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Abstract Cooperative localization allows groups of robots to improve their overall
localization by sharing position estimates within the team. In spite of being a well
studied problem, very few works deal with the increased complexity when a large
number of robots is used, as is the case in robotic swarms. In this paper, we present
a characterization and analysis of the cooperative localization problem for robotic
swarms.We use a decentralized cooperative mechanism in which robots take turns as
dynamic landmarks providing information to their teammates. We perform several
simulations and analyze the influence of these dynamic landmarks in the localization.
More specifically, we study the impact of the number of robots in the localization
and how the choice of landmarks affects the results.

Keywords Cooperative localization · Cooperative mobile robots · Swarm robotics

1 Introduction

The localization problem is one of the most fundamental in mobile robotics.
It generally consists in estimating the robot pose relative to a reference frame in
the environment. When robots are equipped with exteroceptive sensors (such as laser
range finders) and a set of known landmarks or a map of the environment is available,
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localization is relatively simple. This is also true for outdoor robots equipped with a
good GPS, which can provide position estimates in a global reference frame. But in
more general settings, in which GPS is not available and the robot has no knowledge
about the environment, robots have to rely on dead reckoning methods that compute
new pose estimates from previous ones. Unfortunately, these methods are subjected
to accumulated errors when traveling long distances, which lead to uncertainties that
may compromise the quality of the localization.

In multi-robot teams, individual localization estimates can be corrected based on
the teammates’ positions instead of landmarks in the environment. This is one of the
benefits of cooperative robotics, which allows robots to share responsibilities and
exchange information to better accomplish tasks. The pose belief adjustment occurs
by means of information exchange, which generally happens when the robots meet
each other (i.e. there are robots within the communication range). Multi-robot sys-
tems employing this technique, commonly denoted Cooperative Localization (CL),
have less dependence on the availability of global localization information. Conse-
quently, this kind of system can be used to explore unknown areas or scenarios where
global localization is not always available.

These advantages can be leveraged with the use of large groups of robots,
which usually present increased flexibility and robustness. Generally called Robotic
Swarms, these systems employ a large number of simpler agents to perform different
types of tasks, acting in a completely decentralized fashion. As will be discussed in
the next section, most of the CL methods have focused on the use of a small number
of robots since the complexity in terms of coordination and information exchange
increases with the number of robots. Thus, the problem of CL in robotic swarms has
not been fully explored and presents relevant questions to be investigated.

In this paper, we present a characterization and analysis of the cooperative local-
ization problem considering a swarm of robots. We use a decentralized method, in
which themain idea is to have some robots in the swarm acting as dynamic landmarks
and providing a localization structure to the group. More specifically, we have the
members of the group alternately working as localization providers. These members,
acting as beacons, publish localization information in their vicinities to allow their
neighbors to adjust their localization beliefs. In this context, we perform an extensive
series of simulations and analyze how the number of dynamic landmarks and their
choice may impact the localization in a robotic swarm.

The remainder of this paper is structured as follows. A review on the CL liter-
ature is presented in Sect. 2. The methodology is presented in Sect. 3, which ini-
tially describes the theoretical formalizations (Sect. 3.1), followed by the coopera-
tive swarm localization method (Sect. 3.2), and the swarmmotion strategy (Sect. 3.3)
used to move the group as a unit. Experiments and statistical analysis are presented
in Sect. 4. Finally, Sect. 5 brings the conclusions and directions for future work.
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2 Related Work

Oneof the firstworks that use robots as landmarks to performcooperative localization
is [6], in which a group of robots, with awareness of its initial localization, is divided
in two subgroups with alternating motion and roles. At each time-step, one group is
in motion while the other remains static to serve as landmark. After the motion, the
robots update their localization beliefs by using relative observations and then remain
stationary acting as landmarks to the other group. Despite the good results shown in
real applications [5], the need of a centralized entity that controls the actions of all
robots and estimates their beliefs compromises the robustness and scalability of the
method.

