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Abstract In real applications, it is always important to consider the generation of
safe paths for robots during deployment or in future excursions through the envi-
ronment. In order to include safety in the problem of deploying mobile robotic net-
works, we propose a new strategy based on the locational optimization framework.
Our approach models the optimal deployment problem as a constrained optimization
problemwith inequality and equality constraints. This optimization model is built by
incorporating into the locational optimization framework new features such as the
classical Generalized Voronoi Diagram (GVD) commonly used as a safe roadmap in
the context of path planning and a new metric to compute distance between robots
and points in the environment. This new metric induces a new Voronoi partition
of the environment. Furthermore, inspired by the classical Dijkstra algorithm, we
present a novel efficient distributed algorithm to compute solutions in complicated
environments.

Keywords Mobile robotic network · Locational optimization · Deployment
problem · Voronoi partitioning

1 Introduction

According to [4], a system composed of a group of robots that sense their own
position, exchange messages following a communication topology, process infor-
mation, and control their motion is called a robotic network. One can find several
applications for this type of system such as surveillance, sensing coverage, environ-
mentmonitoring, search and rescue, etc. An important question to answerwhen using
a robotic network is where each robot should be placed in the environment. In the
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present work we show a distributed solution to this question which is refereed as
the deployment problem [4]. The solution is distributed in the sense that each agent
depends only on information from a small set of other agents called neighbors to
compute its actions. Besides, this set of neighbors is dynamic since it might change
as the system evolves. As pointed by [7], this allows for scalability and robustness.
We are interested in finding optimal deployment configurations. We consider that
a configuration is optimal if it is a minimizer of a functional encoding the quality
of the deployment. This quality of deployment is related to the time of response of
the network after an event that needs servicing happens in the environment. This
time is a function of the distance of the agents from the event and the agent capa-
bilities (speed, sensor field of view, etc.). In order to minimize the distance between
agents and events, our approach applies the idea of partitioning the environment
into subregions which are then assigned to specific agents. Therefore, each agent is
responsible for attending the events in its corresponding subregion. Differently from
previous works found in the literature we are also concerned with the incorporation
of some safety constraints into the deployment. This property guarantees such a safe
movement for the robots, with maximum distance from the obstacles, in the environ-
ment. The paper is organized as follows: in the next section we present some related
work. In Sect. 3 we present some useful tools that will be considered in the rest of the
paper. The proposed optimization model and an efficient distributed solution to the
problem are explained in Sects. 4 and 5. Implementation results are shown in Sect. 6.
Finally, conclusions are presented in Sect. 7.

2 Related Work

Our approach builds on the work in [7]. The authors of this work present a distributed
and asynchronous approach for optimally deploying a uniform robotic network in
a domain based on a framework for optimized quantization derived in [11]. Each
agent (robot) follows a control law, which is a gradient descent algorithm that min-
imizes the functional encoding the quality of the deployment. Further, this control
law depends only on the information of position of the robot and of its immediate
neighbors. Neighbors are defined to be those robots that are located in neighboring
Voronoi cells. Besides, these control laws are computed without the requirement of
global synchronization. The functional also uses a distribution density functionwhich
weights points or areas in the environment that are more important than others. Thus
it is possible to specify areas where a higher density of agents is required. This is
important if events happen in the environment with different probabilities in different
points. Furthermore, this technique is adaptive due to its ability to address changing
environments, tasks, and network topology. Different extensions of the framework
devised in [7] have been proposed in the literature. The problem of considering
time-varying distribution density functions was studied in [13] to solve a task of
simultaneous coverage and intruders tracking. Deployment and exploration in non-
convex environments was considered in [3, 5, 10]. In [12], heterogeneous robots in
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a non-convex environments were taken into account. Where, instead of point robots,
disc shaped robots were considered. Some works also considered the discretization
of the environment by grid cells to facilitate computation in complex environments.
In [9] the authors consider a discrete partitioning and coverage optimization algo-
rithm for robots with short-range communication. In this case a discrete setup was
presented in which a discrete deployment functional is defined. The authors proved
that their algorithm converges to a subset of the set of centroidal Voronoi tessellations
(CVT) in discrete formulation, named pairwise-optimal partition. Gossip commu-
nication was used to allow information exchange among the agents. Similarly, [14]
describe an algorithm to solve the deployment problem in a discrete setup. In [2] the
environment was also discretized to allow the numerical computation of the environ-
ment partition (geodesic Voronoi diagram), but in this case the context was the one of
generating an approximation to the continuous setup. In the same spirit of approxi-
mating the continuous setup, the authors of [1] discretized the environment and used
a graph based approach inspired by Dijkstra algorithm [8] to directly compute the
proposed control law in an efficient manner in general Riemannian manifolds with
boundaries.
Statement of Contributions: The present paper further extends the works in [1, 12]
to include safety. By merging different Voronoi diagrams, including the well known
Generalized Voronoi Diagram (GVD) [6] (traditionally used as a roadmap in path
planning) and by considering a constrained optimization problem in the context of
the Locational Optimization Framework, we can generate safe routes for the robots
during deployment and also after deployment when servicing a given point of the
environment. We propose a new Voronoi Diagram which is built according to a new
metric that takes into account shortest paths that traverse the GVD. Moreover, in
order to consider real world environments we devise a new efficient algorithm to
compute the next actions of the robots in the same spirit of the one in [1].

