cxcl5,
Chemokine (C-X-C motif) ligand 5; Il11, IL-11; Hgf, HGF; Il1b, IL-1β; Fgf7, FGF7. *P< 0.05;

**P< 0.01 (From Karasawa et al. 2012; Copyright 2012 American Society for Clinical

Investigation)
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7.3.3 αGlcNAc Loss in Gland Mucin Is Associated
with Progression of Human Gastric Differentiated-
Type Adenocarcinoma

Lastly, we asked whether αGlcNAc loss occurred in human gastric adenocarcinoma

and whether such loss was associated with tumor progression. To do so, we used

immunohistochemistry to assess expression of αGlcNAc and its scaffold MUC6 in

214 surgically resected gastric adenocarcinomas and then compared those expres-

sion patterns with clinicopathological parameters such as vessel invasion and stage

and cancer-specific survival (Shiratsu et al. 2014). MUC6 was detected in gastric

cancer cells in 102 (47.6 %) of 214 patients. In differentiated-type adenocarcinoma,

33 (58.9 %) of 54 MUC6-positive cancer lacked αGlcNAc expression, while in

undifferentiated-type adenocarcinoma, 22 (45.8 %) of 48 MUC6-positive cancer

lacked αGlcNAc expression, indicating that there was no significant difference

between absence of αGlcNAc expression in differentiated and undifferentiated

tumor types. However, when the comparison was made between a subtype of

undifferentiated-type adenocarcinoma, signet ring cell carcinoma, and

differentiated-type adenocarcinoma (Fig. 7.6a), only 6 (26.1 %) of 23 signet ring

cell carcinoma patients lacked αGlcNAc expression, significantly at lower fre-

quency compared with differentiated-type adenocarcinoma (P¼ 0.0049). Notably,

αGlcNAc loss was significantly correlated with depth of invasion, stage, venous

invasion, and more importantly, poorer patient prognosis in MUC6-positive differ-

entiated-type adenocarcinoma (Fig. 7.6b). On the other hand, no significant corre-

lation between αGlcNAc loss in tumor cells and any clinicopathological variable or

cancer-specific survival of patients with undifferentiated-type adenocarcinoma was

observed. Thus, αGlcNAc loss in MUC6-positive cancer cells is significantly

associated with progression and poor prognosis in differentiated-type but not

undifferentiated-type adenocarcinomas of the stomach, consistent with phenotypes

seen in A4gnt-deficient mice (Karasawa et al. 2012). As described in Sect. 7.3.2,

inflammatory chemokine ligands, proinflammatory cytokines, and growth factors

were upregulated in mutant mice, and these molecules are also thought to function

in human gastric cancer development. For example, Ohta et al. (2003) reported that

CCL2 expression by human gastric carcinoma cells increases with tumor cell

invasiveness, and its expression level is positively correlated with angiogenesis

and macrophage recruitment. Verbeke et al. (2012) demonstrated that CXC

chemokines, including CXCL1/CXCL5, facilitate progression of gastric cancer

tumors. Nakayama et al. (2007) observed that IL-11 expression is significantly

higher in differentiated compared to undifferentiated types of adenocarcinoma and

that IL-11 functions in gastric carcinoma progression. HGF and FGF7 play impor-

tant roles in gastric epithelial proliferation. Mohri et al. (2012) suggest that HGF

expression is an important prognostic factor in gastric cancer. FGF7 is upregulated
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Fig. 7.6 αGlcNAc expression in human gastric adenocarcinoma and correlation with cancer-

specific survival of gastric cancer patients. (a) Hematoxylin and eosin (HE) staining (left) and
αGlcNAc (middle) and MUC6 (left) expression in differentiated-type adenocarcinoma (upper
panels) and signet ring cell carcinoma (lower panels). Bar indicates 200 μm. (b) Cancer-specific

survival in patients with MUC6-positive gastric cancer. In differentiated-type adenocarcinoma,

patients with αGlcNAc-negative tumors had a significant poorer outcome than did patients with

αGlcNAc-positive tumors (P¼ 0.048). By contrast, in undifferentiated-type adenocarcinoma,

there was no significant difference in survival rate of patients harboring αGlcNAc-positive or

αGlcNAc-negative tumors (P¼ 0.549) (Modified from Shiratsu et al. 2014)
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by IL-1β (Palmieri et al. 2003). Kai et al. (2005) demonstrated that tumor IL-1β
expression levels are elevated more than 50-fold over those seen in normal gastric

mucosa and significantly higher in nonscirrhous compared with scirrhous carcino-

mas. Thus, all of these factors likely promote tumor-promoting inflammation.

Accordingly, our results suggest that αGlcNAc loss is correlated with gastric cancer
progression in inflammation-related pathways in humans. It remains to be deter-

mined how αGlcNAc loss in gastric cancer enhances tumor-promoting inflamma-

tion in the stomach. Recently, we demonstrated that reduced αGlcNAc in Barrett’s
esophagus could also predict its potential to develop into Barrett’s adenocarcinoma

(Iwaya et al. 2014).

7.4 Conclusion

We conclude that gastric gland mucin-specific αGlcNAc has a protective function
against gastric cancer development in two ways: first, as a natural antibiotic against

H. pylori and second, as a tumor suppressor for gastric differentiated-type adeno-

carcinoma. Based on these findings, we anticipate future development of new

strategies to detect, diagnose, treat, and prevent gastric cancer.
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Chapter 8

Sialylation and Immune Surveillance

of Cancer by Siglecs

Bindu Mohan and Paul R. Crocker

Abstract Changes in cell surface glycosylation are a key feature of cancer initia-

tion and progression. Sialic acid is a major glycan attached to extracellular proteins

and lipids. Altered sialylation in cancer can impact at many levels and may result in

improved cancer cell survival and spread. Here we focus on sialic acid-dependent

interactions of tumour cells with sialic acid-binding Ig-like lectins (siglecs). These

proteins are expressed broadly in the immune system and can modulate cellular

functions in diverse ways. We discuss changes in sialylation commonly observed in

tumours and the emerging role of siglecs in modulating both host immune

responses and tumour responses.

Keywords Sialic acid • Cancer • Glycosylation • Lectins • Siglec • Immune system

8.1 Sialic Acids

Sialic acids (Sias) are a family of nine-carbon-containing acidic sugars that are

common to all vertebrates as well as some invertebrates. Cell membranes are

covered in a dense glycocalyx which is richly decorated with Sia as terminal

capping structures of N- and O-linked glycans and gangliosides. It has been

estimated that more than 30 different types of Sia can occur in nature, although in

mammals the most common is N-acetylneuraminic acid (NeuAc) (reviewed in

Varki and Schauer (2009)). The N-acetyl group can be further modified to form

N-glycolylneuraminic acid (NeuGc) or even be de-N-acetylated giving rise to Neu.

The four, seven, eight and nine carbons of Sia can also have different substitutions

at their hydroxyl group (such as methyl, acetyl, sulphate and phosphate), adding

further complexity to this family of sugars. The nature of the Sia expressed is

developmentally regulated and also depends on the cell type. Sia can be present in

different linkages to the underlying glycans, for example, in α2,3 or α2,6 linkages to
Gal and in α2,6 linkage to GalNAc and GlcNAc. It can also link with another Sia

residue in α2,8 linkages, giving rise to di-, oligo- and poly-Sia such as seen in the
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neural cell adhesion molecule (NCAM). The biosynthesis, regulation and turnover

of Sia are controlled by a large number of enzymes including ~20 sialyltransferases,

CMP-NeuAc hydroxylase, O-acetyltransferases, esterases and sialidases whose

expression is often tightly regulated (reviewed in Varki and Schauer (2009)).

The role of Sia on cell surfaces is multifaceted. As acidic sugars carry net

negative charge, Sias are important in cell–cell interactions in both physiological

and pathological processes. Pathogens can also incorporate or express Sia as a tactic

to evade host immune responses through molecular mimicry or subversion of host

regulatory pathways. Sias are also target recognition molecules for certain patho-

gens, for example, the influenza virus’ hemagglutinin recognises host Sia linked to

Gal in α2,3 or α2,6 linkages.

The major family of Sia-binding lectins in mammals is the Siglecs. Most are

expressed in the immune system but some, such as myelin-associated glycoprotein

(Siglec-4) and Siglec-6, are mainly expressed in the nervous system and placenta,

respectively. In this chapter we discuss various examples of altered sialylation on

cancer cells and then consider how recognition of Sia by Siglecs may play a role in

cancer cell biology and immune function.

8.2 Glycosylation in Tumours

Glycosylation is an important biosynthetic and post-translational process that is

needed for the correct conformation and functioning of many macromolecules

(Varki 1993). Aberrant glycosylation is a hallmark of malignant transformation

and frequently involves N- and O-linked glycosylation of proteins and biosynthesis

of glycolipids. There are numerous examples reported in the literature, covering all

classes of cancer, including epithelial carcinomas, leukaemias and melanomas, as

recently reviewed (Christiansen et al. 2013; Padler-Karavani V 2013). Although

many factors, including changes in metabolic flux, are responsible for altered

glycosylation patterns, changes in the expression of enzymes involved in glycan

synthesis and degradation pathways are major contributing factors. Two exten-

sively studied enzymes responsible for altered N-linked glycosylation are

GlcNAcT-V and ST6GalI. The upregulation of both enzymes has been shown to

be associated with increased metastasis and invasiveness of tumour cells and poor

patient prognosis. Overexpression of GlcNAcT-V can result in increased β1,6
branching of N-glycans, whereas ST6GalI can enhance α2,6 sialylation of glyco-

proteins. Gastric, colorectal and breast cancers have all been shown to express high

levels of these enzymes (Park and Lee 2013). One important target for both

enzymes is the family of β1 integrins (Gu and Taniguchi 2004). Altered glycosyl-

ation of β1 integrins either from hypersialylation or increased β1,6 branching of

N-glycans has been shown to be associated with cell invasiveness and metastasis.

Transfection of colonic epithelial cells with oncogenic Ras resulted in the simulta-

neous upregulation of ST6GalI and α2,6 sialylation of β1 integrins. These changes

affected adhesion of these transformed cells to collagen I, ligand for β1 integrins,
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but not to β3 or β5 ligands (Seales et al. 2005) (Seales et al. 2003). Changes in

sialylation arising from irregularities in the expression of sialyltransferases are also

common to cancers of the colon (Holst et al. 2013; Yang et al. 1994).

Muc-1 is a membrane mucin glycoprotein, expressed by epithelial cells and

characterised by extensive O-linked glycosylation of its variable number of tandem

repeat (VNTR) region. It is highly expressed in cancers of the breast and is

associated with poor prognosis. Apart from being overexpressed, it is also associ-

ated with aberrant O-linked glycosylation compared to Muc-1 on untransformed

epithelial cells. This leads to truncated O-glycans containing increased amounts of

sialylated core 1 structures (Neu5Acα2,3Galβ1,3GalNAc). In addition to this, a

common cancer-associated antigen carried by O-linked glycans such as those on

Muc-1 is the sialyl-Tn (STn) antigen. It is generated as a result of the transfer of a

Sia residue to O-linked glycans by the enzyme ST6GalNAc1, leading to the

formation of the epitope Neu5Acα2,6GalNAcα1-O-Ser/Thr. This addition forces

the termination of the core O-linked GalNAcα1-O-Ser/Thr structure of the Tn

antigen. The expression of STn is common to epithelial cancers such as breast,

gastric, pancreatic and ovarian and is associated with poor patient survival

(reviewed in Cazet et al. (2010)). Overexpression of this enzyme in the noninva-

sive, oestrogen-positive breast cancer cell line, T47-D, resulted in decreased adhe-

sion but increased metastatic properties (Julien et al. 2005).

Such aberrantly glycosylated tumour-associated proteins can affect immune

interactions in diverse ways. For example, recognition by C-type lectins expressed

by dendritic cells may be an important factor in regulating specific T- and B-cell

responses to tumour antigens. On the other hand, recognition by inhibitory lectins

of the immune system may suppress inflammatory and immune function, leading to

anergy and tolerance (reviewed in Rabinovich and Croci (2012)).

Muc-16 is another mucin expressed by the epithelial cells of the ovary, endo-

metrium and trachea and is heavily glycosylated with O- and N-linked glycans. It is

surface expressed but is also shed by proteolytic cleavage. The CA125 antigen,

carried on Muc-16, is a tumour marker for ovarian carcinomas. Overexpression of

this glycoprotein is known to promote tumour growth and metastasis. One of the

mechanisms by which Muc-16 exerts its immunosuppressive effects is by its

interactions with NK cells. Using Muc-16 knockdown ovarian carcinoma cell

line, cell surface Muc-16 was shown to inhibit the formation of immunological

synapses between ovarian carcinoma cells and primary NK cells, while the shed

glycoprotein inhibited NK cell cytotoxicity (Gubbels et al. 2010).

Other O-linked tetrasaccharide structures commonly associated with cancer

phenotypes include the Lewis antigens. Sialyl Lewisa and sialyl Lewisx are ligands

for endothelial P- and E-selectins and are important tumour markers in cancers of

the gastrointestinal tract such as colon cancer. Their overexpression is associated

with enhanced metastasis in these cancer types (Ito et al. 1997). Both antigens have

Sia linked to a Gal residue of core 2 O-linked glycans via α2,3 linkage. The sialyl

transferases ST3Gal III and ST3Gal IV are responsible for the addition of Sia to

type I (Galβ1,3GlcNAc) or type II (Galβ1,4GlcNAc) disaccharide cores resulting in
the expression of sialyl Lewisa and sialyl Lewisx, respectively. Overexpression of
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ST3Gal IV led to the synthesis of the sialyl Lewisx antigen in a gastric cell line

model. In line with previous findings, this led to an invasive phenotype which was

associated with increased activation of c-met and phosphorylation of downstream

signalling molecules such as src, FAK, Rac1 and RhoA GTPase (Gomes

et al. 2013).

Besides changes in N- and O-linked glycosylation, alterations in glycolipid

expression are a hallmark of cancer. In particular, gangliosides are highly expressed

during development in the nervous system of humans (Yu et al. 2011). In compar-

ison, gangliosides are minimally expressed in other tissues of the body but they are

commonly overexpressed during malignant transformation. Their biosynthesis is

controlled at several levels such as regulated expression of different glycosyl-

transferases and availability and competition for substrates (Daniotti and Iglesias-

Bartolome 2011; Lopez and Schnaar 2009). Some gangliosides such as GD3, GM2

and GM3 are highly overexpressed in tumours such as melanomas, neuroblastomas,

and breast and renal cell carcinomas. Their expression has been shown to affect

various receptors and growth factors, subsequently modulating cell proliferation,

metastasis, angiogenesis and immune responses (Handa and Hakomori 2012). GD3

is a marker for melanoma and breast cancer cells. Transfection of a human breast

cancer cell line with the enzyme responsible for the conversion of GM3 to GD3,

ST8Sia1, resulted in the overexpression of GD3. The accumulation of GD3 corre-

lated with enhanced cell proliferation and migration in the absence of growth

factors. Using oestrogen receptor-negative breast cancer cells, a role of NFkB in

the transcriptional activation of ST8Sia1 was demonstrated (Bobowski et al. 2013).

The Sia on gangliosides can be modified by 7- or 9-O-acetylation to form

Neu5Ac7Ac or Neu5Ac9Ac, respectively. These modified forms are minimally

expressed on gangliosides of non-transformed cells but are overexpressed in some

tumours (Padler-Karavani V 2013). GD3 and 9-/7-O-acetyl GD3 have roles in

cellular development, activation, apoptosis, regulation of lipid raft formation and

immunological tolerance. 9-O-Acetyl GD3 is a tumour marker of melanomas,

breast cancers as well as tumour cell lines. Intracellular GD3 has been shown to

stimulate CD95-mediated apoptosis, while 9-O-acetyl GD3 suppressed this effect.

The anti-apoptotic role of 9-O-acetyl GD3 was clearly demonstrated using

apoptosis-sensitive tumour T-cell lines (Kniep et al. 2006). Cultured melanoma

cell lines showed increased expression of 9-O-acetyl GD3 as well as 9-O-acetyl

GD2 (Birks et al. 2011). A critical ratio of GD3 to O-acetylated GD3 in glioblas-

tomas was shown to be responsible for the survival of these cells (Birks et al. 2011).

The O-acetylation of Sia is regulated by the balanced activity of O-acetyl trans-

ferases and O-acetyl esterases. However, reduction in O-acetylated Sia due to

reduced levels of O-acetyl esterases resulted in the formation of sialyl Lewisx,

which is a tumour-associated antigen seen in colon cancer (Shen et al. 2004).

Although humans lack the enzyme CMAH required to make NeuGc, certain

tumour cells (primary retinoblastoma and breast cancers) express this modified

form of Sia due to its incorporation from dietary sources. An antibody to GM3

(NeuGc) was used in a Phase I/II clinical study of women with stage 2 breast cancer

for in vivo imaging. The antibody was found to accumulate in the breast cancer
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tissue in a dose-dependent manner and corresponded well with in vitro

immunostaining (Oliva et al. 2006). The increased expression of these sialylated

molecules and their modifications in tumour tissues are associated not only with

phenotypic changes but also enhanced proliferation, metastasis and invasion of the

tumour cells.

8.3 Siglecs in Tumour Surveillance

Sialic acid-binding Ig-like lectins (Siglecs) are a major class of mammalian glycan-

binding proteins, with 14 members in humans (Fig. 8.1). They are expressed

primarily by cells of the immune system and are characterised by a single

N-terminal V-set Sia-binding domain, a variable number of C2-set domains, a

transmembrane domain and a cytoplasmic region (Crocker et al. 1998). The

cytoplasmic regions often contain tyrosine-based inhibitory motifs (ITIMs) and

ITIM-like motifs that categorise them as inhibitory receptors. The phosphorylation

of these ITIMs can lead to the recruitment of SH2 domain-containing proteins such

as SHP-1, SHP-2, SOCS and Cbl. Depending on which of these proteins are

recruited, this can result in modulation of cellular functions, including inhibitory

signalling and regulation of endocytosis (reviewed in Crocker et al. (2007)). Based

on their sequence similarities, this family of lectins has been classified into two

V-set Ig-like domain

C2-set Ig-like domain

ITIM 

ITIM-like
Grb2-like motif

Key:

Fig. 8.1 Siglecs expressed in humans

8 Sialylation and Immune Surveillance of Cancer by Siglecs 129



major groups. The first group consists of Siglecs that are very well conserved

between mammals – Sialoadhesin (Sn, Siglec-1, CD169), CD22 (Siglec-2), MAG

(Siglec-4) and Siglec-15. The second group consists of CD33-related Siglecs, so

called because of their high sequence similarity with CD33 (Siglec-3). In humans,

the CD33-related group appears to be rapidly evolving and consists of CD33 and

Siglec-5, Siglec-7, Siglec-8, Siglec-9, Siglec-10, Siglec-11, Siglec-14 and Siglec-

16. Siglec-14, Siglec-15 and Siglec-16 lack ITIMs and form a complex with

DAP-12, an adaptor protein that contains a tyrosine-based activation motif

(ITAM). Where studied, these receptors deliver activation signals, and one theory

is that they have arisen as an evolutionary mechanism to counteract sialylated

pathogens which have learnt to exploit ITIM-containing Siglecs to their own

advantage (reviewed in Cao and Crocker (2011)). Mice have fewer CD33-related

Siglecs which, due to uncertainty with orthology, have been named differently as

murine CD33, Siglec-E, Siglec-F, Siglec-G and Siglec-H. Several Siglecs are

expressed in a highly cell-specific manner, for example, Sn on macrophages,

MAG on myelin-forming cells, CD22 on B cells and Siglec-8 on eosinophils.

Others are more diverse, such as Siglec-9 on neutrophils, monocytes, macrophages,

dendritic cells, NK cells and minor subsets of T cells.

As a result of the high concentration of Sia within the cellular glycocalyx, many

Siglecs are masked in cis but can mediate trans interactions with Sia on other cells

and on pathogens if the ligands are of sufficient density and/or affinity (reviewed in

Crocker et al. (2007)). Sn is an exception to this rule since it is thought to extend its

Sia-binding site outside of the glycocalyx to enable trans interactions and function

as a cellular interaction molecule. Ligand recognition by the different members of

this family depends on multiple factors, including the nature of Sia (e.g. NeuAc

versus NeuGc), its linkage to underlying sugars, the extended structure of the

sialoglycan and its presentation on glycoproteins and glycolipids. For example,

murine CD22 has strong preference for NeuGc in α2,6 linkages of N-glycans on

selected glycoproteins, while Sn prefers α2,3 linkages of NeuAc on N-linked and

O-linked glycans and gangliosides. Protein–glycan interactions are typically of low

affinity, and stable binding of Siglecs to glycan ligands, in cis or in trans, normally

requires multivalent interactions that can be achieved by ligand clustering on protein

or lipid carriers, as well as clustering of counter-receptors on the cell surface.

