DisCoF: Cooperative Pathfinding
in Distributed Systems with Limited
Sensing and Communication Range

Yu Zhang, Kangjin Kim and Georgios Fainekos

Abstract Cooperative pathfinding is often addressed in one of two ways in the
literature. In fully coupled approaches, robots are considered together and the plans
for all robots are constructed simultaneously. In decoupled approaches, the plans are
constructed only for a subset of robots at a time. While decoupled approaches can
be much faster than fully coupled approaches, they are often suboptimal and incom-
plete. Although there exist a few decoupled approaches that achieve completeness,
global information (which makes global coordination possible) is assumed. Global
information may not be accessible in distributed robotic systems. In this paper, we
provide a window-based approach to cooperative pathfinding with limited sensing
and communication range in distributed systems (called DisCoF). In DisCoF, robots
are assumed to be fully decoupled initially, and may gradually increase the level of
coupling in an online and distributed fashion. In some cases, e.g., when global infor-
mation is needed to solve the problem instance, DisCoF would eventually couple all
robots together. DisCoF represents an inherently online approach since robots may
only be aware of a subset of robots in the environment at any given point of time.
Hence, they do not have enough information to determine non-conflicting plans with
all the other robots. Completeness analysis of DisCoF is provided.

Keywords Distributed robot systems + Cooperative pathfinding

Y. Zhang () - K. Kim (X)) - G. Fainekos ()

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, Tempe, USA

e-mail: yzhan442 @asu.edu

K. Kim
e-mail: Kangjin.Kim@asu.edu

G. Fainekos
e-mail: fainekos @asu.edu

© Springer Japan 2016 325
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_23

326 Y. Zhang et al.

1 Introduction

Cooperative pathfinding for multi-robot systems has many applications. However,
this problem is fundamentally hard in general (i.e., PSPACE-hard [7]). Previ-
ous approaches often address this problem in one of two ways. In fully coupled
approaches, all robots are considered together and the plans for them are constructed
simultaneously. However, given that the complexity grows exponentially with the
number of robots, these approaches can easily become impractical. As aresult, recent
research more often concentrates on decoupled approaches. In decoupled approaches,
the plans are constructed (partially or fully) only for a subset of robots at a time; the
remaining robots must then take the others’ constructed plans into account when
constructing their own plans. While decoupled approaches are often suboptimal and
incomplete, they typically run much faster than fully coupled approaches, since the
number of robots that need to be coupled can be significantly smaller. While there
are decoupled approaches that achieve optimality and completeness, they all assume
global information, which implies global coordination. However, global information
may not be accessible in distributed robotic systems, since such systems are often
subject to limited sensing and communication range. As a result, these approaches
cannot be implemented on many distributed systems.

In this paper, we introduce a window-based approach for cooperative pathfind-
ing in distributed systems, called DisCoF, with the window size corresponding to
the limited sensing and communication range. DisCoF is inherently online, since a
robot may not be aware of all the other robots in the environment at any given point
of time, let alone determining a non-conflicting plan with them. In DisCoF, a robot
can only communicate directly with robots within its sensing range (i.e., local win-
dow) to coordinate. However, two robots can communicate indirectly through other
robots using a message relay protocol. All robots are assumed to be fully decou-
pled initially: they plan and execute independently and simultaneously. Robots can
gradually increase the level of coupling in an online and distributed fashion.

To reduce computation, we need to determine when to couple robots and only
couple them when necessary. We follow an intuitive approach to achieving this:
couple robots only when they have potential conflicts (i.e., predictable conflicts
in DisCoF). Furthermore, to efficiently reduce the possibility of future coupling
given only local knowledge, instead of making full plans to final goals, robots in
each coupling only plan to local goals that minimize conflicts within a pre-specified
horizon. This process also ensures that these robots make progress to final goals.

However, given the localized nature of this approach, it is subject to live-locks.
We identify a live-lock when robots in a coupling cannot make further progress to
final goals within the finite horizon, which is a necessary (but insufficient) condition
to detect live-locks. Note that detecting live-locks requires global information in
general. DisCoF allows “live-locks” to be detected and resolved in a distributed
manner. When a live-lock is detected, robots in the coupling use a technique, called
Push and Pull, to keep within each other’s sensing and communication range, while
progressing to final goals one at a time.

DisCoF: Cooperative Pathfinding in Distributed Systems ... 327

By combining these methods, DisCoF achieves an efficient solution that also
guarantees completeness. Note that for a problem instance that requires global infor-
mation, DisCoF solves it by eventually coupling all robots together. To the best of
our knowledge, this is the first work that guarantees completeness for cooperative
pathfinding in distributed systems with limited sensing and communication range.
The remainder of this paper is organized as follows. After a brief review of related
literature in Sect. 2, we introduce DisCoF in Sect. 3. The live-lock resolution tech-
nique is discussed separately in Sect. 4. Conclusions and discussions of future work
are presented afterwards.

