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Abstract To effectively act on the same physical space, robots must first
communicate to share and fuse the map of the area in which they operate. For long-
term online operation, the merging of maps from heterogeneous devices must be
fast and allow for scalable growth in both the number of clients and the size of
the map. This paper presents a system which allows multiple clients to share and
merge maps built from a state-of-the-art relative SLAM system. Maps can also be
augmented with virtual elements that are consistently shared by all the clients. The
visual-inertial mapping framework which underlies this system is discussed, along
with the server architecture and novel integrated multi-session loop closure system.
We show quantitative results of the system. Themap fusion benefits are demonstrated
with an example augmented reality application.

Keywords Slam · Collaborative SLAM · Multi-agent mapping · Long-term
autonomy

1 Introduction

As robotic capabilities increase, cooperative robotic interaction is becoming more
attractive. In order to operate in the same environment together, however, robots must
simultaneously have an understanding of both the physical environment around them
and their location within it. This requires a localization and mapping solution which
can be shared between robots and permits relocalizationwithinmaps created by other
devices. Also, to keep robots affordable, approaches based on low-cost sensors, such
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as cameras, are preferable to LIDAR-based solutions because their high cost can be
prohibitive when developing distributed robotic applications.

This paper presents a new system,MOARSLAM, for simultaneously building and
sharing large-scale 3Dmaps frommultiple devices equipped with either a monocular
camera and an IMU or a stereo camera pair. It describes infrastructure, algorithms
and core data structures for building and sharing arbitrarily scalable visual maps.
The paper also presents a means for distributing physically tethered information,
demonstrated here with an augmented reality example.

The presented system operates in a client-server architecture communicating over
the network. This work defines a client as a camera- and network-equipped platform
with computing abilities, such as a mobile phone or an autonomous robot. A session
represents a single continuous MOARSLAM run by a client. A client starts a new
session each time they launchMOARSLAM. The server in MOARSLAM is defined
as a machine that stores a single representation of the accumulated global map. It
offers an API interface to receive and distribute maps to provide endpoints for map
related queries. The MOARSLAM client is capable of fully autonomous SLAM
and only communicates with the server to share maps. The server’s simple and
stateless API allows clients to easily integrate server queries into their processing
when a network connection is available. The server API is also purely image driven,
removing the need for an accurate global location when interacting with the server.
Figure1 shows an example of the capabilities of our approach.

The paper is organized as follows: Sect. 2 presents the relatedwork ofmulti-device
SLAM. Section3 gives details about the map structure and its benefits. Section4
gives an overview of the client-side SLAM processing pipeline which generates
the initial session’s map. Section5 describes the server component of MOARSLAM
which is responsible for storing and joiningmultiple sessions’ maps. Section6 shows
the experimental validation of our proposal, and Sect. 7 includes a discussion on the
potential limitations and futurework for this approach. Section8 concludes the paper.

2 Related Work

Multi-device SLAM has been approached in a decentralized fashion by several
authors. Several vehicles on a sparse communication network create individual maps
that fuse with their neighbors when it is possible, either by following a consensus
policy [1, 21], or by distributing data association [3, 12]. Although decentralized
systems can reduce the computation effort of each device, the complexity of their
communications usually makes it expensive to obtain a global map. On the other
hand, Forster et al. [7] and Riazuelo et al. [17] present a multi-threaded method
for building maps using Micro Aerial Vehicles (MAVs) and mobile robots with a
centralized system. Their approaches both seek to decouple the motion estimation
and map building pipelines by communicating keyframe information to a central
station where it is fused into a cohesive map structure. Loop closure events and map
construction are handled on this central station while the client is left to perform
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Fig. 1 Sample MOARSLAM operation. a A map previously created by a MOARSLAM client is
stored in the server. The map and trajectory are depicted as blue edges, and the local loop closures as
red edges. The landmarks are shown as black points and a virtual 3D object is also added, displaying
the text “Writing on the wall”. b A zoomed in portion of the map. c Another client initiates a new
mapping session with MOARLSLAM in the same environment. d MOARSLAM soon recognizes
a loop closure with the previously mapped trajectory and joins the two maps to provide the client
with a richer map

visual odometry with only the map it is provided by the server. These solutions
lower the computational cost on the client, but can reduce its autonomy in the face
of intermittent networking. The system we propose is also based on a client-server
architecture, but unlike approaches above, it allows clients to create individual maps
even if connection to the server is lost. When connection is available, individual
maps are fused by cross loop closures yielded by the server, as done by McDonald
et al. [13]. However, unlike them,we do not require to extract new features to perform
this operation since we exploit the features tracked by the front-end. In addition, we
reuse the map graph to check for loop consistency.

