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Abstract This work studies conflict avoidance between moving, non-
communicating agents with minimum sensing information. While safety can be
provided by reactive obstacle avoidance methods for holonomic systems, deadlock
avoidance requires reasoning over different homotopic paths in cluttered scenes. A
method to compute the “interaction cost” of a path is proposed, which considers only
the neighboring agents’ observed positions. Minimizing the interaction cost in a pro-
totypical challenge with two agents moving through two corridors from opposing
sides guarantees the selection of non-conflicting paths. More complex scenes, how-
ever, are more challenging. This leads to a study of alternatives for decentralized path
selection. Simulations indicate that following a “minimum-conflict” path given the
other agents’ observed positions provides deadlock avoidance. A scheme that selects
between the minimum-conflict path and a set of shortest paths given their interaction
cost improves path quality while still achieving deadlock avoidance. Finally, learning
to select between the minimum-conflict and one of the shortest paths allows agents
to be adaptive to the behavior of their neighbors and can be achieved using regret
minimization.

Keywords Multi-agent · Decentralized · Coordination · Path planning

1 Introduction

Advances in robotic technology allow applications where multiple robots operate in
the same cluttered environment, potentially also in the presence of people or animals.
Explicit communication with the other agents, especially when humans are involved,
may not be feasible or desirable. Similarly, it may be difficult to model or predict the
actions of the other agents. This motivates decentralized methods that allow a robot
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Fig. 1 If both agents A and
B insist on following the
same corridor, a reactive
collision avoidance method
may not allow them to make
progress to their goals, G A
and G B

to reach its goal safely given minimal information and without strong assumptions
about the intentions of its moving neighbors. Such solutions should avoid deadlocks
and minimize executed path length or task completion time.

Challenges, Foundations and Objectives: Avoiding collisions with unexpected
obstacles or mobile agents, can be effectively addressed by reactive collision avoid-
ance methods, such as those based on the popular Velocity Obstacle framework
[5, 31] or trajectory deformation methods [6, 15]. These methods generally provide
smooth, natural-looking paths, but they are primarily local techniques and do not
reason about the robot’s global path. Although local motion coordination can be
achieved [16], if the agents select conflicting paths, reactive collision avoidance can
still give rise to deadlocks and poor performance. For instance, consider the situation
in Fig. 1, where two robots on opposing sides of two corridors need to exchange
positions. If both robots decide to move along the lower corridor, e.g., because it
corresponds to their individual shortest path, the space is narrow enough to prevent
the robots from crossing.

Robots in such situations that replan [23] and change their path to a different
homotopy class [3, 12] can potentially resolve conflicts. Such coordination can be
achieved by assuming that the robots share information [1], or follow a form of
centralized planning [24], or by respecting a set of pre-specified “social” rules [19],
or performing sophisticated prediction [28, 32], agent modeling [25, 26], learning
[11] or game-theoretic reasoning [13]. The information required to use such solutions
may correspond (a) to the actions selected by neighbors, (b) the utilities of different
motions, (c) the goals of neighbors, or (d) extensive prior experience interacting with
other agents. Such information is difficult to attain quickly and reliably, especially
when a robot interacts with a human, since the robot has little knowledge about the
human’s future actionswithout explicit communication. Furthermore, it is interesting
to study what is achievable without any prediction, intent recognition or modeling
of the moving agents.

Considered Methodology: This work employs strictly decentralized methods while
utilizing minimal information. Each robot has access only to the current position and
velocity of its neighbors from sensing data. The basic framework assumes that robots
replan paths frequently [23] and employ reciprocal velocity obstacles [27, 30] so as
to follow these paths while avoiding collisions. The velocity information is actually
used only for the adopted reactive obstacle avoidance method based on Velocity
Obstacles [31] and not for the proposed path planning techniques. Learning is also
considered, corresponding to online learning of appropriate strategies in response
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to the behavior of other agents. The considered techniques are evaluated in various
simulated benchmarks.

If agents greedily select the globally shortest path to their goal, this frequently
results in deadlocks as in the case of Fig. 1. To address this issue, one alternative is
to consider a set of diverse paths instead of only the shortest one. The notion of path
diversity has been shown to be helpful in many different challenges, but frequently
corresponds to a local concept [7, 18]. One way to compute a diverse set of global
paths is to consider different homotopy classes using search-based primitives [2, 3]
over an underlying roadmap. This work provides a method for selecting a minimally
conflicting path out of this set by defining an “interaction cost” for each path given
the other agents’ current positions. This process is designed so as to address the issue
in the prototypical example provided of Fig. 1.