2 Related Work

The most convenient way to address cooperative pathfinding is to consider robots as
fully coupled, since then many existing state-space search algorithms (e.g., A*) can
be applied. While this fully coupled search is intractable, approaches have been pro-
vided to reduce the branching factors to improve the performance, e.g., [16]. There are
also approaches that compile cooperative pathfinding problems into related problem
formulations [1, 5, 9, 20] (e.g., maximum flow [20]), and then apply the correspond-
ing algorithms to solve them. However, these approaches are unscalable due to the
large state space. Methods for spatial abstraction to reduce the state space have also
been discussed [14, 18], but they often suffer optimality and even completeness. By
restricting the underlying graphs of problem instances to have certain topologies,
optimal solutions can be found fast [12, 13, 19].

More research has been concentrated on decoupled approaches due to its better
scalability. One commonly used approach is the hierarchical cooperative A* (HCA*
[15]), which is a prioritized planning method. HCA* chooses fixed priorities for
robots and makes a plan for a single robot at a time based on its priority, while
respecting the computed plans for robots of higher priorities. This process is per-
formed through the use of a reservation table that all robots can access. To reduce
the influence of the computed plans for robots of higher priorities (on robots of
lower priorities), a windowed HCA* approach (WHCAY) is also discussed in [15].
In WHCA¥, robots only send the portions of their plans within a fixed window
size (from their current locations) to the reservation table, which has been shown
to enable WHCA* to solve more problem instances. More recently, an extension
of WHCA* (CO-WHCA* [2]) is proposed, which improves over WHCA* by only
reserving plans when there are conflicts. Another common decoupled approach is to
create traffic laws for the robots to follow, e.g., [8], thus reducing the possibility of
conflicts. Although these decoupled approaches can often find solutions fast, they
are incomplete.

There are decoupled approaches that achieve completeness and optimality, e.g.,
[16, 17]. However, these approaches are still intractable for many problem instances
due to the inherent complexity. Hence, more recent approaches often relax optimality
while maintaining completeness [4, 10]. In [10], a Push and a Swap operation are

328 Y. Zhang et al.

introduced, which are used to move robots to their goals one at a time; the result-
ing individual plans are then optimized for all robots. The authors in [4] further
introduce a new operation, Rotate, to complement Push and Swap, in order to guar-
antee completeness in more general problem instances. These approaches, however,
assume global information (e.g., the individual plans of all robots at any time). Global
information may not be accessible in distributed robotic systems with sensing and
communication range, in which each robot must create its individual plan based on
its local knowledge (including the sensed and communicated information).

In this paper, we introduce an approach that achieves completeness without assum-
ing global information in distributed systems. While cooperative pathfinding with
limited sensing and communication range has been investigated before, e.g., [3, 11,
21], to the best of our knowledge, guarantee of completeness has never been provided.
Note that cooperative pathfinding with only local knowledge can be considered as
a special case of pathfinding with dynamic obstacles. The difficulty lies partly in
the existence of live-locks, as global information is required to detect live-locks in
general. To achieve completeness, our approach allows robots to gradually increase
the level of coupling when potential live-locks are detected.

3 DisCoF

3.1 Problem Formulation

Given a graph G = (V, E) and a set of robots R, the initial locations of the robots are
denoted as Z € V and the goals are denoted as G C V. Edges in E are undirected.
Any robot can move to any adjacent vertex in one time step or remain where they
are. A plan P is a set of individual plans of robots, and P[i] denotes the individual
plan for robot i € R. Each individual plan is composed of a sequence of actions. For
simplicity of presentation, each action is identified by the next vertex to be visited.
We denote by Px[i] (k > 1) the action to be taken at time step k — 1 (or the vertex
to be visited at k) for robot i, and by Py [i] (k <) the subplan that results by
considering only the actions Pi[i] up to P;[i]. The goal of cooperative pathfinding
is to find a plan P such that robots start in Z and end in G after executing it, without
any conflicts. The set of locations of robots at time step k is denoted by S, and the
set of locations of robots after executing a plan P from S is denoted by S(P). Thus,
we have Sop =7, So(P) = G and S = So(Pi x)- A conflict happens at time step &,
if two robots are in the same location, or their locations at k — 1 are exchanged.
Formally,

Silil = Selj1 Vv (Selil = Skl A Si—ilil = Sl jD (D

inwhichi e R, j €e Randi # j.