Another seminal work is [7], in which the concept of cooperative localization is
employed in a task related to mapping. Two robots are equipped with sensors that
allow them to track each other. The coordination mechanism permits them to divide
the environment by using spatial decomposition, such that at any single time one
robot acting as landmark is positioned in a corner of the environment, while the
other spans the perimeter maintaining visual contact. Therefore, the regions of the
entire free space are covered and a dual graph is generated, which can be used to
posterior exploration of the area.

A more general approach to the CL problem is presented in [10]. The method is
based on the generation of a joint estimation of the robots’ pose in a group, which is
computed using an Extended Kalman Filter (EKF) [4]. Both centralized and decen-
tralized methods were applied to generate the joint estimation. In the decentralized
approach, each robot performs the prediction step of the filter individually while
the update step is performed by exchanging information with others via commu-
nication and exteroceptive sensors. The localization interdependence is considered
and its representation (cross correlation terms) are stored by all robots and explicitly
propagated to the teammates. Using these terms, a robot can estimate its pose by con-
sidering the shared knowledge associated with previous meetings. In spite of having
the best estimate as a consequence of the use of localization interdependence, this
strategy has the disadvantage of requiring a previous knowledge about the group size
and presents a complexity that increases quadratically with the number of robots,
precluding its use for large groups of robots, such as swarms.

To deal with this drawback, other works have proposed approximate strategies to
perform the belief update. These approaches use only part of the group to calculate the
robot’s estimate. In a recent approximate approach [1], the belief update is performed
by using theCovariance IntersectionAlgorithm (CI) [3],which is a consistentmethod
to fuse estimates of a same quantity with unknown cross-correlation terms. This
approach allows each robot to maintain only its own state-covariance estimate with
a cost to generate a new estimate of O(n).

Some works have investigated different strategies to increase the quality of local-
ization. For instance, [2, 14, 15] explore the motion mechanism of the group. Tully
et al. [14], for example, presents a leap-frog motion technique that has been designed
to aid localization for a team of three robots that move alternatively. The results show
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that this motion strategy outperforms the optimal formation-based path. A method
based on leader-following is presented in [16], in which they explore the formation
to generate optimal motion strategies. Two robots are employed and the simulation
results present better localization accuracy in comparison with the other formation
methods used.

However, just a few works have studied the influence of the group size in relation
to the quality of the group localization. In [11], a theoretical analysis relates the effect
of the number of robots and the error accumulation. In this analysis, the continuous
exchange of localization information among the robots is considered and each robot
uses sensors of limited accuracy to provide absolute orientation. It is shown that
the uncertainty growth is inversely proportional to the number of robots and the
rate of growth depends only on this number and the uncertainty of proprioceptive
sensors. In [8], this aspect is evaluated together with the type of measurement used.
Although the results have shown that the increase in the number of robots contributes
to the quality of localization, relevant details have not become explicit, such as the
number of robots used as landmarks, which prevents a more detailed analysis. In a
recent work [12], the influence of the group size is studied in simulated experiments
using groups from two to five robots. A centralized EKF sequentially performs the
localization estimate of the group using the data sent by all robots. Because of the
restricted scope of the experiments, the results cannot be generalized.

Thus, in spite of the different studies in cooperative localization, its use in robotic
swarms is still incipient. In special, the study of scalability issues in this context is a
relevant problem that we consider suitable for investigation.

3 Methodology

In this work, we consider a large group of robots (swarm) that moves in a cohesive
manner. As in [6, 7], the swarm is divided into two subgroups that move in amutually
exclusive way. One group remains stationary broadcasting their pose information
while the robots of the other group move using proprioceptive sensors to estimate
their pose. After moving for a certain amount of time, each of these robots updates its
belief by using some of the stationary robots in its neighborhood as landmarks. The
process is completely decentralized: each robot estimates its distance and orientation
to the landmarks, and use the pose information disseminated by them to correct its
pose. After this, robots exchange roles: the stationary group starts moving while the
robots of the other group become stationary landmarks.

