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Abstract We present a multi agent collaboration algorithm to recruit an approxi-
mate number of individually simple robots with controllable variance. We propose
a sigmoid response threshold function motivated by task allocation in social insects,
and describe macro-level models backed by micro-level simulations to predict the
resulting team sizes and their variance. These results are further validated through
physical experiments using the “Droplet” swarm robotics platform. We show that
the slope of the response threshold function can be used to control the variance of
group size, allowing agents to trade off deterministic team size with coordination
speed, and making the proposed mechanism applicable to a variety of applications.

Keywords Swarmrobotics - Multi-agent systems * Collaboration * Task-allocation -
Response-threshold

1 Introduction

We propose a probabilistic, threshold based multi agent collaboration algorithm and
analysis to recruit an approximate number of robots for a collective task. Recruiting
robots to collaboratively solve a task is a canonical problem in robotics [13]. Formally
introduced in the stick-pulling experiment, as described by Martinoli et al. [19, 20],
to recruit exactly two robots to collaboratively pull a stick out of the ground, Lerman
et al. [18] have extended this model to larger teams of constant size. In each case
the result of collaboration is binary, success or failure, based on whether an exact
number of robots are present at the collaboration site or not.
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We wish to extend the stick pulling model of constant group sizes of robots to
include a more general case of collaboration tasks that involve only approximate
robot group sizes for successful collaboration. More specifically, we deal with tasks
that have the property of “concurrent benefit” where single agents must wait for a
group—with a range of permissible size—to form at their collaboration site before
being able to collectively begin the task and complete it successfully. Examples of
such tasks include fire containment, collective transport [22], pattern recognition
[3], real-time mapping of oil spills [2], determining coverage area of forest fires
[17], and many others that require a subset of a swarm to coalesce and tackle a task
collaboratively.

A concrete example is fire containment (See Fig.1). Dropping incremental
amounts of water on a fire will be futile until a critical mass of robots drop their
water at the same time. Waiting for an exact number of robots, however, is not neces-
sary either, motivating a task allocation scheme that will result in an average number
of robots with predictable variance.

It is important to note that we do not study any particular task in detail but rather,
outline a general approach to modeling scenarios with the aforementioned proper-
ties. Here, tuning the permissible variance allows one to tune the likelihood with
which collaborations happen. Formally understanding the dynamics of the underly-
ing coordination mechanisms allows the designer not only to predict performance,
but also to optimize a swarming system [8].

The proposed algorithm and model is inspired from task allocation in biological
systems such as ant colonies [5, 16]. We employ the use of a response threshold
sigmoid function that probabilistically triggers the beginning of a collaboration step
between robots at the same collaboration site. We study this approach via macroscopic
models and microscopic simulations. The sigmoid function used in our model is
commonly referred to as the Logistic function and has control parameters that allow
us to alter its offset and slope. We study the effects that changing these parameters
has on the system-wide behavior of the robot swarm. We also draw comparisons
between this collaboration model and similar models used by Lerman et al. for the
n-robot stick pulling experiment [18] and discuss situations where it is beneficial to
use one model over the other.

The rest of the paper is organized as follows. Section 2 introduces the task alloca-
tion algorithm that we will be studying throughout the course of the paper. Section 3
provides a mathematical basis for the threshold based collaboration model and
attempts to explain how the voting strategy being employed affects group sizes and
their variance. Section4 provides an explanation of the agent level controller in the
system. This section further outlines the experimental setup being used to run simu-
lations and the important parameters of the system. We compare collaboration rates
of our model with the constant group size model introduced by Lerman et al. [18]
using micro-level Gillespie simulation in Sect. 4, showing that the dynamics are com-
parable for similar team sizes, yet allow us to tune the variance of the resulting group
size. We also discuss results obtained from conducting real physical experiments
and compare them to microscopic simulation results. Finally, Sects. 6 and 7 provide
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discussion of the drawbacks and limitations of the proposed model and scenarios
where it could fail as well as discussing possible avenues for future work.