DisCoF: Cooperative Pathfinding in Distributed Systems ... 329

Each robot can independently compute a plan (without considering other robots)
to a given goal from a starting location using a shortest-path planner. For simplicity,
we assume that when given the same starting location and goal to different robots,
the computed shortest-path plans are the same. Hence, we can denote the shortest-
path plan that moves a robot from vertex u to v as P (u, v). The length of P (u, v)
is denoted as C(u, v), i.e., C(u, v) = | P(u, v)|. Furthermore, we make the following
assumptions:

1. Robots are homogeneous and have the same sensing and communication range
(this assumption only simplifies the presentation and it can be relaxed).

2. Robots are equipped with acommunication protocol that allows them to efficiently
relay messages.

3. Time steps are synchronized (asynchronous time steps are to be investigated in
future work).

4. Each robot has full knowledge of the environment, i.e., G.

The individual plans are constructed and updated in an online fashion in DisCoF.
Initially, for each robot i, the individual plan is constructed as P[i] = P (Z[i], G[i]).
Robots then start executing their individual plans until conflicts can be predicted
(discussed later). In such cases, the individual plans of robots that are involved are
updated from Py to avoid these conflicts, given that the current time step is k.

3.2 Local Window

While the window size in WHCA* [15] is a parameter to determine the number of
next plan steps to be sent by each robot to the reservation table, the window size in
DisCoF represents the sensing range of the robot. To reduce communication, we only
allow a robot to directly communicate with other robots that it can see. However,
two robots can communicate indirectly through other robots to coordinate using the
message relay protocol. This window is called a local window in DisCoF, which is
used in the prediction and resolution of potential conflicts.

Definition 1 (Local Window) At time step k, the local window of robot i € R,
denoted by Wi [i], is defined as W) [i] = {v € V (vertices in G) | v can be reached
by i from its current location (i.e., S¢[i]) in A steps}, in which X is the window size,
a positive integer that is greater than 1.

When arobot j satisfies Si[j] € Wi[i], we writei >, j toindicate that roboti can
communicate with robot j. A simplifying assumption made here is that the visibility
of the sensor is only influenced by the distance, which can be relaxed. Given our
assumptions, > is symmetric, i.e., i and j can communicate with each other. We
indicate this symmetric relation as i <it>; j. Furthermore, given the communication
relay protocol, <i>> also defines a transitive relation. Namely, if i <> r and r <>
J, we also have that i <it>; j. The <i>>; relation introduces the coordination graph.

330 Y. Zhang et al.

Definition 2 (Coordination Graph) At time step k, the coordination graph G} =
(V¢ E;) of the robots is constructed as follows:

o Vi =TR.
e (i, j) € Efifand only if i <>y j.

Note that the coordination graph is only a structure introduced to facilitate our
following discussions. In DisCoF, robots are not required to compute this graph at any
time step. Next, we partition the coordination graph into disconnected components
that indicate which robots communicate with each other.

Definition 3 (Outer Closure (OC)) At time step k, the coordination graph Gj is
partitioned into disjoint connected subgraphs. Denote @, as the set of vertex sets of
these subgraphs. Then, for any (¢*, ¢7) € @, x Py, the following is satisfied:

V(@, j) e R x R,ifi # j Ai € ¢ A j € ¢? holds, wehavei <>, j,if and only
if x = y. Each ¢ € &, defines an outer closure.

Since two robots in different outer closures (OCs) do not communicate in DisCoF
(whether directly or indirectly), they do not know about each other’s current plan or
location (they may not even be aware of each other). Hence, only robots within the
same OCs can coordinate with each other.

Definition 4 (Predictable Conflicts) At time step k, given an OC ¢ € @, we define
that aroboti € ¢ has a predictable conflict with parameter §, if it would be involved
inaconflictatk + & (§ < B, in which B is a pre-specified finite horizon) with another
robot in ¢, and that i would not be involved in any conflicts with robots in ¢ at any
time step earlier than k + §, assuming that robots in ¢ continue with their current
individual plans.

The reason for imposing the finite horizon g is due in part to the limited sensing
range (i.e., visibility) of the robots since resolution for potential conflicts in the far
future is likely to only waste computation resource and time. Note that A (i.e., window
size) and B do not have to be related.

At time step k, if a robot i has a predictable conflict with parameter é (see Defin-
ition 4), we denote it as Ai(é). We also use Ai when the parameter does not need to
be identified. Predictable conflicts are associated with the notion of inner closure.

Definition 5 (Inner Closure (IC)) At time step k, the IC ¢ of a given OC ¢ € @ is
the set of robots that satisfy: ¢ = {i | A}; Al € ¢}.