Computing a large number of diverse paths is computationally challenging in
complex scenes. If, instead, only a small set of k shortest paths in distinct homo-
topy classes is considered deadlocks can still arise. An alternative is to compute
the “minimum-conflict” homotopy class, which minimizes interactions with other
agents. This notion is related to the “minimum constraint displacement” problem,
which has recently attracted attention [10].Here, constraints on theminimum-conflict
homotopy class correspond to the observed locations of other agents and can be
discovered in a computationally efficient manner using an underlying roadmap. The
experimental evaluation shows that when the moving agents follow their “minimum-
conflict” paths, they can avoid deadlocks even in complex scenes.

While minimum conflict paths achieve deadlock avoidance experimentally, they
can be inefficient, forcing agents to follow long paths to reach their goals. Considering
both the minimum-conflict path and a set of k shortest paths in distinct homotopy
classes typically results in improved performance in terms of path length. This work
considers two approaches for choosing between (a) the conservative alternative of
following the “minimum-conflict” path and (b) the greedy choice corresponding to
one of the k shortest paths. The first approach is a deterministic strategy that selects
the path among the k + 1 choices, which minimizes the “interaction cost”.

The second approach is based on the notion of regret minimization and corre-
sponds to the Polynomial Weights PW algorithm [21, 22]. Regret minimization is a
favorable way to reason among unpredictable agents, without knowing their goals,
utilities, intents, or beliefs, as in the setup of thiswork. The application of thePW algo-
rithm here accumulates regret for the “minimum-conflict” strategy and the “greedy”
choice strategy by observing the choices of the other agents in the same workspace
and assigning a loss to each strategy in hindsight. A probability is then assigned for
selecting each strategy based on the accumulated losses.

Both the deterministic and the learning-based solution result in deadlock avoid-
ance in the simulated benchmarks considered in this work. The learning approach
can also adapt to different behaviors by neighboring agents.
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Contribution and Overview of Results: The key observations from this work can
be summarized as the following points:

(a) Using “interaction cost” to select a path among multiple choices assists in min-
imizing the occurrence of deadlocks. In a prototypical benchmark with few
homotopy classes and agents, it can guarantee deadlock avoidance.

(b) Computing minimum-conflict paths is experimentally shown to be critical for
avoiding deadlocks even in more complex scenes with many homotopy classes
and is interesting to further analyze the properties of this strategy.

(c) Considering multiple paths in distinct homotopy classes together with the
minimum-conflict path results in improved path quality and execution time.

(d) Regret minimization is a computationally efficient way for robots to react to the
behavior of other agents in the scene without explicit communication.

2 Problem Setup

Path deconfliction problems can be defined in general configuration spaces but this
discussion will focus on holonomic planar navigation as it provides an easy way to
describe the framework and corresponds to the accompanying simulations.

Consider a set ofm planar, holonomic agents {a1, . . . , am} thatmovewith bounded
velocity v ∈ [0, vmax ] in the sameworkspaceW. The configuration space of an agent
is Q = R

2, where Q f ree represents the obstacle free subset given static obstacles.
Given a configuration qi ∈ Q, the expression a(qi ) corresponds to the collision vol-
ume of agent ai inW.

A path πi = {qi |qi : [0, 1] → Q f ree} for agent ai corresponds to a continuous
curve in Q f ree. Given a time scaling function σi : R≥0 → [0, 1] it is also possible to
define the sequence of configuration τi = πi ◦ σi that the agent visits at each point
in time.

The problem formulation assumes that each agent ai wants to reach a desired goal
qG

i ∈ Q without conflicts. The objective then is for the agents to select the sequence
of configurations {τ1, . . . , τm} they will follow in a decentralized manner, such that
in finite time T : ∀ i ∈ {1, . . . , m} : τi [T ] = qG

i . Collisions between agents must be
avoided, unless one of the agents has reached its goal, i.e.,

a(τi [t]) ∩ a(τ j [t]) = ∅ ∨ a(τi [t]) = qG

i ∨ a(τ j [t]) = qG

j .

The above description implies a version of the so called “garage” assumption. When
agents reach their goal, they are removed from the workspace and are not considered
for collisions when other agents pass through that goal.

