
Springer Tracts in Advanced Robotics 112

Nak-Young Chong
Young-Jo Cho Editors

Distributed
Autonomous
Robotic
Systems
The 12th International Symposium

Springer Tracts in Advanced Robotics

Editors

Prof. Bruno Siciliano
Dipartimento di Ingegneria Elettrica
e Tecnologie dell’Informazione
Università degli Studi di Napoli
Federico II
Via Claudio 21, 80125 Napoli
Italy
E-mail: siciliano@unina.it

Prof. Oussama Khatib
Artificial Intelligence Laboratory
Department of Computer Science
Stanford University
Stanford, CA 94305-9010
USA
E-mail: khatib@cs.stanford.edu

112

Editorial Advisory Board

Oliver Brock, TU Berlin, Germany
Herman Bruyninckx, KU Leuven, Belgium
Raja Chatila, ISIR—UPMC & CNRS, France
Henrik Christensen, Georgia Tech, USA
Peter Corke, Queensland University of Technology, Australia
Paolo Dario, Scuola S. Anna Pisa, Italy
Rüdiger Dillmann, University of Karlsruhe, Germany
Ken Goldberg, UC Berkeley, USA
John Hollerbach, University of Utah, USA
Makoto Kaneko, Osaka University, Japan
Lydia Kavraki, Rice University, USA
Vijay Kumar, University of Pennsylvania, USA
Sukhan Lee, Sungkyunkwan University, Korea
Frank Park, Seoul National University, Korea
Tim Salcudean, University of British Columbia, Canada
Roland Siegwart, ETH Zurich, Switzerland
Gaurav Sukhatme, University of Southern California, USA
Sebastian Thrun, Stanford University, USA
Yangsheng Xu, The Chinese University of Hong Kong, PRC
Shin’ichi Yuta, Tsukuba University, Japan

More information about this series at http://www.springer.com/series/5208

STAR (Springer Tracts in Advanced Robotics) has been promoted
under the auspices of EURON(EuropeanRobotics ResearchNetwork)

http://www.springer.com/series/5208

Nak-Young Chong • Young-Jo Cho
Editors

Distributed Autonomous
Robotic Systems
The 12th International Symposium

123

Editors
Nak-Young Chong
Japan Advanced Institute of Science and
Technology

Nomi, Ishikawa
Japan

Young-Jo Cho
Electronics and Telecommunications
Research Institute

Daejeon
Korea, Republic of (South Korea)

ISSN 1610-7438 ISSN 1610-742X (electronic)
Springer Tracts in Advanced Robotics
ISBN 978-4-431-55877-4 ISBN 978-4-431-55879-8 (eBook)
DOI 10.1007/978-4-431-55879-8

Library of Congress Control Number: 2015957775

© Springer Japan 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer Japan KK

Series Foreword

Robotics is undergoing a major transformation in scope and dimension. From a
largely dominant industrial focus, robotics is rapidly expanding into human envi-
ronments and vigorously engaged in its new challenges. Interacting with, assisting,
serving, and exploring with humans, the emerging robots will increasingly touch
people and their lives.

Beyond its impact on physical robots, the body of knowledge robotics has
produced is revealing a much wider range of applications reaching across diverse
research areas and scientific disciplines: biomechanics, haptics, neurosciences,
virtual simulation, animation, surgery, and sensor networks among others. In return,
the challenges of the new emerging areas are proving an abundant source of
stimulation and insights for the field of robotics. It is indeed at the intersection of
disciplines that the most striking advances happen.

The Springer Tracts in Advanced Robotics (STAR) is devoted to bringing to the
research community the latest advances in the robotics field on the basis of their
significance and quality. Through a wide and timely dissemination of critical
research developments in robotics, our objective with this series is to promote more
exchanges and collaborations among the researchers in the community and con-
tribute to further advancements in this rapidly growing field.

DARS is a well-established single-track conference that gathers every 2 years
the main researchers in Distributed Autonomous Robotic Systems. Since the 10th
edition in 2010, STAR has welcomed DARS among the volumes resulting from
thematic symposia devoted to excellence in robotics research.

The volume edited by Nak Young Chong and Young-Jo Cho offers in its 32
chapters an interdisciplinary collection of technologies, algorithms, system archi-
tectures, and applications of advanced distributed robotic systems. The contents are
effectively grouped into four thematic sections: collaborative exploration, local-
ization, and mapping; cooperative manipulation and task allocation; formation
control and path planning; multi-robot communication and control architecture.

v

Rich by topics and authoritative contributors, the 12th edition of DARS in 2014
culminates with this unique reference on the current developments and new
directions in the field of distributed autonomous robotic systems. A very fine
addition to STAR!

Naples, Italy Bruno Siciliano
August 2015 STAR Editor

vi Series Foreword

Preface

The latest volume in the Distributed Autonomous Robotic Systems series consti-
tutes the thoroughly reviewed post-conference proceedings of the 12th International
Symposium on Distributed Autonomous Robotic Systems (DARS 2014), which
was held at the Daejeon Convention Center, Daejeon, Korea, November 2–5, 2014.
Following the tradition established by the previous symposiums since 1992, the
goal of DARS 2014 has been to exchange and stimulate research ideas to realize
advanced distributed robotic systems. Distributed robotics is a rapidly growing,
interdisciplinary research area lying at the intersection of computer science, com-
munication and control systems, and electrical and mechanical engineering.
Stunning examples of cutting-edge technologies, algorithms, system architectures,
and applications were presented and discussed during a single-track, three-day
symposium. Building on the momentum of successful previous symposiums,
DARS 2014 also provided a supportive and exciting environment for academics
and practitioners to present and discuss their novel theoretical results, implemen-
tations, and applications in distributed autonomous robotic systems.

DARS 2014 received a total of 81 papers from 11 countries. Sixty papers were
submitted to the regular paper track and 21 papers were submitted to the
work-in-progress paper track. For the first time in the history of DARS, the
work-in-progress poster session was designed to allow authors to present new
challenges and directions, and early and emerging results from both academia and
industry, providing a forum for the discussion of timely topics and promising yet
still-undeveloped ideas. This effort will further push the boundaries of our scientific
and technical limits and expand the horizons of DARS beyond academia. The final
technical program consists of 29 papers in a total of nine oral sessions and 25
papers in one poster session. The oral session provides a platform for authors to
present and discuss their new findings and controversies in a formal way within a
20-minute time slot. The 80-minute poster session allows authors to facilitate more
personal interactions with more targeted and interested audiences, and affords more
time to present their work in depth.

vii

Finally, 32 papers of the highest quality, carefully selected and revised after the
symposium, are included in this volume. These papers will give a broad, yet
focused perspective categorized into the following four areas: (1) collaborative
exploration, localization, and mapping, (2) cooperative manipulation and task
allocation, (3) formation control and path planning, and (4) multi-robot commu-
nication and control architecture. Well-defined specific research problems in the
respective topic areas are investigated and analyzed on theoretical grounds and
experimental confirmation under real-world conditions. Specifically, this volume
elaborates on “distributed autonomy” that is efficient and scalable compared to the
best-known centralized algorithms in the literature, and envisions ways it can
evolve to be more sustainable. The latest findings and implications learned from all
of the above-mentioned areas will help readers understand how and why various
forms of cooperative interactions emerge and flourish in distributed autonomous
robotic systems, and push them into today’s demanding applications and large-scale
distributed systems. This volume will be of great use to postgraduate students,
researchers, and practitioners wishing to study a range of current and emerging
issues and specific topics in distributed autonomous robotic systems.

In addition to ten regular sessions centered on distributed autonomy themes,
DARS 2014 was honored to have four distinguished plenary session speakers. The
titles and abstracts of the plenary lectures are given below:

Distributed Systems for Urban Mobility

Professor Emilio Frazzoli, Massachusetts Institute of Technology, USA

The first part of this talk will concentrate on self-driving cars, and their impact on
personal mobility in urban settings. Research and development on self-driving cars
is currently very active, and cars able to drive safely and reliably without need for
human supervision are no longer science fiction. Indeed, several companies and
universities have demonstrated vehicles able to drive autonomously in traffic, in the
process building social awareness and pushing the boundaries of current regulations
and risk management practices. At this point, a natural question to ask is: what is
the point of autonomous cars? Is autonomy indeed a transformative technology,
with a potential to drastically redefine mobility? If so, in what ways, and when?

I will argue that the “killer app” for self-driving cars is car sharing, and will
provide analytical guidelines and financial justification for the design of
shared-vehicle mobility-on-demand systems. As a case study, we consider replacing
all modes of personal transportation in a city such as Singapore with a fleet of
shared automated vehicles, able to drive themselves, e.g., to move to a customer’s
location. Using actual transportation data, our analysis suggests a shared-vehicle
mobility solution can meet the personal mobility needs of the entire population with
a fleet whose size is approximately one-third of the total number of passenger
vehicles currently in operation.

viii Preface

The second part of the talk will concentrate on distributed algorithms for traffic
signal control. The proposed algorithms are adapted from backpressure routing,
which has been mainly applied to communication and power networks. Our
algorithm ensures global optimality as it leads to maximum network throughput
even though the controller is constructed and implemented in a completely dis-
tributed manner. Simulation results show that our algorithm significantly outper-
forms state-of-the-art algorithms.

Multi-robot Collision Avoidance and Applications

Professor Beom Hee Lee, Seoul National University, Korea

Nowadays, multi-robot operations are acknowledged as a common practice in
industry for various tasks. The state of the art of multi-robot systems is described in
the first statement. Multi-robot research issues are then discussed in terms of the
operational strategies: centralized, distributed, and mixed operational schemes.
Next, we show that one of the main issues in multi-robot operation is the problem of
collision avoidance. We also show the importance of the collision avoidance
problem in multi-robot operations. For multi-robot collision avoidance, a special
tool, called the collision map, is introduced and applied to this problem. More deep
analysis and investigation are presented for an application of the collision
map. Various types of collision maps are then introduced with several possible
applications. Also, robot path modification is viewed in terms of collision avoid-
ance using the concept of the collision map. Various applications using the collision
map are presented for a problem of 100 multi-robot operations, a stealth intruder
intercept scheme, and efficient multiple cleaning robots operation. Especially, the
load balancing in multiple cleaning robots are realized using the collision
map. Finally, future applications using multi-robot systems are briefly discussed.

Design and Navigation of Robots that Roll, Run, and Fly

Professor Roland Siegwart, ETH Zurich, Switzerland

Robots are rapidly evolving from factory workhorses, which are physically bound
to their work-cells, to increasingly complex machines capable of performing
challenging tasks as search and rescuing, surveillance and inspections, planetary
exploration or autonomous transportation of goods. This requires robots to operate
in unstructured and unpredictable environments and various terrains. This talk will
focus on design and navigation aspects of wheeled, legged, swimming and aerial
robots operating in complex environments. Our wheeled robots are designed to
move on complex grounds or to autonomously drive in parking lots. For our
quadruped walker we are researching optimal ways to exploit the natural dynamics
and serial elastic actuation. Our swimming robots take inspiration from natural

Preface ix

counterparts for optimal propulsion, and with our micro-helicopter projects we
approach autonomous flights and inspections in cluttered and very narrow indoor
environments as well as GPS-denied visual navigation in cities. And our small solar
airplanes are capable of staying in the air indefinitely and flying close to the ground
thanks to onboard vision.

A Synchronization Control Approach to Networked Robotic
Systems

Professor Dong Sun, City University of Hong Kong, Hong Kong, China

Nowadays cooperative controls of networked robotic systems have become a hot
research area with dramatically increased popularity. Synchronization is a common
timekeeping methodology which requires the coordination of events to operate a
system in unison. This talk will introduce our researches of using synchronization
control approach to motion coordination of networked robots. The idea of syn-
chronizing multiple coordinative robots to achieve a common goal is inspired by
many examples found in nature. Our strategy is to control each robot to track along
its desired trajectory while synchronizing its motion with the other robots to keep
relative kinematics relationship as required by the coordination. To achieve this
goal, we firstly pose the motion coordination problem as a synchronization control
problem while defining the synchronization error based on the coordination
requirement, and secondly we develop a synchronous controller that can guarantee
both position and synchronization errors to approach zero asymptotically. Two case
studies are conducted to demonstrate this synchronization approach. The first case
study is to control formations of swarms of mobile robots to follow time-varying
formations, with further extensions to various industrial applications such as
coordination of multi-robot manipulators, multi-axis controls, and contouring error
minimization of CNC machines. The second case study is to use a robotic cell
manipulation system to transfer multiple biological cells in biomedical applications.

Furthermore, DARS 2014 had the Best Paper Award competition intended to
recognize excellence among papers with substantial novelty and research contri-
bution. The following papers were nominated in random order for the Best Paper
Award by the Program Committee based on reviewer comments and scores.

• Distributed Online Patrolling with Multi-Agent Teams of Sentinels and
Searchers
Nicola Basilico1, Timothy H. Chung2, and Stefano Carpin3
1University of Milan, Italy, 2Naval Postgraduate School, USA, 3University of
California, USA

• Human–Robot Collaborative Topological Exploration for Search and
Rescue Applications
Vijay Govindarajan, Subhrajit Bhattacharya, and Vijay Kumar
University of Pennsylvania, USA

x Preface

• Cooperative Mobile Robot Control Architecture for Lifting and
Transportation of Any Shape Payload
B. Hichri1, L. Adouane2, J.-C. Fauroux2, Y. Mezouar2, and I. Doroftei3
1Institut Pascal Clermont Ferrand, France, 2Institut Pascal Clermont Ferrand,
France, 3Gheorghe Asachi Technical University of Iasi, Romania

• A Repartitioning Algorithm to Guarantee Complete, Non-overlapping
Planar Coverage with Multiple Robots
Kurt Hungerford1, Prithviraj Dasgupta1, and K.R. Guruprasad2
1University of Nebraska, USA, 2National Institute of Technology, India

• A Response Threshold Sigmoid Function Model for Swarm Robot
Collaboration
Anshul Kanakia, John Klingner, and Nikolaus Correll
University of Colorado, USA

• Glider CT: Analysis and Experimental Validation
1Dongsik Chang, 2Wencen Wu, and 1Fumin Zhang
1Georgia Institute of Technology, USA, 2Rensselaer Polytechnic Institute, USA

The Best Paper Award went to Anshul Kanakia, John Klingner, and Nikolaus
Correll for their paper “A Response Threshold Sigmoid Function Model for Swarm
Robot Collaboration.” The winner was decided during the symposium by the
Award Committee based on the technical merit and significance of the paper and
quality of presentation. Listed below are the Program Committee and Award
Committee members.

Program Committee

Asia/Oceania, Chair, Jun Ota (The University of Tokyo, Japan)
Marcelo H. Ang Jr. (National University of Singapore, Singapore)
Han-Lim Choi (KAIST, Korea)
Xavier Defago (JAIST, Japan)
Robert Fitch (University of Sydney, Australia)
Norihiro Hagita (ATR, Japan)
Sang Hoon Ji (KITECH, Korea)
Dongjun Lee (Seoul National University, Korea)
Geunho Lee (University of Miyazaki, Japan)
Azman Osman Lim (JAIST, Japan)
Makoto Mizukawa (Shibaura Institute of Technology, Japan)
Hyun Myung (KAIST, Korea)
Anton Satria Prabuwono (UKM, Malaysia)
Kwee-Bo Sim (Chung-Ang University, Korea)
Chieh-Chih Wang (National Taiwan University, Taiwan)

Preface xi

North America: Chair, Timothy H. Chung (Naval Postgraduate School, USA)
Nora Ayanian (University of Southern California, USA)
Spring Berman (Arizona State University, USA)
Sourabh Bhattacharya (Iowa State University, USA)
Zack Butler (Rochester Institute of Technology, USA)
Stefano Carpin (University of California, Merced, USA)
Nikolaus Correll (University of Colorado, Boulder, USA)
Karthik Dantu (University at Buffalo, State University of New York, USA)
Rafael Fierro (University of New Mexico, USA)
Emilio Frazzoli (Massachusetts Institute of Technology, USA)
Eric Frew (University of Colorado, Boulder, USA)
Maria Gini (University of Minnesota, USA)
Geoffrey Hollinger (Oregon State University, USA)
Ayanna Howard (Georgia Institute of Technology, USA)
Ani Hsieh (Drexel University, USA)
Kiju Lee (Case Western Reserve University, USA)
James McLurkin (Rice University, USA)
Nathan Michael (Carnegie Mellon University, USA)
Dejan Milutinovic (University of California, Santa Cruz, USA)
Michael Novitzky (Georgia Institute of Technology, USA)
Daniel Pack (University of Texas at San Antonio, USA)
Ioannis Rekleitis (McGill University, Canada)
Alessandro Renzaglia (University of Minnesota, USA)
Brian Sadler (US Army Research Laboratory, USA)
Ketan Savla (University of Southern California, USA)
Mac Schwager (Boston University, USA)
Wei-Min Shen (University of Southern California, USA)
Gabe Sibley (George Washington University, USA)
Stephen Smith (University of Waterloo, Canada)
Don Sofge (Naval Research Laboratory, USA)
Manuela Veloso (Carnegie Mellon University, USA)
Fumin Zhang (Georgia Institute of Technology, USA)

Europe, Chair, Fulvio Mastrogiovanni (University of Genoa, Italy)
Rachid Alami (LAAS/CNRS, France)
Francesco Amigoni (Politecnico di Milano, Italy)
Torbjorn Dahl (Plymouth University, UK)
Marco Dorigo (Université Libre de Bruxelles, Belgium)
Alessandro Farinelli (University of Verona, Italy)
Luca Maria Gambardella (IDSIA, Lugano, Switzerland)
Paolo Robuffo Giordano (IRISA/ INRIA Rennes, France)
Roderich Gross (University of Sheffield, UK)
Sandra Hirche (TUM, Munich, Germany)
Pedro U. Lima (Istituto Superior Tecnico, Lisbon, Portugal)
Lino Marques (University of Coimbra, Portugal)

xii Preface

Philippe Martinet (Ecole Centrale de Nantes, France)
Francesco Mondada (EPFL, Lausanne, Switzerland)
Daniele Nardi (Università La Sapienza, Rome, Italy)
Paolo Remagnino (Kingston University London, UK)
Antonio Sgorbissa (University of Genova, Italy)

Award Committee
Han-Lim Choi (KAIST, Korea), Chair
Marcelo H. Ang Jr. (National University of Singapore, Singapore)
Roderich Gross (University of Sheffield, UK)
Dongjun Lee (Seoul National University, Korea)
Hyun Myung (KAIST, Korea)
Mac Schwager (Boston University, USA)

We would like to offer our sincere thanks to the Organizing Committee members
(Chair, Dr. Young-Jo Cho, ETRI, Korea) for their hard work and outstanding
contributions, and the Steering Committee members (Chair, Prof. Hajime Asama,
The University of Tokyo, Japan) for their helpful guidance and support. Special
thanks are extended to the Program Co-chairs (Prof. Jun Ota, The University of
Tokyo, Japan, Prof. Fulvio Mastrogiovanni, the University of Genoa, Italy, and
Prof. Timothy H. Chung, the Naval Postgraduate School, USA) for their time and
effort in attracting and recruiting qualified Program Committee members and col-
lecting high-quality papers. We would also like to express our deep appreciation to
the Program Committee and Award Committee members for their hard work and
dedication. They all devotedly struggled to shape and maintain the highest quality
levels of the final program within a very tight time frame. Last but not least, we
would further like to express our heartfelt thanks and appreciation to all the par-
ticipants for their active engagement in the symposium program and all the con-
tributing authors in this volume.

Both academics and practitioners are invited to enjoy the very essence of DARS
2014, full of innovative ideas and practical strategies for implementation!

Nak-Young Chong
Young-Jo Cho

Preface xiii

Contents

Part I Collaborative Exploration, Localization, and Mapping

Distributed Online Patrolling with Multi-agent Teams
of Sentinels and Searchers . 3
Nicola Basilico, Timothy H. Chung and Stefano Carpin

Human-Robot Collaborative Topological Exploration
for Search and Rescue Applications . 17
Vijay Govindarajan, Subhrajit Bhattacharya and Vijay Kumar

A Repartitioning Algorithm to Guarantee Complete,
Non-overlapping Planar Coverage with Multiple Robots 33
Kurt Hungerford, Prithviraj Dasgupta and K.R. Guruprasad

On Combining Multi-robot Coverage and Reciprocal
Collision Avoidance. 49
Andreas Breitenmoser and Alcherio Martinoli

Distributed Safe Deployment of Networked Robots 65
Reza Javanmard Alitappeh and Luciano C.A. Pimenta

MarSim, a Simulation of the MarsuBots Fleet Using NetLogo 79
David Leal Martínez and Aarne Halme

Scalable Cooperative Localization with Minimal Sensor
Configuration . 89
Xiaotong Shen, Scott Pendleton and Marcelo H. Ang Jr.

Towards Cooperative Localization in Robotic Swarms 105
Anderson G. Pires, Douglas G. Macharet and Luiz Chaimowicz

MOARSLAM: Multiple Operator Augmented RSLAM. 119
John G. Morrison, Dorian Gálvez-López and Gabe Sibley

xv

http://dx.doi.org/10.1007/978-4-431-55879-8_1
http://dx.doi.org/10.1007/978-4-431-55879-8_1
http://dx.doi.org/10.1007/978-4-431-55879-8_2
http://dx.doi.org/10.1007/978-4-431-55879-8_2
http://dx.doi.org/10.1007/978-4-431-55879-8_3
http://dx.doi.org/10.1007/978-4-431-55879-8_3
http://dx.doi.org/10.1007/978-4-431-55879-8_4
http://dx.doi.org/10.1007/978-4-431-55879-8_4
http://dx.doi.org/10.1007/978-4-431-55879-8_5
http://dx.doi.org/10.1007/978-4-431-55879-8_6
http://dx.doi.org/10.1007/978-4-431-55879-8_7
http://dx.doi.org/10.1007/978-4-431-55879-8_7
http://dx.doi.org/10.1007/978-4-431-55879-8_8
http://dx.doi.org/10.1007/978-4-431-55879-8_9

Part II Cooperative Manipulation and Task Allocation

Multi-robot Manipulation Without Communication 135
Zijian Wang and Mac Schwager

Distributed Path Planning for Collective Transport Using
Homogeneous Multi-robot Systems . 151
Golnaz Habibi, William Xie, Mathew Jellins and James McLurkin

Collective Construction of Dynamic Equilibrium Structure
Through Interaction of Simple Robots with Semi-active Blocks 165
Ken Sugawara and Yohei Doi

Cooperative Mobile Robot Control Architecture for Lifting
and Transportation of Any Shape Payload . 177
B. Hichri, L. Adouane, J.-C. Fauroux, Y. Mezouar and I. Doroftei

A Response Threshold Sigmoid Function Model
for Swarm Robot Collaboration. 193
Anshul Kanakia, John Klingner and Nikolaus Correll

Potential Game-Theoretic Analysis of a Market-Based
Decentralized Task Allocation Algorithm . 207
Han-Lim Choi, Keum-Seong Kim, Luke B. Johnson
and Jonathan P. How

The Hybrid Information and Plan Consensus Algorithm
with Imperfect Situational Awareness . 221
Luke Johnson, Han-Lim Choi and Jonathan P. How

Part III Formation Control and Path Planning

Adaptive Leader-Follower Formation in Cluttered Environment
Using Dynamic Target Reconfiguration . 237
José Vilca, Lounis Adouane and Youcef Mezouar

A Graph-Based Formation Algorithm for Odor Plume Tracing. 255
Jorge M. Soares, A. Pedro Aguiar, António M. Pascoal
and Alcherio Martinoli

Multi-agent Visibility-Based Target Tracking Game 271
Mengzhe Zhang and Sourabh Bhattacharya

Glider CT: Analysis and Experimental Validation 285
Dongsik Chang, Wencen Wu and Fumin Zhang

Path Planning for Multi-agent Jellyfish Removal Robot System
JEROS and Experimental Tests. 299
Donghoon Kim, Hanguen Kim, Hyungjin Kim, Jae-Uk Shin,
Hyun Myung and Young-Geun Kim

xvi Contents

http://dx.doi.org/10.1007/978-4-431-55879-8_10
http://dx.doi.org/10.1007/978-4-431-55879-8_11
http://dx.doi.org/10.1007/978-4-431-55879-8_11
http://dx.doi.org/10.1007/978-4-431-55879-8_12
http://dx.doi.org/10.1007/978-4-431-55879-8_12
http://dx.doi.org/10.1007/978-4-431-55879-8_13
http://dx.doi.org/10.1007/978-4-431-55879-8_13
http://dx.doi.org/10.1007/978-4-431-55879-8_14
http://dx.doi.org/10.1007/978-4-431-55879-8_14
http://dx.doi.org/10.1007/978-4-431-55879-8_15
http://dx.doi.org/10.1007/978-4-431-55879-8_15
http://dx.doi.org/10.1007/978-4-431-55879-8_16
http://dx.doi.org/10.1007/978-4-431-55879-8_16
http://dx.doi.org/10.1007/978-4-431-55879-8_17
http://dx.doi.org/10.1007/978-4-431-55879-8_17
http://dx.doi.org/10.1007/978-4-431-55879-8_18
http://dx.doi.org/10.1007/978-4-431-55879-8_19
http://dx.doi.org/10.1007/978-4-431-55879-8_20
http://dx.doi.org/10.1007/978-4-431-55879-8_21
http://dx.doi.org/10.1007/978-4-431-55879-8_21

Motion Planning of Multiple Mobile Robots Based on Artificial
Potential for Human Behavior and Robot Congestion 311
Satoshi Hoshino and Koichiro Maki

DisCoF: Cooperative Pathfinding in Distributed Systems
with Limited Sensing and Communication Range 325
Yu Zhang, Kangjin Kim and Georgios Fainekos

Decentralized Multi-agent Path Selection Using Minimal
Information . 341
Andrew Kimmel and Kostas Bekris

Scalable Formation Control of Multi-robot Chain Networks
Using a PDE Abstraction. 357
Karthik Elamvazhuthi and Spring Berman

Decoupled Formal Synthesis for Almost Separable Systems
with Temporal Logic Specifications . 371
Scott C. Livingston and Pavithra Prabhakar

Part IV Multi-Robot Communication and Control Architecture

Knowledge Co-creation Framework: Novel Transfer Learning
Method in Heterogeneous Multi-agent Systems 389
Hitoshi Kono, Yuta Murata, Akiya Kamimura, Kohji Tomita
and Tsuyoshi Suzuki

Distributed Communication and Localization Algorithms
for Homogeneous Robotic Swarm . 405
Donghwa Jeong and Kiju Lee

Distributed Co-optimisation of Throughput for Mobile
Sensor Networks . 419
Trung Dung Ngo

Detection and Notification of Failures in Distributed
Component-Based Robot Applications Using Blackboard
Architecture . 433
Michael Shin, Taeghyun Kang and Sunghoon Kim

Coordination of Modular Robots by Means of Topology Discovery
and Leader Election: Improvement of the Locomotion Case 447
José Baca, Bradley Woosley, Prithviraj Dasgupta, Ayan Dutta
and Carl Nelson

Muscle Synergy Analysis of Human Standing-up Motion Using
Forward Dynamic Simulation with Four Body Segment Model 459
Qi An, Yuki Ishikawa, Tetsuro Funato, Shinya Aoi, Hiroyuki Oka,
Hiroshi Yamakawa, Atsushi Yamashita and Hajime Asama

Contents xvii

http://dx.doi.org/10.1007/978-4-431-55879-8_22
http://dx.doi.org/10.1007/978-4-431-55879-8_22
http://dx.doi.org/10.1007/978-4-431-55879-8_23
http://dx.doi.org/10.1007/978-4-431-55879-8_23
http://dx.doi.org/10.1007/978-4-431-55879-8_24
http://dx.doi.org/10.1007/978-4-431-55879-8_24
http://dx.doi.org/10.1007/978-4-431-55879-8_25
http://dx.doi.org/10.1007/978-4-431-55879-8_25
http://dx.doi.org/10.1007/978-4-431-55879-8_26
http://dx.doi.org/10.1007/978-4-431-55879-8_26
http://dx.doi.org/10.1007/978-4-431-55879-8_27
http://dx.doi.org/10.1007/978-4-431-55879-8_27
http://dx.doi.org/10.1007/978-4-431-55879-8_28
http://dx.doi.org/10.1007/978-4-431-55879-8_28
http://dx.doi.org/10.1007/978-4-431-55879-8_29
http://dx.doi.org/10.1007/978-4-431-55879-8_29
http://dx.doi.org/10.1007/978-4-431-55879-8_30
http://dx.doi.org/10.1007/978-4-431-55879-8_30
http://dx.doi.org/10.1007/978-4-431-55879-8_30
http://dx.doi.org/10.1007/978-4-431-55879-8_31
http://dx.doi.org/10.1007/978-4-431-55879-8_31
http://dx.doi.org/10.1007/978-4-431-55879-8_32
http://dx.doi.org/10.1007/978-4-431-55879-8_32

Part I
Collaborative Exploration, Localization,

and Mapping

Distributed Online Patrolling
with Multi-agent Teams of Sentinels
and Searchers

Nicola Basilico, Timothy H. Chung and Stefano Carpin

Abstract We consider the problem of patrolling an assigned area using a team of
heterogeneous robots consisting of sentinels and searchers in the presence of stochas-
tic arrivals of attacks. Sentinels and searchers operate using a different sensor model
featuring a tradeoff between accuracy and the sensed area. Using an approach based
on queuing theory, we derive an accurate analytic characterization of the patrolling
performance that can be used to predict the behavior of a given configuration or
inform the composition of a team in order to meet a desired target performance.
Extensive simulation results corroborate our theoretical findings.

Keywords Surveillance · Variable resolution search · Cooperative robots

1 Introduction

Among the many uses envisioned for teams of coordinated autonomous robots, tasks
related to intelligence, surveillance and reconnaissance (ISR) continue to be at the
forefront of research in distributed robotics. Teams of robots can implement search
and patrolling strategies that complement and enhance human performance while
reducing costs, increasing resilience, and decreasing operational risks for humans.
Recent developments in the area of unmanned aerial vehicles (UAVs) have added
momentum to this very active research area, in particular with the development of
vertical take-off and landing vehicles, such as quadrotor UAVs [10].

