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Abstract Weconsider the problemof synthesizing controllers automatically for dis-
tributed robots that are loosely coupled using a formal synthesis approach. Formal
synthesis entails construction of game strategies for a discrete transition system such
that the system under the strategy satisfies a specification, given for instance in linear
temporal logic (LTL). The general problem of automated synthesis for distributed
discrete transition systems suffers from state-space explosion because the combined
state-space has size exponential in the number of subsystems. Motivated by multi-
robot motion planning problems, we focus on distributed systems whose interaction
is nearly decoupled, allowing the overall specification to be decomposed into specifi-
cations for individual subsystems and a specification about the joint system.We treat
specifically reactive synthesis for the GR(1) fragment of LTL. Each robot is subject
to a GR(1) formula, and a safety formula describes constraints on their interaction.
We propose an approach wherein we synthesize strategies independently for each
subsystem; then we patch the separate controllers around interaction regions such
that the specification about the joint system is satisfied.

Keywords Reactive synthesis · LTL · Collision avoidance · Motion planning

1 Introduction

Formal synthesis has gained prominence over the last few years as a promising
method to design correct-by-construction controllers [3]. Formal synthesis consists
of a formal model of the object that is to be controlled and a formal specification
of the property this object along with the synthesized controller need to satisfy. The
problem has been studied for several classes of models including discrete systems,
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timed systems and hybrid systems and several classes of specification languages
including linear-time temporal logic (LTL), computation tree logic (CTL),μ-calculus
as well as timed logics such as Metric Temporal Logic; e.g., [9, 10, 17].

In this paper, we focus on models that are distributed systems. Our motivation is
the problem of synthesizing controllers for multi-robot systems wherein each robot
has a task to achieve. For simplicity we consider the setting with two robots, but
extension to a multi-robot setting is straightforward. The two robots can operate
fairly independently except that they perform their tasks on a common workspace
and hencemight need to jointly satisfy certain constraints such as collision avoidance.
We formalize this problem as a synthesis problem involving three specifications: one
for each robot and one on the joint workspace.

A naive approach to deal with controller synthesis for distributed systemswherein
the system is flattened to a single system using a product construction is inefficient
because the size of the flattened system grows exponentially in the number of compo-
nents. Thus a variety of robot architectures and control methods have been proposed
that avoid this by various assumptions about communication among the agents, types
of tasks, and allocation of responsibility [5, 8, 15, 16]. Relatively little prior work
considers distributed robotics where tasks are formally specified using LTL. How-
ever, we remark that distributed computer systems (no continuous dynamics) is a
well-known context for formal synthesis, though there are undecidability results for
the general case [18]. Chen and collaborators address the problem of synchroniza-
tion and task allocation by exploiting previous results for trace-closed languages
[6]. Unlike the present work, they do not consider uncertainty in the environment.
Ozay and collaborators present a methodology for decomposition of a specification,
thus exploiting some symmetry present in the setting of multiple-target tracking in a
network of actuated cameras [14]. Like the present work, they consider GR(1) for-
mulae that can handle nondeterministic (uncertain) environments. However, unlike
the present work, their decomposition is top-down in that a global specification is
initially given, from which separate component specifications are manually con-
structed. While here we assume a discrete abstraction is given, there is prior work
using sampling-based motion planning [20].

Our systems are not completely decoupled, but interact in some minimal way.
Hence, we propose the following approach to deal with the state-space explosion.
We synthesize the controllers independently for each robot so as to satisfy their
corresponding specifications. The simultaneous execution of the strategies however
might violate the specification on the joint workspace. We identify the states which
violate the joint specification and patch the individual controllers in such a way
that they satisfy their original specification and also satisfy the joint specification.
More precisely, we identify a neighborhood around the joint property violation point
and resynthesize a joint strategy for the two robots in this neighborhood satisfying
the individual specification as well as the joint specification. We then decompose
this joint strategy to obtain the patching strategy for individual robots. Note that
patching involves solving a synthesis problem on the joint state-space of the two
robots restricted to a small neighborhood of this space.
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2 Preliminaries

