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Series Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines: biomechanics, haptics, neurosciences,
virtual simulation, animation, surgery, and sensor networks among others. In return,
the challenges of the new emerging areas are proving an abundant source of
stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

DARS is a well-established single-track conference that gathers every 2 years
the main researchers in Distributed Autonomous Robotic Systems. Since the 10th
edition in 2010, STAR has welcomed DARS among the volumes resulting from
thematic symposia devoted to excellence in robotics research.

The volume edited by Nak Young Chong and Young-Jo Cho offers in its 32
chapters an interdisciplinary collection of technologies, algorithms, system archi-
tectures, and applications of advanced distributed robotic systems. The contents are
effectively grouped into four thematic sections: collaborative exploration, local-
ization, and mapping; cooperative manipulation and task allocation; formation
control and path planning; multi-robot communication and control architecture.



vi Series Foreword

Rich by topics and authoritative contributors, the 12th edition of DARS in 2014
culminates with this unique reference on the current developments and new
directions in the field of distributed autonomous robotic systems. A very fine
addition to STAR!

Naples, Italy Bruno Siciliano
August 2015 STAR Editor



Preface

The latest volume in the Distributed Autonomous Robotic Systems series consti-
tutes the thoroughly reviewed post-conference proceedings of the 12th International
Symposium on Distributed Autonomous Robotic Systems (DARS 2014), which
was held at the Daejeon Convention Center, Daejeon, Korea, November 2-5, 2014.
Following the tradition established by the previous symposiums since 1992, the
goal of DARS 2014 has been to exchange and stimulate research ideas to realize
advanced distributed robotic systems. Distributed robotics is a rapidly growing,
interdisciplinary research area lying at the intersection of computer science, com-
munication and control systems, and electrical and mechanical engineering.
Stunning examples of cutting-edge technologies, algorithms, system architectures,
and applications were presented and discussed during a single-track, three-day
symposium. Building on the momentum of successful previous symposiums,
DARS 2014 also provided a supportive and exciting environment for academics
and practitioners to present and discuss their novel theoretical results, implemen-
tations, and applications in distributed autonomous robotic systems.

DARS 2014 received a total of 81 papers from 11 countries. Sixty papers were
submitted to the regular paper track and 21 papers were submitted to the
work-in-progress paper track. For the first time in the history of DARS, the
work-in-progress poster session was designed to allow authors to present new
challenges and directions, and early and emerging results from both academia and
industry, providing a forum for the discussion of timely topics and promising yet
still-undeveloped ideas. This effort will further push the boundaries of our scientific
and technical limits and expand the horizons of DARS beyond academia. The final
technical program consists of 29 papers in a total of nine oral sessions and 25
papers in one poster session. The oral session provides a platform for authors to
present and discuss their new findings and controversies in a formal way within a
20-minute time slot. The 80-minute poster session allows authors to facilitate more
personal interactions with more targeted and interested audiences, and affords more
time to present their work in depth.

vii
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Finally, 32 papers of the highest quality, carefully selected and revised after the
symposium, are included in this volume. These papers will give a broad, yet
focused perspective categorized into the following four areas: (1) collaborative
exploration, localization, and mapping, (2) cooperative manipulation and task
allocation, (3) formation control and path planning, and (4) multi-robot commu-
nication and control architecture. Well-defined specific research problems in the
respective topic areas are investigated and analyzed on theoretical grounds and
experimental confirmation under real-world conditions. Specifically, this volume
elaborates on “distributed autonomy” that is efficient and scalable compared to the
best-known centralized algorithms in the literature, and envisions ways it can
evolve to be more sustainable. The latest findings and implications learned from all
of the above-mentioned areas will help readers understand how and why various
forms of cooperative interactions emerge and flourish in distributed autonomous
robotic systems, and push them into today’s demanding applications and large-scale
distributed systems. This volume will be of great use to postgraduate students,
researchers, and practitioners wishing to study a range of current and emerging
issues and specific topics in distributed autonomous robotic systems.

In addition to ten regular sessions centered on distributed autonomy themes,
DARS 2014 was honored to have four distinguished plenary session speakers. The
titles and abstracts of the plenary lectures are given below:

Distributed Systems for Urban Mobility

Professor Emilio Frazzoli, Massachusetts Institute of Technology, USA

The first part of this talk will concentrate on self-driving cars, and their impact on
personal mobility in urban settings. Research and development on self-driving cars
is currently very active, and cars able to drive safely and reliably without need for
human supervision are no longer science fiction. Indeed, several companies and
universities have demonstrated vehicles able to drive autonomously in traffic, in the
process building social awareness and pushing the boundaries of current regulations
and risk management practices. At this point, a natural question to ask is: what is
the point of autonomous cars? Is autonomy indeed a transformative technology,
with a potential to drastically redefine mobility? If so, in what ways, and when?

I will argue that the “killer app” for self-driving cars is car sharing, and will
provide analytical guidelines and financial justification for the design of
shared-vehicle mobility-on-demand systems. As a case study, we consider replacing
all modes of personal transportation in a city such as Singapore with a fleet of
shared automated vehicles, able to drive themselves, e.g., to move to a customer’s
location. Using actual transportation data, our analysis suggests a shared-vehicle
mobility solution can meet the personal mobility needs of the entire population with
a fleet whose size is approximately one-third of the total number of passenger
vehicles currently in operation.
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The second part of the talk will concentrate on distributed algorithms for traffic
signal control. The proposed algorithms are adapted from backpressure routing,
which has been mainly applied to communication and power networks. Our
algorithm ensures global optimality as it leads to maximum network throughput
even though the controller is constructed and implemented in a completely dis-
tributed manner. Simulation results show that our algorithm significantly outper-
forms state-of-the-art algorithms.

Multi-robot Collision Avoidance and Applications

Professor Beom Hee Lee, Seoul National University, Korea

Nowadays, multi-robot operations are acknowledged as a common practice in
industry for various tasks. The state of the art of multi-robot systems is described in
the first statement. Multi-robot research issues are then discussed in terms of the
operational strategies: centralized, distributed, and mixed operational schemes.
Next, we show that one of the main issues in multi-robot operation is the problem of
collision avoidance. We also show the importance of the collision avoidance
problem in multi-robot operations. For multi-robot collision avoidance, a special
tool, called the collision map, is introduced and applied to this problem. More deep
analysis and investigation are presented for an application of the collision
map. Various types of collision maps are then introduced with several possible
applications. Also, robot path modification is viewed in terms of collision avoid-
ance using the concept of the collision map. Various applications using the collision
map are presented for a problem of 100 multi-robot operations, a stealth intruder
intercept scheme, and efficient multiple cleaning robots operation. Especially, the
load balancing in multiple cleaning robots are realized using the collision
map. Finally, future applications using multi-robot systems are briefly discussed.

Design and Navigation of Robots that Roll, Run, and Fly

Professor Roland Siegwart, ETH Zurich, Switzerland

Robots are rapidly evolving from factory workhorses, which are physically bound
to their work-cells, to increasingly complex machines capable of performing
challenging tasks as search and rescuing, surveillance and inspections, planetary
exploration or autonomous transportation of goods. This requires robots to operate
in unstructured and unpredictable environments and various terrains. This talk will
focus on design and navigation aspects of wheeled, legged, swimming and aerial
robots operating in complex environments. Our wheeled robots are designed to
move on complex grounds or to autonomously drive in parking lots. For our
quadruped walker we are researching optimal ways to exploit the natural dynamics
and serial elastic actuation. Our swimming robots take inspiration from natural
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counterparts for optimal propulsion, and with our micro-helicopter projects we
approach autonomous flights and inspections in cluttered and very narrow indoor
environments as well as GPS-denied visual navigation in cities. And our small solar
airplanes are capable of staying in the air indefinitely and flying close to the ground
thanks to onboard vision.

A Synchronization Control Approach to Networked Robotic
Systems

Professor Dong Sun, City University of Hong Kong, Hong Kong, China

Nowadays cooperative controls of networked robotic systems have become a hot
research area with dramatically increased popularity. Synchronization is a common
timekeeping methodology which requires the coordination of events to operate a
system in unison. This talk will introduce our researches of using synchronization
control approach to motion coordination of networked robots. The idea of syn-
chronizing multiple coordinative robots to achieve a common goal is inspired by
many examples found in nature. Our strategy is to control each robot to track along
its desired trajectory while synchronizing its motion with the other robots to keep
relative kinematics relationship as required by the coordination. To achieve this
goal, we firstly pose the motion coordination problem as a synchronization control
problem while defining the synchronization error based on the coordination
requirement, and secondly we develop a synchronous controller that can guarantee
both position and synchronization errors to approach zero asymptotically. Two case
studies are conducted to demonstrate this synchronization approach. The first case
study is to control formations of swarms of mobile robots to follow time-varying
formations, with further extensions to various industrial applications such as
coordination of multi-robot manipulators, multi-axis controls, and contouring error
minimization of CNC machines. The second case study is to use a robotic cell
manipulation system to transfer multiple biological cells in biomedical applications.
Furthermore, DARS 2014 had the Best Paper Award competition intended to
recognize excellence among papers with substantial novelty and research contri-
bution. The following papers were nominated in random order for the Best Paper
Award by the Program Committee based on reviewer comments and scores.

¢ Distributed Online Patrolling with Multi-Agent Teams of Sentinels and
Searchers
Nicola Basilico', Timothy H. Chung?, and Stefano Carpin’
1University of Milan, Italy, *Naval Postgraduate School, USA, 3University of
California, USA

e Human-Robot Collaborative Topological Exploration for Search and
Rescue Applications
Vijay Govindarajan, Subhrajit Bhattacharya, and Vijay Kumar
University of Pennsylvania, USA
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e Cooperative Mobile Robot Control Architecture for Lifting and
Transportation of Any Shape Payload
B. Hichril, L. Adouanez, J.-C. Faurouxz, Y. Mezouarz, and L. Doroftei’
nstitut Pascal Clermont Ferrand, France, ’Institut Pascal Clermont Ferrand,
France, *Gheorghe Asachi Technical University of Iasi, Romania

e A Repartitioning Algorithm to Guarantee Complete, Non-overlapping
Planar Coverage with Multiple Robots
Kurt Hungerford', Prithviraj Dasgupta', and K.R. Guruprasad®
1University of Nebraska, USA, ’National Institute of Technology, India

e A Response Threshold Sigmoid Function Model for Swarm Robot
Collaboration
Anshul Kanakia, John Klingner, and Nikolaus Correll
University of Colorado, USA

e Glider CT: Analysis and Experimental Validation
'Dongsik Chang, *Wencen Wu, and 'Fumin Zhang
'Georgia Institute of Technology, USA, “Rensselaer Polytechnic Institute, USA

The Best Paper Award went to Anshul Kanakia, John Klingner, and Nikolaus
Correll for their paper “A Response Threshold Sigmoid Function Model for Swarm
Robot Collaboration.” The winner was decided during the symposium by the
Award Committee based on the technical merit and significance of the paper and
quality of presentation. Listed below are the Program Committee and Award
Committee members.

Program Committee

Asia/Oceania, Chair, Jun Ota (The University of Tokyo, Japan)
Marcelo H. Ang Jr. (National University of Singapore, Singapore)
Han-Lim Choi (KAIST, Korea)

Xavier Defago (JAIST, Japan)

Robert Fitch (University of Sydney, Australia)

Norihiro Hagita (ATR, Japan)

Sang Hoon Ji (KITECH, Korea)

Dongjun Lee (Seoul National University, Korea)

Geunho Lee (University of Miyazaki, Japan)

Azman Osman Lim (JAIST, Japan)

Makoto Mizukawa (Shibaura Institute of Technology, Japan)
Hyun Myung (KAIST, Korea)

Anton Satria Prabuwono (UKM, Malaysia)

Kwee-Bo Sim (Chung-Ang University, Korea)

Chieh-Chih Wang (National Taiwan University, Taiwan)
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North America: Chair, Timothy H. Chung (Naval Postgraduate School, USA)
Nora Ayanian (University of Southern California, USA)
Spring Berman (Arizona State University, USA)

Sourabh Bhattacharya (Iowa State University, USA)

Zack Butler (Rochester Institute of Technology, USA)
Stefano Carpin (University of California, Merced, USA)
Nikolaus Correll (University of Colorado, Boulder, USA)
Karthik Dantu (University at Buffalo, State University of New York, USA)
Rafael Fierro (University of New Mexico, USA)

Emilio Frazzoli (Massachusetts Institute of Technology, USA)
Eric Frew (University of Colorado, Boulder, USA)

Maria Gini (University of Minnesota, USA)

Geoffrey Hollinger (Oregon State University, USA)

Ayanna Howard (Georgia Institute of Technology, USA)

Ani Hsieh (Drexel University, USA)

Kiju Lee (Case Western Reserve University, USA)

James McLurkin (Rice University, USA)

Nathan Michael (Carnegie Mellon University, USA)

Dejan Milutinovic (University of California, Santa Cruz, USA)
Michael Novitzky (Georgia Institute of Technology, USA)
Daniel Pack (University of Texas at San Antonio, USA)
Toannis Rekleitis (McGill University, Canada)

Alessandro Renzaglia (University of Minnesota, USA)

Brian Sadler (US Army Research Laboratory, USA)

Ketan Savla (University of Southern California, USA)

Mac Schwager (Boston University, USA)

Wei-Min Shen (University of Southern California, USA)
Gabe Sibley (George Washington University, USA)

Stephen Smith (University of Waterloo, Canada)

Don Sofge (Naval Research Laboratory, USA)

Manuela Veloso (Carnegie Mellon University, USA)

Fumin Zhang (Georgia Institute of Technology, USA)

Europe, Chair, Fulvio Mastrogiovanni (University of Genoa, Italy)
Rachid Alami (LAAS/CNRS, France)

Francesco Amigoni (Politecnico di Milano, Italy)

Torbjorn Dahl (Plymouth University, UK)

Marco Dorigo (Université Libre de Bruxelles, Belgium)
Alessandro Farinelli (University of Verona, Italy)

Luca Maria Gambardella (IDSIA, Lugano, Switzerland)
Paolo Robuffo Giordano (IRISA/ INRIA Rennes, France)
Roderich Gross (University of Sheffield, UK)

Sandra Hirche (TUM, Munich, Germany)

Pedro U. Lima (Istituto Superior Tecnico, Lisbon, Portugal)
Lino Marques (University of Coimbra, Portugal)
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Philippe Martinet (Ecole Centrale de Nantes, France)
Francesco Mondada (EPFL, Lausanne, Switzerland)
Daniele Nardi (Universita La Sapienza, Rome, Italy)
Paolo Remagnino (Kingston University London, UK)
Antonio Sgorbissa (University of Genova, Italy)

Award Committee

Han-Lim Choi (KAIST, Korea), Chair

Marcelo H. Ang Jr. (National University of Singapore, Singapore)
Roderich Gross (University of Sheffield, UK)

Dongjun Lee (Seoul National University, Korea)

Hyun Myung (KAIST, Korea)

Mac Schwager (Boston University, USA)

We would like to offer our sincere thanks to the Organizing Committee members
(Chair, Dr. Young-Jo Cho, ETRI, Korea) for their hard work and outstanding
contributions, and the Steering Committee members (Chair, Prof. Hajime Asama,
The University of Tokyo, Japan) for their helpful guidance and support. Special
thanks are extended to the Program Co-chairs (Prof. Jun Ota, The University of
Tokyo, Japan, Prof. Fulvio Mastrogiovanni, the University of Genoa, Italy, and
Prof. Timothy H. Chung, the Naval Postgraduate School, USA) for their time and
effort in attracting and recruiting qualified Program Committee members and col-
lecting high-quality papers. We would also like to express our deep appreciation to
the Program Committee and Award Committee members for their hard work and
dedication. They all devotedly struggled to shape and maintain the highest quality
levels of the final program within a very tight time frame. Last but not least, we
would further like to express our heartfelt thanks and appreciation to all the par-
ticipants for their active engagement in the symposium program and all the con-
tributing authors in this volume.

Both academics and practitioners are invited to enjoy the very essence of DARS
2014, full of innovative ideas and practical strategies for implementation!

Nak-Young Chong
Young-Jo Cho
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Distributed Online Patrolling
with Multi-agent Teams of Sentinels
and Searchers

Nicola Basilico, Timothy H. Chung and Stefano Carpin

Abstract We consider the problem of patrolling an assigned area using a team of
heterogeneous robots consisting of sentinels and searchers in the presence of stochas-
tic arrivals of attacks. Sentinels and searchers operate using a different sensor model
featuring a tradeoff between accuracy and the sensed area. Using an approach based
on queuing theory, we derive an accurate analytic characterization of the patrolling
performance that can be used to predict the behavior of a given configuration or
inform the composition of a team in order to meet a desired target performance.
Extensive simulation results corroborate our theoretical findings.

Keywords Surveillance - Variable resolution search + Cooperative robots

1 Introduction

Among the many uses envisioned for teams of coordinated autonomous robots, tasks
related to intelligence, surveillance and reconnaissance (ISR) continue to be at the
forefront of research in distributed robotics. Teams of robots can implement search
and patrolling strategies that complement and enhance human performance while
reducing costs, increasing resilience, and decreasing operational risks for humans.
Recent developments in the area of unmanned aerial vehicles (UAVs) have added
momentum to this very active research area, in particular with the development of
vertical take-off and landing vehicles, such as quadrotor UAVs [10].
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In the recent past we have studied the problem of robotic search and patrolling
using a single quadrotor UAV [1, 5]. Our initial modeling efforts and theoretical find-
ings were corroborated with extensive field experiments demonstrating the validity
of our assumptions [4]. A characteristic aspect of this class of vehicles is that their
sensing resolution can be adjusted on the fly byKeeping this in mind varying their
elevation—a fact already evidenced in [14]. Therefore, when planning how to allocate
the search effort in space and time, one should also explicitly consider the variable
sensor accuracy, defined here as detection probabilities. In fact, sensors and sensor
processing algorithms have preferred operating conditions and one should strive to
operate in those regions, when possible. Needless to say, operating in a regime offer-
ing the highest accuracy often comes at the cost of reducing the sensing area, thus
creating opposing objectives. Our former works in this area have exactly explored
this tradeoff in the single agent case.

In this paper we extend our existing work by considering how teams of heteroge-
neous robots can jointly patrol an assigned area. Our setup consists of two classes
of robots, called sentinels and searchers. Sentinels and searchers operate at different
elevations, and their sensors are then subject to different performances. The role of
sentinels is to detect intrusions' and to then alert and dispatch searchers for their
removal. Sentinels are stationary and capable of detecting intruders within large
areas, whereas searchers are mobile and capable of removing the intruders, but their
sensing area is much smaller. Both sentinels and searchers are equipped with faulty
sensors incurring false alarms and missed detections. We model the problem using
an approach based on queueing theory and we characterize the steady state behav-
iors of the queues using parameters characterizing the agents’ sensors as well as the
search strategy implemented by the searchers once dispatched. The derived model
provides the basis for addressing various design and analysis questions. For exam-
ple, we can anticipate the performance of a given composition and configuration
of sentinels and searchers when contrasting different temporal and spatial stochas-
tic profiles of intruder attacks. Alternatively, we can determine the optimal size and
make-up of a team of sentinels and searchers in order to match a desired performance.
Our approach is distributed in the sense that all processing is local to the agents and
no information exchange is required. The only communication within the system is
from the sentinels to the searchers, i.e., sentinels dispatch searchers when an intru-
sion is detected but sentinels do not communicate with each other, nor do searchers,
respectively. By reducing the amount of exchanged communication and not having
a centralized computational center, the resiliency of the system to individual failures
increases—a key tenet of distributed robotic systems.

The rest of the paper is organized as follows. Selected related works are discussed
in Sect. 2. The formal definition of the problem is given in Sect. 3. The formalization
based on queueing theory is given in Sect. 4 and simulations substantiating our find-
ings are presented in Sect. 5. Finally, conclusions and future works are given in Sect. 6.

IThroughout this paper we use terms like intrusion, attack and the like that come from the security
games literature. Clearly these events encompass a broader scope and may be related to phenomena
not necessarily triggered by an antagonistic opponent.
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2 Related Work

Algorithmic models for addressing the proposed patrol problem and its variants
have been explored extensively in various communities, including robotics, opera-
tions research, and industrial engineering, with operational relevance and significant
impact in application areas such as law enforcement, perimeter security, and ship-
ping logistics. Of closest relevance to this paper are formulations of the dynamic
vehicle routing problem in relation to algorithmic queuing theory, such as in [3, 8],
in which events requiring servicing appear in the environment stochastically, such
as random arrivals of intruders in a protected area, requiring one or more agents to
prioritize and visit these locations in an online manner. Alternate formulations con-
sider patrol sequences under different assumptions for intruder arrivals, such as cases
where intrusion sites are determined according to known probability distributions or
by assuming adversarial intruders requiring game-theoretic design of patrols [9].
Commonly used objectives in such patrol problem formulations include minimizing
the average or worst case revisit rate to return to a given location, which has cor-
respondence to measures of service rates and wait time in queuing theory models
[7, 12]. Other metrics, such as maximized area coverage for sensor deployments
[2, 13], enable decentralized control laws to govern persistent surveillance of areas.
However, these previous models do not incorporate the possibility of imperfect detec-
tions of the events, for which Bayesian methods found in probabilistic search the-
ory [5, 6] provide key insights.

The main theoretical and algorithmic contributions of the proposed work address
the challenge of persistently surveilling an area with distributed probabilistic sensors,
both fixed and mobile, that are prone to false positive and false negative detections.
In addition, this paper highlights insights into the tradeoff in using multi-scale rep-
resentations of the environment with varying numbers and compositions of such
heterogeneous sensors.

3 Problem Definition

We consider the problem of patrolling a planar region using a team of multiple UAVs.
We adopt a discretized representation of the environment, namely a regular grid ¢
composed by k equally sized square cells. Any cell ¢ can be the target of a malicious
activity referred as attack. Attacks can be ongoing in one or multiple cells at any
given time and only searchers can remove them by performing a clear action. A loss
Sunction 1: 4 — R assigns to each cell ¢ a value /(c) which is the cost incurred
per unit time while an attack is taking place at cell c.

Given this general background, we define a metric to evaluate the performance of
any team of agents independently from their number and their coordination mecha-
nism. Similarly to the metric we introduced in [1], let a(c, t) be a function describing
the spatio-temporal realization of attacks, where a(c, t) = 1 if at time ¢ an attack is
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present in cell ¢, and a(c, t) = 0 otherwise. Without loss of generality, we assume
that a patrolling mission starts at time + = 0 and ends at time 7. We then define our
performance metric as:

T
o(T) :Zl(c)/o a(e, t)dt (1)

ce¥

Equation 1 is the sum of k integrals, each measuring the time every cell is under
attack (scaled by the loss attributed to the cell). Differently from [1], here we consider
continuous time to ease our subsequent theoretical analysis based on queueing theory.

The heterogeneous patrolling team consists of N = M + R agents,with1 < M <
|¢|and R > M. M agents are of type sentinel while R are of type searcher. Sentinels
are stationary agents which repeatedly scan large portions of the environment for the
presence of an attack in that region. When a sentinel observes a positive reading, it
dispatches a searcher. Searchers are instead moving agents capable of conducting
fine-grained, find—and—clear tasks over some area. Searchers try to localize and clear
attacks within the region assigned to the sentinel that dispatched them. In pursuing
such task, they will follow some search strategy and will be subject to a finite temporal
budget limit. Due to the limited temporal budget and to the use of faulty sensors
resulting in missed detections, searchers may fail to detect and remove an intruder
present in their assigned area.

The stochastic process of attacks. We consider a situation where the environment
is constantly under the threat of attacks which can randomly occur at any time and
at any place. We adopt a common assumption from patrolling literature (see, for
example, [3]) according to which arrival times for attacks obey a Poisson distribution
while their spatial location is determined according to some discrete probability
distribution over ¢. More formally, the inter-arrival time in the whole environment
is modeled by an exponential variable with parameter A while the specific cell ¢ is
chosen with a probability proportional to the value /(c), i.e., once an attack arrived
in the environment, the probability that it will be located at cell ¢ is

()
e Lm)”

Once started in a cell ¢, an attack persists until it is eventually cleared. Note that,
based on this model, the same cell may suffer from multiple concurrent attacks.
Defending the environment with sentinels and searchers. Each sentinel i is
stationed at a fixed location and is tasked with monitoring a sub-portion of the
environment ¢, C ¥¢. Different assumptions can be made on how sub-portions are
defined and where sentinels are positioned. For example, if a Voronoi partition is
used, the sentinel could occupy the generator points associated with each partition [2].
Consistent with our sensor model, we adopt a representation based on probabilistic
quadtrees [4]. Each sentinel guards a rectangular area %;, and all ¥;s constitute
a partition of ¢ (see Fig.2 for a visual representation). All areas assigned to the

Pr[c] = (2)
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sentinels are equally sized and sentinels are therefore all positioned at the same
elevation. With each sensing action, sentinel i obtains a binary reading which, if
positive, is interpreted as evidence that at least one attack is currently present in
¢;. No additional information is provided for the location of the attack, that is,
uniform spatial uncertainty over the cells of ¥; is assumed. With probability «, a
sentinel receives a positive reading even if no attack is present in its region (false
positive), and with probability 8, a negative reading occurs when at least one attack
is present (missed detection). Such false positives and missed detection rates depend
on the sensor resolution, e.g., defined by the altitude, at which sentinels are located
(see [4]). Each sentinel inspects its assigned area for the presence of attacks on a
periodic basis every A time units.

Assoon as a sentinel receives a positive detection (whether true or false), a searcher
is dispatched over ¢;. A searcher’s objective is to find and clear ongoing attacks in
that area. To this end, it searches the area to determine which cells within ¢, are under
attack. Once a cell ¢ is believed to be under attack above some level of confidence, a
clearing action is undertaken. We assume that when such action is performed, if an
attack is indeed present, then it is always neutralized. (If more attacks are present,
then only the one that has been residing there for the longest time is cleared in a
FIFO fashion).

The execution of this task poses the problem of using a patrolling strategy with
which a searcher can be driven in the decisions about where to sense next and when to
perform clearing actions trying, at the same time, to locally minimize the performance
metric. In introducing our two—type based architecture, we opt for searchers driven
by deterministic strategies. Such strategies are defined as cyclically repeated paths
that scan every cell on a periodic basis. Examples of such strategies are the sweep
and the lawn mower patterns [6]. In fact, from a practical perspective these strategies
are nowadays still the most widely used in the field. The reason for this restriction
to deterministic strategies comes from their relatively simple characterization under
statistical terms. This allows us to provide a neat theoretical analysis of our two—
type approach, without the cumbersome technicalities that more complex patrolling
strategies would have introduced. Such investigations belong outside the scope of
this paper and will be the subject of our future research on this problem.

