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Abstract We study the problems of throughput optimisation of mobile sensor
networks. A network ofmobile sensor nodes equippedwith limited sensing and com-
munication capabilities for connectivity maintenance and measurement of quality of
communication links with the nearest neighbours is deployed to exploit and collect
environmental data. Communication throughput of the multi-hop ad-hoc network of
mobile sensor nodes ismaximised for fast and reliable data transmission from sources
to destinations. We propose a method of designing the distributed control for mobile
sensor nodes for throughput optimisation in two stages: (1) position-aware optimi-
sation and (2) communication-aware optimisation. We demonstrate effectiveness of
the method through Monte-Carlo simulation based statistical results.

Keywords Mobile sensor networks · Throughput · Distributed co-optimisation ·
Communication-aware optimisation · Position-aware optimisation

1 Introduction

Mobile sensor networks have recently received significant attentions due to their
potential applications. This new research field is roughly considered as the inter-
section of the two well established fields, wireless sensor networks and multi-robot
systems, but enriched with diversification of integrating sensing awareness, commu-
nication awareness into mobility control for mobile sensor nodes in order to enhance
system performances.

A mobile wireless sensor network of mobile sensors obtains several advantages
over a traditional wireless sensor network due to controllable mobility of mobile
sensors. For instances, a small number of mobile sensors can cooperatively navi-
gate to explore and cover large hazardous environmental areas, detect and exploit

T.D. Ngo (B)
The More Than One Robotics Laboratory, Faculty of Science,
University of Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
e-mail: dungnt@ieee.org
URL:http://www.morelab.org

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_29

419



420 T. D. Ngo

environmental data with various equipped sensors, and transmit exploited data to
human operators using amulti-hop network ofmobile relays. However, we encounter
more challenges when deploying and managing a mobile sensor network rather than
a transitional wireless sensor network due to spatio-temporal dynamics of mobile
sensor nodes, i.e., connectivity maintenance, network topology, data transmission.
On the other hand, typical aspects of communication networks, such as commu-
nication channels, routing protocols, quality of services have not often considered
as research problems in multi-robot systems, instead it is assumed as being avail-
able for facilitating the development of various applications, i.e., coordinative explo-
ration, cooperative coverage, collaborative environmental patrolling andmonitoring.
Connectivitymaintenance/preservation—the concept oftenmentioned inmulti-robot
systems—is mostly considered in terms of sensing connectivities rather communi-
cation connectivities (communication links), and its roles in guaranteeing quality
of data communication in a multi-hop network of mobile nodes used to facilitate
many applications of networked robotic systems has been not significantly studied.
Nevertheless, the quality of communication links is the key element to guarantee
inter-communication among sensor agents for their cooperative, coordinative, and
collaborative operations. In this paper, we address comprehensive understanding of
how to integrate advantageous properties of wireless sensor networks, i.e., commu-
nication awareness, and multi-robot systems, i.e., localisation awareness, to enhance
the system performance in terms of communication throughput.

1.1 Literature Review

Graph theoretic network: graph theory is widely utilised as an useful tool to model
networked systems including wireless sensor network and networked robotic sys-
tems. Agents (either robotic or sensor agents) and their connectivities in a networked
system are mathematically modelled by nodes and edges of either directed or undi-
rected graph. The Laplacian matrix-based algebraic connectivity is often used to
check the global connectivity of the network. Coordinative and cooperative opera-
tions of networked systems can be modelled, controlled, and optimised using graph
theories and properties [1–5]. However, the primary drawback of representing a
multi-agent network in graph theory is that the second smallest eigenvalue—the
Fielder value—of the Laplacian matrix is not differentiable so that it is not possi-
ble to design feedback control for connectivity maintenance. Connectivity of pairs
of agents is therefore equipped with either linear [6] or non-linear weights [2] that
works as potential functions to facilitate the feedback control design and stability
validation [7–10].