N. Basilico
University of Milan, Milano, Italy
e-mail: nicola.basilico@unimi.it

T.H. Chung
Naval Postgraduate School, Monterey, CA, USA
e-mail: thchung@nps.edu

S. Carpin (B)
University of California, Merced, CA, USA
e-mail: scarpin@ucmerced.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_1

3

4 N. Basilico et al.

In the recent past we have studied the problem of robotic search and patrolling
using a single quadrotor UAV [1, 5]. Our initial modeling efforts and theoretical find-
ings were corroborated with extensive field experiments demonstrating the validity
of our assumptions [4]. A characteristic aspect of this class of vehicles is that their
sensing resolution can be adjusted on the fly byKeeping this in mind varying their
elevation—a fact already evidenced in [14]. Therefore,whenplanning how to allocate
the search effort in space and time, one should also explicitly consider the variable
sensor accuracy, defined here as detection probabilities. In fact, sensors and sensor
processing algorithms have preferred operating conditions and one should strive to
operate in those regions, when possible. Needless to say, operating in a regime offer-
ing the highest accuracy often comes at the cost of reducing the sensing area, thus
creating opposing objectives. Our former works in this area have exactly explored
this tradeoff in the single agent case.

In this paper we extend our existing work by considering how teams of heteroge-
neous robots can jointly patrol an assigned area. Our setup consists of two classes
of robots, called sentinels and searchers. Sentinels and searchers operate at different
elevations, and their sensors are then subject to different performances. The role of
sentinels is to detect intrusions1 and to then alert and dispatch searchers for their
removal. Sentinels are stationary and capable of detecting intruders within large
areas, whereas searchers are mobile and capable of removing the intruders, but their
sensing area is much smaller. Both sentinels and searchers are equipped with faulty
sensors incurring false alarms and missed detections. We model the problem using
an approach based on queueing theory and we characterize the steady state behav-
iors of the queues using parameters characterizing the agents’ sensors as well as the
search strategy implemented by the searchers once dispatched. The derived model
provides the basis for addressing various design and analysis questions. For exam-
ple, we can anticipate the performance of a given composition and configuration
of sentinels and searchers when contrasting different temporal and spatial stochas-
tic profiles of intruder attacks. Alternatively, we can determine the optimal size and
make-up of a team of sentinels and searchers in order tomatch a desired performance.
Our approach is distributed in the sense that all processing is local to the agents and
no information exchange is required. The only communication within the system is
from the sentinels to the searchers, i.e., sentinels dispatch searchers when an intru-
sion is detected but sentinels do not communicate with each other, nor do searchers,
respectively. By reducing the amount of exchanged communication and not having
a centralized computational center, the resiliency of the system to individual failures
increases—a key tenet of distributed robotic systems.

The rest of the paper is organized as follows. Selected related works are discussed
in Sect. 2. The formal definition of the problem is given in Sect. 3. The formalization
based on queueing theory is given in Sect. 4 and simulations substantiating our find-
ings are presented inSect. 5. Finally, conclusions and futureworks are given inSect. 6.

1Throughout this paper we use terms like intrusion, attack and the like that come from the security
games literature. Clearly these events encompass a broader scope and may be related to phenomena
not necessarily triggered by an antagonistic opponent.

Distributed Online Patrolling with Multi-agent Teams … 5

2 Related Work

Algorithmic models for addressing the proposed patrol problem and its variants
have been explored extensively in various communities, including robotics, opera-
tions research, and industrial engineering, with operational relevance and significant
impact in application areas such as law enforcement, perimeter security, and ship-
ping logistics. Of closest relevance to this paper are formulations of the dynamic
vehicle routing problem in relation to algorithmic queuing theory, such as in [3, 8],
in which events requiring servicing appear in the environment stochastically, such
as random arrivals of intruders in a protected area, requiring one or more agents to
prioritize and visit these locations in an online manner. Alternate formulations con-
sider patrol sequences under different assumptions for intruder arrivals, such as cases
where intrusion sites are determined according to known probability distributions or
by assuming adversarial intruders requiring game-theoretic design of patrols [9].
Commonly used objectives in such patrol problem formulations include minimizing
the average or worst case revisit rate to return to a given location, which has cor-
respondence to measures of service rates and wait time in queuing theory models
[7, 12]. Other metrics, such as maximized area coverage for sensor deployments
[2, 13], enable decentralized control laws to govern persistent surveillance of areas.
However, these previousmodels do not incorporate the possibility of imperfect detec-
tions of the events, for which Bayesian methods found in probabilistic search the-
ory [5, 6] provide key insights.

The main theoretical and algorithmic contributions of the proposed work address
the challenge of persistently surveilling an areawith distributed probabilistic sensors,
both fixed and mobile, that are prone to false positive and false negative detections.
In addition, this paper highlights insights into the tradeoff in using multi-scale rep-
resentations of the environment with varying numbers and compositions of such
heterogeneous sensors.

3 Problem Definition

We consider the problem of patrolling a planar region using a team ofmultiple UAVs.
We adopt a discretized representation of the environment, namely a regular grid G
composed by k equally sized square cells. Any cell c can be the target of a malicious
activity referred as attack. Attacks can be ongoing in one or multiple cells at any
given time and only searchers can remove them by performing a clear action. A loss
function l : G → R≥0 assigns to each cell c a value l(c) which is the cost incurred
per unit time while an attack is taking place at cell c.

Given this general background, we define a metric to evaluate the performance of
any team of agents independently from their number and their coordination mecha-
nism. Similarly to the metric we introduced in [1], let a(c, t) be a function describing
the spatio-temporal realization of attacks, where a(c, t) = 1 if at time t an attack is

6 N. Basilico et al.

present in cell c, and a(c, t) = 0 otherwise. Without loss of generality, we assume
that a patrolling mission starts at time t = 0 and ends at time T . We then define our
performance metric as:

ρ(T) =
∑

c∈G
l(c)

∫ T

0
a(c, t)dt (1)

Equation1 is the sum of k integrals, each measuring the time every cell is under
attack (scaled by the loss attributed to the cell). Differently from [1], here we consider
continuous time to ease our subsequent theoretical analysis based on queueing theory.

The heterogeneous patrolling teamconsists of N = M + R agents,with 1 ≤ M ≤
|G | and R ≥ M . M agents are of type sentinelwhile R are of type searcher. Sentinels
are stationary agents which repeatedly scan large portions of the environment for the
presence of an attack in that region. When a sentinel observes a positive reading, it
dispatches a searcher. Searchers are instead moving agents capable of conducting
fine-grained, find–and–clear tasks over some area. Searchers try to localize and clear
attacks within the region assigned to the sentinel that dispatched them. In pursuing
such task, theywill follow some search strategy andwill be subject to a finite temporal
budget limit. Due to the limited temporal budget and to the use of faulty sensors
resulting in missed detections, searchers may fail to detect and remove an intruder
present in their assigned area.

The stochastic process of attacks.We consider a situationwhere the environment
is constantly under the threat of attacks which can randomly occur at any time and
at any place. We adopt a common assumption from patrolling literature (see, for
example, [3]) according to which arrival times for attacks obey a Poisson distribution
while their spatial location is determined according to some discrete probability
distribution over G . More formally, the inter-arrival time in the whole environment
is modeled by an exponential variable with parameter λ while the specific cell c is
chosen with a probability proportional to the value l(c), i.e., once an attack arrived
in the environment, the probability that it will be located at cell c is

Pr[c] = l(c)∑
m∈G l(m)

. (2)

Once started in a cell c, an attack persists until it is eventually cleared. Note that,
based on this model, the same cell may suffer from multiple concurrent attacks.

Defending the environment with sentinels and searchers. Each sentinel i is
stationed at a fixed location and is tasked with monitoring a sub-portion of the
environment Gi ⊂ G . Different assumptions can be made on how sub-portions are
defined and where sentinels are positioned. For example, if a Voronoi partition is
used, the sentinel could occupy the generator points associatedwith each partition [2].
Consistent with our sensor model, we adopt a representation based on probabilistic
quadtrees [4]. Each sentinel guards a rectangular area Gi , and all Gi s constitute
a partition of G (see Fig. 2 for a visual representation). All areas assigned to the

Distributed Online Patrolling with Multi-agent Teams … 7

sentinels are equally sized and sentinels are therefore all positioned at the same
elevation. With each sensing action, sentinel i obtains a binary reading which, if
positive, is interpreted as evidence that at least one attack is currently present in
Gi . No additional information is provided for the location of the attack, that is,
uniform spatial uncertainty over the cells of Gi is assumed. With probability α, a
sentinel receives a positive reading even if no attack is present in its region (false
positive), and with probability β, a negative reading occurs when at least one attack
is present (missed detection). Such false positives and missed detection rates depend
on the sensor resolution, e.g., defined by the altitude, at which sentinels are located
(see [4]). Each sentinel inspects its assigned area for the presence of attacks on a
periodic basis every Δ time units.

As soon as a sentinel receives a positive detection (whether true or false), a searcher
is dispatched over Gi . A searcher’s objective is to find and clear ongoing attacks in
that area. To this end, it searches the area to determine which cells withinGi are under
attack. Once a cell c is believed to be under attack above some level of confidence, a
clearing action is undertaken. We assume that when such action is performed, if an
attack is indeed present, then it is always neutralized. (If more attacks are present,
then only the one that has been residing there for the longest time is cleared in a
FIFO fashion).

The execution of this task poses the problem of using a patrolling strategy with
which a searcher can be driven in the decisions about where to sense next andwhen to
performclearing actions trying, at the same time, to locallyminimize the performance
metric. In introducing our two–type based architecture, we opt for searchers driven
by deterministic strategies. Such strategies are defined as cyclically repeated paths
that scan every cell on a periodic basis. Examples of such strategies are the sweep
and the lawn mower patterns [6]. In fact, from a practical perspective these strategies
are nowadays still the most widely used in the field. The reason for this restriction
to deterministic strategies comes from their relatively simple characterization under
statistical terms. This allows us to provide a neat theoretical analysis of our two–
type approach, without the cumbersome technicalities that more complex patrolling
strategies would have introduced. Such investigations belong outside the scope of
this paper and will be the subject of our future research on this problem.

We assume that each searcher is given a time budget B. As soon as such budget
is completely consumed, the searcher ends its patrolling mission and returns to the
base station. Just like sentinels, each searcher s is equipped with faulty detection
sensors whose false positive and missed detection rates are denoted with αs and βs ,
respectively.

4 Theoretical Analysis

Our eventual objective is to evaluate the loss value defined in Eq.1 as a function of
the various parameters characterizing the system. Inspired by [3], in this section we
answer this question relying on queueing theory. The relevant parameters are:

8 N. Basilico et al.

• α, β: false positive/missed detection rates by each of the sentinels;
• Δ: interval between two successive scans by a sentinel;
• A: probability that an attack occurswithin the area assigned to the sentinel guarding
cell c during an interval of time Δ;

• N = 1 − A: probability that no attack occurs;
• αs, βs : false positive/missed detection rates of each of the searchers (in general
different than values for the sentinels).

To evaluate the loss, we associate a queue to each cell c and we determine its
steady state behavior. This is simpler than modeling all attacks occurring in G with a
single queue. Once the steady behavior of each queue is determined, the overall loss
can be evaluated simply adding up the loss accrued in each individual cell. Let Qc be
the queue associated with cell c. Using Kendall’s notation, Qc can be modeled as a
M/G/1 queue. Note that in general each of the queues is characterized by a different
set of parameters. In particular, they will depend on the value l(c). The assumption
that the service time is generic (G) stems from the choice of search strategy, i.e., the
sweep pattern. Little’s theorem [11] states that the expected number of elements Lc

in the Qc is
Lc = λcWc,

where λc is the arrival intensity (number of arrivals per unit time) and Wc is the
expected time spent in the queue. Note that this theorem does not rely on Markovian
assumptions on the processes, but only on the ergodicity of said stochastic processes
and is therefore applicable also for M/G/1 queues. Once we know Lc for each cell,
then through Eq.1 we can compute the expected aggregate loss. In the following we
construct λc and Wc for the generic queue Qc.

Interarrival time. The process governing the intruders’ spatial and temporal behav-
ior is described in Sect. 3. The interarrival time between two intruders entering the
patrolled area is modeled by an exponential variable with parameter λ, such that the
expected interarrival time in the patrolled area is 1/λ. Upon an intruder’s arrival, it
determines the specific cell c to attack according to the mass distribution defined
by Eq.2. The number of attacks necessary before c is attacked is then modeled by
a geometric variable with parameter p(c) and its expectation is 1/p(c). Thus, the
expected interarrival time for a specific cell c incorporates both temporal and spatial
components, given by

Tc = 1

λ

1

p(c)
(3)

and the arrival intensity for cell Qc is then λc = λp(c).

Service time. We next need to determine Wc, i.e., the expected time spent in Qc by
an intruder. Figure1 depicts the most general case that helps in understanding the
structure of the random variable wc, modeling the time spent by an intruder before
it is removed.

Distributed Online Patrolling with Multi-agent Teams … 9

Fig. 1 Elements
contributing to the time wc
between the arrival and
removal of an intruder

t

Δ

ζ t1tr t2tr s

Arrival Removal

wc

The sentinel queries its sensor at a fixed frequency and once a searcher is dis-
patched to the area, it may or may not find all intruders.wc is then the sum of various
components. The first component, ζ , is the time elapsed between when the intruder
arrives in cell c (and then enters Qc) and the first time the sentinel scans the area
including c. In general it may takemore than one scan before a searcher is dispatched.
This time is given by the variable ttr (time to trigger) and by construction, a multiple
of Δ. After a searcher is dispatched, it will not necessarily find the intruder, so in
general multiple successive, independent searchers have to be dispatched. Then, t i

tr
is the time to trigger the dispatch of the i th searcher. Once the successful searcher is
dispatched, it spends time s before it finds the intruder. Therefore,

wc = ζ +
ns∑

i=1

t i
tr + s

where ns , the number of dispatched searchers, is also a random variable. As it will be
explained later on, the various t i

tr are all independent but not all equally distributed.
In particular, t1tr has a distribution different from the following ones, whereas all the
t j
tr with j ≥ 2 are i.i.d. Keeping this in mind, we can then write

Wc = E[wc] = E[ζ] + E[t1tr] + (E[ns] − 1)E[ttr] + E[s]. (4)

Let us start with computing Ns = E[ns]. Each searcher follows a deterministic search
strategy with a finite time budget. During this search each cell is inspected the same
number of times, say m. The missed detection error rate is βs , so a searcher fails
to find the intruder located in c with probability βm

s , and finds it with probability
1 − βm

s . The number of searchers, ns , needed to detect the intruder is then modeled
by a geometric variable with parameter 1 − βm

s and its expectation is E[ns] = 1
1−βm

s
.

Next, we determine S = E[s] conditioned on the event that the searcher finds
the intruder. Given that the searcher follows a predetermined path unrelated to l(c),
assuming that the search time budget is B, then S = B/2 because the intruder could
be located with equal probability in any of the sequentially scanned cells.

To determine Z = E[ζ], it is useful to recall that the interarrival time of Qc and
then of the intrusions to cell c is modeled by an exponential variable of parameter
λc = λp(c). Due to the memoryless property of exponential random variables and its
basic properties, it follows that ζ = Δ − y,where y is an exponential randomvariable
of parameter λc conditioned on the event y ≤ Δ. Through algebraic manipulation
and applying the definition of expectation one obtains

10 N. Basilico et al.

E[ζ] = E[Δ − y] = Δ − E[y] = Δ − 1 − e−λcΔ − λcΔe−λcΔ

λc(1 − e−λcΔ)

Finally, it is necessary to compute E[t1tr] and E[t j
tr] with j > 1. Recalling that t i

tr
is an integer multiple of Δ, i.e., t i

tr = KΔ, it is then sufficient to compute the mass
distribution of themultiplicative factor K for the two different cases. K is the number
of times the sentinel has to sense before a searcher is dispatched. It is useful to recall
that t1tr models the time to trigger the dispatch of the first searcher conditioned on the
fact that one intruder entered the area assigned to the sentinel (see Fig. 1). Its mass
distribution is

Pr[K = k] =
{

(1 − β) k = 1

β(Aβ + N (1 − α))k−2(Nα + A(1 − β)) k ≥ 2
(5)

The rationale behind the formula is the following. K = 1 if the intruder generates
a detection by the sentinel the first time the sentinel senses the area. This is by
definition 1 − β. Otherwise, conditioned on the fact that an intruder entered cell
c, the first searcher will be triggered after k ≥ 2 scans as a consequence of the
simultaneous occurrence of the following independent events:

• the intruder is not detected, which has probability β;
• for k − 2 steps there was not detection. Since each step is independent from each
other, we can just raise to the power of k − 2 the probability that no detection
occurred in one step. This event is either due to an attack going undetected, whose
probability is Aβ or a non-attack not generating a false positive (probability
N (1 − α)). Note that these two events are mutually exclusive (either an attack
happens or it does not), so we can just add the probabilities together.

• at the last step a detection happens. This is either due to a non-attack generating a
false positive (probability Nα) or an attack being detected (probability A(1 − β)).

We seek an expression for the mass distribution for t j
tr , i.e., the time to trigger the

j th searcher (j > 1) conditioned on the fact that the first searcher has already been
dispatched. This variable is a geometric random variable, and its distribution is then:

Pr[K = k] = (N (1 − α) + Aβ)k−1(A(1 − β) + Nα).

The rationale to derive this formula is similar to the one for t1tr and one should also
notice that it is indeed a geometric variable because N (1 − α) + Aβ + A(1 − β) +
Nα = 1. To complete the computation of Eq.4 we need to computeE[t1tr] andE[ttr].
Skipping the algebraic details in the interest of space, we just give the results, i.e.,

E[t1tr] = 1 − β + β

1 − Nα − A(1 − β)
E[ttr] = 1

1 − A(1 − β) + Nα
.

We conclude this section noting that A and N can be easily determined from
knowledge of the set of cells covered by the sentinel guarding cell c.

Distributed Online Patrolling with Multi-agent Teams … 11

5 Simulations

In this section, we provide experimental analysis for empirical assessment of some
of the properties of the proposed two-type approach. We analyze performance in
terms of accrued loss (per Eq. (1)), required costs in terms of number of deployed
sentinels and frequency of sampling for each of them, and we look at how the system
responds under different loads expressed by variable attack arrival rates.

Our basic experimental setting builds on top of the in-the-field validation con-
ducted in [4] with the aim ofmaintaining relevance to realistic deployments of UAVs.
The grid G consists of 16 × 16 cells and two different loss functions are considered:
a simple uniform loss (UNI) that assigns equal loss to every cell and a bimodal one
(BI) depicted in Fig. 2a. The arrival rate for attacks is λ = 1/95.

Weconsider three different groups of sentinels of cardinality 1, 4, and16uniformly
deployed in the environment (see Fig. 2b, c). That is, if h sentinels are present,
then their equally sized assigned areas Gi constitute a partition of G . The sampling
period for each sentinel is given by Δ = L/4, where L is the time a searcher would
require to scan and clear every cell of its area by following some deterministic
strategy. Error rates are chosen as a function of the altitude and, to account for the
fact they are tailored for constant altitude,we scaled by a 1

2 factor, that isα1 = 0.43/2,
β1 = 0.38/2,α4 = 0.36/2,β4 = 0.27/2,α16 = 0.35/2,β16 = 0.37/2whereαh and
βh refer to the error rates when having a deployment of h sentinels. These error
rates, as well as those for the searchers given in the following, were determined from
extensive live-fly experiments presented in [4].

Searchers conduct a deterministic sweep pattern, sequentially scanning every cell
per unit time on the sub-grid associated to that area. False positives and missed
detections are chosen according to their altitude value (the lowest in a quadtree built
over a 16 × 16 grid) as αs = 0.09 and βs = 0.05. We assume that flying from a
cell to an adjacent one, scanning that cell, and performing a clear action on the cell
each take a single time unit. As a consequence, scanning and clearing every cell
of a sub-grid G ′ takes L = 3|G ′| time units. We also define the temporal budget of
each searcher w.r.t. this quantity as B = mL , where m is an integer value. In the
results presented here, we fix m = 2, that is, once dispatched, each searcher must
always perform at least two whole sweeps of the assigned area. Finally, we assume

1 8 16
1

8
16
0

0.01

0.02

(a)

1
8

16
1

8
16

0

0.01

0.02

2
4

1
3

(b)

1 8
16

1
8

16

0

0.01

0.02

13
14

15

9

16

10
11

5

12

6
7

1

8

2
3

4

(c)

Fig. 2 Bimodal loss function and deployments of multiple sentinels. a Bimodal loss. bDeployment
of 4 sentinels. c Deployment of 16 sentinels

12 N. Basilico et al.

0 200 400
0

100

200

300

Mission time

T
ot

al
 lo

ss

1 Sentinel (UNI)
4 Sentinels (UNI)
1 Sentinel (BI)
4 Sentinels (BI)

(a)

0 200 400
0

2

4

Mission time

T
ot

al
 lo

ss

16 Sentinels (UNI)
16 Sentinels (BI)

(b)

0 200 400
0

20

40

Mission time

Lo
ss

 r
at

io
From 1 to 4 ratio
From 4 to 16 ratio

(c)

Fig. 3 Total loss accrued duringmissions for varying number of sentinels for different loss functions

to have an unbounded number of searchers, namely every dispatch is immediately
executed. Studying the situation where the number of searchers is bounded is left
for future work, although as evidenced in this section, the number of concurrently
active searchers remains limited.

Figure3 reports average results obtained for an experimental design of 20 ran-
dom missions. (Each run corresponds to a different realization of the attacks arrival
process.) Graph 3a, b show how the average accrued loss evolves as the mission
unfolds and as sentinels sense their areas every scan period k.

By inspecting these graphs, we can empirically assess the extent of two expected
trends in the actual performance achieved by the different teams. The first observa-
tion is that having more sentinels leads to a smaller loss whose reduction is nearly
optimal when employing 16 sentinels. One interesting feature can be observed in
Fig. 3cwhere the ratios between single-sentinel and 4-sentinel loss aswell as between
4-sentinels and 16-sentinels are depicted (bimodal loss is considered here). The first
thing we notice is that even if we increase our resources by a factor of 4, we observe
(mostly at every mission time) gains of much higher order (≥10). The reason is
that, besides merely having more sentinels we are also introducing two improvement
factors, which indirectly come by construction of our framework: (1) not only are
sentinels greater in number but also are each more accurate in sensing, since they
operate at lower altitudes; (2) the more sentinels are employed, the more effectively
the environment is split for parallel patrolling missions (for any loss function). This
second factor contributes to the other observed trend, that is, passing from 4 to 16
sentinels is never worse than increasing from 1 to 4. Indeed, when deploying 16 sen-
tinel we get a critical split of an highly targeted sub-area of the environment (recall
Fig. 2).

Distributed Online Patrolling with Multi-agent Teams … 13

0 100 200 300 400
0

2

4

Mission time

Lo
ad

 fa
ct

or

1 sentinel (AVG: 0.28)
(a)

0 200 400
0

0.2

0.4

0.6

Mission time

Lo
ad

 fa
ct

or

4 Sentinels (AVG: 0.021)
(b)

1 10 20 30 40 50
0

1

2
x 104

Scan period scaling factor

T
ot

al
 lo

ss
1 Sentinel (BI)
4 Sentinels (BI)

(c)

Fig. 4 Load factors and accrued losswith different scan periods durations. a 1Sentinel.b 4Sentinel.
c Loss w.r.t. scan period

Moreover, from Graph 3a, b we can see how a bimodal loss function results in
poorer performance, showing the disadvantage of adopting a uniform spatial deploy-
ment over a non-uniform loss distribution.

An interesting operational metric is given by the load factor of each sentinel,
defined as the ratio between the total number of attacks still present in the environ-
ment over the number of searchers that have been dispatched by that sentinel and
did not use up their respective time budgets. Figure4a, b compare average factors
for the 1-sentinel and 4-sentinels cases as the mission evolves (the curve in Fig. 4b
depicts the average load factor over the four sentinels). The 1-sentinel case reported
an overall average load of 28%, whereas, as it can be seen, different mission times
experienced an overload condition (load factor greater than one) with attacks out-
numbering searchers. Such situation is not observed when employing four sentinels,
and the overall average factors for each sentinel resulted to be remarkably lower.
Such results experimentally highlight the improvements obtained from the partition-
ing of the search area, w.r.t. a metric which is independent from the loss function,
i.e., the importance level assigned to every cell in the grid.

The number of sentinels constitutes the primary measure of cost in our setting.
Another important cost factor is given by the number of employed searchers or,
equivalently, the number of dispatches. Given the assumption of an unbounded R,
we can control such cost via the sentinels scanning period Δ, with the obvious
expectation that the more frequently sentinels scan the more dispatches they will
likely issue. Figure4c shows how reducing costs of this type can introduce a decrease
in performance. Starting from our reference value of Δ, we scale it by increasing
integer factors and we measure the total loss accrued at the end of the mission.
As can be seen, the 1-sentinel case is where longer scan periods are more critical.

14 N. Basilico et al.

0 10 20
0

10

20

Mission time

(a)

0 10 20 30
0

5

10

15

Mission time

(b)

0 50 100
0

5

10

Mission time

(c)

Sentinel 1 (searchers)
Sentinel 2 (searchers)
Sentinel 3 (searchers)
Sentinel 4 (searchers)
Active attacks
Last attack

Fig. 5 Number of active searchers and attacks with different arrival rates. a 100λ. b 60λ. c 20λ

On the contrary, situations with multiple sentinels (e.g., the case of four sentinels
included in the graph) seem to be more robust with a relatively graceful degradation
in performance.

For further experimental validation,we assess how the system responds to increas-
ing attack arrival rates by showing in Fig. 5 how the number of active searchers and
attacks vary during the mission under arrival rates obtained by scaling our refer-
ence λ. The observed trend is that for very high arrival rates, the number of attacks
almost always exceeds the number of active searchers for each sentinel. (Note that
the number of attacks is the per-sentinel average where an attack is associated to a
sentinel if it occupies a cell in that sentinel’s area.)

In our final experiment we assess the sensitivity of our model to the parameters
characterizing the stochastic model of attacks. In particular, we focus on the interar-
rival times.Our analysis stands on the assumption that these randomvariables are i.i.d
and follow an exponential distribution with known parameter λ. In our last test we
change this distribution with a different one having the same expectation. This choice
is motivated from practical considerations. When building a model of the opponent
through repeated observations, experimentally observing the expected interarrival
time is the simplest first step, but there are evidently multiple distributions that can
fit the data. In this experiment, we select a uniform distribution. Figure6 plots the
difference between the performance of the system under two different scenarios. In
the first case interarrival times are distributed according to an exponential distribu-
tion and then match the model we used in deriving our analysis. In the second case
interarrival times are uniformly distributed, but now incorrectly modeled. As we did
for Fig. 3a, we vary the number of sentinels (one or four) and consider two different

Distributed Online Patrolling with Multi-agent Teams … 15

Fig. 6 Difference in accrued
loss when interarrival times
arrivals are exponentially
distributed or uniformly
distributed

0 200 400

0

10

Mission time

Lo
ss

 d
iff

er
en

ce

1 Sentinel (UNI)
1 Sentinel (BI)
4 Sentinels (UNI)
4 Sentinels (BI)

loss models (unimodal or bimodal), thus obtaining four different curves. The figure
shows that when considering four sentinels, differences in performance are negligi-
ble. When a single sentinel is considered, a difference, albeit limited, is observed.
To put the magnitude of the difference into perspective, the reader is referred to
Fig. 3a for absolute loss values. Given that in general one will use multiple sentinels,
these findings tend to indicate that the model is robust to identification errors for
interarrival times.

6 Conclusions

In this paper we have studied a patrolling problem using two classes of agents,
namely sentinels and searchers. The setup is inspired from our recent work in a
single-agent setting and our model is driven by experimental data collected through
extensive live-fly experiments. Using analytic formulations founded on queueing
theory, it is possible to determine how the system behaves asymptotically in response
to different stochastic models of arrivals. Studies in simulation show how explicitly
modeling a variable resolution sensor leads to gains outweighing the potential penalty
of increasing the number of allocated sentinels.

Future work include extensions explicitly handling deconfliction and coordina-
tion among searchers, as well as deploying sentinels with overlapping regions for
increased robustness and performance. Additional research addresses further the-
oretical analysis of the impact of constrained resources (e.g., number of searchers
available to sentinels), with relevance to realistic deployments. Finally, building upon
the analysis we developed, we will consider how to non-uniformly allocate sentinels
in the environment in order tominimize the given performancemetrics. This includes
positioning more sentinels to cover areas with higher loss values, as well as varying
their elevation to operate in regimes with lower error rates where needed.