The use of soluble recombinant proteins with the extracellular domain of the

receptor fused to the Fc portion of IgG and clustered with anti-Fc conjugates is a

useful way to mimic Siglec presentation on a cell membrane and has led to the

identification of higher-affinity ligands and putative counter-receptors for several

Siglecs. Some of these ligands and counter-receptors are highly expressed on

tumour cells, but more work needs to be done to understand their relevance in a

physiological setting. However, one practical application is in the use of Siglecs to

discover cancer-related biomarkers. In one study, cancer and noncancer CA125

antigens differing in the sialylation pattern of their N- and O-linked glycans were

compared for binding of Siglec-2, Siglec-3, Siglec-7, Siglec-6, Siglec-9 and Siglec-

10. While all Siglecs bound both normal and cancer-related CA125, selective

binding of certain Siglecs was observed with cancer-related CA125 (Mitic
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et al. 2012). This is a good example of how these immunoreceptors can be

employed as tools in the identification of tumour markers.

Below we give examples of Siglecs which have been studied in the context of

cancer cell recognition and speculate on how these interactions might affect cancer

cell behaviour and disease outcome.

8.3.1 Sialoadhesin

Sialoadhesin (Sn) is highly conserved in mammals and is expressed by macrophage

subsets with particularly high expression on specialised macrophages of secondary

lymphoid tissues involved in antigen handling and host defence. Its expression is

upregulated by cytokines, especially type I interferon, in many inflammatory

conditions such as rheumatoid arthritis and systemic lupus erythematosus (SLE)

(Klaas and Crocker 2012). Sn is characterised by the presence of 17 extracellular Ig

domains and no ITIMs in its cytoplasmic domain, and one of its major functions

appears to be in regulating cellular interactions with activated T-cell subsets

(Kidder et al. 2013). Although it prefers Sia in α2,3 linkages, it can also bind Sia

in α2,6 and α2,8 linkages and therefore has the potential to interact with many cell

types and soluble glycoproteins including sialylated pathogens and exosomes

(Klaas and Crocker 2012; Saunderson et al. 2014). A recent study on the role of

Sn in a mouse model of SLE demonstrated that N-linked glycans upregulated on

CD4þ T cells serve as potential counter-receptors for this Siglec. mRNA analysis

also showed an upregulation of α2,3 ST3Gal IV, an enzyme responsible for the

addition of Sia to N-linked glycans (Kidder et al. 2013).

In a study of breast cancer, many Sn-positive macrophages were seen to be

present in close association with Muc-1-expressing tumour cells (Nath et al. 1999).

Further biochemical analysis using breast cancer cell lines and Sn-Fc identified

Muc-1 as a putative counter-receptor for Sn (Nath et al. 1999). More recently,

colorectal cancer patients with high expression of Sn/CD169þ sinus macrophages

in the regional lymph nodes were associated with infiltration of antigen-specific

CD8þ T cells and an overall better prognosis (Ohnishi et al. 2013). Given that

many tumour-associated macrophages express Sn and that macrophages play an

important role in initiation, development and metastasis of many tumours

(reviewed in Richards et al. (2013)), Sn could provide a useful therapeutic target

and may be important in local cellular interactions including antigen presentation to

the adaptive immune system.

8.3.2 CD22 (Siglec-2)

CD22 (Siglec-2) is an inhibitory receptor expressed on B cells where it plays an

important role in the negative regulation of the B-cell receptor signalling. CD22 is
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well characterised for specific binding to Neu5Acα2,6Gal-terminating N-linked

glycans, but it can also bind the STn structure, Neu5Acα2,6GalNAc, commonly

found on tumour-associated mucins. In spite of being cis engaged, CD22 is able to

redistribute to the site of cell–cell contact and interact in trans with adjacent

immune cells, carrying high-affinity sialylated glycoprotein ligands (Collins

et al. 2004). Mucins, shed from certain cancers that carry a high density of Sia in

α2,6 linkages, have the potential to interact with CD22 and modulate B-cell

signalling. A variety of mucin preparations were able to bind CD22 on B cells

and negatively regulate BCR-induced signal transduction as shown by ERK1/

ERK2 phosphorylation signalling (Toda et al. 2008) (Fig. 8.2a). CD22 was also

shown to interact with mucins in vivo and modulate B cells. Using mammary

adenocarcinoma cells secreting the mucin epiglycanin, a significant reduction in

the marginal zone B-cell populations was observed. This was thought to be due to

apoptosis triggered by extensive cross-linking of CD22 with epiglycanin (Toda

et al. 2009). Such interactions could contribute to immunosuppression in cancer-

bearing individuals and should also be considered in vaccination approaches aimed

at boosting humoral responses to mucin-type antigens bearing STn.

8.3.3 Siglec-7

Siglec-7 is expressed primarily on NK cells and tissue macrophages and has an

unusual specificity, preferring α2,8-linked Sia over α2,6 and α2,3 linkages. Siglec-7
also binds strongly to internally branched α2,6-linked Sia such as found in

sialyllacto-N-tetraose b (LSTb) and disialyl Lewisa structures (Miyazaki

et al. 2004). Siglec-7 carries an ITIM and an ITIM-like motif in its cytoplasmic

domain and has been shown to be an inhibitory receptor in a variety of different

assay systems. Since α2,8-linked Sia is predominant in the nervous system as ‘b-
series’ gangliosides such as GD3 and GT1b, one potential physiological role of

Siglec-7 is to protect neuronal cells from NK-mediated damage during inflamma-

tion of the nervous system. Consistent with this, when GD3 was overexpressed in

the mouse mastocytoma cell line, P815, this altered their sensitivity to peripheral

blood NK cell cytotoxicity (Nicoll et al. 2003) (Fig. 8.2b). Likewise, it was shown

that expression of the disialosyl globopentaosylceramide (DSGb5) containing an

internally branched α2,6-linked Sia could protect renal cancer cells from NK cell

cytotoxicity in a Siglec-7-dependent manner (Kawasaki et al. 2010). Even coating

cells with artificially high concentrations of Sia using chemical conjugation can

lead to Siglec-7-dependent protection against NK cell cytotoxicity (Hudak

et al. 2014). This raises the possibility that general increases in Sia on cancer

cells regardless of linkage could play a role in tumour protection to NK cell attack.

While the increased expression of Siglec-7 ligands on cancer cells described

above is likely to play a role in protection against NK cell attack, the loss of Siglec-

7 ligands during the transition to cancer cells has also been proposed to promote

tumour development via altered interactions with anti-inflammatory macrophages
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Fig. 8.2 Examples of siglec-dependent interactions with cancer cells and mucins. Panels depict

potential outcomes of signalling pathways following Siglec–Sia interactions. (a) Negative signal

transduction by BCR on B-cells, following ligation of CD22 with mucins. (b) Altered cytotoxicity

of peripheral blood NK cells, expressing Siglec-7, to the mouse mastocytoma cell line (P815)

over-expressing GD3. (c) Ligation of Siglec-9, expressed on immature dendritic cells, with mucins

negatively regulates IL-2 production. (d) Ligation of Siglec-15 with the STn epitope, over-

expressed on a leukemic cell line, upregulates the expression of TGF-β. (e) Increase in tumour

growth following ligation of Siglec-9 to MUC-1, over-expressed on human colon cancer cell line,

via recruitment of β-catenin. (f) Increased detachment and migration of tumour cells carrying

sialylated ligands via calpain dependent proteolytic pathway, following ligation with Siglec-9
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(Miyazaki et al. 2012). The disialyl Lewisa antigen is a strong Siglec-7 ligand and is

expressed on non-malignant colonic epithelial cells but downregulated following

transformation. This leads to increased expression of its monosialyl counterpart,

sialyl Lewisa, which is not well recognised by Siglec-7. Resident colonic macro-

phages expressing Siglec-7 were proposed to interact with disialyl Lewisa on

normal epithelial cells and dampen inflammatory responses via reduced PGE2

production, effectively suppressing tumour development. Hence, the loss of inhib-

itory signals accompanying the switch from disialyl Lewisa to sialyl Lewisa could

play an important role in colon cancer development.

8.3.4 Siglec-9

Siglec-9 is an ITIM-containing receptor expressed on neutrophils, monocytes,

macrophages, NK cells and a minor subset of CD4 and CD8 T cells and prefers

Sia in α2,3 linkages. The binding of cancer mucins and artificial glycopolymers to

Siglec-9 expressed on immature dendritic cells was shown to suppress the produc-

tion of IL-12 but not IL-10, suggesting an immunomodulatory role for this Siglec

(Ohta et al. 2010) (Fig. 8.2c). Siglec-9 was also identified as a receptor for the

soluble mucin, Muc-16, shed from ovarian cancer cells that bound to a subset of

CD16þCD56dim NK cells, B cells and monocytes. Jurkat cells expressing Siglec-

9 bound strongly to the ovarian carcinoma cell line expressing Muc-16 in cell

adhesion assays. It was proposed but not demonstrated that this interaction could

favour cancer development through suppression of inflammatory responses (Belisle

et al. 2010).

8.3.5 Siglec-15

Siglec-15 is expressed on macrophages and osteoclasts and binds STn antigen, a

glycan antigen commonly expressed by tumour cells as discussed above. Tumour-

associated macrophages (TAMs) from tumour tissue arrays were found to be

positive for Siglec-15 expression. TAMs are known to promote tumour progression

and metastasis by expressing immunosuppressive cytokines such as TGF-β. Using
cocultures of a lung carcinoma cell line, expressing STn antigen, and a monocytic

leukaemic cell line, expressing Siglec-15, it was shown that this receptor signals for

the increased production of the immunosuppressive cytokine TGF-β, in a DAP-12-

SYK pathway-dependent manner (Takamiya et al. 2013) (Fig. 8.2d).

The above examples involve Siglec-dependent signalling to immune cells that

modulate cytotoxic and inflammatory responses leading to increased cancer devel-

opment. However, two recent studies have demonstrated that sialylated ligands

expressed on cancer cells can also trigger signalling pathways following engage-

ment with Siglec-9 that can alter tumour cell behaviour. In one case, it was shown
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that the binding of Siglec-9 to Muc-1 on a human colon cancer cell line led to the

recruitment of β-catenin to the Muc-1 C-terminal domain and promoted tumour

growth (Tanida et al. 2013) (Fig. 8.2e). In another system, Siglec-9 binding to

sialylated ligands on astrocytoma cancer cell line activated a calpain-dependent

proteolysis pathway leading to degradation of focal adhesion kinase and detach-

ment of the tumour cells from the substrate (Sabit et al. 2013) (Fig. 8.2f).

8.4 Conclusions

Taken together, there is growing evidence that Sia presented by many different

types of tumour cell interacts with various Siglecs during cancer initiation, expan-

sion and spread. This can occur both through direct cellular interactions and via

secreted glycoproteins such as cancer-associated mucins. In some cases it is

possible that altered sialylation patterns favour the survival of cancer cells, at

least in part due to Siglec-dependent suppression of inflammatory responses and

other pathways discussed here. This could lead to broader impact on tumour

surveillance by immune cells and mounting of an immune response. Targeting

relevant Siglecs and identification of specific ligands and counter-receptors for

Siglecs may be useful future areas to consider for developing new immune-based

therapies and diagnostic methods.
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Chapter 9

Expression and Function of Poly-N-
Acetyllactosamine Type Glycans in Cancer

Motohiro Nonaka and Minoru Fukuda

Abstract Poly-N-acetyllactosamine is a polymer consisting of type II lactosamine

chain repeats (Galβ1! 4GlcNAcβ1! 3). The history of identification and charac-

terization of poly-N-acetyllactosamine is largely dependent on the work by many

passionate glycobiologists in the early 1970s. They put great efforts to identify the

carbohydrate component of human blood cells. Poly-N-acetyllactosamine chain has

various physiological functions by serving as a scaffold for terminal modifications

such as ABO blood group antigens, li antigens, and sialyl Lewis X structure. These

modifications sometimes change in cell-type-specific and development-specific

manners, resulting in its structural diversity. Moreover, the structure of poly-N-
acetyllactosamine side chain also changes along with tumor initiation and devel-

opment. Tumor cells tactfully survive in return for spending a huge energy for the

generation of poly-N-acetyllactosamine. Tumor cells decorated with newly synthe-

sized poly-N-acetyllactosamine facilitate cell–cell interaction and metastasis

through interaction with carbohydrate-binding lectins such as E- and P-selectins.

The presence of a set of glycosyltransferases is essential for the dramatic changes of

poly-N-acetyllactosamine chains.

Keywords Poly-N-acetyllactosamine • ABO blood group antigen • Li antigens •

Development • Glycosyltransferase • Tumor cells • Core2 O-glycan • Selectin
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9.1 History of Isolation and Identification

of Poly-N-Acetyllactosamine

Poly-N-acetyllactosamine is a unique glycan consisting of type 2 LacNAc

(Galβ1! 4GlcNAcβ1! 3) repeats, which is frequently found on N-glycans, O-
glycans, and glycolipids (Fig. 9.1). Because of hydrophilic nature of the disaccha-

ride, the conformation of poly-N-acetyllactosamine is straightly extended and is

very conspicuous from extracellular side. Thus poly-N-acetyllactosamine often

serves as a substrate for additional glycosyltransferases, which gives rise to a

huge diversity of the glycan structure. The discovery of poly-N-acetyllactosamine

was achieved owing to the tremendous efforts of glycobiologists in 1970s, who

devoted to characterize carbohydrate components of human erythrocytes

containing ABH blood group determinants. The basic components of O-glycans
had been identified early as di-, tri-, and tetrasaccharides by alkaline borohydride

extraction of erythrocyte-derived glycopeptides. The “alkali-stable” substances

containing N-glycans were then isolated and analyzed. The description of the

disaccharide structure [galactose!N-acetylglucosamine] in the erythrocyte was

first appeared in the report from Kornfeld’s group (Kornfeld and Kornfeld 1970).

They found PHA-bound, alkali-stable fraction contained the disaccharide structure,

which was the same sequence seen in secreted fetuin and α-acid glycoprotein (Spiro
1969) and human chronic gonadotropin (Bahl 1969). However, the sequence

identified at that time was a monomer and was different from later-identified,

repeating N-acetyllactosamine unit.

The presence of repeated type of N-acetyllactosamine chain was initially pro-

posed by Tanner and Boxer (1972). They found that protein fractions purified from

human erythrocyte membrane (equivalent to Band 3) carried a high amount of

N-glycan O-glycan

Glycolipid

β6

β2

β4

β3 β4

Asn

β2

N-lactosamine
 unit

N-lactosamine
 unit

N-lactosamine
 unit

β3 β4
Cer

β3 β4

Ser/Thr

β6

β3

Gal GlcNAc Glu Man GalNAc Fuc

Fig. 9.1 Examples of poly-N-acetyllactosamine chains extended from N-glycan, O-glycan, and
glycolipid. Note that poly-N-acetyllactosamine can also be initiated from GlcNAcβ1-2Manα-R by

the action of β4GalT1. Core2-branched O-glycans usually contain fewer and shorter poly-N-

acetyllactosamines than N-glycans in many cells
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carbohydrate (7–9 %) consisting high proportions of galactose and N-acetylglu-
cosamine. Those fractions contained certain amount of N-acetylgalactosamine

when purified from blood type A, but not from blood type O individuals, showing

that those glycoproteins carry the ABO determinants. Fukuda et al. improved the

purification method for Band 3 and showed that the Band 3 carbohydrate compo-

nent is rich in galactose and N-acetylglucosamine and is distinct from other

glycoproteins (Fukuda et al. 1978). Finne et al. also found similar galactose/N-
acetylglucosamine-rich components from blood group B erythrocyte by

Bandeiraea simplicifolia lectin (BS I) column (Finne et al. 1978). Meanwhile,

Jarnefelt et al. first demonstrated that the disaccharide structure of

(Galβ1! 4GlcNAcβ1! 3) was indeed repeating and forming poly-N-acetyllac-
tosamine (Jarnefelt et al. 1978). Partial purification and characterization of a

protein-linked Band 3 polysaccharide, which was called “erythroglycan” at that

time, demonstrated that the high molecular weight glycopeptides of erythroglycan

were susceptible to endo-β-galactosidase digestion. Interestingly, those disaccha-

ride chains were branched at 50 % of the galactose residues with additional 30–50

sugars. Structural analysis following chemical and enzymatic digestion revealed

that the carbohydrate chain of Band 3 consists of poly-N-acetyllactosamine

extended from (Man)3(GlcNAc)2 core (Jarnefelt et al. 1978; Krusius et al. 1978;

Fukuda et al. 1979a). The poly-N-acetyllactosamine chain of Band 3 was soon

recognized as functionally important component in erythrocytes because it carries Ii

antigens (Childs et al. 1978; Fukuda et al. 1979b) as well as ABO blood group

determinants. By early 1980, various studies have revealed that the repeating

disaccharide sequence was expressed in embryonal carcinoma (Muramatsu

et al. 1979), Chinese hamster ovary (CHO) (Li et al. 1980), Ehrlich ascites tumor

(Eckhardt and Goldstein 1983), and lymphocyte (Childs et al. 1983) cell surface

glycoproteins and keratan sulfate (Roden 1980).

9.2 Linear and Branched Poly-N-Acetyllactosamine

Structure (I and i Antigens)

Poly-N-acetyllactosamine often plays as a scaffold backbone for additional modi-

fications, which results in high molecular weight structures. Those modifications

entirely depend on the cell-type and developmental phases, which ensure its

structural heterogeneity. Developmentally regulated carbohydrate epitopes were

first found by the study based on monoclonal antibody technique, which was

cutting-edge technology at that time. The monoclonal anti-I antibody was found

in sera of patients with an autoimmune hemolytic disorder (Wiener et al. 1956).

They found that anti-I antibodies react with I antigen expressed on erythrocytes

derived from normal adults except of 5 out of 22,000 individuals who solely

expressed i antigen and this i phenotype is inherited as an autosomal recessive

trait. Then Marsh et al. found cold agglutinin that reacts with i antigen of
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erythrocytes (Marsh 1961). The anti-i antibody was shown to recognize human fetal

and umbilical cord erythrocytes. The level of i antigen gradually decreases and

abolishes in children by 18 months. In contrast, the I antigen level reaches a peak by

the time of adulthood (Marsh 1961). Therefore, it was proposed that these antigenic

determinants might be classified into several groups (Feizi et al. 1971a). For mouse

embryogenesis, the i antigen is the first detected in the 5-day embryo, whereas the I

antigen can be found throughout the preimplantation period. The distinct expres-

sion pattern of the i antigen is more prominent in the primary endoderm; the

expression of the i antigen is inversely correlated with that of the I antigen (Kapadia

et al. 1981; Knowles et al. 1982). Structural analysis of Ii antigens was first

conducted by way of enzymatic digestion (Marcus et al. 1963). Normal erythro-

cytes treated with β-galactosidase and β-N-acetylglucosaminidase decreased anti-I

antibody-dependent agglutination, indicating that galactose/N-acetylglucosamine is

a carrier of I antigen. Feizi et al. conducted oligosaccharide inhibition assays for

anti-I antibody and found that a terminal nonreducing Galβ1! 4GlcNAcβ1! 6

structure had the best inhibitory effect (Feizi et al. 1971b).

It took more than two decades to finally assign li antigen structures since the

original antibodies were found. The i antigen turned out to be a linear repeating of

[Galβ1! 4GlcNAcβ1! 3Gal] structure (Niemann et al. 1978), and the I antigen

turned out to be a branched [Galβ1! 4GlcNAcβ1! 3(Galβ1! 4GlcNAcβ1! 6)

Gal] structure (Watanabe et al. 1979).

In fact, branching of I antigen on adult human erythrocytes allows modifications

in two terminal ends (e.g., ABO antigens). When both branches are modified,

antibodies that react with carbohydrate antigens such as ABO will exhibit a greater

affinity than single antigens on a linear poly-N-acetyllactosamine (Romans

et al. 1980). Therefore, a linear structure on fetal type i antigen may help to

minimize the immune response in maternal–fetal incompatibility of blood group

antigens.

9.3 Developmental Changes of Li Antigens

In parallel with the structural analyses of each antigen, attempts have also been

made to obtain the direct evidence of li antigen conversion corresponding to

developmental stage. In those days, erythrocyte Band 3 glycoprotein was believed

to be a major carrier for Ii antigens in erythrocytes that are susceptible to

endo-β-galactosidase (Fukuda et al. 1978, 1979b; Childs et al. 1978). According

to this, Fukuda et al. (1979a) compared the carbohydrate structure of erythrocyte

Band 3 from normal adult, fetus, and adult I variant erythrocyte and demonstrated

that one-third of galactose on i antigen is branched by β1! 6 linkage, yielding I

antigen during development. This paper was the first report of the chemical-based

analysis which demonstrates direct structural change of cell surface carbohydrate

during development. Moreover, Fukuda et al. determined the structure of poly-N-
acetyllactosamine prepared from umbilical cord blood erythrocytes. The Band
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3 carbohydrate fraction that was released by endo-β-galactosidase contained linear

lactosamine chain (Galβ1! 4GlcNAcβ1! 3)n with the average 4 or 5 of repeating

units (Fukuda et al. 1984). Notably, fetal poly-N-acetyllactosamine contained

NeuNacα2! 8 NeuNAcα2! 3Gal structure, of which the structure is absent in

adult. In addition to glycoproteins, the Ii antigens were also identified in glyco-

lipids. It was reported that the amount of branched glycolipids was lower in fetal or

neonatal erythrocytes than that in adult erythrocytes (Watanabe and Hakomori

1976). Koschielak et al. isolated large glycolipids “polyglycosyl ceramides” from

both adult and neonatal erythrocytes and found that the lack of highly branched

glycolipids in cord and fetal erythrocytes was due to inadequate biosynthetic

process of GlcNAcβ1! 6 formation (Koscielak et al. 1979). The amount of

gangliosides with N-acetyllactosamine unit was much higher in neonatal cord

blood cells than in adult cells, although there was no difference in the total amount

of glycolipids between neonatal and adult cells (Fukuda and Levery 1983). Taken

together, Ii antigen structures indeed change from linear to branched poly-N-
acetyllactosamine during development of erythrocytes and both glycoproteins and

glycolipids can be carriers for Ii antigens.