Previous approaches for map representation fall largely into two camps: “hybrid”
sub-mapping techniques and privileged frame fusion approaches. In fully fixed frame
representations, such as the one by Özkucur and Akin [16], an expensive map merg-
ing algorithm is required to joinmeasurements and objects inmultiplemaps together.
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These approaches offer simplicity in representation, but would not scale well because
of the need to reprocess all data before merging maps. The sub-mapping techniques
are based on limited-area metric maps, such as the occupancy grids used by Chang
et al. [5] or the planar AR workspaces employed in PTAMM [4], the multiple map
extension to PTAM [10]. These approaches apply a privileged frame SLAM algo-
rithm to populate their maps, but in order to bound complexity, after a map’s extent
has grown too large they initialize a new and fully independent metric map. In
PTAMM, they reuse their existing relocalization techniques to switch the system’s
focus between maps, and Chang et al. [5] and McDonald et al. [13] connect maps
using topological linkages based on odometry or “anchor nodes”. These approaches
recognize the bounds of privileged frame representations, but still maintain a depen-
dency on them. In their conclusion Castle et al. [4] discuss future work opportuni-
ties that this paper deals with, including IMU integration and the fusion of many
sequences.

Current lines of research tend to augment feature maps with additional infor-
mation, e.g. objects [20]. Furthermore, multiple robot or device localization allows
clients to share these data in a consistent manner across maps. For example, the
RoboEarth system [22] provides a framework to share semantic maps with object
annotations among different robots. However, it does not define a mechanism to
build a map cooperatively and requires clients to share an arbitrary reference frame.
In contrast, our proposal deals with both cooperative mapping and map reuse, and
makes it possible to consistently incorporate meta information relative to each client
frame.

3 Scalable Mapping

This section describes the map structure which is the key to enabling multi-device
map building, joining and updating in MOARSLAM. First the basic structure of the
map is described, followed by a description of the particular attributes of the map
structure which make multi-device mapping possible. Finally, the means through
which external information is stored in the map is described.

3.1 Map Structure

The map is represented in the “continuous relative representation” of RSLAM [14]:
an undirected graph of nodes, representing key frames taken at poses p, connected
by transformation edges which encode their 6-DOF relative pose estimate, as seen in
Fig. 2. Point landmarks l are stored as inverse-depth estimates back-projected (solid
black lines) from the frame where they were first observed [6] back-projected from
the pixel where were first seen. Patches of size 9-by-9 pixels are stored for tracking
the landmark. Each new observation of a landmark is stored with the frame from
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Fig. 2 Graphical representation of a map and of the constraints created after a loop closure. The
poses p of a vehicle create graph nodes at every key frame. Nodes are joined by transformation
edges and are associated to map landmarks l. When the loop detector retrieves a place match, after
several consistent candidate place matches, a new edge Tab is created to fuse maps between the
different sessions a and b

which it was observed (dashed edges). Additionally, the camera calibration, both the
camera intrinsics and extrinsics, is stored for each session. This allows maps created
in separate sessions to be used together. In MOARSLAM, a map is any set of frames
which are connected through a set of edges, regardless of the session in which they
were created.

3.2 Multi-device Mapping

To enable global uniqueness of information created during each SLAM session, the
components of the map require identification. Every time a client begins mapping,
it creates a new Session ID, a UUID which is used to label every frame, edge,
measurement, and landmark created during that session, along with an integer ID
making each object unique within a session. The camera calibration used for map
creation is also tagged with the session’s ID. This identification provides uniqueness
of sessions, frames, measurements, and landmark references during processing and
transfer so the server and client can be confident that they are referring to the same
data.