16 N. Basilico et al.

References

1. Basilico, N., Carpin, S.: Online patrolling using hierarchical spatial representations. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation, pp. 2163–2169
(2012)

2. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Princeton Univer-
sity Press, Princeton (2009)

3. Bullo, F., Frazzoli, E., Pavone, M., Savla, K., Smith, S.L.: Dynamic vehicle routing for robotic
systems. Proc. IEEE 99(9), 1482–1504 (2011)

4. Carpin, S., Basilico, N., Burch, D., Chung, T.H., Kölsch, M.: Variable resolution search with
quadrotors: theory and practice. J. Field Robot. 30(5), 685–701 (2013)

5. Chung, T.H., Carpin, S.: Multiscale search using probabilistic quadtrees. In: Proceeding of the
IEEE International Conference on Robotics and Automation, pp. 2546–2543 (2011)

6. Chung, T.H., Silvestrini, R.T.: Modeling and analysis of exhaustive probabilistic search. Naval
Res. Logist. 61(2), 164–178 (2014)

7. Enright, J.J., Frazzoli, E.: Optimal foraging of renewable resources. In: American Control
Conference (ACC), 2012. IEEE, pp. 683–690 (2012)

8. Huynh, V.A., Enright, J.J., Frazzoli, E.: Persistent patrol with limited-range on-board sensors.
In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 7661–7668. IEEE (2010)

9. Lin,K.Y., Atkinson,M.P., Chung, T.H., Glazebrook,K.D.:A graph patrol problemwith random
attack times. Oper. Res. 61(3), 694–710 (2013)

10. Mahoni, R., Kumar, V., Corke, P.:Multirotor aerial vehicles—modeling, estimation and control
of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

11. Papoulis, A., Pillai, A.U.: Probability, Random Variables and Stochastic Processes. McGraw-
Hill, New York, 2002

12. Pippin, C., Christensen, H., Weiss, L.: Performance based task assignment in multi-robot
patrolling. In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
pp. 70–76. ACM (2013)

13. Schwager, M., Julian, B.J., Angermann, M., Rus, D.: Eyes in the sky: decentralized control for
the deployment of robotic camera networks. Proc. IEEE 99(9), 1541–1561 (2011)

14. Waharte, S., Symington, A., Trigoni, N.: Probabilistic search with agile UAVs. In: Proceedings
of the IEEE International Conference on Robotics and Automation, pp. 2840–2845 (2010)

Human-Robot Collaborative Topological
Exploration for Search and Rescue
Applications

Vijay Govindarajan, Subhrajit Bhattacharya and Vijay Kumar

Abstract We address the coordination between humans and robots in tasks that
involve exploration and reconnaissance with applications to search and rescue.
Specifically, we consider the problem of humans and robots cooperatively searching
an indoor environment in a distributed manner where we assume that each robot is
equipped with sensors that are able to locate targets of interest. Rather than have
humans issue explicit commands to and guide robots, we allow humans to make
decisions on their own and let the robots adapt to decisions taken by the human.
The main contribution of this paper is a framework in which the robots in the team
respond and adapt to the behavior of the human agents in the task of exploring and
clearing an indoor environment. The central idea is the assignment of robots to homo-
topy classes that are complementary to the classes being pursued by human agents.
By the virtue of the sparse topological representation of the agent trajectories, our
algorithm lends itself naturally to a distributed implementation. The framework has
three advantages: it (a) ensures that robots and humans pursue different homotopy
classes; (b) requires very little communication between the humans and the robots;
and (c) allows robots to adapt to human movement without having to model complex
human decision-making behaviors.We demonstrate the effectiveness of the proposed
algorithm through a distributed implementation on a ROS (Robot Operating System)
platform.

Keywords Search and rescue · Path planning · Homotopy · Human-robot
interaction

V. Govindarajan (B)
Department of Electrical Engineering, University of Pennsylvania, Philadelphia, USA
e-mail: govvijay@seas.upenn.edu

S. Bhattacharya
Department of Mathematics, University of Pennsylvania, Philadelphia, USA
e-mail: subhrabh@math.upenn.edu

V. Kumar
Department of Mechanical Engineering and Applied Mechanics,
University of Pennsylvania, Philadelphia, USA
e-mail: kumar@seas.upenn.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_2

17

18 V. Govindarajan et al.

1 Introduction

We address the coordination between humans and robots in tasks that involve recon-
naissance with applications to search and rescue. In these applications, robots may
need to quickly and safely explore environments in collaboration with human coun-
terparts. When confronted with two or more hallways, a human first responder may
choose to explore one hallway, while his/her robot co-responder explores a differ-
ent hallway. Similarly, in teams of multiple human and robot explorers, we want the
exploration task to be naturally decomposed between the teammembers. At the same
time, we want the human(s), who are better at interpreting the available information
and at decision making, to decide what actions they want to take and let robots adapt
accordingly.

We consider a settingwhere humans and robots are equippedwith similar sensing,
processing, and communication capabilities, so that robots and humans can be aware
of each others’ positions and robots can interpret human movements and intentions.
The sensing capabilities of the agents are assumed to provide adequate range to
detect anomalies (e.g., victims or intruders) in an environment. We assume that both
humans and robots have access to blueprints of buildings and are thus aware of the
major features in the environment. As a result, both humans and robots are able to
localize themselves with respect to features in the buildings using onboard sensors
such as laser scanners, cameras and IMUs, as well as GPS, if available. Finally,
we assume that the human-worn computers are able to communicate with the robot
co-workers and share their estimates of current location periodically.

Metric-based multi-robot coordinated exploration have been studied widely in
the past [1–5]. Multi-robot coverage of environments are also fundamentally con-
sidered as metric problems relying inherently on a metric on the configuration space
[6–10]. In addition, graph traversal approaches similar to the traveling salesmanprob-
lem [11] have been explored in context of room-clearing [12] and pursuit-evasion
problems [13]. Similar coverage problems can be formulated as a traversal onVoronoi
graph or topological map [14, 15] of an environment.

However, in a problem setting as ours, it is likely that maps may not be per-
fect. Noise in the process dynamics and observations will induce errors in localiza-
tion. Thus representations derived from metric information will require estimation
techniques that yield estimates of states that are stochastic. Topological invariants
such as homotopy, on the other hand, being robust towards environmental noise and
measurement errors, are suitable for communication and coordination among the
heterogeneous teams of humans and robots. Furthermore, our primary objective
being quick information/intelligence gathering and clearing, it is not necessary that
the agents visit every point in the environment (as done in graph traversal algo-
rithms). Homotopy classes of trajectories form natural equivalence classes, within
each of which the information available are similar. If two trajectories belong to
the same homotopy class, then a single agent can perform the task of gathering
the available information in that class, while diverting additional resources to other
classes. While homotopy is directly related to visibility in most indoor environments

Human-Robot Collaborative Topological Exploration … 19

(e.g. consisting mostly of hallways and corridors), even in presence of non-convex
features within the class (e.g. a room by the corridor), traversing the class is sufficient
to gather intelligence and information from the adjacent features as those (e.g., by
glancing through the doors of the rooms) and does not need dedicated agents for
each of those features. Another advantage of using homotopy classes as the primary
means of decision making in coordinated reconnaissance and clearing is the simplic-
ity of its representation, and thus the ease and efficiency in communication. Choosing
complementary homotopy classes by the robot agents is achieved naturally and effi-
ciently, and such choices can be easily adapted to change in the human actions. Such
algorithmic simplicity is absent in graph traversal approaches.

There has been some recent research on using topological techniques in explo-
ration of environments [16]. In this paper our fundamental approach is topological as
well. We exploit topological features in the environment, namely the different homo-

(c)

(a) (b)

(d)

Fig. 1 A simple illustration of the idea behind the proposed algorithm involving a team of one
human and three robots. Robots must respond to human action by choosing paths in homotopy
classes complementary to those taken by humans to maximize exploration. The algorithm takes
into account teams consisting of arbitrary number of humans and autonomous robots. In addition,
robots can effectively adapt to erratic/unpredictable human behavior (not illustrated in this figure),
where a human, after committing to a class, may turn back to choose a different homotopy class.
a Four agents, three robots (R1, R2, R3) and one human (H), enter an environment with 4 homotopy
classes of paths (τa, τb, τc, τd) leading to the exit. The robots wait for the human to move first.
b Based on human’s initial trajectory (solid curve), the robots infer that H is taking the homotopy
class of τa or τb. The homotopy classes of τc and τd are thus to be taken by robots. c R3 tailgates
the human (to pursue τa or τb—whichever not taken by H), while robots R1 and R2 commit to τc
and τd . d H has committed to τb, and thus R3 commits to homotopy class of τa

20 V. Govindarajan et al.

topy classes of trajectories, to guide our search and rescue missions. This topological
reasoning is fundamental in deciding how the autonomous agents respond to human
behaviors. Although we do use a metric on the space of trajectories in the workspace
(Hausdorff distance), this is purely as an intermediate step towards classifying a
human’s trajectory into one or more of the homotopy classes.

Our algorithm design is inspired by the need to keep explicit human-robot com-
munication (e.g., human commanding robots) at minimum in a time-critical mission
such as search and rescue. The humans should have the freedom to choose actions
based on their superior sensing ability (e.g., audio cues) and change actions without
having to explicitly communicate intent to other agents. The robot agents should be
able to adapt to the human actions and choose complementary tasks to maximize
efficiency of coordinated survey and search. We illustrate the problem at hand using
the scenario in Fig. 1 where there is one human and three autonomous robots. All
the agents enter through a single entrance in the environment and need to clear the
building and reach the exit. The figures illustrate how the robots take decisions and
respond based on the human agent’s actions. Our proposed algorithm is highly suited
for a distributed implementation, requiring only limited inter-agent communication
of coarse topological representation (h-signature) of their trajectories.

2 Background

In this section, we will review some preliminary definitions and algorithmic tools.

2.1 Homotopy Class of Trajectories

Suppose W ⊆ R
2 is a simply-connected workspace for the agents with m counts of

connected obstacles O1, O2, . . . , Om ⊆ W . Trajectories in an environment can be
classified by their topologies into different homotopy classes, which arise from the
presence of obstacles in an environment. We start by reviewing some of the standard
definitions related to homotopy.

Definition 1 (Homotopy classes of curves [17]) Two curves γ1, γ2 : [0, 1] →
(W − O) connecting the same start and end points, are homotopic (or belong to
the same homotopy class) iff one can be continuously deformed into the other with-
out intersecting any obstacle (see Fig. 2a. See [17, 18] for formal definitions).

For curves in 2-dimensional plane punctured by obstacles, computation of the
homotopy class of a given curve can be performed in a relatively simple way
[18–22]: We consider representative points, ζi , inside the i th obstacle Oi [17], and
parallel non-intersecting rays, r1, r2, . . . , rm , emanating from the obstacles (Fig. 2b).
If γ is a given curve whose homotopy class we are trying to identify, we construct

Human-Robot Collaborative Topological Exploration … 21

(c)

(a) (b)

(d)

Fig. 2 Homotopy classes and their word representation. a γ1 is homotopic to γ2 since there is a
continuous sequence of trajectories representing deformation of one into the other, but not to γ3
since it cannot be continuously deformed into any of the other two. b ζi are representative points
inside the obstacles, O1, O2, . . . , Om (in that order), and ri , i = 1, . . . , m are rays emanating from
the respective points. The homotopy invariant of this curve γ is h(γ) = “r2r3r5r−1

6 ”

a word by tracing γ, and consecutively placing the letters of the rays that it crosses,
with a superscript of ‘+1’ (assumed implicitly) if the crossing is from left to right,
and ‘−1’ if the crossing is from right to left. Thus, for example, the word for γ in
Fig. 2b will be “r2r3r4r

−1
4 r5r

−1
6 ”. We then reduce this word by canceling the same

letters that appear consecutively but with opposite superscript signs. Thus, the word
for γ in Fig. 2b can be reduced to “r2r3r5r

−1
6 ”. This reduced word representation is a

homotopy invariant for open curves (with fixed end points), γ, and we will write this
as h(γ) and call it the “h-signature of γ”. The h-signature (reduced word) uniquely
identifies the homotopy class of a curve. Note that if the end point of γ coincides with
the start point of γ′, then h(γ ∪ γ′) = h(γ) ◦ h(γ′) (where ‘◦’ indicate concatenation
of words).

2.2 h-augmented Graph

We use a discrete representation of the workspace, W , and construct a graph, G (with
vertex set V (G) and edge set E (G)), by placing a vertex in every accessible discrete
cell (cells not intersecting with an obstacle) and by establishing an edge between

22 V. Govindarajan et al.

(a) (b)

Fig. 3 Preliminaries: h-augmented graph and Hausdorff distance. a The h-augmented graph, Gh ,
is created from the discrete graph representation of the environment, G, so as to incorporate infor-
mation about the homotopy class of trajectories. b The directed Hausdorff distance between τ1 and
τ2 is determined as follows: Fix a point a ∈ τ1, and find its distance from τ2. The directed Hausdorff
distance is then the maximum of this value over all the possible points a on τ1

the vertices of adjacent cells. While the graph, G, itself can be quite arbitrary, we
used a uniform square discretization and an 8-connected graph representation of the
environment in all our simulations for simplicity (Fig. 3a).

From such a graph, we construct an h-augmented graph, Gh , for keeping track
of the homotopy class of the trajectories. The construction, in brief, is as follows:
Vertices in this h-augmented graph, Gh , are of the form (q,w) where q ∈ V (G)

is a position of an agent in the workspace (as a vertex in the discrete representa-
tion graph, G) and w is the word (i.e. the homotopy invariant) corresponding to the
homotopy class of a trajectory leading up to q from a base vertex qb (all h-signatures
of trajectories are computed with respect to a fixed point, called the base point, the
vertex at which is qb ∈ V (G)). We write the tuple as v = (q,w) ∈ V (Gh), with
vb := (qb, “ ”) being the vertex corresponding to the path of zero length. Thus the
h-augmented graph encodes in its vertex set information about homotopy classes
of paths, along with agent positions. The connectivity in the h-augmented graph is
described as follows: For every directed edge [q � q′] ∈ E (G) (i.e., connecting q to
q′ inV (G)), and for every vertex of the form v = (q,w) ∈ V (Gh), there exists a ver-

tex (q′, w ◦ h(
−→
qq′)) (where

−→
qq′ is the line segment corresponding to the edge)—see

Fig. 3a. Thus, starting from (qb, “ ”), this gives a recipe to construct the h-augmented
graph, Gh , incrementally—a construction approach perfectly suited for any graph
search algorithm (such as A* and Dijkstra’s) involving expansion of vertices starting
from an initial vertex, so as to find shortest paths leading up to a vertices of the
form (qg, ∗)—i.e., the goal vertex, qg , but reached via a specific homotopy class.
The cost of an edge in Gh is chosen to be the same as the cost of the projected

edge in G. That is, cGh
([(q,w) � (q′,w ◦ h(

−→
qq′)]) = cG([q � q′]) (where cG and

cGh
represent the cost functions in the respective graphs). In our implementation we

choose cG([q � q′]) to be the Euclidean length of the line segment that constitutes
the edge, qq′. For more details, the reader can refer to similar construction appearing
in recent works [23, 24].

Human-Robot Collaborative Topological Exploration … 23

2.3 Hausdorff Distance as a Metric on Space of Trajectories

The behavior of a human agent, by nature, can be highly unpredictable. Even if a
human is presented with a clear set of trajectories to choose from, he/she may take
a trajectory that deviates from the planned ones. In our problem it is critical that
the robots quickly understand/estimate which homotopy class the human agents are
potentially taking so that the robots can quickly follow the complementary classes.
This is achieved by comparing the human’s partial trajectory with a set of esti-
mated/baseline candidate trajectories in different homotopy classes connecting the
start and the goal locations. The h-signature by itself does not provide adequate infor-
mation to evaluate distance between candidate trajectories. Rather, this comparison
warrants a metric in the space of all trajectories in (W − O). In particular, one can
choose the Hausdorff distance [25], that is suitable for comparing any two subsets
of a metric space.

Definition 2 (Hausdorff distance [25]) Consider the free space of the agents,
(W − O), equipped with the standard Euclidean metric. The Hausdorff distance,
dH , between two sets A, B ⊂ (W − O) is then defined as

dH (A, B) = max(ddh(A, B), ddh(B, A)) (1)

where, ddh(A, B) = maxa∈A minb∈B ‖a − b‖ is the directed Hausdorff distance
between sets A and B, and ‖a − b‖ is the Euclidean distance between a, b ∈
(W − O).

Hausdorff distance, as defined, is a valid metric (satisfying all the axioms of
a metric) on the space of all subsets of (W − O). In particular, this implies
dH (A, B) = 0 ⇐⇒ A = B. We can thus use this metric to compare two tra-
jectories, τ1 and τ2, when viewed as subsets of (W − O). In particular, if τH is a
trajectory that the human has traversed, and {τ1, τ2, . . .} are candidate trajectories
in different homotopy classes estimated by the robots, then the values of dH (τH , τi)

will help determine which homotopy class the human is following.
Figure3b illustrates the computation of the directed Hausdorff distance, ddh , for

two trajectories τ1 and τ2 in an environment. The Hausdorff distance itself is a
symmetrized version of that distance to satisfy the symmetry property of a metric.

3 Algorithm Design

As described earlier, the objective of this work is to develop a distributed algorithmic
framework for autonomous agents in search and rescue operations consisting of a
heterogeneous team of humans and robots, taking into account the unpredictability
of human agents to efficiently explore an environment via complementary homotopy

24 V. Govindarajan et al.

classes of trajectories. For simplicity, we assume that all trajectories have equal prior-
ity and that each robot and each human travel at the same speed, respectively. Priority
and speed variation could potentially be considered, if needed, through modification
of the cost function to prioritize most promising paths or agents.

As illustrated in Fig. 1, a key critical component in the algorithm design is the
ability of the autonomous agents (robots) to identify the intent of the humans. In
particular, the robots need to quickly narrow down the set of possible homotopy
classes of paths that the humans are potentially taking, and thus follow the com-
plementary classes. Furthermore, they need to monitor whether a human agent is
altering his/her behavior (changing the homotopy class that he/she committed to), so
that the robots can change their trajectories accordingly. The principal components
involved in achieving these are (i)Human path prediction, (ii)Robot path assignment
and (iii) Human’s path history truncation. The following sub-sections describe these
algorithmic components in details.

3.1 Human Path Prediction Algorithm

At the entrance to the environment, the robots compute a set of reference trajectories,
T = {τ1, τ2, . . . , τp}, in p shortest homotopy classes that are to be tentatively pur-
sued by the agents by performing A* search in the h-augmented graph. Ideally, we
should choose all the non-looping and non-intersecting homotopy classes in the envi-
ronment, but for most practical cases it is sufficient to choose p = max(P, n + m),
where n is the number of human agents, m is the number of robot agents, and P is
an upper bound on the number of homotopy classes that we compute (determined by
our computation capability). We describe the path prediction algorithm for a single
human. In the presence of multiple human agents, the algorithm is executed for each
of them. Also, in a distributed implementation, the algorithm for predicting each
human’s path runs independently on each autonomous robot.

At the start, the set of potential paths that the human is following, denotedS0, is
the entire ofT . The kth call of the path prediction algorithm computesSk , the set of
potential paths that the human is following at the kth computation step, in a recursive
manner. Suppose we computed Sk = {τi1 , τi2 , . . . , τiq } ⊆ T . The path prediction
algorithmat the (k + 1)th step takes the human’s path history (say τH) and compares it
with the reference trajectories inT (i.e., computes theHausdorff distances from each
τi) to determine the new setSk+1 of homotopy classes that the human is potentially
following. The basic algorithm is as follows: Let the distances of the human’s path
history from the reference trajectories be di := dH (τH , τi), i = 1, 2, . . . , p. These
distances are normalized by the largest Hausdorff distance out of the most recent
potential set of trajectories,Sk , that the human was following to obtain a set of nor-
malized distances: di = di/D, ∀i = 1, 2, . . . , p, where D = maxτi ∈Sk dH (τH , τi).
Based on these normalized distances, the objective is to determine if the human’s
trajectory is close to some of the trajectories inT and far from others. This decision
((k + 1)th path prediction cycle) involves a two-step reasoning:

Human-Robot Collaborative Topological Exploration … 25

i. If min({d1, d2, . . . , d p}) ≥ α, whereα ∈ [0, 1] is a parameter encoding themax-
imum uncertainty tolerated by the user, then the decision cannot be made yet—it
is not yet clear what subset of Sk the human has narrowed down to. Thus Sk+1

is not computed, and it is asserted that the (k + 1)th path prediction cycle is still
in progress withSk being the set of possible homotopy classes that the human is
still following. The robots waiting for the human to make the move keep waiting
or continue to follow the same path as before.

ii. If however, min({d1, d2, . . . , d p}) < α, we update the set of potential paths that
the human is following to the setSk+1 := {τi | di < β · min({d1, d2, · · · , d p})},
where β ≥ 1 is another parameter. This simply implies that the set of potential
homotopy classes that the human is following contains trajectories that are within
a distance of at most β times the distance from the closest class. This provides a
conservative buffer in the case of very similar paths.

In implementation, following the (k + 1)th path prediction step, the human broad-
casts the h-signatures of the paths in set Sk+1 only that are being followed by
the human, rather than the full set of vertices describing the predicted path itself.
This gives a compact communication protocol purely based on topological infor-
mation rather than denser metric information. Thus the communication burden is
minimized for each human, allowing for more effective and efficient coordination
between humans and robots.

Figure4 shows a simple example of the path prediction algorithm and how the
Hausdorff distance is used as a metric to select the setSk+1 of paths for the human’s
potential trajectory.

3.2 Robot Assignment Algorithm

At the very beginning (start/entrance to the environment), the robots wait for all the
humans to make first moves until the humans have a narrowed-down set of possible
homotopy classes (i.e., the number of elements inS1, for eachhuman, has gonebelow
the number of elements inS0 = T). Then the robots coordinate among themselves
to determine the h-signature of the path (or a set of h-signatures) that each robot
should follow. In particular, the cost of a path in a given homotopy class is used
to prioritize the assignment of robots to expedite clearing of the environment. This
assignment process is run every time a new cycle of path prediction returns a new
set of possible homotopy classes that a human is following.

Suppose for the j th human the k j th cycle of path prediction algorithm returned
a new Sk j . The robot assignment algorithm works by first determining the shortest
p paths for each robot in the environment, along with the associated path costs.
Following which there are two stages in the assignment algorithm:

i. Choose complementary homotopy classes: The h-signatures for paths that are
not in the set of potential paths that any of the humans are following (i.e. not in
Sk j of any of the humans) are prioritized first—unassigned homotopy classes

26 V. Govindarajan et al.

Fig. 4 Initially (left column), the human’s path τH (in red) is close to either of τ1 and τ2 (i.e. the
set of potential paths that the human is following is Sk = {τ1, τ2}). As the human travels further
(right column), the human’s path, τH , gets closer to τ2. In this case, the human path prediction
algorithm would update the set of potential homotopy classes of paths to Sk+1 = {τ2}. Note how
�dH (difference between d1 and d2) increases indicating a clear demarcation between the distances
from the two reference trajectories

get assigned to the robot with the shortest path cost for that homotopy class. This
behavior is illustrated by robots R1 and R2 in Fig. 1c.

ii. Tailgate humans with more than one homotopy class in the possible set of homo-
topy classes: Once all classes not in any of the human’sSk j have been assigned
to robots, then the remaining robots are assigned to follow human agents with
excess elements in their set of possible homotopy classes (the j th human’sSk j).
This is the behavior of robot R3 in Fig. 1c.

This path assignment algorithm is also executed again for groups of tailgating robots
every time the human which they are following passes through a junction/branching
point (i.e., the path prediction algorithm returns a new set Sk+1).

Human-Robot Collaborative Topological Exploration … 27

3.3 Human’s Path History Truncation for Robustness
to Unpredictable Actions

This algorithmic component is necessary to incorporate sudden changes in human
behavior that contradict the decision made in a prior path prediction step. In case a
human turns back and goes past an earlier junction/fork point, and starts following
a different homotopy class, the clear demarcation between the Hausdorff distances
from the trajectories inS and those from the other, as was illustrated in Fig. 4, will
fade—triggering the ‘path history truncation’ procedure. In order to figure out which
new homotopy class of trajectory the human has taken up, we need to chop off the
part of the human’s path history involving the “U-turn” from the earlier homotopy
class, and replace it with a path in the same homotopy class. Consequently, the human
path prediction algorithm (say the (k + 1)th cycle) will be able to identify the new
homotopy class the human is following, and compute Sk+1 accordingly.

Suppose, for a human, the last path prediction cycle returnedSk . The path trunca-
tion algorithm seeks to isolate only the most recent path history for the human so that
the path prediction algorithm only uses the most recent, freshest human path data and
ignores the convoluted past path behavior. This is achievedby looking at theminimum
distance from points on the human’s path to reference trajectories inSk−1. Consider
a point u′ earlier on the human’s trajectory (see Fig. 5). The minimum distance of this
point from any trajectory of homotopy classes that the humanwas potentially follow-
ing before taking theU-turn, dmin(u′, τi), ∀τi ∈ Sk , can be expected to be low.While
the distances from the other homotopy classes, dmin(u′, τi), ∀τi ∈ (Sk−1 − Sk),
can be expected to be high. However, if we consider a point u′′ later on the human’s
trajectory (after the U-turn), this will just be the reverse—dmin(u′′, τi), ∀τi ∈ Sk

will be high, while dmin(u′′, τi), ∀τi ∈ (Sk−1 − Sk) will be low. This observation
is key in determining the truncation point. In particular, we choose the truncation
point to be a point utrunc on the human’s trajectory at which the the average of
the distances dmin(utrunc, τi), ∀τi ∈ Sk becomes equal to the average of the dis-
tances dmin(utrunc, τi), ∀τi ∈ (Sk−1 − Sk). After truncation, the human’s trajectory
is updated by replacing the part before truncation with the shortest path leading to
utrunc but in the same homotopy class as the truncated part of the trajectory. This
approach will be effective as long as a human is not perpetually indecisive switching
between classes forever.

Fig. 5 Identifying the point on the human’s trajectory at which to truncate it

28 V. Govindarajan et al.

(a) (b)

(c) (d)

Fig. 6 Collaborative topological exploration in complementary homotopy classes demonstrating
how autonomous agents respond to human actions by choosing complementary homotopy classes.
a Three robots (R1, R2, R3, in blue) and one human (H , in red) start at the upper “cup” of the
H-shaped obstacle. They find 4 homotopy classes leading to the goal at the bottom of the envi-
ronment. Optimal trajectories in the different homotopy classes are shown in different colors for
easy visualization. At this point the potential set of possible homotopy classes that the human
can take is S0 = {τa, τb, τc, τd }. b As the human moves forward, its set of possible homotopy
classes is narrowed down to S1 = {τa, τb}. The corresponding trajectories are shown in red and
orange. It is determined that homotopy classes of τc and τd have not been taken up by the human.
Thus, homotopy classes of τc and τd are assigned to robots (R2 and R3) with priority. Remaining
robot (R1) is assigned to tailgate human, H , since S1 contains more than one elements. c After
crossing a branching point, B, the human commits to homotopy class of τa (orange dotted curve).
So now S2 = {τa} contains a single element. R1 thus will choose the complementary class τb.
Robots R2, R3 continues as usual. d A final frame showing that the humans and robots followed
complementary homotopy classes to reach the goal

Human-Robot Collaborative Topological Exploration … 29

(a) (b) (c)

(d) (e) (f)

Fig. 7 An example of the human-robot coordinated exploration in an indoor search and rescue
scenario, with two robots, two humans and a demonstration of the path truncation algorithm.
a Two robots (R1, R2, in blue) and two humans (H1, H2, in red) start near the bottom of the
map. They find 4 homotopy classes leading to the goal at the top of the map. As in the example
with one human, the four shortest paths in different homotopy classes for H1 and H2 are displayed.
b As H1 and H2 travel away from the initial junction point, R1 responds by planning a path in a
complementary homotopy class while R2 tailgates the humans. The planned paths for R1 and R2
are shown in cyan color. c At this point, R1 and R2 have already started moving towards the goal.
H1 and H2 are closer to the goal and appear to only be following one path, respectively, so R2 goes
from tailgating the human to planning a path in the remaining complementary homotopy class.
d H1 has turned back from the path it was following previously. H1 is now traveling towards R2.
The indecisive behavior results in less clarity regarding the human’s path behavior. This triggers
the path truncation algorithm to be executed, so that any future predictions will only focus on the
most recent human path data. e H1’s path was truncated at the labeled truncated point, eliminating
the “U-turn” points from being used as data in the path prediction algorithm. The path before the
truncation point is replaced by the shortest path in the same homotopy class as the part of the path
that was chopped off (green dashed curve). f In response to the update in H1’s predicted paths after
the path truncation was completed, R2 makes a “U-turn” to take the path abandoned by H1—the
path to the left of the uppermost obstacle. Essentially, H1 and R2 have switched places. From this
point onwards, all agents travel along these planned paths to the goal point

30 V. Govindarajan et al.

4 Results

Implementation: The described algorithm was implemented in ROS (Robot Oper-
ating System) with human agents simulated through mouse-driven user interface
controlled by the authors and autonomous robots navigating using the proposed
algorithm. Dynamics or kinematics of the agents were not simulated; however,
our implementation is completely distributed, with the agents communicating using
h-signatures as compact representations of trajectories. The environment was pro-
vided to ROS as a bitmap, with automated identification of connected components
of obstacles and placement of representative points. In order to avoid multiplicity
of homotopy classes created by small obstacles/noise, a minimum size threshold
was placed on the obstacles on which to place representative points. Additionally,
the obstacles in the bitmap were inflated by the radius of robot to enable collision
avoidance and modeling of robots as points in the inflated obstacle map. For the
path prediction algorithm we chose the parameters α = 0.5 and β = 1.50 based on
experimentation on a benchmark environment. In practice and for simplicity, the path
prediction algorithm for each human was implemented on the human agent itself (its
processor thread). The predicted paths were communicated to the other agents by
reporting the h-signatures of the predicted paths.

Figure6 shows how three robots and one human split up the process of explor-
ing an environment in four different homotopy classes. Figure7 demonstrates our
algorithm in a more complex indoor environment with two humans and two robots.
The example also illustrates the path truncation algorithm. For each of the results,
the figure captions describe the algorithm in action. The algorithm was also tested
in more complex environments—these results can be viewed at http://www.eecs.
berkeley.edu/~govvijay/DARS14.html.