9.4 Enzymes Responsible for the Synthesis of Poly-N-
Acetyllactosamine, i and I Antigens

9.4.1 β1-6N-Acetylglucosaminyltransferase (IGnT)

Considering the branching configuration, the enzyme responsible for Ii antigenic

conversion had been supposed to be a β1-6N-acetylglucosaminyltransferase, of

which activity should be regulated during development (Fig. 9.2). At first, activities

of N-acetylglucosaminyltransferase in various tissues were examined using

nonspecific acceptors with 3H-labeled terminal galactose residues (van den Eijnden

Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

Galβ1→4GlcNAcβ1

Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

→

6

I-branching enzyme

i antigen

I antigen

Fig. 9.2 Developmental conversion of linear i to branching I antigen. In fetal erythrocytes,

[Galβ1! 4GlcNAcβ1! 3]n repeats serve as i antigen. The level of i antigen decreases and

abolishes in children by 18 months. With the expression of β1,6-N-acetylglucosaminyltransferase

(I-branching enzyme), i antigen is branched into I antigen, forming [Galβ1! 4GlcNAcβ1! 3

(Galβ1! 4GlcNAcβ1! 6)Gal] (Fukuda et al. 1979a). It is known that both glycoproteins and

glycolipids can be carriers for Ii antigens
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et al. 1983; Zielenski and Koscielak 1983). Among them, it was found that certain

amounts of radioactive galactose residue were indeed substituted in position 6. In

1984, Piller et al. identified the responsible β1-6N-acetylglucosaminyltransferase

by showing evidence of its enzymatic activity in hog gastric mucosa, using trisac-

charide acceptor GlcNAcβ1-3Galβ1-4Glcβ-OMe. This enzyme was found to form

GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-3GalNAcα1-R from GlcNAcβ1-3Galβ1-3
GalNAcα1-R, acting as distal I enzyme (dIGnT) (see below). On the other hand,

the presence of central IGnT (cIGnT) was first described in 1992 (Gu et al. 1992).

Later, cDNA encoding IGnT1 (also known as IGnT or GCNT2), which is the

responsible gene for cIGnT, was cloned from human embryonal carcinoma cells,

PA-1 (Bierhuizen et al. 1993). Newly developed system of the expression cloning

method was successfully applied in this cloning. Since CHO cells originally do not

express branched I antigen, forced expression of IGnT1 cDNA theoretically enables

to distinguish cells with I phenotype from others. Based on this, the cDNA

expression library derived from PA-1 cells was transfected into the CHO cell line

that expresses polyoma virus large T-antigen. Then, another enzyme having

I-branching activity was identified as C2GnT2 (also known as GCNT3) (Yeh

et al. 1999). C2GnT2 was found in the process of cloning for a novel core2 β1-
6N-acetylglucosaminyltransferase for O-glycans by expressed sequence tag (EST)

homology search with C2GnT1. Interestingly, C2GnT2, having a weak enzymatic

activity for I-branching, was proven to be the responsible enzyme for dIGnT. Now

two synthetic pathways of poly-N-acetyllactosamine, which are carried out by IGnT

and C2GnT2, have been well characterized (Fig. 9.3). IGnT requires terminal

galactose in the substrate to exhibit its enzymatic activity, producing

[Galβ1! 4GlcNAcβ1! 3(GlcNAcβ1! 6)Galβ1! 4GlcNAc], whereas C2GnT2

does not require terminal galactose, producing [GlcNAcβ1! 3(GlcNAcβ1! 6)

Galβ1! 4GlcNAc]. The third and fourth enzymes related to IGnT1 were then

cloned and designated as IGnT2 and IGnT3 (Inaba et al. 2003). Therefore, four

enzymes to date are reported to have I-branching activity. Among them, IGnT1

GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

Galβ1→4GlcNAcβ1

Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

→

6
Galβ1→4GlcNAcβ1

Galβ1→4GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

→

6

GlcNAcβ1

GlcNAcβ1→3Galβ1→4GlcNAcβ1→R

→

6

β1,4GalT

IGnT (cIGnT) + β1,4GalT

C2GnT2 (dIGnT)

β1,4GalT

Fig. 9.3 Two distinct synthetic pathways of I-branching in poly-N-acetyllactosamine. When

galactose is present at the terminal of linear poly-N-acetyllactosamine chain, IGnT (cIGnT) acts

on the inner galactose residue, forming I branch. When GlcNAcβ1! 3Galβ1!R or

GlcNAcβ1! 3GalNAcβ1!R is available, distal galactose or N-acetylgalactosamine residue is

utilized by C2GnT2 (dIGnT), forming distal I branch (Yeh et al. 1999)
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dysfunction had been long believed to be responsible for the i phenotype. It was

reported that individuals with the i phenotype have missense mutations in the exon

3 of IGnT1 gene (Yu et al. 2001). Those mutations were indeed linked to lack of

branching activity, resulting in a loss of erythrocyte I antigen. However, when the

genomic sequence of the coding regions of three IGnT (IGnT1-3) genes were

determined in adult I and i phenotypes, there were two additional types of point

mutations in the exon 2. Now it is widely accepted that IGnT3 is the most feasible

candidate for the blood group I gene causing i phenotype (Inaba et al. 2003). The

adult i phenotype is also reportedly associated with congenital cataracts in Asians

(Lin-Chu et al. 1991; Ogata et al. 1979; Yu et al. 2001, 2003) but less associated in

Caucasian populations (Macdonald et al. 1983; Marsh and DePalma 1982). Inter-

estingly, IGnT1-deficient mice did not develop cataracts earlier than wild-type mice

(Chen et al. 2005). This result may be reflecting the observation that the onset of i

phenotype is more attributable to IGnT3 mutation than to IGnT1 mutation.

9.4.2 β1-3N-Acetylglucosaminyltransferases (B3GNTs)

For the synthesis of backbone of poly-N-acetyllactosamine, the presence of

β-1,3-N-acetylglucosaminyltransferase is essential. While isolation of IGnT1

cDNA was successful by expression cloning as described above, it took several

more years to finally clone the cDNA encoding iGnT (also known as B3GNT1).

This is largely because iGnT is ubiquitously present in mammalian cells and it was

extremely difficult to obtain the cells entirely deficient in the i antigen. However, by

increasing the expression of cDNAs to a comparable level, they could finally obtain

enriched cells containing iGnT cDNA and then succeeded in the cDNA cloning

(Sasaki et al. 1997). Eventually, seven additional β-1,3-N-acetylglucosaminyl-

transferases have been so far cloned and their substrate specificities have been

studied (Sasaki et al. 1997; Shiraishi et al. 2001; Togayachi et al. 2001; Yeh

et al. 2001; Iwai et al. 2002; Ishida et al. 2005). All B3GNTs, except B3GNT6,

were shown to have capacity to initiate and elongate poly-N-acetyllactosamine

chains though they exhibit a different substrate specificity depending on the length

of the lactosamine chain (Sasaki et al. 1997; Shiraishi et al. 2001; Ishida

et al. 2005). Importantly, B3GNT2-8 shares structural similarity with each other,

whereas iGnT is structurally distinct from others. Therefore, it was proposed that

iGnT and others might have different functions (Fukuda 2002; Zhou et al. 1999;

Shiraishi et al. 2001). Indeed, an enzyme was identified as a responsible gene for

meningioma, and one of two conserved domains of the enzyme is similar to iGnT

and then called LARGE (like-acetylglucosaminyltransferase) (Peyrard et al. 1999).

LARGE was now considered as the key enzyme forming laminin-binding glycans

that are attached to α-dystroglycan (Grewal et al. 2001; Kanagawa et al. 2004).

Deficiency in LARGE causes muscular dystrophy, and overexpression of LARGE

attenuated the phenotype of muscular dystrophy (Barresi and Campbell 2006). It is

noteworthy that co-expression of LARGE with iGnT, but not with other B3GNT
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members, is crucial for LARGE activity. In fact, LARGE and iGnT were associated

with each other in cells to form laminin-binding glycans (Bao et al. 2009). More-

over, only iGnT was identified most recently as the causative gene of Walker–

Warburg syndrome that is a genetically heterogeneous form of congenital muscular

dystrophy (Shaheen et al. 2013) (Buysse et al. 2013). Collectively, iGnT is func-

tionally as well as structurally distinct from other B3GNT members.

9.4.3 β1-4 Galactosyltransferases (β4GalTs)

So far, seven β4GalTs have been identified and characterized (Almeida et al. 1997,

1999; Narimatsu et al. 1986; Shaper et al. 1988; Masri et al. 1988; Sato et al. 1998;

Nomura et al. 1998; Schwientek et al. 1998; Okajima et al. 1999). Among them,

β4GalT1 was proven to be crucial for synthesis of poly-N-acetyllactosamine

in N-glycans. In N-glycans, poly-N-acetyllactosamines are found mainly in

tetraantennary and triantennary N-glycans which contain a side chain linked to

α1,6-linked mannose through a GlcNAcβ1-6 linkage in GlcNAcβ1-6(GlcNAcβ1-2)
Manα1-6Manβ-R. It was shown that β4GalT1 prefers GlcNAcβ1-6Manα-R chain

rather than GlcNAcβ1-2Manα-R chain, yielding Galβ1-4GlcNAcβ1-6Manα-R
(Ujita et al. 1999). This galactosylation gives next two possible pathways. One is

that poly-N-acetyllactosamine extension occurs on Galβ1-4GlcNAcβ1-6Manα-R
chain by iGnT. The other is that β4GalT1 acts on GlcNAcβ1-2Manα-R, producing
Galβ1-4GlcNAcβ1-2Manα-R, then poly-N-acetyllactosamine extension occurs on

Galβ1-4GlcNAcβ1-2Manα-R chain by iGnT. In fact, poly-N-acetyllactosamine

extension was detected equally between two branches (Ujita et al. 1999). In this

study, iGnT level was a rate-limiting factor. Those observations were consistent

with structural analysis obtained by granulocytes (Fukuda et al. 1984; Mizoguchi

et al. 1984) and erythropoietin (Sasaki et al. 1987; Takeuchi et al. 1988).

By contrast, when poly-N-acetyllactosamine was tried to be synthesized on the

core2-branched oligosaccharides, the combination of iGnT and milk-derived

β4Gal-T1 failed to form the repeating unit (Ujita et al. 1998). There were

N-acetylglucosamine residues at most of nonreducing ends, suggesting insufficient

galactosylation by β4Gal-TI and the requirement of other members of β4Gal-Ts.
Then β4Gal-T4 was identified as the responsible enzyme required for the poly-N-
acetyllactosamine extension of core2-branched oligosaccharides (Ujita et al. 1998).

Indeed, β4Gal-T4 was demonstrated to be a rate-limiting factor for poly-N-
acetyllactosamine extension in core2-branched O-glycans. By contrast, β4Gal-T1
was proven to be the most efficient enzyme for poly-N-acetyllactosamine in

N-glycans. Moreover, β4Gal-T4, but not β4Gal-T1, drastically reduced its enzy-

matic activity as the poly-N-acetyllactosamine extends longer. These findings

nicely explain the observation that core2-branched O-glycans contain fewer and

shorter poly-N-acetyllactosamines than N-glycans in many cells. It was also

reported that β4Gal-T4 decreases its activity on longer glycolipids (Schwientek

et al. 1998).
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9.5 Poly-N-Acetyllactosamine in Cancer

9.5.1 Poly-N-Acetyllactosamine Expressed in N-Glycans
in Cancer

The number of N-acetyllactosamine repeat and the structure of its side chain are

likely to change upon malignant transformation. This was first demonstrated by

using polyoma-transformed cells (Yamashita et al. 1984). They showed that expres-

sion of poly-N-acetyllactosamine and sialyl Lewis X in multiantennary N-glycans
was correlated with transformation of baby hamster kidney cell. Similar changes

were reported in hepatic carcinogenesis (Yamashita et al. 1989) and granulocyte

differentiation (Lee et al. 1990). All those studies were focused on the poly-N-
acetyllactosamine on N-glycans. The biosynthesis of poly-N-acetyllactosamine in

N-glycan largely depends on the enzyme Mgat5, which initiates β-1,6-branching
from bi-antennary core mannose (van den Eijnden et al. 1988; Shoreibah

et al. 1993). A number of reports have shown that the increased activity of Mgat5

is associated with phenotype of oncogenic transformation: baby hamster kidney

cells transformed by polyoma virus (Yamashita et al. 1985), rat 2 fibroblast and

mouse mammary carcinoma SP1 carrying H-Ras or v-FPS (Dennis et al. 1987,

1989), and mouse fibroblast NIH3T3 cells transformed by Ras (Easton et al. 1991;

Lu and Chaney 1993). Mgat5 mRNA levels are increased in Her-2/Neu-

transformed cells (Chen et al. 1998) and in tumors of LEC rat model that develop

hereditary hepatocarcinomas with age (Miyoshi et al. 1993). Two papers showed

Mgat5-deficient tumor cells lost poly-N-acetyllactosamine on N-glycan (Cummings

and Kornfeld 1984; Yousefi et al. 1991), providing us an important insight that

Mgat5 activity is rate limiting for poly-N-acetyllactosamine biosynthesis in N-
glycans of tumor cells (Dennis et al. 1999).

9.5.2 Poly-N-Acetyllactosamine Expressed in O-Glycans
in Cancer

It is also true that poly-N-acetyllactosamine chain can be synthesized from O-
glycans. For most of the cells, core1 structure, Galβ1! 3GalNAc, is the major

component of O-glycans. On the other hand, core2 oligosaccharides, Galβ1! 3

(GlcNAcβ1! 6)GalNAc, are converted from core1 oligosaccharides when core2

β-1,6-N-acetylglucosaminyltransferase (C2GnT) is present. As far as O-glycan is

concerned, it is believed that poly-N-acetyllactosamine can be formed only from

core2-branched oligosaccharides. Particularly, poly-N-acetyllactosamine extended

from core2 O-glycan carries sialyl Lewis X, NeuNAcα2! 3Galβ1! 4

(Fucα1! 3)GlcNAc!R. This type of carbohydrate is constitutively expressed

on neutrophils, monocytes, and certain T lymphocytes (Fukuda et al. 1984;

Spooncer et al. 1984; Asada et al. 1991; Mizoguchi et al. 1984). Sialyl Lewis X
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attaches to E- and P-selectin expressed on activated endothelial cells, which allows

free-flowing leukocytes to roll, tether, and extravasate into inflammatory site

(Rosen and Bertozzi 1996; Forster et al. 2008). In regard to cancer, there is close

link between the expression of poly-N-acetyllactosamine in O-glycan and tumor

malignancy. Upon tumor transformation, some types of cells newly express core2

O-glycan. In this case, core2O-glycan can serve as a scaffold for newly synthesized
poly-N-acetyllactosamine in cancer cells (Maemura and Fukuda 1992; Lofling and

Holgersson 2009; Stone et al. 2009). Tumor malignancy is closely correlated with

terminal modification by sialic acid and fucose moieties (Gilbert 2009; Hedlund

et al. 2008; Wang et al. 2009; Cohen et al. 2010).

9.5.3 Cancer-Dependent Changes of Expression
of the Glycosyltransferases Involved in
Poly-N-Acetyllactosamine Synthesis

Early studies indicated that poly-N-acetyllactosamine repeats in O-glycans are

almost exclusively extended from the core2 glycans, which are formed by β1! 6

GlcNAc (GlcNAc to GalNAc) transferase (Fukuda et al. 1986). The enzymatic

aspect of core2-branching glycans associated with tumor malignancy was first

examined by comparing activities among metastatic murine tumor cell lines

(Yousefi et al. 1991). In this report, the branching activity of C2GnT1 (also

known as GCNT1) was elevated up to 70 % in the malignant rat 2 and SP1 cells,

whereas other glycosyltransferase activities did not significantly change. They also

demonstrated that the activity of C2GnT1 is indeed a rate-limiting factor for poly-

N-acetyllactosamine levels. Soon after, the responsible transferase, C2GnT1, was

cloned using CHO cell line that expresses polyoma virus large T-antigen

(Bierhuizen and Fukuda 1992). CHO cells were transfected with leukosialin

(CD43), a carrier protein for Core2 O-glycosylation, in this experiment. Correlation

between the expression of C2GnT1 and tumor progression was extensively studied

(Saitoh et al. 1991; Shimodaira et al. 1997; Machida et al. 2001; Hagisawa

et al. 2005; Hatakeyama et al. 2010; Tsuboi et al. 2011). Another enzyme,

C2GnT2, was found to be abundantly expressed in the digestive tract. Interestingly,

this enzyme has less stringent substrate specificity and can initiate core4 and

I-branches as well as core2 branch (Bierhuizen et al. 1993; Yeh et al. 1999). It

was reported that C2GnT3 has also core2-branching activity but not I-branching

activity (Schwientek et al. 2000). The physiological significance of C2GnT2 and

C2GnT3 in cancer remains to be characterized.

The role of IGnT expression in cancer progression was first proposed by the

reports that sera of breast cancer patients contained high level of I antigen and the I

antigen levels were correlated with the breast cancer stages (Burchell et al. 1984;

Dube et al. 1984, 1987). Recently, the expression profile of IGnT during carcino-

genesis was studied more directly using tissue microarray of human breast tumor
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(Zhang et al. 2011). In this experiment, the expression of IGnT was closely related

to its basal-like and metastatic phenotypes. In addition, IGnT expression was

regulated by TGF-β1 and this enzyme was involved in epithelial-to-mesenchymal

transition (EMT) (Zhang et al. 2011). Poly-N-acetyllactosamine branching in the

breast cancer cells presumably induces further glycan modification, ensuring its

highly metastatic potential.

Recent reports showed that poly-N-acetyllactosamine chain having terminal α1-
2 fucose is recognized by prostate cancer-specific F77 monoclonal antibody (Gao

et al. 2014; Nonaka et al. 2014a), which was originally raised against prostate

cancer cell line PC-3 and showed strong cytotoxicity to prostate cancer cells in vivo

(Zhang et al. 2010). A series of cotransfection studies clearly demonstrated that

FUT1 plus either C2GnT1, C2GnT2, or IGnT were required for robust stain by F77

antibody (Fig. 9.4). The study also showed that hypoxia, which is one of the

conditions associated with tumor malignancy, elevated FUT1, C2GNT2, and

IGnT levels (Nonaka et al. 2014a). Since F77 epitope is synthesized only in the

cancer condition, poly-N-acetyllactosamine chain containing terminal α1-2 fucose

would become a novel marker for prostate cancer.

Fuca1→2Galβ1→4GlcNAcβ1 
6

Galβ1→3GalNAca1→Ser/Thr

FUT1

C2GnT1→

Galβ1→4GlcNAcβ1→3Gal→R

Fucα1→2Galβ1→4GlcNAcβ1 
6

FUT1

IGnT→

Fucα1→2Galβ1→4GlcNAcβ1 
6

GlcNAc/Galβ1→3GalNAcα1→Ser/Thr

FUT1

C2GnT2→

GlcNAcβ1→3Gal→R

Fucα1→2Galβ1→4GlcNAcβ1 
6

FUT1

C2GnT2→

Fig. 9.4 Proposed structure

of F77 epitope.

Cotransfection analysis

suggests that FUT1 plus

either C2GnT1, C2GnT2, or

IGnT synthesizes

Fucα1–2Galβ1–4GlcNAc
terminal structure extended

from Gal or GalNAc

through a GlcNAcβ1–6
linkage
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9.5.4 Glycosignals of Poly-N-Acetyllactosamine in Cancer
Cells

The functional aspect of poly-N-acetyllactosamine, particularly with respect to cell

signaling, has been extensively studied. In thymus, galectin-1 induces apoptosis of

the immature thymocytes which expresses poly-N-acetyllactosamine synthesized

by C2GnT1 (Galvan et al. 2000; Nguyen et al. 2001). Studies have shown that

galectin-1, galectin-3, and galectin-9 bind to T cells that express N-lactosamine

unit, resulting in suppression of antitumor responses by regulating T cell function

(Rubinstein et al. 2004; Demotte et al. 2008; Dardalhon et al. 2010; Peng

et al. 2008). T lymphocytes constitutively express poly-N-acetyllactosamine

chain on CD28 and CD19 costimulatory molecules. Reduction of poly-N-acetyllac-
tosamine chain in those molecules elevated intracellular Ca2+ flux, resulting in

rapid proliferation of the cell (Togayachi et al. 2007).