We assume that each searcher is given a time budget B. As soon as such budget
is completely consumed, the searcher ends its patrolling mission and returns to the
base station. Just like sentinels, each searcher s is equipped with faulty detection
sensors whose false positive and missed detection rates are denoted with o and S,
respectively.

4 Theoretical Analysis

Our eventual objective is to evaluate the loss value defined in Eq. 1 as a function of
the various parameters characterizing the system. Inspired by [3], in this section we
answer this question relying on queueing theory. The relevant parameters are:



8 N. Basilico et al.

o, B: false positive/missed detection rates by each of the sentinels;

A: interval between two successive scans by a sentinel;

A: probability that an attack occurs within the area assigned to the sentinel guarding
cell ¢ during an interval of time A;

N =1 — A: probability that no attack occurs;

oy, Bs: false positive/missed detection rates of each of the searchers (in general
different than values for the sentinels).

To evaluate the loss, we associate a queue to each cell ¢ and we determine its
steady state behavior. This is simpler than modeling all attacks occurring in ¢ with a
single queue. Once the steady behavior of each queue is determined, the overall loss
can be evaluated simply adding up the loss accrued in each individual cell. Let Q. be
the queue associated with cell c. Using Kendall’s notation, Q. can be modeled as a
M /G /1 queue. Note that in general each of the queues is characterized by a different
set of parameters. In particular, they will depend on the value /(c). The assumption
that the service time is generic (G) stems from the choice of search strategy, i.e., the
sweep pattern. Little’s theorem [11] states that the expected number of elements L.
in the Q. is

Lc = )\c Wca

where A, is the arrival intensity (number of arrivals per unit time) and W, is the
expected time spent in the queue. Note that this theorem does not rely on Markovian
assumptions on the processes, but only on the ergodicity of said stochastic processes
and is therefore applicable also for M /G /1 queues. Once we know L. for each cell,
then through Eq. 1 we can compute the expected aggregate loss. In the following we
construct A, and W, for the generic queue Q..

Interarrival time. The process governing the intruders’ spatial and temporal behav-
ior is described in Sect. 3. The interarrival time between two intruders entering the
patrolled area is modeled by an exponential variable with parameter A, such that the
expected interarrival time in the patrolled area is 1/A. Upon an intruder’s arrival, it
determines the specific cell ¢ to attack according to the mass distribution defined
by Eq.2. The number of attacks necessary before c is attacked is then modeled by
a geometric variable with parameter p(c) and its expectation is 1/p(c). Thus, the
expected interarrival time for a specific cell ¢ incorporates both temporal and spatial

components, given by

T _11 3)
T aplo)

and the arrival intensity for cell Q. is then A, = Ap(c).

Service time. We next need to determine W,, i.e., the expected time spent in Q, by
an intruder. Figure 1 depicts the most general case that helps in understanding the
structure of the random variable w., modeling the time spent by an intruder before
it is removed.
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Fig. 1 Elements
contributing to the time w,
between the arrival and
removal of an intruder

J
Arrival Removal

The sentinel queries its sensor at a fixed frequency and once a searcher is dis-
patched to the area, it may or may not find all intruders. w, is then the sum of various
components. The first component, ¢, is the time elapsed between when the intruder
arrives in cell ¢ (and then enters Q.) and the first time the sentinel scans the area
including c. In general it may take more than one scan before a searcher is dispatched.
This time is given by the variable 7, (time to trigger) and by construction, a multiple
of A. After a searcher is dispatched, it will not necessarily find the intruder, so in
general multiple successive, independent searchers have to be dispatched. Then, ¢/,
is the time to trigger the dispatch of the ith searcher. Once the successful searcher is
dispatched, it spends time s before it finds the intruder. Therefore,

n,
we =10+ D 1 +s

i=1

where n;, the number of dispatched searchers, is also a random variable. As it will be
explained later on, the various #/_are all independent but not all equally distributed.
In particular, ttlr has a distribution different from the following ones, whereas all the

ttJ, with j > 2 are i.i.d. Keeping this in mind, we can then write
W, = E[w.] = E[Z] + Elz)] + (Eln,] — DE[#,] + E[s]. “)

Let us start with computing Ny = E[n,]. Each searcher follows a deterministic search
strategy with a finite time budget. During this search each cell is inspected the same
number of times, say m. The missed detection error rate is s, so a searcher fails
to find the intruder located in ¢ with probability 8", and finds it with probability
1 — B7". The number of searchers, n,, needed to detect the intruder is then modeled
by a geometric variable with parameter 1 — B/ and its expectation is E[n,] = #

Next, we determine S = [E[s] conditioned on the event that the searcher finds
the intruder. Given that the searcher follows a predetermined path unrelated to /(c),
assuming that the search time budget is B, then S = B/2 because the intruder could
be located with equal probability in any of the sequentially scanned cells.

To determine Z = [E[¢], it is useful to recall that the interarrival time of Q. and
then of the intrusions to cell ¢ is modeled by an exponential variable of parameter
Ae = Ap(c). Due to the memoryless property of exponential random variables and its
basic properties, it follows that { = A — y, where y is an exponential random variable
of parameter X, conditioned on the event y < A. Through algebraic manipulation
and applying the definition of expectation one obtains
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1 —e ™A — A Ae A

Blel=E[A—yl=A-Ell=4-— ==

Finally, it is necessary to compute E[#]] and E[#.] with j > 1. Recalling that ¢/,
is an integer multiple of A, i.e., #/, = K A, it is then sufficient to compute the mass
distribution of the multiplicative factor K for the two different cases. K is the number
of times the sentinel has to sense before a searcher is dispatched. It is useful to recall
that 7/ models the time to trigger the dispatch of the first searcher conditioned on the
fact that one intruder entered the area assigned to the sentinel (see Fig. 1). Its mass
distribution is

(1-8) k=1

k-2 ®)
BAB+ NI —a))" “(Na+A(l - p)) k=2

Pr[K =k] = [

The rationale behind the formula is the following. K = 1 if the intruder generates
a detection by the sentinel the first time the sentinel senses the area. This is by
definition 1 — 8. Otherwise, conditioned on the fact that an intruder entered cell
¢, the first searcher will be triggered after k > 2 scans as a consequence of the
simultaneous occurrence of the following independent events:

e the intruder is not detected, which has probability g;

e for k — 2 steps there was not detection. Since each step is independent from each
other, we can just raise to the power of k — 2 the probability that no detection
occurred in one step. This event is either due to an attack going undetected, whose
probability is AB or a non-attack not generating a false positive (probability
N(1 — «)). Note that these two events are mutually exclusive (either an attack
happens or it does not), so we can just add the probabilities together.

e at the last step a detection happens. This is either due to a non-attack generating a
false positive (probability N«) or an attack being detected (probability A(1 — B)).

We seek an expression for the mass distribution for t,J, i.e., the time to trigger the
jth searcher (j > 1) conditioned on the fact that the first searcher has already been
dispatched. This variable is a geometric random variable, and its distribution is then:

Pr[K = k] = (N(1 —a) + AR H(A(l — B) + Na).

The rationale to derive this formula is similar to the one for ¢! and one should also
notice that it is indeed a geometric variable because N(1 — o) + A + A(1 — B) +
Na = 1. To complete the computation of Eq. 4 we need to compute E[t,lr] and E[z;,].
Skipping the algebraic details in the interest of space, we just give the results, i.e.,

B 1

L _
AR gy vy Ty Sl v

We conclude this section noting that A and N can be easily determined from
knowledge of the set of cells covered by the sentinel guarding cell c.
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5 Simulations

In this section, we provide experimental analysis for empirical assessment of some
of the properties of the proposed two-type approach. We analyze performance in
terms of accrued loss (per Eq. (1)), required costs in terms of number of deployed
sentinels and frequency of sampling for each of them, and we look at how the system
responds under different loads expressed by variable attack arrival rates.

Our basic experimental setting builds on top of the in-the-field validation con-
ducted in [4] with the aim of maintaining relevance to realistic deployments of UAVs.
The grid ¢ consists of 16 x 16 cells and two different loss functions are considered:
a simple uniform loss (UNI) that assigns equal loss to every cell and a bimodal one
(BI) depicted in Fig. 2a. The arrival rate for attacks is A = 1/95.

We consider three different groups of sentinels of cardinality 1,4, and 16 uniformly
deployed in the environment (see Fig.2b, c). That is, if 4 sentinels are present,
then their equally sized assigned areas ¥; constitute a partition of ¢. The sampling
period for each sentinel is given by A = L /4, where L is the time a searcher would
require to scan and clear every cell of its area by following some deterministic
strategy. Error rates are chosen as a function of the altitude and, to account for the
fact they are tailored for constant altitude, we scaled by a % factor, thatis ' = 0.43 /2,
B! =0.38/2,a* =0.36/2, 8* = 0.27/2,a'® = 0.35/2, B'® = 0.37/2 where &' and
B" refer to the error rates when having a deployment of 4 sentinels. These error
rates, as well as those for the searchers given in the following, were determined from
extensive live-fly experiments presented in [4].

Searchers conduct a deterministic sweep pattern, sequentially scanning every cell
per unit time on the sub-grid associated to that area. False positives and missed
detections are chosen according to their altitude value (the lowest in a quadtree built
over a 16 x 16 grid) as a; = 0.09 and B; = 0.05. We assume that flying from a
cell to an adjacent one, scanning that cell, and performing a clear action on the cell
each take a single time unit. As a consequence, scanning and clearing every cell
of a sub-grid ¢’ takes L = 3|%’| time units. We also define the temporal budget of
each searcher w.r.t. this quantity as B = mL, where m is an integer value. In the
results presented here, we fix m = 2, that is, once dispatched, each searcher must
always perform at least two whole sweeps of the assigned area. Finally, we assume

Fig.2 Bimodal loss function and deployments of multiple sentinels. a Bimodal loss. b Deployment
of 4 sentinels. ¢ Deployment of 16 sentinels
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to have an unbounded number of searchers, namely every dispatch is immediately
executed. Studying the situation where the number of searchers is bounded is left
for future work, although as evidenced in this section, the number of concurrently
active searchers remains limited.

Figure 3 reports average results obtained for an experimental design of 20 ran-
dom missions. (Each run corresponds to a different realization of the attacks arrival
process.) Graph 3a, b show how the average accrued loss evolves as the mission
unfolds and as sentinels sense their areas every scan period k.

By inspecting these graphs, we can empirically assess the extent of two expected
trends in the actual performance achieved by the different teams. The first observa-
tion is that having more sentinels leads to a smaller loss whose reduction is nearly
optimal when employing 16 sentinels. One interesting feature can be observed in
Fig. 3c where the ratios between single-sentinel and 4-sentinel loss as well as between
4-sentinels and 16-sentinels are depicted (bimodal loss is considered here). The first
thing we notice is that even if we increase our resources by a factor of 4, we observe
(mostly at every mission time) gains of much higher order (>10). The reason is
that, besides merely having more sentinels we are also introducing two improvement
factors, which indirectly come by construction of our framework: (1) not only are
sentinels greater in number but also are each more accurate in sensing, since they
operate at lower altitudes; (2) the more sentinels are employed, the more effectively
the environment is split for parallel patrolling missions (for any loss function). This
second factor contributes to the other observed trend, that is, passing from 4 to 16
sentinels is never worse than increasing from 1 to 4. Indeed, when deploying 16 sen-
tinel we get a critical split of an highly targeted sub-area of the environment (recall
Fig.2).
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Moreover, from Graph 3a, b we can see how a bimodal loss function results in
poorer performance, showing the disadvantage of adopting a uniform spatial deploy-
ment over a non-uniform loss distribution.

An interesting operational metric is given by the load factor of each sentinel,
defined as the ratio between the total number of attacks still present in the environ-
ment over the number of searchers that have been dispatched by that sentinel and
did not use up their respective time budgets. Figure4a, b compare average factors
for the 1-sentinel and 4-sentinels cases as the mission evolves (the curve in Fig.4b
depicts the average load factor over the four sentinels). The 1-sentinel case reported
an overall average load of 28 %, whereas, as it can be seen, different mission times
experienced an overload condition (load factor greater than one) with attacks out-
numbering searchers. Such situation is not observed when employing four sentinels,
and the overall average factors for each sentinel resulted to be remarkably lower.
Such results experimentally highlight the improvements obtained from the partition-
ing of the search area, w.r.t. a metric which is independent from the loss function,
i.e., the importance level assigned to every cell in the grid.

The number of sentinels constitutes the primary measure of cost in our setting.
Another important cost factor is given by the number of employed searchers or,
equivalently, the number of dispatches. Given the assumption of an unbounded R,
we can control such cost via the sentinels scanning period A, with the obvious
expectation that the more frequently sentinels scan the more dispatches they will
likely issue. Figure 4c shows how reducing costs of this type can introduce a decrease
in performance. Starting from our reference value of A, we scale it by increasing
integer factors and we measure the total loss accrued at the end of the mission.
As can be seen, the 1-sentinel case is where longer scan periods are more critical.
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On the contrary, situations with multiple sentinels (e.g., the case of four sentinels
included in the graph) seem to be more robust with a relatively graceful degradation
in performance.

For further experimental validation, we assess how the system responds to increas-
ing attack arrival rates by showing in Fig. 5 how the number of active searchers and
attacks vary during the mission under arrival rates obtained by scaling our refer-
ence L. The observed trend is that for very high arrival rates, the number of attacks
almost always exceeds the number of active searchers for each sentinel. (Note that
the number of attacks is the per-sentinel average where an attack is associated to a
sentinel if it occupies a cell in that sentinel’s area.)

In our final experiment we assess the sensitivity of our model to the parameters
characterizing the stochastic model of attacks. In particular, we focus on the interar-
rival times. Our analysis stands on the assumption that these random variables arei.i.d
and follow an exponential distribution with known parameter A. In our last test we
change this distribution with a different one having the same expectation. This choice
is motivated from practical considerations. When building a model of the opponent
through repeated observations, experimentally observing the expected interarrival
time is the simplest first step, but there are evidently multiple distributions that can
fit the data. In this experiment, we select a uniform distribution. Figure 6 plots the
difference between the performance of the system under two different scenarios. In
the first case interarrival times are distributed according to an exponential distribu-
tion and then match the model we used in deriving our analysis. In the second case
interarrival times are uniformly distributed, but now incorrectly modeled. As we did
for Fig. 3a, we vary the number of sentinels (one or four) and consider two different
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loss models (unimodal or bimodal), thus obtaining four different curves. The figure
shows that when considering four sentinels, differences in performance are negligi-
ble. When a single sentinel is considered, a difference, albeit limited, is observed.
To put the magnitude of the difference into perspective, the reader is referred to
Fig.3a for absolute loss values. Given that in general one will use multiple sentinels,
these findings tend to indicate that the model is robust to identification errors for
interarrival times.

6 Conclusions

In this paper we have studied a patrolling problem using two classes of agents,
namely sentinels and searchers. The setup is inspired from our recent work in a
single-agent setting and our model is driven by experimental data collected through
extensive live-fly experiments. Using analytic formulations founded on queueing
theory, it is possible to determine how the system behaves asymptotically in response
to different stochastic models of arrivals. Studies in simulation show how explicitly
modeling a variable resolution sensor leads to gains outweighing the potential penalty
of increasing the number of allocated sentinels.

Future work include extensions explicitly handling deconfliction and coordina-
tion among searchers, as well as deploying sentinels with overlapping regions for
increased robustness and performance. Additional research addresses further the-
oretical analysis of the impact of constrained resources (e.g., number of searchers
available to sentinels), with relevance to realistic deployments. Finally, building upon
the analysis we developed, we will consider how to non-uniformly allocate sentinels
in the environment in order to minimize the given performance metrics. This includes
positioning more sentinels to cover areas with higher loss values, as well as varying
their elevation to operate in regimes with lower error rates where needed.
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Human-Robot Collaborative Topological
Exploration for Search and Rescue
Applications
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Abstract We address the coordination between humans and robots in tasks that
involve exploration and reconnaissance with applications to search and rescue.
Specifically, we consider the problem of humans and robots cooperatively searching
an indoor environment in a distributed manner where we assume that each robot is
equipped with sensors that are able to locate targets of interest. Rather than have
humans issue explicit commands to and guide robots, we allow humans to make
decisions on their own and let the robots adapt to decisions taken by the human.
The main contribution of this paper is a framework in which the robots in the team
respond and adapt to the behavior of the human agents in the task of exploring and
clearing an indoor environment. The central idea is the assignment of robots to homo-
topy classes that are complementary to the classes being pursued by human agents.
By the virtue of the sparse topological representation of the agent trajectories, our
algorithm lends itself naturally to a distributed implementation. The framework has
three advantages: it (a) ensures that robots and humans pursue different homotopy
classes; (b) requires very little communication between the humans and the robots;
and (c) allows robots to adapt to human movement without having to model complex
human decision-making behaviors. We demonstrate the effectiveness of the proposed
algorithm through a distributed implementation on a ROS (Robot Operating System)
platform.
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1 Introduction

‘We address the coordination between humans and robots in tasks that involve recon-
naissance with applications to search and rescue. In these applications, robots may
need to quickly and safely explore environments in collaboration with human coun-
terparts. When confronted with two or more hallways, a human first responder may
choose to explore one hallway, while his/her robot co-responder explores a differ-
ent hallway. Similarly, in teams of multiple human and robot explorers, we want the
exploration task to be naturally decomposed between the team members. At the same
time, we want the human(s), who are better at interpreting the available information
and at decision making, to decide what actions they want to take and let robots adapt
accordingly.

We consider a setting where humans and robots are equipped with similar sensing,
processing, and communication capabilities, so that robots and humans can be aware
of each others’ positions and robots can interpret human movements and intentions.
The sensing capabilities of the agents are assumed to provide adequate range to
detect anomalies (e.g., victims or intruders) in an environment. We assume that both
humans and robots have access to blueprints of buildings and are thus aware of the
major features in the environment. As a result, both humans and robots are able to
localize themselves with respect to features in the buildings using onboard sensors
such as laser scanners, cameras and IMUs, as well as GPS, if available. Finally,
we assume that the human-worn computers are able to communicate with the robot
co-workers and share their estimates of current location periodically.

Metric-based multi-robot coordinated exploration have been studied widely in
the past [1-5]. Multi-robot coverage of environments are also fundamentally con-
sidered as metric problems relying inherently on a metric on the configuration space
[6—10]. In addition, graph traversal approaches similar to the traveling salesman prob-
lem [11] have been explored in context of room-clearing [12] and pursuit-evasion
problems [13]. Similar coverage problems can be formulated as a traversal on Voronoi
graph or topological map [14, 15] of an environment.

However, in a problem setting as ours, it is likely that maps may not be per-
fect. Noise in the process dynamics and observations will induce errors in localiza-
tion. Thus representations derived from metric information will require estimation
techniques that yield estimates of states that are stochastic. Topological invariants
such as homotopy, on the other hand, being robust towards environmental noise and
measurement errors, are suitable for communication and coordination among the
heterogeneous teams of humans and robots. Furthermore, our primary objective
being quick information/intelligence gathering and clearing, it is not necessary that
the agents visit every point in the environment (as done in graph traversal algo-
rithms). Homotopy classes of trajectories form natural equivalence classes, within
each of which the information available are similar. If two trajectories belong to
the same homotopy class, then a single agent can perform the task of gathering
the available information in that class, while diverting additional resources to other
classes. While homotopy is directly related to visibility in most indoor environments
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(e.g. consisting mostly of hallways and corridors), even in presence of non-convex
features within the class (e.g. aroom by the corridor), traversing the class is sufficient
to gather intelligence and information from the adjacent features as those (e.g., by
glancing through the doors of the rooms) and does not need dedicated agents for
each of those features. Another advantage of using homotopy classes as the primary
means of decision making in coordinated reconnaissance and clearing is the simplic-
ity of its representation, and thus the ease and efficiency in communication. Choosing
complementary homotopy classes by the robot agents is achieved naturally and effi-
ciently, and such choices can be easily adapted to change in the human actions. Such
algorithmic simplicity is absent in graph traversal approaches.

There has been some recent research on using topological techniques in explo-
ration of environments [16]. In this paper our fundamental approach is topological as
well. We exploit topological features in the environment, namely the different homo-
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Fig. 1 A simple illustration of the idea behind the proposed algorithm involving a team of one
human and three robots. Robots must respond to human action by choosing paths in homotopy
classes complementary to those taken by humans to maximize exploration. The algorithm takes
into account teams consisting of arbitrary number of humans and autonomous robots. In addition,
robots can effectively adapt to erratic/unpredictable human behavior (not illustrated in this figure),
where a human, after committing to a class, may turn back to choose a different homotopy class.
a Four agents, three robots (R, R>, R3) and one human (H ), enter an environment with 4 homotopy
classes of paths (74, 7, 7¢, T4) leading to the exit. The robots wait for the human to move first.
b Based on human’s initial trajectory (solid curve), the robots infer that H is taking the homotopy
class of 7, or 75,. The homotopy classes of 7. and 74 are thus to be taken by robots. ¢ R3 tailgates
the human (to pursue 7, or 7,—whichever not taken by H'), while robots R| and R, commit to 7,
and 74. d H has committed to 75, and thus R3 commits to homotopy class of 7,
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topy classes of trajectories, to guide our search and rescue missions. This topological
reasoning is fundamental in deciding how the autonomous agents respond to human
behaviors. Although we do use a metric on the space of trajectories in the workspace
(Hausdorff distance), this is purely as an intermediate step towards classifying a
human’s trajectory into one or more of the homotopy classes.

Our algorithm design is inspired by the need to keep explicit human-robot com-
munication (e.g., human commanding robots) at minimum in a time-critical mission
such as search and rescue. The humans should have the freedom to choose actions
based on their superior sensing ability (e.g., audio cues) and change actions without
having to explicitly communicate intent to other agents. The robot agents should be
able to adapt to the human actions and choose complementary tasks to maximize
efficiency of coordinated survey and search. We illustrate the problem at hand using
the scenario in Fig. 1 where there is one human and three autonomous robots. All
the agents enter through a single entrance in the environment and need to clear the
building and reach the exit. The figures illustrate how the robots take decisions and
respond based on the human agent’s actions. Our proposed algorithm is highly suited
for a distributed implementation, requiring only limited inter-agent communication
of coarse topological representation (h-signature) of their trajectories.

2 Background

In this section, we will review some preliminary definitions and algorithmic tools.

2.1 Homotopy Class of Trajectories

Suppose W C RR? is a simply-connected workspace for the agents with m counts of
connected obstacles Oy, O, ..., O, € W. Trajectories in an environment can be
classified by their topologies into different homotopy classes, which arise from the
presence of obstacles in an environment. We start by reviewing some of the standard
definitions related to homotopy.

Definition 1 (Homotopy classes of curves [17]) Two curves 7,7, : [0, 1] —
(W — O) connecting the same start and end points, are homotopic (or belong to
the same homotopy class) iff one can be continuously deformed into the other with-
out intersecting any obstacle (see Fig.2a. See [17, 18] for formal definitions).

For curves in 2-dimensional plane punctured by obstacles, computation of the
homotopy class of a given curve can be performed in a relatively simple way
[18-22]: We consider representative points, (;, inside the ith obstacle O; [17], and
parallel non-intersecting rays, ri, ra, . . ., 'y, emanating from the obstacles (Fig. 2b).
If 7 is a given curve whose homotopy class we are trying to identify, we construct
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Fig. 2 Homotopy classes and their word representation. a -y is homotopic to 7, since there is a
continuous sequence of trajectories representing deformation of one into the other, but not to 3
since it cannot be continuously deformed into any of the other two. b (; are representative points
inside the obstacles, Oy, O3, ..., Oy, (inthat order), and r;, i = 1, ..., m are rays emanating from
the respective points. The homotopy invariant of this curve v is h(y) = “rararsrg L

a word by tracing v, and consecutively placing the letters of the rays that it crosses,
with a superscript of ‘41’ (assumed implicitly) if the crossing is from left to right,
and ‘—1’ if the crossing is from right to left. Thus, for example, the word for v in
Fig.2b will be “rpr3rar, lr5r6_ 1 We then reduce this word by canceling the same
letters that appear consecutively but with opposite superscript signs. Thus, the word
for vy in Fig. 2b can be reduced to “r r3rsrg 1 This reduced word representation is a
homotopy invariant for open curves (with fixed end points), v, and we will write this
as h(y) and call it the “h-signature of 7. The A-signature (reduced word) uniquely
identifies the homotopy class of a curve. Note that if the end point of y coincides with
the start point of v/, then h(y U v') = h(~y) o h(v') (where ‘o’ indicate concatenation
of words).

2.2  h-augmented Graph

We use a discrete representation of the workspace, W, and construct a graph, G (with
vertex set 7' (G) and edge set &(G)), by placing a vertex in every accessible discrete
cell (cells not intersecting with an obstacle) and by establishing an edge between
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Fig. 3 Preliminaries: #-augmented graph and Hausdorff distance. a The h-augmented graph, G,
is created from the discrete graph representation of the environment, G, so as to incorporate infor-
mation about the homotopy class of trajectories. b The directed Hausdorff distance between 71 and
7 is determined as follows: Fix a pointa € 71, and find its distance from 7». The directed Hausdorff
distance is then the maximum of this value over all the possible points a on 71

the vertices of adjacent cells. While the graph, G, itself can be quite arbitrary, we
used a uniform square discretization and an 8-connected graph representation of the
environment in all our simulations for simplicity (Fig. 3a).

