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Abstract We consider the problem of coverage path planning in an initially
unknown or partially known planar environment using multiple robots. Previously,
Voronoi partitioning has been proposed as a suitable technique for coverage path
planning where the free space in the environment is partitioned into non-overlapping
regions called Voronoi cells based on the initial positions of the robots, and one robot
is allocated to perform coverage in each region. However, a crucial problem arises if
such a partitioning scheme is used in an environment where the location of obstacles
is not known a priori—while performing coverage, a robot might perceive an obsta-
cle that occludes its access to portions of its Voronoi cell and this obstacle might
prevent the robot from completely covering its allocated region. This would either
result in portions of the environment remaining uncovered or requires additional path
planning by robots to cover the disconnected regions. To address this problem, we
propose a novel algorithm that allows robots to coordinate the coverage of inacces-
sible portions of their Voronoi cell with robots in neighboring Voronoi cells so that
they can repartition the initial Voronoi cells and cover a set of contiguous, connected
regions. We have proved analytically that our proposed algorithm guarantees com-
plete, non-overlapping coverage. We have also quantified the performance of our
algorithm on e-puck robots within the Webots simulator in different environments
with different obstacle geometries and shown that it successfully performs complete,
non-overlapping coverage.
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1 Introduction

Coverage path planning is a central aspect of multi-robot systems where the objec-
tive is to completely cover the surface area of an environment using multiple robots.
Robotic coverage is used in several application domains of robots such as unmanned
search and rescue, clearing an area of landmines, inspecting the health of engineering
structures, as well as in civilian applications such as automated lawn mowing and
vacuum cleaning. Using multiple robots for area coverage instead of a single robot
offers several advantages such as reducing the time required to complete the environ-
ment’s coverage and improving the robustness of the system to failure of a single or
a few robots. However, using multiple robots also introduces the overhead of coor-
dination between robots to avoid collisions and perform non-overlapping coverage.
An attractive technique to implement non-overlapping coverage between robots is to
partition the free space of the environment into disjoint regions or cells that can then
be covered by robots [1–4]. In most of these partitioning-based coverage techniques,
the cellular partitions are not changed once they have been determined. However, if
the obstacles inside the environment are initially unknown to the robots, a robotmight
discovers that a cell is occluded by an obstacle while performing coverage. As shown
in Fig. 1a, a robot then has to use path planning techniques to explore paths to reach
the cell’s occluded part. In a multi-robot coverage scenario, the path planning tech-
nique to reach the occluded portions of a cell involves significant computation and
coordination between the robots [3], which might result in increased battery expen-
diture and completion time for the coverage. Therefore, it makes sense to investigate
techniques that can reduce or avoid these path planning costs for robots by adaptively
repartitioning cells and reallocating the repartitioned portions, so that other robots
can cover the repartitioned cell with little overhead for navigation planning.

Fig. 1 a The Voronoi cells of two robots are partially inaccessible due to obstacles. The blue solid
arrows show the path taken by a robot to reach the inaccessible portions of its cell using a bug-like
path planning algorithm. b Robots coordinate with each other to repartition the initial Voronoi cells
so that each robot has a contiguous region to cover
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Our research in this paper is based on the key insight that when the initial partition
of the environment is done equitably between robots, exactly one robot occupies a
cell. Then, even if the cell that a robot is covering gets disconnected due to obsta-
cles, because the free space is connected, the inaccessible portion of the cell must
be adjacent to at least one of the neighboring cells and accessible to the robot in
that cell. Consequently, the robot performing coverage in the adjacent neighboring
cell could be requested to augment its coverage with the inaccessible portion of
the disconnected cell, as shown in Fig. 1b. Based on this insight, we first partition
the environment into complete non-overlapping cells using Voronoi partitioning [5]
and then propose a novel algorithm called Repart-Coverage, where each robot per-
forms boundary coverage of its initially allocated cell or region and then uses a
low-overhead coordination protocol with other robots to systematically repartition
only those portions of its cell that are inaccessible due to obstacles. We have shown
analytically that our proposed technique guarantees complete, non-overlapping cov-
erage. We have also verified the performance of the Repart-Coverage algorithm on
simulated e-puck robots within the Webots simulator for different environments and
different obstacle geometries and quantified its performance in terms of the areas of
coverage regions and distances traveled by the different robots due to repartitioning
of their initial cells.