We are concerned with the control of robots that satisfy a specification expressed
in a fragment of linear temporal logic (LTL) known as GR(1). These robots operate
in a shared workspace; their interaction is important and expressed formally as part
of a joint specification. While most of our treatment concerns dynamics of discrete
systems, such systems are practically obtained from continuous systems by a process
of abstraction [1] (or [19] for a textbook introduction). The basic idea is that a finite
transition system is bisimilar—in a precise sense—to a hybrid system if transitions
between cells in a partition of the state space are achievable in one system if and only
if they are achievable in the other. We omit further detail here because it suffices for
our purposes to know that at least some of the discrete variables were obtained from
a continuous dynamical system and thus admit a notion of distance.

A specification is an LTL formula that formally describes how the system should
behave. It is written in terms of finitely-valued variables, some of which may be
uncontrolled, like a disturbance. In this paper we use the GR(1) fragment because it
has useful structure that we can exploit [4]. Our treatment of the syntax and semantics
is brief and informal; an introduction can be found, e.g., in [2].

LTL is an extension to Boolean logic for describing sequences of events. Syn-
tactically, a Boolean logic formula can contain operators ∨ “or” or ¬ “negation”,
along with derivative operators ∧ “and”, =⇒ “implies”, and ⇐⇒ “if and only
if”. These operators can be combined with the Boolean constants True and False
and finitely-valued variables. Depending on its domain, a variable may appear in
a subformula with inequality, e.g., x < 5. A Boolean formula evaluates to True or
False for a particular assignment of the variables that appear in it.

A variety of operators concerning both future and past events have been introduced
in LTL [7]. In this paper, we only make use of three: � “always”, � “eventually”,
and © “next”. An LTL formula is evaluated with respect to an infinite sequence of
assignments to variables. Let f be a Boolean formula. Then � f is True if and only
if f is True at every time step. � f is True if and only if f is True at some future
time. © f is True if and only if f is True at the next time step.

LetX be a set of environment (or “uncontrolled input”) variables, and letY be a
set of system (or “controlled output”) variables. The sets of states, i.e., assignments
from the domains, of these variables are denotedΣX andΣY , respectively. AGR(1)
formula is of the form

θenv ∧ � ρenv ∧
⎛
⎝

m−1∧
j=0

� � ψenv
j

⎞
⎠ =⇒ θsys ∧ � ρsys ∧

(
n−1∧
i=0

� � ψ
sys
i

)
(1)

where the various subformulae are as follows. First notice the analogous form of
both sides of the implication in (1), ϕa =⇒ ϕg; the left-side ϕa is commonly called
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the “assumption,” and the right-side ϕg the “guarantee.” θenv and ψenv
0 , . . . , ψenv

m−1
are Boolean formulae in terms of X ∪ Y . θenv is a condition that any initial state
is assumed to satisfy. ψenv

0 , . . . , ψenv
m−1 are liveness conditions; the environment must

set the variables in X infinitely often so as to satisfy these. ρenv is a Boolean for-
mula in terms of X ∪ Y ∪ X ′ that constrains from any particular state how the
environment may move, i.e., set variables in X at the next time step (hence the
primed notationX ′). The right-side is defined analogously, with the noticeable dif-
ference that ρsys is in terms ofX ∪ Y ∪ X ′ ∪ Y ′, thus governing how the system
may move from a particular state and given an anticipated environment move. The
conditions ψ

sys
0 , . . . , ψ

sys
n−1 are also called “system goals.”

There exist algorithms for the synthesis of finite-memory strategies realizing a
given GR(1) formula [4]. In previous work, we proposed an annotation for strategies
that facilitates online patching for coping with uncertainty [12, 13]. More precisely,
suppose we are given a new specification ϕ′ frommodification of the original ϕ, e.g.,
due to online sensing necessitating updating an environmental model. Under certain
conditions, the algorithm in [13] provides a way to locally change an original strategy
to recover correctnesswith respect toϕ′. The present paper builds on thatmethod, and
thus we summarize here the relevant results and notation. Unless stated otherwise, all
GR(1) formulae in this paper are assumed to be realizable. Let ϕ be a GR(1) formula.
A finite-memory strategy can be represented as an automaton A = (V, δ, L), where
V is a finite set of nodes, δ ⊂ V × ΣX × V is a transition relation, and L : V →
ΣX × ΣY labels nodes with states. (u, e, v) ∈ δ is also denoted δ(u, e) = v. An
automaton is said to be a strategy automaton for ϕ if its transition relation selects a
valid next state from any state reachable in a play under ϕ. A is said to be winning
if all plays resulting from its application satisfy ϕ.