From such a graph, we construct an s-augmented graph, G, for keeping track
of the homotopy class of the trajectories. The construction, in brief, is as follows:
Vertices in this s-augmented graph, G, are of the form (q, to) where q € 7 (G)
is a position of an agent in the workspace (as a vertex in the discrete representa-
tion graph, ¢) and tv is the word (i.e. the homotopy invariant) corresponding to the
homotopy class of a trajectory leading up to q from a base vertex qy, (all #-signatures
of trajectories are computed with respect to a fixed point, called the base point, the
vertex at which is q, € 7(G)). We write the tuple as v = (q, o) € ¥ (Gy,), with
vy := (Qp, ) being the vertex corresponding to the path of zero length. Thus the
h-augmented graph encodes in its vertex set information about homotopy classes
of paths, along with agent positions. The connectivity in the #-augmented graph is
described as follows: For every directed edge [q ~» q'] € &(G) (i.e., connecting q to
q in 7(G)), and_{or every VCEEX of the form v = (q, tv) € ¥ (Gy,), there exists a ver-

tex (q’, to o h(qq’)) (where qq’ is the line segment corresponding to the edge)—see
Fig.3a. Thus, starting from (q,, “”), this gives a recipe to construct the #-augmented
graph, G}, incrementally—a construction approach perfectly suited for any graph
search algorithm (such as A* and Dijkstra’s) involving expansion of vertices starting
from an initial vertex, so as to find shortest paths leading up to a vertices of the
form (qg, *)—i.e., the goal vertex, q,, but reached via a specific homotopy class.
The cost of an edge in Gy, is chosen to be the same as the cost of the projected
edge in G. That is, ¢, ([(q, ) ~ (¢, o h(q_q)’)]) =c¢s([q ~ q']) (where ¢; and
¢, represent the cost functions in the respective graphs). In our implementation we
choose ¢;([q ~ q']) to be the Euclidean length of the line segment that constitutes
the edge, qq'. For more details, the reader can refer to similar construction appearing
in recent works [23, 24].
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2.3 Hausdorff Distance as a Metric on Space of Trajectories

The behavior of a human agent, by nature, can be highly unpredictable. Even if a
human is presented with a clear set of trajectories to choose from, he/she may take
a trajectory that deviates from the planned ones. In our problem it is critical that
the robots quickly understand/estimate which homotopy class the human agents are
potentially taking so that the robots can quickly follow the complementary classes.
This is achieved by comparing the human’s partial trajectory with a set of esti-
mated/baseline candidate trajectories in different homotopy classes connecting the
start and the goal locations. The h-signature by itself does not provide adequate infor-
mation to evaluate distance between candidate trajectories. Rather, this comparison
warrants a metric in the space of all trajectories in (W — &). In particular, one can
choose the Hausdorff distance [25], that is suitable for comparing any two subsets
of a metric space.

Definition 2 (Hausdorff distance [25]) Consider the free space of the agents,
(W — 0), equipped with the standard Euclidean metric. The Hausdorff distance,
dy, between two sets A, B C (W — ©) is then defined as

du (A, B) = max(day(A, B), dan(B, A)) 6]

where, d;, (A, B) = maX,c minyep |la — b|| is the directed Hausdorff distance
between sets A and B, and |la — b| is the Euclidean distance between a, b €
(W = 0).

Hausdorff distance, as defined, is a valid metric (satisfying all the axioms of
a metric) on the space of all subsets of (W — &). In particular, this implies
dy(A,B) = 0 <= A = B. We can thus use this metric to compare two tra-
jectories, 7 and 7, when viewed as subsets of (W — &). In particular, if 7 is a
trajectory that the human has traversed, and {7}, 7, ...} are candidate trajectories
in different homotopy classes estimated by the robots, then the values of dy (7x, 7;)
will help determine which homotopy class the human is following.

Figure 3b illustrates the computation of the directed Hausdorff distance, dy,, for
two trajectories 7; and 7, in an environment. The Hausdorff distance itself is a
symmetrized version of that distance to satisfy the symmetry property of a metric.

3 Algorithm Design

As described earlier, the objective of this work is to develop a distributed algorithmic
framework for autonomous agents in search and rescue operations consisting of a
heterogeneous team of humans and robots, taking into account the unpredictability
of human agents to efficiently explore an environment via complementary homotopy
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classes of trajectories. For simplicity, we assume that all trajectories have equal prior-
ity and that each robot and each human travel at the same speed, respectively. Priority
and speed variation could potentially be considered, if needed, through modification
of the cost function to prioritize most promising paths or agents.

As illustrated in Fig. 1, a key critical component in the algorithm design is the
ability of the autonomous agents (robots) to identify the intent of the humans. In
particular, the robots need to quickly narrow down the set of possible homotopy
classes of paths that the humans are potentially taking, and thus follow the com-
plementary classes. Furthermore, they need to monitor whether a human agent is
altering his/her behavior (changing the homotopy class that he/she committed to), so
that the robots can change their trajectories accordingly. The principal components
involved in achieving these are (i) Human path prediction, (ii) Robot path assignment
and (iii) Human’s path history truncation. The following sub-sections describe these
algorithmic components in details.

3.1 Human Path Prediction Algorithm

At the entrance to the environment, the robots compute a set of reference trajectories,
T ={r,n,..., 7p}, in p shortest homotopy classes that are to be tentatively pur-
sued by the agents by performing A* search in the #-augmented graph. Ideally, we
should choose all the non-looping and non-intersecting homotopy classes in the envi-
ronment, but for most practical cases it is sufficient to choose p = max(P, n + m),
where n is the number of human agents, m is the number of robot agents, and P is
an upper bound on the number of homotopy classes that we compute (determined by
our computation capability). We describe the path prediction algorithm for a single
human. In the presence of multiple human agents, the algorithm is executed for each
of them. Also, in a distributed implementation, the algorithm for predicting each
human’s path runs independently on each autonomous robot.

At the start, the set of potential paths that the human is following, denoted .%y, is
the entire of .7. The kth call of the path prediction algorithm computes .7%, the set of
potential paths that the human is following at the kth computation step, in a recursive
manner. Suppose we computed % = {7;,, 7, ..., T;,} S 7. The path prediction
algorithm atthe (k + 1)th step takes the human’s path history (say 7 ) and compares it
with the reference trajectories in .7 (i.e., computes the Hausdorff distances from each
7;) to determine the new set .%}.; of homotopy classes that the human is potentially
following. The basic algorithm is as follows: Let the distances of the human’s path
history from the reference trajectories be d; := dy(ty, 7:), i = 1,2, ..., p. These
distances are normalized by the largest Hausdorff distance out of the most recent
potential set of trajectories, .%%, that the human was following to obtain a set of nor-
malized distances: d; = di/D, ¥i =1,2,..., p,where D = max,cyo, dy(Tuy, 7).
Based on these normalized distances, the objective is to determine if the human’s
trajectory is close to some of the trajectories in .7 and far from others. This decision
((k 4 1)th path prediction cycle) involves a two-step reasoning:
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1. If min({ﬁl dos ..., Ep}) > a, where o € [0, 1] is a parameter encoding the max-
imum uncertainty tolerated by the user, then the decision cannot be made yet—it
is not yet clear what subset of . the human has narrowed down to. Thus .7
is not computed, and it is asserted that the (k 4 1)th path prediction cycle is still
in progress with . being the set of possible homotopy classes that the human is
still following. The robots waiting for the human to make the move keep waiting
or continue to follow the same path as before.

ii. If however, min({d,, da, . . . ,3,,}) < «, we update the set of potential paths that
the human is following to the set .| := {7; | d; < 3 - min({d;, d>, - - - ,E,,})},
where > 1 is another parameter. This simply implies that the set of potential
homotopy classes that the human is following contains trajectories that are within
a distance of at most [ times the distance from the closest class. This provides a
conservative buffer in the case of very similar paths.

In implementation, following the (k + 1)th path prediction step, the human broad-
casts the h-signatures of the paths in set ., only that are being followed by
the human, rather than the full set of vertices describing the predicted path itself.
This gives a compact communication protocol purely based on topological infor-
mation rather than denser metric information. Thus the communication burden is
minimized for each human, allowing for more effective and efficient coordination
between humans and robots.

Figure4 shows a simple example of the path prediction algorithm and how the
Hausdorff distance is used as a metric to select the set .#% of paths for the human’s
potential trajectory.

3.2 Robot Assignment Algorithm

At the very beginning (start/entrance to the environment), the robots wait for all the
humans to make first moves until the humans have a narrowed-down set of possible
homotopy classes (i.e., the number of elements in .#}, for each human, has gone below
the number of elements in .y = .77). Then the robots coordinate among themselves
to determine the %-signature of the path (or a set of h-signatures) that each robot
should follow. In particular, the cost of a path in a given homotopy class is used
to prioritize the assignment of robots to expedite clearing of the environment. This
assignment process is run every time a new cycle of path prediction returns a new
set of possible homotopy classes that a human is following.

Suppose for the jth human the k;th cycle of path prediction algorithm returned
anew %%, . The robot assignment algorithm works by first determining the shortest
p paths for each robot in the environment, along with the associated path costs.
Following which there are two stages in the assignment algorithm:

i. Choose complementary homotopy classes: The h-signatures for paths that are
not in the set of potential paths that any of the humans are following (i.e. not in
k; of any of the humans) are prioritized first—unassigned homotopy classes
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Fig. 4 Initially (left column), the human’s path 7y (in red) is close to either of 7; and 7 (i.e. the
set of potential paths that the human is following is .4 = {71, ™}). As the human travels further
(right column), the human’s path, 7y, gets closer to 7. In this case, the human path prediction
algorithm would update the set of potential homotopy classes of paths to .%;4+1 = {7>}. Note how
Adpy (difference between d| and d») increases indicating a clear demarcation between the distances
from the two reference trajectories

get assigned to the robot with the shortest path cost for that homotopy class. This
behavior is illustrated by robots R; and R, in Fig. lc.

ii. Tailgate humans with more than one homotopy class in the possible set of homo-
topy classes: Once all classes not in any of the human’s .}, have been assigned
to robots, then the remaining robots are assigned to follow human agents with
excess elements in their set of possible homotopy classes (the jth human’s 7% ).
This is the behavior of robot Rj3 in Fig. Ic.

This path assignment algorithm is also executed again for groups of tailgating robots
every time the human which they are following passes through a junction/branching
point (i.e., the path prediction algorithm returns a new set .7 1).
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3.3 Human’s Path History Truncation for Robustness
to Unpredictable Actions

This algorithmic component is necessary to incorporate sudden changes in human
behavior that contradict the decision made in a prior path prediction step. In case a
human turns back and goes past an earlier junction/fork point, and starts following
a different homotopy class, the clear demarcation between the Hausdorff distances
from the trajectories in . and those from the other, as was illustrated in Fig.4, will
fade—triggering the ‘path history truncation’ procedure. In order to figure out which
new homotopy class of trajectory the human has taken up, we need to chop off the
part of the human’s path history involving the “U-turn” from the earlier homotopy
class, and replace it with a path in the same homotopy class. Consequently, the human
path prediction algorithm (say the (k 4 1)th cycle) will be able to identify the new
homotopy class the human is following, and compute .7 accordingly.

Suppose, for a human, the last path prediction cycle returned .%. The path trunca-
tion algorithm seeks to isolate only the most recent path history for the human so that
the path prediction algorithm only uses the most recent, freshest human path data and
ignores the convoluted past path behavior. This is achieved by looking at the minimum
distance from points on the human’s path to reference trajectories in .#_,. Consider
apoint u’ earlier on the human’s trajectory (see Fig. 5). The minimum distance of this
point from any trajectory of homotopy classes that the human was potentially follow-
ing before taking the U-turn, d,,;,, (', 7;), V7; € %, can be expected to be low. While
the distances from the other homotopy classes, d,;, (u', 7;), V1, € (“—1 — Z%),
can be expected to be high. However, if we consider a point u” later on the human’s
trajectory (after the U-turn), this will just be the reverse—d,,;, (", 7;), V7; € %%
will be high, while d,;,, (u”, ), V1; € (F—1 — ) will be low. This observation
is key in determining the truncation point. In particular, we choose the truncation
point to be a point u;,,,. on the human’s trajectory at which the the average of
the distances d;, (Usrune, 71), VTi € %% becomes equal to the average of the dis-
tances dyin (Usrunc, 7i)s V7i € (Fh—1 — ). After truncation, the human’s trajectory
is updated by replacing the part before truncation with the shortest path leading to
Usrune but in the same homotopy class as the truncated part of the trajectory. This
approach will be effective as long as a human is not perpetually indecisive switching
between classes forever.

L1

dmin(u’ Ti)

A — L
] Fork/junction u' u, u"

Point Points on Ty

trunc

Fig. 5 Identifying the point on the human’s trajectory at which to truncate it
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Fig. 6 Collaborative topological exploration in complementary homotopy classes demonstrating
how autonomous agents respond to human actions by choosing complementary homotopy classes.
a Three robots (R|, Rz, R3, in blue) and one human (H, in red) start at the upper “cup” of the
H-shaped obstacle. They find 4 homotopy classes leading to the goal at the bottom of the envi-
ronment. Optimal trajectories in the different homotopy classes are shown in different colors for
easy visualization. At this point the potential set of possible homotopy classes that the human
can take is . = {74, 7b, ¢, T4}. b As the human moves forward, its set of possible homotopy
classes is narrowed down to .%} = {7,, 75 }. The corresponding trajectories are shown in red and
orange. It is determined that homotopy classes of 7. and 74 have not been taken up by the human.
Thus, homotopy classes of 7, and 7, are assigned to robots (R and R3) with priority. Remaining
robot (R7) is assigned to tailgate human, H, since .#] contains more than one elements. ¢ After
crossing a branching point, B, the human commits to homotopy class of 7, (orange dotted curve).
So now .5 = {1,} contains a single element. R; thus will choose the complementary class 7.
Robots R, R3 continues as usual. d A final frame showing that the humans and robots followed
complementary homotopy classes to reach the goal
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(a) (b) (c)

R2 U-Turn
Point

Truncation
Point

Fig. 7 An example of the human-robot coordinated exploration in an indoor search and rescue
scenario, with two robots, two humans and a demonstration of the path truncation algorithm.
a Two robots (Ry, Ry, in blue) and two humans (H;, H,, in red) start near the bottom of the
map. They find 4 homotopy classes leading to the goal at the rop of the map. As in the example
with one human, the four shortest paths in different homotopy classes for H; and H, are displayed.
b As H; and H» travel away from the initial junction point, R; responds by planning a path in a
complementary homotopy class while R, tailgates the humans. The planned paths for R; and R;
are shown in cyan color. ¢ At this point, Ry and R; have already started moving towards the goal.
Hj and H, are closer to the goal and appear to only be following one path, respectively, so R, goes
from tailgating the human to planning a path in the remaining complementary homotopy class.
d H, has turned back from the path it was following previously. H; is now traveling towards R».
The indecisive behavior results in less clarity regarding the human’s path behavior. This triggers
the path truncation algorithm to be executed, so that any future predictions will only focus on the
most recent human path data. e H;’s path was truncated at the labeled truncated point, eliminating
the “U-turn” points from being used as data in the path prediction algorithm. The path before the
truncation point is replaced by the shortest path in the same homotopy class as the part of the path
that was chopped off (green dashed curve). f In response to the update in H;’s predicted paths after
the path truncation was completed, Ry makes a “U-turn” to take the path abandoned by H;—the
path to the left of the uppermost obstacle. Essentially, H; and R, have switched places. From this
point onwards, all agents travel along these planned paths to the goal point
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4 Results

Implementation: The described algorithm was implemented in ROS (Robot Oper-
ating System) with human agents simulated through mouse-driven user interface
controlled by the authors and autonomous robots navigating using the proposed
algorithm. Dynamics or kinematics of the agents were not simulated; however,
our implementation is completely distributed, with the agents communicating using
h-signatures as compact representations of trajectories. The environment was pro-
vided to ROS as a bitmap, with automated identification of connected components
of obstacles and placement of representative points. In order to avoid multiplicity
of homotopy classes created by small obstacles/noise, a minimum size threshold
was placed on the obstacles on which to place representative points. Additionally,
the obstacles in the bitmap were inflated by the radius of robot to enable collision
avoidance and modeling of robots as points in the inflated obstacle map. For the
path prediction algorithm we chose the parameters a = 0.5 and 3 = 1.50 based on
experimentation on a benchmark environment. In practice and for simplicity, the path
prediction algorithm for each human was implemented on the human agent itself (its
processor thread). The predicted paths were communicated to the other agents by
reporting the h-signatures of the predicted paths.

Figure 6 shows how three robots and one human split up the process of explor-
ing an environment in four different homotopy classes. Figure 7 demonstrates our
algorithm in a more complex indoor environment with two humans and two robots.
The example also illustrates the path truncation algorithm. For each of the results,
the figure captions describe the algorithm in action. The algorithm was also tested
in more complex environments—these results can be viewed at http://www.eecs.
berkeley.edu/~govvijay/DARS 14.html.

5 Conclusion

A human-robot coordinated exploration problem in context of search and rescue
operations is addressed in this paper. The autonomous robots intelligently choose
actions to complement the actions of the human agents. In particular, the idea of
complementary homotopy classes of trajectories help the autonomous agents choose
trajectories for fast and efficient exploration. The proposed algorithm consists of
prediction of the homotopy classes of the human agents’ paths, assignment of com-
plementary paths to the robots, and a truncation algorithm for increased robustness
to the indecisive/uncertain behavior of human agents. We demonstrated the practical
applicability of the algorithm through ROS simulations with distributed implementa-
tion. In the near future, we plan to conduct extensive experiments on real robots and
explore the optimal selection of parameters « and (3 in the path prediction algorithm
for an arbitrary environment. Development of additional interfaces for fast and easy
communication of intent between the agents is under progress.


http://www.eecs.berkeley.edu/~govvijay/DARS14.html
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A Repartitioning Algorithm to Guarantee
Complete, Non-overlapping Planar Coverage
with Multiple Robots

Kurt Hungerford, Prithviraj Dasgupta and K.R. Guruprasad

Abstract We consider the problem of coverage path planning in an initially
unknown or partially known planar environment using multiple robots. Previously,
Voronoi partitioning has been proposed as a suitable technique for coverage path
planning where the free space in the environment is partitioned into non-overlapping
regions called Voronoi cells based on the initial positions of the robots, and one robot
is allocated to perform coverage in each region. However, a crucial problem arises if
such a partitioning scheme is used in an environment where the location of obstacles
is not known a priori—while performing coverage, a robot might perceive an obsta-
cle that occludes its access to portions of its Voronoi cell and this obstacle might
prevent the robot from completely covering its allocated region. This would either
result in portions of the environment remaining uncovered or requires additional path
planning by robots to cover the disconnected regions. To address this problem, we
propose a novel algorithm that allows robots to coordinate the coverage of inacces-
sible portions of their Voronoi cell with robots in neighboring Voronoi cells so that
they can repartition the initial Voronoi cells and cover a set of contiguous, connected
regions. We have proved analytically that our proposed algorithm guarantees com-
plete, non-overlapping coverage. We have also quantified the performance of our
algorithm on e-puck robots within the Webots simulator in different environments
with different obstacle geometries and shown that it successfully performs complete,
non-overlapping coverage.
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1 Introduction

Coverage path planning is a central aspect of multi-robot systems where the objec-
tive is to completely cover the surface area of an environment using multiple robots.
Robotic coverage is used in several application domains of robots such as unmanned
search and rescue, clearing an area of landmines, inspecting the health of engineering
structures, as well as in civilian applications such as automated lawn mowing and
vacuum cleaning. Using multiple robots for area coverage instead of a single robot
offers several advantages such as reducing the time required to complete the environ-
ment’s coverage and improving the robustness of the system to failure of a single or
a few robots. However, using multiple robots also introduces the overhead of coor-
dination between robots to avoid collisions and perform non-overlapping coverage.
An attractive technique to implement non-overlapping coverage between robots is to
partition the free space of the environment into disjoint regions or cells that can then
be covered by robots [ 1-4]. In most of these partitioning-based coverage techniques,
the cellular partitions are not changed once they have been determined. However, if
the obstacles inside the environment are initially unknown to the robots, a robot might
discovers that a cell is occluded by an obstacle while performing coverage. As shown
in Fig. 1a, a robot then has to use path planning techniques to explore paths to reach
the cell’s occluded part. In a multi-robot coverage scenario, the path planning tech-
nique to reach the occluded portions of a cell involves significant computation and
coordination between the robots [3], which might result in increased battery expen-
diture and completion time for the coverage. Therefore, it makes sense to investigate
techniques that can reduce or avoid these path planning costs for robots by adaptively
repartitioning cells and reallocating the repartitioned portions, so that other robots
can cover the repartitioned cell with little overhead for navigation planning.

(a) (b)

Fig. 1 a The Voronoi cells of two robots are partially inaccessible due to obstacles. The blue solid
arrows show the path taken by a robot to reach the inaccessible portions of its cell using a bug-like
path planning algorithm. b Robots coordinate with each other to repartition the initial Voronoi cells
so that each robot has a contiguous region to cover



A Repartitioning Algorithm to Guarantee Complete, Non-overlapping ... 35

Our research in this paper is based on the key insight that when the initial partition
of the environment is done equitably between robots, exactly one robot occupies a
cell. Then, even if the cell that a robot is covering gets disconnected due to obsta-
cles, because the free space is connected, the inaccessible portion of the cell must
be adjacent to at least one of the neighboring cells and accessible to the robot in
that cell. Consequently, the robot performing coverage in the adjacent neighboring
cell could be requested to augment its coverage with the inaccessible portion of
the disconnected cell, as shown in Fig. 1b. Based on this insight, we first partition
the environment into complete non-overlapping cells using Voronoi partitioning [5]
and then propose a novel algorithm called Repart-Coverage, where each robot per-
forms boundary coverage of its initially allocated cell or region and then uses a
low-overhead coordination protocol with other robots to systematically repartition
only those portions of its cell that are inaccessible due to obstacles. We have shown
analytically that our proposed technique guarantees complete, non-overlapping cov-
erage. We have also verified the performance of the Repart-Coverage algorithm on
simulated e-puck robots within the Webots simulator for different environments and
different obstacle geometries and quantified its performance in terms of the areas of
coverage regions and distances traveled by the different robots due to repartitioning
of their initial cells.

2 Related Work

Coverage path planning has been a central topic in robot motion and an excellent
survey is given in [6], including both single and multi-robot coverage. For multiple
networked robots performing distributed coverage, the coordination strategies that
have been proposed can be divided into two broad categories. In the first category,
robots share maps of covered regions with each other while they perform coverage
so that they can coordinate their movements to avoid each others’ regions. In most
of these techniques, the environment is divided into grid-based cells corresponding
to the footprint of a robot. Robots then use different techniques to avoid repeated
coverage such as sensing and avoiding already-covered neighboring cells [7], record-
ing the regions covered by each robot as a coverage tree [8] and communicating the
boundaries of covered regions between the robots, and, using a negotiation protocol
along with a distance-based objective function to select regions to cover for different
robots [9]. In [3], the authors proposed a technique called multi-robot Boustrophedon
decomposition where the robots decompose the environment into cells in an online
manner while performing coverage. Robots use two different roles - boundary cover-
age and area coverage. A pair of boundary coverage robots move in tandem along two
parallel but opposite boundaries of the environment and infer about the presence of
obstacles when the line of sight between them gets blocked. This information is used
to define cell boundaries for subsequent coverage by the area coverage robots. The
algorithm can guarantee complete, non-overlapping coverage, but the robots have to
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use complex calculations and tight coordination to guarantee that cell boundaries are
correctly identified and multiple robots are not assigned to cover the same cell.

In contrast, in the second category of coverage coordination, the environment is
partitioned into non-overlapping cells based on the initial positions of robots using
strategies such as polygonal decomposition [2], Voronoi partitioning [4, 5, 10], etc.
Recently, while extending this approach, Breitenmoser et al. have proposed an algo-
rithm where robots initially partition the environment using Voronoi cells and start
navigating towards target locations while continuously adapting the partitions and
refining the target locations as they discover obstacles [11]. In [4, 12], the authors
have proposed a multi-robot coverage technique where each robot communicates
its position while it moves and dynamically adapts the partitions with neighboring
robots to guarantee complete, non-overlapping partition of the environment. In con-
trast to our work, they do not explicitly address situations that prevent the complete
coverage of a Voronoi cell assigned to a robot when a portion of the cell becomes
inaccessible to the robot due to obstacles. Since the focus of our paper is on parti-
tioning the environment for coverage, we use a boundary coverage algorithm called
Egress [13] that enables a robot to determine and follow the boundary of its currently
assigned region; we assume that suitable techniques for covering the internal area of
a region such as ladder search [2] or spanning tree coverage(STC) [14] are utilized
by the robot after it has determined the boundary of the region it has to cover. Also,
in the rest of the paper we have used the term coverage to refer to boundary coverage.

3 Problem Formulation

Let Q C R?, a convex polygon, represent a region occupied by a set of obstacles
0. Let Qe = O\ O, denote the free space within Q. We assume Qg to be a
topologically connected set. Our objective is to perform complete, non-overlapping
coverage of the region Q\ O, using N autonomous mobile robots, each equipped with
a coverage tool. Let P(¢t) = {p;(¢t) € Q,i € Iy}, where p;(t) denotes the position
of the ith robot at time ¢.!

The Voronoi partition, generated by P is the collection {V; (P)};es, with,

ViP)={q € Qlllg—pill<lg—p;I.Vje Iy} (D

The Voronoi partition induces an undirected graph known as Delaunay graph, Gp,
where twonodes i, j € Iy are neighbors if the intersection of corresponding Voronoi
cells V; and V; is a line segment. The set of neighbors of the node i is denoted as
N (i); for brevity we assume N; =| N (i) |. Let B;; denote the perpendicular bisector

TRobots can assume a well-distributed initial configuration in case their initial positions are close
to each other using techniques in [11, 15].
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() (b) Q)

Fig. 2 a The region bounded by dark lines is ‘/[.io. b Illustration of Af’/. and A;.f/.. c Illustration of

Vij when V; is repartitioned between robots j € N (i)

of line joining p;(0) and p;(0) and let A;; € B;; represent the common boundary
between V; and V;. Let C = {Ci, C,, ..., Cy} be a partition of Q.. Let S; € 2¢,
i € Iy,and each S;, i € Iy is made up of contiguous cells from C, thatis, ¢ .5, C;
is a (topologically) connected set. '

Distributed spatial partitioning problem: For each i € Iy, the ith robot should
construct S;, a contiguous collection of topologically connected cells, such that the
collection S = {81, Ss, ..., Sy} partitions Qfee.

3.1 Definitions and Notations

Let Vii" C V; be the subset of V; containing p; (0). If there are no obstacles within
V;, then V;° = V;. The boundary of V" is made up of portions of A;; and obstacle
boundaries. A point g € A;; is reachable to robot i from p;(0), if g € Viio, and
unreachable otherwise. Figure 2a illustrates V with an example.

Let A” {uij(k)|Aij D uijk) ¢ V’“} where u;;(k)s are mutually disjoint con-
vex sets, representmg parts (line segments) of A;; that are not reachable (blocked
by obstacles) to the robot i. Similarly, let A ={rj(k)|A;; Drijk) € V’°} where
r;j(k)s are mutually disjoint convex sets, representmg parts (line segments) of A;;
that are reachable (not blocked by obstacles) to the robot i. See Fig. 2a for illustration.
Note that A/, = A;;\A?.

Let NP (i) = {j|Af’j = A;j} CN(i).Whenj € Nfb(i),entireA,-j is unreachable
to the roboti; then the roboti can notenter V; without entering Vi, forsomek ¢ {i, j}.
Let N*(i) = {j|A}; # #} € N(i). Note that N/*(i) € N*(i) € N ().