Similarly to [1], we consider that robots are able to identify and measure relative
ranges and bearings to their neighbors and exchange information with them. Also,
robots are equipped with proprioceptive sensors that allow them to measure their
own motion. Since we are using holonomic robots, we do not consider the robot
orientation.We assume that all sensor measurements are subjected to white Gaussian
noise, but communication is performed without errors.
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3.1 Theoretical Formalization

Let us consider the scenario where a swarmR = {R1,R2, . . . ,Rη

}
of η holonomic

robots must navigate in a static 2D environment. Let pi
k = [xi

k yi
k]� be the vector at

time-step k that represents the true position of the i th robot (Ri ) in a common global
frameW , andui

k = [vxi
k vyi

k]� the vector that represents its control action in the same
time-step, in which vxi

k and vyi
k stand for the input velocities in x and y directions,

respectively.
The state xi

k of the robot Ri at time-step k is equal to its position, i.e. xi
k = pi

k =
[xi

k yi
k]�, and its discrete-time motion model is expressed by:

xi
k+1 = f (xi

k, ui
k), i = 1, . . . , η

=
[

xi
k + vxi

kΔk
yi

k + vyi
kΔk

]
.

(1)

A neighborhood N consists of a circular region of radius τ around the current
position of a robot. Thus, we can defineN = {N1,N2, . . . ,Nη

}
as the set of calcu-

lated neighborhoods, all with the same radius. As mentioned, we assume thatRi can
exchange information andmeasure relative range ρ and bearing φ of all robots inside
its neighborhood Ni . Moreover, it is assumed that robots inside a neighborhood Ni

can be uniquely identified by the exteroceptive sensor of robot Ri .
The true range and bearing taken by robot i of a robot j at time-step k are respec-

tively denoted by ρ
i, j
k and φ

i, j
k .1 Thus, the true range ρ

i, j
k and bearing φ

i, j
k taken at

time-step k by robot i of robot j , is given by h(xi
k, x j

k ), where

h(xi
k, x j

k ) =
[

ρ
i, j
k

φ
i, j
k

]

=
[√

(x j
k − xi

k)
2 + (y j

k − yi
k)

2

atan2(y j
k − yi

k, x j
k − xi

k)

]

. (2)

The measurement model at time-step k + 1, when Ri gets a relative position
measurement ofR j , zi, j

k+1 = [ρ̂i, j
k+1 φ̂

i, j
k+1], i, j = 1, . . . , η, i �= j , j ∈ Ni , is given by

zi, j
k+1 = h(xi

k+1, x j
k+1) + ni, j

k+1, (3)

where ni, j
k+1 is the zero-mean white Gaussian measurement noise with covariance

Ri, j
k+1 added to the true relative measurements given by h(xi

k+1, x j
k+1).

1We use the notation ∗i, j
k to express that a certain value associated with robot i was obtained using

information and/or measurements from robot j at time-step k.
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3.2 Cooperative Swarm Localization

As described earlier, this work uses a swarmR of η holonomic robots. The swarm is
divided in two subgroups, and their motions are coordinated such that the subgroups
move as units in a mutually exclusive way (see Sect. 3.3). Individually, each robot
i maintains only its own state estimate x̂i

k and the respective covariance Pi
k , due to

the costs of processing and communication when cooperatively localizing a large
group of robots. In this work we do not address the cross-correlation terms [10], and
propose an approximate decentralized algorithm for CL.

A robot R j acting as landmark continually broadcasts messages with its state
and covariance to its neighbors. After its motion, a robotRi trying to localize itself,
processes the relative range and bearingmeasurement zi, j

k+1 togetherwith the informa-
tion received from robotR j . Using these data and its own predicted state x̂i

k+1|k2 and
covariance Pi

k+1|k estimates, the robot processes the new state x̂i
k+1|k+1 and covari-

ance Pi
k+1|k+1 estimates. This procedure is repeated incrementally for each landmark

in order to improve the localization estimates. The mathematical details of this pro-
cedure is presented as follows.