Without loss of generality, winning strategy automata in this paper are assumed to
be equipped with reach annotations, which are defined as follows. Denote the set of
nonnegative integers by Z+. Given ϕ of the form (1), a state s is said to be a i-system
goal if s satisfies ψ

sys
i . πi is the mapping providing the i th component of elements

of a Cartesian product. E.g., if x = (x1, x2) ∈ R
2, then π1(x) = x1.

Definition 1 (adapted from [12]) A reach annotation on a strategy automaton A =
(V, δ, L) for a GR(1) formula ϕ is a function RA : V → {0, . . . , n − 1} × Z+ that
satisfies the following conditions.Given p < q, the numbers between p andq are p +
1, . . . , q − 1, and if q ≤ p, then the numbers between p and q are p + 1, . . . , n −
1, 0, . . . , q − 1.

1. For each v ∈ V , π2 ◦ RA(v) = 0 if and only if L(v) is a π1 ◦ RA(v)-system goal.
2. For each v ∈ V and u ∈ Post(v), if π2 ◦ RA(v) �= 0, then π1 ◦ RA(v) = π1 ◦

RA(u) and π2 ◦ RA(v) ≥ π2 ◦ RA(u).
3. For any path 〈v1, v2, . . . , vK 〉 such that π2 ◦ RA(v1) = · · · = π2 ◦ RA(vK ) > 0,

there exists an environment goalψenv
j such that for all k ∈ {1, . . . , K }, L(vk) does

not satisfy ψenv
j .

4. For each v ∈ V and u ∈ Post(v), ifπ2 ◦ RA(v) = 0, then there exists a p such that
for all r betweenπ1 ◦ RA(v) and p, L(v) is a r -system goal, andπ1 ◦ RA(u) = p.
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In addition to other uses, reach annotation plays a crucial role in the patching algo-
rithm of [13]. If a new reach annotation can be constructed after modifying a strategy
automaton, then we immediately have that the new automaton is winning.

3 Problem Formulation

We are now ready to present the problem of formal synthesis for multiple robots
addressed in this paper. Let ϕ1 be a GR(1) formula (recall (1)) defined in terms of
the environment variablesX1 and the system variablesY1. Similarly for ϕ2,X2, and
Y2, where we require that the sets of system variables are disjoint, i.e.,Y1 ∩ Y2 = ∅.
(It may be that X1 ∩ X2 �= ∅.) As for the single robot case of the previous section,
a state is an assignment of values to variables. Unless indicated otherwise, a state
assigns values to all of X1 ∪ X2 ∪ Y1 ∪ Y2. Notice there is some redundancy in
referring to states ΣX1 × ΣX2 when X1 and X2 share variables. All variables are
finitely valued.

We will be concerned with a joint specification. To that end, we need a way to
compose ϕ1 and ϕ2. This is achieved by introducing an operator ⊗ over the set
of GR(1) formulae. Making the “assumption” and “guarantee” components of the
separate robot formulae explicit, write ϕ1 = (

ϕa
1 =⇒ ϕ

g
1

)
and ϕ2 = (

ϕa
2 =⇒ ϕ

g
2

)
,

and then define ϕ1 ⊗ ϕ2 as

(
ϕa
1 ∧ ϕa

2

) =⇒ (
ϕ

g
1 ∧ ϕ

g
2

)
.

This is clearly a GR(1) formula, hence the operation⊗ is closed over the set of GR(1)
formulae.