Artificial potential field: the artificial potential field, coined out by Khatib [11],
is the well-known method developing artificial potential force-based control by syn-
thesising attractive and repulsive forces. This method is purely based on the local
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sensing and perception of mobile agents about their peers and environments to drive
the mobile robots towards the goal without colliding with obstacles. The artificial
potential field method has been extended to develop decentralised mobility control
for mobile agents in multi-agent systems (including multi-robot systems and mobile
sensor networks) [3, 12–17].

Mobility in wireless networks: Research on impacts of mobility in wireless net-
works has been traditionally investigated along the other known wireless communi-
cation issues causing reduction of quality of communication services i.e., multi-path
falling, shadowing, interferences, andDoppler phenomenon. In contrast,mobility has
been increasingly considered as an impact factor enhancing usabilities of wireless
networks [18–23].

1.2 Motivation

In the real-world applications, a mobile wireless sensor network is deployed into an
unknown environment for exploration and environmental data exploitation through
two stages: network deployment, and network utilisation. In the first stage, the wire-
less network of mobile sensors is sent into the environment to self-organise a multi-
hop network used to transfer exploited data to human operators. In the second stage,
once the multi-hop wireless network is established through interconnected mobile
sensor nodes, communication throughput of the network should be maximised for
faster and more reliable data transmission from sources to destinations. Controllable
mobility of mobile nodes can be utilised to improve the communication through-
put of the wireless ad-hoc network. However, this research direction has not been
significantly studied, to the best of our knowledge.

In the scope of this paper, we assume that the first stage of the network deployment
has been done since mobile sensor nodes have been deployed in the environment.We
primarily consider the second stage of the network utilisation with an emphasis on
throughput optimisation of mobile sensor networks by incorporating two distributed
optimisation techniques: position-aware optimisation and communication-aware
optimisation. Specifically, the distributed co-optimisation is developed by integrat-
ing advantages of artificial potential fields maintaining sensing and communication
connectivities of mobile sensor nodes, and theMax-Flow-Min-Cut graph theory rep-
resenting communication capacity and information flows of communication links.

1.3 Contributions of This Paper

This paper provides a novel method of distributed co-optimisation of throughput for
mobile sensor networks. The contributions can be seen in twofolds:
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• Enforcing two research fields, wireless sensor networks and multi-robot systems,
closer by integrating advantages of artificial potential force field and the Max-
Flow Min-Cut graph theorem to design the distributed control of mobile sensors
for throughput optimisation.

• Realising a method of distributed co-optimisation—an event-triggered optimi-
sation—based on information flows between mobile sensor notes. This method is
fully distributed, allowing a mobile sensor network to enhance its convergence,
adaptability, and scalability.

1.4 Paper Outline

The rest of this paper is organised as follows. A short tutorial on graph-theoretic
network model of the Max-Flow Min-Cut theorem is described in Sect. 2. Prelim-
inaries of research statement and motivation are in Sect. 3. Detailed description of
distributed co-optimisation method consisting of position-aware optimisation and
communication-aware optimisation is explained in Sect. 4. Monte-Carlo simulation
based statistical results are shown and discussed in Sect. 5. We conclude this paper
with future research directions in Sect. 6.

2 Graph-Based Network Model—A Short Tutorial

A graph G(V, E) is employed to describe a multi-hop wireless ad-hoc network of
mobile sensor nodes. V is defined as collection of mobile sensor nodes while E is
denoted for the set of peer-to-peer communication links between them. V is divided
in three groups: sources S—sending data packets, sinks T—receiving data packets,
and routers R—relaying data packets from a source to a destination, where S and T
must be non-empty. Each edge e(vi , v j ) ∈ E represents a communication link with a
nonnegative capacity c(vi , v j ) ≥ 0. Actual data flow f (vi , v j ) between two mobile
nodes vi and v j must be less than capacity of the communication link, f (vi , v j ) ≤
c(vi , v j ) for every v ∈ V \{s, t}. On a node r ∈ R, inflow data must be equal to
outflow data, fi (r) = fo(r), where inflow fi (r) is the sum of incoming data into
the node while outflow fo(r) is the total data coming out from such a node. Data
packets can be transferred from a source s ∈ S to a destination t ∈ T through either
single or multiple communication channels in the wireless ad-hoc network of mobile
nodes. The value of a flow f , denoted val( f ), from a source s is the amount of data
sending out from a source s to a sink t : val( f ) = ∑