Agents are never aware of the goal of any other agent or the path selected by
another agent. At any point in time an agent can only observe the positions of other
agents as long as their configurations are within a certain sensing radius.
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Agents are assumed to have access to a collision avoidance method (e.g., Recip-
rocal Velocity Obstacles [30] are used in the accompanying experiments), which is
used to follow their selected path while still avoiding collisions with other agents.
This means that the planned path may not be executed perfectly due to the influence
of neighboring agents and the use of the obstacle avoidance method.

Note that the above discussion can be easily extended to include the casewhere one
agent is the planning robot that employs a method for achieving deconfliction while
all the other agents are unpredictable dynamic obstacles that ignore the presence of
the planning agent. In these situations, the relative velocity of the planning agent and
the dynamic obstacles should be such so that the collision avoidance method can
always guarantee the safety of the planning agent.

The above setup involving unpredictable neighboring agents motivates a replan-
ning framework for recomputing paths given the latest observed configurations of
agents. This replanning approach forms the basis of the overall methodology that is
described in the following section.

3 Methods

This section first describes a straightforward method for integrating global path
planning and local collision avoidance, which, however, can lead to deadlocks in
many setups. Then a sequence of alternative strategies for computing the global path
are considered so as to avoid such situations.

Replanning Framework: During execution of an action, a robot can deviate from its
corresponding planned path due to the reactive collision avoidance executing a safety
control. Naïvely following the original planned path is therefore not sufficient, as the
robot will most likely not be able to reach its goal as intended. A replanning frame-
work [9, 23] as illustrated in Fig. 2 is used to address such issues. The framework
follows related work, where first a roadmap is precomputed using a sampling-based
motion planning method and then integrated with a collision-avoidance method [29].
The sampling-based planner used in this work is PRM∗ [14]. The path computed for
time t − 1 to t will not be executed perfectly, as shown in Fig. 2; however, the frame-
work updates the predicted state of the robot accordingly. By using such a replanning

Fig. 2 The path computed
[t − 1, t] is executed during
time [t, t + 1]. The state at
time t can deviate from the
predicted initial state for the
computed plan, so planning
for cycle [t + 1, t + 2] must
start from an updated
predicted state
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framework, where the agent updates its new predicted state given the perceived dif-
ferences between its true state and the previous predicted state, the agent becomes
robust to perturbations in the solution path caused by the use of reactive methods.
The most straightforward path selection process corresponds to selecting the short-
est path to the goal ignoring other agents. As argued before, this choice can lead to
deadlocks despite the availability of the reactive collision avoidance method, when
the shortest paths of two agents conflict.

K-Best Paths from Different Homotopy Classes: Rather than simply selecting the
greedy path at each planning cycle, one alternative is for each agent to consider a
diverse set of paths and select one that reduces possible interactionswith other agents.
In an environment with many obstacles and narrow corridors which cause conflicts
between agents that cannot be resolved by reactive obstacle avoidance, it makes sense
to consider paths that belong to different homotopy classes [3]. Homology classes [4]
can also be used to compute a diverse set of paths, however this work does not utilize
homologies since they do not differentiate between paths that symmetrically loop
around obstacles. When considering 2D problems, paths are in different homotopy
classes when the area between them contains an obstacle. A complete definition for
homotopy can be found in the related literature [8].

By ignoring paths that loop around obstacles, the set of non-homotopic paths
describes all of the shortest-length paths that bring the agent from its current position
to the goal. These computations take place over an underlying roadmap, and use a
set of search-based primitives. An example of the resulting set of computed paths in
a simulated environment is shown in Fig. 3.

Minimizing Interaction Cost The question that arises is how should agents differ-
entiate among the available paths in order to select motions that will allow them to
make progress to their goals. To describe the proposed process, consider the situ-
ation depicted in Fig. 1, where agent A can follow action a1 to move through the
lower corridor and action a2 to move through the upper corridor towards its goal G A.
These actions correspond to two solutions returned from the homotopy class compu-
tation described in the previous section, regardless of the current configuration of the
robot qA. Similarly, agent B has choices b1 and b2.