Note that A;; = Ab U Alj;, and Ab N Af. = (J, thus Ab and Af partition A;;. If
Ajj = Aij (that is, Aij = {}), then we say that Ajj is 1mpermeable to the robot i.

If A = Alfj, then we say that A;; is fully permeable to the robot i. If Af’j # () and
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Alfj # (0, then A;; is partially permeable to the robot i. Note that A;; = A ;;, However

Al.bi * A[]’.i, and Af; + A_".Cl-, in general.

Let V; C Vj, for j € N(i), be a portion of V; that would have been part of V;
with node set Iy \{j}. See Fig.2c for illustration. V} =V; N (V;), where /V; is the
Voronoi cell of i with nodes Iy\{/}, or just N (j). Each portion of V;\ V., is part of
Vl.j, for some j € N(i). If A;; is fully impermeable to the robot i, thatis, A;; = Af?j,
then i will not be able to reach V;.

4 Distributed Spatial Partitioning

In this section, we explain the proposed distributed spatial repartitioning scheme.
The ith robot first explores Vi"J and obtains the following information: (i) V;, N (i),
pi(0), pi(t), p;j(0) € O,V € Iy the position of itself and initial positions of all other
robots; (ii) A, Af?/-, and Aifj,foreachj € N(i);(iii) the sets N2 (i) ¢ N?(i) ¢ N(),
andiv) Vf". Now,the robot broadcasts the following information: Af.’j, Alfj, Vje N@G),
and the sets N/?(i), N’(i), and N (i). This communication is required only at the
beginning of the distributed spatial partitioning.

Now the robot uses the available information and further exploration when
required, to decide on the additional regions that need to be covered by it. The
free regions in Vj\Vj] , J € Iy can not be covered by robot j and hence need to be
covered by other robots. These regions are divided into patches. A patch is defined
as a connected subset of Voronoi cells. Each patch is bounded by obstacles and/or
line segments of B, for some j, k € Iy. The ith robot maintains a set S; of patches
it should cover. It is clear that Vf“ is a patch in S;. The ith robot adds to S; patches
in (Vj\V_]a’ )tree—the portion of obstacle free region with V;, not accessible directly
to the robot j, j € Iy\{i}. We say that two patches U and W are adjacent, if U N W
contains a line segment in B j; (not necessarily A ), for some j, k € Iy (j and k are
not necessarily neighbors)”. The significance of two patches U and W being adjacent
is that a robot can move freely between these patches. The patches are created as
robots explore the regions to be covered. We will discuss the process of constructing
S; in steps. 4

Scenario i. Patches in V}, j € N(i) The robot i enters V; C (Vj\ijO)free, je
N(i), if and only if 3] € {1,2,...,]| A;.C. [}, s.t.r; (DN A’]’.i # ). This condition is
illustrated in Fig. 3a. This patch, say U}, is adjacent to V;" and is added to S;.

Scenario ii. Patches in V}‘, k,j e N(@),k e N(j): If the robot i enters a patch

U, C V;, it explores U, . If a portion U, of V}‘, k € N(i) N N(j) is adjacent to U,
then robot i will find out if k can reach this portion of V]{‘. Otherwise, this portion of

2As U and W belong to free space, U N W is either @ or a permeable line segment.
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(a) (b) (c)

Fig. 3 a Robot i can help robot j to cover / (V;)free. Thick solid and dashed lines represent the
blocked and free components of A;; respectively. b—¢ Conditions i checks to find out if it has to
help a common neighbor k to cover a portion of the region (Vj].‘ )/

Vf will be added S;. We will discuss the situations in which robot i should or should
not cover a patch in V}‘ . Let P;j; be the vertex common to V;, V;, and V;.

1. Consider a scenario, as illustrated in Fig. 3c, where U; N V]k is a single line seg-
ment and P;j; € U;. Letuj(m) € A’J’.k contains P;jx (Such u j;(m) exists as P;jx
is assumed to be part of U, adjacent to U)).

la. If uj(m) N A[j # (), as illustrated in Fig.3c, a, then k can reach U,, and
hence i will not cover it.

1b. Otherwise, asillustrated in Fig. 3c, b, k can notreach U, and i should cover it.
The robot i can checkif P;j; € U; N U,,andif Uy N U, is a single connected
piece, while physically exploring the boundary of U;.

2. Consider a scenario, U; N V}‘ is a not a single line segment or P;jx ¢ Uy, as
illustrated in Fig.4. In such a scenario, robot i will not be able to decide if U,
needs to be added to S; or not only based on available information. The patch U,
is added to S;, only if, while physically exploring the boundary of U,, the robot
i reaches a portion of A,{j.

Remark 1 Note that the robot i physically explores the boundary of a patch W which
is adjacent to U € S;, only when the information about free and blocked regions of
Voronoi cell boundaries (A;;) is not sufficient to make a decision as to if W needs
to be added to S;. Such an exploration is local to the robot i and it does not affect
the decisions of other robots. This can be observed from the illustrations in Fig. 4.
The patch U, is added to S; (Fig.4a and b) when i concludes that U, ¢ S, and is not
added to S; (Fig.4c) when U, € S. This ensures that the patch U, is covered exactly
by one robot.
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k

X

Fig.4 The robot i explores Uy < V]{‘ to check if k can reach it. The exploration path is shown with
dark dashed line ending with an arrow. a U, is unreachable to the robot k, hence it is added to ;.
b Though U, is reachable to the robot k, it has to pass through U to reach it. In other wo_rds, U,

is not adjacent to vk (VAN U, = @). Thus Us € S;. ¢ The robot i reaches a point on A',fj while
exploring U, and hence U; ¢ S; (as Uy € Sk)

Further, it can be noted the scenarios discussed above are exhaustive.

Scenario iii. Patches in V},j eN@G),leN(),l¢NGIf V} DU, €§; and
U, C V}, s.t. U, is adjacent to U}, then robot i has to make a decision on adding U,
to S;.

(H If V;\ij" is not accessible to robot / (based on A,fj and Alj’.,, discussed in sce-
nario(i)), then U, is added to S;. Such scenarios are illustrated in Fig. 5a and b.
(2) Otherwise, the robot i should explore? the boundary of entire portion of V} \ijo

connected to U,. Only if no portion of Al’; is reached during this exploration,
U, is added to S;. Figure 5c¢ shows a scenario where U, is not added to S; after
a point on Alfj is reached while exploration (indicating that U, € §;). Figure 5d
shows a scenario where U, is added to S; after the robot i fails to reach any point
on A‘Z; while exploring (indicating that U, ¢ ;).

Scenario iv. A patch in V,‘\Vii0 While the robot i is in U; C V,-\V; for some
j € N(i)and U; € S;, and a patch U, C Vi\Vii0 is adjacent to Uy, U, is added to S;
only if there is no k € N (i) such that U, is adjacent to kaO.A condition under which
the robot i adds U, to §; is illustrated in Fig. Se. If U, is adjacent only to U, that is
Pijx ¢ Ui NUy, k € N(@i) N N(j), then U, is added to S;.

3Remark 1 is also applicable here.
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Fig. 5 Insituations such as illustrated in a and b robot / will not enter any portion of V} and hence
robot i adds the region Uy C V} to S;. The robot explores a portion of V; adjacent to U; and ¢
reaches a point on Af/ indicating that the robot / can reach and cover Uy, thus U, ¢ S;, d does not

reach any point on AJ;, indicating that the robot / cannot reach U, and hence it is added to S;. The
exploration path is shown in dark dashed line. e Situations in which the robot i covers a part of

Vi\V/

Scenario v. Beyond neighbors and neighbors of neighbors: Robot i continues
looking for new patches and adds them to S; based the following principle: Let
U € S;, and W is adjacent to U. Now, W is added to S; if either, W can not be
reached by any other robot, or, if robot 7 is closer to W than any other robot.

The process continues until the robot finds no more adjacent patches to be added.
At this point robot i performs area coverage of the current patch and returns to the
previous patch. It finds if there are any new adjacent patches to be added; if not, it
performs area coverage of this patch and goes back to the previous patch. Once robot
i reaches the patch from which it was initially placed, V,*, it performs area coverage
of that patch and stops.

4.1 Analytical Results

Lemmal LetV_; C Qe € Vi\ViiO denote a region inaccessible to robot i. Then
V_; must be topologically connected to robot j € N (i)’s Voronoi cell, V;.
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Proof (by contradiction.) Assume that V_; is not topologically connected to V;.
Suppose the only Voronoi boundary V_; intersects is A;;. There can be two cases of
robot i’s blocked boundary Af’j that resulted in V_;:

Case 1. Al = A", Since, A;j = Aj;, this case implies A/, = A/,. Also, since the
only Voronoi boundary V_; intersectis A;;, V_; N A;; = Al-bj. Substituting this value
of expression in the definition of free and blocked boundaries of A j; and noting that
Al = Al and Aj; = Aj;, we get: A%, N AT, = (B}, or, V_; N Ay N AL, = (4}, o,
Vi N Aji N A%, = {#).But A;; N A%, = A7, (from the definition of A”,). Therefore,
we get, or, V_; N Afi = {¢}}. From the definition of a patch given in Sect.4, a patch
is bounded either by obstacles or by A;;. Since V_; is not accessible from V;, it is
bounded by obstacles from the side of V;. And, V_; N A]fl = {#)} implies it is not
accessible (bounded by obstacles) from the side of V; also. Since A;; is the only
Voronoi boundary intersecting V_;, V_; is bounded from all sides by obstacles. In
other words, V_; ¢ QO ,.., which contradicts our assumption.

Case 2. Aﬁ’j # Al;i' Suppose Al;'i C Af’j 4 Then the portion of Aﬁ’j that is not shared
with A’j?i, must be free (accessible) on the side of V;; otherwise it would have been
part of A’]’.i. The portion of boundary that is free only on side of V; but not of side

of Vi is AJ\A/. Thatis, AL\AS, € AZ\A%, or, AT\A], € AL (since A%, C A?).
This implies that the patch V_; is topologically connected to V; through A{i, which
contradicts our assumption that V_; is not topologically connected to V;. Hence

proved.

Lemma 2 A region V_; C Q free € V,-\Vf” that is inaccessible to robot i, must be
topologically connected to V;, j € Iy.

Proof The proof of Lemma 1 can be easily extended to a scenario where V_; inter-
sects more than one neighbor in N (i) by considering the blocked boundary with each
neighbor disjointly. For a more general case where V_; is topologically connected
only to N® (i), the kth hop Voronoi neighbor of i, k > 1 (scenarios iv. and v. in
Sect. 4), the proof of Lemma 1 still holds between robots i and j € N*(i). Varying k
over 1 through the maximum hops between the farthest Voronoi cell from i, we get
N*(i) = Iy; hence proved.

Theorem 1 The proposed distributed partitioning and coverage scheme ensures
complete coverage of the free space.

Proof By Lemmas 1 and 2, there must be a robot j € Iy whose Voronoi cell V;
is topologically connected to V_;. This ensures that for every robot i € Iy, the free
space in its Voronoi cell V; denoted by Q r... N V; gets covered by itself or by one
or more robots in j € Iy. The total region covered by all robots in Iy is then given

4 A similar result can be proved for Aibj - A?i by interchanging indices i and j.
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by Ui (Q free N Vi) = Q free N (Ui Vi) = Q pree N Q (from definition of Voronoi cell)
= Q free (since Q fre. € Q). Hence proved.

Theorem 2 The proposed distributed partitioning and coverage scheme achieves
non-overlapping coverage.

Proof The proof follows from the construction of patches using Voronoi cell bound-
aries. From definition, a patch between V; and V; is bounded either by obstacles or
by the bisector line B;; between robots i and j’s initial positions p;(0) and p;(0).
The Voronoi partitioning is done only once at the beginning, and by definition (Eq. 1)
guarantees non-overlapping Voronoi cells. Since there is only one robot per Voronoi
cell, the coverage of the initial Voronoi cell (V;°) is done only by robot i. When a
region V_; € Vi\\/ii" is inaccessible from Vii", if V_; is adjacent to only one other
Voronoi cell V; then only robot j covers V_;. On the other hand, if V_; is adjacent
to more than one Voronoi cell Vi, Vjs, ... then each pair of robots j, and jj, divide
the region of V_; into patches §; , S;, by extending their bisector lines Bj, ;,. This
construction ensures that §;, N S;, = {#}, or, patches S;,, S;, are non-overlapping;
patch S}, is covered only by robot ji. Therefore, for every robot i, Vf" and every
inaccessible region V_; is covered by exactly one robot. Hence proved.

Also, note that since the number of Voronoi cells is bounded by N (number of
robots) and there is at least one Voronoi cell that is connected to any initially inac-
cessible region, therefore, the repartitioning technique takes at most N steps to find
and connect the initially inaccessible region to another Voronoi cell. Consequently,
the repartitioning mechanism is guaranteed to converge in a finite number of steps.

We have implemented the repartitioning algorithm using an auction protocol as
shown in Algorithm 1. The robots use Voronoi partitioning to get their initial cov-
erage regions corresponding to their Voronoi cells. Each robot then explores the
boundary of its Voronoi cell. If, upon completing the exploration of its boundary,
there are unexplored regions remaining in the Voronoi cell, these regions are allo-
cated to neighboring robots using an auction protocol—robots in the neighboring
Voronoi cells of the obstructed robot are sent a bid request message. Every neighbor
robot calculates a bid for the region, and sends it to the auctioning robot. In the
current implementation of the algorithm, these bids are calculated as the perimeter
of the robot’s current region. The robot that submits the lowest bid is selected as
the winner of the auction and assigned the inaccessible portion of the Voronoi cell.
The auctioning robot informs the winner, which then appends the region to the list
of regions it needs to cover, and starts to perform boundary coverage of its newly
assigned region. The auction algorithm possesses the essential properties (comple-
tion, non-overlapping coverage), but it reduces communication and coordination
overhead by combining adjacent patches belonging to different robots, when the
patches are accessible from each other.
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Algorithm 1: Algorithm used by a robot to perform repartition coverage.

1 Repart-Coverage(V;)
Input: V;: Voronoi cell of robot i
Output: V/: Repartitioned coverage region for robot
2 perform boundary coverage in V; and determine Viio
3 Sf.’ ;< set of blocked patches comprising V,-\Vl.i
4 for each Sf_’j € Sff do
5 j < set of Voronoi neighbor robots of i that have Voronoi cell boundaries with Sf’j
send coordinates of polygon representing Sibj to all robot in j
wait for bids
bid < set of bids received
Jwin < argmin bid

E=2N- RN B

j
10 Vi < Vl-\Sf’j //remove Sl.bj from V;
11 send message to robot jy,;, to add Sf’j toV;

Jwin
12 handleBidMessages() //for robot j
13 if received bid request for Sf’j from robot i then

" bid currently covered perimeter of V;, ifSibj reachable
idj =
/ 00, otherwise

15 send bid; to robot i

16 if received winner message for S;’/ from robot i then
17 | Vj < V;US} /ladd S} o V;
18 | Repart-Coverage(V;)

5 Experimental Results

We have implemented our proposed Repart-Coverage algorithm using simulated
e-puck robots within the Webots simulator. E-puck robots use a ring of eight IR-
based proximity sensors with a 4 cm range to avoid obstacles and follow obstacle
boundaries. Robots use Bluetooth protocol for inter-robot communication, and have
a GPS and compass for localizing w.r.t the environment. Figure 6a—d, show four
different environments measuring 2 x 2 m? with different internal obstacles and
with 5-7 robots, placed initially at arbitrary positions. These environments illustrate
different scenarios where the Voronoi cell of one or more robots becomes partially
inaccessible due to the obstacles in the environment, corresponding to the different
scenarios discussed in Sect.4. The red lines on the floor of the environment denote
the Voronoi cells assigned to each robot. For reaching and following the boundary of
its Voronoi cell, each robot uses a lightweight, bug-like algorithm called Egress [13]
that enables a robot to start from any arbitrary internal point in its assigned region,
find a path to the region’s boundary using basic motions such as move-outward and
wall-follow, and, completely explore the entire outermost boundary of the region.
Eachrobot’s initial location is at the center of its Voronoi cell; the path followed by the
robot is marked with a dark red trail. Figure 6e—h show the scenarios for the different
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(e)

Fig. 6 Snapshots from Webots showing repartition coverage by 5-7 robots in different 2 x 2 m?
environments with different obstacles. a—d initial Voronoi partition, e~h robots performing boundary
coverage on original Voronoi cell, while showing inaccessible regions arising out of original Voronoi
partition, i-l repartitioned cells and robots completing boundary coverage of entire environment;
the final boundary of the cell that each robot covered is marked with a green line

environments at the end of boundary coverage along the Voronoi cell boundaries; the
initially inacccesible regions of the respective Voronoi cells are marked with a black
boundary. Finally, Fig. 6i—1 show the result of our repartitioning algorithm. Robots
from adjacent cells are allocated to cover each of the initially inaccessible regions
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Fig.7 Snapshots from Webots showing repartition coverage by 7 robots ina 3 x 6 m? environment
with different obstacle features, a initial Voronoi partition, b robots performing boundary coverage
on Voronoi cell, black/light blue boundaries show inaccesible regions. ¢ repartitioned cells and
robots completing coverage of entire environment

using the Repart-Coverage algorithm. The trail of the paths followed by the different
robots shows that every region in the environment is covered by exactly one robot.
This shows that our algorithm is successful to (re)-parititon the free space in the
environment into complete, non-overlapping regions for coverage.

Figure 7a—c show another instance of the operation of the Repart-Coverage algo-
rithm for a 3 x 6 m? environment with 7 robots. The scenario includes some unique
obstacle features like narrow channels between obstacles and obstacles that span
across multiple Voronoi cells, which require the inaccessible regions to be re-
allocated to robots multiple times (similar to scenarios iv. and v. in Sect.4). This
shows that our algorithm successfully terminates and is able to find complete, non-
overlapping regions even for complex obstacle geometries.

Finally, we have quantified the performance of our algorithm in terms of the area
allocated to the different robots and the distances covered by them while performing
boundary coverage. Table | shows the average area of the region allocated to each
robot using our algorithm versus the area of the initial Voronoi cell for the different
environments we have considered. Note that the initial Voronoi partition results in
uncovered regions while the repartitioning guarantees complete coverage. The results
for the different environments show that when obstacles result in larger inaccessible
regions in the initial Voronoi cells, the coverage regions for each robot recalculated
by the repartitioning algorithm have higher variance (std. dev, and max/min) than
the initial Voronoi cells. This is because, with more complex obstacles, robots have
to cover regions from other robots’ initial Voronoi cells in addition to covering their
own Voronoi cells.

6 Conclusions and Future Work

We proposed a novel technique for distributed spatial partitioning of an initially
unknown region that guarantees a partitioning of the free space in the environment
into a set of connected regions that can be covered by each robot. Currently, we are
investigating techniques for each robot to dynamically build a map of the boundary
of its currently allocated region instead of maintaining the end points of vertices of
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the boundary segments. The boundary map will enable a robot to efficiently plan
its path to newly added regions instead of circumventing regions whose boundary
it has already explored. Additionally, with boundary maps, the load (area covered)
between different robots can be balanced by including factors such as the area of
and distance to the newly allocated region, and, the area of the existing region in the
robots’ bids for new regions. Finally, we are implementing the proposed algorithm
on physical robots.

Acknowledgments This work was partially supported by the U.S. Office of Naval Research as
part of the COMRADES project.

References

10.

11.

12.

13.

14.

. Choset, H.: Coverage of known spaces: the boustrophedon cellular decomposition. Auton.

Robots 9, 247-253 (2000)

Hert, S., Lumelsky, V.: Polygon area decomposition for multiplerobot workspace division. Int.
J. Comput. Geom. Appl. 8, 437-466 (1998)

Rekleitis, I., New, A.P., Rankin, E.S., Choset, H.: Efficient boustrophedon multi-robot coverage:
an algorithmic approach. Ann. Math Artif. Intell. 52, 109-142 (2008)

Cortes, J., Martinez, S., Karata, T., Bullo, F.: Coverage control for mobile sensing networks.
IEEE Trans. Rob. Auton. 20(2), 243-255 (2004)

Bash, B.A., Desnoyers, P.J.: Exact distributed voronoi cell computation in sensor networks.
In: Proceedings of the Sixth IEEE/ACM Conference On Information Processing in Sensor
Networks, pp. 236243 (2007)

. Choset, H.: Coverage for robotics—a survey of recent results. Ann. Math. Artif. Intell. 31,

113-126 (2001)

. Altshuler, Y., Yanovski, V., Wagner, [.A., Bruckstein, A.M.: Multi-agent cooperative cleaning

of expanding domains. 1. J. Robot. Res. 30(8), 1037-1071 (2011)

. Agmon, N., Hazon, N., Kaminka, G.: The giving tree: constructing trees for efficient offline

and online multi-robot coverage. Ann. Math Artif. Intell. 52(2—4), 143-168 (2009)

. Jdger, M., Nebel, B.: Dynamic decentralized area partitioning for cooperating cleaning robots.

In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3577-3582
(2002)

Schwager, M., Rus, D., Slotine, J.-J.E.: Decentralized, adaptive coverage control for networked
robots. 1. J. Robot. Res. 28(3), 357-375 (2009)

Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of
non-convex environments with a group of networked robots. In: ICRA, pp. 4982-4989 (2010)
Durham, J.W., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for
gossiping robots. IEEE Trans. Robot. 28(2), 364-378 (2012)

Guruprasad, K.R., Dasgupta, P.: Egress: an online path planning algorithm for boundary explo-
ration. In: IEEE International Conference on Robotics and Automation, May 2012, pp. 3991—
3996

Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot.
Ann. Math Artif. Intell. 31, 77-98 (2001)

. Batalin, M., Sukhatme, G.S.: Spreading out: a local approach to multi-robot coverage. In:

Proceedings of the International Symposium on Distributed Autonomous Robotic Systems,
Fukuoka, Japan, Jun 2002, pp. 373-382. [Online]. http://robotics.usc.edu/publications/56/


http://robotics.usc.edu/publications/56/

On Combining Multi-robot Coverage
and Reciprocal Collision Avoidance

Andreas Breitenmoser and Alcherio Martinoli

Abstract Although robotic coverage and collision avoidance are active areas of
robotics research, the avoidance of collision situations between robots has often
been neglected in the context of multi-robot coverage tasks. In fact, for robots of
physical size, collisions are likely to happen during deployment and coverage in
densely packed multi-robot configurations. For this reason, we aim to motivate by
this paper the combined use of multi-robot coverage and reciprocal collision avoid-
ance. We present a taxonomy of collision scenarios in multi-robot coverage problems.
In particular, coverage tasks with built-in heterogeneity such as multiple antagonistic
objectives or robot constraints are shown to benefit from the combination. Based on
our taxonomy, we evaluate four representative robotic use cases in simulation by com-
bining the specific methods of Voronoi coverage and reciprocal velocity obstacles.

Keywords Multi-robot coverage  Voronoi tessellation + Reciprocal collision avoid-
ance - Velocity obstacles - Taxonomy of collision scenarios - Evaluation of use cases

1 Introduction

The primary objective of multi-robot coverage involves the deployment and/or
sweeping motion of a group of mobile robots within a region or along boundaries
in order to provide a service, such as monitoring or maintenance. Whenever the
coverage tasks require the robots to come close, higher-priority objectives of coop-
eration are imposed, including the avoidance of robot-to-robot collisions. Collision
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situations arise first of all due to the other robots that are involved in the same task of
covering the mission space. Second, collisions with other independent robots present
in the mission space must be avoided. These robots—either static or dynamic—are
pursuing their own objectives in a collaborative or non-collaborative fashion.

A survey of robotic coverage is given in [1]. Deployment and sweeping motion for
robotic coverage of areas and boundaries (e.g., barriers) have previously also been
referred to as blanket, barrier and sweep coverage [2]. A particular type of blanket
coverage is Voronoi coverage [3], which arranges the robots in a final configuration
that forms a so-called Centroidal Voronoi Tessellation (CVT) [4].

In the context of Voronoi coverage, robot-to-robot collision avoidance for robots
of physical size (i.e., finite size instead of zero-sized point robots) has previously
been considered by [5, 6]. The method in [5] restricts the robots’ positions to the
collision-free subareas in the interiors of their Voronoi cells; the Voronoi coverage
controller in [6] adds a collision avoidance component based on repulsive terms to
the coverage control law. Both methods, however, focus on one collision scenario
only, which addresses the collision avoidance among robots that all share one single
objective and execute the same Voronoi coverage control law cooperatively.

The contributions of this paper are threefold. First, we describe the possible types
of robot-to-robot collision scenarios in multi-robot coverage problems and propose a
taxonomy (Sect. 2). Second, we present a concrete solution for integrating a reciprocal
collision avoidance algorithm into a multi-robot coverage algorithm; in particular,
the CVT-based Voronoi coverage controller is combined with Reciprocal Velocity
Obstacles (RVO), using the Optimal Reciprocal Collision Avoidance (ORCA) for-
mulation (Sect. 3). Besides collision-free coverage, this allows for collision avoid-
ance between heterogeneous robots (e.g., robots with different kinematic models).
Third, we evaluate four use cases for combining multi-robot coverage and recipro-
cal collision avoidance, which show some characteristics that are inherent to such a
combination (Sect.4). Final conclusions are provided in Sect. 5.

2 A Taxonomy of Collision Scenarios
in Multi-robot Coverage

In this paper, we deal with instances of multi-robot coverage problems, i.e., problems
which ask for covering a mission space with multiple robots. Each robot has its own
primary objective, which may be an individual or a shared common goal with other
robots. The robots that share common goals are in the following considered members
of the same group or team. The primary objective of at least a subset of the robots
will be the coverage of the common mission space.

In such a setting, there are many possibilities for conflicting situations, so-called
collision scenarios, which need to be resolved. Some scenarios are encountered
during initial robot deployment and others in a later stage of the coverage process.
Some scenarios occur among robots of the same team, i.e., intragroup, and others
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between robots that belong to different teams, i.e., infergroup. In some collision
scenarios, the robots must avoid each other while they collaborate, yet in others, the
robots may compete and collisions with adversary robots must be avoided.