1.1 Related Work

Task allocation is a canonical problem in multi-robot systems [13]. Whereas capable
robots might be able to approximate optimal task allocation, e.g., using market-based
approaches [1, 23] or using leader-follower coalition algorithms [7], probabilistic
algorithms are of particular interest for swarm robotics with individually simple
controllers [10]. Recruitment of an exact number of robots to a particular task has
been extensively studied using the “Stick Pulling” experiment [18, 19]. The problem
of distributing a swarm of robots across a discrete number of sites/tasks with a specific
desired distribution has been studied in [4, 8]. The proposed algorithm extends upon
the first group of work, and we show how the proposed stochastic task allocation
algorithm reduces to the ones described in [18, 19] when using appropriate para-
meters. Mather [21] instead presents a stochastic approach that is a hybrid between
the work in [4] and [19], allowing allocation to tasks requiring a varying number of
robots. While a response threshold function can also be applied to the swarm distri-
bution problem, this problem is complementary to the problem of recruiting teams
of varying sizes addressed in this paper.

2 Response Threshold-Based Task Allocation

We consider a generic collaboration task with m uniformly distributed collaboration
sites within a flat arena with area A. A swarm of individually simple robots such as
the Droplet platform [11, 15] is deployed within the arena, uniformly and at random.
The number of robots being used per experiment varies, as we discuss results for a
number of different scenarios. Collaboration sites in the arena can be of various sizes
and configurations.

Each individual agent is capable of locomotion [15] and local sensing [11]. The
agents do not require global positioning and no centralized controller exists, but we
assume each agent to be capable of local omnidirectional communication with other
agents within its communication range. The agents are also capable of sensing the
boundary of a collaboration site—we assume that sites have easily distinguishable
boundary regions, as shown in Fig. 1, for the purposes of the model studied in this
paper.

The objective of each agent in the robot swarm is to find a collaboration site in
the arena and perform a collective task with other agents at that site. The precise
details of the collective task are not important for the purpose of understanding the
coordination mechanism. We assume the actual collective task takes each agent a
probabilistic, finite amount of time to complete. Once collaboration is complete, the
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Fig. 1 A visual representation of the collaboration experiment firefighting scenario using the
Droplet swarm robotic platform

agent detaches itself from its current site and returns to searching for other sites in
the arena.

It is perfectly reasonable to assume that agents arrive at the same collaboration
site after having just completed a task there (possibly unsuccessfully) but will now be
part of a new collaboration group. Each agent individually decides whether or not to
collaborate at a given time step, while waiting at a collaboration site. If the majority
of agents at that site decide to collaborate then the entire population is recruited for
the task and thus a collective consensus is reached using a majority voting scheme.
Here, we consider a “majority” to mean exactly half or more of a given population.

An individual agent-i’s willingness to collaborate is a stochastic term governed
by a sigmoid based threshold function that takes as input, the number of agents
X currently at the same collaboration site as agent-i and outputs a probability of
collaboration using control parameters 6 and t:

1

S n) = sy ey

(D
The parameter 6 controls the slope of the sigmoid function, while 7 controls its off-
set along the x axis, as seen in Fig.2. Each agent is independently responsible for
estimating the group size x; at a given time either by direct sensing or by commu-
nication. In practice, this involves building a list of unique identifiers of the agents
sharing its collaboration site. The overall algorithm, followed by each individual
agent in the system, is provided in Algorithm 1.

Note that the proposed response threshold function is different from [5], who uses
high-order polynomials. While these functions work well in regimes with moderate
slope, they create numerical problems when approximating unit-step-like responses
such as those (implicitly) used in [18]. We particularly chose the Logistic function

from the large class of sigmoid functions due to the intuitive nature of the parameters
7 and 6.
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Fig. 2 Sigmoidal response threshold function and its parameters. a Changing t offsets the curve
along the x axis, allowing to set the desired mean team size. b Changing 6 changes the slope at the

point x* = 7, . (x*) = 0.5, allowing to control the team’s variance

Algorithm 1 Task allocation algorithm for an individual agent using the sigmoid

threshold function
function TASK_ALLOCATION(6, T)
estimate < discover_group_size()
decision < run_sigmoid(estimate, 0, T)
communicate_decision(decision)
decisions[] < gather_decisions()

result <— Count(decisionsl[], true) > Count() Returns the number of successes in the

decisions
if result > (estimate/2) then

Collaborate()
return

else
Task_Allocation(6, t)

end if
end function

3 Macroscopic Analysis

In this section we study how the local parameters t and 6 from an individual agent’s
sigmoid threshold function affect formation of groups of different sizes at the macro-

scopic system level.

3.1 A General Model of Probabilistic Task Allocation

Equation (1) is a cumulative probability density function approaching 1.0 as the
number of agents approaches infinity, thatis lim,_, o, . (x) = 1. For6 — 00, Eq.(1)

approximates the unit step:
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Although, unlike the unit step function, the limit on the leftin (2) is always continuous,
evenat x; = v where the value of the sigmoidis 1 /2. The proposed model is therefore
a generalization of the “stick-pulling” task allocation model with deterministic team
size [18], allowing us to tune the variable resulting group sizes using the tuning
parameters 7 and € in (1).