Similarly, we denote ¥ as the set of ICs for the OCs (there is a one-to-one
correspondence) at time step k. Note that the IC of an OC may be empty. We provide
an example of OC and IC below.

Example 1 Figure 1 visualizes such a scenario for A =2 and g = 2. Robots are
shown at their initial locations at time step 0. The arrows indicate their respective
individual plans for the next few steps and the highlighted gray areas their local
windows. We have r, <i>>¢ r3 and r3 <I>>¢ r4 and hence r, <it>(r4 through r3. Thus,

DisCoF: Cooperative Pathfinding in Distributed Systems ... 331

Fig. 1 Scenario that

illustrates OC and IC. Two I r "‘Q
OCs are present, and one of

them contains a predictable r r I
conflict. Here, r; indicates

the sensing and n Tls N n

communication range of

. r,,r.
each robot i Fls Q_. R
Ty
— —_—
03 e—’ * — [3)f) —tep
I3,y ry,r, e (t 7

the OC attime 0 are ¢! = {ry, r3, 4}, and ¢> = {r,}. Even though r», r3, r4 are in the
same OC, only r3 and r4 belong to the corresponding IC, since there is a predictable
conflict with parameter 1. Hence, /! = {r3, r4} and %> = 0.

3.3 Coupling in OC

Given an OC with predictable conflicts, the goal of coupling is to update the individual
plans of robots to proactively resolve these conflicts while avoiding introducing new
conflicts in the finite horizon (i.e., specified by f).

At time step k, suppose that conflicts are predicted in an OC ¢ € @y, robots in ¢
need to update their individual plans from Py . Note that robots may join and leave
different couplings during the online planning process. To make sure that robots
make progress to their final goals as a team, we associate a contribution value y
with each robot, which captures the individual contribution of the robot to updating
the summation of (shortest) distances between all robots’ current locations and their
final goals. Initially, this value is zero (i.e., Vi, yp[i] = 0). For robot i, we denote this
value just before the coupling at k by y,_[i] and after §-steps by yx4s[i]. When § is
0, y represents the updated value immediately after the coupling at k (see below).

First, robots in ¢ compute a plan Q (such that |Q| <) which satisfies the fol-
lowing two conditions:

D C(Sdil Gl + e [i] > D C(Slil(Qli), GliD) ()
iep icp
Vi € ¢, A, 3)

in which A} is computed based on the updated individual plans that are constructed
as follows: the new individual plan P[i] for robot i € ¢ is constructed by replacing
actions starting from Py ([i] by Q[i] 4+ P(Sk[i1(Qli]), G[i]). Here, S¢[i1(Q[i]) is

332 Y. Zhang et al.

the local goal for i, which is the location of i (currently at Si[i]) after executing
9Qli]. The + symbol is used here to denote concatenation.

At time step k, and after executing each action in Q[7], the contribution value for
i is updated as follows, until a conflict is predicted or this value becomes 0:

Virsli] = C(Seli1(QLID), GliD) — C(Sk4lil, Gl “4)

in which 0 < § < |Q], is the steps after the coupling (i.e., number of actions in Q
that are executed). Note that Syys[i] = Soli1(P1 x+s[i]) in Eq. (4) is the location of
robot i at time step k 4 § under the updated individual plan P[i] at time step k.

Lemma 1 Planning (i.e., the computation of Q) in the coupling process converges
R to their final goals as k grows, if Eq.(2) can always be satisfied.

Proof From Egs. (2) and (4), we have the following holds:

D C(SiL Gl + ve-li] > D C(Sesslil, GliD) + yessli])
icp i€p

First, Eq.(5) holds for all robots that are still executing the coupled plan (i.e.,
Q) to move to their local goals; furthermore, Eq. (5) also holds for robots that have
already reached their local goals or robots that have not engaged in any coupling yet.
As aresult, Eq. (5) holds for R. As k grows, we know that D", 5 C(Sk4sli], Gli]) +
Yi+sli] would gradually decrease. This also means that >°, o C(Sc[i1(Q[i]), Gli])
would gradually decrease from Egs. (2) and (4). Given | Q| < 8, the conclusion holds.

Assuming that the condition in Eq. (2) holds, Lemma 1 shows that planning con-
verges to final goals for R. This condition requires robots in a coupling to always
make progress jointly within the finite horizon. However, this assumption does not
hold in the presence of live-locks. In such cases, robots in a coupling would even-
tually be unable to find a Q that satisfies both Eqgs.(2) and (3).! Furthermore, the
limited horizon can also cause the search of Q to fail. However, we realize that when
live-locks are present in distributed systems with only local knowledge, the search is
bound to fail eventually even with unlimited horizon. Hence, we do not distinguish
the two causes, and consider it as a “live-lock” being detected when when Eq.(2)
becomes unsatisfiable (while satisfying Eq. (3)).