v∈V f (s, t). Maximum flow,
denoted f max , is the maximum network flow: val( f max ) ≥ val( f ),∀ f . A cut is
a group of edges connecting a group of sources Vs and a group of destinations Vt

through a number of relay nodes Vr ∈ V . Capacity of a cut is the total capacity of
communication links on the cut, c(Vs, Vt ).Minimum cut, denoted cmin(Vs, Vt ), of the
network is the minimum total capacity of the set of communication links involved
in the cut.
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Bottlenecks of a network are where communication links with maximum flows
are existing. According to the Max-Flow Min-Cut graph theorem [24], maximum
flows are minimum cuts so that we can search for minimum cuts, instead maximum
flows, to find bottlenecks of a network. The residual graph, G(V, E) : c f (e j , ei ) =
c(ei , e j ) − f (ei , e j ) is used to check whether an augmenting path exists in the resid-
ual graph G(V, E) connecting a source S to a destination T . No existence of augment-
ing path in the residual graph guarantees that the network is at maximum flow. Note
that, if the network has more than one source (destination), a super-source (super-
destination) connectingwith all sources (all destinations) by edges of infinity capacity
is required for generating the residual graph.

3 Preliminaries and Problem Statement

3.1 Relative Localisation and Communication Capacity

We consider a kind of wireless networks of mobile sensor nodes communicating
each other in the peer-to-peer fashion. The network is deployed into an unknown
environment for fast exploration, monitoring, patrolling, and data collection. The
mobile sensor nodes automatically navigate to explore in the environment while
preserving connectivities with their neighbouring peers. Mobile sensor nodes are
capable of self-organising a multi-hop wireless network for information exchange.
A node becomes a source if it transfers environment-exploited data through the
self-organising network of mobile routers—working as relays of the network—to a
destination. Data packets are delivered through either single or multiple communi-
cation channels of the wireless network before reaching the destination. Therefore,
communication throughput of such channels is expectedly maximised for faster and
more reliable data transmission.

Weassume that themobile sensor nodes are equippedwith ranging sensors that can
sense and measure the relative distance to other sensor nodes and obstacles within its
local vicinity for their manoeuvrability. Without loss of generality, we presume that
the communication range is longer than the sensing range for all mobile sensors so
that two sensor nodes can communicate well if they are mutually within their sensing
range. In other words, communication connectivity can be identified through sensing
connectivity. According to the principle of path-loss of signal propagation (without
considering effectiveness of multi-path fading and shadowing as explained in [25,
26]), capacity of a communication link established by two mobile sensor nodes is
inversely proportional to their relative distance so that capacity of a communication
link of two mobile sensor nodes increases if such mobile sensor nodes manoeuvre
towards each other. However, this principle can not apply for the actual information
flow because it depends on usage of such a communication link in the network—a
communication link is established between two nodes but no actual information is
delivered throughout this link due to routing protocols.
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Relative localisation of the mobile sensor nodes can be identified through esti-
mation of relative distance and relative bearing extracted by the ranging sensors.
Artificial potential force field (APF) coined out in [11] is the popular method main-
taining relative localisation of mobile sensor nodes by the trade-off of attractive
forces pulling the nodes closer and repulse forces pushing the nodes away. Artifi-
cial Physics-based potential force field introduced in [14] is a simple but efficient
method for preserving sensing connectivities of mobile sensor nodes using a combi-
nation of relative distance and relative bearing. However, the Artificial Physics-based
mobility control might not directly optimise communication throughput of the net-
work because this mobility control is not aware of capacity and information flow of
communication links. Note that the Artificial Physics-based mobility control might
implicitly improve capacity of communication links since the potential forces drive
mobile sensor nodes to equilibrium positioning among their neighbouring nodes.