3 Background

In this sectionwe explain the basic tools whichwill allow us to define our deployment
problem in terms of a constrained optimization problem. These tools are the GVD
and the locational optimization framework.

3.1 Generalized Voronoi Diagram

Let the set of obstacles QO = {QO1, . . . ,QOn} in a planar configuration space be
called sites. This set induces a structure called Generalized Voronoi Diagram (GVD).
Q indicates to configuration space and a set of points in the free configuration space,
Qfree, is defined as the Voronoi region of the obstacle QOi, Vi, if these points are
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closer to QOi than to all the other sites. Given an obstacle QOi, the generalized
Voronoi region, Vi, is the closure of the set of points closest to QOi [6].

Vi = {q ∈ Qfree| d(q,QOi) ≤ d(q,QOj),∀j �= i} , (1)

where d(q,QOi) shows the minimum distance between QOi and q. The two-
equidistant surjective surface, Li,j is the set of points equidistant to two obstacles
QOi and QOj with distinct gradient vectors:

Li,j = {q ∈ Q|d(q,QOi) = d(q,QOj) and ∇d(q,QOi) �= ∇d(q,QOj), j �= i}.
(2)

The points in Li,j that are part of the GVD are those in whichQOi andQOj are the
closest obstacles. Therefore we can define the set:

Vi,j = {q ∈ Li,j| d(q,QOi) ≤ d(q,QOh)}. (3)

This last definition allows us to formally define the GVD:

GV D =
⋃

i

⋃

j

Vi,j. (4)

An interesting feature of the GVD is that it can be used as a roadmap (RM) for path
planning (Fig. 1a).
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Fig. 1 A map with obstacles, QOi, GVD and a simple path on the GVD, to show its property to
be used as a roadmap and a density function which centered at top-right of the map. a Green line
shows the GVD. q is an equidistant point between sitesQO3 andQO4. Dash line illustrates a path
between two arbitrary points, (pi, pj). b An example of Gaussian density function in a 2D map.
A = 7, (x0, y0) = (67, 54), σx = σy = √

30
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3.2 Locational Optimization Based Deployment

Let Ω ⊂ R
2 be the map of the environment. Let P = {p1, . . . , pn} be the configura-

tion of n robots, and f (d(q, pi)) indicates the cost of servicing an event at point q
by robot i. This is related to the spatial distance between q and pi as d(q, pi) repre-
sents this distance and f is a smooth strictly increasing function. Suppose we have
access to a density function φ : Ω → R+ which gives weights to different points in
Ω to reflect the probability of having events at each point (See Fig. 1b). Considering
also the tessellation W = {W1, . . . , Wn} so that ∪n

i=1Wi = Ω and I(Wi) ∩ I(Wj) =
∅, ∀i �= j, where I(·) represents the interior of a given region, it is possible to
define the following deployment functional that measures the quality of the robotic
deployment [7]:

H(P, W ) =
n∑

i=1

H(pi, Wi) =
n∑

i=1

∫

Wi

f (d(q, pi))φ(q)dq , (5)

The objective of the Locational Optimization based framework is to drive the
robots to a configuration that minimizes (5). In [1], it is considered the case where f
is the square function and d is the Euclidean distance. The authors of [1] proposed
a distributed control law that guides these robots to the minimum which coincides
with the so-called Centroidal Voronoi Tessellation (CVT).