The discrete-time motion model described in (1) is used to propagate the state of
the robot Ri as:

x̂i
k+1|k = f (x̂i

k|k, ûi
k), i = 1, . . . , η. (4)

The robot’s state is updated according to a linear function f that considers the
previous state x̂i

k and an input ûi
k = ui

k + wi
k = [v̂xi

k v̂yi
k]�, which is basically the

commanded velocities ui
k augmented with additive zero-mean white Gaussian noise

wi
k , with covariance Qi

k . During the motion, each robot individually evolves this
model with time-steps of length Δk.

Using an EKF [4], the respective covariance propagation for Ri is given by:

Pi
k+1|k = Φ i

kPi
k|k(Φ

i
k)

� + Gi
kQi

k(G
i
k)

�, (5)

where Φ i
k is a 2 × 2 identity matrix (I2) and Gi

k is this same matrix multiplied by the
time-step Δk.

Thus, whenRi receives the message with the state and covariance estimates from
robot j and obtains a relative measurement zi, j

k+1 of it, Ri can generate an estimate
of its state as if such estimate had been calculated by the robot R j . The following
equation illustrates this process:

x̂i, j
k+1 = x̂ j

k+1|k+1 − g(zi, j
k+1), (6)

2Notation is similar to [1], where ŷl|m denotes the estimate of the random variable y at time-step l,
given the measurements up to time-step m.
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where

g(zi, j
k+1) =

[
ρ̂

i, j
k+1cos(φ̂

i, j
k+1)

ρ̂
i, j
k+1sin(φ̂

i, j
k+1)

]

.

As described in [13], the uncertainty Ri, j
k+1 tied to the measurement zi, j

k+1 can be

converted to the common global frame by the means of the jacobian Ji, j
k+1, as follows:

Ji, j
k+1 = ∇xk g(zi, j

k+1)
∣
∣
xi

k=x̂i
k+1|k ,x

i, j
k =x̂i, j

k+1

=
[
cos(φ̂i, j

k+1) −ρ̂
i, j
k+1 sin(φ̂

i, j
k+1)

sin(φ̂i, j
k+1) ρ̂

i, j
k+1 cos(φ̂

i, j
k+1)

]

.
(7)

The jacobian J relates the deviation of the original [Δρ̂ Δφ̂]� and the transformed
[Δx̂ Δŷ]� variables, which represent the distance from robots i and j in x and y
coordinates, respectively. Calculated as:

[
Δx̂
Δŷ

]
= J

[
Δρ̂

Δφ̂

]
. (8)

The covariance is defined by the expectation of the squared deviates. So, the
covariance of the measurement z in the common frame is defined by multiplying
both sides of Eq. (8) by their respective transposes and taking the expectation of the
result. This transformation represents an adequate linear approximation when the
variables are represented by Gaussians with small variances, as stated in [13]. The
uncertainty Pi, j

k+1 related to the x̂i, j
k+1 estimate is generated by the combination of the

covariance matrices:

Pi, j
k+1 = Pi

k+1|k + Ji, j
k+1Ri, j

k+1(J
i, j
k+1)

�. (9)

The estimates x̂i
k+1|k and x̂i, j

k+1 are combinedby theEKFupdate step.This generates

a new state x̂i, j
k+1|k+1 and covariance Pi, j

k+1|k+1, which represent the actual belief of the
robot. New landmark information and relative measurements are combined with this
belief using the procedure described above in an incremental way. The final state
x̂i

k+1|k+1 and covariance Pi
k+1|k+1 estimate is used for the next motion step.

An important point of the methodology is the choice of the neighbors used as
landmarks. We use two different methods: the first one considers the k closest neigh-
bors while the second choses the k neighbors with lowest uncertainties (covariance
trace). The performances of these different methods are compared in Sect. 4.
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3.3 Swarm Motion Strategy

Asmentioned, the swarmR is randomly divided into two subgroups: one that moves
while the other maintains its position. After a pre-specified number of time-steps, the
two subgroups exchange roles. Lets call these subgroups Rm and Rs , for moving
and stationary ones, respectively.