Communication-aware mobility control on a sensor node is expected to relocate
the node to appropriate positioning among their nearest neighbours where they con-
tribute better to the network throughput. To do so, this sensor node must be aware of
its relative localisation and capacity and information flow of communication links
made with its nearest neighbours. However, on one hand, measures of capacity and
actual information flow of communication links are not sufficient enough to design
the mobility control of mobile sensor nodes due to lacking information of relative
localisation because most of communication mechanisms used for wireless sensor
networks is a kind of unidirectional signal propagation. On the other hand, sensing-
based relative localisation is not sufficient enough to design mobility control of
mobile sensor nodes for throughput optimisation as this control is not aware of
capacity and information flow of communication links. As a result, we synthesise
sensing-based relative localisation and measures of capacity and information flows
of communication links to design the distributed mobility control of mobile sensor
nodes that is capable of improving the network throughput.

3.2 Shortcomings of the Max-Flow Min-Cut Theorem
in Distributed Schemes

TheMax-FlowMin-Cut theorem cannot be directly applied to search for bottlenecks
of a mobile sensor network due to the following shortcomings: (1) information of
the entire network about the nodes and communication links must be determinis-
tic; (2) computational complexity is high according to the centralisation scheme;
(3) a super-source(-destination) is required if more than one communication channel
exist. Indeed, in the Max-Flow-Min-Cut theorem [24], maximum flows are identified
through capacity of minimum cuts, f max (Vs, Vt ) = cmin(Vs, Vt ), in a network, so
that we can search for minimum cuts instead maximum flows in a multi-hop wireless
network of mobile routers. However, to search for minimum cuts of a graph repre-
senting a network of mobile sensor nodes using the Max-FlowMin-Cut theorem, the
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database of all the nodes and their communicational links must be deterministic for
any heuristic searching algorithms applied for finding an augmenting path. That is,
all the mobile nodes must exchange information about communication capacity and
information flows of their communication links through the entire network, which is
usually not applicable to wireless networks of mobile sensor nodes due to dynamic
changes in terms of relative localisation and communication link capacity.Moreover,
if multiple sources (destinations) exist, a virtual super source (destination) must be
created and all sources (sinks) are connected to this super source (destination) with
∞ capacity of communication links to make a multi-commodity source (destina-
tion) for augmenting path algorithms, which is not often implementable for wireless
networks in the real world. Computational complexity of the Max-Flow Min-Cut
theorem is dependent to number of nodes and communication links in the network,
i.e., Ford-Fulkerson algorithm O(E | f |), Edmonds-Karp algorithm O(V E2), Dinitz
blocking flow algorithm O(V 2E), as so the more nodes and communication, the
higher computational cost. As a result, a large-scale network of mobile sensor nodes
is not scalable to number of nodes as the sensor nodes encounter highly computa-
tional cost while a part of network bandwidth is reserved for transferring updating
information of communication capacity of communication links and actual informa-
tion flows from all other sensor nodes to every node for its operations of searching
for minimum cuts of the network.

4 Distributed Co-optimisation

The great advantage of the Max-Flow Min-Cut theorem is to find bottlenecks—
minimum cuts—of a graph-modelled network. Without this algorithm, we cannot
find minimum cuts where the mobile sensor nodes should move towards in order
for increasing capacity of the existing communication links. However, to employ
the Max-Flow Min-Cut algorithm for throughput optimisation of mobile sensor net-
works, we encounter the limitations which are not feasible in distributed schemes as
explained in Sect. 3.2.