In the present work, we further extend this framework to incorporate safety.

4 Safe Deployment Modeling

In this section we define the safe deployment problem as an optimization problem
in the context of the Locational Optimization Framework. Consider the bounded
free configuration spaceQfree ⊂ R

2. Let P = {p1, . . . , pn} be the configuration of n
robots, where pi ⊂ Qfree. The problem to be solved is the one of finding distributed
robotic actions, in the sense that only robots in the neighborhood of robot i will
be taken into account, that leads the system to a local solution of the constraint
minimization problem given below:

min
pi

H(P, GGV D), s.t.

{
yi1(pi) ≤ 0 , . . . , yim(pi) ≤ 0

h(pi) = 0
(6)

where y() and h() declare inequality and equality constraints respectively. The next
sections will explain the meaning of the terms used in the defined problem and from
this explanation it should be clear how safety is then incorporated in the locational
optimization framework.
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New Metric:TheGeodesic distance is ametricwhich ismore realistic thanEuclidean
distance in non-convex environments. This distance is used in the deployment func-
tional presented in [12] as the general function d, as defined in the last section. In this
case, the inducedVoronoi Tessellation is the so-called geodesic Voronoi Tessellation.
Now, we propose a further extension on this metric which will be called Geodesic
Distance Based on GVD. This distance function corresponds to the length of the
shortest path from two points when using a GVD as a roadmap. A clear example of
this path is shown in Fig. 1a, where dash line between a pair (pi, pj) defines the whole
path: {(pi, xi), (xi, xj), (xj, pj)}. In general, we can divide this path into three parts:
a path from the initial point to GVD (Path Init_To_GVD), a path from a point on GVD
to another point on GVD (Path GVD_To GVD), and a path from GVD to the goal point
(Path GVD_To_Goal). The Geodesic Distance Based on GVD is then defined as:

d(pi, pj) = W1.||pi − Πi(GVD)|| + W2.g(Πi(GVD),Πj(GVD)) (7)

+W1.||pj − Πj(GVD)|| ,

where g(xi, xj) gives the shortest distance between two points xi and xj on the
GVD, if the motion is constrained to remain on the GVD, Πi(GVD) represents
the projection of the point pi onto the GVD which corresponds to the closest point
on the GVD to pi, and W1 and W2 are the weights of each part of the path. For exam-
ple, by assigning a big value to W1 the cost of Path Init_To_GVD or Path GVD_To_Goal

can be increased. These weights help to adjust the cost of two portions of the path
so that it is worth first moving to the GVD as soon as possible and perform most of
the motion traversing it. As safety regarding the existing obstacles is related to the
distance the robot keeps from them and the GVD provides a roadmap which keeps
equidistance from the closest obstacles, we can say that this metric can introduce
safety in the deployment solution. In the minimization problem defined in (6) the
cost function is defined according to the new metric, d:

H(P, GGVD) =
n∑

i=1

∫

GGVDi

d(q, pi)
2φ(q)dq , (8)

where GGVD, (Geodesic Generalized Voronoi Diagram) will be defined as the
Voronoi Tessellation induced by the new metric and W1 >> W2.

Now, we can also describe the equality constraint h(pi) = 0. This function is
defined as the difference between the distance functions d(pi,QOi) and d(pi,QOj)

in which QOi and QOj are the closest obstacles to robot i. Thus, this means the
robots must be deployed along the GVD.