3.4 Computing Q

Before discussing how “live-locks” are addressed in DisCoF, we provide details on
how Q is computed. Given that coupled search is expensive, we aim to minimize | Q)|
as well as the number of robots that need to be coupled.

'Note that Eq. (3) can always be satisfied by forcing all the robots in a coupling to stay, which may
cause deadlocks. Eq. (2) prevents deadlocks.

DisCoF: Cooperative Pathfinding in Distributed Systems ... 333

To achieve this, we try to construct Q that satisfies Eqs. (2) and (3) for p (p C ¢),
which is initially set to be the corresponding IC for ¢, while forcing robots in p to
respect the plans (i.e., avoiding predictable conflicts) of robots in ¢ \ p in the next 8
steps. Note that having p instead of ¢ satisfy Eq.(2) does not influence the planning
convergence.

The search first checks Q for p with § = 1, in which 0 = |Q|, and gradually
increases 6 until 6 = 8. If a valid Q is found for the current 6, the Q is returned.
Otherwise, if ¢ \ p # 0, p is expanded to include robots in ¢ \ p that are also within
the combined region of local windows of robots in p, and the current 6 is re-checked;
else, 6 is incremented or unsatisfiability is returned when 6 = .

4 Push and Pull

In DisCoF, when unsatisfiability is returned in computing Q for an OC ¢, we consider
it as a “live-lock” (i.e., robots in ¢ may have contributed in creating a live-lock situa-
tion) being detected. To resolve it, information of all robots in ¢ must be accessible.
In distributed systems, this requires the robots in ¢ to maintain within each other’s
sensing and communication range (thus remain coupled). Furthermore, note that a
live-lock may not involve all robots in R and there may be multiple live-locks in the
environment. When a live-lock is detected, robots in ¢ form a coupling group, w,
which executes a live-lock resolution process described next. This process also allows
a coupling group to merge with other groups and robots, thus gradually increasing
the level of coupling. In some cases, e.g., when a global live-lock is present, robots
in DisCoF can eventually become fully coupled.

4.1 Overview

To achieve completeness, DisCoF uses a technique that is similar to Push and Rotate
[4], which we call Push and Pull. To ensure completeness in Push and Rotate, robots
must move to goals one at a time according to the priorities of subproblems to
which they belong. Robots that have already reached their goals are respected (i.e.,
considered as obstacles) by the subsequent Push operations. When Push fails, Push
and Rotate uses a Swap operation to ensure that these robots move back in their
goals as the remaining robots move. Such a priority ordering must also be respected in
DisCoF. Attime step k, for all coupling groups that have been formed, the basic idea is
to: (1) maintain robots in these groups within each other’s sensing and communication
range; (2) for each group, move robots to goals one at a time based on a relaxed
version of the priority ordering, which is consistent to that in Push and Rotate; (3)
add robots that introduce predictable conflicts with a coupling group as robots in the
group move to their goals. Each coupling group progresses independently of other

334 Y. Zhang et al.

robots and coupling groups unless there are predictable conflicts. The main process
is described in Algorithm 1.

Algorithm 1 Live-lock Resolution Process in DisCoF for a Coupling Group w

1: Current time step is k.

2: while 3i € w, S¢[i] # G[i] do

if predictable conflicts detected with other robots then
Add other robots with predictable conflicts to, or merge their groups with w.
Recompute the priorities of subproblems.

end if

if is not defined V robots with a higher priority than r is found Vv r reaches G[r] then
r < the robot with (equal) highest priority in w.

end if

10: Push and Pull r to G[r].

11: end while

A

bl

In Algorithm 1, the coupling of robots in w is maintained by the Push and Pull
technique. As a result, predictable conflicts can only be introduced by other robots.
When a coupling group detects predictable conflicts with another group, two groups
are merged. Furthermore, when a robot that has already reached its goal is added
to a coupling group in the live-lock resolution process, if the robot’s priority is not
the highest among all robots that have not reached their goals after recomputing
the priorities, this robot is not considered as having reached its goal in Push and
Pull. This means that the Push and Pull operations can move these robots. Also,
the priority ordering (i.e., the < relations in [4]) is maintained and aggregated by
the robots whenever new relations are identified (in Line 5); given that the relaxed
priority ordering is consistent with that in Push and Rotate, robots can gradually
achieve a consensus of this ordering.