Though the sets of discrete variables Y1 and Y2 are disjoint—and thus may be
assigned independently by each respective robot—the robots perform their tasks in
a shared workspace and thus may also need to meet a specification written in terms
of both. This is achieved by introducing a Boolean formula ϕ1,2 in terms of Y1 ∪ Y2

and requiring that it is always satisfied. Finally, the target specification is

ϕ1 ⊗ ϕ2 ⊗ (
�ϕ1,2

)
. (2)

in which we have omitted the “assumption” portion of GR(1) formula � ϕ1,2.
This problem could be solved by synthesizing in a product space to obtain a joint

strategy that simultaneously selects actions for both agents. To avoid exponential
increase in problem size entailed by such an approach, we propose to exploit the
availability of an indicator function on states that provides a sufficient condition
for satisfaction of ϕ1,2. Concretely, suppose that Y1 and Y2 describe agents with
identical dynamics that are operating in a shared workspace. Suppose further that
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ϕ1,2 describes states where the agents are dangerously close to each other. Because
some discrete variables are abstractions of physical positions of the agents, we can
construct from Euclidean distances a function

d : ΣY1 × ΣY2 → {0, 1} (3)

such that
d(s1, s2) > 0 =⇒ (

ϕ1,2 = True
)

(4)

where s1 and s2 are states of the variables in Y1 and Y2, respectively. Intuitively, the
safety condition ϕ1,2 can only be violated when d is not positive. If the occurrence of
d positive is uncommon, then we may be able to solve ϕ1 and ϕ2 independently and
then correct parts of the strategies where interaction occurs, i.e., where extra effort
is required to ensure �ϕ1,2.

4 Solution Approach

In this section the proposed solution is outlined, and detailed algorithms are presented
in Sect. 5. Throughout this paper it is assumed that time is in discrete steps, and all
agents are synchronized. More precisely, time evolves as it would in the product
game, where at each step the environment first selects a move, and then, observing
this, the system (i.e., the team of robots viewed as a single entity) selects a move
corresponding to a simultaneous assignment of all variables in Y1 ∪ Y2. Thus the
next state is formed, and the process is repeated. This assumption allows us to avoid
addressing what is otherwise a key issue in distributed robotics: synchronization. It is
a reasonable approximation in the case of slowly moving robots, e.g., planar mobile
robots, where such tools as the Network and Precision Time Protocols (IEEE stan-
dard 1588) are available. Furthermore, the specification (2) only requires the robots
to be aware of each other to maintain the safety condition ϕ1,2, which can be imple-
mented passively using a range finder if this is collision avoidance. Finally, a shared
environment (i.e.,X1 ∩ X2 �= ∅) provides an external, event-triggered reference for
coordination.

With the preceding assumption, synthesize winning strategies A1 = (V1, δ1, L1)

and A2 = (V2, δ2, L2) for ϕ1 and ϕ2, respectively and independently, where ϕ1 and
ϕ2 are as introduced in Sect. 3. Also compute reach annotations RA1 and RA2 for A1

and A2, respectively. Intuitively, we begin by treating the component specifications
as being entirely separate and realize them using existingmethods. To achieve (2), we
must ensure that simultaneous execution of A1 and A2 does not lead to violation of
ϕ1,2. Since A1 and A2 were synthesized separately, it is possible that ϕ1,2 is violated
during their joint (simultaneous) execution. The proposed method addresses this in
two parts:
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1. During each time step, compute the set of nodes reachable by each robot’s strategy
Ai up to a horizon h. A dangerous configuration is one that may violate ϕ1,2 and
is checked for using the function (4) applied to the continuous positions of the
robots. If no dangerous configurations are found within the designated horizon,
then the robots’ respective moves are performed. Else, proceed to the next part.

2. In order to guarantee avoidance of dangerous configurations, the robots must be
aware of each other during motion planning. Accordingly, a local reachability
game is constructed in terms of the joint specification (2). Its solution provides a
local strategy for both robots to move from the current configuration, from which
the danger was detected, to some configuration occurring after the danger. The
notion of “after” is made precise by the reach annotations of A1 and A2, which are
used to ensure that the respective goals in (2) are met infinitely often for the new
robot strategies A′

1 and A′
2 that result from patching-in the local joint strategy.