3.2 From Individual Choices to Team-Level Collaboration

Assuming the agents to be loosely synchronized, e.g., by considering decisions within
a finite window of time, determining a majority vote corresponds to a Bernoulli
trial with each agent flipping a biased coin—the bias being computed using the
sigmoid function—to decide whether or not to collaborate in the next time step.
The probability that exactly k agents collaborate from a population of n agents at
a collaboration site is given by the probability mass function (PMF) of a Binomial
distribution.

B(n, k) = (Z)Y(n)k (1= m)"* 3)

Since we care about the case when half or more of the agents (n/2) decide to
collaborate, the probability P (n) that half or more agents in a group of n collaborate
is the cumulative probability of the above PMF from k = n/2 to k = n.

n

Py =" (’Z)ﬂn)f (1- L )" “)

i=n/2

This equation describes the probability with which a group of size n at a given
collaboration site will decide to successfully collaborate. Note that (4) is only an
approximation for odd n, which requires rounding [n/2] to the next integer.

For large group sizes, the Binomial distribution approximates the Normal distri-
bution and (4) reduces to

n

P(n) = N (S (n),n(n)(1 — 7 (n))) )
n/2

Therefore, in a group of size n, and n reasonably high (see below), an average of
n.¥(n) robots will collaborate with group sizes of variance n.¥(n)(1 — . (n)). In
the special case of n = 7, 1.e., the group size has the desired value of 7, (5) evaluates to
P(t) = #(r) = 0.5. Therefore, the probability of a group of n agents to collaborate
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is identical to the probability of a individual agent to collaborate. In all other cases
(5) allows us to calculate the micro-macro matching from . (n) to P (n).

A caveat of (5) is that the Normal approximation yields poor results for small n,
usually smaller than 20, and is better when .%(x) is neither close to O or 1 [6]. In
these cases, exact solutions for P (n) require numerical solutions of (4) using what
is known as continuity correction [12].

4 Microscopic Model

As the proposed collaboration mechanism are strongly non-linear, we chose micro-
scopic stochastic simulations to explore the underlying dynamics of the system. The
approach followed to build the stochastic Gillespie simulation of the system is as
follows.

Perform random walk till a collaboration site is found (search state).
Perform algorithm, Task_Allocation (see Algorithm 1) (wait state).
Complete collective task and disperse. (collaborate state).

Return to search.

The probabilistic finite state machine that describes individual agent behavior
for this swarm system is shown in Fig.3. From the individual agent’s perspective
only one state each exists for wait and collaborate. From a probabilistic modeling
perspective, the wait and collaborate states are meta states, divided into m states
each, one for each collaboration site in the arena. This is done to clarify that the
probability of collaborating at a given site only depends on the number of agents at
that specific site and collaborations only happen between agents at the same site.

Fig. 3 Agent controller used W C

to drive group collaboration.

There is a search state and m Wi J Ci  H—
wait and collaboration states,

W; and C; respectively—one
for each collaboration site

Pc;s
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The probability psw, in the PESM model of the system shown in Fig.3 is the
probability that an agent encounters a collaboration site. This is geometrically com-
puted as the ratio between the total area of the search space (arena) and the total
area of collaboration sites, i.e. psw, = ns(A;s)/A (n; = number of sites, A; = area
per site). The probability, Py,c,, of going from a wait state to a collaboration state
is given by Eq. (4) with input Ny,, the number of agents at collaboration site-i. Pc,s
stochastically models the time it takes for an agent to complete a generic collabo-
rative task and is equal to 1/T, where T is the amount of time (on average) that it
takes an agent to complete the collective task. Note that agents have a zero proba-
bility of transitioning from the wait state back to the search without collaborating,
i.e. once an agent is at a collaboration site, it will not leave till a collaboration event
happens at that site. We chose the following numerical values for all simulations,
unless otherwise noted: A = 100 and A, = 10cm?.

For the sake of simplicity, consensus between agents—i.e. going from W; to C;—
at the same collaboration site is assumed to happen instantly and therefore the extra
state(s) is/are omitted from robot controller.

In order to compare the dynamics of the proposed probabilistic task alloca-
tion mechanism with the deterministic one by Lerman et. al [18], we implemented
a variation of the above algorithm using a unit-step at 7 instead of the sigmoid
function and removing the consensus step, which is not necessary in this model.