We propose a distributed co-optimisation that decentralises the Max-Flow Min-
Cut theorem by searching for possible minimum cuts, where there highly possibly
exist saturated communication links, f (vi , v j ) ≤ c(vi , v j ). The mobile sensor nodes
are capable of estimating possible minimum cuts by measuring differential between
capacity and information flow of communication links made with their neighbour-
ing nodes, c(vi , v j ) − f (vi , v j ). Such nodes also need to identify relative directions
of possible minimum cuts and maintain relative localisation (relative distance and
relative bearing) with their neighbouring nodes through the Artificial Physics-based
potential forces. As a result, we synthesise capacity and information flows of com-
munication links and the Artificial Physics-governed relative localisation to develop



426 T. D. Ngo

a distributed mobility control of mobile sensor nodes for throughput optimisation as
seen in (1):

Fdco(vi ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

v j ∈N (vi )

f (vi , v j )

ε + (c(vi , v j ) − f (vi , v j ))
∗

−−→
FAP (vi , v j )

‖ −−→
FAP (vi , v j ) ‖

if f (vi , v j ) 
= 0

∑

v j ∈N (vi )

−−→
FAP (vi , v j ) if f (vi , v j ) = 0

(1)

where c(vi , v j ) and f (vi , v j ) is the capacity and information flow of communication
link e(vi , v j ) made by the sensor node vi with its neighbouring nodes, v j ∈ N (vi ),

respectively;
−−→
FAP(vi , v j ) = G∗m(vi )∗m(v j )

r2 is the Artificial-Physics-based potential
force between the sensor node vi and its neighbouring nodes, v j ∈ N (vi ), in which r
is the relative distance between i and j and the gravitational constant G is arbitrarily
chosen; ε is arbitrarily chosen as small as possible, ε � ∑

v j ∈N (vi )
c(vi , v j ), to avoid

the case of fully saturated communication links, c(vi , v j ) = f (vi , v j ), ∀v j ∈ N (vi ).
All the mobile sensor nodes with the distribtued mobility control described in (1)

operate in two stages:

• Position-Aware Optimisation: If no information flow is detected by the mobile
sensor node, it only uses the Artificial Physics-based potential forces to maintain
connectivities with their neighbouring nodes, which might indirectly impact on
improvement of capacity of communication links leading to better throughput.

Fpao(vi ) =
∑

v j ∈N (vi )

−−→
FAP(vi , v j ) if f (vi , v j ) = 0 (2)

• Communication-Aware Optimisation: If information flows are detected by the
mobile sensor node, it uses possible minimum cut based potential force Fcao to
navigate towards the neighbouring node involved in theminimum cut with themost
saturated communication links in order for gaining capacity of communication
links leading to better throughput (Fig. 1).

Fcao(vi ) =
∑

v j ∈N (vi )

f (vi , v j )

ε + (c(vi , v j ) − f (vi , v j ))
∗

−−→
FAP(vi , v j )

‖ −−→
FAP(vi , v j ) ‖

if f (vi , v j ) 
= 0

(3)

5 Monte-Carlo Simulations and Discussions

5.1 Experiment Setup and Performance Metrics:

TheMonte-Carlo simulation method is applied to generate randomised experimental
scenarios. A typical scenario with three stationary base stations operated as sources
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Fig. 1 Distributed co-optimisation for mobile sensor networks—information flow triggered
optimisation—in two stages: if the information flows are detected, the communication-aware opti-
misation is activated to relocatemobile sensor nodes to new positionswith better throughput through
Eq.3; if information flows are not detected, the position-aware optimisation is used to preserve the
communication connectivities among the sensor nodes, which might implicitly improve throughput
through Eq.2

Fig. 2 The experimental scenario with three stationary base stations (LHS) stationary base stations,
(RHS) randomlyplacedmobile robots.aThree stationarybase stations.b15 randomlyplaced sensor
nodes

and destinations are created as seen in Fig. 2a. We have applied the Gaussian random
distribution to place the sensor nodes into the experimental scenario as an example
illustrated in Fig. 2b. The generated scenarios are selected for experiments if three
base stations arewell connected through an ad-hocwireless network ofmobile sensor
nodes. For each experiment, we executed 10000 simulation steps to measure the
network throughput between the base stations. The statistical results shown in Fig. 3
were collected from 100 randomised scenarios.

We propose four key performance metrics to evaluate the developed distributed
co-optimisation algorithm:

• Optimality: how much is the network throughout of the mobile wireless sensor
network gained over time?