5 Conclusion

A human-robot coordinated exploration problem in context of search and rescue
operations is addressed in this paper. The autonomous robots intelligently choose
actions to complement the actions of the human agents. In particular, the idea of
complementary homotopy classes of trajectories help the autonomous agents choose
trajectories for fast and efficient exploration. The proposed algorithm consists of
prediction of the homotopy classes of the human agents’ paths, assignment of com-
plementary paths to the robots, and a truncation algorithm for increased robustness
to the indecisive/uncertain behavior of human agents. We demonstrated the practical
applicability of the algorithm through ROS simulations with distributed implementa-
tion. In the near future, we plan to conduct extensive experiments on real robots and
explore the optimal selection of parameters α and β in the path prediction algorithm
for an arbitrary environment. Development of additional interfaces for fast and easy
communication of intent between the agents is under progress.

http://www.eecs.berkeley.edu/~govvijay/DARS14.html
http://www.eecs.berkeley.edu/~govvijay/DARS14.html

Human-Robot Collaborative Topological Exploration … 31

Acknowledgments We gratefully acknowledge the support of Army Research Laboratory grant
number W911NF-10-2-0016, Air Force Office of Scientific Research grant number FA9550-10-1-
0567, and Office of Naval Research grant number N00014-09-1-103. The first author would also
like to thank the Rachleff Scholars Program.

References

1. Stachniss, C.: Exploration and mapping with mobile robots. Ph.D. thesis, University of
Freiburg, Freiburg, Germany, Apr 2006

2. Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in unknown
non-convex environments. In: Proceedings of 10th International Symposium on Distributed
Autonomous Robotics Systems. Springer, 1–3 Nov 2010

3. Hazon, N., Mieli, F., Kaminka, G.A.: Towards robust on-line multi-robot coverage. In: Pro-
ceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006,
pp. 1710–1715, May 2006

4. Rekleitis, I.,New,A.P., Rankin, E.S., Choset,H.: Efficient boustrophedonmulti-robot coverage:
an algorithmic approach. Ann. Math. Artif. Intell. 52(2–4), 109–142 (2008)

5. Zheng, X., Koenig, S., Kempe, D., Jain, S.: Multirobot forest coverage for weighted and
unweighted terrain. IEEE Trans. Robot. 26(6), 1018–1031 (2010)

6. Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration on Rie-
mannian manifolds with boundary. Int. J. Robot. Res. 33(1), 113–137 (2014). doi:10.1177/
0278364913507324

7. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–137 (1982)
8. Cortez, J., Martinez, S., Bullo, F.: Spatially-distributed coverage optimization and control with

limited-range interactions. ESIAM: Control Optim. Calc. Var. 11, 691–719 (2005)
9. Cortez, J., Martinez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks.

IEEE Trans. Robot. and Automat. 20(2), 243–255 (2004)
10. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks: A Mathemat-

ical Approach to Motion Coordination Algorithms. Applied Mathematics Series. Princeton
University Press, Princeton (2009)

11. Sariel-Talay, S., Balch, T.R., Erdogan, N.:Multiple traveling robot problem: a solution based on
dynamic task selection and robust execution. IEEE/ASME Trans. Mechatron. 14(2), 198–206
(2009). April

12. Carlin, A., Ayers, J., Rousseau, J., Schurr, N.: Agent-based coordination of human-multirobot
teams in complex environments. In: Proceedings of the 9th International Conference on
Autonomous Agents and Multiagent Systems: Industry Track, AAMAS’10, pp. 1747–1754,
Richland, SC, International Foundation for Autonomous Agents and Multiagent Systems
(2010)

13. Kehagias, A., Hollinger, G., Singh, S.: A graph search algorithm for indoor pursuit/evasion.
Math. Comput. Modell. 50(910), 1305–1317 (2009)

14. Choset, H., Burdick, J.: Sensor-based exploration: the hierarchical generalized Voronoi graph.
Int. J. Robot. Res. 19(2), 96–125 (2000)

15. Tully, S., Kantor, G., Choset, H.: A unified Bayesian framework for global localization and
SLAM in hybrid metric/topological maps. Int. J. Robot. Res. (2012)

16. Kim, S., Bhattacharya, S., Ghrist, R., Kumar, V.: Topological exploration of unknown and
partially known environments. In: 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3851–3858, Nov 2013

17. Bhattacharya, S., Likhachev,M., Kumar, V.: Topological constraints in search-based robot path
planning. Auton. Robots 1–18, (2012). doi:10.1007/s10514-012-9304-1

18. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2001)

http://dx.doi.org/10.1177/0278364913507324
http://dx.doi.org/10.1177/0278364913507324
http://dx.doi.org/10.1007/s10514-012-9304-1

32 V. Govindarajan et al.

19. Grigoriev,D., Slissenko,A.: Polytime algorithm for the shortest path in a homotopy class amidst
semi-algebraic obstacles in the plane. In: ISSAC’98: Proceedings of the 1998 international
symposium on symbolic and algebraic computation, pp. 17–24, New York, NY, USA. ACM
(1998)

20. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homotopy class.
Comput. Geom. Theory Appl 4, 331–342 (1991)

21. Tovar, B., Cohen, F., LaValle, S.M.: Sensor beams, obstacles, and possible paths. In: Workshop
on the Algorithmic Foundations of Robotics (2008)

22. Narayanan, V., Vernaza, P., Likhachev, M., LaValle, S.M.: Planning under topological con-
straints using beam-graphs. In: 2013 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 431–437. IEEE (2013)

23. Kim, S., Bhattacharya, S., Heidarsson, H., Sukhatme, G., Kumar, V.: A topological approach
to using cables to separate and manipulate sets of objects. In: Proceedings of the Robotics:
Science and System (RSS), Syndey, Australia, 24–28 June 2013

24. Kim, S., Bhattacharya, S., Kumar, V.: Path planning for a tetheredmobile robot. In: Proceedings
of IEEE International Conference on Robotics and Automation (ICRA) (2014) (Accepted. To
appear)

25. Gromov, M., Lafontaine, J., Pansu, P.: Metric Structures for Riemannian and Non-Riemannian
Spaces. Progress in Mathematics. Birkhäuser, Basel (1999)

A Repartitioning Algorithm to Guarantee
Complete, Non-overlapping Planar Coverage
with Multiple Robots

Kurt Hungerford, Prithviraj Dasgupta and K.R. Guruprasad

Abstract We consider the problem of coverage path planning in an initially
unknown or partially known planar environment using multiple robots. Previously,
Voronoi partitioning has been proposed as a suitable technique for coverage path
planning where the free space in the environment is partitioned into non-overlapping
regions called Voronoi cells based on the initial positions of the robots, and one robot
is allocated to perform coverage in each region. However, a crucial problem arises if
such a partitioning scheme is used in an environment where the location of obstacles
is not known a priori—while performing coverage, a robot might perceive an obsta-
cle that occludes its access to portions of its Voronoi cell and this obstacle might
prevent the robot from completely covering its allocated region. This would either
result in portions of the environment remaining uncovered or requires additional path
planning by robots to cover the disconnected regions. To address this problem, we
propose a novel algorithm that allows robots to coordinate the coverage of inacces-
sible portions of their Voronoi cell with robots in neighboring Voronoi cells so that
they can repartition the initial Voronoi cells and cover a set of contiguous, connected
regions. We have proved analytically that our proposed algorithm guarantees com-
plete, non-overlapping coverage. We have also quantified the performance of our
algorithm on e-puck robots within the Webots simulator in different environments
with different obstacle geometries and shown that it successfully performs complete,
non-overlapping coverage.

Keywords Multi-robot systems · Coverage path planning · Voronoi partitioning

K. Hungerford · P. Dasgupta (B)
Computer Science Department, University of Nebraska, Omaha, USA
e-mail: pdasgupta@unomaha.edu

K. Hungerford
e-mail: khungerford@unomaha.edu

K.R. Guruprasad
Department of Mechanical Engineering, National Institute of Technology,
Mangaluru, Karnataka, India
e-mail: krgprao@gmail.com

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_3

33

34 K. Hungerford et al.

1 Introduction

Coverage path planning is a central aspect of multi-robot systems where the objec-
tive is to completely cover the surface area of an environment using multiple robots.
Robotic coverage is used in several application domains of robots such as unmanned
search and rescue, clearing an area of landmines, inspecting the health of engineering
structures, as well as in civilian applications such as automated lawn mowing and
vacuum cleaning. Using multiple robots for area coverage instead of a single robot
offers several advantages such as reducing the time required to complete the environ-
ment’s coverage and improving the robustness of the system to failure of a single or
a few robots. However, using multiple robots also introduces the overhead of coor-
dination between robots to avoid collisions and perform non-overlapping coverage.
An attractive technique to implement non-overlapping coverage between robots is to
partition the free space of the environment into disjoint regions or cells that can then
be covered by robots [1–4]. In most of these partitioning-based coverage techniques,
the cellular partitions are not changed once they have been determined. However, if
the obstacles inside the environment are initially unknown to the robots, a robotmight
discovers that a cell is occluded by an obstacle while performing coverage. As shown
in Fig. 1a, a robot then has to use path planning techniques to explore paths to reach
the cell’s occluded part. In a multi-robot coverage scenario, the path planning tech-
nique to reach the occluded portions of a cell involves significant computation and
coordination between the robots [3], which might result in increased battery expen-
diture and completion time for the coverage. Therefore, it makes sense to investigate
techniques that can reduce or avoid these path planning costs for robots by adaptively
repartitioning cells and reallocating the repartitioned portions, so that other robots
can cover the repartitioned cell with little overhead for navigation planning.

Fig. 1 a The Voronoi cells of two robots are partially inaccessible due to obstacles. The blue solid
arrows show the path taken by a robot to reach the inaccessible portions of its cell using a bug-like
path planning algorithm. b Robots coordinate with each other to repartition the initial Voronoi cells
so that each robot has a contiguous region to cover

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 35

Our research in this paper is based on the key insight that when the initial partition
of the environment is done equitably between robots, exactly one robot occupies a
cell. Then, even if the cell that a robot is covering gets disconnected due to obsta-
cles, because the free space is connected, the inaccessible portion of the cell must
be adjacent to at least one of the neighboring cells and accessible to the robot in
that cell. Consequently, the robot performing coverage in the adjacent neighboring
cell could be requested to augment its coverage with the inaccessible portion of
the disconnected cell, as shown in Fig. 1b. Based on this insight, we first partition
the environment into complete non-overlapping cells using Voronoi partitioning [5]
and then propose a novel algorithm called Repart-Coverage, where each robot per-
forms boundary coverage of its initially allocated cell or region and then uses a
low-overhead coordination protocol with other robots to systematically repartition
only those portions of its cell that are inaccessible due to obstacles. We have shown
analytically that our proposed technique guarantees complete, non-overlapping cov-
erage. We have also verified the performance of the Repart-Coverage algorithm on
simulated e-puck robots within the Webots simulator for different environments and
different obstacle geometries and quantified its performance in terms of the areas of
coverage regions and distances traveled by the different robots due to repartitioning
of their initial cells.

2 Related Work

Coverage path planning has been a central topic in robot motion and an excellent
survey is given in [6], including both single and multi-robot coverage. For multiple
networked robots performing distributed coverage, the coordination strategies that
have been proposed can be divided into two broad categories. In the first category,
robots share maps of covered regions with each other while they perform coverage
so that they can coordinate their movements to avoid each others’ regions. In most
of these techniques, the environment is divided into grid-based cells corresponding
to the footprint of a robot. Robots then use different techniques to avoid repeated
coverage such as sensing and avoiding already-covered neighboring cells [7], record-
ing the regions covered by each robot as a coverage tree [8] and communicating the
boundaries of covered regions between the robots, and, using a negotiation protocol
along with a distance-based objective function to select regions to cover for different
robots [9]. In [3], the authors proposed a technique calledmulti-robot Boustrophedon
decomposition where the robots decompose the environment into cells in an online
manner while performing coverage. Robots use two different roles - boundary cover-
age and area coverage. A pair of boundary coverage robotsmove in tandem along two
parallel but opposite boundaries of the environment and infer about the presence of
obstacles when the line of sight between them gets blocked. This information is used
to define cell boundaries for subsequent coverage by the area coverage robots. The
algorithm can guarantee complete, non-overlapping coverage, but the robots have to

36 K. Hungerford et al.

use complex calculations and tight coordination to guarantee that cell boundaries are
correctly identified and multiple robots are not assigned to cover the same cell.

In contrast, in the second category of coverage coordination, the environment is
partitioned into non-overlapping cells based on the initial positions of robots using
strategies such as polygonal decomposition [2], Voronoi partitioning [4, 5, 10], etc.
Recently, while extending this approach, Breitenmoser et al. have proposed an algo-
rithm where robots initially partition the environment using Voronoi cells and start
navigating towards target locations while continuously adapting the partitions and
refining the target locations as they discover obstacles [11]. In [4, 12], the authors
have proposed a multi-robot coverage technique where each robot communicates
its position while it moves and dynamically adapts the partitions with neighboring
robots to guarantee complete, non-overlapping partition of the environment. In con-
trast to our work, they do not explicitly address situations that prevent the complete
coverage of a Voronoi cell assigned to a robot when a portion of the cell becomes
inaccessible to the robot due to obstacles. Since the focus of our paper is on parti-
tioning the environment for coverage, we use a boundary coverage algorithm called
Egress [13] that enables a robot to determine and follow the boundary of its currently
assigned region; we assume that suitable techniques for covering the internal area of
a region such as ladder search [2] or spanning tree coverage(STC) [14] are utilized
by the robot after it has determined the boundary of the region it has to cover. Also,
in the rest of the paper we have used the term coverage to refer to boundary coverage.

3 Problem Formulation

Let Q ⊂ R
2, a convex polygon, represent a region occupied by a set of obstacles

O . Let Qfree = Q\O , denote the free space within Q. We assume Qfree to be a
topologically connected set. Our objective is to perform complete, non-overlapping
coverage of the region Q\O , using N autonomousmobile robots, each equippedwith
a coverage tool. Let P(t) = {pi (t) ∈ Q, i ∈ IN }, where pi (t) denotes the position
of the i th robot at time t .1

The Voronoi partition, generated by P is the collection {Vi (P)}i∈IN with,

Vi (P) = {
q ∈ Q| ‖ q − pi ‖≤‖ q − p j ‖,∀ j ∈ IN

}
(1)

The Voronoi partition induces an undirected graph known as Delaunay graph, GD ,
where two nodes i, j ∈ IN are neighbors if the intersection of corresponding Voronoi
cells Vi and Vj is a line segment. The set of neighbors of the node i is denoted as
N (i); for brevity we assume Ni =| N (i) |. Let Bi j denote the perpendicular bisector

1Robots can assume a well-distributed initial configuration in case their initial positions are close
to each other using techniques in [11, 15].

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 37

pi(0)

Vi
i0

Vi1

Vi2

Vi3

Vi4

Vi5

Vi6

Obstacles

(a)

+ i

+ j

uij(1)

u
ij(2)

uij(3)

rij(1)

rij(2)

rij(3)

rji(1) u
ji(1) rji(2)

u
ji(2) rji(3)

rji(4)

u
ji(3)

uji(4)
rji(5)

(b)

Vi
1

Vi
2

Vi
3

pi

p1

p2 p3

(c)

Fig. 2 a The region bounded by dark lines is V i0
i . b Illustration of Ab

i j and A f
i j . c Illustration of

V j
i when Vi is repartitioned between robots j ∈ N (i)

of line joining pi (0) and p j (0) and let Ai j ⊆ Bi j represent the common boundary
between Vi and Vj . Let C = {C1,C2, . . . ,CM } be a partition of Qfree. Let Si ∈ 2C ,
i ∈ IN , and each Si , i ∈ IN is made up of contiguous cells from C, that is, ⋃C j ∈Si

C j

is a (topologically) connected set.
Distributed spatial partitioning problem: For each i ∈ IN , the i th robot should

construct Si , a contiguous collection of topologically connected cells, such that the
collection S = {S1, S2, . . . , SN } partitions Qfree.

3.1 Definitions and Notations

Let V i0
i ⊂ Vi be the subset of Vi containing pi (0). If there are no obstacles within

Vi , then V i0
i = Vi . The boundary of V i0

i is made up of portions of Ai j and obstacle
boundaries. A point q ∈ Ai j is reachable to robot i from pi (0), if q ∈ V i0

i , and
unreachable otherwise. Figure2a illustrates V i0

i with an example.
Let Ab

i j = {ui j (k)|Ai j ⊃ ui j (k) /∈ V i0
i }, where ui j (k)s are mutually disjoint con-

vex sets, representing parts (line segments) of Ai j that are not reachable (blocked
by obstacles) to the robot i . Similarly, let A f

i j = {ri j (k)|Ai j ⊃ ri j (k) ∈ V i0
i }, where

ri j (k)s are mutually disjoint convex sets, representing parts (line segments) of Ai j

that are reachable (not blocked by obstacles) to the robot i . See Fig. 2a for illustration.
Note that A f

i j = Ai j\Ab
i j .

Let N f b(i) = { j |Ab
i j = Ai j } ⊂ N (i).When j ∈ N f b(i), entire Ai j is unreachable

to the robot i ; then the robot i can not enterVj without enteringVk , for some k /∈ {i, j}.
Let N b(i) = { j |Ab

i j 	= ∅} ⊆ N (i). Note that N f b(i) ⊂ N b(i) ⊆ N (i).

Note that Ai j = Ab
i j ∪ A f

i j , and Ab
i j ∩ A f

i j = ∅, thus Ab
i j and A f

i j partition Ai j . If

Ai j = Ab
i j (that is, A f

i j = ∅), then we say that Ai j is impermeable to the robot i .

If Ai j = A f
i j , then we say that Ai j is fully permeable to the robot i . If Ab

i j 	= ∅ and

38 K. Hungerford et al.

A f
i j 	= ∅, then Ai j is partially permeable to the robot i . Note that Ai j = A ji , However

Ab
i j 	= Ab

ji , and A f
i j 	= A f

ji , in general.
Let V i

j ⊂ Vj , for j ∈ N (i), be a portion of Vj that would have been part of Vi

with node set IN \{ j}. See Fig. 2c for illustration. V i
j = Vj ∩ (j Ṽi), where j Ṽi is the

Voronoi cell of i with nodes IN \{ j}, or just N (j). Each portion of Vi\V i0
i , is part of

V j
i , for some j ∈ N (i). If Ai j is fully impermeable to the robot i , that is, Ai j = Ab

i j ,
then i will not be able to reach V i

j .

4 Distributed Spatial Partitioning

In this section, we explain the proposed distributed spatial repartitioning scheme.
The i th robot first explores V i0

i and obtains the following information: (i) Vi , N (i),
pi (0), pi (t), p j (0) ∈ Q,∀ j ∈ IN the position of itself and initial positions of all other
robots; (ii) Ai j , Ab

i j , and A f
i j , for each j ∈ N (i); (iii) the sets N f b(i) ⊂ N b(i) ⊂ N (i),

and iv) V i0
i . Now,the robot broadcasts the following information: Ab

i j , A f
i j ,∀ j ∈ N (i),

and the sets N f b(i), N b(i), and N (i). This communication is required only at the
beginning of the distributed spatial partitioning.

Now the robot uses the available information and further exploration when
required, to decide on the additional regions that need to be covered by it. The
free regions in Vj\V j

j , j ∈ IN can not be covered by robot j and hence need to be
covered by other robots. These regions are divided into patches. A patch is defined
as a connected subset of Voronoi cells. Each patch is bounded by obstacles and/or
line segments of B jk , for some j, k ∈ IN . The i th robot maintains a set Si of patches
it should cover. It is clear that V i0

i is a patch in Si . The i th robot adds to Si patches
in (Vj\V j

j)free—the portion of obstacle free region with Vj , not accessible directly
to the robot j , j ∈ IN \{i}. We say that two patches U and W are adjacent, if U ∩ W
contains a line segment in B jk (not necessarily A jk), for some j, k ∈ IN (j and k are
not necessarily neighbors)2. The significance of two patchesU and W being adjacent
is that a robot can move freely between these patches. The patches are created as
robots explore the regions to be covered. We will discuss the process of constructing
Si in steps.

Scenario i. Patches in V i
j , j ∈ N (i) The robot i enters V i

j ⊂ (Vj\V j0
j)free, j ∈

N (i), if and only if ∃l ∈ {1, 2, . . . , | A f
i j |}, s.t. ri j (l) ∩ Ab

ji 	= ∅. This condition is

illustrated in Fig. 3a. This patch, say U1, is adjacent to V i0
i and is added to Si .

Scenario ii. Patches in V k
j , k, j ∈ N (i), k ∈ N (j): If the robot i enters a patch

U1 ⊆ V i
j , it explores U1. If a portion U2 of V k

j , k ∈ N (i) ∩ N (j) is adjacent to U1,
then robot i will find out if k can reach this portion of V k

j . Otherwise, this portion of

2As U and W belong to free space, U ∩ W is either ∅ or a permeable line segment.

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 39

Aij

i
Vi0

i

j

(a)

i j

k

x
x

x

U1

Pijk

ujk(m)
U2

(b)

i j

k

x
x

x

U1

ujk(m)
U2

(c)

Fig. 3 a Robot i can help robot j to cover i (V i
j)free. Thick solid and dashed lines represent the

blocked and free components of Ai j respectively. b–c Conditions i checks to find out if it has to
help a common neighbor k to cover a portion of the region (V k

j)
f

V k
j will be added Si . We will discuss the situations in which robot i should or should

not cover a patch in V k
j . Let Pi jk be the vertex common to Vi , Vj , and Vk .

1. Consider a scenario, as illustrated in Fig. 3c, where U1 ∩ V k
j is a single line seg-

ment and Pi jk ∈ U1. Let u jk(m) ∈ Ab
jk contains Pi jk (Such u jk(m) exists as Pi jk

is assumed to be part of U2 adjacent to U1).

1a. If u jk(m) ∩ A f
k j 	= ∅, as illustrated in Fig. 3c, a, then k can reach U2, and

hence i will not cover it.
1b. Otherwise, as illustrated in Fig. 3c, b, k can not reachU2 and i should cover it.

The robot i can check if Pi jk ∈ U1 ∩ U2, and ifU1 ∩ U2 is a single connected
piece, while physically exploring the boundary of U1.

2. Consider a scenario, U1 ∩ V k
j is a not a single line segment or Pi jk /∈ U1, as

illustrated in Fig. 4. In such a scenario, robot i will not be able to decide if U2

needs to be added to Si or not only based on available information. The patch U2

is added to Si , only if, while physically exploring the boundary of U2, the robot
i reaches a portion of A f

k j .

Remark 1 Note that the robot i physically explores the boundary of a patch W which
is adjacent to U ∈ Si , only when the information about free and blocked regions of
Voronoi cell boundaries (Ai j) is not sufficient to make a decision as to if W needs
to be added to Si . Such an exploration is local to the robot i and it does not affect
the decisions of other robots. This can be observed from the illustrations in Fig. 4.
The patch U2 is added to Si (Fig. 4a and b) when i concludes that U2 /∈ Sk , and is not
added to Si (Fig. 4c) when U2 ∈ Sk . This ensures that the patch U2 is covered exactly
by one robot.

40 K. Hungerford et al.

i j

k

x
x

x

U1

U2

(a)

i j

k

x
x

x

U1

U2

(b)

i j

k

x
x

x

U1

U2

(c)

Fig. 4 The robot i explores U2 ⊆ V k
j to check if k can reach it. The exploration path is shown with

dark dashed line ending with an arrow. a U2 is unreachable to the robot k, hence it is added to Si .
b Though U2 is reachable to the robot k, it has to pass through U1 to reach it. In other words, U2

is not adjacent to V k (V k ∩ U2 = ∅). Thus U2 ∈ Si . c The robot i reaches a point on A f
k j while

exploring U2 and hence U2 /∈ Si (as U2 ∈ Sk)

Further, it can be noted the scenarios discussed above are exhaustive.
Scenario iii. Patches in V l

j , j ∈ N (i), l ∈ N (j), l /∈ N (i) If V i
j ⊃ U1 ∈ Si and

U2 ⊂ V l
j , s.t. U2 is adjacent to U1, then robot i has to make a decision on adding U2

to Si .

(1) If V l
j \V j0

j is not accessible to robot l (based on A f
l j and Ab

jl , discussed in sce-
nario(i)), then U2 is added to Si . Such scenarios are illustrated in Fig. 5a and b.

(2) Otherwise, the robot i should explore3 the boundary of entire portion of V l
j \V j0

j

connected to U2. Only if no portion of A f
l j is reached during this exploration,

U2 is added to Si . Figure 5c shows a scenario where U2 is not added to Si after
a point on A f

l j is reached while exploration (indicating that U2 ∈ Sl). Figure 5d
shows a scenario whereU2 is added to Si after the robot i fails to reach any point
on A f

l j while exploring (indicating that U2 /∈ Sl).

Scenario iv. A patch in Vi\V i0
i While the robot i is in U1 ⊂ Vi\V i

j for some

j ∈ N (i) and U1 ∈ Si , and a patch U2 ⊂ Vi\V i0
i is adjacent to U1, U2 is added to Si

only if there is no k ∈ N (i) such that U2 is adjacent to V k0
k .A condition under which

the robot i adds U2 to Si is illustrated in Fig. 5e. If U2 is adjacent only to U1, that is
Pi jk /∈ U1 ∩ U2, k ∈ N (i) ∩ N (j), then U2 is added to Si .

3Remark 1 is also applicable here.

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 41

i

j

l

U1 U2

(a)

i

j

l

U1 U2

(b)

i

j

l

U1 U2

(c)

i

j

l

U1 U2

(d)

x i

x j

U1U
2

(e)

Fig. 5 In situations such as illustrated in a and b robot l will not enter any portion of V l
j and hence

robot i adds the region U2 ⊂ V l
j to Si . The robot explores a portion of V l

j adjacent to U1 and c

reaches a point on A f
l j , indicating that the robot l can reach and cover U2, thus U2 /∈ Si , d does not

reach any point on A f
l j , indicating that the robot l cannot reach U2 and hence it is added to Si . The

exploration path is shown in dark dashed line. e Situations in which the robot i covers a part of
Vi \V i0

i

Scenario v. Beyond neighbors and neighbors of neighbors: Robot i continues
looking for new patches and adds them to Si based the following principle: Let
U ∈ Si , and W is adjacent to U . Now, W is added to Si if either, W can not be
reached by any other robot, or, if robot i is closer to W than any other robot.

The process continues until the robot finds no more adjacent patches to be added.
At this point robot i performs area coverage of the current patch and returns to the
previous patch. It finds if there are any new adjacent patches to be added; if not, it
performs area coverage of this patch and goes back to the previous patch. Once robot
i reaches the patch from which it was initially placed, V i0

i , it performs area coverage
of that patch and stops.

4.1 Analytical Results

Lemma 1 Let V−i ⊂ Q f ree ∈ Vi\V i0
i denote a region inaccessible to robot i . Then

V−i must be topologically connected to robot j ∈ N (i)’s Voronoi cell, Vj .

42 K. Hungerford et al.

Proof (by contradiction.) Assume that V−i is not topologically connected to Vj .
Suppose the only Voronoi boundary V−i intersects is Ai j . There can be two cases of
robot i’s blocked boundary Ab

i j that resulted in V−i :

Case 1. Ab
i j = Ab

ji . Since, Ai j = A ji , this case implies A f
i j = A f

ji . Also, since the
only Voronoi boundary V−i intersect is Ai j , V−i ∩ Ai j = Ab

i j . Substituting this value
of expression in the definition of free and blocked boundaries of A ji and noting that
Ab

i j = Ab
ji and Ai j = A ji , we get: Ab

ji ∩ A f
ji = {∅}, or, V−i ∩ Ai j ∩ A f

ji = {∅}, or,
V−i ∩ A ji ∩ A f

ji = {∅}. But A ji ∩ A f
ji = A f

ji (from the definition of A f
ji). Therefore,

we get, or, V−i ∩ A f
ji = {∅}. From the definition of a patch given in Sect. 4, a patch

is bounded either by obstacles or by Ai j . Since V−i is not accessible from Vi , it is
bounded by obstacles from the side of Vi . And, V−i ∩ A f

ji = {∅} implies it is not
accessible (bounded by obstacles) from the side of Vj also. Since Ai j is the only
Voronoi boundary intersecting V−i , V−i is bounded from all sides by obstacles. In
other words, V−i 	⊂ Q f ree, which contradicts our assumption.
Case 2. Ab

i j 	= Ab
ji . Suppose Ab

ji ⊂ Ab
i j .

4 Then the portion of Ab
i j that is not shared

with Ab
ji , must be free (accessible) on the side of Vj ; otherwise it would have been

part of Ab
ji . The portion of boundary that is free only on side of Vj but not of side

of Vi is A f
ji\A f

i j . That is, A f
ji\A f

i j ⊆ Ab
i j\Ab

ji , or, A f
ji\A f

i j ⊆ Ab
i j (since Ab

ji ⊂ Ab
i j).

This implies that the patch V−i is topologically connected to Vj through A f
ji , which

contradicts our assumption that V−i is not topologically connected to Vj . Hence
proved.

Lemma 2 A region V−i ⊂ Q f ree ∈ Vi\V i0
i that is inaccessible to robot i , must be

topologically connected to Vj , j ∈ IN .

Proof The proof of Lemma 1 can be easily extended to a scenario where V−i inter-
sects more than one neighbor in N (i) by considering the blocked boundary with each
neighbor disjointly. For a more general case where V−i is topologically connected
only to N (k)(i), the kth hop Voronoi neighbor of i , k > 1 (scenarios iv. and v. in
Sect. 4), the proof of Lemma 1 still holds between robots i and j ∈ N k(i). Varying k
over 1 through the maximum hops between the farthest Voronoi cell from i , we get
N k(i) = IN ; hence proved.

Theorem 1 The proposed distributed partitioning and coverage scheme ensures
complete coverage of the free space.

Proof By Lemmas 1 and 2, there must be a robot j ∈ IN whose Voronoi cell Vj

is topologically connected to V−i . This ensures that for every robot i ∈ IN , the free
space in its Voronoi cell Vi denoted by Q f ree ∩ Vi gets covered by itself or by one
or more robots in j ∈ IN . The total region covered by all robots in IN is then given

4A similar result can be proved for Ab
i j ⊂ Ab

ji by interchanging indices i and j .

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 43

by∪i (Q f ree ∩ Vi) = Q f ree ∩ (∪i Vi) = Q f ree ∩ Q (from definition of Voronoi cell)
= Q f ree (since Q f ree ⊆ Q). Hence proved.