Fig. 3 Selecting the path
with the lowest interaction
cost from k different
homotopy classes is the
“k-best” strategy
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Fig. 4 Backtracking
increases path length by εA
and εB for robots A and B
respectively, while
remaining in the current
corridor reduces path length
by εA and εB respectively

Then the question is how costs C(a1), C(a2), C(b1), C(b2) can be computed
appropriately, and in a decentralized manner, so that in any situation the two agents
will decide to follow different corridors when they try to select the action with
minimum cost. The most conflicted situation occurs when both robots are already
following the same corridor. Without loss of generality set both agents to be inside
corridor 1, i.e., the lower corridor.

Assume that the goals for the agents are symmetrically placed at the end of each
side of the corridor. Then the shortest path between the two goal points through the
corridors is x , as illustrated in Fig. 4. If the corridors are too narrow, then one of
the paths will go through the current configurations of robots A and B. Assume that
the distance between the goal G B and qA is εA and the distance between the goal G A

and qB is εB along the path that goes through corridor 1 (the lower corridor). Then the
lengths of the shortest paths for the robots to reach their goals via the corresponding
homotopic paths can be computed as follows:

P A
1 = x − εA, P A

2 = x + εA, P B
1 = x − εB, P B

2 = x + εB,

where P X
i corresponds to the length of the shortest path for robot X from its current

configuration qX to its goal G X via corridor i .
The proposed approach also considers an interaction cost along each action for

every agent. The interaction cost of an action is 0 if there is no other agent occupying
the corresponding path given the latest observation. If there is an agent occupying
the path, then the interaction cost is computed as follows:

I A
i = 1 − distance between A and B along πi

length of πi
(1)

The reasoning behind this definition is that agents closer to the current position of
an agent should incur a higher interaction cost. Then for the above scenario the
interaction costs are:

I A
1 = εB

x − εA
, I A

2 = 0, I B
1 = εA

x − εB
, I B

2 = 0.

Then the proposed cost function for actions is C X
i = P X

i (1 + 2 · I X
i ), which trans-

lates to the following costs in the above scenario:

C A
1 = x − εA + 2 · εB, C A

2 = x + εA, C B
1 = x − εB + 2 · εA, C B

2 = x + εB .
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Then, note that in order for A to select action 1 it has to be the case that:

C A
1 = x − εA + 2 · εB < x + εA = C A

2 ⇒ A selects corridor 1 iff: εB < εA (2)

Similarly for robot B to select action 1 it has to be the case that:

C B
1 = x − εB + 2 · εA < x + εB = C A

2 ⇒ B selects corridor 1 iff: εA < εB (3)

From Eqs. 2 and 3 it becomes apparent that the agents are not able to simultaneously
pick the same corridor given the above definitions for the interaction cost and the
overall cost functions. The agent who is farther away from its goal will have to pick
the other homotopy class.

The entire above discussion was based on the assumption that the goal locations
of the two agents were symmetrical relative to the corridors, i.e., the length of the
path connecting the agents that goes through corridor 1 is the same as the length
of the path through corridor 2. If the goals are not symmetrical, then instead of a
common path length of x , the initial path costs P X

i should include different lengths
x1 and x2 for the connections of the goals via corridor 1 and 2 respectively. Then,
the cost of actions should be defined in a general manner: C X

i = P X
i (1 + α · I X

i ) for
a constant α, which will depend on the relative difference Δx = |x1 − x2|. This is
information, however, that is not available to the robots, since it requires knowledge
of the goals for the other agents.

In practice, using the value α = 2 as was done in this section, results in good
performance in the classification of different homotopic paths in terms of their inter-
action cost. So, in the context of the replanning framework in order to replace the
greedy choice, a “k-best” choice is used. First, compute the k-shortest paths that
belong to k different homotopy classes. Then, for each one of these paths, compute
their costs according to the definition of C X

i , where the interaction cost is computed
according to Eq.1. The action with minimum cost both minimizes distance from the
goal as well as interaction with other agents. The above “k-best” strategy is supe-
rior to the “greedy” strategy of always selecting the shortest path, since it allows a
robot to consider multiple alternative choices as well as interactions with neighbors.
In this manner, it provides a resolution to the basic “corridor” challenge under the
assumption that the goals of the two agents are symmetric.

Minimum Conflict (MC) Path: The “k-best” strategy was able to avoid deadlocks
as long as the total number of simple homotopy classes did not significantly exceed
k, where simple homotopy classes correspond to those that do not include loops.
When this property is true, then the strategy described in the previous section results
in the selection of paths which allow the team to make progress overall. Even in
relatively simplistic scenes, however, the number of homotopy classes can quickly
become large.This introduces a computational challenge, since the k + 1th homotopy
class corresponds to an increasingly longer path, which translates to a longer search
time on the underlying roadmap. To keep the proposed method computationally
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effective, however, it is important to keep a small planning cycle and perform each
path computation as fast as possible.