5 Algorithms

The proposedmethod consists of twomajor steps: identification of dangerous config-
urations, and joint patching around those configurations. Our method is run online,
and the main loop is listed in Algorithm 1.When dangerous configurations are found
there, Algorithms 2 and 3 are invoked to patch the robots’ control strategies. Com-
ments on particular lines in those algorithms follow.

Algorithm 1 Main loop, including online detection of dangerous node pairs
1: INPUT: multi-robot task specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, strategies A1, A2, reach annotations,

RA1,RA2
2: Initialize with (v1, v2) ∈ V1 × V2 depending on initial environment state.
3: while True do
4: for k in 1, 2, . . . , h do
5: Compute Postk1(v1) and Postk2(v2).
6: if d(s1, s2) = 0 for some (s1, s2) ∈ L1(Postk1(v1)) × L2(Postk2(v2)) then
7: D1 × D2 := {

(u1, u2) ∈ Postk1(v1) × Postk2(v2) | d(L1(u1), L2(u2)) = 0
}

8: Invoke Algorithm 2 with v1, v2 and the dangerous node pairs of A1 and A2.
9: if Algorithm 2 returned (A′

1,RA
′
1, A′

2,RA
′
2) then

10: Replace A1,RA1 and A2,RA2 with the returned patched versions.
11: else
12: abort //Local reachability game unsolvable
13: end if
14: end if
15: end for
16: Each robot observes environment move: e1, e2
17: v1 := δ1(v1, e1); v2 := δ2(v2, e2) //Take moves
18: end while
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Algorithm 2 Jointly patch strategies
1: INPUT: joint GR(1) formula ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, strategies A1, A2, reach annotations RA1,RA2,

current node-pair (v1, v2), and respective danger nodes D1, D2
2: OUTPUT: new component strategy automata A′

1, A′
2, and new reach annotations RA′

1,RA
′
2

3: i := π1 ◦ RA1(v1) //Relevant goal mode for first robot
4: j := π1 ◦ RA2(v2) //Relevant goal mode for second robot
5: mi := mind∈D1 π2 ◦ RA1(d) //Min. reach annotation among dangerous nodes for first robot
6: m j := mind∈D2 π2 ◦ RA2(d)

7: B1 := {v ∈ V1 | π1 ◦ RA1(v) = i ∧ π2 ◦ RA1(v) < mi }
8: B2 := {

v ∈ V2 | π1 ◦ RA2(v) = j ∧ π2 ◦ RA2(v) < m j
}

9: Entry := {(v1, v2)}
10: Exit := B1 × B2
11: A(i, j) := Reachϕ(L(Entry), L(Exit))
12: if A(i, j) = nil then
13: abort //Local reachability game unsolvable
14: end if
15: (Ai , A j ) := Decompose(A(i, j))

16: Patch A1 with Ai and A2 with A j as in [13].
17: return A′

1,RA
′
1, A′

2,RA
′
2

Algorithm 3 Decompose local strategy
1: INPUT: A(i, j) = (

V(i, j), δ(i, j), L(i, j)
)
with state labels in ΣX1 × ΣY1 × ΣX2 × ΣY2

2: OUTPUT: Ai with state labels in ΣX1 × ΣY1 , and A j with state labels in ΣX2 × ΣY2

3: V i := ∅; V j := ∅
4: for (v1, v2) ∈ V(i, j) do
5: V i := V i ∪ {v1}; V j := V j ∪ {v2}
6: for (u1, u2) ∈ Pre((v1, v2)) do
7: δi (u1, e1) := v1, where e1 = L1(v1) ↓ ΣX1

8: δ j (u2, e2) := v2, where e2 = L2(v2) ↓ ΣX2

9: if L1(u1) = L1(v1) then
10: Li (v1) := L1(v1) ⊕ Hash(v1)
11: else
12: Li (v1) := L1(v1)
13: end if
14: if L2(u2) = L2(v2) then
15: L j (v2) := L2(v2) ⊕ Hash(v2)
16: else
17: L j (v2) := L2(v2)
18: end if
19: end for
20: end for
21: return Ai = (

V i , δi , Li
)
, A j = (

V j , δ j , L j
)

5.1 Comments on Algorithm 1

• Line 3 : because the specification describes infinite plays by the robots, the main
loop should run forever to provide for online usage.
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• Line 4 : to ensure that a dangerous configuration is not stepped over during the
search, horizon lengths must be in increasing order, as listed in the for-loop of
Algorithm 1.