Theorem 2 The proposed distributed partitioning and coverage scheme achieves
non-overlapping coverage.

Proof The proof follows from the construction of patches using Voronoi cell bound-
aries. From definition, a patch between Vi and Vj is bounded either by obstacles or
by the bisector line Bi j between robots i and j’s initial positions pi (0) and p j (0).
The Voronoi partitioning is done only once at the beginning, and by definition (Eq.1)
guarantees non-overlapping Voronoi cells. Since there is only one robot per Voronoi
cell, the coverage of the initial Voronoi cell (V i0

i) is done only by robot i . When a
region V−i ∈ Vi\V i0

i is inaccessible from V i0
i , if V−i is adjacent to only one other

Voronoi cell Vj then only robot j covers V−i . On the other hand, if V−i is adjacent
to more than one Voronoi cell Vj1, Vj2, . . . then each pair of robots ja and jb divide
the region of V−i into patches Sja , Sjb by extending their bisector lines B ja , jb . This
construction ensures that Sja ∩ Sjb = {∅}, or, patches Sja , Sjb are non-overlapping;
patch Sjk is covered only by robot jk . Therefore, for every robot i , V i0

i and every
inaccessible region V−i is covered by exactly one robot. Hence proved.

Also, note that since the number of Voronoi cells is bounded by N (number of
robots) and there is at least one Voronoi cell that is connected to any initially inac-
cessible region, therefore, the repartitioning technique takes at most N steps to find
and connect the initially inaccessible region to another Voronoi cell. Consequently,
the repartitioning mechanism is guaranteed to converge in a finite number of steps.

We have implemented the repartitioning algorithm using an auction protocol as
shown in Algorithm 1. The robots use Voronoi partitioning to get their initial cov-
erage regions corresponding to their Voronoi cells. Each robot then explores the
boundary of its Voronoi cell. If, upon completing the exploration of its boundary,
there are unexplored regions remaining in the Voronoi cell, these regions are allo-
cated to neighboring robots using an auction protocol—robots in the neighboring
Voronoi cells of the obstructed robot are sent a bid request message. Every neighbor
robot calculates a bid for the region, and sends it to the auctioning robot. In the
current implementation of the algorithm, these bids are calculated as the perimeter
of the robot’s current region. The robot that submits the lowest bid is selected as
the winner of the auction and assigned the inaccessible portion of the Voronoi cell.
The auctioning robot informs the winner, which then appends the region to the list
of regions it needs to cover, and starts to perform boundary coverage of its newly
assigned region. The auction algorithm possesses the essential properties (comple-
tion, non-overlapping coverage), but it reduces communication and coordination
overhead by combining adjacent patches belonging to different robots, when the
patches are accessible from each other.

44 K. Hungerford et al.

Algorithm 1: Algorithm used by a robot to perform repartition coverage.

1 Repart-Coverage(Vi)
Input: Vi : Voronoi cell of robot i
Output: V ′

i : Repartitioned coverage region for robot

2 perform boundary coverage in Vi and determine V i0
i

3 Sb
i j ← set of blocked patches comprising Vi \V i

i

4 for each Sb
i j ∈ Sb

i j do
5 j ← set of Voronoi neighbor robots of i that have Voronoi cell boundaries with Sb

i j

6 send coordinates of polygon representing Sb
i j to all robot in j

7 wait for bids
8 bid ← set of bids received
9 jwin ← argmin

j
bid

10 Vi ← Vi \Sb
i j //remove Sb

i j from Vi

11 send message to robot jwin to add Sb
i j to Vjwin

12 handleBidMessages() //for robot j
13 if received bid request for Sb

i j from robot i then

14 bid j =
{
currently covered perimeter of Vj , ifSb

i j reachable

∞, otherwise

15 send bid j to robot i

16 if received winner message for Sb
i j from robot i then

17 Vj ← Vj ∪ Sb
i j //add Sb

i j to Vj

18 Repart-Coverage(Vj)

5 Experimental Results

We have implemented our proposed Repart-Coverage algorithm using simulated
e-puck robots within the Webots simulator. E-puck robots use a ring of eight IR-
based proximity sensors with a 4 cm range to avoid obstacles and follow obstacle
boundaries. Robots use Bluetooth protocol for inter-robot communication, and have
a GPS and compass for localizing w.r.t the environment. Figure6a–d, show four
different environments measuring 2 × 2 m2 with different internal obstacles and
with 5–7 robots, placed initially at arbitrary positions. These environments illustrate
different scenarios where the Voronoi cell of one or more robots becomes partially
inaccessible due to the obstacles in the environment, corresponding to the different
scenarios discussed in Sect. 4. The red lines on the floor of the environment denote
the Voronoi cells assigned to each robot. For reaching and following the boundary of
its Voronoi cell, each robot uses a lightweight, bug-like algorithm called Egress [13]
that enables a robot to start from any arbitrary internal point in its assigned region,
find a path to the region’s boundary using basic motions such as move-outward and
wall-follow, and, completely explore the entire outermost boundary of the region.
Each robot’s initial location is at the center of itsVoronoi cell; the path followed by the
robot is marked with a dark red trail. Figure6e–h show the scenarios for the different

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 45

Fig. 6 Snapshots from Webots showing repartition coverage by 5–7 robots in different 2 × 2 m2

environmentswith different obstacles.a–d initialVoronoi partition, e–h robots performingboundary
coverage on originalVoronoi cell, while showing inaccessible regions arising out of originalVoronoi
partition, i–l repartitioned cells and robots completing boundary coverage of entire environment;
the final boundary of the cell that each robot covered is marked with a green line

environments at the end of boundary coverage along the Voronoi cell boundaries; the
initially inacccesible regions of the respective Voronoi cells are marked with a black
boundary. Finally, Fig. 6i–l show the result of our repartitioning algorithm. Robots
from adjacent cells are allocated to cover each of the initially inaccessible regions

46 K. Hungerford et al.

Fig. 7 Snapshots fromWebots showing repartition coverage by 7 robots in a 3 × 6m2 environment
with different obstacle features, a initial Voronoi partition, b robots performing boundary coverage
on Voronoi cell, black/light blue boundaries show inaccesible regions. c repartitioned cells and
robots completing coverage of entire environment

using the Repart-Coverage algorithm. The trail of the paths followed by the different
robots shows that every region in the environment is covered by exactly one robot.
This shows that our algorithm is successful to (re)-parititon the free space in the
environment into complete, non-overlapping regions for coverage.

Figure7a–c show another instance of the operation of the Repart-Coverage algo-
rithm for a 3 × 6 m2 environment with 7 robots. The scenario includes some unique
obstacle features like narrow channels between obstacles and obstacles that span
across multiple Voronoi cells, which require the inaccessible regions to be re-
allocated to robots multiple times (similar to scenarios iv. and v. in Sect. 4). This
shows that our algorithm successfully terminates and is able to find complete, non-
overlapping regions even for complex obstacle geometries.

Finally, we have quantified the performance of our algorithm in terms of the area
allocated to the different robots and the distances covered by them while performing
boundary coverage. Table1 shows the average area of the region allocated to each
robot using our algorithm versus the area of the initial Voronoi cell for the different
environments we have considered. Note that the initial Voronoi partition results in
uncovered regionswhile the repartitioning guarantees complete coverage. The results
for the different environments show that when obstacles result in larger inaccessible
regions in the initial Voronoi cells, the coverage regions for each robot recalculated
by the repartitioning algorithm have higher variance (std. dev, and max/min) than
the initial Voronoi cells. This is because, with more complex obstacles, robots have
to cover regions from other robots’ initial Voronoi cells in addition to covering their
own Voronoi cells.

6 Conclusions and Future Work

We proposed a novel technique for distributed spatial partitioning of an initially
unknown region that guarantees a partitioning of the free space in the environment
into a set of connected regions that can be covered by each robot. Currently, we are
investigating techniques for each robot to dynamically build a map of the boundary
of its currently allocated region instead of maintaining the end points of vertices of

A Repartitioning Algorithm to Guarantee Complete, Non-overlapping … 47

Ta
bl

e
1

A
re
a
of

ce
lls

to
be

co
ve
re
d
be
fo
re

an
d
af
te
r
re
pa
rt
iti
on
in
g
fo
r
th
e
di
ff
er
en
te
nv
ir
on
m
en
ts
sh
ow

n
in

Fi
gs
.6
a–
d
an
d
7a

A
re
a
of

ce
ll

(m
2
)

E
nv
.9
(a
)

be
fo
re

E
nv
.9
(a
)

af
te
r

E
nv
.9
(b
)

be
fo
re

E
nv
.9
(b
)

af
te
r

E
nv
.9
(c
)

be
fo
re

E
nv
.9

(c
)

af
te
r

E
nv
.9
(d
)

be
fo
re

E
nv
.9
(d
)

af
te
r

E
nv
.1
0(
a)

be
fo
re

E
nv
.1
0(
a)

af
te
r

A
vg
.

0.
58
1

0.
57
4

0.
8

0.
80
4

0.
8

0.
79
8

0.
8

0.
8

2.
57

2.
57

St
de
v.

0.
17
5

0.
24
4

0.
14
9

0.
36
1

0.
14
9

0.
25
1

0.
14
9

0.
54
1

1.
11
1

1.
15
1

M
in
.

0.
36

0.
25

0.
58

0.
21

0.
58

0.
39

0.
58

0.
21

0.
99

0.
45

M
ax
.

0.
78

0.
85

0.
99

1.
17

0.
99

1.
01

0.
99

1.
58

4.
38

4.
28

U
nc
ov
.

0.
34

0
0.
4

0
0.
24

0
0.
76

0
2.
07

0

48 K. Hungerford et al.

the boundary segments. The boundary map will enable a robot to efficiently plan
its path to newly added regions instead of circumventing regions whose boundary
it has already explored. Additionally, with boundary maps, the load (area covered)
between different robots can be balanced by including factors such as the area of
and distance to the newly allocated region, and, the area of the existing region in the
robots’ bids for new regions. Finally, we are implementing the proposed algorithm
on physical robots.

Acknowledgments This work was partially supported by the U.S. Office of Naval Research as
part of the COMRADES project.

References

1. Choset, H.: Coverage of known spaces: the boustrophedon cellular decomposition. Auton.
Robots 9, 247–253 (2000)

2. Hert, S., Lumelsky, V.: Polygon area decomposition for multiplerobot workspace division. Int.
J. Comput. Geom. Appl. 8, 437–466 (1998)

3. Rekleitis, I.,New,A.P., Rankin, E.S., Choset,H.: Efficient boustrophedonmulti-robot coverage:
an algorithmic approach. Ann. Math Artif. Intell. 52, 109–142 (2008)

4. Cortes, J., Martinez, S., Karata, T., Bullo, F.: Coverage control for mobile sensing networks.
IEEE Trans. Rob. Auton. 20(2), 243–255 (2004)

5. Bash, B.A., Desnoyers, P.J.: Exact distributed voronoi cell computation in sensor networks.
In: Proceedings of the Sixth IEEE/ACM Conference On Information Processing in Sensor
Networks, pp. 236–243 (2007)

6. Choset, H.: Coverage for robotics—a survey of recent results. Ann. Math. Artif. Intell. 31,
113–126 (2001)

7. Altshuler, Y., Yanovski, V., Wagner, I.A., Bruckstein, A.M.: Multi-agent cooperative cleaning
of expanding domains. I. J. Robot. Res. 30(8), 1037–1071 (2011)

8. Agmon, N., Hazon, N., Kaminka, G.: The giving tree: constructing trees for efficient offline
and online multi-robot coverage. Ann. Math Artif. Intell. 52(2–4), 143–168 (2009)

9. Jäger, M., Nebel, B.: Dynamic decentralized area partitioning for cooperating cleaning robots.
In: Proceedings of IEEE International Conference onRobotics andAutomation, pp. 3577–3582
(2002)

10. Schwager, M., Rus, D., Slotine, J.-J.E.: Decentralized, adaptive coverage control for networked
robots. I. J. Robot. Res. 28(3), 357–375 (2009)

11. Breitenmoser, A., Schwager, M., Metzger, J.-C., Siegwart, R., Rus, D.: Voronoi coverage of
non-convex environments with a group of networked robots. In: ICRA, pp. 4982–4989 (2010)

12. Durham, J.W., Carli, R., Frasca, P., Bullo, F.: Discrete partitioning and coverage control for
gossiping robots. IEEE Trans. Robot. 28(2), 364–378 (2012)

13. Guruprasad, K.R., Dasgupta, P.: Egress: an online path planning algorithm for boundary explo-
ration. In: IEEE International Conference on Robotics and Automation, May 2012, pp. 3991–
3996

14. Gabriely, Y., Rimon, E.: Spanning-tree based coverage of continuous areas by a mobile robot.
Ann. Math Artif. Intell. 31, 77–98 (2001)

15. Batalin, M., Sukhatme, G.S.: Spreading out: a local approach to multi-robot coverage. In:
Proceedings of the International Symposium on Distributed Autonomous Robotic Systems,
Fukuoka, Japan, Jun 2002, pp. 373–382. [Online]. http://robotics.usc.edu/publications/56/

http://robotics.usc.edu/publications/56/

On Combining Multi-robot Coverage
and Reciprocal Collision Avoidance

Andreas Breitenmoser and Alcherio Martinoli

Abstract Although robotic coverage and collision avoidance are active areas of
robotics research, the avoidance of collision situations between robots has often
been neglected in the context of multi-robot coverage tasks. In fact, for robots of
physical size, collisions are likely to happen during deployment and coverage in
densely packed multi-robot configurations. For this reason, we aim to motivate by
this paper the combined use of multi-robot coverage and reciprocal collision avoid-
ance.Wepresent a taxonomyof collision scenarios inmulti-robot coverage problems.
In particular, coverage tasks with built-in heterogeneity such as multiple antagonistic
objectives or robot constraints are shown to benefit from the combination. Based on
our taxonomy,we evaluate four representative robotic use cases in simulation by com-
bining the specific methods of Voronoi coverage and reciprocal velocity obstacles.

Keywords Multi-robot coverage ·Voronoi tessellation ·Reciprocal collision avoid-
ance ·Velocity obstacles · Taxonomy of collision scenarios · Evaluation of use cases

1 Introduction

The primary objective of multi-robot coverage involves the deployment and/or
sweeping motion of a group of mobile robots within a region or along boundaries
in order to provide a service, such as monitoring or maintenance. Whenever the
coverage tasks require the robots to come close, higher-priority objectives of coop-
eration are imposed, including the avoidance of robot-to-robot collisions. Collision

A. Breitenmoser (B)
Robotic Embedded Systems Laboratory, Department of Computer Science,
Viterbi School of Engineering, University of Southern California, Los Angeles, USA
e-mail: andreas.breitenmoser@usc.edu

A. Martinoli
Distributed Intelligent Systems and Algorithms Laboratory, School of Architecture,
Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland
e-mail: alcherio.martinoli@epfl.ch

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_4

49

50 A. Breitenmoser and A. Martinoli

situations arise first of all due to the other robots that are involved in the same task of
covering the mission space. Second, collisions with other independent robots present
in the mission space must be avoided. These robots—either static or dynamic—are
pursuing their own objectives in a collaborative or non-collaborative fashion.

A survey of robotic coverage is given in [1]. Deployment and sweepingmotion for
robotic coverage of areas and boundaries (e.g., barriers) have previously also been
referred to as blanket, barrier and sweep coverage [2]. A particular type of blanket
coverage is Voronoi coverage [3], which arranges the robots in a final configuration
that forms a so-called Centroidal Voronoi Tessellation (CVT) [4].

In the context of Voronoi coverage, robot-to-robot collision avoidance for robots
of physical size (i.e., finite size instead of zero-sized point robots) has previously
been considered by [5, 6]. The method in [5] restricts the robots’ positions to the
collision-free subareas in the interiors of their Voronoi cells; the Voronoi coverage
controller in [6] adds a collision avoidance component based on repulsive terms to
the coverage control law. Both methods, however, focus on one collision scenario
only, which addresses the collision avoidance among robots that all share one single
objective and execute the same Voronoi coverage control law cooperatively.

The contributions of this paper are threefold. First, we describe the possible types
of robot-to-robot collision scenarios in multi-robot coverage problems and propose a
taxonomy (Sect. 2). Second,wepresent a concrete solution for integrating a reciprocal
collision avoidance algorithm into a multi-robot coverage algorithm; in particular,
the CVT-based Voronoi coverage controller is combined with Reciprocal Velocity
Obstacles (RVO), using the Optimal Reciprocal Collision Avoidance (ORCA) for-
mulation (Sect. 3). Besides collision-free coverage, this allows for collision avoid-
ance between heterogeneous robots (e.g., robots with different kinematic models).
Third, we evaluate four use cases for combining multi-robot coverage and recipro-
cal collision avoidance, which show some characteristics that are inherent to such a
combination (Sect. 4). Final conclusions are provided in Sect. 5.

2 A Taxonomy of Collision Scenarios
in Multi-robot Coverage

In this paper, we deal with instances of multi-robot coverage problems, i.e., problems
which ask for covering a mission space with multiple robots. Each robot has its own
primary objective, which may be an individual or a shared common goal with other
robots. The robots that share common goals are in the following consideredmembers
of the same group or team. The primary objective of at least a subset of the robots
will be the coverage of the common mission space.

In such a setting, there are many possibilities for conflicting situations, so-called
collision scenarios, which need to be resolved. Some scenarios are encountered
during initial robot deployment and others in a later stage of the coverage process.
Some scenarios occur among robots of the same team, i.e., intragroup, and others

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 51

between robots that belong to different teams, i.e., intergroup. In some collision
scenarios, the robots must avoid each other while they collaborate, yet in others, the
robots may compete and collisions with adversary robots must be avoided.

2.1 Categorization of Collision Scenarios

We base our categorization of collision scenarios in multi-robot coverage on the
categorization of coverage behaviors by [2] and the categorization of interactions
among agents by [7], where interactions are classified along the axes of “individual
or shared goals”, “actions advance goals of others”, and “awareness of others”. For the
multi-robot coverage tasks of our interest, we assume that the robots are aware of
each other. Consequently, our taxonomy has three dimensions:

• Coverage phases during deployment and sweeping: We distinguish between
the two coverage types of deployment and sweeping motion, each of which is
subdivided into two coverage phases. Deployment refers to blanket and barrier
coverage: a robot team deploys in the first phase and assumes a static coverage
configuration. In the second phase after the initial deployment, the robots observe
the mission space from their configuration. Sweeping motion refers to sweep
coverage (and coverage by a moving barrier): each robot covers the mission space
by a sweeping motion in the first phase. If a second phase exists, the robots move
over already covered space and relocate, inspect a covered location closer, or
resume the sweeping motion to achieve persistent or redundant coverage of the
mission space.

• Intragroup and intergroup collision avoidance: According to [7], robots may
share common goals or have individual differing goals. Robots with shared com-
mon goals form a team or group. Single robots or robots of different teams are
said to be external to each other. During the completion of a task, such as cover-
age, the robots must avoid collisions and resolve collision situations inside their
own team (intragroup) as well as between external robots and teams (intergroup).
The robot teams may be homogeneous or as well consist of heterogeneous robots
with different sizes, sensing and mobility capabilities (e.g., different kinematics).

• Cooperative and non-cooperative behavior: For coverage and reciprocal col-
lision avoidance, the degree of cooperation is another important factor. Similar
to [7], we measure cooperativeness by whether the actions of one robot influences
the goals of other robots (both individual or shared goals) in a positive or nega-
tive way. Positive influence represents cooperative behaviors, neutral or negative
influence represents non-cooperative, including competing or adversary, behav-
iors. Non-cooperative robots appear to each other as static or dynamic obstacles.

52 A. Breitenmoser and A. Martinoli

Fig. 1 Coverage without (left) and with (right) reciprocal collision avoidance. Left A robot team
(black robots) performs Voronoi coverage and covers a mission space Ω by creating a CVT. The
Voronoi graph is formed by the boundaries of the Voronoi cells (full black lines) and the dual
Delaunay graph is visualized by the black dashed lines. The Voronoi neighborhood of one of the
robots (yellow Voronoi cell) is indicated by the yellow outer circle. Right The robot team now
avoids collisions among each other and with external robots (white robots); the numbers (1)–(3)
and (4)–(6) refer to the different collision scenarios that occur during (i.e., first coverage phase) and
after (i.e., second coverage phase) the initial deployment (see Sect. 2)

2.2 The Collision Scenarios in Voronoi Coverage

The multi-robot Voronoi coverage control approach serves us as a demonstration
example to show the different categories suggested by our taxonomy. The basic
CVT-based Voronoi coverage controller1 is an example of the deployment coverage
type. In addition, we will also consider a hybrid variant, where the second coverage
phase involves, instead of observing, sweeping motions in the Voronoi cells.

The collision scenario (1) in Fig. 1 on the right depicts the trajectory of a robot
that shows intragroup collision avoidance and cooperative behavior when avoiding
another team member (black robot) during the first phase of deployment. A similar
situation is illustrated by collision scenario (2) in Fig. 1 but for intergroup collision
avoidance between a team member that performs Voronoi coverage (black robot)
and an external robot with differing goal (white robot).

Some collision scenarios include components fromboth intragroup and intergroup
collision avoidance. Instead of single robots, a team of several robots—considered as
a single entity—can as a subgroup itself be part of a larger team and thus be subject to
coverage and collision avoidance. During the initial phase of deployment, the robots
in the subgroup must avoid reciprocal collisions among each other locally and with
other members of the team (intragroup collision avoidance, cooperative behavior), as
well as with potential external robots (intergroup collision avoidance, cooperative or

1Refer to Fig. 1 on the left for an illustration and to Sect. 3 for a formal description.

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 53

non-cooperative). The collision scenario (3) in Fig. 1 shows such an abstraction for
a team of three robots, which forms a subgroup of the overall covering team (black
robots).

In the second coverage phase of the deployment, certain operations, such as
recharging, servicing, escape or evasion maneuvers, require robots of a team to
occasionally leave their positions in the static coverage configuration for a short
time. During these operations, the robots must avoid reciprocal collisions with team
members (intragroup or intergroup collision avoidance) as well as with approach-
ing external robots (intergroup collision avoidance). The robots which undergo such
escape and returnmaneuvers become in some cases instances of “on-off” teammem-
bers, i.e., they are recognized as external robots by some or all of the team members
for a limited time period. In other words, these robots temporally convert into exter-
nal robots, and apply intergroup collision avoidance, but eventually rejoin the robot
team. The collision scenario (4) in Fig. 1 gives an example of a robot that leaves
its Voronoi cell and comes back after having moved to the mission space boundary.
On its way, it may get involved into collisions, e.g., with a former team member or
an external dynamic obstacle (white robot).

The initial deployment of a robot team often goes along with a decomposi-
tion or tessellation of the mission space. This provides an additional representation
of the environment and robot configuration that can be shared among the robots.
With respect to Voronoi coverage, the constructed CVT includes Voronoi and Delau-
nay graphs, which can be used as roadmaps for robot navigation in themission space.
Single robots or groups of multiple robots may, for example, patrol the Delaunay
graph or pass threats with a maximum clearance or safety distance by transition-
ing the Voronoi graph. On both roadmaps, there can potentially be oncoming traffic
of cooperative or non-cooperative robots, which asks for reciprocal intragroup or
intergroup collision avoidance. The collision scenarios (5) in Fig. 1 show a robot
(black) that moves along a path (red) on the Delaunay graph to a next Voronoi cell
and an external dynamic obstacle (white robot) that moves along a path (green) on
the Voronoi graph amidst the deployed robots. The first robot must actively avoid
collisions on its path whereas the second robot needs to be avoided by other robots.

The two coverage types can also be combined; such hybrid coverage methods
involve the hierarchical coupling of deployment and sweeping motion [8]. In case of
Voronoi coverage, after the robots have deployed and a CVT spans themission space,
each robot in the team covers its Voronoi cell by sweeping motions (e.g., spiraling or
back-and-forth sweeping patterns) during the second coverage phase. Here, collision
situations occur during sweeping. The collision scenarios (6) in Fig. 1 illustrate that
the robots must either avoid reciprocal collisions at the boundaries of their Voronoi
cells (intragroup collision avoidance)2 or within the cells, in case several robots—
possibly of different teams (this wouldmean intergroup collision avoidance)—sweep
the same Voronoi cell for purposes of redundant coverage.

2In real-world scenarios, with positional noise and varying pose estimates for each robot (different
from Assumption3 in Sect. 3), the resulting degenerate Voronoi cells may overlap, which naturally
leads to collision situations even farther away from the boundaries of the Voronoi cells.

54 A. Breitenmoser and A. Martinoli

Intragroup and intergroup collision avoidance during the second coverage phase
can involve cooperative or non-cooperative behavior. Whereas two robot teammem-
bers would typically cooperate when facing a collision situation while driving along
a sweeping path or path in a roadmap, the cooperativeness of a robot that tempo-
rally leaves its team, for example for recharging, may strongly depend on its current
state, e.g., its urge due to a low remaining battery level. Moreover, external dynamic
obstacles pursue their own goals by strictly acting in a non-cooperative way.

3 Combining Voronoi Coverage and RVO

We are now going to present the implementation of a concrete solution for reciprocal
collision avoidance in a multi-robot coverage problem. We build on the aforemen-
tioned example of CVT-based Voronoi coverage and combine it with reciprocal
collision avoidance in velocity space, using the RVO and ORCA3 methods [9–12].

Voronoi coverage, as presented in Sect. 3.1, is based on a gradient-descent control
law. In a collision situation, each involved robot faces one or multiple other robots
in the mission space. Independent of their cooperativeness, each robot represents a
dynamic (or static for stationary robots) obstacle that needs to be avoided completely,
or up to a certain degree. This introduces (dynamically changing) constraints on the
robot controllers and leads to constrained (or projected) gradient descent, which
makes the problem considerably more challenging. We approach this constrained
optimization problem with the reciprocal collision avoidance method using RVO
and ORCA in Sect. 3.2.

3.1 CVT-based Voronoi Coverage

We restate the most important formulations from Voronoi coverage control after [3].
Given n robots at positions P = {p1, . . . , pn}, which are tasked with covering the
mission space Ω ⊂ R

N , let the coverage objective function be HV and the corre-
sponding coverage cost

HV(P) =
n∑

i=1

h(pi , Vi) =
n∑

i=1

∫

Vi

f (d(q, pi)) ρ(q) d F(q) . (1)

The Voronoi tessellation over Ω is given by the set of Voronoi cells V(P) =
{V1, . . . , Vn}, where

Vi = {
q ∈ Ω | d(q, pi) ≤ d(q, p j), j �= i

}
,

3Under the linear programming formulation, the RVO method becomes the ORCA method.

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 55

∀ i, j ∈ {1, . . . , n}. Two robots i and j are said to be Voronoi neighbors if their
Voronoi regions Vi and Vj are adjacent. The density function ρ : Ω → R≥0 directs
the robots to areas of special interest. The function to measure distance between
locations q ∈ Vi and robot positions pi is defined as d : Ω2 → R≥0. The perfor-
mance function f : R≥0 → R, which must be strictly increasing over the image of
d, measures the degradation of the coverage performance with increasing distance.

As further shown in [3–5], the objective function is minimized by solving

∇piHV(P) = ∇pi h(pi , Vi)

=
∫

Vi

∇pi f (d(q, pi)) ρ(q) d F(q) = 0 .

The partial derivatives and linear proportional control laws can then be obtained for
each robot,

∇pi h(pi , Vi) = −2 MVi (cVi − pi) ,

vpref
i = −k ∇pi h(pi , Vi) , (2)

with MVi and k set to positive values. The centroids cVi are critical points of the
objective functionHV . The preferred velocities vpref

i , which are tracked by the robots,
point toward the centroids and make the robots iteratively approach the centroids;
the resulting CVT at convergence leads to a local minimum of the objective function.
Figure1 on the left shows a CVT, the Voronoi graph and its dual, the Delaunay graph,
as well as an example of a robot’s Voronoi neighborhood.

We will additionally make the following assumptions with respect to the Voronoi
coverage control in this paper.

Assumption 1 The Voronoi tessellation is defined after [3] by a coverage objective
function that consists of the Euclidean distance d(q, pi) = ‖q − pi‖2 and the perfor-
mance function f (d(·)) = d(·)2. Under these settings, MVi is themass of theVoronoi
cell Vi for a given area density function ρ; we assume constant density ρ(·) = 1 .

Assumption 2 We assume the mission spaceΩ to be two-dimensional, i.e., N = 2,
and convex. In particular, the mission space does not contain any static obstacles as
fixed components of the environment. However, there are mobile robots in the mis-
sion space, which represent—depending on whether they are moving or stopped—
dynamic and static obstacles of circular shape to one another (see Fig. 1).

Assumption 3 The robots sense noisy positions; the noise in a robot’s position is
uniformly distributed over a circle centered at the noise-free actual position and its
radius is bounded by a maximum noise amplitude. We assume one noisy position
per robot, i.e., each robot’s own position estimate and the estimates of its position by
the other robots are equivalent. Due to this assumption, the Voronoi tessellations are
correct partitions of Ω , composed of fully covering, disjoint sets of Voronoi cells.