2.1 Categorization of Collision Scenarios

We base our categorization of collision scenarios in multi-robot coverage on the
categorization of coverage behaviors by [2] and the categorization of interactions
among agents by [7], where interactions are classified along the axes of “individual
or shared goals”, “actions advance goals of others”, and “awareness of others”. For the
multi-robot coverage tasks of our interest, we assume that the robots are aware of

each other. Consequently, our taxonomy has three dimensions:

e Coverage phases during deployment and sweeping: We distinguish between
the two coverage types of deployment and sweeping motion, each of which is
subdivided into two coverage phases. Deployment refers to blanket and barrier
coverage: a robot team deploys in the first phase and assumes a static coverage
configuration. In the second phase after the initial deployment, the robots observe
the mission space from their configuration. Sweeping motion refers to sweep
coverage (and coverage by a moving barrier): each robot covers the mission space
by a sweeping motion in the first phase. If a second phase exists, the robots move
over already covered space and relocate, inspect a covered location closer, or
resume the sweeping motion to achieve persistent or redundant coverage of the
mission space.

e Intragroup and intergroup collision avoidance: According to [7], robots may
share common goals or have individual differing goals. Robots with shared com-
mon goals form a team or group. Single robots or robots of different teams are
said to be external to each other. During the completion of a task, such as cover-
age, the robots must avoid collisions and resolve collision situations inside their
own team (intragroup) as well as between external robots and teams (intergroup).
The robot teams may be homogeneous or as well consist of heterogeneous robots
with different sizes, sensing and mobility capabilities (e.g., different kinematics).

e Cooperative and non-cooperative behavior: For coverage and reciprocal col-
lision avoidance, the degree of cooperation is another important factor. Similar
to [7], we measure cooperativeness by whether the actions of one robot influences
the goals of other robots (both individual or shared goals) in a positive or nega-
tive way. Positive influence represents cooperative behaviors, neutral or negative
influence represents non-cooperative, including competing or adversary, behav-
iors. Non-cooperative robots appear to each other as static or dynamic obstacles.
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Fig. 1 Coverage without (left) and with (right) reciprocal collision avoidance. Left A robot team
(black robots) performs Voronoi coverage and covers a mission space §2 by creating a CVT. The
Voronoi graph is formed by the boundaries of the Voronoi cells (full black lines) and the dual
Delaunay graph is visualized by the black dashed lines. The Voronoi neighborhood of one of the
robots (yellow Voronoi cell) is indicated by the yellow outer circle. Right The robot team now
avoids collisions among each other and with external robots (white robots); the numbers (1)—(3)
and (4)—(6) refer to the different collision scenarios that occur during (i.e., first coverage phase) and
after (i.e., second coverage phase) the initial deployment (see Sect. 2)

2.2 The Collision Scenarios in Voronoi Coverage

The multi-robot Voronoi coverage control approach serves us as a demonstration
example to show the different categories suggested by our taxonomy. The basic
CVT-based Voronoi coverage controller' is an example of the deployment coverage
type. In addition, we will also consider a hybrid variant, where the second coverage
phase involves, instead of observing, sweeping motions in the Voronoi cells.

The collision scenario (1) in Fig. 1 on the right depicts the trajectory of a robot
that shows intragroup collision avoidance and cooperative behavior when avoiding
another team member (black robot) during the first phase of deployment. A similar
situation is illustrated by collision scenario (2) in Fig. 1 but for intergroup collision
avoidance between a team member that performs Voronoi coverage (black robot)
and an external robot with differing goal (white robot).

Some collision scenarios include components from both intragroup and intergroup
collision avoidance. Instead of single robots, a team of several robots—considered as
a single entity—can as a subgroup itself be part of a larger team and thus be subject to
coverage and collision avoidance. During the initial phase of deployment, the robots
in the subgroup must avoid reciprocal collisions among each other locally and with
other members of the team (intragroup collision avoidance, cooperative behavior), as
well as with potential external robots (intergroup collision avoidance, cooperative or

IRefer to Fig. 1 on the left for an illustration and to Sect.3 for a formal description.
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non-cooperative). The collision scenario (3) in Fig. 1 shows such an abstraction for
a team of three robots, which forms a subgroup of the overall covering team (black
robots).

In the second coverage phase of the deployment, certain operations, such as
recharging, servicing, escape or evasion maneuvers, require robots of a team to
occasionally leave their positions in the static coverage configuration for a short
time. During these operations, the robots must avoid reciprocal collisions with team
members (intragroup or intergroup collision avoidance) as well as with approach-
ing external robots (intergroup collision avoidance). The robots which undergo such
escape and return maneuvers become in some cases instances of “on-off”’ team mem-
bers, i.e., they are recognized as external robots by some or all of the team members
for a limited time period. In other words, these robots temporally convert into exter-
nal robots, and apply intergroup collision avoidance, but eventually rejoin the robot
team. The collision scenario (4) in Fig. 1 gives an example of a robot that leaves
its Voronoi cell and comes back after having moved to the mission space boundary.
On its way, it may get involved into collisions, e.g., with a former team member or
an external dynamic obstacle (white robot).

The initial deployment of a robot team often goes along with a decomposi-
tion or tessellation of the mission space. This provides an additional representation
of the environment and robot configuration that can be shared among the robots.
With respect to Voronoi coverage, the constructed CVT includes Voronoi and Delau-
nay graphs, which can be used as roadmaps for robot navigation in the mission space.
Single robots or groups of multiple robots may, for example, patrol the Delaunay
graph or pass threats with a maximum clearance or safety distance by transition-
ing the Voronoi graph. On both roadmaps, there can potentially be oncoming traffic
of cooperative or non-cooperative robots, which asks for reciprocal intragroup or
intergroup collision avoidance. The collision scenarios (5) in Fig.1 show a robot
(black) that moves along a path (red) on the Delaunay graph to a next Voronoi cell
and an external dynamic obstacle (white robot) that moves along a path (green) on
the Voronoi graph amidst the deployed robots. The first robot must actively avoid
collisions on its path whereas the second robot needs to be avoided by other robots.

The two coverage types can also be combined; such hybrid coverage methods
involve the hierarchical coupling of deployment and sweeping motion [8]. In case of
Voronoi coverage, after the robots have deployed and a CVT spans the mission space,
each robot in the team covers its Voronoi cell by sweeping motions (e.g., spiraling or
back-and-forth sweeping patterns) during the second coverage phase. Here, collision
situations occur during sweeping. The collision scenarios (6) in Fig. 1 illustrate that
the robots must either avoid reciprocal collisions at the boundaries of their Voronoi
cells (intragroup collision avoidance)? or within the cells, in case several robots—
possibly of different teams (this would mean intergroup collision avoidance)—sweep
the same Voronoi cell for purposes of redundant coverage.

2In real-world scenarios, with positional noise and varying pose estimates for each robot (different
from Assumption 3 in Sect. 3), the resulting degenerate Voronoi cells may overlap, which naturally
leads to collision situations even farther away from the boundaries of the Voronoi cells.
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Intragroup and intergroup collision avoidance during the second coverage phase
can involve cooperative or non-cooperative behavior. Whereas two robot team mem-
bers would typically cooperate when facing a collision situation while driving along
a sweeping path or path in a roadmap, the cooperativeness of a robot that tempo-
rally leaves its team, for example for recharging, may strongly depend on its current
state, e.g., its urge due to a low remaining battery level. Moreover, external dynamic
obstacles pursue their own goals by strictly acting in a non-cooperative way.

3 Combining Voronoi Coverage and RVO

We are now going to present the implementation of a concrete solution for reciprocal
collision avoidance in a multi-robot coverage problem. We build on the aforemen-
tioned example of CVT-based Voronoi coverage and combine it with reciprocal
collision avoidance in velocity space, using the RVO and ORCA? methods [9-12].

Voronoi coverage, as presented in Sect. 3.1, is based on a gradient-descent control
law. In a collision situation, each involved robot faces one or multiple other robots
in the mission space. Independent of their cooperativeness, each robot represents a
dynamic (or static for stationary robots) obstacle that needs to be avoided completely,
or up to a certain degree. This introduces (dynamically changing) constraints on the
robot controllers and leads to constrained (or projected) gradient descent, which
makes the problem considerably more challenging. We approach this constrained
optimization problem with the reciprocal collision avoidance method using RVO
and ORCA in Sect.3.2.

3.1 CVT-based Voronoi Coverage

We restate the most important formulations from Voronoi coverage control after [3].
Given n robots at positions P = {p;, ..., p.}, which are tasked with covering the
mission space 2 C RV, let the coverage objective function be 7y, and the corre-
sponding coverage cost

Hy(P) = > h(p;, Vi) = Z/V f(d(q. p) p(@) dF(q). (1)
i=1 i=1 i

The Voronoi tessellation over §2 is given by the set of Voronoi cells V(P) =
Vi, ..., V,,}, where

Vi={qe2|dq, p) <dQ,p)), j#i}.

3Under the linear programming formulation, the RVO method becomes the ORCA method.
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Vi, jef{l, ..., n}. Two robots i and j are said to be Voronoi neighbors if their

Voronoi regions V; and V; are adjacent. The density function p: £2 — Ry directs

the robots to areas of special interest. The function to measure distance between

locations q € V; and robot positions p; is defined as d: (RIS R-. The perfor-

mance function f: R>¢ — R, which must be strictly increasing over the image of

d, measures the degradation of the coverage performance with increasing distance.
As further shown in [3-5], the objective function is minimized by solving

Vp,'HV(P) = Vp,-h(pi» ‘/l)

_ /V V. f(d(a, ) p(@) dF(q) =0.

i

The partial derivatives and linear proportional control laws can then be obtained for
each robot,

Vpih(piv ‘/l)

ref
vi

-2 MV: (cVi - pl) ’
ke Vy (P, Vi), @)

with My, and k set to positive values. The centroids cy, are critical points of the
objective function Hy,. The preferred velocities v"™', which are tracked by the robots,
point toward the centroids and make the robots iteratively approach the centroids;
the resulting CVT at convergence leads to a local minimum of the objective function.
Figure 1 on the left shows a CVT, the Voronoi graph and its dual, the Delaunay graph,
as well as an example of a robot’s Voronoi neighborhood.

We will additionally make the following assumptions with respect to the Voronoi
coverage control in this paper.

Assumption 1 The Voronoi tessellation is defined after [3] by a coverage objective
function that consists of the Euclidean distance d(q, p;) = |/q — p; ||» and the perfor-
mance function f(d(-)) = d(-)>. Under these settings, My, is the mass of the Voronoi
cell V; for a given area density function p; we assume constant density p(-) = 1.

Assumption 2 We assume the mission space §2 to be two-dimensional, i.e., N = 2,
and convex. In particular, the mission space does not contain any static obstacles as
fixed components of the environment. However, there are mobile robots in the mis-
sion space, which represent—depending on whether they are moving or stopped—
dynamic and static obstacles of circular shape to one another (see Fig. 1).

Assumption 3 The robots sense noisy positions; the noise in a robot’s position is
uniformly distributed over a circle centered at the noise-free actual position and its
radius is bounded by a maximum noise amplitude. We assume one noisy position
per robot, i.e., each robot’s own position estimate and the estimates of its position by
the other robots are equivalent. Due to this assumption, the Voronoi tessellations are
correct partitions of £2, composed of fully covering, disjoint sets of Voronoi cells.
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Fig. 2 RVO and ORCA. Left Construction of the set of collision-free velocities ORCA’ from

Vv OT for robot i. Right Computatlon of the optimal holonomic velocities v 1, from the set ORCAT
glven four other robots in robot i’s neighborhood as well as four different po%%lble sets of allowed
holonomic velocities Sanv; . SAHV,- represents the set for a holonomic robot, SAHV’, corresponds to

a differential-drive robot, and Sg py, and Sﬁ v, describe two instances of the set for a bicycle robot

3.2 Reciprocal Collision Avoidance Using RVO and ORCA

Assumptions 2 and 3 likewise hold for the reciprocal collision avoidance. In the case
of holonomic robots with velocities vy, any robot j with radius 7; positioned at p;,
within a given neighborhood* of a robot i with radius r; positioned at p; and j # i,
induces a velocity obstacle

VO, ={vi3rel0, ], t-ve Dp;—pi.ri+r)}. (3)

The vectors Vv = vy, — vy, form the set of relative velocities between the robots,
7 is the time horizon for a collision to occur and D(p, r) ={q | lq — pll» < r}is
the open ball of radius . The RVO and ORCA methods [9, 10] now assume that all
the robots make similar attempts in order to avoid collisions. The set of collision-free
velocities ORCA]; for arobot i with respect to any other robot j in its neighborhood

results from V O, ; through an adjustment in velocity by

. < cur _ eur cur cur
u = argmin([|v — (v; 7)) = (v =)

¥edv 0f;
The vector u represents the smallest change the robot needs to add to the difference
in the current velocities of the robots, v;"* — v$", in order to fully avoid a collision.
The cooperativeness ratio o € [0, 1] scales u and defines to which extent a single
robot eventually participates in avoiding a reciprocal collision. The construction of
the set ORCAf“ is shown on the left of Fig.2. ORCA]; is given as

ORCAY; = (vi, | (i, — (V" + - w) -1 = 0}, @)

“In our case, the Voronoi neighborhood can be used as neighborhood in the RVO computation.
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where fi denotes the outward normal at (v{*" — C“r) +uondVO; i i.e., the boundary
of VOj| ;- Let Sany, be the set of allowed holonomtc velocities given the kinematic
constraints of robot i. The final set of collision-free velocities is then computed as

ORCA} = Syny, N [ | ORCAY,; . 5)
J#

The right side of Fig. 2 illustrates the set ORCA; in a multi-robot scenario for different
types of Sanvy,, including Supyv, = D(0, v’”‘”) for holonomic robots with an upper
bound on the velocity of v’”‘” as well as the Sanv, for differential-drive and bicycle
(respectively car-like) robots, whose detailed derivations can be found in [11, 12].
The extension of the ORCA method to robots with non-holonomic kinematics is
based on the idea that a robot i with given kinematic constraints can be enabled by
a trajectory tracking controller to track a set of allowed holonomic velocities Sagy,
within a certain maximum error bound. Because of the enlargement of the robots’
radii by this bound, rl./ =r; + ¢ and r;. =rj + ¢j, the robots can be treated as if
holonomic. The velocity obstacles VOf| ; in (3), the set ORCA[-T| j in (4) and as a
result the set ORCA; in (5) are modified by the extended radii r; and r} in this case.
This offers the flexibility of forming heterogeneous groups of multiple robots with
different kinematic constraints and using them together in a common coverage task.
We finally obtain the optimal holonomic velocity of robot i by projection to

ORCA?,
vy, = argmin (Ive, —v/'l2), (©6)

Vi, CORCAT

which avoids reciprocal collisions among all the robots in the neighborhood for at
least the time horizon t but also lies as close as possible to the previously specified
preferred velocity Vfref of (2), which represents the primary objective of coverage.

Concerning the RVO and ORCA computation, the following additional assump-
tion applies for the rest of the paper.

Assumption 4 Even though various cooperativeness ratios are supported, we set a
robot’s ratio to ¢ = 0.5 with respect to other cooperative robots, i.e., the robots avoid
collisions in equal parts (cooperative behavior), and to « = 1 with respect to other
non-cooperative robots (non-cooperative behavior); these robots represent dynamic
obstacles, which have to be fully avoided.

3.3 Properties of the Combined Method

When combining Voronoi coverage and RVO, we have two alternatives to compose
distributed controllers. If we apply Voronoi coverage control in an outer loop at
high level, the preferred velocities Vpre after (2) serve as inputs to the inner control
loop given by the ORCA method in (6). This is the implementation we will use
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throughout Sect.4. Alternatively, Voronoi coverage can be used as inner loop for
formation control of a group similar to [3, 13]° and the entire group can be guided
as single entity similar to [14, 15] by RVO or ORCA in the outer control loop.

Regarding the combined method in light of the taxonomy, “awareness of oth-
ers” is implied by the Voronoi tessellation and the velocity obstacles of RVO. The
CVT-based controller realizes the shared goal of well-balanced coverage and the
cooperation behavior is expressed by «. The two coverage phases are given by the
two periods before and after convergence of the Voronoi coverage controller.

The unconstrained Voronoi coverage controller is shown in [3] to converge for a
team of cooperatively covering holonomic robots. In the constrained case (Voronoi
coverage combined with RVO), a team of cooperatively covering holonomic robots
with intragroup collision avoidance converges but stays off the centroids cy, by
(r! + r}) /2 in the worst case. A team of cooperatively covering non-holonomic robots
converges after [3, 6] whenever the robots move closer to the centroids in each control
step (in particular, this requires bidirectional driveability of the robots). Intergroup
collision avoidance among non-cooperative robots or teams, however, can introduce
arbitrary perturbances, such that final convergence is not guaranteed.

4 Simulation of Robotic Use Cases

In this section, we finally apply the combined Voronoi coverage and reciprocal col-
lision avoidance methods from Sect.3 in simulation,® and evaluate the collision
scenarios from Sect. 2 for four representative robotic use cases.

4.1 Recharging Use Case

Our first use case of recharging relates to the collision scenarios (1), (2) and (4)
in Fig. 1: four robots use the combined Voronoi coverage and reciprocal collision
avoidance methods to cover a square mission space; during the process of coverage,
the robots regularly run out of power and need to recharge their batteries. A Voronoi
coverage-based method was applied to a similar application in [16], thereby focusing
on energy-awareness regardless of collision situations.

The four robots are modeled after the Khepera III robots’ as differential-drive
robots with identical parameters; only their initial battery levels differ from each
other. The robots can recharge by driving to the lower borderline of the mission
space, which is the charging area (blue region in Fig.3a—d). The robots start in the
bottom left corner and are deployed in the mission space of 1.2 x 1.2 m?. Energy

5Intragroup collision avoidance, however, is not considered in [3, 13].
6 All the simulations have been conducted in the Matlab environment.
7See http://www.k-team.com/mobile-robotics-products/khepera-iii.
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Fig. 3 Recharging use case. Four robots deploy from the bottom left corner of the mission space.
During the coverage process, the robots leave the robot team, recharge at the lower borderline and
rejoin the team after charging. The covering robots compensate for the recharging robots while
concurrently avoiding collisions with them. No collision avoidance leads to faster convergence of
the coverage cost but also to collisions. The envelopes show 95 % confidence intervals on the mean

is consumed per distance traveled and per time a robot is sensing. Sensing happens
whenever a robot applies the Voronoi coverage controller, i.e., the robot is not moving
to, returning from or residing at the charging area.

The recharging robots are examples of “on-off” team members, during as well
as after the first phase of deployment. During deployment and after convergence,
as soon as a robot’s battery level decreases below a minimum critical value (red
robots in Fig.3b—c), the robot leaves the team of covering robots and becomes an
external dynamic obstacle to them (transition from intragroup to intergroup collision
avoidance). The recharging robot will moreover become non-cooperative and will not
help to avoid collisions with the covering robots anymore. This can also be viewed as
inherently increasing the priority of the recharging robot, i.e., the remaining covering
robots now have to give way and fully avoid collisions with that robot. However, the
covering robots as well as the recharging robots themselves remain cooperative and
still avoid collisions among each other in equal parts. Once fully charged, the robots
return to the last position at which they were located when the critical battery level
was detected, and rejoin the covering robot team.

Figure 3a—d presents several snapshots from the simulation of the recharging sce-
nario. The noise in the robots’ positions is bounded by a maximum value of 0.01 m.
We compare the combined Voronoi coverage and reciprocal collision avoidance
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Fig. 4 Push-through (left) and sweeping (right) use cases. Left Two robots (gray) push through
human agents (blue) in a4 x 6 m~ mission space. The red points mark the start positions, the gray

£
lines the Voronoi cells and the trajectorles are in green. Thin blue arrows represent velocities Vp ©

and red arrows indicate velocities v’ - Right Two robots at a time form a group (red and blue
violet and yellow, orange and green) and deploy. Each of the three groups covers one of the three
Voronoi cells redundantly; the first robot in the group (red, violet, orange) executes a spiraling
sweeping pattern and the second robot moves back and forth (blue, yellow, green). In the process,
the robots have to avoid reciprocal collisions at the boundaries of their Voronoi cells and with each
other. Finally, the set of red, violet and orange trajectories and the set of blue, yellow and green
trajectories each result in complete coverage of the mission space without collisions

methods with the case where no collision avoidance is performed. Each case is
tested by 10 simulation runs, during which each robot recharges twice in average.
Without collision avoidance, the coverage cost is minimized faster and reaches lower
levels (Fig. 3f). The resulting configurations are more optimal in terms of the mini-
mization of the coverage cost in (1) since the covering robots do not need to avoid
the recharging robots. However, there occur an average total of 8 collisions during
each simulation run and 80 collisions over all runs, whereas the use of the collision
avoidance method prevents most of these collisions® (Fig. 3e).

4.2 Push-Through Use Case

In the second use case, we simulate a heterogeneous crowd of 12 human agents
and two robots (see Fig.4 on the left). We model the robots as the differential-
drive Pioneer 3-DX° and assume a holonomic kinematic model for the humans.
The CVT is used as a simplified model of the human personal space. The human
agents are distributed according to the Voronoi coverage controller. This is an example
of collision scenario (5) in Fig. 1, after initial deployment, with intergroup collision

80nly a single collision occurred in a situation where a covering robot was jammed in between two
non-cooperative robots that moved in opposite directions from and to the charging area.

9See http://www.mobilerobots.com/ResearchRobots/PioneerP3DX .aspx.
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avoidance and cooperative behavior. After convergence, the human agents stand at
their positions slightly apart, similar to people waiting at a bus stop. The robots
move across the mission space by pushing through the crowd; in order to reduce
disturbances of the humans, the robots follow the Voronoi graph, which represents
a maximum clearance roadmap. Thereby, both the human agents and the robots run
the reciprocal collision avoidance method at the low level with @ = 0.5 for everyone.

4.3 Sweeping Use Case

The third use case relates to sweep coverage, e.g., for cleaning or inspection tasks,
and includes collision scenarios that occur during and after the first phase of deploy-
ment, with intragroup collision avoidance and cooperative behavior. It showcases the
concepts of abstractions for robot groups and hybrid coverage [8], illustrated as col-
lision scenarios (3) and (6) in Fig. 1 above. Six differential-drive Khepera III robots
form a covering team but further subdivide into groups of two. The groups deploy in
the mission space of 1.2 x 1.2 m?. At convergence, the final CVT is fixed and each
of the three groups subsequently sweeps its Voronoi cell collaboratively by applying
spiraling and back-and-forth sweeping patterns (see Fig. 4 on the right). All the robots
run the reciprocal collision avoidance method with & = 0.5. The resultant redundant
coverage with two different coverage patterns in parallel presents a characteristic
outcome of combining robotic coverage and reciprocal collision avoidance.

4.4 Perturbation Use Case

The last use case looks at the perturbation that is introduced into a multi-robot sys-
tem through external dynamic obstacles. The dynamic obstacles traverse a bounded
mission space, which is covered by a robot team according to the Voronoi coverage
control law. The covering robots need to fully avoid the dynamic obstacles as well
as the enclosing borderlines of the mission space.

This use case shows a scenario for the second phase after initial deployment, with
intergroup collision avoidance and non-cooperative behavior, and is of general inter-
est for applications with adversarial pursuers or intruders. However, in this paper, we
are particularly interested in the aspect of how the inherent perturbation by dynamic
obstacles influences the coverage cost and the optimality of the robot deployment.
The configurations after convergence of the Voronoi coverage method correspond
to local minima of the coverage cost. More optimal configurations can be reached
through the perturbation of the robot team. This may also help to break off saddle
points and symmetry configurations which sometimes result from CVTs [4].
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Fig. 5 Perturbation use case. Top left Start positions of the robots. The gray lines show how
much the CVT is perturbed through noise for case (i) over a simulation run. Center left Massive
perturbation of the covering robots by external dynamic obstacles (blue), moving from the bottom
to the top, for case (vi). The robots avoid the collisions while covering the mission space. Bottom
left Robots’ final configuration after a completed simulation run for case (vi). Top right Coverage
cost per time for cases (i) and (ii). Center right Coverage cost per time for cases (iii) and (iv).
Bottom right Coverage cost per time for cases (v) and (vi). The envelopes show 95 % confidence
intervals on the mean. The black dash-dotted horizontal lines show the cost at start and the black
dash-dotted vertical lines at 20 s mark the time when the injection of obstacles is stopped

12 holonomic robots, similar in size to e-puck robots,'? deploy initially from
the bottom left corner. We simulate the cases with no perturbation through external
dynamic obstacles but with a maximum noise in the robots’ positions of (i) 0.01 m
and (ii) 0.05m, as well as the cases with perturbation for the maximum noise in
position of 0.01 m and the following settings: (iii) small obstacles and low frequency
of perturbation, (iv) small obstacles and high frequency of perturbation, (v) large
obstacles and low frequency of perturbation, and (vi) large obstacles and high fre-
quency of perturbation. The small obstacles have the same size as the robots, the
large obstacles are double the size; the high frequency (1s~') is twice the low fre-

10See http://www.e-puck.org.
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quency (0.5s™"). The injection of new obstacles is stopped in each case after half
the simulation time (20 s) to allow the robots to settle down. For each setting, 15
simulation runs were computed. Figure 5 shows the simulation of the perturbation
scenario and compares perturbations through noise only with perturbations through
small or large dynamic obstacles at low or high frequency. At low noise levels of
0.01 m, the robot configurations are not changed substantially. However, at increased
noise levels, such as 0.05 m, the noise influences the robots’ positions and changes
the configuration, which leads to more optimal coverage cost. The same result can
be achieved through the perturbation with external dynamic obstacles. The obstacles
initiate high temporary perturbations which may stop at some point, whereas the
noise level usually remains. Note that large obstacles and high frequencies introduce
stronger perturbations, which take longer to settle down but increase chances for
reaching more optimal configurations and lower coverage cost.

5 Conclusions and Future Work

This paper motivates the combined use of coverage and collision avoidance methods
for multi-robot systems. We present a taxonomy of collision scenarios in multi-robot
coverage problems and illustrate the performance of the combined methods in simu-
lations. For our specific study, we review the Voronoi coverage control and reciprocal
collision avoidance methods, such as RVO and ORCA, and combine and apply them
to four representative robotic use cases, namely recharging during persistent cov-
erage, pushing through a human crowd, sweeping for inspection and reacting to
perturbations introduced by external dynamic obstacles.

As direct continuation of the presented work, the combined Voronoi coverage
and reciprocal collision avoidance methods are to be tested for each use case on the
real robot platforms. The study of Voronoi coverage control under the influence of
actuator and sensor noise presents another related research direction. Foremost, it
would be interesting to study further coverage and cooperation tasks in view of the
proposed taxonomy of collision scenarios.
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Distributed Safe Deployment of Networked
Robots

Reza Javanmard Alitappeh and Luciano C.A. Pimenta

Abstract In real applications, it is always important to consider the generation of
safe paths for robots during deployment or in future excursions through the envi-
ronment. In order to include safety in the problem of deploying mobile robotic net-
works, we propose a new strategy based on the locational optimization framework.
Our approach models the optimal deployment problem as a constrained optimization
problem with inequality and equality constraints. This optimization model is built by
incorporating into the locational optimization framework new features such as the
classical Generalized Voronoi Diagram (GVD) commonly used as a safe roadmap in
the context of path planning and a new metric to compute distance between robots
and points in the environment. This new metric induces a new Voronoi partition
of the environment. Furthermore, inspired by the classical Dijkstra algorithm, we
present a novel efficient distributed algorithm to compute solutions in complicated
environments.