Collision avoidance: Since the focus of this work is on safety, besides the static
obstacles we should also take into account the possible collisions between robots.
Apractical problemof the unconstrainedminimization executed by the pure gradient-
descent law in [7] is that actual robots are not point-robots. Thus, we propose to use
here the same strategy presented in [12]. Basically, in this work the basic results for
point robots are extended to robots that can be modeled as circular disks, each one
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with radius rpi = rpj , ∀i, j. This is done by incorporating the inequality constraints
yik ≤ 0 in (6), so that the robots remain inside their so-called free Voronoi region.
For details refer to [12].

5 Proposed Solution

In order to solve the safe deployment problem in an efficient manner we propose
to solve a discrete approximation of the continuous setup shown in the last section.
The proposed algorithm builds upon the work in [1] which presents a modified
Dijkstra algorithm able to compute simultaneously at each iteration the geodesic
Voronoi diagram and the robot next actions in the case of deployment on Riemannian
manifolds with boundaries.

5.1 Discrete Approximation

Consider the 2-dimensional configuration space. The graph G = {V(G), E(G), CG}
is induced from the uniform square tiling of the configuration space by considering
an 8-connectivity neighborhood (See Fig. 2a). The set of vertices (nodes) is given
by V(G), the set of edges by E(G) ⊆ V(G) × V(G), and a cost function is denoted
by CG : E(G) → R

+. It is important to mention that a node of the graph is placed in
grid cells located inside Qfree. Moreover, the cost of each edge is computed based
on the defined new metric as will be clarified later. We will also use the notation pi

to denote the node that contains the position of robot i, pi, and the operator P(s) to

(a) (b)

Fig. 2 Representing a discrete grid based map and the technique of modeling GVD based on graph
nodes and edges. a Discretization and graph representation. b The nodes g, h, and i are in the set
VGV D(G)
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return the position of the center of the grid cells. Therefore, P(pi) returns the center
of the cell that contains robot i. Furthermore, we will useNG(pi) as the set of graph
vertex neighbors: NG(pi) = {q ∈ V(G)

∣∣ [pi, q] ∈ E(G)}.
We compute the GVD before discretizing the environment into cells, allowing the

GVD to be independent from the discretization resolution. The GVD is embedded
in our graph by labeling the set of grid cells that contain a piece of the GVD as the
approximate GVD, VGVD(G). Now, we can define the edge cost function:

CG(i, j) =
{

W2 · c(i, j), if i , j ∈ VGVD(G)

W1 · c(i, j), otherwise ,
(9)

where c(i, j) is given by the Euclidean distance between the centers of the cells i and
j. Since it is our objective to deploy and also move the robots along the GVDwe will
use W1 >> W2. For instance, see an example in Fig. 2b.

The shortest path between two vertices s and q corresponds to the sequence of
nodes (consequently edges), {s, v1, v2, . . . , vm, q}, connecting this pair such that
the sum of the edge costs is minimum. We will define this minimum cost sum as
d∗(P(s), P(q)):

d∗(P(s), P(q)) = CG(s, v1) + CG(v1, v2) + . . . + CG(vm, q). (10)

This allows us to define the discrete version of the deployment functional:

H∗ =
n∑

i=1

∑

q∈GGVD∗
i

d∗(P(q), P(pi))
2φ(P(q))w̄ , (11)

where GGVD∗
i corresponds to the set of grid cells so that d∗(P(q), P(pi)) is less than

d∗(P(q), P(pj)), ∀j �= i, and w̄ is a constant related to the integral element of area.
Assuming that the robots are located at the center of the grid cells, i.e. P(pi) = pi,
we can compute the gradient of H∗:

∂H∗

∂pi
=

n∑

i=1

∑

q∈GGVD∗
i

2zpi,qd∗(P(q), P(pi))φ(P(q))w̄ , (12)

where zpi,q is the vector with direction given by the first edge of the shortest path
between pi and q, i.e. the direction of P(pi) − P(v1), and magnitude given by W2 if
pi , v1 ∈ VGVD(G) or W1 otherwise. Based on last equation we propose a gradient
descent based approach in the next subsection.
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5.2 Distributed Algorithm