2 Related Work

Coverage path planning has been a central topic in robot motion and an excellent
survey is given in [6], including both single and multi-robot coverage. For multiple
networked robots performing distributed coverage, the coordination strategies that
have been proposed can be divided into two broad categories. In the first category,
robots share maps of covered regions with each other while they perform coverage
so that they can coordinate their movements to avoid each others’ regions. In most
of these techniques, the environment is divided into grid-based cells corresponding
to the footprint of a robot. Robots then use different techniques to avoid repeated
coverage such as sensing and avoiding already-covered neighboring cells [7], record-
ing the regions covered by each robot as a coverage tree [8] and communicating the
boundaries of covered regions between the robots, and, using a negotiation protocol
along with a distance-based objective function to select regions to cover for different
robots [9]. In [3], the authors proposed a technique calledmulti-robot Boustrophedon
decomposition where the robots decompose the environment into cells in an online
manner while performing coverage. Robots use two different roles - boundary cover-
age and area coverage. A pair of boundary coverage robotsmove in tandem along two
parallel but opposite boundaries of the environment and infer about the presence of
obstacles when the line of sight between them gets blocked. This information is used
to define cell boundaries for subsequent coverage by the area coverage robots. The
algorithm can guarantee complete, non-overlapping coverage, but the robots have to
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use complex calculations and tight coordination to guarantee that cell boundaries are
correctly identified and multiple robots are not assigned to cover the same cell.

In contrast, in the second category of coverage coordination, the environment is
partitioned into non-overlapping cells based on the initial positions of robots using
strategies such as polygonal decomposition [2], Voronoi partitioning [4, 5, 10], etc.
Recently, while extending this approach, Breitenmoser et al. have proposed an algo-
rithm where robots initially partition the environment using Voronoi cells and start
navigating towards target locations while continuously adapting the partitions and
refining the target locations as they discover obstacles [11]. In [4, 12], the authors
have proposed a multi-robot coverage technique where each robot communicates
its position while it moves and dynamically adapts the partitions with neighboring
robots to guarantee complete, non-overlapping partition of the environment. In con-
trast to our work, they do not explicitly address situations that prevent the complete
coverage of a Voronoi cell assigned to a robot when a portion of the cell becomes
inaccessible to the robot due to obstacles. Since the focus of our paper is on parti-
tioning the environment for coverage, we use a boundary coverage algorithm called
Egress [13] that enables a robot to determine and follow the boundary of its currently
assigned region; we assume that suitable techniques for covering the internal area of
a region such as ladder search [2] or spanning tree coverage(STC) [14] are utilized
by the robot after it has determined the boundary of the region it has to cover. Also,
in the rest of the paper we have used the term coverage to refer to boundary coverage.

3 Problem Formulation

Let Q ⊂ R
2, a convex polygon, represent a region occupied by a set of obstacles

O . Let Qfree = Q\O , denote the free space within Q. We assume Qfree to be a
topologically connected set. Our objective is to perform complete, non-overlapping
coverage of the region Q\O , using N autonomousmobile robots, each equippedwith
a coverage tool. Let P(t) = {pi (t) ∈ Q, i ∈ IN }, where pi (t) denotes the position
of the i th robot at time t .1

The Voronoi partition, generated by P is the collection {Vi (P)}i∈IN with,

Vi (P) = {
q ∈ Q| ‖ q − pi ‖≤‖ q − p j ‖,∀ j ∈ IN

}
(1)

The Voronoi partition induces an undirected graph known as Delaunay graph, GD ,
where two nodes i, j ∈ IN are neighbors if the intersection of corresponding Voronoi
cells Vi and Vj is a line segment. The set of neighbors of the node i is denoted as
N (i); for brevity we assume Ni =| N (i) |. Let Bi j denote the perpendicular bisector