• Line 5 : Postk1(v1) is the set of nodes in A1 reachable in k time steps beginning at
v1, for some sequence of environment moves. Postk2(v2) is defined similarly for the
second robot. For clarity, Algorithm 1 does not include the obvious improvement
of incrementally computing Postk2(v2) using the value from the previous iteration
of the for-loop.

• Line 6 : the predicate is in terms of continuous robot states; recall (4).
• Line 7 : compute all “dangerous” nodes that satisfy the predicate of line 6. Those
of D1 belong to the first robot; those of D2 to the second.

• Line 16 : recall that there is only one environment, though each robot may see
different parts of it. Their respective perspectives are indicated by using e1 and e2.
On the next line, these are used to move to the appropriate next strategy automaton
nodes.

5.2 Comments on Algorithm 2

• Lines 5–6 : for each robot strategy, compute the minimum reach annotation value
for all nodes that are part of a dangerous configuration.

• Lines 7–8 : for each robot strategy, find all existing automaton nodes with the
current goal mode and that have reach annotation strictly less than all dangerous
nodes.

• Line 11 : L is the product labeling constructed from L1 and L2. Using the transition
rules and safety conditions of the joint specification ϕ := ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, solve
a reachability game that drives any play initially from a state in L(Entry) to some
state in L(Exit), or else block one of the environment liveness conditions (recall
(1)) if this is not possible. For brevity we omit a code segment for constructing a
strategy automaton realizing a solution. Many algorithms to do this are known, for
instance a μ-calculus fixed point is used in [13]. A reachability game is defined as
an LTL formula, called Reachϕ(L(Entry), L(Exit)),

χL(Entry) ∧ � ρenv ∧
⎛
⎝

m−1∧
j=0

� � ψenv
j

⎞
⎠ =⇒ � ρsys ∧ � χL(Exit)

for which a strategy must be synthesized. The solution may be found by restricting
attention to a set of states within a distance of the dangerous configuration, as
described in [13]. While we omit details here, the basic idea is to form a smaller
synthesis problem bymodifying ρenv and ρsys given the subset of states over which
patching is performed.

• Line 13 : local reachability games can be unsolvable even when the multi-robot
specification (2) has solutions. In the present context, there are two possible causes.
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First, if one of the Entry will inevitably lead to violation of the inter-robot safety
requirement ϕ1,2. Second, we only treat the case of patching within a particular
goal mode. Accordingly, it is not necessary to consider intermediate satisfaction
robots’ liveness goals as part of solving local reachability games. However, this
may result in a trivially unsolvable reachability game, e.g., if B1 is empty. Consult
discussion in Sect. 6 concerning extension to the general case.

• Line 15 : invoke subroutine Decompose(), as provided in Algorithm 3, for decom-
posing local strategies into corresponding local strategies for separate agents, on
respective discrete states ΣX1 × ΣY1 and ΣX2 × ΣY2 .

• Line 16 : having obtained local strategies Ai and A j on the previous line, which
may be used to patch A1 and A2 for goal modes i and j , respectively, the single-
agent algorithm of [13] can now be applied directly. We omit it for brevity.

5.3 Comments on Algorithm 3

• Lines 7–8: the notation e1 = L1(v1) ↓ ΣX1 indicates projection onto the set of
environment states from the perspective of agent 1, i.e., ΣX1 . Thus, the transition
δi (u1, e1) := v1 means that upon reaching node u1 in any play, if the environment
takes the move e1, then the strategy automaton will select a system state in ΣY1

such that the resulting discrete state in ΣX1 × ΣY1 is L(v1).
• Lines 9–18 : avoid stuttering in component local strategies. We assume a unique
number generatorHash() is available and append it to the state labelings on lines 10
and 15.

6 Analysis

As shown below, the proposed method is sound in the sense that infinite executions
by a team of robots using it will realize the specification.

Theorem 2 Any infinite play resulting from the combined operation of Algorithms
1–3 is correct with respect to specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, provided the initial state
does not violate ϕ1,2.