56 A. Breitenmoser and A. Martinoli

Fig. 2 RVO and ORCA. Left Construction of the set of collision-free velocities ORCAτ
i | j from

V Oτ
i | j for robot i . Right Computation of the optimal holonomic velocities v∗

Hi
from the set ORCAτ

i ,
given four other robots in robot i’s neighborhood as well as four different possible sets of allowed
holonomic velocities SAHVi . S1

AHVi
represents the set for a holonomic robot, S2

AHVi
corresponds to

a differential-drive robot, and S3
AHVi

and S4
AHVi

describe two instances of the set for a bicycle robot

3.2 Reciprocal Collision Avoidance Using RVO and ORCA

Assumptions2 and 3 likewise hold for the reciprocal collision avoidance. In the case
of holonomic robots with velocities vH , any robot j with radius r j positioned at p j ,
within a given neighborhood4 of a robot i with radius ri positioned at pi and j �= i ,
induces a velocity obstacle

V Oτ
i | j = {

v̄ | ∃t ∈ [0 , τ] , t · v̄ ∈ D(p j − pi , ri + r j)
}

. (3)

The vectors v̄ = vHi − vHj form the set of relative velocities between the robots,
τ is the time horizon for a collision to occur and D(p , r) = {q | ‖q − p‖2 < r} is
the open ball of radius r . The RVO and ORCA methods [9, 10] now assume that all
the robots make similar attempts in order to avoid collisions. The set of collision-free
velocities ORCAτ

i | j for a robot i with respect to any other robot j in its neighborhood
results from V Oτ

i | j through an adjustment in velocity by

u = argmin
v̄∈∂V Oτ

i | j

(‖v̄ − (vcur
i − vcur

j)‖2) − (vcur
i − vcur

j) .

The vector u represents the smallest change the robot needs to add to the difference
in the current velocities of the robots, vcur

i − vcur
j , in order to fully avoid a collision.

The cooperativeness ratio α ∈ [0 , 1] scales u and defines to which extent a single
robot eventually participates in avoiding a reciprocal collision. The construction of
the set ORCAτ

i | j is shown on the left of Fig. 2. O RC Aτ
i | j is given as

ORCAτ
i | j = {vHi | (vHi − (vcur

i + α · u)) · n̂ ≥ 0} , (4)

4In our case, the Voronoi neighborhood can be used as neighborhood in the RVO computation.

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 57

where n̂ denotes the outward normal at (vcur
i − vcur

j) + u on ∂V Oτ
i | j , i.e., the boundary

of V Oτ
i | j . Let SAHVi be the set of allowed holonomic velocities given the kinematic

constraints of robot i . The final set of collision-free velocities is then computed as

ORCAτ
i = SAHVi ∩

⋂

j �=i

ORCAτ
i | j . (5)

The right side of Fig. 2 illustrates the setORCAτ
i in amulti-robot scenario for different

types of SAHVi , including SAHVi = D(0 , vmax
Hi

) for holonomic robots with an upper
bound on the velocity of vmax

Hi
, as well as the SAHVi for differential-drive and bicycle

(respectively car-like) robots, whose detailed derivations can be found in [11, 12].
The extension of the ORCA method to robots with non-holonomic kinematics is
based on the idea that a robot i with given kinematic constraints can be enabled by
a trajectory tracking controller to track a set of allowed holonomic velocities SAHVi

within a certain maximum error bound. Because of the enlargement of the robots’
radii by this bound, r ′

i = ri + εi and r ′
j = r j + ε j , the robots can be treated as if

holonomic. The velocity obstacles V Oτ
i | j in (3), the set ORCAτ

i | j in (4) and as a
result the set ORCAτ

i in (5) are modified by the extended radii r ′
i and r ′

j in this case.
This offers the flexibility of forming heterogeneous groups of multiple robots with
different kinematic constraints and using them together in a common coverage task.

We finally obtain the optimal holonomic velocity of robot i by projection to
ORCAτ

i ,
v∗

Hi
= argmin

vHi ∈ORCAτ
i

(‖vHi − vpref
i ‖2) , (6)

which avoids reciprocal collisions among all the robots in the neighborhood for at
least the time horizon τ but also lies as close as possible to the previously specified
preferred velocity vpref

i of (2), which represents the primary objective of coverage.
Concerning the RVO and ORCA computation, the following additional assump-

tion applies for the rest of the paper.

Assumption 4 Even though various cooperativeness ratios are supported, we set a
robot’s ratio to α = 0.5 with respect to other cooperative robots, i.e., the robots avoid
collisions in equal parts (cooperative behavior), and to α = 1 with respect to other
non-cooperative robots (non-cooperative behavior); these robots represent dynamic
obstacles, which have to be fully avoided.

3.3 Properties of the Combined Method

When combining Voronoi coverage and RVO, we have two alternatives to compose
distributed controllers. If we apply Voronoi coverage control in an outer loop at
high level, the preferred velocities vpref

i after (2) serve as inputs to the inner control
loop given by the ORCA method in (6). This is the implementation we will use

58 A. Breitenmoser and A. Martinoli

throughout Sect. 4. Alternatively, Voronoi coverage can be used as inner loop for
formation control of a group similar to [3, 13]5 and the entire group can be guided
as single entity similar to [14, 15] by RVO or ORCA in the outer control loop.

Regarding the combined method in light of the taxonomy, “awareness of oth-
ers” is implied by the Voronoi tessellation and the velocity obstacles of RVO. The
CVT-based controller realizes the shared goal of well-balanced coverage and the
cooperation behavior is expressed by α. The two coverage phases are given by the
two periods before and after convergence of the Voronoi coverage controller.

The unconstrained Voronoi coverage controller is shown in [3] to converge for a
team of cooperatively covering holonomic robots. In the constrained case (Voronoi
coverage combined with RVO), a team of cooperatively covering holonomic robots
with intragroup collision avoidance converges but stays off the centroids cVi by
(r ′

i + r ′
j)/2 in theworst case.A teamof cooperatively covering non-holonomic robots

converges after [3, 6]whenever the robotsmove closer to the centroids in each control
step (in particular, this requires bidirectional driveability of the robots). Intergroup
collision avoidance among non-cooperative robots or teams, however, can introduce
arbitrary perturbances, such that final convergence is not guaranteed.

4 Simulation of Robotic Use Cases

In this section, we finally apply the combined Voronoi coverage and reciprocal col-
lision avoidance methods from Sect. 3 in simulation,6 and evaluate the collision
scenarios from Sect. 2 for four representative robotic use cases.

4.1 Recharging Use Case

Our first use case of recharging relates to the collision scenarios (1), (2) and (4)
in Fig. 1: four robots use the combined Voronoi coverage and reciprocal collision
avoidance methods to cover a square mission space; during the process of coverage,
the robots regularly run out of power and need to recharge their batteries. A Voronoi
coverage-based method was applied to a similar application in [16], thereby focusing
on energy-awareness regardless of collision situations.

The four robots are modeled after the Khepera III robots7 as differential-drive
robots with identical parameters; only their initial battery levels differ from each
other. The robots can recharge by driving to the lower borderline of the mission
space, which is the charging area (blue region in Fig. 3a–d). The robots start in the
bottom left corner and are deployed in the mission space of 1.2 × 1.2m2. Energy

5Intragroup collision avoidance, however, is not considered in [3, 13].
6All the simulations have been conducted in the Matlab environment.
7See http://www.k-team.com/mobile-robotics-products/khepera-iii.

http://www.k-team.com/mobile-robotics-products/khepera-iii

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 59

Fig. 3 Recharging use case. Four robots deploy from the bottom left corner of the mission space.
During the coverage process, the robots leave the robot team, recharge at the lower borderline and
rejoin the team after charging. The covering robots compensate for the recharging robots while
concurrently avoiding collisions with them. No collision avoidance leads to faster convergence of
the coverage cost but also to collisions. The envelopes show 95% confidence intervals on the mean

is consumed per distance traveled and per time a robot is sensing. Sensing happens
whenever a robot applies theVoronoi coverage controller, i.e., the robot is notmoving
to, returning from or residing at the charging area.

The recharging robots are examples of “on-off” team members, during as well
as after the first phase of deployment. During deployment and after convergence,
as soon as a robot’s battery level decreases below a minimum critical value (red
robots in Fig. 3b–c), the robot leaves the team of covering robots and becomes an
external dynamic obstacle to them (transition from intragroup to intergroup collision
avoidance). The recharging robotwillmoreover become non-cooperative andwill not
help to avoid collisions with the covering robots anymore. This can also be viewed as
inherently increasing the priority of the recharging robot, i.e., the remaining covering
robots now have to give way and fully avoid collisions with that robot. However, the
covering robots as well as the recharging robots themselves remain cooperative and
still avoid collisions among each other in equal parts. Once fully charged, the robots
return to the last position at which they were located when the critical battery level
was detected, and rejoin the covering robot team.

Figure3a–d presents several snapshots from the simulation of the recharging sce-
nario. The noise in the robots’ positions is bounded by a maximum value of 0.01m.
We compare the combined Voronoi coverage and reciprocal collision avoidance

60 A. Breitenmoser and A. Martinoli

Fig. 4 Push-through (left) and sweeping (right) use cases. Left Two robots (gray) push through
human agents (blue) in a 4 × 6m2 mission space. The red points mark the start positions, the gray
lines the Voronoi cells and the trajectories are in green. Thin blue arrows represent velocities vprefi
and red arrows indicate velocities v∗

Hi
. Right Two robots at a time form a group (red and blue,

violet and yellow, orange and green) and deploy. Each of the three groups covers one of the three
Voronoi cells redundantly; the first robot in the group (red, violet, orange) executes a spiraling
sweeping pattern and the second robot moves back and forth (blue, yellow, green). In the process,
the robots have to avoid reciprocal collisions at the boundaries of their Voronoi cells and with each
other. Finally, the set of red, violet and orange trajectories and the set of blue, yellow and green
trajectories each result in complete coverage of the mission space without collisions

methods with the case where no collision avoidance is performed. Each case is
tested by 10 simulation runs, during which each robot recharges twice in average.
Without collision avoidance, the coverage cost is minimized faster and reaches lower
levels (Fig. 3f). The resulting configurations are more optimal in terms of the mini-
mization of the coverage cost in (1) since the covering robots do not need to avoid
the recharging robots. However, there occur an average total of 8 collisions during
each simulation run and 80 collisions over all runs, whereas the use of the collision
avoidance method prevents most of these collisions8 (Fig. 3e).

4.2 Push-Through Use Case

In the second use case, we simulate a heterogeneous crowd of 12 human agents
and two robots (see Fig. 4 on the left). We model the robots as the differential-
drive Pioneer 3-DX9 and assume a holonomic kinematic model for the humans.
The CVT is used as a simplified model of the human personal space. The human
agents are distributed according to theVoronoi coverage controller. This is an example
of collision scenario (5) in Fig. 1, after initial deployment, with intergroup collision

8Only a single collision occurred in a situation where a covering robot was jammed in between two
non-cooperative robots that moved in opposite directions from and to the charging area.
9See http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx.

http://www.mobilerobots.com/ResearchRobots/PioneerP3DX.aspx

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 61

avoidance and cooperative behavior. After convergence, the human agents stand at
their positions slightly apart, similar to people waiting at a bus stop. The robots
move across the mission space by pushing through the crowd; in order to reduce
disturbances of the humans, the robots follow the Voronoi graph, which represents
a maximum clearance roadmap. Thereby, both the human agents and the robots run
the reciprocal collision avoidance method at the low level with α = 0.5 for everyone.

4.3 Sweeping Use Case

The third use case relates to sweep coverage, e.g., for cleaning or inspection tasks,
and includes collision scenarios that occur during and after the first phase of deploy-
ment, with intragroup collision avoidance and cooperative behavior. It showcases the
concepts of abstractions for robot groups and hybrid coverage [8], illustrated as col-
lision scenarios (3) and (6) in Fig. 1 above. Six differential-drive Khepera III robots
form a covering team but further subdivide into groups of two. The groups deploy in
the mission space of 1.2 × 1.2m2. At convergence, the final CVT is fixed and each
of the three groups subsequently sweeps its Voronoi cell collaboratively by applying
spiraling and back-and-forth sweeping patterns (see Fig. 4 on the right). All the robots
run the reciprocal collision avoidance method with α = 0.5. The resultant redundant
coverage with two different coverage patterns in parallel presents a characteristic
outcome of combining robotic coverage and reciprocal collision avoidance.

4.4 Perturbation Use Case

The last use case looks at the perturbation that is introduced into a multi-robot sys-
tem through external dynamic obstacles. The dynamic obstacles traverse a bounded
mission space, which is covered by a robot team according to the Voronoi coverage
control law. The covering robots need to fully avoid the dynamic obstacles as well
as the enclosing borderlines of the mission space.

This use case shows a scenario for the second phase after initial deployment, with
intergroup collision avoidance and non-cooperative behavior, and is of general inter-
est for applications with adversarial pursuers or intruders. However, in this paper, we
are particularly interested in the aspect of how the inherent perturbation by dynamic
obstacles influences the coverage cost and the optimality of the robot deployment.
The configurations after convergence of the Voronoi coverage method correspond
to local minima of the coverage cost. More optimal configurations can be reached
through the perturbation of the robot team. This may also help to break off saddle
points and symmetry configurations which sometimes result from CVTs [4].

62 A. Breitenmoser and A. Martinoli

Fig. 5 Perturbation use case. Top left Start positions of the robots. The gray lines show how
much the CVT is perturbed through noise for case (i) over a simulation run. Center left Massive
perturbation of the covering robots by external dynamic obstacles (blue), moving from the bottom
to the top, for case (vi). The robots avoid the collisions while covering the mission space. Bottom
left Robots’ final configuration after a completed simulation run for case (vi). Top right Coverage
cost per time for cases (i) and (ii). Center right Coverage cost per time for cases (iii) and (iv).
Bottom right Coverage cost per time for cases (v) and (vi). The envelopes show 95% confidence
intervals on the mean. The black dash-dotted horizontal lines show the cost at start and the black
dash-dotted vertical lines at 20 s mark the time when the injection of obstacles is stopped

12 holonomic robots, similar in size to e-puck robots,10 deploy initially from
the bottom left corner. We simulate the cases with no perturbation through external
dynamic obstacles but with a maximum noise in the robots’ positions of (i) 0.01m
and (ii) 0.05m, as well as the cases with perturbation for the maximum noise in
position of 0.01m and the following settings: (iii) small obstacles and low frequency
of perturbation, (iv) small obstacles and high frequency of perturbation, (v) large
obstacles and low frequency of perturbation, and (vi) large obstacles and high fre-
quency of perturbation. The small obstacles have the same size as the robots, the
large obstacles are double the size; the high frequency (1 s−1) is twice the low fre-

10See http://www.e-puck.org.

http://www.e-puck.org

On Combining Multi-robot Coverage and Reciprocal Collision Avoidance 63

quency (0.5s−1). The injection of new obstacles is stopped in each case after half
the simulation time (20 s) to allow the robots to settle down. For each setting, 15
simulation runs were computed. Figure5 shows the simulation of the perturbation
scenario and compares perturbations through noise only with perturbations through
small or large dynamic obstacles at low or high frequency. At low noise levels of
0.01m, the robot configurations are not changed substantially. However, at increased
noise levels, such as 0.05m, the noise influences the robots’ positions and changes
the configuration, which leads to more optimal coverage cost. The same result can
be achieved through the perturbation with external dynamic obstacles. The obstacles
initiate high temporary perturbations which may stop at some point, whereas the
noise level usually remains. Note that large obstacles and high frequencies introduce
stronger perturbations, which take longer to settle down but increase chances for
reaching more optimal configurations and lower coverage cost.

5 Conclusions and Future Work

This paper motivates the combined use of coverage and collision avoidance methods
for multi-robot systems. We present a taxonomy of collision scenarios in multi-robot
coverage problems and illustrate the performance of the combined methods in simu-
lations. For our specific study, we review the Voronoi coverage control and reciprocal
collision avoidance methods, such as RVO and ORCA, and combine and apply them
to four representative robotic use cases, namely recharging during persistent cov-
erage, pushing through a human crowd, sweeping for inspection and reacting to
perturbations introduced by external dynamic obstacles.

As direct continuation of the presented work, the combined Voronoi coverage
and reciprocal collision avoidance methods are to be tested for each use case on the
real robot platforms. The study of Voronoi coverage control under the influence of
actuator and sensor noise presents another related research direction. Foremost, it
would be interesting to study further coverage and cooperation tasks in view of the
proposed taxonomy of collision scenarios.

Acknowledgments The work presented in this paper has been carried out at the Distributed
Intelligent Systems and Algorithms Laboratory at EPFL. The research leading to these results
has received funding from the European Union Seventh Framework Programme FP7/2007–2013—
Challenge 2—Cognitive Systems, Interaction, Robotics—under grant agreement No 601033—
MOnarCH.

References

1. Choset, H.: Coverage for robotics—a survey of recent results. Ann. Math. Artif. Intell. 31,
113–126 (2001)

2. Gage, D.W.: Command control for many-robot systems. In Proceedings of the Annual AUVS
Technical Symposium, vol. 10, pp. 28–34 (1992)

64 A. Breitenmoser and A. Martinoli

3. Cortés, J., Martínez, S., Karatas, T., Bullo, F.: Coverage control for mobile sensing networks.
IEEE Trans. Robot. Autom. 20(2), 243–255 (2004)

4. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algo-
rithms. SIAM Rev. 41(4), 637–676 (1999)

5. Pimenta, L.C.A., Kumar, V., Mesquita, R.C., Pereira, G.A.S.: Sensing and coverage for a
network of heterogeneous robots. In Proceedings of the IEEE Conference on Decision and
Control, pp. 3947–3952 (2008)

6. Dirafzoon, A., Menhaj, M.B., Afshar, A.: Decentralized coverage control for multi-agent sys-
tems with nonlinear dynamics. IEICE Trans. 94–D(1), 3–10 (2011)

7. Parker, L.E.: Distributed intelligence: overview of the field and its application in multi-robot
systems. J. Phys. Agents 2(2), 5–14 (2008)

8. Breitenmoser, A.:Multi-robot coverage and path planning for the inspection of curved surfaces,
Ph.D. dissertation, no. 21009, ETH Zurich (2013)

9. van den Berg, J., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time multi-
agent navigation, In Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 1928–1935 (2008)

10. van den Berg, J., Guy, S.J., Lin, M.C., Manocha, D.: Reciprocal n-body collision avoidance.
In: Proceedings of the 14th International Symposium on Robotics Research, STAR, vol. 70,
pp. 3–19 (2011)

11. Alonso-Mora, J., Breitenmoser, A., Rufli, M., Beardsley, P., Siegwart, R.: Optimal reciprocal
collision avoidance formultiple non-holonomic robots. In: Proceedings of the 10th International
Symposium on Distributed Autonomous Robotic Systems, STAR, vol. 83, pp. 203–216 (2013)

12. Alonso-Mora, J., Breitenmoser, A., Beardsley, P., Siegwart, R.: Reciprocal collision avoidance
for multiple car-like robots, In: Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 360–366 (2012)

13. Tan, J., Xi, N., Sheng, W., Xiao, J.: Modeling multiple robot systems for area coverage and
cooperation. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pp. 2568–2573 (2004)

14. Santos, V.G., Campos, M.F.M., Chaimowicz, L.: On segregative behaviors using flocking
and velocity obstacles. In: Proceedings of the 11th International Symposium on Distributed
Autonomous Robotic Systems, STAR, vol. 104, pp. 121–133 (2014)

15. He, L., van den Berg, J.: Meso-scale planning for multi-agent navigation. In: Proceedings of
the IEEE International Conference on Robotics and Automation, pp. 2824–2829 (2013)

16. Derenick, J., Michael, N., Kumar, V.: Energy-aware coverage control with docking for robot
teams. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3667–3672 (2011)

Distributed Safe Deployment of Networked
Robots

Reza Javanmard Alitappeh and Luciano C.A. Pimenta

Abstract In real applications, it is always important to consider the generation of
safe paths for robots during deployment or in future excursions through the envi-
ronment. In order to include safety in the problem of deploying mobile robotic net-
works, we propose a new strategy based on the locational optimization framework.
Our approach models the optimal deployment problem as a constrained optimization
problemwith inequality and equality constraints. This optimization model is built by
incorporating into the locational optimization framework new features such as the
classical Generalized Voronoi Diagram (GVD) commonly used as a safe roadmap in
the context of path planning and a new metric to compute distance between robots
and points in the environment. This new metric induces a new Voronoi partition
of the environment. Furthermore, inspired by the classical Dijkstra algorithm, we
present a novel efficient distributed algorithm to compute solutions in complicated
environments.

Keywords Mobile robotic network · Locational optimization · Deployment
problem · Voronoi partitioning

1 Introduction

According to [4], a system composed of a group of robots that sense their own
position, exchange messages following a communication topology, process infor-
mation, and control their motion is called a robotic network. One can find several
applications for this type of system such as surveillance, sensing coverage, environ-
mentmonitoring, search and rescue, etc. An important question to answerwhen using
a robotic network is where each robot should be placed in the environment. In the

R.J. Alitappeh (B) · L.C.A. Pimenta
Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte,
MG 31270-901, Brazil
e-mail: rezajavanmard64@gmail.com

L.C.A. Pimenta
e-mail: lucpim@cpdee.ufmg.br

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_5

65

66 R.J. Alitappeh and L.C.A. Pimenta

present work we show a distributed solution to this question which is refereed as
the deployment problem [4]. The solution is distributed in the sense that each agent
depends only on information from a small set of other agents called neighbors to
compute its actions. Besides, this set of neighbors is dynamic since it might change
as the system evolves. As pointed by [7], this allows for scalability and robustness.
We are interested in finding optimal deployment configurations. We consider that
a configuration is optimal if it is a minimizer of a functional encoding the quality
of the deployment. This quality of deployment is related to the time of response of
the network after an event that needs servicing happens in the environment. This
time is a function of the distance of the agents from the event and the agent capa-
bilities (speed, sensor field of view, etc.). In order to minimize the distance between
agents and events, our approach applies the idea of partitioning the environment
into subregions which are then assigned to specific agents. Therefore, each agent is
responsible for attending the events in its corresponding subregion. Differently from
previous works found in the literature we are also concerned with the incorporation
of some safety constraints into the deployment. This property guarantees such a safe
movement for the robots, with maximum distance from the obstacles, in the environ-
ment. The paper is organized as follows: in the next section we present some related
work. In Sect. 3 we present some useful tools that will be considered in the rest of the
paper. The proposed optimization model and an efficient distributed solution to the
problem are explained in Sects. 4 and 5. Implementation results are shown in Sect. 6.
Finally, conclusions are presented in Sect. 7.

2 Related Work

Our approach builds on the work in [7]. The authors of this work present a distributed
and asynchronous approach for optimally deploying a uniform robotic network in
a domain based on a framework for optimized quantization derived in [11]. Each
agent (robot) follows a control law, which is a gradient descent algorithm that min-
imizes the functional encoding the quality of the deployment. Further, this control
law depends only on the information of position of the robot and of its immediate
neighbors. Neighbors are defined to be those robots that are located in neighboring
Voronoi cells. Besides, these control laws are computed without the requirement of
global synchronization. The functional also uses a distribution density functionwhich
weights points or areas in the environment that are more important than others. Thus
it is possible to specify areas where a higher density of agents is required. This is
important if events happen in the environment with different probabilities in different
points. Furthermore, this technique is adaptive due to its ability to address changing
environments, tasks, and network topology. Different extensions of the framework
devised in [7] have been proposed in the literature. The problem of considering
time-varying distribution density functions was studied in [13] to solve a task of
simultaneous coverage and intruders tracking. Deployment and exploration in non-
convex environments was considered in [3, 5, 10]. In [12], heterogeneous robots in

Distributed Safe Deployment of Networked Robots 67

a non-convex environments were taken into account. Where, instead of point robots,
disc shaped robots were considered. Some works also considered the discretization
of the environment by grid cells to facilitate computation in complex environments.
In [9] the authors consider a discrete partitioning and coverage optimization algo-
rithm for robots with short-range communication. In this case a discrete setup was
presented in which a discrete deployment functional is defined. The authors proved
that their algorithm converges to a subset of the set of centroidal Voronoi tessellations
(CVT) in discrete formulation, named pairwise-optimal partition. Gossip commu-
nication was used to allow information exchange among the agents. Similarly, [14]
describe an algorithm to solve the deployment problem in a discrete setup. In [2] the
environment was also discretized to allow the numerical computation of the environ-
ment partition (geodesic Voronoi diagram), but in this case the context was the one of
generating an approximation to the continuous setup. In the same spirit of approxi-
mating the continuous setup, the authors of [1] discretized the environment and used
a graph based approach inspired by Dijkstra algorithm [8] to directly compute the
proposed control law in an efficient manner in general Riemannian manifolds with
boundaries.
Statement of Contributions: The present paper further extends the works in [1, 12]
to include safety. By merging different Voronoi diagrams, including the well known
Generalized Voronoi Diagram (GVD) [6] (traditionally used as a roadmap in path
planning) and by considering a constrained optimization problem in the context of
the Locational Optimization Framework, we can generate safe routes for the robots
during deployment and also after deployment when servicing a given point of the
environment. We propose a new Voronoi Diagram which is built according to a new
metric that takes into account shortest paths that traverse the GVD. Moreover, in
order to consider real world environments we devise a new efficient algorithm to
compute the next actions of the robots in the same spirit of the one in [1].

3 Background

In this sectionwe explain the basic tools whichwill allow us to define our deployment
problem in terms of a constrained optimization problem. These tools are the GVD
and the locational optimization framework.

3.1 Generalized Voronoi Diagram

Let the set of obstacles QO = {QO1, . . . ,QOn} in a planar configuration space be
called sites. This set induces a structure called Generalized Voronoi Diagram (GVD).
Q indicates to configuration space and a set of points in the free configuration space,
Qfree, is defined as the Voronoi region of the obstacle QOi, Vi, if these points are

68 R.J. Alitappeh and L.C.A. Pimenta

closer to QOi than to all the other sites. Given an obstacle QOi, the generalized
Voronoi region, Vi, is the closure of the set of points closest to QOi [6].

Vi = {q ∈ Qfree| d(q,QOi) ≤ d(q,QOj),∀j �= i} , (1)

where d(q,QOi) shows the minimum distance between QOi and q. The two-
equidistant surjective surface, Li,j is the set of points equidistant to two obstacles
QOi and QOj with distinct gradient vectors:

Li,j = {q ∈ Q|d(q,QOi) = d(q,QOj) and ∇d(q,QOi) �= ∇d(q,QOj), j �= i}.
(2)

The points in Li,j that are part of the GVD are those in whichQOi andQOj are the
closest obstacles. Therefore we can define the set:

Vi,j = {q ∈ Li,j| d(q,QOi) ≤ d(q,QOh)}. (3)

This last definition allows us to formally define the GVD:

GV D =
⋃

i

⋃

j

Vi,j. (4)

An interesting feature of the GVD is that it can be used as a roadmap (RM) for path
planning (Fig. 1a).

d(q, 4)
q

4

2

1d(q, 3)

3

0 20 40 60 80
0

10

20

30

40

50

60

x

y

(a) (b)

Fig. 1 A map with obstacles, QOi, GVD and a simple path on the GVD, to show its property to
be used as a roadmap and a density function which centered at top-right of the map. a Green line
shows the GVD. q is an equidistant point between sitesQO3 andQO4. Dash line illustrates a path
between two arbitrary points, (pi, pj). b An example of Gaussian density function in a 2D map.
A = 7, (x0, y0) = (67, 54), σx = σy = √

30

Distributed Safe Deployment of Networked Robots 69

3.2 Locational Optimization Based Deployment

Let Ω ⊂ R
2 be the map of the environment. Let P = {p1, . . . , pn} be the configura-

tion of n robots, and f (d(q, pi)) indicates the cost of servicing an event at point q
by robot i. This is related to the spatial distance between q and pi as d(q, pi) repre-
sents this distance and f is a smooth strictly increasing function. Suppose we have
access to a density function φ : Ω → R+ which gives weights to different points in
Ω to reflect the probability of having events at each point (See Fig. 1b). Considering
also the tessellation W = {W1, . . . , Wn} so that ∪n

i=1Wi = Ω and I(Wi) ∩ I(Wj) =
∅, ∀i �= j, where I(·) represents the interior of a given region, it is possible to
define the following deployment functional that measures the quality of the robotic
deployment [7]:

H(P, W) =
n∑

i=1

H(pi, Wi) =
n∑

i=1

∫

Wi

f (d(q, pi))φ(q)dq , (5)

The objective of the Locational Optimization based framework is to drive the
robots to a configuration that minimizes (5). In [1], it is considered the case where f
is the square function and d is the Euclidean distance. The authors of [1] proposed
a distributed control law that guides these robots to the minimum which coincides
with the so-called Centroidal Voronoi Tessellation (CVT).

In the present work, we further extend this framework to incorporate safety.

4 Safe Deployment Modeling

In this section we define the safe deployment problem as an optimization problem
in the context of the Locational Optimization Framework. Consider the bounded
free configuration spaceQfree ⊂ R

2. Let P = {p1, . . . , pn} be the configuration of n
robots, where pi ⊂ Qfree. The problem to be solved is the one of finding distributed
robotic actions, in the sense that only robots in the neighborhood of robot i will
be taken into account, that leads the system to a local solution of the constraint
minimization problem given below:

min
pi

H(P, GGV D), s.t.

{
yi1(pi) ≤ 0 , . . . , yim(pi) ≤ 0

h(pi) = 0
(6)

where y() and h() declare inequality and equality constraints respectively. The next
sections will explain the meaning of the terms used in the defined problem and from
this explanation it should be clear how safety is then incorporated in the locational
optimization framework.