1Robots can assume a well-distributed initial configuration in case their initial positions are close
to each other using techniques in [11, 15].
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Fig. 2 a The region bounded by dark lines is V i0
i . b Illustration of Ab

i j and A f
i j . c Illustration of

V j
i when Vi is repartitioned between robots j ∈ N (i)

of line joining pi (0) and p j (0) and let Ai j ⊆ Bi j represent the common boundary
between Vi and Vj . Let C = {C1,C2, . . . ,CM } be a partition of Qfree. Let Si ∈ 2C ,
i ∈ IN , and each Si , i ∈ IN is made up of contiguous cells from C, that is, ⋃C j ∈Si

C j

is a (topologically) connected set.
Distributed spatial partitioning problem: For each i ∈ IN , the i th robot should

construct Si , a contiguous collection of topologically connected cells, such that the
collection S = {S1, S2, . . . , SN } partitions Qfree.

3.1 Definitions and Notations

Let V i0
i ⊂ Vi be the subset of Vi containing pi (0). If there are no obstacles within

Vi , then V i0
i = Vi . The boundary of V i0

i is made up of portions of Ai j and obstacle
boundaries. A point q ∈ Ai j is reachable to robot i from pi (0), if q ∈ V i0

i , and
unreachable otherwise. Figure2a illustrates V i0

i with an example.
Let Ab

i j = {ui j (k)|Ai j ⊃ ui j (k) /∈ V i0
i }, where ui j (k)s are mutually disjoint con-

vex sets, representing parts (line segments) of Ai j that are not reachable (blocked
by obstacles) to the robot i . Similarly, let A f

i j = {ri j (k)|Ai j ⊃ ri j (k) ∈ V i0
i }, where

ri j (k)s are mutually disjoint convex sets, representing parts (line segments) of Ai j

that are reachable (not blocked by obstacles) to the robot i . See Fig. 2a for illustration.
Note that A f

i j = Ai j\Ab
i j .

Let N f b(i) = { j |Ab
i j = Ai j } ⊂ N (i).When j ∈ N f b(i), entire Ai j is unreachable

to the robot i ; then the robot i can not enterVj without enteringVk , for some k /∈ {i, j}.
Let N b(i) = { j |Ab

i j 	= ∅} ⊆ N (i). Note that N f b(i) ⊂ N b(i) ⊆ N (i).

Note that Ai j = Ab
i j ∪ A f

i j , and Ab
i j ∩ A f

i j = ∅, thus Ab
i j and A f

i j partition Ai j . If

Ai j = Ab
i j (that is, A f

i j = ∅), then we say that Ai j is impermeable to the robot i .

If Ai j = A f
i j , then we say that Ai j is fully permeable to the robot i . If Ab

i j 	= ∅ and
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A f
i j 	= ∅, then Ai j is partially permeable to the robot i . Note that Ai j = A ji , However

Ab
i j 	= Ab

ji , and A f
i j 	= A f

ji , in general.
Let V i

j ⊂ Vj , for j ∈ N (i), be a portion of Vj that would have been part of Vi

with node set IN \{ j}. See Fig. 2c for illustration. V i
j = Vj ∩ ( j Ṽi ), where j Ṽi is the

Voronoi cell of i with nodes IN \{ j}, or just N ( j). Each portion of Vi\V i0
i , is part of

V j
i , for some j ∈ N (i). If Ai j is fully impermeable to the robot i , that is, Ai j = Ab

i j ,
then i will not be able to reach V i

j .

4 Distributed Spatial Partitioning

In this section, we explain the proposed distributed spatial repartitioning scheme.
The i th robot first explores V i0

i and obtains the following information: (i) Vi , N (i),
pi (0), pi (t), p j (0) ∈ Q,∀ j ∈ IN the position of itself and initial positions of all other
robots; (ii) Ai j , Ab

i j , and A f
i j , for each j ∈ N (i); (iii) the sets N f b(i) ⊂ N b(i) ⊂ N (i),

and iv) V i0
i . Now,the robot broadcasts the following information: Ab

i j , A f
i j ,∀ j ∈ N (i),

and the sets N f b(i), N b(i), and N (i). This communication is required only at the
beginning of the distributed spatial partitioning.