Robots motion is governed by decentralized flocking rules, which allow them to
move in a cohesive way, while avoiding collisions. The motion strategy is based on
some of the basic rules of Reynolds’ flocking algorithm [9]. Each rule establishes a
vector that determines a direction to be followed.

The first rule, separation, aims to maintain a safe distance among the robots. The
separation behavior is calculated by:

vsep
i =

∑

j∈R, j �=i

(
rs

‖di j‖ − 1

)
di j , ‖di j‖ ≤ rs, (10)

which computes a separation vector vsep based on the displacement di j between a
robot and its teammates located inside a specific separation range (rs).

The second rule aims tomaintain the robots together acting as a unit. This cohesion
rule computes the average position of the k moving robots that are located inside a
cohesion range (rc), and generates a vector vcoh

i pointing in this direction as:

vcoh
i = 1

k

∑

j∈Rm , j �=i

di j , ‖di j‖ ≤ rc. (11)

Finally, we consider that the robots have a series of common targets to be reached
during their motion. These targets are used to compute a direction vector (vdir )
to be followed. The displacement vector between a robot i and its next target t is
represented by di t . As shown in Eq. (12), the direction vector consists of the unit
vector in the direction of di t :

vdir
i = di t

‖di t‖ . (12)

The control action ui is given by:

ui = kc vcoh
i + ks vsep

i + kd vdir
i , (13)

which is composed by the weighted sum of the three vectors. The control action is
then decomposed in velocities vxi and vyi , that will be used by robot i .

We assume all robots have a synchronized clock, and the decision to switch robots
from Rs to Rm (i.e. from stationary landmarks to the moving robots group), and
vice versa, is made periodically on a completely decentralized manner. At first, the
swarm is divided in two predefined subgroups, and a common timer is initialized.
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As soon as the timer reaches a certain value, the robots change their roles, and the
timer is reinitialized. This loop is repeated until the mission is fulfilled.

3.4 Complexity Analysis

In this section, we present a brief analysis of the computational complexity of each
stage of the proposed methodology, as well as bounds regarding the number of
messages used by each robot.

In most systems dealing with the CL problem, the cost to estimate the position is
usually O(n2), where n is the number of robots, since n(n − 1) measurements are
needed to calculate a new estimation.

In this work, the swarm is divided into two subgroups, and all the robots on
a subgroup should measure the relative range and bearing of all robots from the
other subgroup. Therefore, it takes (n/2)(n/2) measurements, still leading to an
O(n2) complexity, where n is the number of robots. However, as will be shown in
Sect. 4, the use of just part of the robots from the other group improves significantly
the position estimation, which takes k(n/2) measurements. Therefore, we have an
O(kn) complexity, since we consider k 	 n/2 as the number of robots that will be
used as landmarks, and n is the total number of robots.

4 Experiments

Several simulations were performed to analyze how the number of dynamic land-
marks and the way they are chosen impact the localization. We have also varied
parameters related to the quality of the information in order to study its influence on
the localization error and the number of necessary landmarks.

The experiments presented here were executed considering a swarm with 30
holonomic robots. The group navigates in an obstacle-free static environment of
approximately one hundred square meters (10m × 10m). Robot motion is directed
by a series ofwaypoints,which define targets to be reachedby the group.These targets
dictates the preferred direction (vdir

i ) for each robot and it is used in computing the
commanded velocity ui . These velocities are limited to 0.1m/s, and are subjected to
additive zero-meanGaussian noise of 10%of the true velocity. Each simulation takes
approximately 6500 time-steps, where Δk = 0.1 s is the duration of each time-step,
and the total length of the traveled distance is ≈30m.

Following themethodology, the robots are initially assembled together anddivided
into two subgroups at random. The motion of the groups is coordinated so that they
move in turns for a specific number of time-steps. One subgroup is selected to start
moving while the other remains stationary. After motion, the group stops and each
member computes range and bearing to some of the static robots located inside their
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Fig. 1 Example of the path
executed by the subgroups
(red and blue colors)
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neighborhoods. In the simulations, the radius of the neighborhoods was made large
enough to allow the analysis of the impact of varying the number of landmarks.