Using a single relative graph structure to represent a map allows for a consistent
interaction between clients, whether information was created locally or fetched from
the server. Queries on the map are performed as graph searches. Most searches are in
memory and very fast, but the persistent map structure facilitates transparent loading
from disk, as described below. This includes searching for visible landmarks, and
estimating pose transformations between non-adjacent frames.
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Unlike representations based on a single frame of reference, the relative graph
structure of MOARSLAM allows sections of mapped environments to be referenced
independently of other mapped locations. This means there is no need to share an
entire graph or transform nodes before interacting with them. This ability to interact
and independently alter sections of the map is important for runningmany operations
in parallel, such as loop closures and multi-session mapping. Also, downloaded
sections ofmap are available for use immediately because the systemdoes not depend
on knowledge of a global coordinate frame tomake use of frames. Thus, pieces of the
global map may be downloaded as they are made available or as bandwidth allows.

As it is designed for large-scale mapping and long-term autonomy,MOARSLAM
includes a persistent backend for its map structure. SQLite is used as an interface
for persisting portions of the map which are not in use to disk. A simple SQL query
of the unique identifiers described above allow frames and edges to be loaded from
disk when they are needed. Such a backend structure works well with the sliding
window filter optimization in MOARSLAM [14]. Frames are persisted in real time
after they have exited the filter and are no longer needed.

3.3 Map Metadata

The relative map framework of MOARSLAM allows physical tagging of 3D space
with external information. This information could be anything a robot or an end-user
may want to know about a location. This metadata is stored along with a spatial
transformation on the keyframe from which its location is visible. In this way, when
sharing maps of an environment, all the labeled metadata is distributed with the
physical description of the space. In Sect. 6, we demonstrate this capability by simple
tagging of locations with augmented reality text, but more complex embedding is
possible.

4 Client Processing

MOARSLAM operates in a client-server model. In contrast to Forster et al. [7]
and Riazuelo et al. [17] where only a visual odometry system is run on the client,
the MOARSLAM client runs a full SLAM pipeline and generates the relative map
described in Sect. 3. The overall system architecture is outlined in Fig. 3. The client
components are designed with full navigational autonomy in mind. This reduces
reliance on potentially intermittent networking capabilities. Each client box in Fig. 3
is divided into several threads, as shown by Table1.

The client’s main responsibility in this framework is to produce relative maps of
its environment for sharing. These maps are produced online as the client processes
images and IMU data. The client also periodically communicates with the server
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Fig. 3 System architecture outline

Table 1 Threads and algorithms run by a MOARSLAM client

# Algorithm Purpose

1 Visual-inertial tracking and estimation [9] Feature tracking and high-speed SLAM

2 Adaptive-window bundle adjustment [9] Error reduction in trajectory and landmark estimates

3 Topological loop closure [8] Previously visited place recognition

4 Post-loop closure map relaxation Drift reduction through pose graph relaxation

5 Out-of-core SQLite map interface Reducing memory by writing map data to disk

through the API described in Sect. 5 to query for global loop detections, upload and
download maps.

4.1 Client Front-End

The client front-end is responsible for initial processing of all sensory inputs and
produces a map. It leverages recent state of the art work on visual-inertial state
estimation presented by Keivan et al. [9]. The front-end also asynchronously uploads
all recent frames and edges (including their associated metadata) to the server.

The front-end is split into two threads which run asynchronously. The first thread,
the tracking thread, tracks image point features using a patch-matching based scheme.
This thread is designed to produce approximate pose estimates at a high rate. FAST
corner features [18] are extracted from an image and compared with previously
foundmap landmarks. This generates correspondences to estimate an essentialmatrix
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whose decomposition yields a relative pose. We disambiguate the translation scale
by incorporating IMU measurements (or by triangulation with a stereo camera).
This information is used in a Gauss-Newton optimization step to jointly improve
the landmark and pose estimates. Using a set of heuristics based on inter-frame
pose differences and the quality of feature tracking, some frames are selected as key
frames. For every selected key frame, a local bundle adjustment is run to further
improve estimates.

The second thread in the front-end is an asynchronous adaptive-window bundle
adjustment thread which grows or shrinks its window to maintain parameter observ-
ability and accuracy. This results in very high quality pose estimates at no cost to
the overall front-end frame rate. This window can grow from the small size of the
synchronous window up to hundreds of key frames, giving it the ability to capture
motion and baselines not available to the fast-moving tracking thread.