Now the robot uses the available information and further exploration when
required, to decide on the additional regions that need to be covered by it. The
free regions in Vj\V j

j , j ∈ IN can not be covered by robot j and hence need to be
covered by other robots. These regions are divided into patches. A patch is defined
as a connected subset of Voronoi cells. Each patch is bounded by obstacles and/or
line segments of B jk , for some j, k ∈ IN . The i th robot maintains a set Si of patches
it should cover. It is clear that V i0

i is a patch in Si . The i th robot adds to Si patches
in (Vj\V j

j )free—the portion of obstacle free region with Vj , not accessible directly
to the robot j , j ∈ IN \{i}. We say that two patches U and W are adjacent, if U ∩ W
contains a line segment in B jk (not necessarily A jk), for some j, k ∈ IN ( j and k are
not necessarily neighbors)2. The significance of two patchesU and W being adjacent
is that a robot can move freely between these patches. The patches are created as
robots explore the regions to be covered. We will discuss the process of constructing
Si in steps.

Scenario i. Patches in V i
j , j ∈ N (i) The robot i enters V i

j ⊂ (Vj\V j0
j )free, j ∈

N (i), if and only if ∃l ∈ {1, 2, . . . , | A f
i j |}, s.t. ri j (l) ∩ Ab

ji 	= ∅. This condition is

illustrated in Fig. 3a. This patch, say U1, is adjacent to V i0
i and is added to Si .

Scenario ii. Patches in V k
j , k, j ∈ N (i), k ∈ N ( j): If the robot i enters a patch

U1 ⊆ V i
j , it explores U1. If a portion U2 of V k

j , k ∈ N (i) ∩ N ( j) is adjacent to U1,
then robot i will find out if k can reach this portion of V k

j . Otherwise, this portion of

2As U and W belong to free space, U ∩ W is either ∅ or a permeable line segment.
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Fig. 3 a Robot i can help robot j to cover i (V i
j )free. Thick solid and dashed lines represent the

blocked and free components of Ai j respectively. b–c Conditions i checks to find out if it has to
help a common neighbor k to cover a portion of the region (V k

j )
f

V k
j will be added Si . We will discuss the situations in which robot i should or should

not cover a patch in V k
j . Let Pi jk be the vertex common to Vi , Vj , and Vk .

1. Consider a scenario, as illustrated in Fig. 3c, where U1 ∩ V k
j is a single line seg-

ment and Pi jk ∈ U1. Let u jk(m) ∈ Ab
jk contains Pi jk (Such u jk(m) exists as Pi jk

is assumed to be part of U2 adjacent to U1).

1a. If u jk(m) ∩ A f
k j 	= ∅, as illustrated in Fig. 3c, a, then k can reach U2, and

hence i will not cover it.
1b. Otherwise, as illustrated in Fig. 3c, b, k can not reachU2 and i should cover it.

The robot i can check if Pi jk ∈ U1 ∩ U2, and ifU1 ∩ U2 is a single connected
piece, while physically exploring the boundary of U1.

2. Consider a scenario, U1 ∩ V k
j is a not a single line segment or Pi jk /∈ U1, as

illustrated in Fig. 4. In such a scenario, robot i will not be able to decide if U2

needs to be added to Si or not only based on available information. The patch U2

is added to Si , only if, while physically exploring the boundary of U2, the robot
i reaches a portion of A f

k j .