Keywords Mobile robotic network - Locational optimization - Deployment
problem - Voronoi partitioning

1 Introduction

According to [4], a system composed of a group of robots that sense their own
position, exchange messages following a communication topology, process infor-
mation, and control their motion is called a robotic network. One can find several
applications for this type of system such as surveillance, sensing coverage, environ-
ment monitoring, search and rescue, etc. An important question to answer when using
a robotic network is where each robot should be placed in the environment. In the
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present work we show a distributed solution to this question which is refereed as
the deployment problem [4]. The solution is distributed in the sense that each agent
depends only on information from a small set of other agents called neighbors to
compute its actions. Besides, this set of neighbors is dynamic since it might change
as the system evolves. As pointed by [7], this allows for scalability and robustness.
We are interested in finding optimal deployment configurations. We consider that
a configuration is optimal if it is a minimizer of a functional encoding the quality
of the deployment. This quality of deployment is related to the time of response of
the network after an event that needs servicing happens in the environment. This
time is a function of the distance of the agents from the event and the agent capa-
bilities (speed, sensor field of view, etc.). In order to minimize the distance between
agents and events, our approach applies the idea of partitioning the environment
into subregions which are then assigned to specific agents. Therefore, each agent is
responsible for attending the events in its corresponding subregion. Differently from
previous works found in the literature we are also concerned with the incorporation
of some safety constraints into the deployment. This property guarantees such a safe
movement for the robots, with maximum distance from the obstacles, in the environ-
ment. The paper is organized as follows: in the next section we present some related
work. In Sect. 3 we present some useful tools that will be considered in the rest of the
paper. The proposed optimization model and an efficient distributed solution to the
problem are explained in Sects.4 and 5. Implementation results are shown in Sect. 6.
Finally, conclusions are presented in Sect. 7.

2 Related Work

Our approach builds on the work in [7]. The authors of this work present a distributed
and asynchronous approach for optimally deploying a uniform robotic network in
a domain based on a framework for optimized quantization derived in [11]. Each
agent (robot) follows a control law, which is a gradient descent algorithm that min-
imizes the functional encoding the quality of the deployment. Further, this control
law depends only on the information of position of the robot and of its immediate
neighbors. Neighbors are defined to be those robots that are located in neighboring
Voronoi cells. Besides, these control laws are computed without the requirement of
global synchronization. The functional also uses a distribution density function which
weights points or areas in the environment that are more important than others. Thus
it is possible to specify areas where a higher density of agents is required. This is
important if events happen in the environment with different probabilities in different
points. Furthermore, this technique is adaptive due to its ability to address changing
environments, tasks, and network topology. Different extensions of the framework
devised in [7] have been proposed in the literature. The problem of considering
time-varying distribution density functions was studied in [13] to solve a task of
simultaneous coverage and intruders tracking. Deployment and exploration in non-
convex environments was considered in [3, 5, 10]. In [12], heterogeneous robots in
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anon-convex environments were taken into account. Where, instead of point robots,
disc shaped robots were considered. Some works also considered the discretization
of the environment by grid cells to facilitate computation in complex environments.
In [9] the authors consider a discrete partitioning and coverage optimization algo-
rithm for robots with short-range communication. In this case a discrete setup was
presented in which a discrete deployment functional is defined. The authors proved
that their algorithm converges to a subset of the set of centroidal Voronoi tessellations
(CVT) in discrete formulation, named pairwise-optimal partition. Gossip commu-
nication was used to allow information exchange among the agents. Similarly, [14]
describe an algorithm to solve the deployment problem in a discrete setup. In [2] the
environment was also discretized to allow the numerical computation of the environ-
ment partition (geodesic Voronoi diagram), but in this case the context was the one of
generating an approximation to the continuous setup. In the same spirit of approxi-
mating the continuous setup, the authors of [1] discretized the environment and used
a graph based approach inspired by Dijkstra algorithm [8] to directly compute the
proposed control law in an efficient manner in general Riemannian manifolds with
boundaries.

Statement of Contributions: The present paper further extends the works in [1, 12]
to include safety. By merging different Voronoi diagrams, including the well known
Generalized Voronoi Diagram (GVD) [6] (traditionally used as a roadmap in path
planning) and by considering a constrained optimization problem in the context of
the Locational Optimization Framework, we can generate safe routes for the robots
during deployment and also after deployment when servicing a given point of the
environment. We propose a new Voronoi Diagram which is built according to a new
metric that takes into account shortest paths that traverse the GVD. Moreover, in
order to consider real world environments we devise a new efficient algorithm to
compute the next actions of the robots in the same spirit of the one in [1].

3 Background

In this section we explain the basic tools which will allow us to define our deployment
problem in terms of a constrained optimization problem. These tools are the GVD
and the locational optimization framework.

3.1 Generalized Voronoi Diagram

Let the set of obstacles QO = {QOy, ..., Q0O,} in a planar configuration space be
called sites. This set induces a structure called Generalized Voronoi Diagram (GVD).
Q indicates to configuration space and a set of points in the free configuration space,
Qfree, 1s defined as the Voronoi region of the obstacle QO;, V;, if these points are
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closer to QQO; than to all the other sites. Given an obstacle QQ;, the generalized
Voronoi region, V;, is the closure of the set of points closest to QO; [6].

Vi=1{d € Qpeel d(q, QU)) = d(q, V), Vj # i}, (D

where d(q, QO;) shows the minimum distance between QQO; and q. The two-
equidistant surjective surface, £;; is the set of points equidistant to two obstacles
QQ0; and QQO; with distinct gradient vectors:

Lij=1{q € Qld(q, QU;) = d(q, QV)) and Vd(q, QU;) # Vd(q, QV)),j # i}.
2
The points in £; ; that are part of the GVD are those in which QO; and Q0O; are the
closest obstacles. Therefore we can define the set:

Vij ={a € £i;l d(q, QU)) = d(q, Q0»)}. 3)

This last definition allows us to formally define the GVD:
6vp=J | vi- 4)
i

An interesting feature of the GVD is that it can be used as a roadmap (RM) for path
planning (Fig. 1a).

d(q, 203) 40

0 20 40 60 80

Fig. 1 A map with obstacles, QO;, GVD and a simple path on the GVD, to show its property to
be used as a roadmap and a density function which centered at top-right of the map. a Green line
shows the GVD. q is an equidistant point between sites QO3 and QOy4. Dash line illustrates a path
between two arbitrary points, (p;, pj). b An example of Gaussian density function in a 2D map.

A= 77 ()C(), yO) = (677 54)7 Ox =0y = m
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3.2 Locational Optimization Based Deployment

Let £2 C R? be the map of the environment. Let P = {py, ..., p,} be the configura-
tion of n robots, and f(d(q, p;)) indicates the cost of servicing an event at point q
by robot i. This is related to the spatial distance between q and p; as d(q, p;) repre-
sents this distance and f is a smooth strictly increasing function. Suppose we have
access to a density function ¢ : 2 — R which gives weights to different points in
£2 to reflect the probability of having events at each point (See Fig. 1b). Considering
also the tessellation W = {W,, ..., W,} so that U_, W; = £2 and I(W;) N I[(W;) =
@, Vi # j, where I(-) represents the interior of a given region, it is possible to
define the following deployment functional that measures the quality of the robotic
deployment [7]:

HP, W) =D Hp:, W)= /w fd(q, p))p(@)dq, ®)
i=1 i=1 i

The objective of the Locational Optimization based framework is to drive the
robots to a configuration that minimizes (5). In [1], it is considered the case where f
is the square function and d is the Euclidean distance. The authors of [1] proposed
a distributed control law that guides these robots to the minimum which coincides
with the so-called Centroidal Voronoi Tessellation (CVT).

In the present work, we further extend this framework to incorporate safety.

4 Safe Deployment Modeling

In this section we define the safe deployment problem as an optimization problem
in the context of the Locational Optimization Framework. Consider the bounded
free configuration space Qfe. C R?. Let P = {py, ..., p,} be the configuration of n
robots, where p; C Q.. The problem to be solved is the one of finding distributed
robotic actions, in the sense that only robots in the neighborhood of robot i will
be taken into account, that leads the system to a local solution of the constraint
minimization problem given below:

(6)

mlIlH(P’ GGVD), S.t. {yil(l’i) < 0 S ey ylm(pl) < 0
Pi

h(p)) =0

where y() and /() declare inequality and equality constraints respectively. The next
sections will explain the meaning of the terms used in the defined problem and from
this explanation it should be clear how safety is then incorporated in the locational
optimization framework.



70 R.J. Alitappeh and L.C.A. Pimenta

New Metric: The Geodesic distance is a metric which is more realistic than Euclidean
distance in non-convex environments. This distance is used in the deployment func-
tional presented in [12] as the general function d, as defined in the last section. In this
case, the induced Voronoi Tessellation is the so-called geodesic Voronoi Tessellation.
Now, we propose a further extension on this metric which will be called Geodesic
Distance Based on GVD. This distance function corresponds to the length of the
shortest path from two points when using a GVD as a roadmap. A clear example of
this path is shown in Fig. 1a, where dash line between a pair (p;, p;) defines the whole
path: {(p;, x;), (xi, X;), (xj, pj)}. In general, we can divide this path into three parts:
a path from the initial point to GVD (Path p,; 7, cvp), a path from a point on GVD
to another point on GVD (Path ¢vp 1, Gvp), and a path from GVD to the goal point
(Path Gvp_1o_Goal)- The Geodesic Distance Based on GVD is then defined as:

d(pi,p) = Wuillpi — I1;(GVD)|| + W».g(IT;(GVD), IT;(GVD)) (7
+Willp; — II;(GVD)II,

where g(x;, x;) gives the shortest distance between two points x; and x; on the
GVD, if the motion is constrained to remain on the GVD, I1,(GVD) represents
the projection of the point p; onto the GVD which corresponds to the closest point
on the GVD to p;, and W; and W, are the weights of each part of the path. For exam-
ple, by assigning a big value to W, the cost of Path 1, 7, gvp or Path Gvp 1, Goal
can be increased. These weights help to adjust the cost of two portions of the path
so that it is worth first moving to the GVD as soon as possible and perform most of
the motion traversing it. As safety regarding the existing obstacles is related to the
distance the robot keeps from them and the GVD provides a roadmap which keeps
equidistance from the closest obstacles, we can say that this metric can introduce
safety in the deployment solution. In the minimization problem defined in (6) the
cost function is defined according to the new metric, d:

H(P.GGVD) =Y / d(q. p)*¢(q)dq. 8)
o1 J GGVD;

where GGVD, (Geodesic Generalized Voronoi Diagram) will be defined as the
Voronoi Tessellation induced by the new metric and W; >> W,.

Now, we can also describe the equality constraint h(p;) = 0. This function is
defined as the difference between the distance functions d(p;, QO;) and d(p;, QO;)
in which QO; and QO; are the closest obstacles to robot i. Thus, this means the
robots must be deployed along the GVD.

Collision avoidance: Since the focus of this work is on safety, besides the static
obstacles we should also take into account the possible collisions between robots.
A practical problem of the unconstrained minimization executed by the pure gradient-
descent law in [7] is that actual robots are not point-robots. Thus, we propose to use
here the same strategy presented in [12]. Basically, in this work the basic results for
point robots are extended to robots that can be modeled as circular disks, each one
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with radius ry, = rp,, Vi, j. This is done by incorporating the inequality constraints
vir <0 1n (6), so that the robots remain inside their so-called free Voronoi region.
For details refer to [12].

5 Proposed Solution

In order to solve the safe deployment problem in an efficient manner we propose
to solve a discrete approximation of the continuous setup shown in the last section.
The proposed algorithm builds upon the work in [1] which presents a modified
Dijkstra algorithm able to compute simultaneously at each iteration the geodesic
Voronoi diagram and the robot next actions in the case of deployment on Riemannian
manifolds with boundaries.

5.1 Discrete Approximation

Consider the 2-dimensional configuration space. The graph G = {V(G), £(G), Cs}
is induced from the uniform square tiling of the configuration space by considering
an 8-connectivity neighborhood (See Fig.2a). The set of vertices (nodes) is given
by V(G), the set of edges by £(G) € V(G) x V(G), and a cost function is denoted
by Cs : £(G) — R*. It is important to mention that a node of the graph is placed in
grid cells located inside Qy... Moreover, the cost of each edge is computed based
on the defined new metric as will be clarified later. We will also use the notation p;
to denote the node that contains the position of robot i, p;, and the operator P(s) to

(b)

L
W
=
"

- #

{®

Fig.2 Representing a discrete grid based map and the technique of modeling GVD based on graph
nodes and edges. a Discretization and graph representation. b The nodes g, 4, and i are in the set
VGV D(G)
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return the position of the center of the grid cells. Therefore, P(p;) returns the center
of the cell that contains robot i. Furthermore, we will use Ng(p;) as the set of graph
vertex neighbors: NG (p)) = {g € V(G) | [p;. q] € E(G)}.

We compute the GVD before discretizing the environment into cells, allowing the
GVD to be independent from the discretization resolution. The GVD is embedded
in our graph by labeling the set of grid cells that contain a piece of the GVD as the
approximate GVD, VGVD(G). Now, we can define the edge cost function:

Colij) = {Wz -c(i,j), ifi,j € VGVD(G) ©)

Wi - c(i,j), otherwise,

where c(i, j) is given by the Euclidean distance between the centers of the cells i and
Jj. Since it is our objective to deploy and also move the robots along the GVD we will
use W1 >> W2. For instance, see an example in Fig. 2b.

The shortest path between two vertices s and ¢ corresponds to the sequence of
nodes (consequently edges), {s, vi, v, ..., Un, q}, connecting this pair such that
the sum of the edge costs is minimum. We will define this minimum cost sum as

d*(P(s), P(g)):
d*(P(s), P(q)) = Cs(s, v1) + Co(vr, v2) + ... + Co(vm, q). (10)

This allows us to define the discrete version of the deployment functional:

n

=D > d®@.PE) ¢P@)b, (11

i=1 qeGGVD}

where GGVD; corresponds to the set of grid cells so that d*(P(q), P(p;)) is less than
d*(P(q),P(p;)), Vj # i, and w is a constant related to the integral element of area.
Assuming that the robots are located at the center of the grid cells, i.e. P(p;) = pi,
we can compute the gradient of H*:

n

=3 > 22,4 ®@). PE)P@)D. (12)

oD;
pi i=1 qeGGVD?

oH*

where z,, , is the vector with direction given by the first edge of the shortest path
between p; and g, i.e. the direction of P(p;) — P(v;), and magnitude given by W, if
pi,v1 € VGVD(G) or W, otherwise. Based on last equation we propose a gradient
descent based approach in the next subsection.
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5.2 Distributed Algorithm

The problem defined in (6) has some constraints, which means that our solution
should also take these constraints into account to define the next action. The collision
avoidance inequalities are implemented by first verifying if any of these constraints
are active, i.e., yix = 0 for some k. If this is the case, it means there are at least two
robots in the imminence of a collision, thus the involved robots will be allowed to
move only if the desired direction of motion is orthogonal or has a negative projection
onto the segment joining the two robot centers. The equality constraint which enforces
the robots to be deployed along the GVD is imposed in our solution by means of
two steps. If a robot is not in a cell that is part of the VGVD the next action for this
robot is to move towards the closest cell in VGVD which is not occupied by any other
robot at that time. This can be considered as the first step of the proposed approach.
The second step is activated when the robot enters a cell which is part of the VGVD.
Now, the next action of this robot is a motion along a straight line from the current
grid cell to a neighbor cell which is also part of the VGVD. This next cell is computed
based on the gradient descent direction given by the negative of the expression in (12).
As in [1] we present an algorithm that computes the gradient descent direction and
the Voronoi tessellation, GGVD*, simultaneously in every time-step by means of a
wavefront propagation procedure similarly to the process in Dijkstra’s algorithm [8].
The wavefront in a given iteration represents the set of points equidistant to the
start node also called source. In our case we consider wavefronts emanating from
multiple sources (given by the locations of the robots). As the wavefronts propagate
two operations are executed: (i) graph vertices in the wavefronts are associated to
robots (sources) at shortest distance (according to the proposed metric) giving rise
to the Voronoi regions; and (ii) terms of the summation in (12) associated to vertices
in the wavefronts are added to a variable responsible to store the gradient descent
direction. The places where the wavefronts collide determine the Voronoi boundaries.
The ideas previously discussed are organized in the form of the Algorithms 1 and 2.
We consider these are the algorithms running in robot i.

Termination: The commands in while loop in Algorithm 1 are executed until ter-
mination criteria are met. An interesting criteria is the observation of the variation
of positions of robots in the most recent iterations. If this variation is below a given
threshold the algorithm can terminate.

Complexity: It is clear that the bottleneck of our iterative algorithm is the function
described in Algorithm 2. Since this function runs exactly in the same format of
the Dijkstra algorithm, the graph vertices have a constant degree, and a heap is
maintained as a priority queue to store the unvisited nodes, the running time is given
by O(Vg log(Vei)) (where Vi is the number of vertices in the graph).
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Algorithm 1: Distributed main algorithm running in robot i.

Input: G, VGVD, ¢, p;
G is the graph, VGVD is the approximate generalized Voronoi diagram, ¢ is the density
function, p; € Vg is robot i initial location (graph node).
Output: p;, o
pi is robot i final location and o : Vg — {1, 2, ..., n} is the discrete tessellation map GGVD*
as computed by robot i.
1 while (Termination criteria is not met) do
2 Broadcast position p; //Robot i sends its position to other robots.
3 Ni < Get_Location_of _Neighbor_Robots() //Robot i receives location of other robots.
4 j\fl* <~ N;NVGVD // Set of neighbors already in the VGVD.
5 if p; ¢ VGVD then //check if the robot is not on the VGVD.
Set the current direction of motion as the one towards the closest cell in VGVD which
is not occupied by another robot
else
Call Modified_Dijkstra(G, VGVD, ¢, p;, Ni) //[Compute both the next action (cell)
p; and the GGVD* as seen by robot i.
Set the current direction of motion to reach p);

6 if (There is no active inequality constraint) OR (There is an active inequality constraint
AND current direction of motion is not obstructed by another robot then //collision
avoidance constraint.

7 \ Move according to the current direction of motion
else
8 | Stop
6 Results

In this section we illustrate our approach by simulating the deployment of robots in
two different environments. Videos are available at:
http://www.cpdee.ufmg.br/~coro/movies/DARS2014/

Simple map: A simple room with some obstacles and size 3.79 x 2.91 m (or image
with 728 x 582 pixels) is the input map. By using a discretization resolution equal
to 10 pixels, we have a grid map with 72 x 58 cells. Discretization rate can be
defined based on the real size of robot and map. Density function is defined by
a Gaussian function with parameters: (xo, yo) = (67, 54), o, =0, = V/30. In this
experiment 5 robots are considered. By observing robots’ movement during deploy-
ment, it is evident at the beginning, two robots have a large Voronoi region when other
robots do not have it (See Fig. 3b, c). After some iterations the decrease/increase of
size of large/small Voronoi regions contribute to minimize the cost function as it is
shown in Fig. 3a.

Office-like map: In the second experiment, the method was tested on a more com-
plicated map with size 40.0 x 60.0m and grid graph size of 80 x 120. Initially,
some of the robots are on the GVD and others are not. We define density Gaussian
function as: (xo, yo) = (10, 110), oy =0, = 4/30. Because of the large input map,
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Algorithm 2: Modified_Dijkstra()function.

Input: G, VGVD, ¢, p;, N}
G is the graph, VGVD is the approximate generalized Voronoi diagram, ¢ is the density
function, p; € Vg is the current robot i location (graph node), and N7 is the set of locations
of other robots already in VGVD.
Output: p}, o
p§ is the next cell for robot i and 0 : Vg — {1, 2, ..., n} is the discrete tessellation map
GGVD* as computed by robot i.
1 Initiate d*: d*(v) < oo, forall v € V(G) // New metric distance.
2 Initiate 0: 0(v) < —1, Yv € V(G) // Tessellation.
3 Initiate n: n(v) <= ¥, Vv € V(G) // robot graph vertex neighbor. n : V(G) — V(G)
4 I; < 0 // The gradient descent of the discrete functional.
5 foreach i € p; UN; do
6
7
8
9

d*(p;) <0

o(p;) < i

foreach ¢ € Ng(p;) do // For each graph vertex neighbor of p;
| n(9) < ¢

10 Q < V(G) // Set of unvisited nodes.

11 while (Q # ) do

12 g < argming .y d* (¢") // Maintained by a heap data-structure.

13 Q < Q — g // Remove g from Q

14 k < o(q)

15 | s < n(q

16 if (s !=0)) AND (k == p;) then // Equivalently, ¢ is not a vertex occupied by a robot
and g € GGVD;.

7 | | L<L +(@ xd* (@ x () —P(p))

18 foreach w € Ng(g) do // For each graph vertex neighbor of ¢

19 d" < d*(q) +Cg(q, w) //relaxation.
20 if ' < d*(w) then

21 d*(w) < d’

22 o(w) <k

23 if (s!= () then

24 L n(w) =s

25 pl <= arg maxX,enG(p)NVGVD ﬁg%%gggﬁ -I; // Choose next action as the cell in VGVD best

aligned with the gradient descent direction.

we consider three groups with two robots in each one. They start their movement
from three different parts of the map. Figure4a shows the final positions.
Figure 4b illustrates robot trajectories and the evolution of the deployment func-
tional, which is minimized as desired is depicted in Fig. 4c.
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Fig.3 Snapshots when running the proposed algorithm for 5 robots. a 74* function converged after
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Fig. 4 Result of running the algorithm on office-like map. a iter50. b Robot trajectories in the
office-like environment. ¢ H* function converged after 50 iterations

7 Conclusion

We addressed the problem of deriving optimal distributed control laws to deploy
robotic networks in complex environments safely. The deployment problem is trans-
lated to a constrained optimization problem so that a deployment functional defined
with the use of a new distance function must be minimized while satisfying con-
straints of two types: (i) inequality constraints for inter-robot collision avoidance,
and (ii) an equality constraint to enforce the robots to be deployed at the generalized
Voronoi diagram of the environment for maximizing distance from static obsta-
cles. It is also interesting to mention that the proposed framework can also be used
with other roadmaps different from the GVD. We presented a distributed algorithm
strongly based on the one proposed in [1] which allows for efficient computation of
a discrete solution for the discrete approximation of the problem. Simulations were
also presented to illustrate the proposed method performance.
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MarSim, a Simulation of the MarsuBots Fleet
Using NetLogo

David Leal Martinez and Aarne Halme

Abstract The Marsubots fleet is an heterogeneous robot fleet consisting of Marsus
and Motherbots, the purpose of this fleet is to explore previously unexplored areas as
well as partially explored areas or areas that have suffered alterations. In order to be
able to explore large areas such as large buildings and open spaces, the robots need to
recharge their batteries from the Motherbot’s recharging bay. This paper focuses on
describing the simulation environment MarSim that has been created using NetLogo
to model the fleet in order to be able to use tools like Genetic Algorithms to refine
the parameters that have been identified as key parameters for the robots to complete
the task at hand successfully, specially after a large amount of recharge cycles.

Keywords Distributed robotics - MarsuBots + NetLogo + Power management -
Recharging

1 Introduction

Creating a map with multiple robots has been in roboticists minds for a while and
already suitable algorithms to create and merge the maps created by different robots
have been created. Now in order to take this knowledge into the field, some constrains
have to be taken into account, such as power management. While mapping, robots
will eventually run out of power and they will have to either stop mapping to go
and re-charge themselves or need a re-charging unit go and re-charge them before
or after they run out of power.
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1.1 The Simulator and the Fleet Behind It

In this paper an approach to this recharging problem will be shown with a model
done in NetLogo multi agent simulator. The simulation is based on the MarsuBots
robot society built at the Automation and Systems Technology Laboratory of Aalto
University. It consists of a Mother Robot, which is a Tank-like robot that can host
up to 3 smaller Marsu robots inside, and a fleet of 6-8 Marsu robots. The Mother
Robot or Motherbot (MB) has the capability of carrying Marsus inside of it, charging
their batteries, climbing stairs with robots inside as done in [4] and has higher com-
puting power and sensor capabilities than the smaller Marsus as described in [5]. The
Marsu robots are smaller two wheeled robots that have recently been upgraded to
run on a Beaglebone board capable of serial communications, Ethernet and Wi-Fi for
network/internet access, i2¢ bus and can run at 1 GHz (2000 MIPS). Marsus have a
sensor set including a Laser range finder, a camera, 4 ultrasonic sensors and encoders
on the wheels for odometry, but they also have the ability to re-charge another unit
via the recharging port. In Fig. 1 a Marsu unit can be seen exiting the Motherbot
via the front ramp. The fleet of Marsus has been the testbed of bearing-only SLAM
methods for simultaneous localization and mapping as reported in [3].

A fleet of robots is usually limited by size of their batteries and their ability to
recharge them, which is normally done in recharging stations or battery swapping
techniques. The MarsuBot fleet has been designed to minimize this limitation by
having the Motherbot behave as a moving recharging station, this way allowing the
fleet to explore spaces as long as the reserves of the Motherbot are not depleted.

~— - T

| Y

l‘l

Fig. 1 Marsu unit leaving the MB via the front ramp
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In Chap.2 we will discuss the simulation model, in Chap. 3 the results acquired
and in the 4th chapter the future implementation of this algorithm in the real fleet.

2 Simulation

In this chapter the simulation model implementation as well as the algorithms used
will be presented starting with a basic introduction to the NetLogo multi-agent sim-
ulator and the general scenario being simulated, followed by the description of the
state machine and its corresponding states.

2.1 NetLogo

Net logo is a multi-agent programmable modeling environment popular for both
teaching and implementing real life multi-agent scenarios. It has been authored by
Uri Wilensky and developed at the CCL and its available free of charge. For more
information refer to [7]. In the NetLogo environment, the agents are divided into
turtles, patches, links and the observer. In this model only turtles (robots being either
Marsus or MB) and patches (forming the grid representing the world in which the
turtles live and act) will be used. In the simulation every Marsu is shaped like an
arrow, and has its own unique color assigned randomly every time a simulation is
ran and the MB is represented by a gray colored tank that will show colored bars
inside of it representing how many Marsus are inside. In Fig. 2 a sample run can be
seen depicting how the Marsus look, as well as the MB and what the patches color
mean.