Figure1 presents an example of a path executed by the swarm. The position of
the members of both groups (depicted in red and blue) is presented over time. The
small circles represent the position of each robot in four distinct moments in which
the blue group performed cooperative localization.

The first experiment was performed to evaluate the impact of different error para-
meters in the quality of the final localization. The range noise was defined propor-
tional to the measurements while the bearing noise has been fixed to some absolute
values. The noise n of the measurement model (Eq. 3) was defined using the fol-
lowing values σρ = {0.05, 0.10, 0.20, 0.30, 0.40} × ρ and σφ = {1◦, 2◦, 3◦}. These
parameters were analyzed varying the number of landmark robots used for correcting
the localization estimates, ranging from 1 robot to η

2 robots (i.e. the entire station-
ary group). For each specified combination of noise values (σρ, σφ) and number of
landmarks, a total of 30 simulations were executed. The position mean error after
the path has been completed is presented in Fig. 2.

For each simulation, a mean localization error is calculated by taking the average
of the root mean square error (RMSE) value of the position errors for all robots
during their motion, assuming they are using a determined number of neighbors
as landmarks. It is possible to observe that the bearing noise has a small influence
in the mean error. However, with the increase in the noise of the relative range, a
robot needs to use more landmarks in order to better correct its position estimate.
We can also observe that in situations where the noise is small, the increase in the
number of landmarks over certain values does not contribute to reduce the localization
error. For example, for σρ = 0.05ρ, the error decreases very slowly for more than 6
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Fig. 2 Mean position error varying the number of landmarks used for correction

landmarks. In other words, depending on the observation noise, robots can improve
their localization using just a small number of landmarks in their neighborhood.

We also analyzed the increase on the RMSE along the execution when a different
number of landmarks is used. Figure3 shows the results of a set of 30 simulations in
which the associated noises were fixed at σρ = 0.10ρ and σφ = 3◦. It is possible to
observe that the error is largely reduced when at least one landmark is used, but this
reduction is smaller for more than four landmarks. This reinforces the analysis that a
small number of robots may suffice for improving localization in swarm navigation.
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Fig. 3 RMSE accordingly to the different number of landmarks used for localization
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Fig. 4 The real (black line) and cooperative estimated (blue line) path performed by a robot. The
red line is the estimate without cooperative localization. a 1 landmark. b 4 landmarks. c 8 landmarks

As can be seen, theRMSEconsidering the use of 15 landmarks presents a tendency
to converge to a constant growing rate after a certain number of time steps. This is
a particularly important result, since it provides a notion that it will be possible to
obtain a bounded maximum error for the entire swarm.

The improvement on the localization can readily be observed in Fig. 4, which
shows the path followed by one of the robots using different numbers of landmarks
to correct its localization. In this case, the black line is the ground truth (actual path),
the red line represents the robot localization estimates without correction and the
blue line represents the localization using other robots as landmarks. Both Figs. 3
and 4 are related to the same set of experiments.

In the previous experiments, the landmarks to be used were chosen at random,
without any criterion of selection. Themeasurementswere used in the update phase of
the EKF according to the order themessages arrived.With the aim of analyzing how a
different ordering could impact the localization, we defined two criteria for selecting
the landmarks to be used, and compared them with the random selection. The first
considers an ordering process in which the landmarks that are closer to the robot
are chosen. The second sorts the landmarks considering their uncertainties, so that
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Fig. 5 Mean position error
accordingly to the criterion
used to select the landmarks
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the ones with the lower uncertainty are chosen. The observation noise was set with
the same value of the previous experiment. Figure5 shows that both criteria improve
the localization over choosing landmarks randomly. Between the two, the selection
of the landmark robots with lower uncertainties is slightly better than choosing the
closest landmark robots, specially when few landmarks are used.