In order to address this issue, the value of k is kept relatively small, and to accom-
modate the potential lack of a desirable path, the current work proposes that the
“minimum-conflict path” should always be included as an available action to the
agents. To compute such a path, each agent ai considers the current set of config-
urations for the agents it can observe: {q1, . . . , qi−1, qi+1, . . . , qm}. For each one
of those configurations q j , agent ai marks edges in the roadmap that intersect q j .
Edges that are marked then have their weights inflated by a large amount, effectively
removing them from consideration during the heuristic search to find the shortest
path on the roadmap from qi to qG

i . This means that the heuristic search process will
first return the shortest path that does not collide with any agents. If no such path
exists, then one which collides only with one agent will be returned and so on.

The inclusion of such paths in the set of available strategies results in methodolo-
gies that always solve challenges where the “greedy” or the “k-best” method failed.
Interestingly, a strategy which only considers the “minimum conflict” action, con-
structed at each replanning cycle using the process described above, is also able to
always solve all the challenges considered in the accompanying simulations.

Even so, the resulting pathsmay not be as desirablewhen all the agents follow their
minimum conflict action. As shown in Fig. 5, this action may be significantly longer
than the shortest path to the goal. Thus, it is interesting to consider the combination
of the “k-best” strategy with the “minimum conflict” one. In this case, the process
works as follows: first, a homotopy class computation algorithm is used to extract the
k-shortest paths that belong to k different homotopy classes. Next, the “minimum-
conflict” action is computed. For each one of the above k + 1 paths, their costs are
computed according to the definition of C X

i , where the interaction cost is from Eq.1.
Finally, the action with the minimum cost is returned.

Fig. 5 A “minimum-
conflict” path computed for
the right-most agent for a
goal to the left. The shortest
path without conflicts is
returned. For a large
distribution of agents, the
“minimum-conflict” path
will typically intersect some
agents
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This “deterministic” approach for combining the agent’s greedy choices, i.e.,
k-shortest paths, and the safe/conservative choice, i.e., the minimum conflict path,
takes advantage of the process for evaluating interaction costs. It allows agents to
sometimes select one of the shortest paths, even if they conflict with other agents, as
long as these paths are significantly shorter than the minimum conflict path and do
not overlap with other agents early on.

A Probabilistic Selection Strategy To allow some adaptability to the choices of
other agents, this work considers an online learning method to select the appropriate
strategy out of the following: (a) the “minimum conflict” (the shortest path with
the least amount of agent interaction), and (b) a greedy strategy, where this work
considers two possible alternatives for the greedy strategy—returning the shortest
path ignoring other agents or, returning the action selected by the “k-best” strategy.
The objective of this approach is to learn during the execution of a path whether it is
better to play the conservative/“minimum conflict”strategy or the greedy alternative,
given the cost that it experiences for the outcomes of these strategies over time.

The learning approach corresponds to the Polynomial Weights method, which
applies regret minimization [21, 22]. It begins by assigning uniform weights on the
two strategies: wmin_con f lict = wgreedy = 1. Then, when the agent must choose an
action, one of the strategies is chosen at random proportionally to their weights, i.e.,

Pr(“minimum-conflict”) = wmin_con f lict

wmin_con f lict + wgreedy
.

During each planning cycle, the method updates these weights by calculating a loss
value for each one of them: lmin_con f lict , lgreedy , in hindsight, i.e., assuming that all
the other agents would have acted the same way, the method computes a value that
corresponds to the regret of choosing that value. Given the other agents’ motion, one
of the two pure strategies would have performed better. This action has low regret
and its weight is not reduced, while the worse performing strategy incurs regret, and
thus receives a lowered weight. The implementation of Polynomial Weights in the
context of this challenge implies a loss computation as follows:

li = Ci − mini (Ci )

maxi (Ci ) − mini (Ci )

The term Ci again corresponds to the weighted interaction cost. The weights are
then updated according to the following rule and the computed loss value: wi =
wi · (1 − η · li ).Thismeans that the actionwith the highestweighted cost in hindsight
gets its weight reduced by η, while the other action is not penalized. A value of
η = 0.2 was used for the simulations presented here.