4.2 Client Loop Closure

A third thread running on the client performs loop closures. For every key frame
created during a mapping session, the loop closure system tries to detect places that
have already been visited either by the current session or any other. This loop closure
thread also queries the server to get matches with other previously uploaded maps. If
a match is found, the client will download the server’s map of the surrounding area
and integrate it into its own, joining the two disconnected maps.

The place matching is fully integrated in the system and takes advantage of all
place information available to it, whether it was created during the current session
or a previous one. MOARSLAM integrates the loop detector by Gálvez-López and
Tardós [8] into its map graph and operates similarly. We store an image database
to describe places as bags of binary words by using a single hierarchical vocabu-
lary comprising 105 words, trained offline with millions of features obtained from
independent data.

The loop closure thread computesORB [19] descriptors around the corner features
tracked by the front-end. This provides a small (∼100) number of points which have
been observed from multiple angles, are well distributed across the image and and
associated to landmarks with estimated 3D poses. In addition, by reusing the front-
end’s features the overhead of computing new features is avoided. These descriptors
are converted into a bag-of-words vector and used to query the image database. The
top-100 candidate matches are grouped together if their reference frames are close
in the map, and the group with the highest aggregated similarity score is kept [8]. To
avoid false detections, the candidates are accumulated until subsequent queries are
resolved, as shown by the blue dashed circles in Fig. 2. When at least 3 of them are
close each other, a loop closure attempt is made. By comparingORB descriptors, 2D-
to-3D correspondences between the current image and the matched 3D landmarks
are found. Solving the perspective-n-problem yields a relative transformation that
is later optimized by projecting map landmarks to find additional correspondences.
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If the transformation can be found, the place match is accepted and an edge is
added to the map. This is illustrated by the thick edge created between poses p2

and ps in Fig. 2 that encodes the spatial transformation Tab. Another thread performs
asynchronous map relaxation after a successful loop detection to jointly improve all
the pose estimations of the map.

5 Server

The MOARSLAM server component acts as an endpoint for storing, querying, and
transmitting the maps which have been built by various MOARSLAM clients. The
server provides a statelessAPIwhich allows clients to connect anddisconnectwithout
affecting the client-server interactions. Through the API, clients can perform three
tasks: place recognition queries against previously uploaded maps, map uploading,
and map downloading. The server uses the same map structure and place matching
approach used on the client, simplifying implementation.

The communication between client and server is implemented using Node [2],
an open-source C++ RPC and PubSub framework built on ZeroMQ and Google
Protocol Buffers (Figs. 4 and 5).

5.1 API

• Place Recognition Query
The client uploads an image and key frame information to the server to be matched
against the server’s database of places. The server’s place recognition operates as
described above in Sect. 4, butmanages a larger jointmap that comprises the places
visited by each client. If a place recognition query request is satisfied, an edge is
added between two different session maps, as shown in Fig. 2 or as seen in bright
green in Fig. 6. A new edge that connects the query frame and thematched frame is
returned to the client. Through this edge, the client can perform a map download
request to access and include landmarks from the downloaded session and use
them in its localization.

• Map Download
A client can request a section of graph by specifying a frame ID and a depth to
which it would like a breadth-first search to be performed. This search will gather
frames, edges, camera calibrations, and all associated metadata, and return it to
the requesting client.
To contain the bandwidth usage of this operation, themaximum size of the returned
map is fixed. In those cases that the limit is exceeded, the clients obtain “leaves”
of the subgraph, which are the nodes at the edge of the fetched map. This gives
the client locations to possibly ask for more map in a new map download request,
if it is necessary.
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• Map Upload
The client serializes frames, edges and associated places and send them to the
server for later querying by other devices. These are inserted into the server’s
databases, which fuses them automatically if there are any conjoining edges.

6 Experimental Evaluation

6.1 Quantitative Results

To demonstrate an aspect of the scalability of MOARSLAM’s place query system,
this section presents 1099 measurements of the run-time of the a single place query
on the server. Each measurement begins after a request to the server has started
processing and ends when a match is found or all potential matches have been
eliminated. Figure4a plots the query processing time (in milliseconds) against the
number of places in the database. The figure shows the low-constant linear growth
rate for themajority of queries. Figure4b shows the heavy weighting of themeasured
times towards sub-10 millisecond responses. Both plots also demonstrate the long
tail that can occur when interacting with a database, especially a simple on-disk
storage interface like SQLite. The MOARSLAM server in this experiment was run
on a 4-core 1.60GHz Core i5 with a 5400 RPM HDD.