In contrast to the case of expression in normal cells as described above, it is

known that some cancer cells newly obtain poly-N-acetyllactosamine chain. Given

that the generation of poly-N-acetyllactosamine requires a huge energy investment

by tumor cells, it is predicted that cells, in return, acquire some advantages that are

beneficial for their survival. Oligosaccharide structure that is newly exposed to the

outside of the cells plays the role by binding to carbohydrate-binding lectins such as

selectin, resulting in promotion of cell–cell interaction and metastasis. Terminal

sialyl Lewis X of poly-N-acetyllactosamine allows cells to attach to endothelial

cells and thus promote tumor metastasis through E-selectin and P-selectin (Laubli

and Borsig 2010; St Hill 2011; Sozzani et al. 2008; Yusa et al. 2010; Sawada

et al. 1994). Moreover, it was recently reported that colorectal cancer-associated

Lewis glycans that are extended from linear poly-N-acetyllactosamine chain can be

recognized by mannose-binding protein (MBP), a C-type lectin (Terada et al. 2005;

Nonaka et al. 2014b). It is interesting that the core structure of the MBP-ligand

glycan was found to be multiantennary N-glycans and the nonreducing ends

consisted of Lewis B–Lewis A or tandem repeats of the Lewis A. Thus it is

plausible that MBP recognizes terminal type 1 Lewis glycans. Since MBP report-

edly showed antitumor effect in colon cancer cells in vivo (Ma et al. 1999), such

glycans are supposedly involved in apoptotic signaling cascade. Furthermore,

signaling of poly-N-acetyllactosamine in cancer cell is involved in evasion of

immune cell attack. In the circulation, rejection of cancer cell occurs by host NK

cells. NK cells are activated through the interaction of natural killer group 2 member

D (NKG2D) receptor with MHC class I-related chain A (MICA) molecule on tumor

cells. This interaction stimulates apoptosis signaling and promotes secretion of

granzyme B and perforin. However, once cancer cells acquire poly-N-acetyllac-
tosamine chain on MICA molecule, galectin-3 masks NKG2D-binding site of

MICA, leading to silencing of NK cells and thereby promoting immune escape of

tumor cells (Fig. 9.5) (Tsuboi et al. 2011).
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9.6 Concluding Remarks

The glycobiology of poly-N-acetyllactosamine has been developed together with

the evolution of genetics, immunology, developmental biology, and molecular

biology. The expression of poly-N-acetyllactosamine chain is regulated by cell-

type-specific manner, and it can be further modified by a wide variety of glycosyl-

transferases or other enzymes. As a result, poly-N-acetyllactosamine has multiple

functions. The functions of poly-N-acetyllactosamine can be conceptionally

divided into three categories: (1) poly-N-acetyllactosamine serves as backbone

for additional modifications such as ABO and Lewis blood type determinants,

(2) it behaves as a ligand for antibodies and lectins and actively modulates the

function of its carrier proteins or even the cell fates, or (3) it sometimes masks

original carbohydrate structures and helps cancer cells to escape from recognition

by immune surveillance. The future challenge will be to clarify the whole picture of

expression profile of related glycosyltransferases during carcinogenesis, which may

lead to discovery of new mechanism for cancer malignancy.
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Fig. 9.5 Immune-escaping signals by tumor cells which express poly-N-acetyllactosamine

chains. (a) NK cells secrete cytotoxic granules through interaction with NK cell receptor

NKG2D and tumor-derived MICA molecule. (b) When tumor cells express poly-N-acetyllac-
tosamine glycans on MICA molecule, galectin-3 masks the binding site of MICA. This blocks

interaction between NKG2D and MICA, leading to evasion from NK cell immunity
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Chapter 10

Role of Glycans in Cancer Cell Death:

A Deadly Relationship

Inka Brockhausen

Abstract Cancer cells often rapidly proliferate and are resistant to the induction of

cell death (apoptosis). The field of apoptosis control by glycans is still in the infant

stages and requires much more research and knowledge of the biological functions

of cell surface receptors. Extrinsic apoptosis is the cell death cascade initiated at the

cell surface involving specific receptors, followed by recruitment of protein com-

plexes and activation of proteins intracellularly that eventually lead to DNA

breakage and cell death. The cell surface receptors that bind apoptosis-inducing

ligands are glycoproteins, and a number of studies show that the glycans play a role

in the expression, transport, oligomerization, or function of the receptors. Glycans

can also be directly recognized by apoptosis-inducing lectins. Cancer cells often

have specific alterations in these glycan structures. These abnormal glycans, and the

enzymes that synthesize these glycans, may be partly responsible for the

malfunctioning of apoptosis pathways. In particular, sialic acids and specific

sialyltransferases are potential therapeutic targets to increase cell death.

However, it is necessary to consider the glycosylation potentials of the specific

cancer cells expressing the glycoproteins involved in apoptosis, such as Fas and

receptors for tumor necrosis factor (TNF)α and TNF-related apoptosis-inducing

ligand (TRAIL). Cells that undergo apoptosis also show altered expression and

activities of glycosyltransferases. Technologies to alter cellular glycosylation may

be successful in restoring apoptosis in cancer cells or in maintaining the populations

of immune cells that eliminate cancer cells.

Keywords Apoptosis • Fas • TNFα • TRAIL • Receptors • Galectin •

O-glycosylation • N-glycosylation • Glycosyltransferases
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C2GnT Core 2 β6GlcNAc-transferase
C3GnT6 Core 3 β3GlcNAc-transferase
DC-SIGN Dendritic cell-specific ICAM-3 grabbing nonintegrin

DISC Death-inducing signaling complex

DR Death receptor

EGFR Epidermal growth factor receptor

ER Endoplasmic reticulum

FADD Fas-associated death domain adapter protein

FUT Fucosyltransferase

GalT Gal-transferase

GlcNAcT GlcNAc-transferase

NF-κB Nuclear factor κB
NK Natural killer cell

ppGalNAcT Polypeptide GalNAc-transferase

RAGE Receptor for advanced glycosylation end products

ST3Gal α3-Sialyltransferase acting on Gal

ST6Gal α6-Sialyltransferase acting on Gal

ST6GalNAc α6-Sialyltransferase acting on GalNAc

TNF Tumor necrosis factor

TNFR Tumor necrosis factor receptor

TRAIL Tumor necrosis factor-related apoptosis-inducing ligand

10.1 Introduction

The problem with uncontrolled tumor growth lies in mechanisms that allow rapid

proliferation and/or decrease cell death. Many of these processes are initiated by

glycoproteins located on the cell surface, and the glycan structures are closely

linked to cell death. Cell death can occur by many different mechanisms, including

necrosis (leading to inflammation), the homeostatic autophagy process, or the

activation of apoptosis pathways (Nikoletopoulou et al. 2013). This review deals

mainly with receptor-mediated extrinsic pathways of apoptosis which utilize exter-

nal signals (Fig. 10.1). Intrinsic apoptosis pathways involve mitochondrial signal-

ing pathways. As a result of either type of induction, cysteine aspartyl proteases

(caspases) are cleaved and activated, ultimately leading to DNA fragmentation,

cellular changes, and cell death (Nikoletopoulou et al. 2013; Jin et al. 2004).

Glycans play critical roles in the induction of apoptosis. Cancer cell glycopro-

teins are often altered, and this can potentially impact on the ability of the cell to

undergo apoptosis. Cell surface glycans are functionally important in the regulation

of receptor functions, cell signaling, cell adhesion, migration, and metastasis.

Although many studies suggest a link between glycosylation and apoptosis, few

studies have elucidated the specific role of glycans in the initiation and propagation

of apoptosis. Many of the cell surface receptors involved in regulating cell growth,

proliferation, induction, and regulation of apoptosis have been identified as
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glycoproteins. Upon induction of apoptosis, cells have been shown to exhibit

different glycosylation patterns and expression of glycosyltransferases.

However, the functions of posttranslational modifications have received mini-

mal attention, and our knowledge of the role of glycans in regulating the activities

of specific receptors is limited. There are many possibilities for carbohydrates to

carry out their regulatory functions on the cell surface. This includes roles in

expression and stability of glycoproteins, conformational properties of receptors,

exposure of ligand-binding sites and regulation of ligand binding, receptor oligo-

merization, uptake, and signaling. The biological roles of glycans seem to depend

on their structures and patterns, their attachment sites, and the specific glycoprotein

that carries them.

Apoptosis can be induced by several different mechanisms that appear to be

controlled by the presence of glycoprotein-bound glycans. We expect that the

altered biosynthesis of glycans in cancer cells leads to functional changes of cell

surface receptors (Barthel et al. 2008, 2009; Brockhausen 2006; Brockhausen and

Fas Ligand

Fas receptor

N-glycan

Galec�n monomer

FADD

Ac�vated Caspase 8

Nucleus

DISC

Fig. 10.1 Example of extrinsic apoptosis. In one example of extrinsic apoptosis pathways,

trimeric Fas ligand on cell surfaces or in soluble forms binds to its receptor, trimeric Fas. Fas

ligand is a glycoprotein with three N-glycans, and Fas is a glycoprotein with two N-glycans per
monomer, thus forming a layer of carbohydrates over a substantial part of the proteins. Interaction

between ligand and receptor that has an intracellular death domain induces signaling, including the

recruitment of FADD (Fas-associated death domain adapter protein), the formation of death-

inducing signaling complex (DISC), and the activation of caspases that eventually lead to DNA

fragmentation, morphological changes, and cell death. The cascades are regulated by a multitude

of proteins and enzymes intracellularly (not shown), including caspases. Extracellularly, complex

glycans have been shown to regulate apoptosis, and apoptotic cells have altered expression of

glycosyltransferases and glycans. Multimeric galectins can also induce apoptosis by binding to cell

surface Gal residues that may be attached to mucin-type O-glycans or receptors, forming glyco-

protein lattices
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Gao 2012; Picco et al. 2010; Julien et al. 2005, 2006; Pinho et al. 2007). The

intracellular signaling pathways leading to apoptosis also include proteins that carry

Ser/Thr-linked O-GlcNAc residues which appear to be critical for the functions of

these proteins (Wells et al. 2003; Lazarus et al. 2009). Gal-binding lectins have

critical roles, both in extracellular (extrinsic) and intracellular (intrinsic) apoptosis

pathways. A better understanding of the relationship between glycosylation and

apoptosis could therefore lead to new therapeutic strategies in cancer.

10.2 O- and N-glycan Structures Related to Cancer

and Cell Death

N- and O-glycan structures of glycoproteins are often altered in tissues and cells

undergoing apoptosis or oncogenic transformation (Adamczyk et al. 2012;

Brockhausen 2006; Brockhausen and Gao 2012; Hiraishi et al. 1993; Minamide

et al. 1995; Rapoport and Le Pendu 1999; Russell et al. 1998). For example, Lewis-

type glycan structures are associated with the apoptotic phenotype, and specific

glycans or glycosylation phenotypes have been shown to contribute to receptor

signaling and the induction of apoptosis or proliferation (Gabius 2001; Orlinick

et al. 1997; Patsos et al. 2007; Wagner et al. 2007; Woronowicz et al. 2004).

Glycans potentially regulate receptor functions such as receptor oligomerization,

uptake, and signaling.

Many glycoproteins have been shown to require N-glycans for stability, secre-
tion, conformation, and function. Sialic acids are commonly found on the terminal

position of an oligosaccharide chain and can modulate adhesive interactions. Short

sialylated O-glycan chains (sialyl-Tn and sialyl-Thomsen-Friedenreich

(TF) antigens) as well as their unsialylated versions are ubiquitous in cancer

cells, e.g., in prostate, breast, and colon cancer cells (Kim et al. 1996; Springer

et al. 1995) (Fig. 10.2). In contrast, the N-glycans of cancer glycoproteins are often
highly branched and extended and carry an excess of sialic acid residues, in

particular with sialylα2-6 linkages (Dall’Olio et al. 1989; Lise et al. 2000; Pinho

et al. 2009; Wang et al. 2009). The amount of sialic acid on cancer cells is usually

increased in cancer, in metastatic cells, and in leukemia, and this may contribute to

the survival of cells (Bresalier et al. 1996; Brockhausen and Kuhns 1997; Keppler

et al. 1999). Changes of glycan structures are expected to have a significant impact

on the cell surface functions, adhesive properties, and survival of cancer cells in the

blood (Picco et al. 2010). Sialylated short O-glycans as well as sialylated N-glycans
(Fig. 10.3) appear to lead to a decrease in cell adhesion and an increase in

migration, invasion, and survival of cancer cells that could form metastases

(Brockhausen 2006; Julien et al. 2005, 2006; Pinho et al. 2007; Wang

et al. 2009). Sialylation provides favorable conditions for tumor dissemination

and survival of tumor cells in the blood and protects cells in the blood from

recognition by glycan-binding proteins and uptake.
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Ser/Thr-pep�de

Core 1, TF an�gen
Gal 1-3GalNAc-

Extension,
Sialyla�on, Fucosyla�on,
Addi�on of Lewis an�gens
and blood group an�gens

Tn an�gen
GalNAc-

Core 2

GlcNAc
| 1-6

Gal 1-3GalNAc-

Sialyl 2-6GalNAc-
Sialyl-Tn an�gen

Sialyl 2-3Gal 1-3GalNAc-

Gal 1-4GlcNAc
| 1-6

Gal 1-3GalNAc-

ppGalNAcT

C1GalT

C2GnlT

4GalT

ST6GalNAc

ST3Gal

GlcNAc
| 1-6

Sialyl 2-3Gal 1-3GalNAc-

ST3Gal

Sialyl-TF an�gen

GlcNAc 1-3GalNAc-
C3GnT6

GlcNAc
| 1-6

GlcNAc 1-3GalNAc-

Core 3

Core 4

C2GnT2

Fig. 10.2 Main O-glycosylation biosynthetic pathways in apoptotic cancer cells. O-glycans in
cancer cells often have shorter structures, compared to normal cells, but complex branched and

Lewis-type structures are also found on aggressively growing cancer cells. All mucin-type O-gly-
cans haveGalNAcα linked to Ser or Thr (the Tn antigen) which is transferred bymembers of related

polypeptide GalNAc-transferases (ppGalNAcT). ppGalNAcT3, ppGalNAcT6 and ppGalNAcT14

are involved in the regulation of apoptosis, possibly by acting on different glycoprotein substrates.

Subsequently, β3-Gal-transferase C1GalT adds a Gal residue to GalNAc, to synthesize core 1, the

TF antigen. The unmodified Tn and TF antigens are often associated with a poor prognosis in

cancer. Alternatively, core 3 is synthesized by core 3 β3-GlcNAc-transferase C3GnT6. The α3-
sialyltransferases ST3Gal synthesize the sialyl-TF antigens, while α6-sialyltransferases
ST6GalNAc add sialic acid to GalNAc and synthesize sialyl-Tn and sialyl-T antigens. In the

absence of core sialylation, a branch can be introduced by β6-GlcNAc-transferases C2GnT to

form core 2 from core 1 and by C2GnT2 to form core 4 from core 3. All of these core structures can

be extended, and many different antigens and terminal structures can be added, depending on the

expression levels of a multitude of glycosyltransferases. Specific members of the extending

Gal-transferase family (β4GalT) have been shown to control cell proliferation and apoptosis, but

the roles of many more glycosyltransferases in apoptosis remain to be defined. The activities of

glycosyltransferases can vary significantly among cancer cells and are often different from those in

the corresponding normal cell types. Activities are also affected when cells undergo apoptosis
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10.2.1 Role of O-Glycan Structures in Cancer and Cell Death

The major O-glycan structures of glycoproteins and mucins are based on four core

structures, with cores 1 and 2 being the most common (Brockhausen 2010; Gao

et al. 2013a). Cores can be extended and terminated with a great variety of glycan

structures (Fig. 10.2). Alterations of O-glycans in cancer have been summarized in

previous reviews (Brockhausen and Kuhns 1997; Brockhausen 1999). Sialyl-Tn

expression has been shown to play an important role in the development of

malignant carcinoma cell types as well as regulation of apoptosis (Pinho

et al. 2007) and may protect cancer cells from natural killer (NK) cell cytotoxicity

(Blottière et al. 1992; Ogata et al. 1992). The sialyl-Tn, Tn, and TF antigens have

been used as cancer vaccines with moderate success (Hakomori 2001; Julien

Extension
Sialyla�on
Fucosyla�on
Addi�on of Lewis an�gens

Man 1-6(Man 1-3)Man 1-6
Man-

Man 1-3

GlcNAcT-I Man 1-6(Man 1-3)Man 1-6
Man-

GlcNAc 1-2Man 1-3

Mannosidase II

Man 1-6
Man-

GlcNAc 1-2Man 1-3

GlcNAcT-II

GlcNAc 1-2Man 1-6
Man-

GlcNAc 1-2Man 1-3

GlcNAc 1-2Man 1-6
Man-

GlcNAc 1-2Man 1-3
GlcNAc 1-4

GlcNAc 1-6
GlcNAc 1-2Man 1-6

Man-
GlcNAc 1-2Man 1-3
GlcNAc 1-4

GlcNAcT-IV

GlcNAcT-V

R-Man 1-6
GlcNAc 1-4Man-

R-Man 1-3

GlcNAcT-III

Fig. 10.3 Main biosynthetic pathways of complex N-glycans in cancer cells. Complex branched

N-glycans are often found in cancer cells, and the overall structures as well as specific terminal

structures appear to be involved in the biological properties of cancer cells and the metastatic

process, as well as in controlling apoptosis. GlcNAc-transferase I (GlcNAcT-I) synthesizes the

first antenna and is the critical enzyme for the formation of complex N-glycans. The addition of the
first GlcNAcβ1-2 residue to the N-glycan core is followed by the removal of Man residues by

mannosidase II, allowing GlcNAcT-II to act. GlcNAcT-III adds the bisecting residue which

appears to distort the N-glycan conformation resulting in decreased further processing of N-glycan
chains. This appears to reduce the metastatic properties of cancer cells. Alternatively, GlcNAcT-

IV and GlcNAcT-V add additional antennae which can all be extended by alternating Gal and

GlcNAc residues and terminated and further processed in similar pathways as for O-glycans.
GlcNAcT-V is often associated with metastatic cells and decreased cell-cell adhesion. Some of the

extending enzymes, e.g., sialyltransferases, prefer to act on O-glycans and some prefer N-glycans.
For example, α6-sialyltransferase ST6Gal acts on N-glycans of Fas and can protect cells from

apoptosis
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et al. 2009). The hope is to use these cancer-associated antigens to target therapeutic

antibodies or drugs to tumors.

The branched core 2 structure can be extended by Gal and other sugar residues

and carry a number of sialic acid residues and other epitopes such as Lewis antigens

and has been associated with an aggressive and invasive cancer phenotype

(Hagisawa et al. 2005; Hatakeyama et al. 2010; Shimodaira et al. 1997). Lewis

antigens are often present on O-glycans and found in apoptotic tissue (Fujita

et al. 2011; Nakamori et al. 1993). These antigens play an important role in the

interactions of cancer cell glycoproteins with carbohydrate-binding molecules

(selectins) of the immune system and trafficking of cancer cells (Läubli and Borsig

2010). Extensive efforts have been made to synthesize analogs of Lewis antigens to

block cell adhesion involving selectins. Studies on death receptors suggest that

O-glycans are important in their functions (see Sect. 10.5.3).

10.2.2 Role of N-Glycan Structures in Cancer and Cell Death

N-glycans are important in the regulation of cell adhesion, protein structure, and

ligand binding and are found on many cell surface receptors and their ligands.

Changes in the ratios of bi-, tri-, and tetra-antennary N-glycan structures commonly

occur on cancer glycoproteins. Multivalent lectins that bind to multiple N-glycans
on glycoproteins can form lattices that regulate cell adhesion, cell growth, and

apoptosis (Lagana et al. 2006).

The GlcNAcβ1-6Man antennae appear to have anti-adhesive properties and

often but not always correlate with metastasis (Guo et al. 2000; Przybylo and

Lityńska 2011). While bisected GlcNAcβ1-4Man-linked N-glycans cause increased
cell adhesion of mammary tumor cells possibly through E-cadherin interactions

which suppress metastases, the GlcNAcβ1-6 antennae contribute to decreased cell

adhesion and tumor cell invasiveness (Pinho et al. 2009). In B16 melanoma cells,

bisected GlcNAc residues reduced integrin α5β1-mediated adhesion to fibronectin,

and this may be the reason why decreased numbers of cancer cells appear in the

circulation (Isaji et al. 2004).

Sialic acids are ligands for sialic acid-binding lectins (siglecs) as regulators of

immune cell activation (Läubli and Borsig 2010) and mask the Gal receptor ligands

for galectins or ligands for other lectins (Stillman et al. 2006). Highly α6-sialylated
colon cancer cells were shown to be more invasive through the extracellular matrix

(Zhu et al. 2001). In addition, glycans having α3-linked sialic acid were shown to be
prevalent in gastric tumors with a high metastatic potential, and this correlated with

invasive depth and lymph node metastasis (Wang et al. 2009). The biological

activities of cell surface glycoproteins that control cell growth and cell death in

cancer cells often involve N-glycan-bound sialic acids (Arnold et al. 2011;

Dall’Olio and Chiricolo 2001).
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10.3 Biosynthesis of Glycoproteins in Cancer

and Apoptotic Cells

Abnormal glycan structures of cancer glycoproteins are the result of the altered

activities of glycosyltransferases (Dalziel et al. 2001; Kudo et al. 1998; Petretti

et al. 2000; Brockhausen 1999; Brockhausen and Gao 2012). We are just beginning

to understand the complex control of glycosyltransferase gene expression, in

different growth conditions and after cytokine treatments (Brockhausen

et al. 2002; Delmotte et al. 2002; Garcia-Vallejo et al. 2006; Higai et al. 2006;

Yang et al. 2004, 2007, 2008). Cultured cells derived from prostate or colonic

tumors can show significant differences in glycosylation potential (Gao et al. 2012;

Vavasseur et al. 1995) indicating that glycosylation is not tumor specific but can be

variable and depend on cell type, growth condition, and the biological activity of

the cell.