2.2 Scenario

In this model the goal for the robots is to be able to map the whole office environment
without running out of energy while avoiding going through areas that other robots
have already discovered and more importantly avoiding targeting the same temporal
goal as other Marsus. As they travel throughout the world, the robots will be scanning
their surroundings up to 5 patches away from themselves (this way simulating using
a laser rangefinder with limiting ranging capability) and marking those as explored
space by turning the color of the cells from black (empty space) to either green
(explored space) or yellow (explored wall). The Exploration method used by the
robots is to first def ine all the existing frontier cells (a frontier cell is a cell that is in
the border between explored and non explored space as defined and used by [2]) then
choose one of those cells as its target, plan a path to that cell avoiding walls,
followthatpathto the target so whenreached anew target will be chosen. This cycle
will continue until either the whole space is discovered or the Marsu’s battery reserve
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Fig. 2 20 Marsus starting to
explore an unknown
environment. The MB is
shown in the center of the
picture as the gray tank,
while the Marsus are the
arrow shaped agents with
different colors. The black
patches represent unexplored
space while the gray ones
unexplored walls, green
patches are already explored
space, yellow ones already
explored walls, magenta
patches are frontier patches
and the multi colored patches
are the goal patches of
Marsus with matching colors

Table 1 Multi robot
exploration algorithm
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State Action

1 Define frontier cells
2 Choose frontier cell
3 Plan path

4 Follow path

5 Go back to MB

6 Queue

7 Recharge

falls bellow the defined threshold in which case the robot will then go back to
the MB, queue if needed, recharge batteries and then continue using the same
exploration strategy. The state machine depicting the flow of the Marsu’s behavior

is presented in Table 1.

The Motherbot (MB) is considered to have a unlimited energy storage and can
host up to three Marsus inside recharging at any given time.

2.2.1 Define Frontier Cell

A frontier cell is defined to be a cell that has at least one neighboring cell being
undiscovered space, in the simulation this is achieved by asking all patches with
undiscovered neighbors (black colored patches) to mark themselves as frontier cells
and change their color to magenta as can be seen in Fig. 2.
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2.2.2 Choose Frontier Cell

To choose a frontier cell, a Marsu looks to the cell that will provide the most utility
for it. The total utility Ut is calculated by subtracting the cost of reaching the frontier
cell Dc from the utility gained from reaching that goal cell Uc.

Ut =Uc — Dc; (D

Dc is measured in amount of cells between the goal and the current standing point,
and both Ut and Uc are variables that are being studied in this research and will be
commented in the results section.

After calculating the Ut for all frontier cells, the Marsu will then choose a target
cell with the highest value by marking that square with its own color.

Once a Marsu has chosen a cell, its will alter the utility of the frontier cells
surrounding it in the scan radius R, this way preventing other Marsus from choosing
cells too close and spreading more evenly the exploration task as can be seen on
Fig. 3 a similar approach as the one used in [2].

Fig. 3 Marsus moving in an unconstrained environment to demonstrate the algorithm used to
choose frontier cells and spread evenly in the exploration effort
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2.2.3 Plan Path

In order for the robot to travel from the actual cell to the already chosen frontier cell,
a path must be planned. The strategy used to plan the path is to choose the lowest
cost path, in order to find it, we first need to note that in this particular simulation the
cost to travel from any cell to another is always 1 as long as neither of them is a wall.
As the map is growing all the time by all the robots that are going into unexplored
space it would be unwise to have static information about the cost to go from one
cell to another, so the approach taken is that every time a robot needs to plan a path,
it will calculate the cost by £1ooding the cost from the goal all the way into the
actual position of the robot by making use of Bellman’s principle of optimality [1].
Flooding consists of assigning a value of cost zero to the goal, and then that cell
will ask all of its neighboring cells to set their cost to the cost of itself increased
by 1, and ask those cells to ask their neighbors to repeat the process by asking their
neighbors that are not walls and that dont have a value lesser than themselves (they
would be the neighbors who were also neighbors to the goal in this first case) to do
the same and do this process until the cell where the robot is standing get a value
assigned, at this point the algorithm stops and the robot has a single path to follow
by simply going to the neighbor with the smallest cost every single step. In many
situations the robot will have more than one neighboring cell with the same value
that is the smallest, in this particular case the robot chooses randomly one of them.
In order to make it realistic and avoid that the robots drive next to the walls and have
problems with the sharp corners a potential field is used, similar to the one discussed
in Sect.25.4 of [6] just that in this case, all the known wall cells ask their neighboring
cells to make their cost infinite (or a number higher than the highest possible cost in
the whole map space) before the flooding starts this way having a safe area around
the known walls as can be seen in Fig. 4.

Fig. 4 Marsu using splash
algorithm for reaching it’s
goal, in this figure yellow
patches are already
discovered walls, gray ones
undiscovered walls, green
ones discovered space
evaded by algorithm and the
gradient colored ones are the
ones showing how the
algorithm works by
colorizing the value of the
patch splash value, these are
colored for illustration
purposes only




MarSim, a Simulation of the MarsuBots Fleet Using NetLogo 85
2.2.4 Navigate Path

Once the path is planned the Marsu needs only to always choose the neighbors with
the smallest cost and that will make it right to the goal cell. This would be that simple
if there were no other Marsus driving around the area that they could collide into. To
avoid collisions the Marsus always scan the front cell for a Marsu and in case one
is there it will drive to the next cell on the right and then continue on its way, very
similar to what you would do while driving a car, just drive on your right lane until
the other car has passed and then continue on your way.

2.2.5 Go Back to Mother Robot

The Marsus are monitoring at all times their energy reserves and when the remaining
amount of energy falls bellow a certain threshold (at this time set in the simulator’s
user interface) then the Marsu will start its journey to the location of the MB using
the same flooding algorithm.

2.2.6 Approach and Queue

When a Marsu reaches the vicinity of the MB it will start its approach to dock with
it, Queue if necessary and wait for its turn to recharge. When only 5 cells are left
to reach MB will start the approach, meaning it will check if a queue exists, if its
doesn’t it will drive right into the MB and recharge, but if it detects a queue, it will
request a queue number that will be assigned to it and then increased, and then go
and wait 2 * the queue number cells away for the MB on it’s east side as can be seen
on Fig.5. There it will wait until one unit exists the MB and when this happens, it
will decrease its queue number by one and drive again to 2 * queue number cells
away from the MB, and when its queue number is zero it will drive right into the
MB.

Fig. 5 Marsus queueing east 1=
of the MB while other
Marsus recharge
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2.2.7 Recharge

Once the Marsu is inside the MB it will recharge its battery until it is fully recharged
and the exit the MB by choosing a new frontier cell and heading towards it by re
entering state 1.

3 Results

The creation of this simulation proved NetLogo to be a suitable environment for
testing the exploration algorithms in a simple yet realistic way that can be then be
used to optimize certain parameters with the help of, for example, genetic algorithms
that would would not be possible to test with the real robot fleet due to the fact that
emptying a the battery of a working robot thousands of times could take too much
time and resources to achieve.

By simulating the exploration algorithm to be used with the MarsuBot Fleet, key
parameters were identified to be optimized using genetic algorithms so that the fleet
can explore very large spaces that require a very large number of energy cycles.
These parameters are:

Batt Threshold The battery threshold that marks when is the best time for a
Marsu to start heading back to the MB. Fine tuning this pa-
rameter using genetic algorithms it is expected to optimize the
time a robot can be exploring new areas without risking running
out energy.

Patch Utility To find the relation between the distance and the utility value
assigned to the frontier cells.

Utility Variation The alteration ratio of the utility value of a patch made by a
Marsu choosing that cell.

Alteration Radius  The radius patches that will be altered around a cell chosen by
a Marsu.

4 Future Work

As the simulation model is complete and shows a promising approach to having the
robots explore a large area that requires multiple charge cycles, the following step is
to implement the model into the real Marsu fleet and find out if the robots behave in
the same way as their simulated or virtual counterparts. One of the big challenges will
be on how to solve the localization problem that comes with creating and assigning
the cells, the initial approach to tackle it will have the Marsus create the cells and
mark them in the global map with different physical space resolutions (for example
squares of 10 x 10 centimeters).
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When the simulation’s accuracy is confirmed (taking into account calibration

sessions) then the model can be optimized using different approaches such as Genetic
Algorithms for choosing the best battery threshold parameters to be able to choose
when to go to recharge or when to lower their battery profiles, as well as implementing
more advanced approaches to queue theory to improve the handling of the Marsus
waiting in line to recharge. All of these parameters would be then be tested in the
real Marsu fleet.
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Scalable Cooperative Localization
with Minimal Sensor Configuration

Xiaotong Shen, Scott Pendleton and Marcelo H. Ang Jr.

Abstract Localization of distributed robots can be improved by fusing the sensor
data from each robot collectively in the network. This may allow for each individual
robot’s sensor configuration to be reduced while maintaining an acceptable level of
uncertainty. However, the scalability of a reduced sensor configuration should be
carefully considered lest the propagated error become unbounded in large networks
of robots. In this paper, we propose a minimal but scalable sensor configuration for a
fleet of vehicles localizing on the urban road. The cooperative localization is proven
to be scalable if the sensors’ data are informative enough. The experimental results
justify that pose uncertainty will remain at an acceptable level when the number of
robots increases.

Keywords Cooperative localization + Sensor configuration - Scalability

1 Introduction

Cooperative perception extends sensing range beyond line-of-sight and field-of-view
by sharing information between agents in the network [7, 10]. In order to merge the
information and obtain not only augmented but also consistent observations, the
uncertainties of robots’ locations should be minimized to a reasonable level. The
localization accuracies can be improved knowing that the adjacent robots are sharing
the same environment and thus the observations are correlated [5]. The imposed con-
straints on robots’ poses by the relative measurements can also reduce the localization
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uncertainties [3, 13]. Utilizing joint observations and relative measurements are the
state-of-the-art techniques for collaborative localization in multi-robot systems [3-5,
8, 11, 13, 15, 17, 19].

The collaborative localization problem can be tackled in a probabilistic manner
with data fusion in the probabilistic graph [4, 5]. In the works of Fox et al., the
localization uncertainties were further reduced by incorporating sensing data from
other robots, though the individual robots equipped with sensors were already able
to localize themselves independently without any cooperation. However, the num-
ber of required sensors could be reduced for a fleet of robots with sharing sensing
information. The minimal number of sensors for a fleet of robots to simultaneously
and continually localize themselves remains to be an open question.

Many collaborative localization experiments [3, 5, 8, 11, 17, 19] have been per-
formed indoor or in simulation where features are distinct, sensing error is minor and
perception range is small. Madhavan et al. has furthermore conducted outdoor multi-
robot localization experiments using slowly moving robots [11]. While promising
experimental results have been achieved, they may not extend to outdoor fast moving
vehicles. Besides, for the application of on-road autonomous vehicles, each agent
may only detect a small number of other vehicles on the road, or even typically just
detect the vehicle immediately in front of it, which is a big difference from most
indoor scenarios. In this case, the detection graph, whose link is the detection of
another robot, is sparse. For an on-road vehicle scenario, the distance between vehi-
cles is also often much larger than in indoor scenarios. The uncertainties induced by
the large gaps between vehicles should be considered, especially when driving fast.

The solvability of the localization problem in robot networks has been studied by
Dieudonne et al., where they have proven that by using only relative observation the
uniqueness of the defined solution could not be guaranteed [3]. The mean positional
error decreased with the increased number of robots in [15], but the detection graph
was much denser and thus the robots’ poses were more correlated to reduce the
uncertainty. Will the uncertainties become unbounded as the number of agents and
gap distance increase in a sparse detection graph? Bounded uncertainty approaches
using bearing constraints are proposed in [17, 19]. However the methods still need
each robot to simultaneously observe at least two other robots, which may not hold
true in a sparse detection graph.

In this paper we are proposing a minimized sensor configuration for a fleet of
vehicles to cooperatively localize themselves on the urban road while driving fast.
This research is also motivated by autonomous truck convoy systems [18] and our
sensor configuration can greatly reduce the cost of such convoys. We will prove that
the uncertainties of using only relative observation will grow unbounded quickly with
the increased number of agents and gap distance. With our sensor configuration and
proposed algorithm, the scalability is guaranteed and uncertainties will be maintained
atausable level. These are verified by outdoor experiments with three vehicles driving
on the road.



Scalable Cooperative Localization with Minimal Sensor Configuration 91

The contribution of this paper can be summarized as follows:

e We prove that the uncertainties of cooperative localization using relative observa-
tions will grow at least quadratically with the gap distance and linearly with the
number of agents.

e If the sensors’ data are informative enough, the scalability of our minimal sensor
configuration is guaranteed.

e Our proposed algorithm integrates tracking with localization techniques and can
minimize the uncertainties to a usable level for a fleet of vehicles on urban road.

The remainder of the paper is organized as follows. Section 2 compares the sensor
configurations and probabilistic graphical models. Section 3 introduces our algorithm
for cooperative localization. Section 4 provides the experimental results obtained with
vehicles driving on urban road. Section 5 concludes this work.

2 Sensor Configurations

2.1 Probabilistic Graphical Models

A typical probabilistic graphical model [20] for localization on a map is shown in
Fig. 1. The state S represents the robot pose (x, y, 0)T in 2D localization, where
X,y represents the position on the map and 6 denotes the orientation. In order to
localize, a robot usually needs three basic elements, namely the control input U,, the
measurements Z,,; of the environment, and the prior map m. Encoders and an inertial
measurement unit (IMU) are used to provide the vehicle’s odometry and orientation.
A LIDAR or camera is often used to get the measurements Z,,;. The nodes of the
graph which are shaded in darker gray are assumed to be always observed [9].

For multi-robot localization, each robot may detect and track others with some
range sensors, such as LIDAR. In the on-road scenario, a vehicle usually can detect
and track the vehicle(s) in front of it, namely its leader [7]. The detection of other
robots will put constraints on their pose estimations [5]. The prominent difference
for on-road vehicles versus other robots is that the detection graph is sparser, as
shown in Fig.2. In Fig.2a, the detection graph could add five constraints since the

Fig. 1 Typical temporal
graphical model for single
robot localization
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(@ (b)

B

Fig.2 The detection graph for the multi-robot off-road (a) and on-road (b) cooperative localization.
Each arrow represents a robot/vehicle detection (directed from observer to target) and adds a
constraint to the localization

Fig. 3 The comparison of probabilistic graphical models between different sensor configurations
for three robots’ localization. In (a), the control inputs, detection measurements and map measure-
ments are known for each robot. In (b), the control inputs and map measurements are unknown
except for the first robot and only detection measurement can be used for localization of other
robots. In (c¢), both detection measurements and map measurements are known and only the first
robot has access to control input

orientations of the sensors face toward each other, while in (b) only two constraints
are added since each vehicle could only see its leader vehicle.

Cooperative localization with the full sensor configuration is shown in Fig.3a,
where the ith robot /S is able to localize itself on the map with input ‘U and ‘Z,, while
detecting the (i + 1)th robot with the measurement ‘ Z,. The relative observation ‘Z,,
determined by both robots, will correlate both pose estimations.

The sensor configuration could be reduced by taking away either control input U
or measurement Z,,, or both for some robots, and we need to keep Z; so that the
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robots can cooperate with each other. Therefore, there are only three combinations
for the reduced sensor configuration if we assume that the sensor configurations on
all robots (except the first one) are the same. The reduced sensor configuration is
shown in Fig. 3b, c. In Fig. 3b both control input and measurements in map from the
two leader vehicles are unknown and the leader’s pose ‘*!S has to be estimated only
from relative detection measurement ‘Z,. We will prove that in this configuration,
the uncertainties of cooperative localization will grow unbounded quickly with the
increased number of robots and gap distance. If we consider that control input U
is given and the map measurements Z,, is unknown, the uncertainties will also be
unbounded. The proof for this is similar and is omitted from the paper. In Fig. 3c, the
control input is not observable but the measurement of the map is given by the sensor.
Essentially, each leader is without an odometry sensor, while the first vehicle (trailing
vehicle in the convoy) is still able to localize independently. We will prove that given
that the uncertainty of map measurement is small to certain extent, the scalability
of cooperative localization under this reduced sensor configuration is guaranteed.
Therefore the sensor configuration in Fig. 3¢ is scalable and minimal.

2.2 Uncertainty Modeling

Assume that the uncertainty of ith robot pose 'S = (x;, y;, ;)7 can be described by
a Gaussian distribution .#(‘S,” X,), where ‘S = (%;, y;, 6;)" is the mean and ' ¥,
is the covariance. The sensor on ith robot can detect the (i + 1)th robot with some
uncertainty. Assume that the sensor is able to detect the relative distance r; and the
bearing angle «; of the next robot, which is reasonable when using a range sensor
such as LIDAR. By utilizing the shape model of the robot, the sensor could also
measure the relative orientation ¢;. The uncertainty of detection ‘D = (r;, oy, ¢;)
could be modeled as a Gaussian distribution .4 (‘D,’ X,), where ‘D = (v;, @;, ¢:)"
is the mean and ! X, is the covariance.

Given the ith robot pose and the detection measurement, the pose of (i 4+ 1)th
robot can be computed as follows:

Xit1 Xi ricos(0; + o)
Yier | = yi | + | risin6 + ;) | . (D
Oi11 0; o

Because of the nonlinear operations in (1), the distribution of (i 4 1)throbot’s pose
will be non-Gaussian. Using the first order Taylor expansion to linearize around the
mean, the uncertainty could be approximated by a Gaussian distribution. The mean
of the (i + 1)th robot pose can be calculated as follows:

Xit1 X fiCOS(G:i + ;)
Yier | = | i | + | Fisin(6; + ) 2
Bi+1 0; o
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The covariance of the pose can be written as follows:
My, =G(Z)GT +V(izy)VT, 3)

where G and V are the Jacobian matrices corresponding to ‘S and ‘D respectively.
The G and V can be computed as follows:

10 —7isin(6; + &) cos (b; + @) —Fisin(6; + &) 0
G=1|01 ricos@0;+a;) |, V=1|sin@; +a;) ricos@@ +a;) 0. @
00 1 0 0 1

Geometrically, the uncertainty described by the covariance matrix is an ellipsoid
in the three dimensional vector space. The determinant of the covariance matrix is
proportional to the volume of the ellipsoid [2]. In this paper, we use the determinant
of the covariance as the metric of the uncertainty. A large determinant reflects a large
uncertainty.

2.3 Scalability Analysis

The scalability of the sensor configuration demonstrates that the uncertainty of each
robot’s pose remains bounded with an increased number of robots and increased gap
distance. Eventually the scalable sensor configuration could accommodate an infinite
number of agents in the network. In this analysis, we assume that the state transition
is linear and Markovian, and the probability distribution of the pose is Gaussian. We
refer to this assumption as Linear-Gauss-Markov model assumption.

We will first prove that under the sensor configuration in Fig. 3b, the uncertainty
will grow unbounded quickly.

Lemmal det(*'X,) > det(' X)) + idet(' Z,).

Proof Since det(G) = 1 and det(V) = 7;, we have det(G (' X,)GT) = det(* ¥,,) and
det(V(Z)VT) = i?det( X,). Since ' X, > 0and ' X,; > 0, we have G('X,)GT >
0 and V(XZ,)VT > 0. According to (3), det("'X)) > det(G( X,)GT) + det
(VIZEHVT) = det( X)) + rPdet( Zy).

det(* X,) essentially depicts the uncertainty of detecting the (i + 1)th robot in the
front. The magnitude of det(* X;) for any robot i should be approximately the same
since the sensors used are the same or similar. We assume that the c-th robot has the
best accuracy of detection, namely,

¢ = argmindet(’ Z). 6))
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Under the sensor configuration in Fig. 3b, the uncertainties would only propagate
forward according to (3) since topologically it is a chain.

Theorem 1 Under the Linear-Gauss-Markov model assumption and with the sensor
configuration in Fig. 3b, the uncertainties of cooperative localization will grow at
least quadratically with the average gap distance r and linearly with the number of
robots n, namely det(" X)) > (n — Dr2det(c Xy).

Proof Iteratively using the result of Lemma 1, we have det("X),) > f,%_]det
("' Ey) + ...+ ridet( Zy) + det(! £,). According to (6), det(' Xy) > det(° X,) for
any i < n. Therefore, det("X,) > (7F2_, + ... + i{)det(° Zy) + det(' X,). Since det

n—1 =
2z i lrl , we have det(" X)) > (n — 1)ridet(“ X,).

(!X,)>0andr =
0

The result of Theorem I implies that the cooperative localization is not scalable
under the sensor configuration in Fig. 3b. We will prove that under some conditions,
the cooperative localization is scalable using the sensor configuration in Fig. 3c.

In the probabilistic graphical model shown in Fig.3c, numerous cycles would
make it difficult to compute the optimal pose estimation while avoiding double count-
ing of the information in the sensor network [12]. We simplify the pose estimation
optimization by only fusing the data forward and show that only propagating infor-
mation forward could make the cooperative localization scalable.

After the ith robot detects the (i + 1)th robot, the sensor measurement ’ X initial-
izes the location according to (2) and (3). The sensor i *! X, could search around the
initial location and match the features on the map to localize. The uncertainty will
be reduced after the fusion of the two measurements. Without relative measurement
' ¥, it would be very costly and difficult for the (i 4 1)th robot to localize itself on a
big map only based on measurement {*! X,,, especially when some ambiguity of the
environment is prominent. After incorporating the measurement ‘+! X, . the pose esti-
mation should be improved. We denote pose distribution before incorporation of ! X,,
as N ('S, ' X »b), and after incorporation as .4 (S,,'> pa). After searching around
the 'Sy, the sensor ’ X, could infer the pose distributed as .4/ ('S,, ' %,) only relying
on measurement ‘ ¥,,. The distribution A4 ('S,, ' X pa) 1s the fusion of A (Sp,'x pb)

and A (igq, iEq). With the Kalman filter fusion strategy, the covariance could be
computed as follows:

Tpa=(1="5p (Zp+'5)7") Sy (©)

Theorem 2 Under the Linear-Gauss-Markov model assumption, the uncertainty
of localization after fusion ' X, with ' X, will be reduced at least by a factor of
det(' X,) det(" X ,4) det(' X,)
- - , name - < - - .
det(' X ,p) + det(" X)) det(' X,p)  det(' Xpp) + det(' Xy)
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Proof Since(A+B) '=A"'—(I 4+ A'B)"'A"'BA~!ifmatrices Aand A + B
are both invertible, we have ('X,,+'%,)” = T —a+x )iy

By Thus, (S = (1= (Ep+5) ) B = 50+ 5,
izq)—lizvp—blizvq‘
Therefore, det(’ X pa) = det (i o+ ix;b“Eq)’“Z‘;b“Z‘q)

det (i E;bli Eq)
det(I +'%,,/' %)

= det (| Zp) det (1 + /55, 5711 5,01 5, ) = det( 5,)

det ('%,)

=det( Z,p)——— 2
P det(Z,, +1%,)

Since det(’ Xpp+ iEq) > det( X)) + det(’ ),
det (' 5,)

det(' X,) + det( X,)’

thus we have det(' X ,,) < det(* 2 )

Essentially, only using the relative measurement for pose estimation will increase
the localization uncertainty of the next robot in Lemma 1 and the measurement on
the map will reduce the uncertainty in Theorem 2. It is possible that the localiza-
tion uncertainty of each robot will not increase after the data fusion, which could
potentially make the cooperative localization scalable.

Assume that the prescribed uncertainty for any robot in the graph should be less
than C,,,., namely the pose uncertainty det(' ¥ pa) should be less than C,,,, for the
localization information to be usable. We will show that if the uncertainty of the
sensor measurement det(’ %,) satisfies the following condition, then C,,,, will be
the bound on the localization uncertainty for any robot i.

Theorem 3 Under the Lg'near—Gauss-Markov model assumption,
Cmaxdet(l Z1pb)

ifdet(X;) < ——
f ( ‘1) det(l pr) - Cmax

, then det(’ 2 pa) € Cpax for any robot in Fig. 3c.

Cmax det(i pr)
dEt(i Eph) - Cmax

det (' %,) det( X,) .
. - < Crax. With the result of Theorem 2,
det(" X'pp) + det(' X))

Proof Ifdet( X)) < ,thendet(’ Z‘q)det(i o) € Chax det(’ X))+

Chaxdet(* X ,p), thus
det(' Zp) < Conax-

The result of Theorem 3 shows that if the sensor measurement on the map ' X, is
informative enough, i.e. the covariance i X, is small, then the localization uncertainty
could be bounded. The cooperative localization uncertainty is independent of the
number robots and their gap distance, which leads to the scalability under sensor
configuration shown in Fig. 3c.

In this section, we modeled the uncertainty in the cooperative localization problem
and showed that it is not scalable under sensor configuration in Fig.3b where only
relative observations are used. We proved that under the sensor configuration in
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Fig. 3c, where odometry information is not given, cooperative localization is scalable
if the condition in Theorem 3 is satisfied. Therefore, the reduced sensor configuration
in Fig. 3¢ is minimal for scalable cooperative localization.

3 Cooperative Localization

In this section, we illustrate our optimization method for improving the pose estima-
tion and minimizing the uncertainties of cooperative localization under the minimal
sensor configuration.

3.1 Sensor Characteristics

The ith robot could detect and track the (i 4+ 1)th robot and give an initial pose with
some uncertainty. The tracking process usually can estimate the position accurately,
but may have difficulties in estimating the orientation. The shape of the robot could
be complex, ambiguous and/or only partially observable. The robots will typically
maintain a large spatial gap (for road safety), however distant measurements make the
orientation estimation more difficult. Nevertheless, the orientation of the (i + 1)th
robot is very critical for localizing the (i + 2)th robot according to Lemma 1.

The measurement ‘t! X, could be used to estimate the orientation accurately, but it
would be computationally expensive to search a large area on the map to find the most
likely pose. For example, the measurement could be a LIDAR scan of the environment
and the alignment of the scan with the map could give an accurate estimation of the
orientation if the location of the sensor is roughly known. If no prior knowledge is
given, aligning a single scan with the map can be very computationally expensive,
especially if the map is huge, ambiguity is prominent and/or the measurement is
noisy. Given the initial location, the robot could search locally to find the best pose
to maximize the probability of the measurement, which would potentially reduce
the uncertainty of the estimation. In summary, tracking and scan matching would
compensate each other in pose estimation.

3.2 Temporal Model

The temporal model of cooperative localization is shown in Fig.4. The state ‘S,
represents the pose of ith robot at time ¢. The maps ‘m are correlated since they
are sharing the same environment or are the same. The first robot (trailing vehicle
in the convoy) is additionally equipped with odometry and thus can localize itself
independently. The first robot can also detect and track the second robot 2S, with
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Fig. 4 The temporal model =~ [——— —— — —— — — — o oo |
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measurement 'Z,, at time ¢. The sensor on the second robot can get a measurement
of the environment 2Z,,, and then can localize itself on the map. Meanwhile, the
second robot can detect the third robot with measurement 2Z,,. The measurements
on each robot may not be synchronized, but we are assuming that the measurements
Z4 and 'Z,,, are from the same sensor and thus the time stamps are the same. For
example, a single LIDAR sensor could scan the environment while detecting the
moving objects.