The problem defined in (6) has some constraints, which means that our solution
should also take these constraints into account to define the next action. The collision
avoidance inequalities are implemented by first verifying if any of these constraints
are active, i.e., yik = 0 for some k. If this is the case, it means there are at least two
robots in the imminence of a collision, thus the involved robots will be allowed to
move only if the desired direction ofmotion is orthogonal or has a negative projection
onto the segment joining the two robot centers. The equality constraintwhich enforces
the robots to be deployed along the GVD is imposed in our solution by means of
two steps. If a robot is not in a cell that is part of the VGVD the next action for this
robot is to move towards the closest cell in VGVD which is not occupied by any other
robot at that time. This can be considered as the first step of the proposed approach.
The second step is activated when the robot enters a cell which is part of the VGVD.
Now, the next action of this robot is a motion along a straight line from the current
grid cell to a neighbor cell which is also part of theVGVD. This next cell is computed
based on the gradient descent direction given by the negative of the expression in (12).
As in [1] we present an algorithm that computes the gradient descent direction and
the Voronoi tessellation, GGVD∗, simultaneously in every time-step by means of a
wavefront propagation procedure similarly to the process in Dijkstra’s algorithm [8].
The wavefront in a given iteration represents the set of points equidistant to the
start node also called source. In our case we consider wavefronts emanating from
multiple sources (given by the locations of the robots). As the wavefronts propagate
two operations are executed: (i) graph vertices in the wavefronts are associated to
robots (sources) at shortest distance (according to the proposed metric) giving rise
to the Voronoi regions; and (ii) terms of the summation in (12) associated to vertices
in the wavefronts are added to a variable responsible to store the gradient descent
direction. The placeswhere thewavefronts collide determine theVoronoi boundaries.
The ideas previously discussed are organized in the form of the Algorithms 1 and 2.
We consider these are the algorithms running in robot i.

Termination: The commands in while loop in Algorithm 1 are executed until ter-
mination criteria are met. An interesting criteria is the observation of the variation
of positions of robots in the most recent iterations. If this variation is below a given
threshold the algorithm can terminate.

Complexity: It is clear that the bottleneck of our iterative algorithm is the function
described in Algorithm 2. Since this function runs exactly in the same format of
the Dijkstra algorithm, the graph vertices have a constant degree, and a heap is
maintained as a priority queue to store the unvisited nodes, the running time is given
by O(VG log(VG)) (where VG is the number of vertices in the graph).
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Algorithm 1: Distributed main algorithm running in robot i.
Input: G,VGVD, φ, pi
G is the graph, VGVD is the approximate generalized Voronoi diagram, φ is the density
function, pi ∈ VG is robot i initial location (graph node).
Output: pi, o
pi is robot i final location and o : VG → {1, 2, . . . , n} is the discrete tessellation map GGVD∗
as computed by robot i.

1 while (Termination criteria is not met) do
2 Broadcast position pi //Robot i sends its position to other robots.
3 Ni ← Get_Location_of _Neighbor_Robots() //Robot i receives location of other robots.
4 N ∗

i ← Ni ∩ VGVD // Set of neighbors already in the VGVD.
5 if pi /∈ VGVD then //check if the robot is not on the VGVD.

Set the current direction of motion as the one towards the closest cell in VGVD which
is not occupied by another robot

else
Call Modified_Dijkstra(G,VGVD, φ, pi,N ∗

i ) //Compute both the next action (cell)
p′

i and the GGVD∗ as seen by robot i.
Set the current direction of motion to reach p′

i

6 if (There is no active inequality constraint) OR (There is an active inequality constraint
AND current direction of motion is not obstructed by another robot then //collision
avoidance constraint.

7 Move according to the current direction of motion
else

8 Stop

6 Results

In this section we illustrate our approach by simulating the deployment of robots in
two different environments. Videos are available at:
http://www.cpdee.ufmg.br/~coro/movies/DARS2014/

Simple map: A simple room with some obstacles and size 3.79 × 2.91m (or image
with 728 × 582 pixels) is the input map. By using a discretization resolution equal
to 10 pixels, we have a grid map with 72 × 58 cells. Discretization rate can be
defined based on the real size of robot and map. Density function is defined by
a Gaussian function with parameters: (x0, y0) = (67, 54), σx = σy = √

30. In this
experiment 5 robots are considered. By observing robots’ movement during deploy-
ment, it is evident at the beginning, two robots have a largeVoronoi regionwhen other
robots do not have it (See Fig. 3b, c). After some iterations the decrease/increase of
size of large/small Voronoi regions contribute to minimize the cost function as it is
shown in Fig. 3a.