10.3.1 Abnormal O-Glycan Biosynthesis in Cancer

The O-glycan chains of glycoproteins are initiated by the addition of GalNAcα to

Ser or Thr by members of a large family of polypeptide GalNAc-transferases

(ppGalNAcT), forming the cancer-associated Tn antigen (Fig. 10.2). Specific

members of this transferase family have been associated with cancer and increased

cell growth. For example, ppGalNAcT3 has been found to be overexpressed in

human pancreatic cancer tissues. Knockdown of the enzyme expression in pancre-

atic cancer cells attenuated growth and increased the number of cells undergoing

apoptosis (Taniuchi et al. 2011). The expression of another GalNAc-transferase,

ppGalNAcT6, is also upregulated in pancreatic tissues, as well as in the majority of

breast cancers (Li et al. 2011; Park et al. 2010, 2011). When the expression of the

enzyme was suppressed in metastatic breast cancer cells, cell adhesion was

enhanced and cell proliferation was suppressed. The high expression of another

enzyme of this family, ppGalNAcT14, in patient’s breast tumors (Wu et al. 2010)

was found to be associated with invasiveness, mucinous adenocarcinomas, and

ductal carcinomas in situ. Although it is not clear which glycoprotein substrates

these enzymes act on, these results suggest that excessive O-glycosylation may

affect the activities of cell surface receptors involved in proliferation or cell death.

The sialyltransferase ST6GalNAc-1 is the main enzyme that converts the Tn to

the sialyl-Tn antigen (Brockhausen 2010). Alternatively, O-glycan core

1 (TF antigen) is synthesized by core 1 β3-Gal-transferase (C1GalT) that is related
to T-cell apoptosis (Chen et al. 2012). The activity is often absent in cancer cells

(Brockhausen 1999) due to lack of necessary co-expression of the unique chaperone

Cosmc (Ju et al. 2008). Core 1 is a substrate for a multitude of elongating,

branching, or terminally acting glycosyltransferases.
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In selected cell types such as colonic cells, core 3 β3-GlcNAc-transferase (core
3 synthase, C3GnT6) is expressed, the enzyme that competes with C1GalT to

synthesize O-glycan core 3 from GalNAc-R (Gao et al. 2012; Vavasseur

et al. 1995). Core 3 may be functionally very significant and appears to have a

protective function. In prostate cancer cells, core 3 synthase reduced the ability of

cell migration and invasion through extracellular matrix components and

suppressed tumor formation and metastasis in mice (Lee et al. 2009). In human

pancreatic cancer cells, core 3 synthase expression is lost, and forced re-expression

suppressed tumor growth and metastases in mice (Radhakrishnan et al. 2013).

O-glycan core 1 can be branched by members of the β6-GlcNAc-transferase
(C2GnT) family to form core 2 (Brockhausen 2010; Gao et al. 2013a). C2GnT1 is

variably active in cancer cells (Gao et al. 2012; Vavasseur et al. 1995) and forms a

scaffold for the addition of sialyl-Lewisx. Therefore, C2GnT1 can regulate cancer

cell adhesion to the endothelium, and its expression correlates with aggressiveness

and invasiveness of cancer cells (Hagisawa et al. 2005; St. Hill et al. 2009).

C2GnT1 also regulates apoptosis in T cells by forming a scaffold that presents

Gal residues, the receptors for apoptosis-inducing galectins (Nguyen et al. 2001;

Valenzuela et al. 2007). The MUC1 mucin, which is usually overexpressed in

epithelial cancers, can carry the core 2 structure that shields cells from cytotoxicity

induced by NK cells. In bladder cancer metastasis, C2GnT1 provides protection of

cancer cells against NK cell-induced cell death which prolongs cancer cell survival

(Okamoto et al. 2013; Suzuki et al. 2012), possibly by displaying extended and

branched glycans that interfere with NK cell binding. C2GnT2 is a homologous

enzyme that synthesizes core 2 from core 1 and also core 4 from core 3 (Fig. 10.2).

In contrast to C2GnT1, C2GnT2 appears to have a protective function, and the

expression of C2GnT2 in colon cancer cells causes growth inhibition (Huang

et al. 2006).

Sialylation of cancer cells is mediated by a large family of sialyltransferases

(Cazet et al. 2010; Dall’Olio and Chiricolo 2001). Inhibition of high

sialyltransferase activities in cancer may increase galectin-induced apoptosis by

exposing underlying Gal residues. The expression levels and activities of ST3Gal-I

that synthesizes the sialyl-TF antigen (sialylα2-3Galβ1-3GalNAc-) are high in

many different types of cancer cells and tissues (Brockhausen and Gao 2012;

Burchell et al. 1999). Picco et al. (2010) found that a high expression level of

ST3Gal-I promotes tumorigenesis of breast cancer cells, likely by prolonging the

life span of circulating tumor cells displaying sialyl-T on the surface. ST3Gal-I also

contributes to resistance to galectin-1-induced apoptosis (Valenzuela et al. 2007).

This suggests that ST3Gal-I is a potential target for anticancer treatment.

10.3.2 Altered Biosynthesis of N-Glycans in Cancer

The antennae of N-glycans are initiated by GlcNAc-transferases-I to GlcNAc-

transferases-V followed by extension by Gal-transferases and GlcNAc-transferases
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and termination by sialyltransferases and Fuc-transferases (Brockhausen 2010;

Taniguchi and Korekane 2011) (Fig. 10.3). Changes in these enzyme activities

affect the number of antennae and functional glycan epitopes, the bulkiness of

glycans, and adhesive properties of glycans and could alter the functions of

glycoproteins.

In a number of cancer models studied, GlcNAcT-III caused a decrease in cell

migration, and GlcNAcT-V promoted cell motility. GlcNAcT-V clearly plays a

critical role in tumorigenesis and metastasis (Demetriou et al. 1995; Granovsky

et al. 2000; Zhou et al. 2011). GlcNAcT-V contributes to the bulkiness of N-glycans
by synthesizing an additional antenna and contributes to loss of contact inhibition

and reduced cell-extracellular matrix interactions of cancer cells and may correlate

with malignant potential (Ohyama 2008). Thus, increased expression of GlcNAcT-

V has been found in many metastatic cells (Gao et al. 2012; Petretti et al. 2000).

In contrast, GlcNAcT-III synthesizes bisected N-glycan structures that block

further processing and extension of chains, and the enzyme appears to have anti-

metastatic properties (Yoshimura et al. 1995; Zhao et al. 2008). In mice, GlcNAcT-

III inhibited breast tumor growth, possibly by reducing platelet-derived growth

factor signaling (Song et al. 2010). In human gastric carcinoma cells, GlcNAcT-V

caused increased cell migration on laminin, while GlcNAcT-III had the opposite

effect (Kariya et al. 2008). Thus, additional carbohydrate epitopes created by

GlcNAcT-V could promote lattice formation of lectins and regulate cell adhesion,

motility, cell growth, and apoptosis (Guo et al. 2000; Lagana et al. 2006; Tsui

et al. 2008). However, the biological effects of highly branched N-glycans can vary
among tumor types and are a function of the individual glycoproteins involved in

the metastatic process (Ohyama 2008).

Colon cancer and many other cancers and metastatic cells exhibit a high

expression of α6-sialyltransferase (ST6Gal) (Dall’Olio et al. 1989; Dall’Olio and

Chiricolo 2001; Swindall and Bellis 2011). ST6Gal is the major enzyme responsi-

ble for sialylation of N-glycans and may protect cancer cells from the induction of

apoptosis. ST6Gal substrates include the TNFR1 receptor and Fas (Swindall and

Bellis 2011), and receptor sialylation prevents the induction of apoptosis. The sialyl

residues added by ST6Gal may extend the lifetime of cancer cells and confer the

ability to migrate through extracellular matrix (Zhu et al. 2001).

Cancer-selective or cancer-specific antibacterial peptides can be cytotoxic to

cancer cells (Han et al. 2013). Cationic antibacterial peptides may interact with

negatively charged sialic acid on cell surfaces which play a role in cytotoxicity.

Cationic peptides bound less to breast cancer cells after treatment of cells with α2-
3,6,8-specific sialidase, tunicamycin, GalNAc-benzyl, and ganglioside biosynthesis

inhibitor, suggesting a role of sialic acids and O-glycosylation or N-glycosylation in
cationic peptide binding (Han et al. 2013). Upon alteration of glycosylation, the

lethal effects of cationic peptides were reduced. In contrast, when Chinese hamster

ovary cells were transfected with ST6Gal, the lethal effect of cationic peptides was

significantly increased, presumably since more binding sites were available. Sim-

ilar results were obtained from a breast cancer cell xenograft mouse model where

the cationic peptide buforin IIb induced extensive apoptosis in tumor cells. Buforin
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IIb induces caspase-dependent apoptosis in MCF-7 or Jurkat cells likely through

electrostatic interactions. Thus, the negative charges of N-glycan-bound sialic acids
have diverse effects on apoptosis.

10.3.3 Glycosyltransferases in Apoptotic Cells

The inflammatory cytokine TNFα has been shown to induce apoptosis while

altering the gene expression and activities of glycosyltransferases in a number of

cell types, including endothelial cells and bone cancer cells (Brockhausen

et al. 2002; Garcia-Vallejo et al. 2006; Yang et al. 2004, 2007, 2008). This suggests

that downstream events of TNFα effects regulate many different genes

(Table 10.1).

A family of Gal-transferases adds Gal residues to glycoproteins and glycolipids

with slightly different substrate specificities (Figs. 10.2 and 10.3). The Golgi

enzyme β4-Gal-transferase (β4GalTI) extends N- and O-glycan chains, and the

expression of β4GalTI regulates apoptosis. The long isoform of β4GalTI has

been found to distribute to the cell surface in several cell types including mammary

gland, where it can act as a GlcNAc-binding lectin and participate in cell adhesion

events. Cell surface β4GalTI was shown to inhibit the autophosphorylation of

the epidermal growth factor receptor (EGFR) and thus proliferation in human

hepatocarcinoma cells. Overexpression of the enzyme increased

Table 10.1 Abnormal N- andO-glycan structures and glycosyltransferase levels in apoptotic cells

Abnormality Cell/tissue Reference

Altered biosynthesis

Expression levels of many GT Endothelial cells (TNFα) Garcia-Vallejo

et al. (2006)

Brockhausen

et al. (2002)

Activities of GT Bone and cartilage cells (TNFα
and TGFβ)

Yang et al. (2004, 2007,

2008)

β4GalTII HeLa cells (cisplatin, adriamycin) Zhou et al. (2008)

Altered structures

Sialyl-Tn Gastric cancer cells Pinho et al. (2007)

Sialyl-Lewisx Colorectal cancer Nakamori et al. (1993)

Breast cancer Fujita et al. (2011)

Lewisy Skin cells Hiraishi et al. (1993)

Truncated O-glycans
(GalNAc-benzyl)

HL60 cells Li et al. (2007)

Colon cancer cells Patsos et al. (2009)

Fewer N-glycans
(tunicamycin)

Many cell types Shiraishi et al. (2005)

When cells or tissues undergo apoptosis, expression and activities of several glycosyltransferase

(GT) are affected, and thus the structures of glycoprotein-bound glycans are altered
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cycloheximide-induced cell death (Li et al. 2006). The enzyme is a receptor for

extracellular matrix components on the cell surface of murine mammary glands

(de la Cruz et al. 2004) where it promotes apoptosis as well as morphological

changes. In Schwann cells, β4GalTI expression controls both proliferation and

apoptosis induced by TNFα (Yuan et al. 2012). Altered expression levels of β4-
GalT affect several different pathways mediated by TNFα.

Another enzyme involved in N-glycan chain extension is β4GalTII. The enzyme

is regulated in cancer and in neural development and was shown to also have a

pro-apoptotic function in HeLa cells (Jiang et al. 2007). Other members of this

glycosyltransferase family, β4GalTI to β4GalTV and β4GalTVII, have various

effects on apoptosis suggesting that Gal residues on different glycoproteins have

distinct biological functions. The chemotherapeutic agent cisplatin induced DNA

damage and apoptosis in HeLa cells as well as an increased expression of β4GalTII.
The Golgi localization of the enzyme was critical for this effect. The β4GalTII gene
appears to be a target for the p53 transcription factor. Adriamycin which causes

DNA damage and apoptosis through the p53 transcription factor also induced the

overexpression of β4GalTII in HeLa cells (Zhou et al. 2008). When the expression

of β4GalTII was decreased by short inhibitory RNA (iRNA) interference, p53

transcription factor-mediated apoptosis induced by adriamycin was reduced. This

suggests a close link between apoptosis and Gal-transferase expression and empha-

sizes the importance of Gal residues (Table 10.2).

Changes in sialylation status often accompany dying cells. For example, during

camptothecin-induced apoptosis in rat cortical neurons, significantly higher

amounts of sialylα2-3 residues were expressed on the cells’ surface (Kim

et al. 2007). ST3Gal-III is involved in sialyl-Lewisx synthesis. Mice deficient in

the ST3Gal-III gene have less siglec ligands in their airways but more intense

allergic eosinophilic inflammation. This indicates that pro-apoptotic pathways that

control eosinophilic inflammation may require sialic acid (Kiwamoto et al. 2014).

The commonly used chemotherapeutic agent taxol causes an arrest of the cell cycle

and upregulates ST3Gal-III expression in human ovarian cancer cells. A high

expression of ST3Gal-III was found to downregulate caspase-8, thus inhibiting

taxol-induced apoptosis and providing a negative feedback mechanism (Huang

et al. 2009). In K562 cells, the cytotoxicity of phenol derivatives (but not phenol

itself) was accompanied by increased cell surface expression of Fas and FasL,

increased mRNA expression of Neu3 sialidase, and decreased expression of

sialyltransferase ST3Gal-III, indicating that sialic acid metabolism is critically

important in apoptosis (Wang 2012).

10.4 Glycosylation and Cell Death

Apoptosis is a natural process that helps to eliminate excess of senescing and

cytotoxic cells. In non-cancerous cells, apoptosis is critical for homeostasis, for

the control of the immune system, and in the development. This process is often
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deregulated in cancer, thus resulting in proliferation rather than removal of cancer

cells. The hope is to induce apoptosis specifically in tumor cells but not normal

cells. It is crucial therefore that we understand how apoptosis is controlled and how

cancer cells can be distinguished from normal cells and targeted in this process.

There are many and significant glycosylation differences between cancer and

normal cells that are potential targets for the delivery of apoptosis-inducing agents

to tumor cells.

A number of tools are available to study the role of glycosylation. For example,

the UDP-GlcNAc analog tunicamycin blocks N-glycosylation. Since many glyco-

proteins are N-glycosylated, tunicamycin treatment has a number of complex

biological effects and can lead to apoptosis. The cell surface expression and

Table 10.2 Glycosyltransferases involved in the regulation of apoptosis

Glycosyltransferase Cell/tissue Effect Reference

ppGalNAcT3 Pancreatic can-

cer cells

Increases apoptosis Taniuchi

et al. (2011)

ppGalNAcT6 Breast cancer

cells

Suppresses proliferation Park et al. (2010)

ppGalNAcT14 Colon cancer

cells

Increases TRAIL

apoptosis

Wagner

et al. (2007)

β4GalT-I Mammary cells Decreases proliferation Li et al. (2006)

Increases apoptosis De la Cruz

et al. (2004)

Schwann cells Controls apoptosis and

proliferation

Yuan et al. (2012)

β4GalT-II HeLa cells Pro-apoptotic Jiang et al. (2007)

Zhou et al. (2008)

β4GalT-III Ovarian cancer

cells

Inhibits apoptosis Huang et al. (2009)

C2GnT1 T cells Supports galectin

apoptosis

Valenzuela

et al. (2007)

Nguyen

et al. (2001)

Bladder cancer

cells

Blocks NK cell apoptosis Suzuki et al. (2012)

Okamoto

et al. (2013)

α3-Sialyltransferases
(ST3Gal-I)

cells Block galectin apoptosis Valenzuela

et al. (2007)

Toscano

et al. (2007)

α3-Sialyltransferase
(ST3Gal-III)

Ovarian cancer

cells

Blocks apoptosis Huang et al. (2009)

α6-Sialyltransferase
(ST6Gal)

T cells Blocks galectin apoptosis Clark and Baum

(2012)

Colon cancer

cells

Blocks Fas apoptosis Swindall and Bellis

(2011)

Monocytic cells Blocks TNF apoptosis Liu et al. (2011)
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secretion of N-glycosylated proteins can be affected by tunicamycin treatment

(Li et al. 2007; Shiraishi et al. 2005). Tunicamycin leads to underglycosylated

and sometimes misfolded proteins which can cause endoplasmic reticulum

(ER) stress and apoptosis due to accumulation of unfolded proteins (Table 10.1)

(Kim et al. 2013; Longas et al. 2012; Lopez et al. 2013; Shiraishi et al. 2005).

Treatment of cancer cells with GalNAcα-benzyl (Li et al. 2007; Patsos et al. 2007,
2009) which competes with the natural glycoprotein substrates in the early path-

ways of O-glycan biosynthesis reduces the amount of extended and sialylated O-
glycans. GalNAc-benzyl can also block cell growth and induce apoptosis

(Li et al. 2007; Patsos et al. 2009), possibly also due to accumulation of undergly-

cosylated glycoproteins. Other glycosylation inhibitors may have similar effects,

but the mechanisms are not yet known (Gao et al. 2013b). The impact of specific

glycan changes on the ability of cancer cells to undergo apoptosis needs a much

more detailed understanding.

Interestingly, the N-glycosylated glycodelin has apoptotic activity toward T cells

(Mukhopadhyay et al. 2004) which depends on the glycoform of glycodelin and its

sialylation status. While the presence of sialic acid often blocks the induction of

apoptosis, the sialylated glycodelin is more apoptotic than the undersialylated form.

Thus, sialic acids have multiple roles in the induction and prevention of apoptosis,

and the role of these sugars needs to be considered with respect to their effect on

functionally active domains in each protein.

10.4.1 Glycosylation Plays Important Roles in the Immune
System

Glycoprotein-bound glycans are involved in cell adhesion, cell differentiation and

maturation, cell activation, and the invasion of immune cells through the endothe-

lium. They also regulate apoptosis and cytotoxicity which affects the immune

responses. Specific glycans containing sialic acids have been shown to be involved

in cell adhesion, proliferation, and apoptosis (de Freitas et al. 2011; Liu et al. 2011;

Radhakrishnan et al. 2009; Wang et al. 2010). Carbohydrate-binding proteins

(lectins) found on cell surfaces and in body fluids play an important role in the

innate immune system by binding to carbohydrates on cell surfaces and to poly-

saccharides of microbes (Mazurek et al. 2012; Nakahara and Raz 2008;

Sukhithasria et al. 2013; Wagener et al. 2012). For example, galectins bind to Gal

on microbial cells and participate in the development of innate immune responses

(Gabius 2001; Galvan et al. 2000; Rabinovich and Gruppi 2005). Because lectins

form multimeric complexes, thus having a number of carbohydrate recognition

domains, lectin interactions can cross-link molecules and cells and activate or

induce signaling, differentiation of cells, or apoptosis (Fig. 10.1).

Immature human dendritic cells express a Gal/GalNAc-binding receptor that

plays a role in the removal of desialylated glycoproteins (Valladeau et al. 2001).
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DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) is a C-type lectin

expressed on dendritic cells involved in antigen presentation to T cells (Aarnoudse

et al. 2006). The carbohydrate recognition domain of DC-SIGN recognizes high

mannose structures of glycoproteins as well as Lewis epitopes which promotes the

adhesion of dendritic cells to endothelial cells (Garcı́a-Vallejo et al. 2008).

Advanced glycation end products (AGE) are formed from glucosylated proteins

that are nonenzymatically formed, especially at high blood glucose levels such as

those found in diabetes. Several cell surface receptors have been identified that bind

AGE, including RAGE, an N-glycosylated glycoprotein (Srikrishna et al. 2002).

Binding of AGE to its receptor RAGE induces signaling and activation of nuclear

factor NF-κB, resulting in a pro-inflammatory and cell survival effects, including

the production of cytokines, growth factors, and cell adhesion molecules (Pullerits

et al. 2005; Sunahori et al. 2006). Continuous expression of RAGE prevents

apoptosis and supports inflammation and cancer growth (Kang et al. 2011; Sparvero

et al. 2009).

10.4.2 Anti- and Pro-apoptotic Galectins

Galectins (Liu 2002) are immunomodulatory soluble lectins that are expressed in

antigen-presenting T cells, activated B cells, macrophages, and other cell types,

such as cancer cells with a broad range of biological activities (Bidon-Wagner and

Le Pennec 2004). Galectins often form noncovalent homodimers or multimers that

can bind to Gal determinants on cell surfaces or in the extracellular matrix and

cross-link glycoproteins. Galectins bind to receptors having terminal Gal residues

and form lattices, thus facilitating dimerization or trimerization of receptors which

then leads to signaling (Johnson et al. 2013) (Fig. 10.1). Both N-glycans and

O-glycans have receptors for galectins and regulate galectin apoptosis. Sialylation

masks Gal receptors and precludes the apoptotic-inducing effect of galectins

(Toscano et al. 2007). By inducing apoptosis in T-cell subsets, galectin-1 contrib-

utes to the escape of tumor cells from the immune system and to increased tumor

survival and aggressive metastases (Stillman et al. 2006; Stannard et al. 2010).