Proof Let σ be an infinite play, i.e., a mapping

σ : N → ΣX1 × ΣY1 × ΣX2 × ΣY2

that assigns to each discrete time step a product state. Denote the projection onto the
variables used by the first and second robots respectively by

σ1 : N → ΣX1 × ΣY1 , (5)
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σ2 : N → ΣX2 × ΣY2 , (6)

so that σ(t) = (σ1(t), σ2(t)) for each time t . The proof proceeds by induction. By
hypothesis, thefirst stateσ(1)must not violateϕ1,2. Since A1 and A2 were synthesized
for ϕ1 and ϕ2, respectively, the initial states of both robots σ1(1) and σ2(1) satisfy
the initial conditions of ϕ1 and ϕ2, respectively. Therefore the joint initial state σ(1)
satisfies the initial conditions of the specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2.

Suppose that for some time t , the finite play fragment σ(1) · · · σ(t) satisfies the
safety requirements of the specification. In terms of the components of the spec-
ification, satisfaction of the safety requirements means that for each τ ≤ t , σ(τ)

satisfies ϕ1,2, and for each transition (σ (τ ), σ (τ + 1)), the transition requirements
of ϕ1 are met by (σ1(τ ), σ1(τ + 1)) and the transition requirements of ϕ2 are met by
(σ2(τ ), σ2(τ + 1)) for τ ≤ t − 1. The robots’ strategy automata A1 and A2 transition
on line 17 of Algorithm 1, which from the labelings determines the next state, i.e.,

σ1(t) = L1(v1) (7)

σ2(t) = L2(v2) (8)

σ1(t + 1) = L1(δ1(v1, e1)) (9)

σ2(t + 1) = L2(δ2(v2, e2)). (10)

Observe that L1 in (7) may differ from L1 in (9), since A1 may have changed as a
result of patching (Algorithm 2). A similar statement applies to L2 in (8) and (10).
Thus we consider two cases. For the first case, if patching does not occur, i.e., if
the condition of the if-statement on line 6 of Algorithm 1 is always false, then the
robot strategy automata are not changed in the present iteration. In particular, the
labelings L1 and L2 are not changed and it suffices to check that the transitions
resulting from δ1 and δ2 are safe. If these transitions are as in the originally given
A1 and A2, then by hypothesis they are safe with respect to ϕ1 and ϕ2, respectively.
They are also safe with respect to ϕ1,2 since the condition of the if-statement on line 6
was false in the present case. Summarizing the second case, the solution of the local
reachability game in Alogrithm 2 implies that transitions in the modified A′

1 and A′
2

are safe with respect to the multi-robot specification. Therefore, by induction the
safety requirements of the specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2 are always met.

It remains to show that the liveness requirements ofϕ1 ⊗ ϕ2 ⊗ �ϕ1,2 are satisfied.
By the definition ofGR(1) formulae (1), this occurs if one of the environment liveness
conditions is eventually never satisfied, or if all robots’ goals are repeatedly achieved.
Note that �ϕ1,2 is not relevant here, and therefore, it suffices to check the first robot
goals as in ϕ1 and the second robot goals as in ϕ2. By hypothesis, we have an infinite
play and thus the abort-statement in Algorithm 2 must never occur, i.e., for every
time that patching is attempted, a solution is found for the local reachability game.
That means a product strategy automaton A(i, j) (“product” in the sense of concerning
both robots’ system variables Y1 and Y2) is found in which either an environment
liveness condition is blocked or strict progress is made toward the respective robots’
goals (modes i and j as appearing in ϕ1 and ϕ2, respectively). Because Algorithm 3
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decomposes this joint solution of the local reachability game into strategy automata
Ai and A j for each robot so that simultaneous execution of Ai and A j is identical
to A(i, j), it follows that the results A′

1 and A′
2 of patching robot strategy automata

ensure the robot goals are repeatedly reached, or else a liveness condition in ϕ1 or
ϕ2 is blocked.