Office-like map: In the second experiment, the method was tested on a more com-
plicated map with size 40.0 × 60.0m and grid graph size of 80 × 120. Initially,
some of the robots are on the GVD and others are not. We define density Gaussian
function as: (x0, y0) = (10, 110), σx = σy = √

50. Because of the large input map,

http://www.cpdee.ufmg.br/~coro/movies/DARS2014/
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Algorithm 2: Modified_Dijkstra()function.
Input: G,VGVD, φ, pi,N ∗

i
G is the graph, VGVD is the approximate generalized Voronoi diagram, φ is the density
function, pi ∈ VG is the current robot i location (graph node), and N ∗

i is the set of locations
of other robots already in VGVD.
Output: p′

i, o
p′

i is the next cell for robot i and o : VG → {1, 2, . . . , n} is the discrete tessellation map
GGVD∗ as computed by robot i.

1 Initiate d∗: d∗(v) ← ∞, for all v ∈ V(G) // New metric distance.
2 Initiate o: o(v) ← −1, ∀v ∈ V(G) // Tessellation.
3 Initiate η: η(v) ← ∅, ∀v ∈ V(G) // robot graph vertex neighbor. η : V(G) → V(G)

4 Ii ← 0 // The gradient descent of the discrete functional.
5 foreach i ∈ pi ∪ N ∗

i do
6 d∗(pi) ← 0
7 o(pi) ← i
8 foreach q ∈ NG(pi) do // For each graph vertex neighbor of pi
9 η(q) ← q

10 Q ← V(G) // Set of unvisited nodes.
11 while (Q �= ∅) do
12 q ← argminq′∈Q d∗(q′) // Maintained by a heap data-structure.
13 Q ← Q − q // Remove q from Q
14 k ← o(q)

15 s ← η(q)

16 if (s != ∅) AND (k == pi) then // Equivalently, q is not a vertex occupied by a robot
and q ∈ GGVD∗

i .
17 Ii ← Ii + φ(q) × d∗(q) × (P(s) − P(pi))

18 foreach w ∈ NG(q) do // For each graph vertex neighbor of q
19 d′ ← d∗(q) + CG(q, w) //relaxation.
20 if d′ < d∗(w) then
21 d∗(w) ← d′
22 o(w) ← k
23 if (s != ∅) then
24 η(w) = s

25 p′
i ← argmaxu∈NG(pi)∩VGVD

(P(u)−P(pi))
‖P(u)−P(pi)‖ · Ii // Choose next action as the cell in VGVD best

aligned with the gradient descent direction.

we consider three groups with two robots in each one. They start their movement
from three different parts of the map. Figure4a shows the final positions.
Figure4b illustrates robot trajectories and the evolution of the deployment func-
tional, which is minimized as desired is depicted in Fig. 4c.
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Fig. 3 Snapshots when running the proposed algorithm for 5 robots. a H∗ function converged after
65 iterations. b iter1. c iter65
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Fig. 4 Result of running the algorithm on office-like map. a iter50. b Robot trajectories in the
office-like environment. c H∗ function converged after 50 iterations

7 Conclusion

We addressed the problem of deriving optimal distributed control laws to deploy
robotic networks in complex environments safely. The deployment problem is trans-
lated to a constrained optimization problem so that a deployment functional defined
with the use of a new distance function must be minimized while satisfying con-
straints of two types: (i) inequality constraints for inter-robot collision avoidance,
and (ii) an equality constraint to enforce the robots to be deployed at the generalized
Voronoi diagram of the environment for maximizing distance from static obsta-
cles. It is also interesting to mention that the proposed framework can also be used
with other roadmaps different from the GVD. We presented a distributed algorithm
strongly based on the one proposed in [1] which allows for efficient computation of
a discrete solution for the discrete approximation of the problem. Simulations were
also presented to illustrate the proposed method performance.
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