We use Gillespie simulation [14] to explore the dynamics of the proposed collab-
oration model. For both experiments a single collaboration site is used and each run
simulates 300 s of time. The desired group size (r, in Eq. 1) is set to 4, 8, 16 and 32
agents out of a total of 100 robots. The collaboration task is programmed to take 105,
on average, per agent. Data points are gathered by averaging data from 100 iden-
tically set up runs in each case. The rate of collaboration for the threshold model
is computed by summing the number of groups that successfully collaborate and
dividing by the total experiment time (300s). For the deterministic model, collabo-
ration rate is computed by summing all successful collaborations, i.e. collaborations
involving team sizes equal to 7, and dividing the the experiment time (3005s).

5 Results

We will first compare the dynamics of the proposed approach with Lerman et al.’s
k-collaboration model [18] and then validate the emergence of group sizes with
similar means but varying variances.

Figure4a shows collaboration rates for both models when 6 is set to 2 (for the
probabilistic model) and the wait time is set to oo (for the deterministic model),
in order to allow for a fair comparison. (All experiments are run in a regime where
infinite wait times are optimal wait times, i.e., there are more agents than collaboration
sites.) Figure4a, b and ¢ show collaboration rates for 8 = 2,6 = 1 and 6 = 0 with
infinite wait time. With 6 = 0, the Logistic function is uniformly 0.5, allowing any
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Fig.4 Comparison of the collaboration rate for task allocation with probabilistic and deterministic
[18] for different values of 6 and team sizes T in an environment with one collaboration site and
one hundred robots. a6 =2. b6 =1.¢6 =0

team size to form. With increasing 6 the Logistic function approximates a unit step,
minimizing the variance.

‘We observe the collaboration rate to be qualitatively and quantitatively very similar
for high values of 9 (steep slope), and to exceed that of the deterministic model for
very low values of 6 (flat slope). This is expected as flat slopes increase the variance
of the observed group size and therefore allow much smaller teams than t agents to
collaborate.

Figure 5 shows histograms of the resulting group sizes for various values of T =
4,8,16,32 and 6 = [0; 0.1; 1] (100 simulations per data point). It is clearly seen
that when 6 is set to 0, the sigmoid becomes constant (.*/(x) = 1/(1 + e%) = 0.5)
so agents have an equal probability to want to collaborate or not, no matter what the
desired group size is. We therefore see a large number of small groups forming, with
most groups consisting of 2 agents. This is to be expected since the expected number
of agents willing to collaborate in a group of size 2 is 1, given the probability of
collaboration is constant at 0.5.

Figure 6a displays average group sizes as 6 is varied from O to 1 and 7 from 4 to
32 based on the data from Fig.5. We observe that for large enough values of 6 the
mean of the group size distribution approaches the desired group size and is largely
unaffected by increasing 6. Thereafter, its magnitude depends only on t except in
the special case where § = 0 where it is constant. The relative error of the mean
compared to the desired average decreases with increasing number of agents as the
Binomial distribution (4) approximates the Normal distribution (5).

Figure 6b shows how the variance of group size decreases with increasing 6.
This is because the sigmoid function approximates the unit step, making the team
size more and more deterministic. On the other hand, low values of 6 lead to large
variances in the group size. For § = 0, the variance is constant for all values of r and
depends exclusively on the total number of robots.

Finally, we use the Droplet swarm robot platform to perform real experiments to
study the effects of using the proposed task allocation scheme on a physical system.
The Droplets are small individually simple robots capable of omni-directional motion
and communication (via IR) as well as sensing patterns projected from above. In our
experiment we assume that all agents have already arrived at a collaboration site and
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measure the corresponding collaboration rates for a team of 6 robots while varying
values of T and 6. Each agent is individually running the algorithm described in
Algorithm 1. A collaboration event is recognized by having all the robots turn on
their green LEDs for 5 s. After such a collaboration event, each agent resets its group

size estimate and runs Algorithm 1 again.
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We ran 5 repeated experiments for all 15 combinations of t = 3,4,5,6 and 7,
and 0 = 0.1, 1 and 10, totally 75 runs. Each experiment lasted 15 min and an over-
head camera system was set up to detect collaboration events using the software
RoboRealm. The collaboration rate was a value computed by counting the number
of collaborations over the course of each 15min experiment, normalizing to col-
laborations per minute, and averaging over the 5 repeated runs. To account for the
vision software’s detection errors, the raw data gathered from each experiment was
de-bounced and passed through a low-pass filter to expose real collaboration events
while eliminating observation error. The results of these experiments are seen in
Fig.7. While results are in accordance with simulation for 6 being low, the collab-
oration rate on the real robot platform is much lower than expected for larger 6 as
simulation assumes perfect communication and group size estimates.