• Adaptability: is the network throughput adaptable to incremental number of sen-
sor nodes added into the network?

• Convergence: how fast does the network throughput converge to a steady state?
• Scalability: does computational complexity of sensor nodes increase to infinity if
the number of sensor nodes added into the network increases to infinity?
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Fig. 3 The Monte-Carlo
simulation based statistical
results of 3 stationary base
stations. a 10 sensor nodes
b 15 sensor nodes c 20
sensor nodes
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Fig. 4 Statistical results of random scenarios with the number of sensor nodes increased from
9 to 20

5.2 Results and Discussions

Based on the statistical results, we discuss on the key performance metrics of the
distributed co-optimisation algorithm.

Optimality: Looking at the statistical results shown in Figs. 3 and 4, the network
throughput is improved at all cases, which affirms that the distributed co-optimisation
algorithm is capable of locally optimising the overall network throughout of mobile
sensor networks.

Adaptability: The statistical results shown in Figs. 3 and 4 show that the network
throughput ofmobile sensor networks is gainedwith the improvement rate from 15 to
50% approximately when the number of sensor nodes used in the network increases
from 10 to 20 nodes. It is proved that the distributed co-optimisation adaptively deals
with the number of sensor nodes used in the network.

Convergence: Looking into the statistical results of the network throughput in
Fig. 3, the distributed co-optimisation algorithm enables the network throughput of
mobile sensor networks converge to a steady state after 5000 running steps approxi-
mately in all cases. Convergence is one of the most important issues of mobile sensor
networks because the sensor nodes no longer need to consume energy for their mobil-
ity control, and the communication channels become stable for data transmission
between the base stations.

Scalability: Supposing that we use a centralisation method, i.e., Ford-Fulkerson
algorithm,Edmonds-Karp, orDinitz blockingflowalgorithm, to search forminimum-
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cuts, a sensor node must collect all information about capacity of communication
links and information flows from the other sensor nodes through the network com-
munication. This leads to dramatically increased computational cost on every sensor
nodes i.e., Ford-Fulkerson algorithm O(E | f |), Edmonds-Karp algorithm O(V E2),
Dinitz blocking flow algorithm O(V 2E) as well as an substantial amount of the
network bandwidth reserved for updating such information (depending the number
of sensor nodes deployed in the network). Applying the distributed co-optimisation
algorithm, each mobile sensor node only uses its local information of information
flows and capacity of communication links made with its nearest neighbours, as so
no network bandwidth is reserved for updating such information of the network.
Moreover, the computational complexity of mobile sensor nodes is almost constant,
O(1), as it is only dependant to the number of its nearest neighbours which is usually
a small number in the real world.

Overall, the distributed co-optimisation method is reliably practical in the real-
world applications because it enables mobile sensor networks to be adaptable in
dynamic environments where communication links of mobile sensor nodes do not
often last long due tomobility ofmobile sensor nodes and uncertainty of environmen-
tal conditions, and scalable with the number of sensor nodes according to applicable
requirements.

6 Conclusions and Future Directions

We have addressed the problems of throughput optimisation in mobile sensor net-
works. The distributed co-optimisation algorithm used to control mobility of mobile
sensor nodes for throughput optimisation is developed by cross-fertilising advan-
tages of the artificial potential force field and the Max-FlowMin-Cut graph theorem.
The concept possible minimum-cuts is proposed as the key factor to optimise the
throughput using the distributed optimisation algorithm. Through the Monte-Carlo
simulations, we have proved that the developed algorithm have achieved all the four
performance metrics: optimality, adaptability, scalability, and convergence.

In the near future, we are going to work on realistic communication models of
communication links with considerations of multi-path fading, shadowing, and inter-
ferences as discussed in [26, 27] and even delay models of mobile relays before we
call back this distributed co-optimisation method to validate system performances.
We believe that network throughput might vary according to new parameters intro-
ducted, but this distributed optimisation method is highly applicable due to its sys-
tematic characteristics in terms of adaptability, scalability and convergence.
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