(a) (b)

Fig. 4 Plots showing distribution of server-side place recognition query timings. Six data points
are not shown on the plot because they fall far outside chart boundaries
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Fig. 5 Client 1 created a map with virtual text. Clients 2 and 3 simultaneously downloaded the
map, including the virtual text. Clients 2 and 3 are circled in each other’s images for perspective.
a Client 1. b Client 2. c Client 3

6.2 Qualitative Results

In order to qualitatively validate our multi-device SLAM system, we acquired three
sequences of monocular images and inertial data with three Google’s Tango mobile
phones. These describe different trajectories inside a room of approximately 45m2.
We then processed these sequences using a local server to create a global map that
joins all the data.

We first ran our system with one of the sequences to create an initial map that was
uploaded to the server. The two remaining sequences were run as two different client
sessions interacting with the server through its API. Figure6 shows an example of
the map fusion process when one of the sessions finds a match with a frame on the
server.

To illustrate the ability of our approach to augment maps and provide virtual
objects to each client, we inserted a 3D object in the initial environment map dis-
playing the text “Writing on the wall”, as it can be seen in Fig. 6. Figure5 shows a
frame of each sequence after fusing maps, showing that the virtual object is correctly
located for each client device.

7 Discussion

The relative framework is ideal for scalability and constant-time client operation, but
it can present a challenge for users unaccustomed to considering non-euclidean rep-
resentations. In particular, for viewing entire trajectories, it requires a global search
and graph-relaxation to construct a consistent global view of the map. As this paper
shows, global relaxation is not required for consistent metrically accurate multi-
device augmented reality. Further, global relaxation is not needed for path-planning
or obstacle avoidance [14]. In fact, a single global coordinate framemakes the estima-
tion brittle, necessitating robust global loop closure algorithms [11, 15] and is only
required for visualization. MOARSLAM mitigates the cost of global-optimization
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Fig. 6 Two maps are fused after a cross loop detection. The current image of the current session
(red path) is matched with one the images of a previous session (blue path). An edge (green
line) is added between the matching nodes, encoding a 6-DOF transformation computed from the
correspondences between image features and map landmarks

by caching the global map structure and only responding tomap updates. It should be
emphasized again that viewing global maps is not a requirement for localization or
accuratemetric interactionwith the environment (e.g., for path planning, augmented-
reality, obstacle avoidance, etc.). Similarly, while the relative manifold is accurate
over short graph traversals of a few kilometers, error can accumulate around loops
and cause a “tear” in the global visualization of a map. This is not a problem in
the estimation as relative errors are close to optimal, it merely requires global-frame
graph-relaxation to produce consistent visualizations.

Presently, MOARSLAM’s loop detection method is based on a single visual
vocabulary. Previous research has shown that this approach is suitable for large
heterogeneous environments mapped with very different cameras [8]. The next step
is to research the limits of this approach when mapping trajectories of hundreds
of kilometers overlapping in urban scenarios. In this context it is important to note
that no algorithm is completely exonerated from false positives under all circum-
stances. Thus, long-term robustness can be achieved by applying a recent technique
such as Realizing, Reversing, and Recovering (RRR) [11, 15], which accumulates



MOARSLAM: Multiple Operator Augmented RSLAM 131

several loop hypotheses to remove later those that are inconsistent. Note that the
relative framework itself is not detrimentally harmed by false loop-closures, which
can always be undone, reverting the map to it’s prior condition without damaging
the state estimate.

8 Conclusion

This paper presentedMOARSLAM, a scalable, client-server-based system formulti-
device SLAM. In addition, it showed the potential of this system for shared aug-
mented reality (AR) by distributing AR information as a component in the map
through experiments demonstrating simultaneous AR from multiple perspectives in
an indoor environment.

Sharing SLAM maps in a scalable manner is important for cooperative robotic
tasks as robotic platforms become more capable. Sharing physically grounded infor-
mation will allow teams of robots to operate together in an environment with con-
fidence. MOARSLAM provides a foundation for sharing and reusing the ever more
accurate maps created by modern SLAM systems.
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