An important part of the hypothesis for the previous theorem is that it concerns
infinite plays. However, during usage of the presented algorithms, a patching attempt
may fail and result in a finite play. To simplify the presentation, the algorithms in
this paper rely on patching to be completed within the same goal mode. While an
extension to the method of [13] has been developed that can visit robot goals while
connecting Entry and Exit sets, it has not yet been published and length constraints
prevent inclusion of it here. Thus our present treatment is restrictive and may fail to
find a joint strategy when one exists.

7 Experiments

In this section preliminary results concerning the complexity of themethod presented
in this paper are described. The experiment setting considered is illustrated in Fig. 1.
The underlying dynamics can be driven among cells using gradient methods [11],
so to simplify the presentation we model the robots as entirely discrete transition
systems.

Informally, the multi-robot specification in Fig. 1 requires that both robots visit
both stars repeatedly while avoiding collisions with each other. It can be shown that,
in the absence of an adversarial environment, winning strategies are of the form of
“lassos,” with a prefix and suffix loop; example paths are illustrated by dashed lines
in the figure. In this example, a collision state occurs at row 5, column 7, and it
would first be found h-steps away, where h is the maximum horizon parameter used
in Algorithm 1.

Fig. 1 Illustration of
experiment setting:
two-robot gridworlds. Cells
that are to be visited
repeatedly are indicated by
stars. The robots are shown
in their initial positions
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7.1 Quantifying Coupling

The usefulness of the proposed method depends largely on how “loose” is the cou-
pling of the robots imposed by ϕ1,2 (recall (2)), given that nominal strategy automata
constructed for ϕ1 and ϕ2 assume independence. We studied this in the gridworld
setting as follows. Generate a random gridworld with fixed static obstacle density 0.2
(i.e., 20% of cells are occupied), and create two robot specifications ϕ1 and ϕ2 in it
by randomly placing, for each robot, one initial position and multiple goal positions.
Synthesize strategy automata A1 and A2 independently for ϕ1 and ϕ2, respectively.
Compute the synchronous product of A1 and A2 (viewed as finite transition systems),
and find all nodes that are labeled with the same grid position, i.e., all nodes at which
the robots would be in collision. These are referred to as “dangerous configurations”,
and histograms of occurrences for varying numbers of goals andworld sizes is shown
in Fig. 2. It is clear that in all cases, most counts are zero, i.e., the independently syn-
thesized robot strategies A1 and A2 never result in dangerous configurations. While
this observation holds as well for both gridworld sizes considered, the plots indicate

Fig. 2 Histograms for the number of trials in which a given count of dangerous configurations
occurred, after generating multi-robot specifications for random gridworld instances as described
in Sect. 7.1. In each case 32 trials were performed
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Table 1 Automaton synthesis times for multi-robot random gridworlds

Setting Mean time (s) for specification
ϕ1 ⊗ ϕ2

Mean time (s) for distributed
synthesis

Size 16 × 16, 2 goals 0.938 0.196

Size 16 × 16, 4 goals 1.75 0.297

that increasing the number of goal positions increases the occurrences of dangerous
configurations. Intuitively we may expect this because the goal positions are ran-
domly placed in the gridworld and thus may cause motion plans to cover more of
the workspace, thereby increasing possibilities for collisions.

7.2 Simulation Trials

Using the experiment setting described in the previous section, the times required for
independently synthesizing strategy automata are compared with those required for
using a combined specification. In terms of the previous section, strategy automata
are synthesized for ϕ1, ϕ2, and ϕ1 ⊗ ϕ2. Synthesis times are shown in Table1.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems.
Proc. IEEE 88(7), 971–984 (2000)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
3. Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.J.: Symbolic planning

and control of robot motion: finding the missing pieces of current methods and ideas. IEEE
Robot. Autom. Mag. 61–70 (2007)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs.
J. Comput. Syst. Sci. 78, 911–938 (2012)

5. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathe-
matics Series. Princeton University Press (2009). http://coordinationbook.info

6. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment of distrib-
uted robotic teams. IEEE Trans. Robot. 28(1), 158–171 (2012)

7. Emerson, E.A.: Handbook of Theoretical Computer Science (vol. B): Formal Models and
Semantics, chapter Temporal and Modal Logic, pp. 995–1072. MIT Press (1990)
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