5 Coclusion and Future Work

In this paperwe performed a characterization ofCooperative Localization for swarms
of robots by using an approximate decentralized algorithm. Considering the sensory
and computational limitations of this kind of system, we have explored the coordi-
nated motion of the group, so that the robots could cooperatively localize themselves
using local information, i.e. using only part of the group as landmarks. We per-
formed a series of simulations in order to evaluate the method and results showed
that localization estimates can be significantly improved even using a small number
of neighbors as landmarks. Experiments performed with a larger number of robots
(not showed here) confirmed this trend. This suggests that the method scales well
and can be used when it is necessary to cooperatively localize large groups of robots.

In general, cooperative localization methods have not been used with large group
of robots due to the complexity related to the exchange of localization information.
Therefore, one of the main contributions of this work is the investigation of such
methods in robotic swarms. Although we have not considered the localization inter-
dependence, our results indicate that it is possible to reach good localization even
with a few landmarks, which is important in terms of scalability.

The main limitation of this work is related to the fact that we do not incorpo-
rate the orientation noise and localization interdependence. In order to address this,
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we will direct our future work to extend the proposed methodology to deal with non-
holonomic robots and also with the localization interdependence. Specially to tackle
the latter, we intend Covariance Intersection Algorithm (CI) [1, 3]. We believe that
this will make the methodology more general and robust.

Acknowledgments Thisworkwas developedwith the support of CEFET-MG,CAPES, FAPEMIG
and CNPq.

References

1. Carrillo-Arce, L., Nerurkar, E., Gordillo, J., Roumeliotis, S.: Decentralizedmulti-robot cooper-
ative localization using covariance intersection. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1412–1417 (2013)

2. Hidaka, Y., Mourikis, A., Roumeliotis, S.: Optimal formations for cooperative localization of
mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pp. 4126–4131. Barcelona, Spain (2005)

3. Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown
correlations. In: Proceedings of theAmericanControlConference, vol. 4, pp. 2369–2373 (1997)

4. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME—J.
Basic Eng. 82(Series D), 35–45 (1960)

5. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Auton.
Robots 8(1), 43–52 (2000)

6. Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In: Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1250–1257 (1994)

7. Rekleitis, I.M., Dudek, G., Milios, E.E.: On multiagent exploration. In: Proceedings of Vision
Interface, pp. 455–461 (1998)

8. Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-Robot cooperative localization: a study of trade-
offs between efficiency and accuracy. In: Proceedings of the IEEE/RSJ InternationalConference
on Intelligent Robots and Systems, vol. 3, pp. 2690–2695 (2002)

9. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. In: Computer
Graphics, pp. 25–34 (1987)

10. Roumeliotis, S.I., Bekey, G.A.: Collective Localization: a distributed Kalman filter approach to
localization of groups of mobile robots. In: Proceedings of the IEEE International Conference
on Robotics and Automation, vol. 3, pp. 2958–2965 (2000)

11. Roumeliotis, S.I., Rekleitis, I.M.: Propagation of uncertainty in cooperative multirobot local-
ization: analysis and experimental results. Auton. Robots 17, 41–54 (2004)

12. Schneider, F.E., Wildermuth, D.: Influences of the robot group size on cooperative multi-robot
localisation—analysis and experimental validation. Robot. Auton. Syst. 60(11), 1421–1428
(2012)

13. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J.
Robot. Res. 4, 56–68 (1986)

14. Tully, S., Kantor, G., Choset, H.: Leap-frog path design formulti-robot cooperative localization.
In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics, Springer Tracts in
Advanced Robotics, vol. 62, pp. 307–317. Springer, Berlin (2010)

15. Zhang, F., Grocholsky, B., Kumar, V.: Formations for localization of robot networks. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3369–
3374. New Orleans, LA, USA (2004)

16. Zhou, X.S., Zhou, K.X., Roumeliotis, S.I.: Optimized motion strategies for localization in
leader-follower formations. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 98–105. San Francisco, CA, USA (2011)


	Towards Cooperative Localization  in Robotic Swarms
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Theoretical Formalization
	3.2 Cooperative Swarm Localization
	3.3 Swarm Motion Strategy
	3.4 Complexity Analysis

	4 Experiments
	5 Coclusion and Future Work
	References