The Polynomial Weights method has several advantages. First, it does not require
knowledge of the other agent’s utilities and requires no information to be passed
from the other agents. Furthermore, as the weights are learned, the expected utility
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is guaranteed to be within a bound of the best pure strategy [21, 22]. Lastly, it allows
a high degree of adaptability to changing conditions, as large regret costs will be
quickly accumulated for choosing a sub-optimal strategy.

4 Simulations

Each of the strategies presented in the previous sections was evaluated exper-
imentally using appropriate simulation software [17]: shortest path (Greedy),
K-best (KBest), Minimum-conflict (Min Conf), Deterministic combination of
Min Conf and KBest (Determ), and Polynomial-Weights with (Greedy)
(PWGreedy) and with KBest (PWBest).

The metrics used were average completion time in seconds for all agents and
average length of the solution path for all agents. Evaluating the average experimental
solution time provides a goodmeasure of the performance of themethod, as it directly
indicates how much progress agents are making towards their goals. The purpose
of examining the average path length is to have some measurement of how much
“effort” an agent must spend to achieve its desired solution time.

Each agent had a physical radius of 18cm and a sensing radius of 200cm. A
visualization of the environments used in the experiments is shown in Fig. 6. In the
Grid environment, the block obstacles measured 30 × 30 cm, and were placed so
as to create corridors with width 40cm. In the Random Obstacle environment, the
obstacles were cylinders with variable radius from 10 to 40cm.

A centralized optimal path planner is not compared against in the performance
section, as it would remove the “minimum information” requirement while only
providing a comparison point for small numbers of agents. Scenes without enough
agents in them would not introduce many conflicts, so the proposed approaches do
not provide benefit over using existing reactive obstacle avoidance.

Evaluating Validity: The current work can only provide guarantees on conflict
avoidance in scenarios such as the one presented in Sect. 3: Minimizing Interaction
Cost. Accordingly, the experiments begin with a simple corridor setup, with two
agents having symmetrical goals and attempting to reach opposite sides of the corri-
dor. The purpose of such a simplistic setup is to find whether the proposed methods,

Fig. 6 The environments
used to evaluate the proposed
methods. The blue disks are
the agent’s initial positions,
when they are not
randomized
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Fig. 7 Validation results in the corridor scenario of Fig. 1

including the Greedy approach, are able to solve simple congestion problems as
well as testing the validity of the framework in simulation. The results are averaged
over 10 runs, with the average path lengths and solution times shown in Fig. 7.

Although Greedy always had the lowest averages, it failed to solve even a simple
deconfliction problem such as this 50% of the time. This is again due to the fact that
no other paths are considered by the agent. All of the other strategies were able to
solve the corridor problem without a single failure.

Evaluating Performance: The performance of the four methods is evaluated using
two environments, the grid environment and a randomobstacle environment as shown
in Fig. 6. Since theGreedy strategy failed to consistently solve the corridor problem,
it is omitted from the rest of the experiments. An important observation of theKBest
strategy is for small values of k, and for large numbers of homotopy classes, it is
possible for the strategy to become deadlocked/livelocked. Such was the case in
the grid and random environments, so accordingly the KBest strategy is no longer
considered in further experiments.

Agents are given a pseudo-random start location, and a fixed goal location, with
the intention of having agents swap locations with one another, which promotes
conflicts and congestion in the environment. The results for the grid environment are
averaged over 10 runs and presented in Fig. 8.

Fig. 8 Results for randomly selected starting positions in the grid environment
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The deterministic approach, Determ, which considers both the “minimum-
conflict” and the “k-best” strategies, always selects the action that minimizes the
proposed interaction cost. In the Grid environment, Determ outperformed the other
approaches. Thismakes sense since these experiments were homogeneous (all agents
used the same approach), so the adaptive strategies could not take advantage of any
differences in strategies (such as learning to follow a greedy strategy against agents
that play conservatively and follow a minimum-conflict strategy).

A set of experiments was conducted in the random obstacle scene, however, the
results showed that all the approaches performed at roughly the same level. The
explanation for this is that the random placement of obstacles, combined with a
larger workspace, did not cause a constrained enough environment, hence there were
not frequent conflicts between agents. This allowed agents to consider a larger set of
possible actions that are conflict-free, so each of the strategies presented were able
to provide an equivalent quality solution.