The individual members of the galectin family have characteristic binding speci-

ficities toward structures underlying terminal Gal residues with different biological

effects (Ochieng et al. 2004; Xue et al. 2013). T cells undergo apoptosis (Clark and

Baum 2012) via binding of galectins to mucin-like glycoproteins CD43 and CD45,

abundant on T-cell surfaces, and glycosylation is an important control factor in this

process. In the extracellular domains, CD43 and CD45 have a large number of O-
glycan chains with sialylated core 1 and core 2 structures that regulate galectin

binding and signaling. In addition, N-glycans that lack sialylα2-6 modifications on

CD45 may be involved in T-cell apoptosis. The intracellular phosphatase domain of

CD45 is required for signaling. Sialic acids reduce the binding of multivalent lectins

and thus block phosphatase activity and clustering or oligomerization of CD45,
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resulting in decreased signaling (Clark et al. 2012). CD45 plays a major role in the

galectin-3-induced intrinsic pathway of cell death in Jurkat cells.

The apoptosis-inducing galectin-1 may eliminate immune cells that control

tumor growth. Galectin-1 induces apoptosis in prostate cancer cells LNCaP but

not in a galectin-1-resistant cell line that has reduced expression of C2GnT1. This

suggests that O-glycan core 2 structures may be responsible for galectin-induced

apoptosis (Valenzuela et al. 2007). The susceptibility to galectin-1-induced apo-

ptosis in LNCaP cells is also regulated by ST3Gal-I that sialylates both core 1 and

core 2 structures (Brockhausen 2010).

Galectin-3 differs from other galectins in having both anti- and pro-apoptotic

effects; it regulates the survival of T cells and has a wide range of effects including

control of cell growth and differentiation, cell adhesion, angiogenesis, and apopto-

sis (Chen et al. 2005; Takenaka et al. 2004). Galectin-3 can induce apoptosis by

binding to Gal residues extracellularly, forming lattices that restrict receptor mobil-

ity (Hsu et al. 2009). The expression of galectin-3 is ubiquitous among cancer cell

types and in the blood and correlates with tumor progression and metastasis in a

number but not all cancer types (Takenaka et al. 2004; Yu et al. 2007). In Jurkat

cells, galectin-3 regulates apoptosis by binding to both N-glycans and O-glycans on
CD45 (Clark et al. 2012; Xue et al. 2013). Galectin-3 also binds to the cancer-

associated TF antigen as well as to the Gal residues of N-glycans (Srinivasan

et al. 2009) which promotes the adhesion of B16 melanoma cells to fibronectin as

well as lung metastasis in mice (Zhang et al. 2002).

At least ten different membrane-bound highly O-glycosylated mucins form

complexes at the cell membrane. MUC1 on cancer cell surfaces interacts with

circulating galectin-3 which increases cancer cell adhesion to the endothelium and

promotes metastases (Zhao et al. 2009). MUC1 interacts with the death domain of

Fas-associated death domain adapter protein (FADD) at the cell surface of breast

cancer cells and has multiple downstream effects. MUC1 is usually overexpressed

in cancer cells and can protect the cell from the oxidative stress-induced apoptosis

(Yin et al. 2003). Both MUC1 and MUC4 promote cell proliferation and suppress

the induction of apoptosis by a multitude of mechanisms (Bafna et al. 2010).

10.5 Role of Glycans in Receptor Functions

Glycans containing sialic acids are involved in cell proliferation and apoptosis of

cancer cells and may control receptor endocytosis and signaling (Woronowicz

et al. 2004). Sialic acids influence the physical and chemical properties of a

glycoprotein, its bioavailability, interactions, and functions. Thus, sialic acids

may prevent receptor oligomerization and regulate cell signaling, proliferation,

and apoptosis (Schultz et al. 2012). However, the specific roles of glycans at each

glycosylation site must be seen in context with the individual protein and its

functions. Sialidases (neuraminidases) found on the cell surface appear to be

important regulators of receptor functions (Lillehoj et al. 2012). The stimulation
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of cell surface receptors is also regulated by soluble receptors (decoy receptors) that

bind the ligand and thus reduce its concentration at the receptor site, preventing

receptor signaling. Blocking ligand-receptor interactions could be beneficial to

decrease cell numbers in cancer and autoimmune diseases.

Glycolipids also have critical roles in receptor signaling. Cell surface-bound

ganglioside GM3 controls EGFR signaling by decreasing receptor phosphorylation.

Neuraminidase Neu3 is thought to reside on the cell surface where it reduces the

amount of GM3 ganglioside and relieves the inhibition of EGFR phosphorylation

by GM3. Neu3 cleaves sialic acid preferentially from gangliosides such as GM3

and is activated by hypoxia. Neu3 expression therefore enhances cell survival and

proliferation of skeletal muscle cells through the EGFR pathway and protects cells

from hypoxic stress, while silencing of Neu3 results in increased apoptosis

(Scaringi et al. 2013).

The superfamily of apoptosis-inducing cell surface receptors includes the tumor

necrosis factor-α (TNFα) death receptor family (TNFR1, DR4, DR5, Fas)

(Li et al. 2013). These receptors are glycoproteins involved in apoptosis by binding

to homotrimeric members of the TNFα family, e.g., TNFα, TNF-related apoptosis-

inducing ligand (TRAIL), or Fas ligand (FasL) (Nikoletopoulou et al. 2013),

respectively. Many types of human cancers are resistant to FasL or TRAIL-induced

apoptosis, but other components of the complex apoptotic pathways could also be

dysfunctional in cancer cells. The trimeric ligands bind to the extracellular domain

of the TNF receptor, recruiting three receptor molecules. This is followed by

binding receptor-interacting proteins, including activating or inhibiting factors,

and activation of caspases.

The N-glycans of receptor glycoproteins have been shown to play an important

role in apoptosis induction; they serve in controlling the cell surface expression,

conformation, or ligand binding of receptors and may regulate the induction of

signaling cascades, i.e., receptor internalization, DISC formation, and caspase-

8 activation (Amith et al. 2010; Li et al. 2013). In contrast, O-glycans of death

receptor 4 (DR4) play a central role in the sensitivity to TRAIL in non-small cell

lung carcinoma and melanoma cells (Wagner et al. 2007).

10.5.1 Fas Glycoprotein

Fas glycoprotein, the receptor for Fas ligand (FasL), is ubiquitously expressed in

epithelia and endothelia and many cancer cells. In breast cancer (Bebenek

et al. 2013), the expression levels of Fas/FasL have a prognostic value.

Fas-deficient breast tumors are more aggressive, likely due to poor induction of

Fas-mediated apoptosis. Colorectal carcinoma cells express Fas, but the expression

is relatively low in the tissues (Mann et al. 1999). Interestingly, FasL is expressed in

metastasizing carcinomas and in liver metastases, while metastatic tissues have

fewer infiltrating lymphocytes compared to nonmetastatic tissues. It is possible that

FasL expression could give metastatic cells a growth advantage by inducing
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apoptosis in lymphocytes and keeping the population of tumor infiltrating lympho-

cytes low (Mann et al. 1999).

FasL is a glycoprotein present mainly on the surfaces of many leukocytes. When

trimeric FasL binds to Fas, trimeric Fas associates and induces the complex cascade

of apoptosis (Orlinick et al. 1997) (Fig. 10.1). Soluble FasL or anti-Fas antibodies

also have the ability to induce Fas association and apoptosis (Schneider et al. 1997).

This type of apoptosis is important in T-cell cytotoxicity and the selection of T

cells. Fas is a type I membrane glycoprotein with an extracellular glycosylated

domain with 2N-glycans, a transmembrane domain, and a cytoplasmic death

domain. Since FasL binds to Fas near the N-glycosylation sites, the N-glycans
may control ligand binding and receptor oligomerization. Although the antibody-

binding epitope is distinct from that of FasL, it is also in the vicinity of N-glycosyl-
ation sites. N-glycans also control the stability and secretion of the soluble extracel-

lular domain expressed in HeLa cells (Li et al. 2007). Altered N-glycosylation
patterns in cancer may thus have an impact on receptor cell surface expression and

function. The soluble extracellular domain (sFasL) that can be secreted from certain

cancer cells can induce apoptosis but can also block interactions of Fas with

membrane-bound FasL (Abrahams et al. 2003). For example, hyperglycosylated

larger, secreted FasL is present in the ascites fluid of ovarian cancer patients but is

not found in secretions of normal ovarian cells. Removal of sialic acid did not change

the ability of FasL to induce apoptosis in human T-lymphocytic Jurkat cells. The N-
glycans of FasL, however, control the expression levels of FasL (Orlinick et al. 1997)

as well as the secretion of soluble FasL from human embryonic kidney cells

(Schneider et al. 1997).

The sialylation status of a cell is closely linked to Fas-mediated apoptosis, and

cancer cells may protect themselves from apoptosis by adding an excess of sialic

acids (Table 10.2) (Shatnyeva et al. 2011). The cell surface sialylation status of

lymphoma cells has been suggested to be linked to the apoptotic potential of cells,

and sialic acids may provide protection from Fas-mediated cell death (Keppler

et al. 1999). Thus, desialylation of Burkitt’s lymphoma cells increased their sensi-

tivity to Fas apoptosis. When Fas is hypersialylated with α2-6-linked sialic acid

residues by overexpression of ST6Gal-1 in human colon cancer cells, Fas

trimerization and induction of apoptosis are blocked (Swindall and Bellis 2011).

The mechanisms underlying the control of apoptosis by Fas sialylation may involve

a role in the overall receptor conformation and repulsion of negative charges

preventing receptor trimerization. It is not known if specific sialic acid linkages

or the total numbers of these large acidic sugar residues in the receptor glycans are

important in this process.

10.5.2 TNFα Receptors

TNFα is a growth factor that can induce cell proliferation and also necrotic or

apoptotic cell death. The TNFα trimer binds to its trimeric receptor which then
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forms signaling complexes of different protein compositions and functions. There

are two TNF receptors (the ubiquitous TNFR1 and TNFR2 that has a more

restricted expression) having a broad spectrum of biological responses (Cabal-

Hierro and Lazo 2012). While TNFR2 is mainly involved in survival mechanisms,

TNFR1 can induce either proliferation or apoptosis through caspase-8 activation.

TNFR2 has an O-glycosylated domain which may serve to present the receptor

to its ligand and to ensure stability or transport to the cell surface (Liu et al. 2013).

Cell surface sialylα2-6 linkages have been shown to protect monocytic cells from

apoptosis through TNFR1 (Liu et al. 2011). This is similar to the effect of α2-6-
linked sialic acid on Fas and suggests a common mechanism of apoptosis regulation

by sialic acids. Forced overexpression of ST6Gal in human monocytic U937 cells

inhibited apoptosis induced by TNFα as well as phorbol-12-myristate-13-acetate.

Similarly, macrophages from ST6Gal transgenic mice showed reduced TNF-

α-induced apoptosis. Reduction in sialylα2-6-linked residues by neuraminidase

treatment or knockdown of ST6Gal enhanced TNFα-induced apoptosis. This indi-

cates that sialylα2-6 linkages are involved in the functions of these receptors and

control apoptosis.

10.5.3 TRAIL-Induced Apoptosis

TRAIL is expressed and functional in NK cells and other cells of the immune

system and can induce apoptosis primarily in cancer but not in normal cells (Jin

et al. 2004; Zinonos et al. 2009). It is therefore an important component of the

immune surveillance against cancer. Homotrimeric TRAIL ligand binds to death

receptor glycoproteins DR4 and DR5 on cancer cells, recruiting FADD and forming

the multiprotein DISC, which then activates caspase-8, caspase-3, and caspase-7,

involving both the extrinsic and intrinsic apoptotic pathways. Monoclonal anti-

bodies to DR5 also activate the extrinsic apoptotic pathway (Zinonos et al. 2009).

DR4 and DR5 are modified by N-glycans and O-glycans (Yoshida et al. 2007). It
is possible that the cancer-associated N-glycans (Jin et al. 2004; Zinonos

et al. 2009) affect the induction of apoptosis. Resistance of human colon cancer

cells to TRAIL-induced apoptosis was relieved by tunicamycin treatment which

enhanced the transport of death receptor DR4 to the cell surface. An anti-DR5

antibody (apomab) has been developed and shown to have potent antitumor activity

in metastatic breast cancer (Zinonos et al. 2009). The antibody was effective in

inducing apoptosis in breast tumors in mice and in breast cancer cells but not in

normal cells which suggests a potent therapeutic potential for these antibodies. The

difference in effects between normal and tumor-derived DR5 may be based on the

abnormal glycosylation of the cancer glycoproteins.

TRAIL also binds soluble decoy receptors 1 and 2 as well as osteoprotegerin

which inhibits apoptosis (Jin et al. 2004). Conversely, soluble TRAIL has thera-

peutic potential since it can bind to its receptors and induce apoptosis in various
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cancer cell lines. The utility of soluble TRAIL has been shown in the treatment of

breast cancer in mice (Chinnaiyan et al. 2000).

In TRAIL-resistant metastatic colon cancer cells LS-LIM6, death receptors

co-express and bind to galectin-3 produced in the cancer cells. The presence of

galectin-3 blocked apoptosis by preventing the endocytosis of the receptor complex

and recruitment of caspase-8 (Mazurek et al. 2012). However, it is not clear whether

TRAIL apoptosis requires the internalization of the receptor for forming DISC.

TRAIL resistance caused by galectin-3 can be overcome by knockdown of galectin-

3 which suggests a mechanism of apoptosis control by glycan recognition.

Resistance to TRAIL is also associated with decreased fucosylation (Moriwaki

et al. 2010). Treatment of colonic and other cancer cells with the DNA

methyltransferase inhibitor zebularine caused increased fucosylation, probably

due to altered expression of a number of genes involved in the fucosylation

pathway. The remodeling of cell surface glycans was associated with increased

sensitivity to TRAIL-induced apoptosis.

A new member of the TNFR family (death receptor 6, DR6) has been shown to

regulate apoptosis. DR6 is expressed in various cell types, including lymphocytes and

tumor cell lines where it can be overexpressed. Deletion of DR6 in B lymphocytes

promotes cell proliferation. The extracellular domain of DR6 has six N-glycosylation
sites, and there are multiple O-glycosylation sites in the stem region near the mem-

brane domain (Klima et al. 2009). The cleaved extracellular portion of death receptor

6 (DR6) can downregulate the effect of DR6 by binding to TNFα. N-glycans seem to

play a role in localizing DR6 in the cell membrane.

O-glycans appear to be required for the proper functions of death receptors DR4
and DR5. The four O-glycosylation sites in DR5 contain one to four sialylated core
1 chains, depending on the cell type expressing the receptor. These O-glycosylation
sites are not directly within the ligand-binding site but may promote ligand-induced

receptor clustering by affecting the overall conformation or presentation of the

receptors or specific peptide epitopes. The O-glycan core 2 structure appears to be

specifically involved in the regulation of TRAIL apoptosis. C2GnT-expressing

prostate cancer cells are more resistant to TRAIL-induced apoptosis as well as

NK cytotoxicity than cells that do not carry core 2 on the cell surface (Okamoto

et al. 2013). This is possibly due to the abundance of poly-N-acetyllactosamine

chains on core 2 glycans that may interfere with cell surface interactions.

The numbers ofO-glycosylation sites occupied also have a role in apoptosis. The
GalNAc-transferases ppGalNAcT3 and ppGalNAcT14 were identified as the

enzymes that O-glycosylate TRAIL receptors in colon cancer cells. The expression

of ppGalNAcT14 in pancreatic and lung cancers as well as in many other cancer

cell lines is higher in the TRAIL-sensitive cells compared to resistant cells.

Overexpression of ppGalNAcT14 appeared to increase the amount of sialylated

core 1 O-glycans on DR5 and increased the sensitivity of colon cancer cells to

TRAIL-induced apoptosis through both DR4 and DR5 (Wagner et al. 2007), pro-

moting DISC formation and caspase-8 activation. Knockdown of ppGalNAcT14

expression or mutations of the O-glycosylation sites reduced TRAIL sensitivity and

receptor clustering and attenuated apoptosis (Wagner et al. 2007). Similarly,
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ppGalNAcT3 expression is associated with TRAIL sensitivity in colon cancer cells.

It is possible that O-glycosylation stabilizes the receptor in the membrane, enhanc-

ing its ligand-binding properties.

Fucosylation also plays a role in apoptosis. The α3-Fuc-transferases FUT3 and

FUT6 involved in Lewis antigen synthesis were found to be associated with

TRAIL-induced apoptosis (Wagner et al. 2007). The GDP-Man 4,6-dehydratase

is required for the synthesis of GDP-Fuc, the donor substrate for Fuc-transferases.

Defects in fucosylation due to mutations in the 4,6-dehydratase gene have been

shown to produce resistance of human colon cancer cells to TRAIL-induced

apoptosis (Moriwaki et al. 2009). Restoring the synthesis of GDP-Fuc led to

susceptibility to apoptosis and suppressed tumor growth and metastases in mice.

10.6 Conclusions and Tools to Restore Apoptosis in Cancer

Cells

These combined studies support the theory that both N-glycans and O-glycans are
involved in the induction of apoptosis through glycoprotein receptors. However, the

roles of different glycan structures at individual glycosylation sites need to be

examined, as well as their specific roles in apoptosis induction which may vary

between cell types.

Since the abnormal cancer cell glycosylation and expression of glycosyl-

transferases in part control apoptosis, a modification of glycosylation could be an

effective therapy for cancer. A number of potential therapeutic targets have been

identified, including ppGalNAcT, β4GalT, and sialyltransferases. Because of the

complex role of sialic acids which are often overexpressed in cancer and modify the

structures and functions of apoptosis receptors, specific sialyltransferases are new

targets for tumor therapy. Plasma membrane-bound sialidases can control both

apoptosis and proliferation pathways. Thus, sialidase inhibitors are also potential

therapeutic targets for cancer (Scaringi et al. 2013).

The delivery of therapeutic drugs specifically to tumors and metastatic cells

remains to be explored. Cancer cells may have characteristic structural glycan

features and cancer-associated antigens (such as Lewis or T/Tn antigens) that

could be exploited to target therapeutic antibodies or drugs to tumors. Inhibitors

of glycosylation are powerful tools to alter glycosylation patterns and can be

delivered into cells as modified precursors of active inhibitors. This could lead to

a reduction in proliferation or in the induction of apoptosis (Fuster et al. 2003).

Since cancer cells derived from the same tumor may have a quite different glyco-

sylation potential, stable packaging technology of anticancer drugs targeting char-

acteristic glycan structures should be developed for a cell-specific delivery. As we

learn more about the role of glycan structures and the mechanisms of their func-

tions, new targets will emerge. Control of the expression and activities of
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biosynthetic enzymes will be an important field in the future that can be applied in

removing cancer cells in vivo.
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Chapter 11

Targeting Glycans for Immunotherapy

of Human Cancers

Jung-Tung Hung and Alice L. Yu

Abstract Surface carbohydrate-containing molecules, such as glycoproteins and

glycolipids, have been shown to play crucial regulatory roles in the normal phys-

iological process as well as in pathological conditions including tumor progression.

Those glycans which are overexpressed on the surface of tumor cells, but not

detected or only weakly expressed in some limited normal tissues, are designated

as tumor-associated carbohydrate antigens (TACAs). These TACAs may serve as

potential targets for immunotherapy. The biological functions of TACAs and

therapeutic strategies against TACAs will be addressed in this review.

Keywords Cancer immunotherapy • GD2 • Globo H • Sialyl-Tn • GM2 • Immune

checkpoints • Angiogenesis

11.1 Introduction

Glycosylation is an important posttranslational modification process to produce

diverse glycans that are frequently attached to proteins and lipids. These

glycoconjugates play a key role in cells, including receptor activation, cell adhe-

sion, signal transduction, endocytosis, molecular trafficking, and clearance

(Ohtsubo and Marth 2006). Altered glycosylation on glycoproteins and glycolipids

is a prominent feature of cancer cells (Reis et al. 2010). These abnormal

glycoconjugates are involved in tumor proliferation, invasion, angiogenesis, and

metastasis. Patient with altered glycoconjugates in tumor tissue usually has poor

prognosis (Miyake et al. 1992). Changes in glycosylation, including over-, under-,
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and neo-expression of sugar moieties, might result from the upregulation/

downregulation of some glycosyltransferases and glycosidases. Increased

N-glycosylation, such as 1,6-branched N-glycans, was observed in breast cancer

and colon cancer (Dennis et al. 1987; Fernandes et al. 1991; Seelentag et al. 1998;

Murata et al. 2004), which was mediated by GnT-V. On the other hand,

O-glycosylation is often reduced resulting in the accumulation of core 1-based

O-glycan during the tumorigenesis. The most common O-glycan epitopes were TF

(Galβ1, 3GalNAc), Tn (GalNAc), Lewisx, Lewisa, and their sialylated counterparts

(Springer 1984; Yuan et al. 1986; Itzkowitz et al. 1989; Itzkowitz et al. 1986;

Tozawa et al. 2005). They were reported to enhance the intravasation of cancer

cells, binding of circulating cancer cells to endothelium, and extravasation and

colonization at the distant sites (Rosen and Bertozzi 1994; Borsig et al. 2001, 2002).