70 R.J. Alitappeh and L.C.A. Pimenta

New Metric:TheGeodesic distance is ametricwhich ismore realistic thanEuclidean
distance in non-convex environments. This distance is used in the deployment func-
tional presented in [12] as the general function d, as defined in the last section. In this
case, the inducedVoronoi Tessellation is the so-called geodesic Voronoi Tessellation.
Now, we propose a further extension on this metric which will be called Geodesic
Distance Based on GVD. This distance function corresponds to the length of the
shortest path from two points when using a GVD as a roadmap. A clear example of
this path is shown in Fig. 1a, where dash line between a pair (pi, pj) defines the whole
path: {(pi, xi), (xi, xj), (xj, pj)}. In general, we can divide this path into three parts:
a path from the initial point to GVD (Path Init_To_GVD), a path from a point on GVD
to another point on GVD (Path GVD_To GVD), and a path from GVD to the goal point
(Path GVD_To_Goal). The Geodesic Distance Based on GVD is then defined as:

d(pi, pj) = W1.||pi − Πi(GVD)|| + W2.g(Πi(GVD),Πj(GVD)) (7)

+W1.||pj − Πj(GVD)|| ,

where g(xi, xj) gives the shortest distance between two points xi and xj on the
GVD, if the motion is constrained to remain on the GVD, Πi(GVD) represents
the projection of the point pi onto the GVD which corresponds to the closest point
on the GVD to pi, and W1 and W2 are the weights of each part of the path. For exam-
ple, by assigning a big value to W1 the cost of Path Init_To_GVD or Path GVD_To_Goal

can be increased. These weights help to adjust the cost of two portions of the path
so that it is worth first moving to the GVD as soon as possible and perform most of
the motion traversing it. As safety regarding the existing obstacles is related to the
distance the robot keeps from them and the GVD provides a roadmap which keeps
equidistance from the closest obstacles, we can say that this metric can introduce
safety in the deployment solution. In the minimization problem defined in (6) the
cost function is defined according to the new metric, d:

H(P, GGVD) =
n∑

i=1

∫

GGVDi

d(q, pi)
2φ(q)dq , (8)

where GGVD, (Geodesic Generalized Voronoi Diagram) will be defined as the
Voronoi Tessellation induced by the new metric and W1 >> W2.

Now, we can also describe the equality constraint h(pi) = 0. This function is
defined as the difference between the distance functions d(pi,QOi) and d(pi,QOj)

in which QOi and QOj are the closest obstacles to robot i. Thus, this means the
robots must be deployed along the GVD.

Collision avoidance: Since the focus of this work is on safety, besides the static
obstacles we should also take into account the possible collisions between robots.
Apractical problemof the unconstrainedminimization executed by the pure gradient-
descent law in [7] is that actual robots are not point-robots. Thus, we propose to use
here the same strategy presented in [12]. Basically, in this work the basic results for
point robots are extended to robots that can be modeled as circular disks, each one

Distributed Safe Deployment of Networked Robots 71

with radius rpi = rpj , ∀i, j. This is done by incorporating the inequality constraints
yik ≤ 0 in (6), so that the robots remain inside their so-called free Voronoi region.
For details refer to [12].

5 Proposed Solution

In order to solve the safe deployment problem in an efficient manner we propose
to solve a discrete approximation of the continuous setup shown in the last section.
The proposed algorithm builds upon the work in [1] which presents a modified
Dijkstra algorithm able to compute simultaneously at each iteration the geodesic
Voronoi diagram and the robot next actions in the case of deployment on Riemannian
manifolds with boundaries.

5.1 Discrete Approximation

Consider the 2-dimensional configuration space. The graph G = {V(G), E(G), CG}
is induced from the uniform square tiling of the configuration space by considering
an 8-connectivity neighborhood (See Fig. 2a). The set of vertices (nodes) is given
by V(G), the set of edges by E(G) ⊆ V(G) × V(G), and a cost function is denoted
by CG : E(G) → R

+. It is important to mention that a node of the graph is placed in
grid cells located inside Qfree. Moreover, the cost of each edge is computed based
on the defined new metric as will be clarified later. We will also use the notation pi

to denote the node that contains the position of robot i, pi, and the operator P(s) to

(a) (b)

Fig. 2 Representing a discrete grid based map and the technique of modeling GVD based on graph
nodes and edges. a Discretization and graph representation. b The nodes g, h, and i are in the set
VGV D(G)

72 R.J. Alitappeh and L.C.A. Pimenta

return the position of the center of the grid cells. Therefore, P(pi) returns the center
of the cell that contains robot i. Furthermore, we will useNG(pi) as the set of graph
vertex neighbors: NG(pi) = {q ∈ V(G)

∣∣ [pi, q] ∈ E(G)}.
We compute the GVD before discretizing the environment into cells, allowing the

GVD to be independent from the discretization resolution. The GVD is embedded
in our graph by labeling the set of grid cells that contain a piece of the GVD as the
approximate GVD, VGVD(G). Now, we can define the edge cost function:

CG(i, j) =
{

W2 · c(i, j), if i , j ∈ VGVD(G)

W1 · c(i, j), otherwise ,
(9)

where c(i, j) is given by the Euclidean distance between the centers of the cells i and
j. Since it is our objective to deploy and also move the robots along the GVDwe will
use W1 >> W2. For instance, see an example in Fig. 2b.

The shortest path between two vertices s and q corresponds to the sequence of
nodes (consequently edges), {s, v1, v2, . . . , vm, q}, connecting this pair such that
the sum of the edge costs is minimum. We will define this minimum cost sum as
d∗(P(s), P(q)):

d∗(P(s), P(q)) = CG(s, v1) + CG(v1, v2) + . . . + CG(vm, q). (10)

This allows us to define the discrete version of the deployment functional:

H∗ =
n∑

i=1

∑

q∈GGVD∗
i

d∗(P(q), P(pi))
2φ(P(q))w̄ , (11)

where GGVD∗
i corresponds to the set of grid cells so that d∗(P(q), P(pi)) is less than

d∗(P(q), P(pj)), ∀j �= i, and w̄ is a constant related to the integral element of area.
Assuming that the robots are located at the center of the grid cells, i.e. P(pi) = pi,
we can compute the gradient of H∗:

∂H∗

∂pi
=

n∑

i=1

∑

q∈GGVD∗
i

2zpi,qd∗(P(q), P(pi))φ(P(q))w̄ , (12)

where zpi,q is the vector with direction given by the first edge of the shortest path
between pi and q, i.e. the direction of P(pi) − P(v1), and magnitude given by W2 if
pi , v1 ∈ VGVD(G) or W1 otherwise. Based on last equation we propose a gradient
descent based approach in the next subsection.

Distributed Safe Deployment of Networked Robots 73

5.2 Distributed Algorithm

The problem defined in (6) has some constraints, which means that our solution
should also take these constraints into account to define the next action. The collision
avoidance inequalities are implemented by first verifying if any of these constraints
are active, i.e., yik = 0 for some k. If this is the case, it means there are at least two
robots in the imminence of a collision, thus the involved robots will be allowed to
move only if the desired direction ofmotion is orthogonal or has a negative projection
onto the segment joining the two robot centers. The equality constraintwhich enforces
the robots to be deployed along the GVD is imposed in our solution by means of
two steps. If a robot is not in a cell that is part of the VGVD the next action for this
robot is to move towards the closest cell in VGVD which is not occupied by any other
robot at that time. This can be considered as the first step of the proposed approach.
The second step is activated when the robot enters a cell which is part of the VGVD.
Now, the next action of this robot is a motion along a straight line from the current
grid cell to a neighbor cell which is also part of theVGVD. This next cell is computed
based on the gradient descent direction given by the negative of the expression in (12).
As in [1] we present an algorithm that computes the gradient descent direction and
the Voronoi tessellation, GGVD∗, simultaneously in every time-step by means of a
wavefront propagation procedure similarly to the process in Dijkstra’s algorithm [8].
The wavefront in a given iteration represents the set of points equidistant to the
start node also called source. In our case we consider wavefronts emanating from
multiple sources (given by the locations of the robots). As the wavefronts propagate
two operations are executed: (i) graph vertices in the wavefronts are associated to
robots (sources) at shortest distance (according to the proposed metric) giving rise
to the Voronoi regions; and (ii) terms of the summation in (12) associated to vertices
in the wavefronts are added to a variable responsible to store the gradient descent
direction. The placeswhere thewavefronts collide determine theVoronoi boundaries.
The ideas previously discussed are organized in the form of the Algorithms 1 and 2.
We consider these are the algorithms running in robot i.

Termination: The commands in while loop in Algorithm 1 are executed until ter-
mination criteria are met. An interesting criteria is the observation of the variation
of positions of robots in the most recent iterations. If this variation is below a given
threshold the algorithm can terminate.

Complexity: It is clear that the bottleneck of our iterative algorithm is the function
described in Algorithm 2. Since this function runs exactly in the same format of
the Dijkstra algorithm, the graph vertices have a constant degree, and a heap is
maintained as a priority queue to store the unvisited nodes, the running time is given
by O(VG log(VG)) (where VG is the number of vertices in the graph).

74 R.J. Alitappeh and L.C.A. Pimenta

Algorithm 1: Distributed main algorithm running in robot i.
Input: G,VGVD, φ, pi
G is the graph, VGVD is the approximate generalized Voronoi diagram, φ is the density
function, pi ∈ VG is robot i initial location (graph node).
Output: pi, o
pi is robot i final location and o : VG → {1, 2, . . . , n} is the discrete tessellation map GGVD∗
as computed by robot i.

1 while (Termination criteria is not met) do
2 Broadcast position pi //Robot i sends its position to other robots.
3 Ni ← Get_Location_of _Neighbor_Robots() //Robot i receives location of other robots.
4 N ∗

i ← Ni ∩ VGVD // Set of neighbors already in the VGVD.
5 if pi /∈ VGVD then //check if the robot is not on the VGVD.

Set the current direction of motion as the one towards the closest cell in VGVD which
is not occupied by another robot

else
Call Modified_Dijkstra(G,VGVD, φ, pi,N ∗

i) //Compute both the next action (cell)
p′

i and the GGVD∗ as seen by robot i.
Set the current direction of motion to reach p′

i

6 if (There is no active inequality constraint) OR (There is an active inequality constraint
AND current direction of motion is not obstructed by another robot then //collision
avoidance constraint.

7 Move according to the current direction of motion
else

8 Stop

6 Results

In this section we illustrate our approach by simulating the deployment of robots in
two different environments. Videos are available at:
http://www.cpdee.ufmg.br/~coro/movies/DARS2014/

Simple map: A simple room with some obstacles and size 3.79 × 2.91m (or image
with 728 × 582 pixels) is the input map. By using a discretization resolution equal
to 10 pixels, we have a grid map with 72 × 58 cells. Discretization rate can be
defined based on the real size of robot and map. Density function is defined by
a Gaussian function with parameters: (x0, y0) = (67, 54), σx = σy = √

30. In this
experiment 5 robots are considered. By observing robots’ movement during deploy-
ment, it is evident at the beginning, two robots have a largeVoronoi regionwhen other
robots do not have it (See Fig. 3b, c). After some iterations the decrease/increase of
size of large/small Voronoi regions contribute to minimize the cost function as it is
shown in Fig. 3a.

Office-like map: In the second experiment, the method was tested on a more com-
plicated map with size 40.0 × 60.0m and grid graph size of 80 × 120. Initially,
some of the robots are on the GVD and others are not. We define density Gaussian
function as: (x0, y0) = (10, 110), σx = σy = √

50. Because of the large input map,

http://www.cpdee.ufmg.br/~coro/movies/DARS2014/

Distributed Safe Deployment of Networked Robots 75

Algorithm 2: Modified_Dijkstra()function.
Input: G,VGVD, φ, pi,N ∗

i
G is the graph, VGVD is the approximate generalized Voronoi diagram, φ is the density
function, pi ∈ VG is the current robot i location (graph node), and N ∗

i is the set of locations
of other robots already in VGVD.
Output: p′

i, o
p′

i is the next cell for robot i and o : VG → {1, 2, . . . , n} is the discrete tessellation map
GGVD∗ as computed by robot i.

1 Initiate d∗: d∗(v) ← ∞, for all v ∈ V(G) // New metric distance.
2 Initiate o: o(v) ← −1, ∀v ∈ V(G) // Tessellation.
3 Initiate η: η(v) ← ∅, ∀v ∈ V(G) // robot graph vertex neighbor. η : V(G) → V(G)

4 Ii ← 0 // The gradient descent of the discrete functional.
5 foreach i ∈ pi ∪ N ∗

i do
6 d∗(pi) ← 0
7 o(pi) ← i
8 foreach q ∈ NG(pi) do // For each graph vertex neighbor of pi
9 η(q) ← q

10 Q ← V(G) // Set of unvisited nodes.
11 while (Q �= ∅) do
12 q ← argminq′∈Q d∗(q′) // Maintained by a heap data-structure.
13 Q ← Q − q // Remove q from Q
14 k ← o(q)

15 s ← η(q)

16 if (s != ∅) AND (k == pi) then // Equivalently, q is not a vertex occupied by a robot
and q ∈ GGVD∗

i .
17 Ii ← Ii + φ(q) × d∗(q) × (P(s) − P(pi))

18 foreach w ∈ NG(q) do // For each graph vertex neighbor of q
19 d′ ← d∗(q) + CG(q, w) //relaxation.
20 if d′ < d∗(w) then
21 d∗(w) ← d′
22 o(w) ← k
23 if (s != ∅) then
24 η(w) = s

25 p′
i ← argmaxu∈NG(pi)∩VGVD

(P(u)−P(pi))
‖P(u)−P(pi)‖ · Ii // Choose next action as the cell in VGVD best

aligned with the gradient descent direction.

we consider three groups with two robots in each one. They start their movement
from three different parts of the map. Figure4a shows the final positions.
Figure4b illustrates robot trajectories and the evolution of the deployment func-
tional, which is minimized as desired is depicted in Fig. 4c.

76 R.J. Alitappeh and L.C.A. Pimenta

0 10 20 30 40 50 60 70 80 90 100
0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

H
* f

un
ct

io
n

va
lu

e
(a) (b) (c)

Fig. 3 Snapshots when running the proposed algorithm for 5 robots. a H∗ function converged after
65 iterations. b iter1. c iter65

1

2

3

4

5

6

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

Iteration

H
* f

un
ct

io
n

va
lu

e

(a) (b) (c)

Fig. 4 Result of running the algorithm on office-like map. a iter50. b Robot trajectories in the
office-like environment. c H∗ function converged after 50 iterations

7 Conclusion

We addressed the problem of deriving optimal distributed control laws to deploy
robotic networks in complex environments safely. The deployment problem is trans-
lated to a constrained optimization problem so that a deployment functional defined
with the use of a new distance function must be minimized while satisfying con-
straints of two types: (i) inequality constraints for inter-robot collision avoidance,
and (ii) an equality constraint to enforce the robots to be deployed at the generalized
Voronoi diagram of the environment for maximizing distance from static obsta-
cles. It is also interesting to mention that the proposed framework can also be used
with other roadmaps different from the GVD. We presented a distributed algorithm
strongly based on the one proposed in [1] which allows for efficient computation of
a discrete solution for the discrete approximation of the problem. Simulations were
also presented to illustrate the proposed method performance.

Acknowledgments We gratefully acknowledge support from CNPq and FAPEMIG.

Distributed Safe Deployment of Networked Robots 77

References

1. Bhattacharya, S., Ghrist, R., Kumar, V.: Multi-robot coverage and exploration on Riemannian
manifolds with boundaries. Int. J. Robot. Res. 33(1), 113–137 (2013)

2. Bhattacharya, S., Michael, N., Kumar, V.: Distributed coverage and exploration in unknown
nonconvex environments. In: Proceedings of the 10th International Symposium on Distributed
Autonomous Robotics Systems, pp. 1–14. Springer (2010)

3. Breitenmoser, A.: Voronoi coverage of non-convex environments with a group of networked
robots. In: The IEEE International Conference on Robotics and Automation (ICRA), pp. 4982–
4989. IEEE, Anchorage, Alaska (2010)

4. Bullo, F., Cortés, J., Martinez, S.: Distributed Control of Robotic Networks: A Mathemat-
ical Approach to Motion Coordination Algorithms. Applied Mathematics Series. Princeton
University Press, Princeton (2009)

5. Caicedo-Nunez, C.H., Zefran, M.: A coverage algorithm for a class of non-convex regions. In:
Proceeding of the IEEE Conference on Decision and Control, pp. 4244–4249 (2008)

6. Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L.E., Thrun, S.:
Principles of Robot Motion: Theory, Algorithms, and Implementation. MIT Press, Boston
(2005)

7. Cortes, J., Martinez, S., T.K., Bullo, F.: Coverage control for mobile sensing networks. IEEE
Trans. Robot. Autom. 20(2), 243–255 (2004)

8. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische mathematik 1(l
959), 269–271 (1959)

9. Durham, J.W., Carli, R.: Discrete partitioning and coverage control for gossiping robots. IEEE
Trans. Robot. 28(2), 364–378 (2012)

10. Haumann, D., Breitenmoser, A., Willert, V., Listmann, K., Siegwart, R.: DisCoverage for non-
convex environmentswith arbitrary obstacles. In: Proceeding of IEEE International Conference
Robotics Automation, pp. 4486–4491 (2011)

11. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
12. Pimenta, L.C.A., Kumar, V., Mesquita, R.C., Pereira, G.A.S.: Sensing and coverage for a

network of heterogeneous robots. In: IEEE Conference on Decision and Control 2, pp. 3947–
3952. IEEE, Cancun, Mexico (2008)

13. Pimenta, L.C.A., Schwager, M., Lindsey, Q., Kumar, V., Rus, D., Mesquita, R.C., Pereira,
G.A.S.: Simultaneous coverage and tracking (SCAT) of moving targets with robot networks.
In: Algorithmic Foundation of Robotics VIII, Springer Tracts in Advanced Robotics 57, 85–99
(2010)

14. Yun, S.k., Rus, D.: Distributed coverage with mobile robots on a graph: locational optimization
and equal-mass partitioning. Robotica 32(02), 257–277 (2013)

MarSim, a Simulation of the MarsuBots Fleet
Using NetLogo

David Leal Martínez and Aarne Halme

Abstract The Marsubots fleet is an heterogeneous robot fleet consisting of Marsus
andMotherbots, the purpose of this fleet is to explore previously unexplored areas as
well as partially explored areas or areas that have suffered alterations. In order to be
able to explore large areas such as large buildings and open spaces, the robots need to
recharge their batteries from the Motherbot’s recharging bay. This paper focuses on
describing the simulation environment MarSim that has been created using NetLogo
to model the fleet in order to be able to use tools like Genetic Algorithms to refine
the parameters that have been identified as key parameters for the robots to complete
the task at hand successfully, specially after a large amount of recharge cycles.

Keywords Distributed robotics · MarsuBots · NetLogo · Power management ·
Recharging

1 Introduction

Creating a map with multiple robots has been in roboticists minds for a while and
already suitable algorithms to create and merge the maps created by different robots
have been created. Now in order to take this knowledge into the field, some constrains
have to be taken into account, such as power management. While mapping, robots
will eventually run out of power and they will have to either stop mapping to go
and re-charge themselves or need a re-charging unit go and re-charge them before
or after they run out of power.

D. Leal Martínez (B) · A. Halme
Department of Automation and Systems Technology, Aalto University School of Electrical
Engineering, Otaniementie 17, Espoo, Finland
e-mail: david.leal@aalto.fi

A. Halme
e-mail: Aarne.Halme@aalto.fi

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_6

79

80 D. Leal Martínez and A. Halme

1.1 The Simulator and the Fleet Behind It

In this paper an approach to this recharging problem will be shown with a model
done in NetLogo multi agent simulator. The simulation is based on the MarsuBots
robot society built at the Automation and Systems Technology Laboratory of Aalto
University. It consists of a Mother Robot, which is a Tank-like robot that can host
up to 3 smaller Marsu robots inside, and a fleet of 6–8 Marsu robots. The Mother
Robot orMotherbot (MB) has the capability of carryingMarsus inside of it, charging
their batteries, climbing stairs with robots inside as done in [4] and has higher com-
puting power and sensor capabilities than the smaller Marsus as described in [5]. The
Marsu robots are smaller two wheeled robots that have recently been upgraded to
run on a Beaglebone board capable of serial communications, Ethernet andWi-Fi for
network/internet access, i2c bus and can run at 1GHz (2000 MIPS). Marsus have a
sensor set including a Laser range finder, a camera, 4 ultrasonic sensors and encoders
on the wheels for odometry, but they also have the ability to re-charge another unit
via the recharging port. In Fig. 1 a Marsu unit can be seen exiting the Motherbot
via the front ramp. The fleet of Marsus has been the testbed of bearing-only SLAM
methods for simultaneous localization and mapping as reported in [3].

A fleet of robots is usually limited by size of their batteries and their ability to
recharge them, which is normally done in recharging stations or battery swapping
techniques. The MarsuBot fleet has been designed to minimize this limitation by
having the Motherbot behave as a moving recharging station, this way allowing the
fleet to explore spaces as long as the reserves of the Motherbot are not depleted.

Fig. 1 Marsu unit leaving the MB via the front ramp

MarSim, a Simulation of the MarsuBots Fleet Using NetLogo 81

In Chap.2 we will discuss the simulation model, in Chap.3 the results acquired
and in the 4th chapter the future implementation of this algorithm in the real fleet.

2 Simulation

In this chapter the simulation model implementation as well as the algorithms used
will be presented starting with a basic introduction to the NetLogo multi-agent sim-
ulator and the general scenario being simulated, followed by the description of the
state machine and its corresponding states.

2.1 NetLogo

Net logo is a multi-agent programmable modeling environment popular for both
teaching and implementing real life multi-agent scenarios. It has been authored by
Uri Wilensky and developed at the CCL and its available free of charge. For more
information refer to [7]. In the NetLogo environment, the agents are divided into
turtles, patches, links and the observer. In this model only turtles (robots being either
Marsus or MB) and patches (forming the grid representing the world in which the
turtles live and act) will be used. In the simulation every Marsu is shaped like an
arrow, and has its own unique color assigned randomly every time a simulation is
ran and the MB is represented by a gray colored tank that will show colored bars
inside of it representing how many Marsus are inside. In Fig. 2 a sample run can be
seen depicting how the Marsus look, as well as the MB and what the patches color
mean.

2.2 Scenario

In this model the goal for the robots is to be able to map the whole office environment
without running out of energy while avoiding going through areas that other robots
have already discovered and more importantly avoiding targeting the same temporal
goal as otherMarsus. As they travel throughout the world, the robots will be scanning
their surroundings up to 5 patches away from themselves (this way simulating using
a laser rangefinder with limiting ranging capability) and marking those as explored
space by turning the color of the cells from black (empty space) to either green
(explored space) or yellow (explored wall). The Exploration method used by the
robots is to first define all the existing frontier cells (a frontier cell is a cell that is in
the border between explored and non explored space as defined and used by [2]) then
choose one of those cells as its target, plan a path to that cell avoiding walls,
follow that path to the target sowhen reached anew targetwill be chosen.This cycle
will continue until either the whole space is discovered or theMarsu’s battery reserve

http://dx.doi.org/10.1007/978-4-431-55879-8_2
http://dx.doi.org/10.1007/978-4-431-55879-8_3

82 D. Leal Martínez and A. Halme

Fig. 2 20 Marsus starting to
explore an unknown
environment. The MB is
shown in the center of the
picture as the gray tank,
while the Marsus are the
arrow shaped agents with
different colors. The black
patches represent unexplored
space while the gray ones
unexplored walls, green
patches are already explored
space, yellow ones already
explored walls, magenta
patches are frontier patches
and the multi colored patches
are the goal patches of
Marsus with matching colors

Table 1 Multi robot
exploration algorithm

State Action

1 Define frontier cells

2 Choose frontier cell

3 Plan path

4 Follow path

5 Go back to MB

6 Queue

7 Recharge

falls bellow the defined threshold in which case the robot will then go back to
the MB, queue if needed, recharge batteries and then continue using the same
exploration strategy. The state machine depicting the flow of the Marsu’s behavior
is presented in Table1.

The Motherbot (MB) is considered to have a unlimited energy storage and can
host up to three Marsus inside recharging at any given time.

2.2.1 Define Frontier Cell

A frontier cell is defined to be a cell that has at least one neighboring cell being
undiscovered space, in the simulation this is achieved by asking all patches with
undiscovered neighbors (black colored patches) to mark themselves as frontier cells
and change their color to magenta as can be seen in Fig. 2.

MarSim, a Simulation of the MarsuBots Fleet Using NetLogo 83

2.2.2 Choose Frontier Cell

To choose a frontier cell, a Marsu looks to the cell that will provide the most utility
for it. The total utility Ut is calculated by subtracting the cost of reaching the frontier
cell Dc from the utility gained from reaching that goal cell Uc.

Ut = Uc − Dc; (1)

Dc is measured in amount of cells between the goal and the current standing point,
and both Ut and Uc are variables that are being studied in this research and will be
commented in the results section.

After calculating the Ut for all frontier cells, the Marsu will then choose a target
cell with the highest value by marking that square with its own color.

Once a Marsu has chosen a cell, its will alter the utility of the frontier cells
surrounding it in the scan radius R, this way preventing other Marsus from choosing
cells too close and spreading more evenly the exploration task as can be seen on
Fig. 3 a similar approach as the one used in [2].

Fig. 3 Marsus moving in an unconstrained environment to demonstrate the algorithm used to
choose frontier cells and spread evenly in the exploration effort

84 D. Leal Martínez and A. Halme

2.2.3 Plan Path

In order for the robot to travel from the actual cell to the already chosen frontier cell,
a path must be planned. The strategy used to plan the path is to choose the lowest
cost path, in order to find it, we first need to note that in this particular simulation the
cost to travel from any cell to another is always 1 as long as neither of them is a wall.
As the map is growing all the time by all the robots that are going into unexplored
space it would be unwise to have static information about the cost to go from one
cell to another, so the approach taken is that every time a robot needs to plan a path,
it will calculate the cost by flooding the cost from the goal all the way into the
actual position of the robot by making use of Bellman’s principle of optimality [1].
Flooding consists of assigning a value of cost zero to the goal, and then that cell
will ask all of its neighboring cells to set their cost to the cost of itself increased
by 1, and ask those cells to ask their neighbors to repeat the process by asking their
neighbors that are not walls and that dont have a value lesser than themselves (they
would be the neighbors who were also neighbors to the goal in this first case) to do
the same and do this process until the cell where the robot is standing get a value
assigned, at this point the algorithm stops and the robot has a single path to follow
by simply going to the neighbor with the smallest cost every single step. In many
situations the robot will have more than one neighboring cell with the same value
that is the smallest, in this particular case the robot chooses randomly one of them.
In order to make it realistic and avoid that the robots drive next to the walls and have
problems with the sharp corners a potential field is used, similar to the one discussed
in Sect. 25.4 of [6] just that in this case, all the known wall cells ask their neighboring
cells to make their cost infinite (or a number higher than the highest possible cost in
the whole map space) before the flooding starts this way having a safe area around
the known walls as can be seen in Fig. 4.

Fig. 4 Marsu using splash
algorithm for reaching it’s
goal, in this figure yellow
patches are already
discovered walls, gray ones
undiscovered walls, green
ones discovered space
evaded by algorithm and the
gradient colored ones are the
ones showing how the
algorithm works by
colorizing the value of the
patch splash value, these are
colored for illustration
purposes only

MarSim, a Simulation of the MarsuBots Fleet Using NetLogo 85

2.2.4 Navigate Path

Once the path is planned the Marsu needs only to always choose the neighbors with
the smallest cost and that will make it right to the goal cell. This would be that simple
if there were no other Marsus driving around the area that they could collide into. To
avoid collisions the Marsus always scan the front cell for a Marsu and in case one
is there it will drive to the next cell on the right and then continue on its way, very
similar to what you would do while driving a car, just drive on your right lane until
the other car has passed and then continue on your way.

2.2.5 Go Back to Mother Robot

TheMarsus are monitoring at all times their energy reserves and when the remaining
amount of energy falls bellow a certain threshold (at this time set in the simulator’s
user interface) then the Marsu will start its journey to the location of the MB using
the same flooding algorithm.

2.2.6 Approach and Queue

When a Marsu reaches the vicinity of the MB it will start its approach to dock with
it, Queue if necessary and wait for its turn to recharge. When only 5 cells are left
to reach MB will start the approach, meaning it will check if a queue exists, if its
doesn’t it will drive right into the MB and recharge, but if it detects a queue, it will
request a queue number that will be assigned to it and then increased, and then go
and wait 2 * the queue number cells away for the MB on it’s east side as can be seen
on Fig. 5. There it will wait until one unit exists the MB and when this happens, it
will decrease its queue number by one and drive again to 2 * queue number cells
away from the MB, and when its queue number is zero it will drive right into the
MB.

Fig. 5 Marsus queueing east
of the MB while other
Marsus recharge

86 D. Leal Martínez and A. Halme

2.2.7 Recharge

Once the Marsu is inside the MB it will recharge its battery until it is fully recharged
and the exit the MB by choosing a new frontier cell and heading towards it by re
entering state 1.

3 Results

The creation of this simulation proved NetLogo to be a suitable environment for
testing the exploration algorithms in a simple yet realistic way that can be then be
used to optimize certain parameters with the help of, for example, genetic algorithms
that would would not be possible to test with the real robot fleet due to the fact that
emptying a the battery of a working robot thousands of times could take too much
time and resources to achieve.

By simulating the exploration algorithm to be used with the MarsuBot Fleet, key
parameters were identified to be optimized using genetic algorithms so that the fleet
can explore very large spaces that require a very large number of energy cycles.
These parameters are:

Batt Threshold The battery threshold that marks when is the best time for a
Marsu to start heading back to the MB. Fine tuning this pa-
rameter using genetic algorithms it is expected to optimize the
time a robot can be exploring new areas without risking running
out energy.

Patch Utility To find the relation between the distance and the utility value
assigned to the frontier cells.

Utility Variation The alteration ratio of the utility value of a patch made by a
Marsu choosing that cell.

Alteration Radius The radius patches that will be altered around a cell chosen by
a Marsu.

4 Future Work

As the simulation model is complete and shows a promising approach to having the
robots explore a large area that requires multiple charge cycles, the following step is
to implement the model into the real Marsu fleet and find out if the robots behave in
the sameway as their simulated or virtual counterparts. One of the big challenges will
be on how to solve the localization problem that comes with creating and assigning
the cells, the initial approach to tackle it will have the Marsus create the cells and
mark them in the global map with different physical space resolutions (for example
squares of 10× 10centimeters).