Remark 1 Note that the robot i physically explores the boundary of a patch W which
is adjacent to U ∈ Si , only when the information about free and blocked regions of
Voronoi cell boundaries (Ai j ) is not sufficient to make a decision as to if W needs
to be added to Si . Such an exploration is local to the robot i and it does not affect
the decisions of other robots. This can be observed from the illustrations in Fig. 4.
The patch U2 is added to Si (Fig. 4a and b) when i concludes that U2 /∈ Sk , and is not
added to Si (Fig. 4c) when U2 ∈ Sk . This ensures that the patch U2 is covered exactly
by one robot.
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Fig. 4 The robot i explores U2 ⊆ V k
j to check if k can reach it. The exploration path is shown with

dark dashed line ending with an arrow. a U2 is unreachable to the robot k, hence it is added to Si .
b Though U2 is reachable to the robot k, it has to pass through U1 to reach it. In other words, U2

is not adjacent to V k (V k ∩ U2 = ∅). Thus U2 ∈ Si . c The robot i reaches a point on A f
k j while

exploring U2 and hence U2 /∈ Si (as U2 ∈ Sk )

Further, it can be noted the scenarios discussed above are exhaustive.
Scenario iii. Patches in V l

j , j ∈ N (i), l ∈ N ( j), l /∈ N (i) If V i
j ⊃ U1 ∈ Si and

U2 ⊂ V l
j , s.t. U2 is adjacent to U1, then robot i has to make a decision on adding U2

to Si .

(1) If V l
j \V j0

j is not accessible to robot l (based on A f
l j and Ab

jl , discussed in sce-
nario(i)), then U2 is added to Si . Such scenarios are illustrated in Fig. 5a and b.

(2) Otherwise, the robot i should explore3 the boundary of entire portion of V l
j \V j0

j

connected to U2. Only if no portion of A f
l j is reached during this exploration,

U2 is added to Si . Figure 5c shows a scenario where U2 is not added to Si after
a point on A f

l j is reached while exploration (indicating that U2 ∈ Sl). Figure 5d
shows a scenario whereU2 is added to Si after the robot i fails to reach any point
on A f

l j while exploring (indicating that U2 /∈ Sl ).

Scenario iv. A patch in Vi\V i0
i While the robot i is in U1 ⊂ Vi\V i

j for some

j ∈ N (i) and U1 ∈ Si , and a patch U2 ⊂ Vi\V i0
i is adjacent to U1, U2 is added to Si

only if there is no k ∈ N (i) such that U2 is adjacent to V k0
k .A condition under which

the robot i adds U2 to Si is illustrated in Fig. 5e. If U2 is adjacent only to U1, that is
Pi jk /∈ U1 ∩ U2, k ∈ N (i) ∩ N ( j), then U2 is added to Si .

3Remark 1 is also applicable here.
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Fig. 5 In situations such as illustrated in a and b robot l will not enter any portion of V l
j and hence

robot i adds the region U2 ⊂ V l
j to Si . The robot explores a portion of V l

j adjacent to U1 and c

reaches a point on A f
l j , indicating that the robot l can reach and cover U2, thus U2 /∈ Si , d does not

reach any point on A f
l j , indicating that the robot l cannot reach U2 and hence it is added to Si . The

exploration path is shown in dark dashed line. e Situations in which the robot i covers a part of
Vi \V i0

i

Scenario v. Beyond neighbors and neighbors of neighbors: Robot i continues
looking for new patches and adds them to Si based the following principle: Let
U ∈ Si , and W is adjacent to U . Now, W is added to Si if either, W can not be
reached by any other robot, or, if robot i is closer to W than any other robot.

The process continues until the robot finds no more adjacent patches to be added.
At this point robot i performs area coverage of the current patch and returns to the
previous patch. It finds if there are any new adjacent patches to be added; if not, it
performs area coverage of this patch and goes back to the previous patch. Once robot
i reaches the patch from which it was initially placed, V i0

i , it performs area coverage
of that patch and stops.