For instance, increased expression of sialyl-Lex (sLex) and sialyl-Lea (sLea) was

shown to assist the invasion and metastasis of tumor (Hoff et al. 1989; Kannagi

1997) and was associated with poor survival of patients (Makino et al. 2001). So far,

a long list of TACAs has been identified, such as Tn, sialyl-Tn, TF, Lewisy, sialyl

Lewisx, sialyl Lewisa, Lewisx, Globo H, stage-specific embryonic antigen-3

(SSEA-3), GD2, GD3, GM2, fucosyl GM1, Neu5Gc GM3, and polysialic acid.

Some of these have been exploited as targets for immunotherapy of cancers.

Conventional treatments of cancer, including radiation, surgery, and chemother-

apy, are not cancer-specific. Immunotherapy, on the other hand, provides a strategy

to target specific cancer cells. Cancer immunotherapy can be categorized into active

and passive immunotherapy. An active cancer immunotherapy is to activate the

immune system of patients to attack cancer cells, which can trigger immunological

memory. On the other hand, passive immunotherapy is to deliver tumor antigen-

specific monoclonal antibodies to kill cancer cells through complement-dependent

cytotoxicity (CDC) or antibody-dependent cell-mediated cytotoxicity (ADCC).

Since the initial approval of anti-CD20 (rituximab) for the treatment of lymphoma

in 1994, more than 10 monoclonal antibodies have been approved for passive

immunotherapy of cancer and all of them target protein antigens. On the other

hand, the first and only approved active immunotherapy is sipuleucel-T (Provenge,
Dendreon), for the treatment of metastatic prostate cancer (Kantoff et al. 2010).

Sipuleucel-T is an autologous cellular vaccine activated ex vivo by recombinant

prostate acid phosphatase (PAP) fused to GM-CSF. Although a number of clinical

trials of cancer immunotherapy targeting TACAs have been conducted over the

past two decades, majority of the trials did not proceed beyond early phase I/II

studies. Only three TACAs have reached clinical phase III development: sialyl-Tn,

GM2, and GD2. Unfortunately, randomized phase III clinical trials of sialyl-Tn-

KLH vaccine (Theratope) in metastatic breast cancer (Miles et al. 2011a) and

GM2-KLH vaccine in melanoma (Eggermont et al. 2013) failed to demonstrate

any benefit of the vaccine, although subsequent subgroup analysis did demonstrate

survival benefit of Theratope in metastatic breast cancer patients on endocrine

therapy (Ibrahim et al. 2013). On the other hand, passive immunotherapy with

dinutuximab, a chimeric anti-GD2, has demonstrated a significant improvement in

event-free survival and overall survival in patients with high-risk neuroblastoma
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(Yu et al. 2010) which led to regulatory approval in the USA and Europe in 2015.

Thus, GD2 is the first TACA proven to be an effective target antigen for cancer

immunotherapy.

The approval of ipilimumab (anti-CTLA-4) for the treatment of melanoma in

2011 as the first monoclonal antibody targeting an immune checkpoint molecule

(Hodi et al. 2010) heralded a new era of cancer immunotherapy. The success of

ipilimumab was closely followed by the development of additional immune check-

point inhibitors, including nivolumab (Robert et al. 2015) and pembrolizumab

(Robert et al. 2014), which target PD-1 and ensure the emergence of many more

immune checkpoint blockers on the horizon. Such breakthroughs beg the question

whether TACAs may act as immune checkpoint molecules. Indeed, several cancer-

associated gangliosides were shown to inhibit immune cell responses, including

antigen processing and presentation (Peguet-Navarro et al. 2003), T-cell prolifer-

ation (Biswas et al. 2009; Chu and Sharom 1993; Morioka et al. 1991), and cytokine

production, such as IFN-γ and IL-4 (Biswas et al. 2006; Irani et al. 1996). Purified

gangliosides from cancer cells displayed immunosuppressive activities which aided

cancers to escape from host immune surveillance (Ladisch et al. 1992; Wolfl

et al. 2002), which were mediated by hampering the interaction of IL-2 with its

receptor (Lu and Sharom 1996), inducing apoptotic cell death (Das et al. 2008) and

deviation toward Th2 response (Crespo et al. 2006). Such ganglioside-induced

T-cell dysfunction involved NF-kappa B inhibition (Uzzo et al. 1999) through

degradation of RelA and p50 proteins (Thornton et al. 2004). In contrast, there

are relatively few studies on the functions of Globo-series TACAs. The core

structure of Globo-series glycosphingolipids is Galα1,4-Galβ1,4Glc-ceramide

(Gb3), which is catalyzed by α1,4-galactosyltransferase (A4galt) through the trans-
fer of a galactose to lactosylceramide (Kojima et al. 2000). Gb3 has been found in

Burkitt lymphoma (Wiels et al. 1981) and germ cell-derived tumors (Murray

et al. 1985) and also in a subpopulation of B cells in germinal centers (Klein

et al. 1983) and on kidney proximal tubules and intestinal epithelial cells (Fujii

et al. 2005). In addition, Gb3 could be induced on the surface of human monocytes

by LPS (van Setten et al. 1996) or on endothelial cells by interleukin-1 and tumor

necrosis factor-alpha (van de Kar et al. 1992). Besides, Gb3 could serve as a

receptor on endothelial cells for verotoxins produced by Escherichia coli O157
(Jacewicz et al. 1986), which was further confirmed by increased sensitivity to

LPS-induced lethal shock in A4galt knockout mice (Okuda et al. 2006) (Kondo

et al. 2013). Intriguingly, in wild-type mice, injection of LPS did not increase the

expression of Gb3 on the surface of endothelial cells although it induced the

expression of A4galt RNA and globotetraosylceramide (Gb4), one of the Globo-

series glycolipids generated by b1,3-N-acetylgalactosaminyltransferase (B3galnt1)

through the transfer of galactosamine to Gb3, suggesting that Gb4, but not Gb3,

might play a role in LPS-induced lethal shock. Indeed, administration of Gb4

increased the survival rate of mice injected with LPS. The protective effect of

Gb4 on LPS-challenged mice was mediated by the binding of Gb4 to the complex

of toll-like receptor-4 and myeloid differentiation factor 2 on the endothelia,

thereby interfering with the binding of LPS to this complex (Kondo et al. 2013).
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However, the effects of Globo-series glycolipids on immune cells have remained

unclear until Tsai et al. reported the immunosuppressive activity of Globo H

ceramide (Tsai et al. 2013). Globo H ceramides released from the surface of

tumor cells were taken up by T and B lymphocytes, with ensuing inhibition of

activation of lymphocytes. Tumor-infiltrating lymphocytes in close proximity to the

Globo H-expressing tumor cells showed positive staining of anti-Globo H antibody

by IHC, consistent with the in vitro observation of uptake of Globo H ceramide

released from tumor cells by lymphocytes. Treatment of lymphoid cells with Globo

H ceramide did not induce apoptosis nor expand regulatory T cells. The molecular

mechanisms of Globo H ceramide induced immunosuppression involved

upregulation of id3 and itch via upregulation of egr2/3, leading to diminished

expression of Notch, which is crucial for T-cell activation (Palaga et al. 2003).

These results provide the first evidence that Globo H ceramide acts as an immune

checkpoint molecule to facilitate the escape of cancer cells from immune

surveillance.

In addition to the function of TACAs as immune checkpoints, several ganglio-

sides have been reported to exhibit angiogenic activities. Tumor cells with GM2

synthase/GM3 synthase deficiency formed avascular tumor on mice (Liu

et al. 2014a), whereas upregulation of GM1, GM2, and GD1a enhanced blood

vessel density in tumors (Manfredi et al. 1999). On the other hand, GM3 blocked

the dimerization of vascular endothelial growth factor receptor 2 (VEGFR2) to

inhibit the signaling transduced by VEGF (Chung et al. 2009). The effects of

Globo-series TACA on angiogenesis were first addressed in a report showing

angiogenic activity of Globo H ceramide (Cheng et al. 2014). Globo H ceramide

induced tube formation of endothelial cell in vitro and angiogenesis in vivo. When

Globo H-positive tumor cells were sorted into two subpopulations based on Globo

H expression, the Globo Hhi tumor cells grew faster with greater vessel density than

Globo Hlow tumor cells in vivo. Consistent with this was the observation of higher

vessel density in Globo H+ than Globo H� breast cancer specimens. Mechanistic

investigations linked the angiogenic effects of Globo H ceramide to its endocytosis

and binding to TRAX, with consequent release of PLCβ1 from TRAX to trigger

Ca2+ mobilization. This is the first globoside shown to display angiogenic activity,

along with elucidation of its mechanisms. On the other hand, Globo H has been

identified as one of the glycans that bind human RNase 1, facilitating the internal-

ization of the RNase 1 which induced cell death. Blocking the interaction of Globo

H and RNase 1 with anti-Globo H antibody partially rescued the cells from RNase-

induced cell lysis (Eller et al. 2015). These findings suggested multifaceted roles of

Globo H in tumor biology.

The findings of certain TACAs acting as immune checkpoint molecules and

angiogenic factors further strengthen the scientific rationales for immunotherapy

targeting TACAs. The following sections will address various strategies for devel-

oping TACA-targeted cancer immunotherapies.
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11.2 Disialoganglioside (GD2)-Targeted Cancer

Immunotherapies

Disialoganglioside (GD2), a b-series ganglioside, is a sialic acid-containing surface

glycolipid that generated from precursor GM2 by GD3 synthase and GD2 synthase.

It is expressed by neuroblastoma (>98 %), melanoma, glioma, small-cell lung

cancer, sarcomas (Schulz et al. 1984; Cheung et al. 1987), breast cancer stem cell

(Liang et al. 2013; Battula et al. 2012), as well as some normal neuroectodermal

(Yanagisawa et al. 2011), and mesenchymal stem cells (MSCs) (Martinez

et al. 2007; Jin et al. 2010). GD2 plays an important role in the proliferation and

invasiveness of tumor cells (Yoshida et al. 2001; Shibuya et al. 2012). It could

directly induce activation of the proto-oncogene c-Met to enhance proliferation of

triple-negative breast cancer cells (Cazet et al. 2012). It upregulates integrin α2β1-
mediated tyrosine phosphorylation of p125FAK, which enhances platelet adhesion

to extracellular matrix collagen, thereby promoting metastasis of neuroblastoma

cells (Chen et al. 2013). Furthermore, GD2+ murine bone marrow MSCs

(mBM-MSC) possessed not only much greater clonogenic and proliferative capa-

bilities but also stronger differentiation potential to adipocytes and osteoblasts, as

compared to unsorted mBM-MSCs (Xu et al. 2013). Moreover, in human osteo-

sarcoma cell lines, a murine anti-GD2 antibody, mAb 14G2a, effectively inhibits

cell invasiveness, MMP-2 activity, and cell viability (Liu et al. 2014b). On the other

hand, in human tissues, only weak expression of GD2 is observed in neurons, skin

melanocytes, and peripheral pain fibers (Svennerholm et al. 1994). Therefore, GD2

is an ideal glycan antigen target for immunotherapy. Three immunotherapeutic

strategies have been developed so far, including GD2-specific monoclonal anti-

bodies, GD2-specific chimeric antigen receptor T cells, and GD2 vaccines.

11.2.1 GD2-Specific Monoclonal Antibodies

11.2.1.1 3F8

3F8 is a murine IgG3 monoclonal antibody which binds to GD2-expressing tumor

cells and mediates cytotoxicity by activating human complement system (Cheung

et al. 1985). 131I-labeled 3F8 has been used for neuroblastoma imaging (Miraldi

et al. 1986) and shown to eradicate human NB xenografts (Cheung et al. 1986). A

phase I clinical trial of 3F8 was conducted in 17 patients with relapsed or refractory

neuroblastoma. Significant toxicities including neuropathic pain, tachycardia,

hypotension, hypertension, fever, and urticaria were observed. Antitumor activities

were noted in some patients, ranging from complete clinical remissions to mixed

responses. All patients developed human anti-mouse antibodies (HAMA) to 3F8. A

phase II study in 16 patients with stage 4 neuroblastoma showed clinical responses

in bony lesions and marrow diseases (Cheung et al. 1998a). Subsequently, the effect
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of 3F8 on minimal residual disease of stage 4 neuroblastoma was evaluated in

34 patients in first or subsequent response, and 13/34 patients remained

progression-free for 53–143 months (Cheung et al. 2000). A series of sequential

phase II studies in 139 patients showed an overall 5-year EFS of 62 % for stage

4 patients in first remission who received 3F8 +GM-CSF+ cis-retinoic acid

(Cheung et al. 2012) and a correlation of a better outcome for patients with the

FCGR2A (R/R) genotype which favored the binding of the IgG3 antibody (Cheung

et al. 2006). Moreover, a better survival correlated with a transient anti-mouse

response or completion of 4 cycles of 3F8 treatment (Cheung et al. 1998b). Human-

ized 3F8 has been generated along with the generation of hu3F8/IL-2 and hu3F8/

GM-CSF, which are undergoing phase I clinical trials in patients with high-risk

neuroblastoma: hu3F8 (NCT01419834) and hu3F8/IL-2 (NCT01662804 and

NCT01757626).

11.2.1.2 14G2a

MAb 14G2a was generated from murine 14.18 IgG3 anti-GD2 by class switch to

IgG2a antibody (Mujoo et al. 1987, 1989). Three phase I trials of mAb 14G2a were

conducted in patients with melanoma, neuroblastoma, and osteosarcoma. The dose

of mAb 14G2a was escalated up to 500 mg/m2/course, with significant dose and

infusion rate-dependent toxicities, including pain, tachycardia, hypotension, hyper-

tension, fever, hyponatremia, and urticaria (Uttenreuther-Fischer et al. 1995a;

Murray et al. 1994; Saleh et al. 1992a). Pain was thought to be due to binding of

antibody to peripheral nerve fibers expressing GD2 (Svennerholm et al. 1994).

Clinical benefits were observed in some patients even in these early phase trials. To

enhance the ADCC effect, 14G2a was combined with IL-2 and a maximum

tolerated dose (MTD) of 14G2a plus IL-2 was 15 mg/m2/day. Similar side effects

were observed although IL-2 might have contributed to some of the toxicities, such

as fever. One patient with neuroblastoma had a partial response (PR), and one

patient with osteosarcoma had a complete response (CR) (Frost et al. 1997).

11.2.1.3 Ch14.18

A human-mouse chimeric anti-GD2 monoclonal antibody, ch14.18, was

constructed by combining the variable regions of 14G2a and the constant regions

of human IgG1-k (Gillies et al. 1989). MAb ch14.18 could activate complement

system (Zeng et al. 2005) and mediate ADCC through neutrophils, natural killer

(NK) cells, and lymphokine-activated killer (LAK) cells (Barker et al. 1991) with

an efficiency 50–100 times greater than the murine mAb 14G2a (Mueller

et al. 1990). Investigational New Drug (IND) application for ch14.18 was filed in

1989, marking the first IND application for mAb generated by recombinant DNA

technology. Two phase I clinical trials of ch14.18 in relapsed/refractory neuroblas-

toma revealed similar toxicity profile as 14G2a (Yu et al. 1998; Handgretinger
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et al. 1995). As expected, the half-life of ch14.18 was longer than 14G2a, with a

beta t 1/2 of 66.6 � 27.4 h for ch14.18 and 18.3� 11.8 h for 14G2a (Handgretinger

et al. 1995; Uttenreuther-Fischer et al. 1995b). Among a total of 19 neuroblastoma

patients, 2 CR and 3 PR were observed, although another phase I trial in 13 adult

patients with metastatic melanoma showed no clinical responses (Saleh

et al. 1992b). Based on the in vitro findings that GM-CSF not only raised the

number of leukocytes but also enhanced their anti-GD2-mediated ADCC (Barker

et al. 1991), a pilot study of ch14.18 +GM-CSF was conducted, which showed

5 CRs and 3 stable diseases (SDs) in 17 refractory/recurrent neuroblastoma

(Yu et al. 1995). This was subsequently confirmed by a phase II Pediatric Oncology

Group study showing 2 CR, 2 PR, and 1 mixed response in 32 neuroblastoma

patients (Yu et al. 1997). In these early phase trials, most clinical responses

occurred in patients with small disease burden, esp. bone marrow metastasis.

Thus, anti-GD2 immunotherapy was subsequently developed to target neuroblas-

toma in the setting of minimal residual disease (MRD). The feasibility of admin-

istering ch14.18 in combination with GM-CSF, IL-2, and isotretinoin after high-

dose chemotherapy and stem cell transplant period was demonstrated in 2 pilot

phase I studies, and the maximum tolerated dose (MTD) of ch14.18 in combination

with cytokines was 25 mg/m2/d for 4 days (Gilman et al. 2009; Ozkaynak

et al. 2000). These studies paved the way for the pivotal phase III randomized

clinical trial of ch14.18 + IL-2/GM-CSF. Patients with high-risk neuroblastoma

who achieved at least PR to induction therapy and received stem cell transplanta-

tion and posttransplant radiotherapy were randomly assigned, in a 1:1 ratio, to

receive standard therapy with six cycles of isotretinoin or immunotherapy with six

cycles of isotretinoin and five concomitant cycles of ch14.18 in combination with

alternating GM-CSF and IL-2. Randomization was stopped early because interim

analysis of 226 eligible patients revealed a significant 2-year overall survival

(86� 4 % versus 75� 5 %, p¼ 0.02 without adjustment for interim analyses) and

event-free survival (66� 5 % versus 46� 5 % at 2 years, p¼ 0.01) advantage for

113 patients receiving immunotherapy versus those 113 receiving standard therapy

(ClinicalTrials.gov number NCT00026312) (Yu et al. 2010). This major break-

through has now been considered as a standard treatment for high-risk neuroblas-

toma. It also marks the first successful immunotherapy to target a nonprotein

antigen.

11.2.1.4 Hu14.18K322A

Ch14.18 was further humanized by CDR grafting of 14.18 V regions to generate

humanized 14.18 (hu14.18) antibody (Metelitsa et al. 2002). Since anti-GD2-

induced neuropathic pain is complement-dependent, a K322A mutation of the C

region of IgG1 in hu14.18 was made to limit the ability of complement fixation of

hu14.18. Preclinical studies in rats confirmed that hu14.18K322A elicited signifi-

cantly less allodynia than ch14.18 while maintaining its ADCC activity (Sorkin

et al. 2010). A phase I clinical trial of hu14.18K322A in 38 neuroblastoma showed
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the MTD, and recommended phase II dose, of hu14.18K322A to be 60 mg/m2 per

day for 4 days (Navid et al. 2014). Adverse effects, predominately pain, were

manageable and improved with subsequent courses. Median hu14.18K322A α
(initial phase) and β (terminal phase) half-lives were 1.74 and 21.1 days, respec-

tively. Objective responses (four complete responses; two partial responses) were

noted in 6 of 31 patients evaluable for response by iodine-123 metaiodobenzyl-

guanidine score. Several early phase trials in patients with GD2+ tumors are in

progress (ClinicalTrials.gov numbers NCT01576692 and NCT00743496).

11.2.1.5 Hu14.18-IL-2

Another strategy to enhance the antitumor efficacy of an antibody is to link the

antibody with cytokine to generate immunocytokine fusion proteins that accumu-

late high cytokine concentrations in the tumor microenvironment and thereby

stimulate cellular immune responses against cancer cell.

Hu14.18-IL-2 is a fusion protein of hu14.18 and IL-2 (Neal et al. 2004a, b). A

phase I trial of hu14.18-IL-2 in recurrent/refractory neuroblastoma (n¼ 27) and

melanoma (n¼ 1) patients showed the MTD to be 12 mg/m2/day, with similar

toxicities as anti-GD2 combined with IL-2. No measurable CRs or PRs to hu14.18-

IL-2 were observed; however, evidence of antitumor activity was noted in three

neuroblastoma patients (Osenga et al. 2006). A phase II study showed 5 CR in

23 neuroblastoma patients with evaluable disease only by MIBG and/or bone

marrow histology, but no responses for patients with measurable disease

(Shusterman et al. 2010). In this study, patients with KIR-ligand mismatch seemed

to be associated with better clinical response (Delgado et al. 2010). Another phase I

trial of hu14.18-IL-2 in adults with melanoma (n¼ 33) showed MTD to be 7.5 mg/

m2/day, with the dose-limiting toxicities of hypoxia, hypotension, and elevations of

AST and ALT, which were reversible (King et al. 2004). Subsequently, a phase II

study was conducted in metastatic melanoma patients (n¼ 14) who received

hu14.18-IL-2 at 6 mg/m2/day as 4-h intravenous infusions on days 1, 2, and 3 of

each 28-day cycle. All patients received 2 cycles of treatment, and one patient had a

PR (7.1 %, 1/14) and 4 patients had SD (28.5 %, 4/14). The toxicities were

reversible, including grade 3 hypotension (n¼ 2) and grade 2 renal insufficiency

with oliguria (n¼ 1). The accrual was held due to limited availability of hu14.18-

IL-2 (Albertini et al. 2012).