4.2 Assigning Priorities

To ensure completeness, the priorities of subproblems in Push and Rotate [4] must be
respected. However, given the limited visibility of the robots, this priority ordering
can only be partially computed for each coupling group. This partially computed
ordering in DisCoF is kept consistent with the priority ordering in Push and Rotate.

To compute the priorities, first, Push and Rotate identifies the subproblems. Since
this computation is only dependent on the graph structure, robots in DisCoF can
individually identify the set of subproblems.

Next, Push and Rotate assigns robots to subproblems. DisCoF computes a relaxed
version of this assignment to ensure that assignments are only made when they
are consistent with those in Push and Rotate. Denote the set of subproblems as D.
Algorithm 2 presents the algorithm to compute the assignment in a coupling group w.

DisCoF: Cooperative Pathfinding in Distributed Systems ... 335

Algorithm 2 Algorithm for Assigning Robots to Subproblems in w

1: for all D, € D do

2: forallv € D, do

3 for all u ¢ Dy, for which (u, v) € E“ do

4. m’ < number of unoccupied vertices reachable from v in G® \ {u}.

5 m” < number of unoccupied vertices reachable from Dy, in G® \ {v}; =m <— number
of unoccupied vertices unreachable from v in G \ {u}, given only robots in G*.

6: if(m">1A-m>1)vm” > 1then

7: Assign robot in v to Dy,.

8: end if

9: Follow path from u away from v and assign the first m" — 1 (all if less than m" — 1) on
this path to Dy, in G.

10: end for

11: end for

12: end for

The differences of Algorithm 2 from that in Push and Rotate lie in Line 4, 5, 6
and 9. While the computation for these lines is performed based on the global graph
(i.e., G) in Push and Rotate, the computation in DisCoF is based on G = (V¢, E®)
(which represents the combined region of the local windows of robots in w), and G
given only robots in G”. Note that not every robot may be assigned to a subproblem
and the unassigned robots are assumed to have the lowest priorities.

Lemma 2 The assignment of robots to subproblems in DisCoF is consistent to that
in Push and Rotate [4]: if a robot r is assigned to subproblem Dy, in Algorithm 2, it
is also assigned to Dy, in Push and Rotate.

Proof We only need to prove that: (1) when the condition in Line 6 is satisfied,
the corresponding condition in Push and Rotate is also satisfied; (2) m’ and m” in
Algorithm 2 are smaller than those in [4], and —m > 1in Algorithm 2 impliesm’ < m
in [4]. These directly follow from how they are computed.

In the third step, Push and Rotate assigns priorities to the subproblems. Robots
within the same subproblems receive the same priorities. Similarly, the reference of
global graph is changed to G*; otherwise, the process is unchanged.

Lemma 3 The assignment of priorities to subproblems in DisCoF is consistent to
that in Push and Rotate [4]: if two subproblems Dy and Dy, satisfy Dy < Dy,
they must also satisfy D1 < Dy in Push and Rotate.

Proof This conclusion follows almost directly from Lemma 2 and the process for
assigning priorities to subproblems.

Note that this assignment process is executed by each coupling group in DisCoF
instead of all robots in Push and Rotate. This means that while the assignments are
consistent with that in Push and Rotate, they are computed for different (and disjoint)
sets of robots in DisCoF.

336 Y. Zhang et al.

4.3 Maintaining and Expanding

Robots in a coupling group can use the operations (i.e., Push, Swap and Rotate)
in Push and Rotate to move to their goals one at a time (for details, refer to [4]).
To maintain robots within w in sensing and communication range, we introduce a
new operation, called Pull. Denote r as the current robot that is being moved to its
final goal in . As r moves to its goal, it can use any of the Push, Swap and Rotate
operations. Every step that » moves as a result of these operations, it also invokes
the Pull operation on the other robots in .

The Pull operation computes a shortest-path plan p from r to any robots € w \ r.
A set U is created, which contains only r initially. If p does not pass through other
robots in w, and the first step in p leads s closer to r, s is added to U/. If the first
step in p does not introduce conflicts with other robots in w, this step is added to
the individual plan of s; otherwise, an action to stay is added to the individual plan
of s. For robots that have been newly added into /, they recursively apply the Pull
operation on robots that are not in /. This process ends until all robots in w are in /.
The Pull operation is presented in Algorithm 3. Figure 2 illustrates the Pull operation
in a simple scenario.

Lemma 4 The Pull operation maintains robots in each coupling group within each
other’s sensing and communication range.

Proof The Pull operation, after execution, ensures that any robot s € w is no further
away from one of the robots in w before its execution. Hence, the conclusion holds.