4.1 Analytical Results

Lemma 1 Let V−i ⊂ Q f ree ∈ Vi\V i0
i denote a region inaccessible to robot i . Then

V−i must be topologically connected to robot j ∈ N (i)’s Voronoi cell, Vj .
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Proof (by contradiction.) Assume that V−i is not topologically connected to Vj .
Suppose the only Voronoi boundary V−i intersects is Ai j . There can be two cases of
robot i’s blocked boundary Ab

i j that resulted in V−i :

Case 1. Ab
i j = Ab

ji . Since, Ai j = A ji , this case implies A f
i j = A f

ji . Also, since the
only Voronoi boundary V−i intersect is Ai j , V−i ∩ Ai j = Ab

i j . Substituting this value
of expression in the definition of free and blocked boundaries of A ji and noting that
Ab

i j = Ab
ji and Ai j = A ji , we get: Ab

ji ∩ A f
ji = {∅}, or, V−i ∩ Ai j ∩ A f

ji = {∅}, or,
V−i ∩ A ji ∩ A f

ji = {∅}. But A ji ∩ A f
ji = A f

ji (from the definition of A f
ji ). Therefore,

we get, or, V−i ∩ A f
ji = {∅}. From the definition of a patch given in Sect. 4, a patch

is bounded either by obstacles or by Ai j . Since V−i is not accessible from Vi , it is
bounded by obstacles from the side of Vi . And, V−i ∩ A f

ji = {∅} implies it is not
accessible (bounded by obstacles) from the side of Vj also. Since Ai j is the only
Voronoi boundary intersecting V−i , V−i is bounded from all sides by obstacles. In
other words, V−i 	⊂ Q f ree, which contradicts our assumption.
Case 2. Ab

i j 	= Ab
ji . Suppose Ab

ji ⊂ Ab
i j .

4 Then the portion of Ab
i j that is not shared

with Ab
ji , must be free (accessible) on the side of Vj ; otherwise it would have been

part of Ab
ji . The portion of boundary that is free only on side of Vj but not of side

of Vi is A f
ji\A f

i j . That is, A f
ji\A f

i j ⊆ Ab
i j\Ab

ji , or, A f
ji\A f

i j ⊆ Ab
i j (since Ab

ji ⊂ Ab
i j ).

This implies that the patch V−i is topologically connected to Vj through A f
ji , which

contradicts our assumption that V−i is not topologically connected to Vj . Hence
proved.

Lemma 2 A region V−i ⊂ Q f ree ∈ Vi\V i0
i that is inaccessible to robot i , must be

topologically connected to Vj , j ∈ IN .

Proof The proof of Lemma 1 can be easily extended to a scenario where V−i inter-
sects more than one neighbor in N (i) by considering the blocked boundary with each
neighbor disjointly. For a more general case where V−i is topologically connected
only to N (k)(i), the kth hop Voronoi neighbor of i , k > 1 (scenarios iv. and v. in
Sect. 4), the proof of Lemma 1 still holds between robots i and j ∈ N k(i). Varying k
over 1 through the maximum hops between the farthest Voronoi cell from i , we get
N k(i) = IN ; hence proved.

Theorem 1 The proposed distributed partitioning and coverage scheme ensures
complete coverage of the free space.

Proof By Lemmas 1 and 2, there must be a robot j ∈ IN whose Voronoi cell Vj

is topologically connected to V−i . This ensures that for every robot i ∈ IN , the free
space in its Voronoi cell Vi denoted by Q f ree ∩ Vi gets covered by itself or by one
or more robots in j ∈ IN . The total region covered by all robots in IN is then given

4A similar result can be proved for Ab
i j ⊂ Ab

ji by interchanging indices i and j .
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by∪i (Q f ree ∩ Vi ) = Q f ree ∩ (∪i Vi ) = Q f ree ∩ Q (from definition of Voronoi cell)
= Q f ree (since Q f ree ⊆ Q). Hence proved.

Theorem 2 The proposed distributed partitioning and coverage scheme achieves
non-overlapping coverage.