11.2.1.6 Anti-O-Acetyl GD2 Monoclonal Antibody 8B6

Although the therapeutic efficacy of anti-GD2 has been well-documented, neuro-

pathic pain can limit its application. O-acetyl GD2 is an analog of GD2 with an

acetyl group linked to oxygen at the 9 position of NeuAc. An O-acetyl GD2-specific

antibody 8B6 was shown to bind to neuroblastoma and other neuroectodermal

tumors, but not peripheral pain fibers (Alvarez-Rueda et al. 2011). Thus, antibodies
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against O-acetyl GD2 may have the advantage over anti-GD2 which is dose-limited

by neuropathic pain. Indeed, a mouse-human chimeric antibody c.8B6 was reported

to display potent antitumor activity without inducing allodynia in preclinical

studies (Terme et al. 2014). Clinical trials of mAbc.8B6 are eagerly awaited.

11.2.1.7 Bispecific Antibody

Bispecific antibody which binds to two different types of antigen by combining

fragments of two different monoclonal antibodies is an attractive alternative to

immunocytokine. A GD2-targeting bispecific antibody 3F8�CD3 (3F8BiAb) has

been developed. It could redirect activated T cells to GD2-expressing murine

neuroblastoma (Yankelevich et al. 2012). A phase I/II clinical trial of 3F8BiAb in

children and young adults with neuroblastoma and osteosarcoma is under develop-

ment (NCT02173093).

11.2.2 GD2 Chimeric Antigen Receptor

T lymphocytes can be engineered to express chimeric antigen receptors (CARs),

which can bind to tumor antigens, leading to antitumor activity in an

MHC-independent manner. CARs are generated by joining a single-chain variable

fragment (scFv) of monoclonal antibody with the transmembrane and cytoplasmic

portions of T-cell receptor (TCR) ζ-chain, via a flexible hinge region, to form a

functional CAR (Savoldo and Dotti 2013). Louis et al. generated GD2-CAR-

expressing T lymphocytes for the treatment of 19 patients with neuroblastoma.

Persistence of GD2-CAR T lymphocytes beyond 6 weeks was associated with

better clinical outcome, and three patients with active disease achieved complete

remission. Thus, the GD2-CAR T lymphocytes might provide an alternative strat-

egy for immunotherapy of neuroblastoma (Louis et al. 2011).

11.2.3 GD2-Specific Vaccines

11.2.3.1 GD2-KLH

The main challenge for developing carbohydrate vaccines is their poor immunoge-

nicity. Chemical conjugation of glycans to a highly immunogenic protein scaffold,

such as keyhole limpet hemocyanin (KLH), may enhance the immune responses to

glycans. GD2-KLH is a synthetic GD2 conjugated to KLH. A phase I clinical trial

of GD2-KLH using monophosphoryl lipid A (MPL-A) as an adjuvant in seven

patients with recurrent or progressive gliomas showed no adverse effects. However,

neither anti-GD2 antibody nor clinical response was observed (Becker et al. 2002).
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Another phase I clinical trial of GD2-KLH using OPT-821 combined with oral

beta-glucan as adjuvants was conducted in neuroblastoma. Anti-GD2 antibody was

induced in 12 of 15 patients. Importantly, disappearance of MRD was observed in

6 of 10 patients (Kushner et al. 2014). A subsequent phase I study of combined

GM2-KLH and GD2-KLH mixed with QS-21 adjuvant in 31 patients with mela-

noma or sarcoma showed successful induction of IgM/IgG anti-GM2 and anti-GD2

in 97 % and 73 % of patients, respectively (Chapman et al. 2000). These encour-

aging findings suggest that adjuvants may play an important role in glycan-based

vaccine.

11.2.3.2 Anti-GD2 Idiotype Monoclonal Antibody 1A7

mAb1A7 is an anti-idiotype antibody mimicking GD2 antigen which was generated

by immunizing mice with anti-GD2, mAb 14G2a (Saleh et al. 1993). Active

immunotherapy with anti-idiotype antibody is anticipated to induce a gradual

release of anti-GD2 via humoral antibody response, which may be beneath the

threshold of anti-GD2-induced toxicities. In preclinical study, immunization of

C57BL/6 mice and rabbits with mAb1A7 induced anti-GD2 antibodies of IgG

isotype that recognized GD2 by ELISA and flow cytometry. These antisera specif-

ically lysed GD2-positive target cells in an ADCC assay (Sen et al. 1998). Foon

et al. initiated a clinical trial for anti-GD2 idiotype antibody (1A7) in patients with

advanced melanoma. Patients (n¼ 47) received 1A7 (TriGem) at dose of 1, 2, 4, or

8 mg mixed with QS-21 (100 μg) weekly for 4 weeks and then monthly until disease

progression. A majority of patients (40/47, 85.1 %) generated an anti-1A7 response.

The isotypic specificity of the anti-1A7 antibody was predominantly IgG, with

minimal IgM, and these antibodies reacted specifically with tumor cells expressing

GD2 by flow cytometry. Immune sera from five patients tested displayed ADCC

activity. Complete response lasting for 24 months was noted in one patient and

stable disease (14+ to 37+ months) in 12 patients. Disease progression occurred in

32 patients (1–17 months) and 21 had died (1–16 months). The Kaplan-Meier-

derived overall median survival was not reached. Toxicities were mild, including

local reaction at the site of the injection, with mild fever and chills (Foon

et al. 1998; Foon et al. 2000). In addition, a clinical trial of mAb1A7 as a GD2

vaccine was conducted in high-risk neuroblastoma patients (n¼ 31, 26 stage IV,

5 stage III) who achieved first or subsequent complete remission or very good

partial remission (Yu et al. 2001). Patients received subcutaneous injection of 1A7

mixed with QS-21 as adjuvant every 2 weeks for 4 weeks and then monthly for

11 months thereafter and switched to 1A7 in aluminum hydroxide gel during the

second year. After treatment, all patients had local reactions, four developed

transient fever and chills, and one patient had serum sickness. All patients generated

anti-1A7 antiserum, and immune sera from some patients displayed CDC and

ADCC activities against neuroblastoma. At a median of 6.8 years from study

entry, 76.1 % (16/21) patients who enrolled during first remission have no evidence

of disease progression, whereas only one of ten patients who enrolled during second
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or subsequent remission remains progression-free. Thus, active immunotherapy

with anti-idiotypic antibody-based GD2 vaccine may offer therapeutic advantage

over passive immunotherapy with reduced infusion-related toxicities.

11.3 Sialyl-Tn-Targeted Cancer Vaccine

Sialyl-Tn, Neu5Acα2,6-N-acetylgalactosamine (STn), is a carcinoma-associated

carbohydrate determinant expressed on cancer-associated mucins, while it is

weakly expressed in fetal and restricted normal adult tissues (Kjeldsen

et al. 1988). Circulating STn has been detected in patients with gastrointestinal

(Motoo et al. 1991) and ovarian (Kobayashi et al. 1992) malignancies. Expression

of STn in colorectal carcinoma (Itzkowitz et al. 1990), gastric carcinoma

(Ma et al. 1993), and breast cancer (Leivonen et al. 2001) correlates with poor

prognosis and predicts a poor response to chemotherapy (Miles et al. 1994). In

endometrial cancer, overexpression of STn correlated with overexpression of

cyclooxygenase 2 (Ohno et al. 2006), which is linked to angiogenesis, tumor growth

(Ohno et al. 2005a), and inhibition of the infiltration of CD8 T cell (Ohno

et al. 2005b). STn has been reported to be involved in cell-cell aggregation, ECM

adhesion, and migration and invasion of tumor cells, as shown in

STn-overexpressing gastric cancer cells transfected with ST6Gal I transferase

(Pinho et al. 2007). Moreover, STn on the tumor cells could interact with Siglec-

15 expressed on tumor-associated macrophages to enhance the production of

transforming growth factor-β through spleen tyrosine kinase (Syk) pathway

(Takamiya et al. 2013). These findings suggest that STn may be a good candidate

target for cancer immunotherapy.

A synthetic STn-keyhole limpet hemocyanin (KLH) vaccine (Theratope) was

evaluated in clinical trials as an active specific immunotherapy in the treatment of

advanced cancer. One of the first studies of Theratope was conducted by MacLean

and colleagues in patients with metastatic breast cancer, ovarian cancer, and colon

cancer (MacLean et al. 1996). They reported that 51 patients who produced anti-

STn +mucin IgG titers higher than the median value survived longer than

46 patients who generated lower titers. Based on promising results of STn-KLH

vaccine in early clinical trials, a phase III randomized trial was conducted in

patients with metastatic breast cancer who had nonprogressive disease after first-

line chemotherapy. A total of 1028 patients were randomly assigned to either

STn-KLH plus Detox as adjuvant or KLH plus Detox (control group). The vaccine

was well tolerated, with mild to moderate injection-site reactions and reversible

flu-like symptoms. Specific IgG and IgM antibodies were detected at week 12.

Unfortunately, there were no significant differences in the time to progression

(TTP) and overall survival (OS) between STn-KLH vaccine group (3.4 and

23.1 months, respectively) and control group (3 and 22.3 months, respectively)

(Miles et al. 2011b), although a post hoc analysis suggested benefit of concurrent

endocrine therapy and STn-KLH vaccine for women with metastatic breast cancer
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(Ibrahim et al. 2013). Several factors may have contributed to the lack of overall

clinical efficacy of this vaccine. First, STn is not expressed uniformly in all breast

cancer specimens. It ranges from low 20 % to high 80 % in various reports (Julien

et al. 2012). In this phase III study, STn expression was not determined nor used as

enrollment criteria, which might mask any benefit from the vaccine due to hetero-

geneity in STn expression among patients. Second, significant titers of anti-KLH

IgM and IgG antibodies were observed in control group, which may have conferred

some anticancer benefits. Nonetheless, lessons learned from this failed large ran-

domized clinical trial may serve as stepping stones to the ultimate success by

modifying the clinical design and patient selection.

11.4 GM2-Targeted Cancer Vaccines

While GM3 is the predominant ganglioside in normal melanocytes (Carubia

et al. 1984), in malignant melanoma, activation of glycosylating enzymes leads to

increased expression of GD3, GD2, GM2, and 9-O-acetyl GD3 (Tsuchida

et al. 1987). GM2 is also expressed on metastatic prostate cancer specimens

(Zhang et al. 1998) and adult T-cell leukemia (Suzuki et al. 1987). Antibodies

against GM2 were able to induce apoptosis (Retter et al. 2005; Nakamura

et al. 1999) or necrosis (Bjerkvig et al. 1991) of GM2-expressing cancer cell

lines. Furthermore, GM2 was found to inhibit immunoglobulin production of

human B cell lines through impeding the production of IL-10 and TNF-α (Kimata

and Yoshida 1996). In addition, complex of GM2 and GM3 was shown to associate

with cMet-CD82 to regulate hepatocyte growth factor-induced motility of HCV29

cells (Todeschini et al. 2008). These findings suggest that GM2 is an attractive

target for immunotherapy.

In 1994, 122 patients with stage III melanoma (N¼ 122) were treated with

unconjugated GM2 and bacillus Calmette-Guerin (BCG) or BGC alone. The OS

and DFS were not statistically significant between patients treated with GM2/BCG

and BCG, although DFS was greater in patients producing anti-GM2 antibody

(Livingston et al. 1994a). Most anti-GM2 antibodies induced by GM2/BCG vac-

cine in patients were IgM, suggesting that BCG adjuvant in glycan vaccine could

not efficiently trigger antibody isotype switch to GM2-specific IgG antibody, which

is an important mediator of ADCC. Subsequently, potent carrier protein, KLH, and

adjuvant, QS-21, were used to generate GM2-KLH/QS-21 vaccine which induced

higher titers of IgM anti-GM2 antibody and more IgG anti-GM2 antibody responses

than GM2/BCG vaccine (Helling et al. 1995). A phase I trial of GM2-KLH vaccine

plus QS-21 as an adjuvant in 22 patients with AJCC stage III/IV melanoma showed

the induction of IgM and IgG antibodies against GM2 in patients treated with 100 or

200 μg of QS-21 (Livingston et al. 1994b). This led to two randomized phase III

trials. One was conducted in 880 patients with resected high-risk melanoma (AJCC

stages IIB and III) comparing the therapeutic efficacy of GM2-KLH/QS-21 (GMK)

vaccine with standard therapy, high-dose interferon alfa-2b (HDI) (Kirkwood
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et al. 2001). The trial was closed after interim analysis showing inferiority of GMK

compared with HDI, although patients with higher antibody responses to GM2 had

a trend toward improved RFS and OS ( p¼ 0.068 at day 29). Another phase III trial

was conducted in 1314 patients with stage II melanoma to evaluate the efficacy and

toxicity of GMK vaccine as compared to observation. Unfortunately, GM2-KLH/

QS-21 failed to improve RFS, distant metastasis-free survival, and overall survival

(Eggermont et al. 2013). In view of the impressive response of melanoma to

immune checkpoint blockade therapy (Hodi et al. 2010), it is possible that clinical

benefit of GM2 vaccine may become evident when combined with inhibitors of

immune checkpoint.

11.5 Globo H-Targeted Cancer Vaccines

Globo H, a hexasaccharide (Fucα1! 2Galβ1! 3GalNAcβ1! 3Galα1! 4Galβ1
! 4Glcβ1), was initially identified as a ceramide-linked glycolipid in human breast

cancer cell line MCF-7 (Kannagi et al. 1983) and subsequently found to be

expressed on a variety of epithelial cancers including breast, colon, ovarian, gastric,

pancreatic, lung, and prostate cancers (Zhang et al. 1997, 1998).

Examination of Globo H expression in breast cancer stem cells (BCSCs) by flow

cytometry revealed Globo H expression in 61 % (25/41) of breast cancer specimens

and in 20 % (8/40) of BCSC-enriched subpopulation (CD44+/CD24�). The expres-
sion of Globo H precursor, stage-specific embryonic antigen 3 (SSEA3), was

77.5 % (31/40) in breast cancer tissues and 62.5 % (25/40) in BCSCs. Like Globo H,

SSEA3 expression in normal tissues was predominately at the secretory borders of

epithelium, where access to the immune system is restricted. Immunization of mice

with Globo H-KLH and alpha-GalCer induced antibodies reactive with Globo H

and SSEA3, suggesting that a Globo H-based vaccine will target tumor cells

expressing Globo H or SSEA3, including BCSCs (Chang et al. 2008).

The overexpression of Globo H in cancer with limited expression in normal

tissues makes Globo H a potential target for cancer immunotherapy. The findings of

Globo H ceramide as stem cell markers (Chang et al. 2008), immune checkpoint

molecules (Tsai et al. 2013), and angiogenic factors (Cheng et al. 2014) provide

further impetus for Globo H-targeted immunotherapy (Sabbatini et al. 2007). Two

phase I clinical trials of Globo H-KLH/QS-21 vaccine were conducted in patients

with relapsed prostate cancer (n¼ 18) (Slovin et al. 1999) and metastatic breast

cancer (n¼ 27), respectively (Gilewski et al. 2001). The treatment schedules

consisted of injection of Globo H-KLH at weeks 1, 2, 3, 7, and 19. In general, the

vaccine was well tolerated, with only local reactions and occasional fever and

chills. Humoral responses to Globo H-KLH vaccine were observed. In the trial of

relapsed prostate cancer, the highest median IgM antibody titer was around 300 at

the dose level of 10, 30, and 100 μg of Globo H-KLH, and peak response was

observed at weeks 34, 3, and 9, respectively. For the dose level of 3 μg of Globo

H-KLH, the peak titer was 150 at week 7. Interestingly, the production of Globo
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H-specific IgG antibody showed a different pattern from IgM responses. There were

two obvious peak titers at the dose level of 10 μg and 30 μg of Globo H-KLH. At

30 μg Globo H-KLH, the IgG antibody titer reached to the maximal titer of 160 at

weeks 9 and 34. At 10 μg Globo H-KLH, the peak IgG antibody titer was 80 at week

3 and week 35. In patients treated with 100 μg or 3 μg of Globo H-KLH, the titers of
Globo H-specific IgG was only 100 (around week 31) or less than 20 (week 26),

respectively. In the trial of metastatic breast cancer, Globo H-specific IgM peaked

around weeks 5–7. Antisera in several patients of both trials displayed CDC

activity. Both trials demonstrated that the Globo H-KLH vaccine was safe and

effective in inducing humoral antibody response with moderate Globo H-specific

IgM antibody titers in most patients, but only minimal IgG antibody. Recently, a

multinational randomized phase II/III clinical trial of Globo H-KLH vaccine

vs. placebo in patients with metastatic breast cancer has completed accrual of

349 patients and is awaiting further follow-up for outcome analysis

(NCT01516307). Another phase II clinical trial of this vaccine in ovarian cancer

is ongoing. In addition, a new generation of Globo H vaccine consisting of Globo H

conjugated to diphtheria toxin as a carrier protein was shown to elicit more

desirable IgG anti-Globo H, when combined with a novel analog of

NKT-stimulatory alpha-galactosylceramide (α-GalCer) as an adjuvant. The effi-

cacy of this promising Globo H vaccine awaits clinical trial in the near future

(Huang et al. 2013).

11.6 Lewisy-Targeted Cancer Vaccine

In ovarian cancer, Lewisy is overexpressed which promotes metastasis through

epididymis protein 4 (Zhuang et al. 2013, 2014). The expression of Lewisy antigen

was considered as an independent, drug resistance-related risk factors (Gao

et al. 2014). A clinical trial of Lewisy pentasaccharide conjugated with KLH

together with immunological adjuvant QS-21 in ovarian cancer patients (n¼ 25)

showed that the majority of the patients (16/24) produced anti-Lewisy antibodies

with significant antitumor cell reactivity as assessed by CDC in some patients. The

vaccine was well tolerated without any gastrointestinal, hematologic, renal, or

hepatic toxicity (Sabbatini et al. 2000). Another phase II trial was conducted with

a doxorubicin-conjugated chimeric variant of anti-Lewisy monoclonal antibody,

BMS-182248-01, in patients (n¼ 15) with advanced gastric carcinoma (Ajani

et al. 2000). However, BMS-182248-01 vaccine appeared to be ineffective in

patients with gastric carcinoma with 10 patients progressed on study.
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11.7 Polysialic Acid-Targeted Cancer Vaccine

Polysialic acid (polySA), a carbohydrate polymer of negatively charged sialic acid

attached to the neural cell adhesion molecule (NCAM), is overexpressed on the

surface of various cancers including small-cell lung cancer (SCLC) (Tanaka

et al. 2001), Wilms’ tumor (Roth et al. 1988a, b), neuroblastoma (Gluer

et al. 1998), and neuroectodermal tumors (Figarella-Branger et al. 1990). A clinical

trial of polySA-KLH (30 μg) vaccine in small-cell lung cancer (n¼ 13) did not

induce immune response, but N-propionylated (NP)-polySA (30 μg) developed

high-titer anti-SA antibody along with peripheral neuropathy and ataxia in several

patients (Krug et al. 2004). Another trial of lower dose of NP-polySA vaccine

(10 μg) resulted in the induction of IgM antibodies against polySA antigen in all

18 patients, with self-limited grade 3 ataxia of unclear etiology in 1 of 18 patients

(Krug et al. 2012).

11.8 Polyvalent Glycan Vaccine

A hexavalent vaccine, including GM2, Globo H, Lewisy, glycosylated MUC-1-

32mer, Tn, and TF in a clustered formation conjugated to KLH, mixed with QS-21

was administered in a phase II setting to 30 patients with relapsed prostate cancer.

All 30 patients showed increased antibody titers to at least two of the six antigens,

but these serologic responses were lower than those seen previously with the

respective monovalent vaccines (Slovin et al. 2007). In another study, GPI-0100,

a semisynthetic low toxicity saponin, was used as adjuvant at doses ranging

between 100 and 5000 μg for a bivalent vaccine containing the Globo H and the

mucin MUC2 conjugated to KLH with in groups of five prostate cancer patients

who had no evidence of disease except for rising PSA levels. All doses of GPI-0100

were well tolerated with dose-dependent increases in antibody titers against Globo

H and MUC2. At the 5000 μg dose level, toxicity remained minimal with only

occasional grade II local toxicity at vaccination sites and occasional sporadic grade

I elevations in ALT. Compared with a subsequent trial with the same bivalent

vaccine plus QS-21 at the maximal tolerated dose of 100 μg, the 5000 μg dose of

GPI-0100 induced comparable antibody titers (Slovin et al. 2005).

11.9 Conclusion

Tumor-associated carbohydrate antigens are attractive targets for cancer therapy.

Glycan-targeted immunotherapy holds the promise to have less side effects and

greater specificity compared to conventional cancer therapy. To date, passive

immunotherapy with anti-GD2 antibody in patients with neuroblastoma is the
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first successful glycan-targeted immunotherapy, which has documented that

targeting TACA is a feasible strategy for cancer immunotherapy. On the other

hand, carbohydrate-based vaccines for active immunotherapy have yet to be proven

effective in phase III randomized trials, although encouraging results were noted in

early clinical trials. New strategies are needed for enhancing the potency of

carbohydrate-based cancer vaccine by improving the design of vaccine. Designs

with better adjuvants that effectively boost IgG humoral and/or cellular immune

response against TACAs are also critically needed.
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