6 Discussion

Results in Figs.4, 5 and 6 show that the proposed threshold-based task allocation
mechanism is a generalization of the deterministic Lerman model in that it allows to
approach what is seen with deterministic group sizes while retaining the elasticity
to vary group sizes along any desired range of values. Also, these plots show how
altering microscopic control parameters within the agents, 6 and t of their sigmoid
functions, directly affects macroscopic behavior of the swarm system by altering
means and variances of formed group sizes, respectively. Although the matching
between microscopic results and macroscopic prediction is not perfect due to the
discrete approximation, the plots show that a wide range of means and variances are
feasible. Finding appropriate parameters to reach these could be easily achieved using
a suitable optimization framework such as presented in [4, 8], using the macroscopic
predictions as initial estimate.

The proposed task allocation algorithm requires an estimate of the group size at
each collaboration site as well as the ability to communicate with the group in order
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to reach a consensus. While these assumptions seem to be limiting at first sight,
they can be rolled into the analysis process and possibly exploited to design the
task allocation process. For example, an increasing variance for observing the group
size T or noise in the consensus process simply increase the variance of the task
allocation process and could therefore be countered—to some extent—by altering
the properties of the response threshold function.

This effect is clearly observed in the physical experiment results (see Fig.7).
Since the communication between real robots is not perfect, they almost always
underestimate the size of their group resulting in lower collaborations for high 6
and 7 values. As we observe from comparing the micro simulation results—that
are modeled with perfect communication—with real experiment data, we observe
a large discrepancy when 6 = 10. This happens because although individual agents
are set up to be in a group of size 6, their estimates for the group size never cross 4
due to imperfect and blocked communication. Coupled with the fact that the sigmoid
threshold effectively acts as a step function when 6 = 10, this results in approx. 0
probability of collaboration between agents for a desired group size of 6 but a group
size estimate of <4. Lower values of 6 result in better matching between real and
simulation data since lower slopes effectively increase the variance in allowed group
sizes and mitigate this effect.

We note that there is no optimal wait time as in stick pulling-like collaboration
[18]. This optimum exists in swarms with less robots than sticks, which is shown
analytically in [19]. Such an optimum does not exist in the proposed model as there
is a non-zero probability team sizes with n < t will eventually collaborate. Indeed,
Algorithm 1 eventually completes as . (x) > 0V x, i.e., even if only very few robots
are at a collaboration site and 7 is large, there is a non-zero probability that half or
more of the agents at the site eventually collaborate (see also Eq.4).

Although the algorithm does not deadlock—the probability to collaborate even if
the team size is far off the desired value—the resulting behavior might be undesirable,
resulting in potentially very long wait times and poor task performance. This could be
mitigated by introducing preferential detachment from small groups and preferential
attachment to larger groups as customary in swarm robotic aggregation [9].

In practice, effective collaboration rates will also be limited by the embodiment
of the robots, which might make finding physical space at a site cumbersome. In the
presented microscopic simulation, for both stochastic and deterministic team sizes,
the number of robots per site were not limited, allowing scenarios in which multiple
groups collaborate in quick succession at the same site. While comparing both models
without embodiment is reasonable, we wish to study the effect of embodiment in
future work.

7 Conclusion

This paper introduces a task allocation algorithm that allows to recruit an approximate
number of agents with a desired variance to a task. This allows to trade-off task
execution accuracy with speed, resulting in increasing collaboration rates for teams
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with larger variances. We demonstrate that task allocation of teams with deterministic
size is a subset of the proposed stochastic task allocation mechanism. As such,
the proposed framework provides a computationally simple, adaptive, and robust
alternative for coordination.

We investigate the limitations of the proposed approach, which shows lesser
fidelity in macroscopic predictions if team sizes are small. In future work, we wish
to investigate the impact of variance in estimating the number of agents waiting at a
collaboration site as well as the impact of unrel iable communication between agents,
both of which we conjecture to impact the variance of resulting team sizes in a similar
way as the slope of the response threshold function. We are also interested in study-
ing preferential attachment/detachment techniques from swarm robotic aggregation
in order to improve scenarios with insufficient numbers of robots for strong teams to
emerge.
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