Proof The proof follows from the construction of patches using Voronoi cell bound-
aries. From definition, a patch between Vi and Vj is bounded either by obstacles or
by the bisector line Bi j between robots i and j’s initial positions pi (0) and p j (0).
The Voronoi partitioning is done only once at the beginning, and by definition (Eq.1)
guarantees non-overlapping Voronoi cells. Since there is only one robot per Voronoi
cell, the coverage of the initial Voronoi cell (V i0

i ) is done only by robot i . When a
region V−i ∈ Vi\V i0

i is inaccessible from V i0
i , if V−i is adjacent to only one other

Voronoi cell Vj then only robot j covers V−i . On the other hand, if V−i is adjacent
to more than one Voronoi cell Vj1, Vj2, . . . then each pair of robots ja and jb divide
the region of V−i into patches Sja , Sjb by extending their bisector lines B ja , jb . This
construction ensures that Sja ∩ Sjb = {∅}, or, patches Sja , Sjb are non-overlapping;
patch Sjk is covered only by robot jk . Therefore, for every robot i , V i0

i and every
inaccessible region V−i is covered by exactly one robot. Hence proved.

Also, note that since the number of Voronoi cells is bounded by N (number of
robots) and there is at least one Voronoi cell that is connected to any initially inac-
cessible region, therefore, the repartitioning technique takes at most N steps to find
and connect the initially inaccessible region to another Voronoi cell. Consequently,
the repartitioning mechanism is guaranteed to converge in a finite number of steps.

We have implemented the repartitioning algorithm using an auction protocol as
shown in Algorithm 1. The robots use Voronoi partitioning to get their initial cov-
erage regions corresponding to their Voronoi cells. Each robot then explores the
boundary of its Voronoi cell. If, upon completing the exploration of its boundary,
there are unexplored regions remaining in the Voronoi cell, these regions are allo-
cated to neighboring robots using an auction protocol—robots in the neighboring
Voronoi cells of the obstructed robot are sent a bid request message. Every neighbor
robot calculates a bid for the region, and sends it to the auctioning robot. In the
current implementation of the algorithm, these bids are calculated as the perimeter
of the robot’s current region. The robot that submits the lowest bid is selected as
the winner of the auction and assigned the inaccessible portion of the Voronoi cell.
The auctioning robot informs the winner, which then appends the region to the list
of regions it needs to cover, and starts to perform boundary coverage of its newly
assigned region. The auction algorithm possesses the essential properties (comple-
tion, non-overlapping coverage), but it reduces communication and coordination
overhead by combining adjacent patches belonging to different robots, when the
patches are accessible from each other.
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Algorithm 1: Algorithm used by a robot to perform repartition coverage.

1 Repart-Coverage(Vi )
Input: Vi : Voronoi cell of robot i
Output: V ′

i : Repartitioned coverage region for robot

2 perform boundary coverage in Vi and determine V i0
i

3 Sb
i j ← set of blocked patches comprising Vi \V i

i

4 for each Sb
i j ∈ Sb

i j do
5 j ← set of Voronoi neighbor robots of i that have Voronoi cell boundaries with Sb