Similar to Push, Pull may fail (Line 13 in Algorithm 3) since it must respect the
robots (with equal or higher priorities) that have already reached their goals. In such
cases, a similar procedure using Swaps as for the Push operation in [4] can be used;
these Swaps can cause robots that are being swapped to recursively invoke Pull.

Fig. 2 Scenario that
illustrates the Pull operation.
Left figure shows that robot
r is moving to its goal.

Right figure shows the same iz 3 M2
scenario after one time step.
Blue arrows show the actions i I r

being added to the individual
plans of the corresponding
robots at each step by the
Pull operation

DisCoF: Cooperative Pathfinding in Distributed Systems ... 337

Fig. 3 Scenario that
illustrates the expanding
process, in which two
coupling groups, each with
two robots, are merged when
a conflict is predicted in the K
next step

L

(A I

- B

A (i

P

s

L

Algorithm 3 Pull operation in @
LU« [N <0

2: while U # o do

3: foralls € w\U do

4. p < P(Sk[s], Sk[r]), consider robots that have reached goals as obstacles.

5: if p does not pass through robots in w that have not reached goals A p moves s closer to r
then

6 if no conflicts with other robots in w after executing the first step in p then

7: Add the first step in p to the individual plan of s.

8 else

9: Add an action for s to stay in the next step.

10: end if

11: U«—UU{sh N <~ N U {s}

12: else

13: return False.

14: end if

15: end for

16: r < Pop(N).
17: end while

When there are other robots within the combined region of the local windows of
robots in w, robots must plan to consider predicted conflicts. Each coupling group
makes a plan for the next f steps considering only robots in the group. When no
conflicts are predicted, robots continue with this plan. When conflicts are predicted,
w is expanded as we previously discussed. The expanded coupling group chooses
the robot currently with the (equal) highest priority to move to the goal.? Figure3
illustrates the merge of two coupling groups. In the group on the left (, and r3), r; is
moving to its goal, pulling 73, and in the other group, r; is moving to its goal, puling
r4. Since a predictable conflict exists between r, and r;, the two groups are merged.

2If more than one robot have the same (highest) priority, we can arbitrarily choose among them.

338 Y. Zhang et al.

4.4 Analysis

To prove the completeness of DisCoF, we use a property that is derived directly from
Theorem 2 in Push and Rotate [4].

Corollary 1 [If the cooperative pathfinding problem is solvable, the assignment of
robots in a coupling group to subproblems remains unchanged unless the group is
expanded.

Theorem 1 DisCoF is complete for the class of cooperative pathfinding problems
in which there are two or more unoccupied vertices in each connected component.

Proof We provide the proof sketch here, which is based on the following observa-
tions: (1) When every coupling group is independent of other robots and groups,
DisCoF is complete; this is almost a direct result from Push and Rotate, since the
Pull operation does not influence the other operations. (2) When a coupling group is
expanded, robots in the group are maintained within each other’s sensing and com-
municating range; this is a direct result from Lemma 4. (3) The priority ordering
relations (i.e., <) are maintained and gradually aggregated (to reach a consensus)
as they are identified; this is a result from Lemma 2, Lemma 3 and Corollary 1. (4)
Robots with the highest priorities are respected (in Push and Pull operations) by the
coupling groups in the Push and Pull process (similar to that in Push and Rotate),
which moves robots with the highest priorities to goals first.

Since it has been shown in [4] that robots with the highest priorities must be moved
to goals first in order to ensure a solution, these robots must eventually be assigned
the highest priorities as the coupling groups move. Hence, these robots would be
moved to their final goals. This process then continues to robots with the second
highest priorities and so on. Hence, DisCoF is complete.

5 Conclusions

In this paper, we introduce a window-based approach for cooperative pathfinding in
distributed systems, with the window size corresponding to the limited sensing and
communication range in such systems. This approach, called DisCoF, is an inherently
online approach. To limit coupling in order to reduce computation, we introduce
a formulation that allows robots to avoid future conflicts while still making joint
progress to their final goals. This formulation also allows “live-locks” to be detected;
in such cases, we use a Push and Pull technique. We show that DisCoF is complete.
To the best of our knowledge, this is the first work that guarantees completeness for
cooperative pathfinding with limited sensing and communication range in distributed
systems. Note that the general definition of conflict potentially allows DisCoF to be
applied to cooperative pathfinding with different robotic platforms, e.g., adding the
consideration of height for UAVs.

DisCoF: Cooperative Pathfinding in Distributed Systems ... 339

In future work, we plan to provide a detailed evaluation of DisCoF and compare
it with other related approaches. We also plan to extend the formulations to consider
more complex environment and goal specifications (e.g., using temporal logic speci-
fications [6]). Other directions include extending the approach to support continuous
motions, heterogeneous robots, and asynchronous time steps. For recent progresses,
refer to https://cpslab.assembla.com/spaces/discof/.