3.3 Tracking and Localization

Cooperative localization could be treated as a fusion of tracking and localization. We
are using the Constant Turn Rate and Velocity (CTRV) model [16] in the Kalman
filter for vehicle tracking. When the measurement on the map Z,,, comes in, the
Bayesian fusion [20] could be performed as follows:

_ p(izmt|istv im)P(iSbt)

P(isr|isbz’iz t»im) - - -
" P(Zyy|'Sps, )

; (7

where the state 'Sy, is the predicted robot pose by the Kalman tracker and state 'S, is
the pose after fusing measurement ‘Z,,,. The probability p(‘S;,) could be given by
the Kalman tracker. The measurement probability p (‘Zmi)'S;, 'm) could be evaluated
by the likelihood model [20] since the prior map ‘m is given.
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Algorithm 1: Cooperative Localization Algorithm

input ;{gp(,,l),iz,,(,,l),z,nt, Zd(t+1)7 SP(!+1),i712p(t+1)
output: ‘S, 11).) Zp(+1)
//locahzatlon

( Spi Zp)=KalmanPrediction ( Sp(,_l),iZ'p([_l))
for j=1,..,N do _
draw sampleiSb, ~ NSt Zp)
Sr = argmsax[’( Zynt|' 'S, ! mﬁjsb[) = P( Sbr| Spls i pt)P(ithVm, Ijéz)
1
end

| = arg mjz_ix;-w, iSq, = ;@, //search for the most likely mode

for k=1,....K do
‘ draw sample ; Sy; ~ {;,Syr| 1;,Sqr —'Sq:| < A} /isample around the mode
end

=(0,0,007,n=0
fork 1,.. ,K do
| 'Sy ="Sg +1Sqr - pCZe'm. (Sq). 0 =1+ p(Zyulim, [ Sgr)
end
ngt = lng/m ith =0
for k=1,...,.K do
‘ izqt = izqt + (2Sqt - lSqt)(;(Sqt - ngt)T' p(izmtlim, ;l(sqt)
end
lzqt = eq/’?
(S,,,, Y ,)=KalmanFusion ( Sq,, Z‘q,, Sb,, Xpt)
//trackmg
(Sb(,+1), Eb(,+1) KalmanPrediction ( S,,[,'E,,t)
(’ Dyy1,i~ 'Z‘,[(H_]))—Detectlon(’ Zaa+1)

i-1g

Spd(r+1) =" Spu4n @' Dz+1, Epd(H»l) =G(~ p(l+l))GT + V(I g VT
(Sp(t+1)’ Ep(m)) KalmanFusion (‘Spag+1), ' Zpa+1) Sba+1) Zoe+1))
return Sp(hq), Xp(t+1)

The improved proposal distribution technique [6] could improve the localiza-
tion. We sample N particles S-Sb, from the predicted distribution p(‘S,,) but adopt
the optimization technique to search for the maxima of the observation likelihood,
knowing that it is most likely to have only a single maxima [6]. The scan matching
will determine the meaningful area of the observation 7. likelihood function and
the particles will iteratively shift to reach the most probable pose even if the pre-
dicted distribution is inaccurate. We use the “ vasco” scan matcher which is part of the
Carnegie Mellon Robot Navigation Toolkit (CARMEN) [14]. This scan matcher uses
a gradient descent technique to find the most likely pose by matching the observation
17, against the map 'm,
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81 = argmax p(Z,l'S,.'m. ). j = 1. V. 8)

where ;St is the optimized pose with the initial guess 38;,, and measurement 'Z,,;.
Among all the N particles, we choose the most likely pose when fusing the proposal
distribution and the observation,

'Sq = argmax p(;8,1'Zs, 'm, {Sp), j =1, ..., N, ©)

jot

where ! S, is the best mode of the poses. To obtain the distribution of .4 (l §q, iZ‘q),
we can sample K particles around the iSq, within the interval A and weigh them
by the observation likelihood. The details are summarized in Algorithm 1. The
KalmanPrediction is to use the CTRV model to predict the future pose and
the KalmanFusion is to use Kalman equation to update the belief with the mea-
surement input [1]. The Detection in Algorithm 1 is to extract the next robot
pose with the measurement ‘~'Z,,. The operator @ represents the transform from

the detection to the next robot’s pose estimation ‘S pd(t+1), Which is shown in (2).

4 Experimental Results

In this section, we provide experimental results to justify the theorems and evaluate
the algorithm with three vehicles driving on the urban road.

4.1 Experiment Setup

In these experiments, we used three vehicles driving on the urban road to perform
the cooperative localization. The first robot (trailing vehicle in the convoy) is a self-
driving vehicle which can autonomously drive on the urban road with centimeter-level
localization accuracy. The vehicle is equipped with one 2D LIDAR, two encoders,
one IMU, one camera and two computers with wireless interface 802.11n.

The other two vehicles are only mounted with one 2D LIDAR individually for
both detecting the vehicle in the front and localizing itself. One webcam and a
laptop with wireless interface are utilized for visualization and processing the data
respectively. The whole localization package is portable and easy to mount without
too much mechanical work. The reduced sensors are one IMU and two encoders,
which require mechanical connection with vehicles. The experiment was performed
on an urban road with average speed 3 m/s. A snapshot of the cooperative localization
experiment is shown in Fig. 5. A video showing the cooperative localization process
can be found at http://youtu.be/7uuQPgw Irmg.
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(@) | (b)

Fig. 5 A snapshot of the cooperative localization on the urban road. The three vehicles are shown
in red/green/blue boxes in (a). The LIDAR scans from each vehicle are shown in dots using cor-
responding colors on the prior occupancy grid map. The images from three vehicles are shown in
(b—d) which are from the vehicles in red/green/blue respectively. The second and third vehicle can
be seen from the first vehicle’s perspective in (d)

4.2 Evaluation and Analysis

In Fig. 5a, the third vehicle (depicted as the red box) in the front was making a turn.
The LIDAR measurement from the second vehicle, in green color, could only detect
the corner of the third vehicle. Even though the initial position from the detection was
inaccurate, its LIDAR scan managed to correct its pose by matching the scan with
the prior occupancy grid map. The pose estimation of the second and third vehicle
are improved by the scan matching in the cooperative localization algorithm.
Table 1 shows the quantitative result of pose estimation using only the Relative
Observations (RO) method and using the Cooperative Localization (CL) algorithm.
Because we have no other means to obtain the ground truth of the poses and the first
vehicle could localize very accurately, we are assuming that the pose trajectory of
the first vehicle is the ground truth. Both position and orientation error are calculated
relative to the trajectory of the first vehicle. Since the trajectories are not exactly the
same in reality, the standard deviation and maximum error should be more suitable
for analyzing the accuracy. In Table 1, the standard deviation of 2nd and 3rd vehicles’
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Table 1 Accuracy of pose estimation

Position error (m) Orientation error (°)

2nd Vehicle 3rd Vehicle 2nd Vehicle 3rd Vehicle

RO CL RO CL RO CL RO CL
Average |0.32 0.34 0.95 0.72 0.7 1.7 -0.5 —-0.6
Std Dev |0.3 0.3 0.72 0.35 3.6 2.7 5.25 2.64
Max 1.31 1.39 4.12 1.52 9.7 9.1 24.3 6.29

poses are about the same using the CL algorithm while that of 3rd vehicle’s pose
is about twice as large as that of 2nd vehicle’s when using the RO method. The
maximum position error when using RO is more than two times larger than the CL
algorithm while the maximum orientation error is about three times larger. Since the
standard deviation and maximum error of 2nd and 3rd vehicles’ pose estimation is
approximately equivalent when using CL, this implies that the sensor configuration
using single 2D LIDAR for both tracking and localization is scalable.

4.3 Error Correlation

In Fig. 6¢, the pose error of the 2nd vehicle induced approximately three times larger
pose error for the 3rd vehicle. The pose estimation error is highly correlated between

(a)

(b)

Fig. 6 The error amplification effect when using relative measurement only. The mean pose tra-
jectory of the 3rd vehicle is shown in red in (a) and that of the 2nd vehicle is shown in green in (b).
The trajectories of the three vehicles are plotted in red/green/blue colors using RO (¢) method and
CL (d) algorithm
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the 2nd and the 3rd vehicle when using RO. Conversely, the trajectories of both 2nd
and 3rd vehicle are very smooth in Fig.6d, where the pose error was minimized
locally to avoid the huge error propagation. By matching the scan with the prior
occupancy grid map, the orientation error was reduced such that the initial position
of next vehicle given by the detection measurement was accurate enough for next
vehicle’s localization, which makes the system scalable.

5 Conclusion

In this paper, we proved that using only relative observations for cooperative localiza-
tion is not scalable. Given that the measurements on the map are informative enough,
the cooperative localization under our minimal sensor configuration was proven to
be scalable. We proposed the cooperative localization algorithm for a fleet of vehi-
cles localizing on the urban road, which integrates both tracking and localization
techniques. The experimental results showed that the pose estimation uncertainties
for all three vehicles were minimized to an acceptable level by fusing the detection
and map measurements. The uncertainties were reduced to an extent such that the
cooperative localization is scalable.
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Towards Cooperative Localization
in Robotic Swarms

Anderson G. Pires, Douglas G. Macharet and Luiz Chaimowicz

Abstract Cooperative localization allows groups of robots to improve their overall
localization by sharing position estimates within the team. In spite of being a well
studied problem, very few works deal with the increased complexity when a large
number of robots is used, as is the case in robotic swarms. In this paper, we present
a characterization and analysis of the cooperative localization problem for robotic
swarms. We use a decentralized cooperative mechanism in which robots take turns as
dynamic landmarks providing information to their teammates. We perform several
simulations and analyze the influence of these dynamic landmarks in the localization.
More specifically, we study the impact of the number of robots in the localization
and how the choice of landmarks affects the results.

Keywords Cooperative localization - Cooperative mobile robots - Swarm robotics

1 Introduction

The localization problem is one of the most fundamental in mobile robotics.
It generally consists in estimating the robot pose relative to a reference frame in
the environment. When robots are equipped with exteroceptive sensors (such as laser
range finders) and a set of known landmarks or a map of the environment is available,
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localization is relatively simple. This is also true for outdoor robots equipped with a
good GPS, which can provide position estimates in a global reference frame. But in
more general settings, in which GPS is not available and the robot has no knowledge
about the environment, robots have to rely on dead reckoning methods that compute
new pose estimates from previous ones. Unfortunately, these methods are subjected
to accumulated errors when traveling long distances, which lead to uncertainties that
may compromise the quality of the localization.

In multi-robot teams, individual localization estimates can be corrected based on
the teammates’ positions instead of landmarks in the environment. This is one of the
benefits of cooperative robotics, which allows robots to share responsibilities and
exchange information to better accomplish tasks. The pose belief adjustment occurs
by means of information exchange, which generally happens when the robots meet
each other (i.e. there are robots within the communication range). Multi-robot sys-
tems employing this technique, commonly denoted Cooperative Localization (CL),
have less dependence on the availability of global localization information. Conse-
quently, this kind of system can be used to explore unknown areas or scenarios where
global localization is not always available.

These advantages can be leveraged with the use of large groups of robots,
which usually present increased flexibility and robustness. Generally called Robotic
Swarms, these systems employ a large number of simpler agents to perform different
types of tasks, acting in a completely decentralized fashion. As will be discussed in
the next section, most of the CL methods have focused on the use of a small number
of robots since the complexity in terms of coordination and information exchange
increases with the number of robots. Thus, the problem of CL in robotic swarms has
not been fully explored and presents relevant questions to be investigated.

In this paper, we present a characterization and analysis of the cooperative local-
ization problem considering a swarm of robots. We use a decentralized method, in
which the main idea is to have some robots in the swarm acting as dynamic landmarks
and providing a localization structure to the group. More specifically, we have the
members of the group alternately working as localization providers. These members,
acting as beacons, publish localization information in their vicinities to allow their
neighbors to adjust their localization beliefs. In this context, we perform an extensive
series of simulations and analyze how the number of dynamic landmarks and their
choice may impact the localization in a robotic swarm.

The remainder of this paper is structured as follows. A review on the CL liter-
ature is presented in Sect.2. The methodology is presented in Sect.3, which ini-
tially describes the theoretical formalizations (Sect.3.1), followed by the coopera-
tive swarm localization method (Sect. 3.2), and the swarm motion strategy (Sect. 3.3)
used to move the group as a unit. Experiments and statistical analysis are presented
in Sect. 4. Finally, Sect. 5 brings the conclusions and directions for future work.
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2 Related Work

One of the first works that use robots as landmarks to perform cooperative localization
is [6], in which a group of robots, with awareness of its initial localization, is divided
in two subgroups with alternating motion and roles. At each time-step, one group is
in motion while the other remains static to serve as landmark. After the motion, the
robots update their localization beliefs by using relative observations and then remain
stationary acting as landmarks to the other group. Despite the good results shown in
real applications [5], the need of a centralized entity that controls the actions of all
robots and estimates their beliefs compromises the robustness and scalability of the
method.

Another seminal work is [7], in which the concept of cooperative localization is
employed in a task related to mapping. Two robots are equipped with sensors that
allow them to track each other. The coordination mechanism permits them to divide
the environment by using spatial decomposition, such that at any single time one
robot acting as landmark is positioned in a corner of the environment, while the
other spans the perimeter maintaining visual contact. Therefore, the regions of the
entire free space are covered and a dual graph is generated, which can be used to
posterior exploration of the area.

A more general approach to the CL problem is presented in [10]. The method is
based on the generation of a joint estimation of the robots’ pose in a group, which is
computed using an Extended Kalman Filter (EKF) [4]. Both centralized and decen-
tralized methods were applied to generate the joint estimation. In the decentralized
approach, each robot performs the prediction step of the filter individually while
the update step is performed by exchanging information with others via commu-
nication and exteroceptive sensors. The localization interdependence is considered
and its representation (cross correlation terms) are stored by all robots and explicitly
propagated to the teammates. Using these terms, a robot can estimate its pose by con-
sidering the shared knowledge associated with previous meetings. In spite of having
the best estimate as a consequence of the use of localization interdependence, this
strategy has the disadvantage of requiring a previous knowledge about the group size
and presents a complexity that increases quadratically with the number of robots,
precluding its use for large groups of robots, such as swarms.

To deal with this drawback, other works have proposed approximate strategies to
perform the belief update. These approaches use only part of the group to calculate the
robot’s estimate. In a recent approximate approach [1], the belief update is performed
by using the Covariance Intersection Algorithm (CI) [3], which is a consistent method
to fuse estimates of a same quantity with unknown cross-correlation terms. This
approach allows each robot to maintain only its own state-covariance estimate with
a cost to generate a new estimate of O (n).

Some works have investigated different strategies to increase the quality of local-
ization. For instance, [2, 14, 15] explore the motion mechanism of the group. Tully
etal. [14], for example, presents a leap-frog motion technique that has been designed
to aid localization for a team of three robots that move alternatively. The results show
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that this motion strategy outperforms the optimal formation-based path. A method
based on leader-following is presented in [16], in which they explore the formation
to generate optimal motion strategies. Two robots are employed and the simulation
results present better localization accuracy in comparison with the other formation
methods used.

However, just a few works have studied the influence of the group size in relation
to the quality of the group localization. In [11], a theoretical analysis relates the effect
of the number of robots and the error accumulation. In this analysis, the continuous
exchange of localization information among the robots is considered and each robot
uses sensors of limited accuracy to provide absolute orientation. It is shown that
the uncertainty growth is inversely proportional to the number of robots and the
rate of growth depends only on this number and the uncertainty of proprioceptive
sensors. In [8], this aspect is evaluated together with the type of measurement used.
Although the results have shown that the increase in the number of robots contributes
to the quality of localization, relevant details have not become explicit, such as the
number of robots used as landmarks, which prevents a more detailed analysis. In a
recent work [12], the influence of the group size is studied in simulated experiments
using groups from two to five robots. A centralized EKF sequentially performs the
localization estimate of the group using the data sent by all robots. Because of the
restricted scope of the experiments, the results cannot be generalized.

Thus, in spite of the different studies in cooperative localization, its use in robotic
swarms is still incipient. In special, the study of scalability issues in this context is a
relevant problem that we consider suitable for investigation.

3 Methodology

In this work, we consider a large group of robots (swarm) that moves in a cohesive
manner. As in [6, 7], the swarm is divided into two subgroups that move in a mutually
exclusive way. One group remains stationary broadcasting their pose information
while the robots of the other group move using proprioceptive sensors to estimate
their pose. After moving for a certain amount of time, each of these robots updates its
belief by using some of the stationary robots in its neighborhood as landmarks. The
process is completely decentralized: each robot estimates its distance and orientation
to the landmarks, and use the pose information disseminated by them to correct its
pose. After this, robots exchange roles: the stationary group starts moving while the
robots of the other group become stationary landmarks.

Similarly to [1], we consider that robots are able to identify and measure relative
ranges and bearings to their neighbors and exchange information with them. Also,
robots are equipped with proprioceptive sensors that allow them to measure their
own motion. Since we are using holonomic robots, we do not consider the robot
orientation. We assume that all sensor measurements are subjected to white Gaussian
noise, but communication is performed without errors.
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3.1 Theoretical Formalization

Let us consider the scenario where a swarm R = {Rl, Ray ..o, R,,} of 1 holonomic
robots must navigate in a static 2D environment. Let pi = [x] y;]" be the vector at
time-step k that represents the true position of the ith robot (R;) in a common global
frame W, and uk = [vx; & v yk] the vector that represents its control action in the same
time-step, in which vx] and vy} stand for the input velocities in x and y directions,
respectively.

The state x; of the robot R; at time-step k is equal to its position, i.e. X, = p| =
[x,i y,i]T, and its discrete-time motion model is expressed by:

Xipr = [ (% w), i=1,....1
)C;( +UX;(Ak (1)
yi +uyiAk |

A neighborhood A consists of a circular region of radius T around the current
position of a robot. Thus, we can define N = {./\/] Nyl N,]} as the set of calcu-
lated neighborhoods, all with the same radius. As mentioned, we assume that R; can
exchange information and measure relative range p and bearing ¢ of all robots inside
its neighborhood N;. Moreover, it is assumed that robots inside a neighborhood N
can be uniquely identified by the exteroceptive sensor of robot R;.

The true range and bearing taken by robot i of a robot j at time-step k are respec-
tively denoted by p;” and ¢" /1 Thus, the true range py’ and bearing q)k "/ taken at

time-step k by robot i of robot j, is given by h(xk, xk), where

o [Vt s+ ol e | o

h(xj, x)) = R
o’ atan2(y; — yi, x{ — x;)

The measurement model at time-step k + 1, when R; gets a relative position
measurement of R ;, z, ], = ,5,’#1 ¢k+1] i,j=1,...,ni# j,j €MN,isgivenby

ij i J iJ
zp = h(Xpp s X)) 00 3)

where ;| is the zero-mean white Gaussian measurement noise with covariance
ij ; ; i J
R, added to the true relative measurements given by A(X; |, X 1)

'We use the notation *;(’J to express that a certain value associated with robot i was obtained using
information and/or measurements from robot j at time-step k.
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3.2 Cooperative Swarm Localization

As described earlier, this work uses a swarm R of 1 holonomic robots. The swarm is
divided in two subgroups, and their motions are coordinated such that the subgroups
move as units in a mutually exclusive way (see Sect.3.3). Individually, each robot
i maintains only its own state estimate f(}{ and the respective covariance P,i, due to
the costs of processing and communication when cooperatively localizing a large
group of robots. In this work we do not address the cross-correlation terms [10], and
propose an approximate decentralized algorithm for CL.

A robot R; acting as landmark continually broadcasts messages with its state
and covariance to its neighbors. After its motion, a robot R; trying to localize itself,
processes the relative range and bearing measurement Z;il together with the informa-
tion received from robot R ;. Using these data and its own predicted state X, | | ;> and
covariance P} +1¢ estimates, the robot processes the new state XL 4141 and covari-
ance P}; 4141 estimates. This procedure is repeated incrementally for each landmark
in order to improve the localization estimates. The mathematical details of this pro-
cedure is presented as follows.

The discrete-time motion model described in (1) is used to propagate the state of
the robot R; as:

§1;+1|k = .f(f‘;dka ﬁk), i=1,...,n. 4)

The robot’s state is updated according to a linear function f that considers the
previous state Xi and an input & = u} + wi = [vx} 0y;]T, which is basically the
commanded velocities uj augmented with additive zero-mean white Gaussian noise
w;'{, with covariance Qf{. During the motion, each robot individually evolves this
model with time-steps of length Ak.

Using an EKF [4], the respective covariance propagation for R; is given by:

P = PiPL(@) + GQUGY T, 5)

where @] is a2 x 2 identity matrix (I,) and G is this same matrix multiplied by the
time-step Ak.

Thus, when R; receives the message with the state and covariance estimates from
robot j and obtains a relative measurement z;(’i] of it, R; can generate an estimate
of its state as if such estimate had been calculated by the robot R ;. The following
equation illustrates this process:

Sij ol iJ
X1 = i — 8&L)s (6)

2Notation is similar to [1], where ¥iim denotes the estimate of the random variable y at time-step /,
given the measurements up to time-step m.
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where
i cos
g(zzJJrl)z Pk+1 (¢k+1)
pk+15m(¢’k+1)

As described in [13], the uncertainty Rk 11 tied to the measurement zk 41 can be
converted to the common global frame by the means of the jacobian 3! i1» as follows:

Jk'H - vx]‘ (Zk+1)}xk7xk I\L "k *xk+1

= |:COS(¢I<+1) pk+1 Sln(‘1’k+1) )

sin(@ 1) Al cos(@l))

The jacobian J relates the deviation of the original [Ap A@]T and the transformed
[A% A$]T variables, which represent the distance from robots i and j in x and y
coordinates, respectively. Calculated as:

AX Ap
[3:]-012%) ®
The covariance is defined by the expectation of the squared deviates. So, the
covariance of the measurement z in the common frame is defined by multiplying
both sides of Eq. (8) by their respective transposes and taking the expectation of the
result. This transformation represents an adequate linear approximation when the
variables are represented by Gaussians with small variances, as stated in [13]. The

uncertainty P/ 1 related to the X X,/ 11 estimate is generated by the combination of the
covariance matrices:

P, =P, 1k T Jk+1 k+l(Jk+l)T' )

The estlmates R x and X xk 1 are combmed by the EKF update step. This generates

a new state Xk k1 and covariance Pk kD which represent the actual belief of the
robot. New landmark information and relative measurements are combined with this
belief using the procedure described above in an incremental way. The final state
X +1jk41 and covariance Pi 4141 estimate is used for the next motion step.

An important point of the methodology is the choice of the neighbors used as
landmarks. We use two different methods: the first one considers the k closest neigh-
bors while the second choses the k neighbors with lowest uncertainties (covariance
trace). The performances of these different methods are compared in Sect. 4.
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3.3 Swarm Motion Strategy

As mentioned, the swarm R is randomly divided into two subgroups: one that moves
while the other maintains its position. After a pre-specified number of time-steps, the
two subgroups exchange roles. Lets call these subgroups R,, and R, for moving
and stationary ones, respectively.

Robots motion is governed by decentralized flocking rules, which allow them to
move in a cohesive way, while avoiding collisions. The motion strategy is based on
some of the basic rules of Reynolds’ flocking algorithm [9]. Each rule establishes a
vector that determines a direction to be followed.

The first rule, separation, aims to maintain a safe distance among the robots. The
separation behavior is calculated by:

=y (”;‘ ”—1)dij, CHErs (10)
ij

JER.jF#i

which computes a separation vector v**” based on the displacement d;; between a
robot and its teammates located inside a specific separation range (7).

The second rule aims to maintain the robots together acting as a unit. This cohesion
rule computes the average position of the k moving robots that are located inside a
cohesion range (r.), and generates a vector yeoh pointing in this direction as:

i

1
coh
v, = % E A Adi]w ldi; Il < 7e. (11)
JER . j#i

Finally, we consider that the robots have a series of common targets to be reached
during their motion. These targets are used to compute a direction vector (v4")
to be followed. The displacement vector between a robot i and its next target ¢ is
represented by d;;. As shown in Eq.(12), the direction vector consists of the unit
vector in the direction of d;;:

. d;
dir — _1T_ (12)
lldi |l
The control action u; is given by:
W = ke Vi 4 kg Vi kg VAT (13)

which is composed by the weighted sum of the three vectors. The control action is
then decomposed in velocities vx; and vy;, that will be used by robot i.

We assume all robots have a synchronized clock, and the decision to switch robots
from R, to R,, (i.e. from stationary landmarks to the moving robots group), and
vice versa, is made periodically on a completely decentralized manner. At first, the
swarm is divided in two predefined subgroups, and a common timer is initialized.
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As soon as the timer reaches a certain value, the robots change their roles, and the
timer is reinitialized. This loop is repeated until the mission is fulfilled.

3.4 Complexity Analysis

In this section, we present a brief analysis of the computational complexity of each
stage of the proposed methodology, as well as bounds regarding the number of
messages used by each robot.

In most systems dealing with the CL problem, the cost to estimate the position is
usually 0 (n?), where n is the number of robots, since n(n — 1) measurements are
needed to calculate a new estimation.

In this work, the swarm is divided into two subgroups, and all the robots on
a subgroup should measure the relative range and bearing of all robots from the
other subgroup. Therefore, it takes (n/2)(n/2) measurements, still leading to an
on?) complexity, where n is the number of robots. However, as will be shown in
Sect. 4, the use of just part of the robots from the other group improves significantly
the position estimation, which takes k(n/2) measurements. Therefore, we have an
O (kn) complexity, since we consider k < n/2 as the number of robots that will be
used as landmarks, and 7 is the total number of robots.

4 Experiments

Several simulations were performed to analyze how the number of dynamic land-
marks and the way they are chosen impact the localization. We have also varied
parameters related to the quality of the information in order to study its influence on
the localization error and the number of necessary landmarks.

The experiments presented here were executed considering a swarm with 30
holonomic robots. The group navigates in an obstacle-free static environment of
approximately one hundred square meters (10 m x 10 m). Robot motion is directed
by aseries of waypoints, which define targets to be reached by the group. These targets
dictates the preferred direction (Vf“ ") for each robot and it is used in computing the
commanded velocity u;. These velocities are limited to 0.1 m/s, and are subjected t