Evaluating Performance Without Reciprocal Velocity Obstacles A requirement
of the Reciprocal Velocity Obstacle (RVO)method is that agents are able to sense the
velocities of neighboring agents. In order to study the viability of the proposed meth-
ods without relying on sensing velocities, a “lite” version of the methods are evalu-
ated, where the RVO method is replaced with a simplistic, position-based approach
(agents stop moving in a particular direction if this direction brings it too close to
another agent).

To get a better idea of how well the proposed methods perform, and to serve as a
comparison point, a “straw-man” type algorithm was implemented: when an agent
finds its currently selected path results in a conflict, it randomly selects a different,
potentially viable path. This algorithm is presented in the results as the “KRand”
algorithm. The results are presented in Fig. 9.

All of the methods, except for KRand, were able to solve the problems a 100%
of the time. The comparison method, KRand, provided competitive solution path
lengths, at the expense of much longer solution times, as well as a 40% failure rate
in the 32 agent scenario. Although Min Conf always solved the problems, both
Determ and PWBest outperformed it in solution time and solution length.

Fig. 9 Results for randomized grid using the “lite” versions of the algorithms. The Reciprocal
Velocity Obstacle collision avoidance method is replaced with a simple, position-based method
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Fig. 10 The average path length and average time to finish for simulations using the polynomial
weight with greedy (PWGreedy) and with k-best selection (PWBest)

Evaluating Scalability In these experiments the start location of the agents were set
to be symmetrical, so as to promote conflicts and congestion quickly. The results are
averaged over 15 different runs and are shown in Fig. 10. The purpose of this set of
experiments was to evaluate the scalability of the adaptive-strategies, PWGreedy
and PWBest, as both of these approaches utilize the other deconfliction methods,
and are consequently the most computationally complex.

The results show that for increasingly larger number of agents, the average solution
time and the average path lengths for the methods scales sublinearly.

Heterogeneous Setups A set of experiments was conducted among heterogeneous
agents in the grid environment,where 7 agentswere assigned the “minimum-conflict”
strategy and 1 agentwas assigned thePWBest strategy. The idea herewas to examine
the probabilistic learning algorithm, PWBest, and see if it was able to adapt its
weights according to the strategies the other agents were playing. Interestingly, over
a course of 5 separate runs, PWBest selected the “k-best” strategy 65% of the time
on average. Since the “minimum-conflict” agents were actively attempting to avoid
interaction with other agents, it makes sense that the PWBest agent is able to be
more “greedy” in its selection of paths.

Carrying on with this line of thought, another set of experiments was run where 4
agents were given the pure “greedy” strategy, and the other 4 agents ran PWBest. In
this case, the PWBest agents adapted and chose to select the “k-best” strategy only
41% of the time. Since the 4 purely greedy agents caused a deadlock in the center of
the environment, the PWBest agents had to adapt and select the safer “minimum-
conflict” strategy more often. Together these results seem to show promise for the
adaptability of the learning strategy, aswell asmotivating its use over the “determinis-
tic” strategy in the general case, since their path length is equivalent in homogeneous
setups. A video providing a qualitative description of the performed experiments can
be found at: http://www.cs.rutgers.edu/~kb572/dars2014.mp4.

http://www.cs.rutgers.edu/~kb572/dars2014.mp4
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5 Discussion

The proposed framework brings together path planning primitives, such as search-
based methods for computing paths in different homotopy classes [3] and sampling-
based motion planners for computing roadmaps [14], reactive obstacle avoidance
methods [27, 30] as well as game theoretic and learning tools [22] to provide an
algorithmic framework capable of computing acceptable solutions to motion coor-
dination challenges in a decentralized, communication-less way.

There aremany interesting future directions for this line of research. This includes
the evaluation of approaches on dynamical systems as well as more complex envi-
ronments and removing the “garage” assumption from the framework. This would
require agents to continue reasoning about their observed states, potentially adapting
a “passive” mode to more easily allow other agents through their goal positions.
Additional experimentation of the adaptive, learning methods in a larger set of het-
erogeneous setups is interesting, as well as imposing a stricter sensing range on the
agents. Furthermore, it is important to analyze the conditions under which the current
framework, in particular the consideration of the “minimum-conflict” path, is able
to guarantee that the robots are free of deadlocks and livelocks, using tools that have
been developed towards this direction [20].
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