Acknowledgments This research is supported in part by the ARO grant W911NF-13-1-0023, the
ONR grants N00014-13-1-0176 and N0O0014-13-1-0519, and the NSF award CNS 1116136.

References

1. Ayanian, N., Rus, d., Kumar, V.: Decentralized multirobot control in partially known environ-
ments with dynamic task reassignment. In: 3rd IFAC Workshop on Distributed Estimation and
Control in Networked Systems (2012)

2. Bnaya, Z., Felner, A.: Conflict-oriented windowed hierarchical cooperative A*. In: Proceedings
of the 2014 IEEE International Conference on Robotics and Automation (2014)

3. Clark, C.M., Rock, S.M., Latombe, J.-C.: Motion planning for multiple mobile robots using
dynamic networks. In: Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 3, pp. 4222-4227, Sep 2003

4. de Wilde, B., ter Mors, A.W., Witteveen, C.: Push and rotate: cooperative multi-agent path
planning. In: 12th International Conference on Autonomous Agents and Multiagent Systems
(2013)

5. Desaraju, Vishnu R., How, Jonathan P.: Decentralized path planning for multi-agent teams with
complex constraints. Auton. Robots 32(4), 385—403 (2012)

6. Fainekos, Georgios E., Girard, Antoine, Kress-Gazit, Hadas, Pappas, George J.: Temporal logic
motion planning for dynamic robots. Automatica 45(2), 343-352 (2009)

7. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple
independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot. Res.
3(4), 76-88 (1984)

8. Jansen, R., Sturtevant, N.: A new approach to cooperative pathfinding. In: Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp.
1401-1404, Richland, SC, International Foundation for Autonomous Agents and Multiagent
Systems (2008)

9. Liu, L., Shell, A.: Physically routing robots in a multi-robot network: flexibility through a
three-dimensional matching graph. Int. J. Robot. Res. 32(12), 1475-1494 (2013)

10. Luna,R., Bekris, K.: Efficient and complete centralized multirobot path planning. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (2011)

11. Otte, M., Bialkowski, J., Frazzoli, E.: Any-com collision checking: sharing certificates in
decentralized multi-robot teams. In: Proceedings of the 2014 IEEE International Conference
on Robotics and Automation (2014)

12. Parker, L.E.: Encyclopedia of Complexity and System Science, Path Planning and Motion
Coordination in Multiple Mobile Robot Teams. Springer, New York (2009)

13. Peasgood, M., Clark, C.M., McPhee, J.: A complete and scalable strategy for coordinating
multiple robots within roadmaps. IEEE Trans. Robot. 24(2), 283-292 (2008). April

14. Ryan, M.: Graph decomposition for efficient multi-robot path planning. In Proceedings of the
20th International Joint Conference on Artifical Intelligence, pp. 2003-2008. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2007

15. Silver, D.: Cooperative pathfinding. In: Conference on Artificial Intelligence and Interactive
Digital Entertainment (2005)

https://cpslab.assembla.com/spaces/discof/

340 Y. Zhang et al.

16. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI Con-
ference on Artificial Intelligence (2010)

17. Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: Proceed-
ings of the 22nd International Joint Conference on Artifical Intelligence (2011)

18. Sturtevant, N., Buro, M.: Improving collaborative pathfinding using map abstraction. In: Arti-
ficial Intelligence and Interactive Digital Entertainment (AIIDE), pp. 80-85 (2006)

19. Wang, K.H.C., Botea, A.: Fast and memory-efficient multi-agent pathfinding. In: International
Conference on Automated Planning and Scheduling, pp. 380-387 (2008)

20. Yu,J.,LaValle, S.M.: Multi-agent path planning and network flow. In: Algorithmic Foundations
of Robotics X, vol. 86, pp. 157-173. Springer (2013)

21. Zuluaga, M., Vaughan, R.: Reducing spatial interference in robot teams by local-investment
aggression. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005. (IROS 2005), pp. 2798-2805, Aug 2005

	DisCoF: Cooperative Pathfinding in Distributed Systems with Limited Sensing and Communication Range
	1 Introduction
	2 Related Work
	3 DisCoF
	3.1 Problem Formulation
	3.2 Local Window
	3.3 Coupling in OC
	3.4 Computing mathcalQ

	4 Push and Pull
	4.1 Overview
	4.2 Assigning Priorities
	4.3 Maintaining and Expanding ω
	4.4 Analysis

	5 Conclusions
	References