i j

6 send coordinates of polygon representing Sb
i j to all robot in j

7 wait for bids
8 bid ← set of bids received
9 jwin ← argmin

j
bid

10 Vi ← Vi \Sb
i j //remove Sb

i j from Vi

11 send message to robot jwin to add Sb
i j to Vjwin

12 handleBidMessages() //for robot j
13 if received bid request for Sb

i j from robot i then

14 bid j =
{
currently covered perimeter of Vj , ifSb

i j reachable

∞, otherwise

15 send bid j to robot i

16 if received winner message for Sb
i j from robot i then

17 Vj ← Vj ∪ Sb
i j //add Sb

i j to Vj

18 Repart-Coverage(Vj )

5 Experimental Results

We have implemented our proposed Repart-Coverage algorithm using simulated
e-puck robots within the Webots simulator. E-puck robots use a ring of eight IR-
based proximity sensors with a 4 cm range to avoid obstacles and follow obstacle
boundaries. Robots use Bluetooth protocol for inter-robot communication, and have
a GPS and compass for localizing w.r.t the environment. Figure6a–d, show four
different environments measuring 2 × 2 m2 with different internal obstacles and
with 5–7 robots, placed initially at arbitrary positions. These environments illustrate
different scenarios where the Voronoi cell of one or more robots becomes partially
inaccessible due to the obstacles in the environment, corresponding to the different
scenarios discussed in Sect. 4. The red lines on the floor of the environment denote
the Voronoi cells assigned to each robot. For reaching and following the boundary of
its Voronoi cell, each robot uses a lightweight, bug-like algorithm called Egress [13]
that enables a robot to start from any arbitrary internal point in its assigned region,
find a path to the region’s boundary using basic motions such as move-outward and
wall-follow, and, completely explore the entire outermost boundary of the region.
Each robot’s initial location is at the center of itsVoronoi cell; the path followed by the
robot is marked with a dark red trail. Figure6e–h show the scenarios for the different
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Fig. 6 Snapshots from Webots showing repartition coverage by 5–7 robots in different 2 × 2 m2

environmentswith different obstacles.a–d initialVoronoi partition, e–h robots performingboundary
coverage on originalVoronoi cell, while showing inaccessible regions arising out of originalVoronoi
partition, i–l repartitioned cells and robots completing boundary coverage of entire environment;
the final boundary of the cell that each robot covered is marked with a green line

environments at the end of boundary coverage along the Voronoi cell boundaries; the
initially inacccesible regions of the respective Voronoi cells are marked with a black
boundary. Finally, Fig. 6i–l show the result of our repartitioning algorithm. Robots
from adjacent cells are allocated to cover each of the initially inaccessible regions
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Fig. 7 Snapshots fromWebots showing repartition coverage by 7 robots in a 3 × 6m2 environment
with different obstacle features, a initial Voronoi partition, b robots performing boundary coverage
on Voronoi cell, black/light blue boundaries show inaccesible regions. c repartitioned cells and
robots completing coverage of entire environment

using the Repart-Coverage algorithm. The trail of the paths followed by the different
robots shows that every region in the environment is covered by exactly one robot.
This shows that our algorithm is successful to (re)-parititon the free space in the
environment into complete, non-overlapping regions for coverage.

Figure7a–c show another instance of the operation of the Repart-Coverage algo-
rithm for a 3 × 6 m2 environment with 7 robots. The scenario includes some unique
obstacle features like narrow channels between obstacles and obstacles that span
across multiple Voronoi cells, which require the inaccessible regions to be re-
allocated to robots multiple times (similar to scenarios iv. and v. in Sect. 4). This
shows that our algorithm successfully terminates and is able to find complete, non-
overlapping regions even for complex obstacle geometries.

Finally, we have quantified the performance of our algorithm in terms of the area
allocated to the different robots and the distances covered by them while performing
boundary coverage. Table1 shows the average area of the region allocated to each
robot using our algorithm versus the area of the initial Voronoi cell for the different
environments we have considered. Note that the initial Voronoi partition results in
uncovered regionswhile the repartitioning guarantees complete coverage. The results
for the different environments show that when obstacles result in larger inaccessible
regions in the initial Voronoi cells, the coverage regions for each robot recalculated
by the repartitioning algorithm have higher variance (std. dev, and max/min) than
the initial Voronoi cells. This is because, with more complex obstacles, robots have
to cover regions from other robots’ initial Voronoi cells in addition to covering their
own Voronoi cells.

6 Conclusions and Future Work

We proposed a novel technique for distributed spatial partitioning of an initially
unknown region that guarantees a partitioning of the free space in the environment
into a set of connected regions that can be covered by each robot. Currently, we are
investigating techniques for each robot to dynamically build a map of the boundary
of its currently allocated region instead of maintaining the end points of vertices of
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the boundary segments. The boundary map will enable a robot to efficiently plan
its path to newly added regions instead of circumventing regions whose boundary
it has already explored. Additionally, with boundary maps, the load (area covered)
between different robots can be balanced by including factors such as the area of
and distance to the newly allocated region, and, the area of the existing region in the
robots’ bids for new regions. Finally, we are implementing the proposed algorithm
on physical robots.
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