MarSim, a Simulation of the MarsuBots Fleet Using NetLogo 87

When the simulation’s accuracy is confirmed (taking into account calibration
sessions) then themodel can be optimized using different approaches such asGenetic
Algorithms for choosing the best battery threshold parameters to be able to choose
when to go to recharge orwhen to lower their battery profiles, aswell as implementing
more advanced approaches to queue theory to improve the handling of the Marsus
waiting in line to recharge. All of these parameters would be then be tested in the
real Marsu fleet.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
2. Burgard, W., Moors, M.,Stachniss, C.: Coordinated Multi-Robot Exploration. IEEE Trans. Ro-

bot. 21, 376–386 (2005)
3. Elomaa, M.: Estimation of unknown node positions of a localization network with a multi-robot

system. Espoo, Finland (2010)
4. Gulzar, K.: Impact dampening of a tracked rover. Espoo, Finland (2008)
5. Matusiak, M., Paanajrvi, P., Appelqvist, P., Elomaa, M., Vainio, M., Ylikorpi, T., Halme, A.:

A Novel Marsupial robot society: towards long-term autonomy. In: Proceedings of the 9th
International Symposium on Distributed Autonomous Robotic Systems (DARS 2008) (2008)

6. Norvig, P., Russell, S.: Artificial Intelligence: A Modern Approach, 3rd edn. Pearson Interna-
tional, London (2010)

7. Wilensky, U.: NetLogo. Center for Connected Learning and Computer-Based Modeling, North-
western University, Evanston. http://ccl.northwestern.edu/netlogo/ (1999)

http://ccl.northwestern.edu/netlogo/

Scalable Cooperative Localization
with Minimal Sensor Configuration

Xiaotong Shen, Scott Pendleton and Marcelo H. Ang Jr.

Abstract Localization of distributed robots can be improved by fusing the sensor
data from each robot collectively in the network. This may allow for each individual
robot’s sensor configuration to be reduced while maintaining an acceptable level of
uncertainty. However, the scalability of a reduced sensor configuration should be
carefully considered lest the propagated error become unbounded in large networks
of robots. In this paper, we propose a minimal but scalable sensor configuration for a
fleet of vehicles localizing on the urban road. The cooperative localization is proven
to be scalable if the sensors’ data are informative enough. The experimental results
justify that pose uncertainty will remain at an acceptable level when the number of
robots increases.

Keywords Cooperative localization · Sensor configuration · Scalability

1 Introduction

Cooperative perception extends sensing range beyond line-of-sight and field-of-view
by sharing information between agents in the network [7, 10]. In order to merge the
information and obtain not only augmented but also consistent observations, the
uncertainties of robots’ locations should be minimized to a reasonable level. The
localization accuracies can be improved knowing that the adjacent robots are sharing
the same environment and thus the observations are correlated [5]. The imposed con-
straints on robots’ poses by the relative measurements can also reduce the localization

X. Shen (B) · S. Pendleton · M.H. Ang Jr.
National University of Singapore, 21 Lower Kent Ridge Road, Singapore, Singapore
e-mail: shen_xiaotong@nus.edu.sg

S. Pendleton
e-mail: scott.pendleton01@nus.edu.sg

M.H. Ang Jr.
e-mail: mpeangh@nus.edu.sg

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_7

89

90 X. Shen et al.

uncertainties [3, 13]. Utilizing joint observations and relative measurements are the
state-of-the-art techniques for collaborative localization in multi-robot systems [3–5,
8, 11, 13, 15, 17, 19].

The collaborative localization problem can be tackled in a probabilistic manner
with data fusion in the probabilistic graph [4, 5]. In the works of Fox et al., the
localization uncertainties were further reduced by incorporating sensing data from
other robots, though the individual robots equipped with sensors were already able
to localize themselves independently without any cooperation. However, the num-
ber of required sensors could be reduced for a fleet of robots with sharing sensing
information. The minimal number of sensors for a fleet of robots to simultaneously
and continually localize themselves remains to be an open question.

Many collaborative localization experiments [3, 5, 8, 11, 17, 19] have been per-
formed indoor or in simulation where features are distinct, sensing error is minor and
perception range is small. Madhavan et al. has furthermore conducted outdoor multi-
robot localization experiments using slowly moving robots [11]. While promising
experimental results have been achieved, they may not extend to outdoor fast moving
vehicles. Besides, for the application of on-road autonomous vehicles, each agent
may only detect a small number of other vehicles on the road, or even typically just
detect the vehicle immediately in front of it, which is a big difference from most
indoor scenarios. In this case, the detection graph, whose link is the detection of
another robot, is sparse. For an on-road vehicle scenario, the distance between vehi-
cles is also often much larger than in indoor scenarios. The uncertainties induced by
the large gaps between vehicles should be considered, especially when driving fast.

The solvability of the localization problem in robot networks has been studied by
Dieudonne et al., where they have proven that by using only relative observation the
uniqueness of the defined solution could not be guaranteed [3]. The mean positional
error decreased with the increased number of robots in [15], but the detection graph
was much denser and thus the robots’ poses were more correlated to reduce the
uncertainty. Will the uncertainties become unbounded as the number of agents and
gap distance increase in a sparse detection graph? Bounded uncertainty approaches
using bearing constraints are proposed in [17, 19]. However the methods still need
each robot to simultaneously observe at least two other robots, which may not hold
true in a sparse detection graph.

In this paper we are proposing a minimized sensor configuration for a fleet of
vehicles to cooperatively localize themselves on the urban road while driving fast.
This research is also motivated by autonomous truck convoy systems [18] and our
sensor configuration can greatly reduce the cost of such convoys. We will prove that
the uncertainties of using only relative observation will grow unbounded quickly with
the increased number of agents and gap distance. With our sensor configuration and
proposed algorithm, the scalability is guaranteed and uncertainties will be maintained
at a usable level. These are verified by outdoor experiments with three vehicles driving
on the road.

Scalable Cooperative Localization with Minimal Sensor Configuration 91

The contribution of this paper can be summarized as follows:

• We prove that the uncertainties of cooperative localization using relative observa-
tions will grow at least quadratically with the gap distance and linearly with the
number of agents.

• If the sensors’ data are informative enough, the scalability of our minimal sensor
configuration is guaranteed.

• Our proposed algorithm integrates tracking with localization techniques and can
minimize the uncertainties to a usable level for a fleet of vehicles on urban road.

The remainder of the paper is organized as follows. Section 2 compares the sensor
configurations and probabilistic graphical models. Section 3 introduces our algorithm
for cooperative localization. Section 4 provides the experimental results obtained with
vehicles driving on urban road. Section 5 concludes this work.

2 Sensor Configurations

2.1 Probabilistic Graphical Models

A typical probabilistic graphical model [20] for localization on a map is shown in
Fig. 1. The state S represents the robot pose (x, y, θ)T in 2D localization, where
x, y represents the position on the map and θ denotes the orientation. In order to
localize, a robot usually needs three basic elements, namely the control input Ut , the
measurements Zmt of the environment, and the prior map m. Encoders and an inertial
measurement unit (IMU) are used to provide the vehicle’s odometry and orientation.
A LIDAR or camera is often used to get the measurements Zmt . The nodes of the
graph which are shaded in darker gray are assumed to be always observed [9].

For multi-robot localization, each robot may detect and track others with some
range sensors, such as LIDAR. In the on-road scenario, a vehicle usually can detect
and track the vehicle(s) in front of it, namely its leader [7]. The detection of other
robots will put constraints on their pose estimations [5]. The prominent difference
for on-road vehicles versus other robots is that the detection graph is sparser, as
shown in Fig. 2. In Fig. 2a, the detection graph could add five constraints since the

Fig. 1 Typical temporal
graphical model for single
robot localization

m1Z

m

1U

1S0S 2S

2U

m2Z

3S

3U

m3Z

92 X. Shen et al.

(a) (b)

Fig. 2 The detection graph for the multi-robot off-road (a) and on-road (b) cooperative localization.
Each arrow represents a robot/vehicle detection (directed from observer to target) and adds a
constraint to the localization

m

m

m

(a)

(b)

(c)

Fig. 3 The comparison of probabilistic graphical models between different sensor configurations
for three robots’ localization. In (a), the control inputs, detection measurements and map measure-
ments are known for each robot. In (b), the control inputs and map measurements are unknown
except for the first robot and only detection measurement can be used for localization of other
robots. In (c), both detection measurements and map measurements are known and only the first
robot has access to control input

orientations of the sensors face toward each other, while in (b) only two constraints
are added since each vehicle could only see its leader vehicle.

Cooperative localization with the full sensor configuration is shown in Fig. 3a,
where the i th robot i S is able to localize itself on the map with input i U and i Zm while
detecting the (i + 1)th robot with the measurement i Zd . The relative observation i Zd ,
determined by both robots, will correlate both pose estimations.

The sensor configuration could be reduced by taking away either control input U
or measurement Zm , or both for some robots, and we need to keep Zd so that the

Scalable Cooperative Localization with Minimal Sensor Configuration 93

robots can cooperate with each other. Therefore, there are only three combinations
for the reduced sensor configuration if we assume that the sensor configurations on
all robots (except the first one) are the same. The reduced sensor configuration is
shown in Fig. 3b, c. In Fig. 3b both control input and measurements in map from the
two leader vehicles are unknown and the leader’s pose i+1S has to be estimated only
from relative detection measurement i Zd . We will prove that in this configuration,
the uncertainties of cooperative localization will grow unbounded quickly with the
increased number of robots and gap distance. If we consider that control input U
is given and the map measurements Zm is unknown, the uncertainties will also be
unbounded. The proof for this is similar and is omitted from the paper. In Fig. 3c, the
control input is not observable but the measurement of the map is given by the sensor.
Essentially, each leader is without an odometry sensor, while the first vehicle (trailing
vehicle in the convoy) is still able to localize independently. We will prove that given
that the uncertainty of map measurement is small to certain extent, the scalability
of cooperative localization under this reduced sensor configuration is guaranteed.
Therefore the sensor configuration in Fig. 3c is scalable and minimal.

2.2 Uncertainty Modeling

Assume that the uncertainty of i th robot pose i S = (xi , yi , θi)
T can be described by

a Gaussian distribution N (i S̄,i Σp), where i S̄ = (x̄i , ȳi , θ̄i)
T is the mean and iΣp

is the covariance. The sensor on i th robot can detect the (i + 1)th robot with some
uncertainty. Assume that the sensor is able to detect the relative distance ri and the
bearing angle αi of the next robot, which is reasonable when using a range sensor
such as LIDAR. By utilizing the shape model of the robot, the sensor could also
measure the relative orientation φi . The uncertainty of detection i D = (ri , αi , φi)

could be modeled as a Gaussian distribution N (i D̄,i Σd), where i D̄ = (r̄i , ᾱi , φ̄i)
T

is the mean and iΣd is the covariance.
Given the i th robot pose and the detection measurement, the pose of (i + 1)th

robot can be computed as follows:

⎛

⎝
xi+1

yi+1

θi+1

⎞

⎠ =
⎛

⎝
xi

yi

θi

⎞

⎠ +
⎛

⎝
ri cos(θi + αi)

ri sin(θi + αi)

φi

⎞

⎠ . (1)

Because of the nonlinear operations in (1), the distribution of (i + 1)th robot’s pose
will be non-Gaussian. Using the first order Taylor expansion to linearize around the
mean, the uncertainty could be approximated by a Gaussian distribution. The mean
of the (i + 1)th robot pose can be calculated as follows:

⎛

⎝
x̄i+1

ȳi+1

θ̄i+1

⎞

⎠ =
⎛

⎝
x̄i

ȳi

θ̄i

⎞

⎠ +
⎛

⎝
r̄i cos(θ̄i + ᾱi)

r̄i sin(θ̄i + ᾱi)

φ̄i

⎞

⎠ . (2)

94 X. Shen et al.

The covariance of the pose can be written as follows:

i+1Σp = G(iΣp)G
T + V (iΣd)V T , (3)

where G and V are the Jacobian matrices corresponding to i S and i D respectively.
The G and V can be computed as follows:

G =
⎡

⎣
1 0 −r̄i sin(θ̄i + ᾱi)

0 1 r̄i cos(θ̄i + ᾱi)

0 0 1

⎤

⎦ , V =
⎡

⎣
cos(θ̄i + ᾱi) −r̄i sin(θ̄i + ᾱi) 0
sin(θ̄i + ᾱi) r̄i cos(θ̄i + ᾱi) 0

0 0 1

⎤

⎦ . (4)

Geometrically, the uncertainty described by the covariance matrix is an ellipsoid
in the three dimensional vector space. The determinant of the covariance matrix is
proportional to the volume of the ellipsoid [2]. In this paper, we use the determinant
of the covariance as the metric of the uncertainty. A large determinant reflects a large
uncertainty.

2.3 Scalability Analysis

The scalability of the sensor configuration demonstrates that the uncertainty of each
robot’s pose remains bounded with an increased number of robots and increased gap
distance. Eventually the scalable sensor configuration could accommodate an infinite
number of agents in the network. In this analysis, we assume that the state transition
is linear and Markovian, and the probability distribution of the pose is Gaussian. We
refer to this assumption as Linear-Gauss-Markov model assumption.

We will first prove that under the sensor configuration in Fig. 3b, the uncertainty
will grow unbounded quickly.

Lemma 1 det(i+1Σp) � det(iΣp) + r̄2
i det(iΣd).

Proof Since det(G) = 1 and det(V) = r̄i , we have det(G(iΣp)GT) = det(iΣp) and
det(V (iΣd)V T) = r̄2

i det(iΣd). Since iΣp ≥ 0 and iΣd ≥ 0, we have G(iΣp)GT ≥
0 and V (iΣd)V T ≥ 0. According to (3), det(i+1Σp) � det(G(iΣp)GT) + det
(V (iΣd)V T) = det(iΣp) + r̄2

i det(iΣd).

det(iΣd) essentially depicts the uncertainty of detecting the (i + 1)th robot in the
front. The magnitude of det(iΣd) for any robot i should be approximately the same
since the sensors used are the same or similar. We assume that the c-th robot has the
best accuracy of detection, namely,

c = arg min
i

det(iΣd). (5)

Scalable Cooperative Localization with Minimal Sensor Configuration 95

Under the sensor configuration in Fig. 3b, the uncertainties would only propagate
forward according to (3) since topologically it is a chain.

Theorem 1 Under the Linear-Gauss-Markov model assumption and with the sensor
configuration in Fig.3b, the uncertainties of cooperative localization will grow at
least quadratically with the average gap distance r and linearly with the number of
robots n, namely det(nΣp) � (n − 1)r2det(cΣd).

Proof Iteratively using the result of Lemma 1, we have det(nΣp) � r̄2
n−1det

(n−1Σd) + ... + r̄2
1 det(1Σd) + det(1Σp). According to (6), det(iΣd) � det(cΣd) for

any i � n. Therefore, det(nΣp) � (r̄2
n−1 + ... + r̄2

1)det(cΣd) + det(1Σp). Since det

(1Σp) � 0 and r =
∑n−1

i=1 r̄i

n − 1
, we have det(nΣp) � (n − 1)r2det(cΣd).

The result of Theorem 1 implies that the cooperative localization is not scalable
under the sensor configuration in Fig. 3b. We will prove that under some conditions,
the cooperative localization is scalable using the sensor configuration in Fig. 3c.

In the probabilistic graphical model shown in Fig. 3c, numerous cycles would
make it difficult to compute the optimal pose estimation while avoiding double count-
ing of the information in the sensor network [12]. We simplify the pose estimation
optimization by only fusing the data forward and show that only propagating infor-
mation forward could make the cooperative localization scalable.

After the i th robot detects the (i + 1)th robot, the sensor measurement iΣd initial-
izes the location according to (2) and (3). The sensor i+1Σm could search around the
initial location and match the features on the map to localize. The uncertainty will
be reduced after the fusion of the two measurements. Without relative measurement
iΣd , it would be very costly and difficult for the (i + 1)th robot to localize itself on a
big map only based on measurement i+1Σm , especially when some ambiguity of the
environment is prominent. After incorporating the measurement i+1Σm , the pose esti-
mation should be improved. We denote pose distribution before incorporation of iΣm

as N (
i
S̄b,

iΣpb), and after incorporation as N (
i
S̄a,

iΣpa). After searching around

the
i
S̄b, the sensor iΣm could infer the pose distributed as N (

i
S̄q ,

iΣq) only relying

on measurement iΣm . The distribution N (
i
S̄a,

iΣpa) is the fusion of N (
i
S̄b,

iΣpb)

and N (
i
S̄q ,

iΣq). With the Kalman filter fusion strategy, the covariance could be
computed as follows:

iΣpa =
(

I − iΣpb
(

iΣpb + iΣq
)−1

)
iΣpb. (6)

Theorem 2 Under the Linear-Gauss-Markov model assumption, the uncertainty
of localization after fusion iΣpb with iΣq will be reduced at least by a factor of

det(iΣq)

det(iΣpb) + det(iΣq)
, namely

det(iΣpa)

det(iΣpb)
� det(iΣq)

det(iΣpb) + det(iΣq)
.

96 X. Shen et al.

Proof Since (A + B)−1 = A−1 − (I + A−1 B)−1 A−1 B A−1 if matrices A and A + B
are both invertible, we have

(
iΣpb + iΣq

)−1 = iΣ−1
pb − (I + iΣ−1

pb
iΣq)

−1iΣ−1
pb

iΣq
iΣ−1

pb . Thus, iΣpa =
(

I − iΣpb
(

iΣpb + iΣq
)−1

)
iΣpb = iΣpb(I + iΣ−1

pb

iΣq)
−1iΣ−1

pb
iΣq .

Therefore, det(iΣpa) = det
(

iΣpb(I + iΣ−1
pb

iΣq)
−1iΣ−1

pb
iΣq

)

= det
(

iΣpb
)

det
(
(I + iΣ−1

pb
iΣq)

−1iΣ−1
pb

iΣq

)
= det(iΣpb)

det
(

iΣ−1
pb

iΣq

)

det(I + iΣ−1
pb

iΣq)

= det(iΣpb)
det

(
iΣq

)

det(iΣpb + iΣq)
, Since det(iΣpb + iΣq) � det(iΣpb) + det(iΣq),

thus we have det(iΣpa) � det(iΣpb)
det

(
iΣq

)

det(iΣpb) + det(iΣq)
.

Essentially, only using the relative measurement for pose estimation will increase
the localization uncertainty of the next robot in Lemma 1 and the measurement on
the map will reduce the uncertainty in Theorem 2. It is possible that the localiza-
tion uncertainty of each robot will not increase after the data fusion, which could
potentially make the cooperative localization scalable.

Assume that the prescribed uncertainty for any robot in the graph should be less
than Cmax , namely the pose uncertainty det(iΣpa) should be less than Cmax for the
localization information to be usable. We will show that if the uncertainty of the
sensor measurement det(iΣq) satisfies the following condition, then Cmax will be
the bound on the localization uncertainty for any robot i .

Theorem 3 Under the Linear-Gauss-Markov model assumption,

if det(iΣq) � Cmax det(iΣpb)

det(iΣpb) − Cmax
, then det(iΣpa) � Cmax for any robot in Fig.3c.

Proof If det(iΣq) � Cmax det(iΣpb)

det(iΣpb) − Cmax
, then det(iΣq)det(iΣpb) � Cmax det(iΣq) +

Cmax det(iΣpb), thus
det

(
iΣq

)
det(iΣpb)

det(iΣpb) + det(iΣq)
� Cmax . With the result of Theorem 2,

det(iΣpa) � Cmax .

The result of Theorem 3 shows that if the sensor measurement on the map iΣm is
informative enough, i.e. the covariance iΣq is small, then the localization uncertainty
could be bounded. The cooperative localization uncertainty is independent of the
number robots and their gap distance, which leads to the scalability under sensor
configuration shown in Fig. 3c.

In this section, we modeled the uncertainty in the cooperative localization problem
and showed that it is not scalable under sensor configuration in Fig. 3b where only
relative observations are used. We proved that under the sensor configuration in

Scalable Cooperative Localization with Minimal Sensor Configuration 97

Fig. 3c, where odometry information is not given, cooperative localization is scalable
if the condition in Theorem 3 is satisfied. Therefore, the reduced sensor configuration
in Fig. 3c is minimal for scalable cooperative localization.

3 Cooperative Localization

In this section, we illustrate our optimization method for improving the pose estima-
tion and minimizing the uncertainties of cooperative localization under the minimal
sensor configuration.

3.1 Sensor Characteristics

The i th robot could detect and track the (i + 1)th robot and give an initial pose with
some uncertainty. The tracking process usually can estimate the position accurately,
but may have difficulties in estimating the orientation. The shape of the robot could
be complex, ambiguous and/or only partially observable. The robots will typically
maintain a large spatial gap (for road safety), however distant measurements make the
orientation estimation more difficult. Nevertheless, the orientation of the (i + 1)th
robot is very critical for localizing the (i + 2)th robot according to Lemma 1.

The measurement i+1Σm could be used to estimate the orientation accurately, but it
would be computationally expensive to search a large area on the map to find the most
likely pose. For example, the measurement could be a LIDAR scan of the environment
and the alignment of the scan with the map could give an accurate estimation of the
orientation if the location of the sensor is roughly known. If no prior knowledge is
given, aligning a single scan with the map can be very computationally expensive,
especially if the map is huge, ambiguity is prominent and/or the measurement is
noisy. Given the initial location, the robot could search locally to find the best pose
to maximize the probability of the measurement, which would potentially reduce
the uncertainty of the estimation. In summary, tracking and scan matching would
compensate each other in pose estimation.

3.2 Temporal Model

The temporal model of cooperative localization is shown in Fig. 4. The state i St

represents the pose of i th robot at time t . The maps i m are correlated since they
are sharing the same environment or are the same. The first robot (trailing vehicle
in the convoy) is additionally equipped with odometry and thus can localize itself
independently. The first robot can also detect and track the second robot 2St with

98 X. Shen et al.

Fig. 4 The temporal model
for three robots’ cooperative
localization. The 1st robot is
able to perform independent
localization while tracking
the 2nd robot. The 2nd robot
can perform cooperative
localization by fusing the
detection measurement from
the 1st robot with its local
map measurement. The 3rd
robot can similarly perform
cooperative localization

localization

tracking

cooperative
localization

tracking

cooperative
localization

measurement 1Zdt at time t . The sensor on the second robot can get a measurement
of the environment 2Zmt and then can localize itself on the map. Meanwhile, the
second robot can detect the third robot with measurement 2Zdt . The measurements
on each robot may not be synchronized, but we are assuming that the measurements
i Zdt and i Zmt are from the same sensor and thus the time stamps are the same. For
example, a single LIDAR sensor could scan the environment while detecting the
moving objects.

3.3 Tracking and Localization

Cooperative localization could be treated as a fusion of tracking and localization. We
are using the Constant Turn Rate and Velocity (CTRV) model [16] in the Kalman
filter for vehicle tracking. When the measurement on the map Zmt comes in, the
Bayesian fusion [20] could be performed as follows:

p(i St |i Sbt ,
i Zmt ,

i m) = p(i Zmt |i St ,
i m)p(i Sbt)

p(i Zmt |i Sbt , i m)
, (7)

where the state i Sbt is the predicted robot pose by the Kalman tracker and state i St is
the pose after fusing measurement i Zmt . The probability p(i Sbt) could be given by
the Kalman tracker. The measurement probability p(i Zmt |i St ,

i m) could be evaluated
by the likelihood model [20] since the prior map i m is given.

Scalable Cooperative Localization with Minimal Sensor Configuration 99

Algorithm 1: Cooperative Localization Algorithm

input :
i
S̄p(t−1),i Σp(t−1),i Zmt , i−1Zd(t+1),

i−1
S̄p(t+1),i−1Σp(t+1)

output: i
S̄p(t+1),i Σp(t+1)

//localization
(
i
S̄bt ,i Σbt)= KalmanPrediction(

i
S̄p(t−1),i Σp(t−1))

for j= 1 ,...,N do
draw sample i

j Sbt ∼ N (
i
S̄pt ,i Σpt)

i
j Ŝt = arg max

i St

p(i Zmt |i St ,
i m, i

j Sbt), i
j w = p(i

j Sbt |i S̄pt ,
i Σpt)p(i Zmt |i m,

i
j Ŝt)

end

l = arg max
j

i
j w, i Sqt = i

l Ŝt //search for the most likely mode

for k= 1 ,...,K do
draw sample i

kSqt ∼ {i
kSqt | |ikSqt − i Sqt | < Δ} //sample around the mode

end
i
S̄qt = (0, 0, 0)T , η = 0

for k=1,...,K do
i
S̄qt = i

S̄qt + i
kSqt · p(i Zmt |i m, i

kSqt), η = η + p(i Zmt |i m, i
kSqt)

end
i
S̄qt = i

S̄qt/η, i Σqt = 0
for k=1,...,K do

i Σqt = i Σqt + (i
kSqt − i

S̄qt)(
i
kSqt − i

S̄qt)
T · p(i Zmt |i m, i

kSqt)

end
i Σqt = i Σqt/η

(
i
S̄pt ,i Σpt)= KalmanFusion(

i
S̄qt ,i Σqt ,

i
S̄bt ,i Σbt)

//tracking

(
i
S̄b(t+1),i Σb(t+1)= KalmanPrediction(

i
S̄pt ,i Σpt)

(i−1D̄t+1,
i−1 Σd(t+1)) = Detection(i−1Zd(t+1))

i
S̄pd(t+1) = i−1

S̄p(t+1) ⊕ i−1
D̄t+1, i Σpd(t+1) = G(i−1Σp(t+1))GT + V (i−1Σd(t+1))V T

(
i
S̄p(t+1),i Σp(t+1))=KalmanFusion(

i
S̄pd(t+1), i Σpd(t+1),

i
S̄b(t+1),i Σb(t+1))

return i
S̄p(t+1),i Σp(t+1)

The improved proposal distribution technique [6] could improve the localiza-
tion. We sample N particles i

j Sbt from the predicted distribution p(i Sbt) but adopt
the optimization technique to search for the maxima of the observation likelihood,
knowing that it is most likely to have only a single maxima [6]. The scan matching
will determine the meaningful area of the observation i Zmt likelihood function and
the particles will iteratively shift to reach the most probable pose even if the pre-
dicted distribution is inaccurate. We use the “ vasco” scan matcher which is part of the
Carnegie Mellon Robot Navigation Toolkit (CARMEN) [14]. This scan matcher uses
a gradient descent technique to find the most likely pose by matching the observation
i Zmt against the map i m,

100 X. Shen et al.

i
j Ŝt = arg max

i St

p(i Zmt |i St ,
i m, i

j Sbt), j = 1, ..., N , (8)

where
i
j Ŝt is the optimized pose with the initial guess i

j Sbt and measurement i Zmt .
Among all the N particles, we choose the most likely pose when fusing the proposal
distribution and the observation,

i Sqt = arg max
i
j Ŝt

p(
i
j Ŝt |i Zmt ,

i m, i
j Sbt), j = 1, ..., N , (9)

where i Sqt is the best mode of the poses. To obtain the distribution of N (
i
S̄q ,

iΣq),
we can sample K particles around the i Sqt within the interval Δ and weigh them
by the observation likelihood. The details are summarized in Algorithm 1. The
KalmanPrediction is to use the CTRV model to predict the future pose and
the KalmanFusion is to use Kalman equation to update the belief with the mea-
surement input [1]. The Detection in Algorithm 1 is to extract the next robot
pose with the measurement i−1Zdt . The operator ⊕ represents the transform from
the detection to the next robot’s pose estimation

i
S̄pd(t+1), which is shown in (2).

4 Experimental Results

In this section, we provide experimental results to justify the theorems and evaluate
the algorithm with three vehicles driving on the urban road.

4.1 Experiment Setup

In these experiments, we used three vehicles driving on the urban road to perform
the cooperative localization. The first robot (trailing vehicle in the convoy) is a self-
driving vehicle which can autonomously drive on the urban road with centimeter-level
localization accuracy. The vehicle is equipped with one 2D LIDAR, two encoders,
one IMU, one camera and two computers with wireless interface 802.11n.

The other two vehicles are only mounted with one 2D LIDAR individually for
both detecting the vehicle in the front and localizing itself. One webcam and a
laptop with wireless interface are utilized for visualization and processing the data
respectively. The whole localization package is portable and easy to mount without
too much mechanical work. The reduced sensors are one IMU and two encoders,
which require mechanical connection with vehicles. The experiment was performed
on an urban road with average speed 3 m/s. A snapshot of the cooperative localization
experiment is shown in Fig. 5. A video showing the cooperative localization process
can be found at http://youtu.be/7uuQPgw1rmg.

http://youtu.be/7uuQPgw1rmg

Scalable Cooperative Localization with Minimal Sensor Configuration 101

Fig. 5 A snapshot of the cooperative localization on the urban road. The three vehicles are shown
in red/green/blue boxes in (a). The LIDAR scans from each vehicle are shown in dots using cor-
responding colors on the prior occupancy grid map. The images from three vehicles are shown in
(b–d) which are from the vehicles in red/green/blue respectively. The second and third vehicle can
be seen from the first vehicle’s perspective in (d)

4.2 Evaluation and Analysis

In Fig. 5a, the third vehicle (depicted as the red box) in the front was making a turn.
The LIDAR measurement from the second vehicle, in green color, could only detect
the corner of the third vehicle. Even though the initial position from the detection was
inaccurate, its LIDAR scan managed to correct its pose by matching the scan with
the prior occupancy grid map. The pose estimation of the second and third vehicle
are improved by the scan matching in the cooperative localization algorithm.

Table 1 shows the quantitative result of pose estimation using only the Relative
Observations (RO) method and using the Cooperative Localization (CL) algorithm.
Because we have no other means to obtain the ground truth of the poses and the first
vehicle could localize very accurately, we are assuming that the pose trajectory of
the first vehicle is the ground truth. Both position and orientation error are calculated
relative to the trajectory of the first vehicle. Since the trajectories are not exactly the
same in reality, the standard deviation and maximum error should be more suitable
for analyzing the accuracy. In Table 1, the standard deviation of 2nd and 3rd vehicles’

102 X. Shen et al.

Table 1 Accuracy of pose estimation

Position error (m) Orientation error (◦)

2nd Vehicle 3rd Vehicle 2nd Vehicle 3rd Vehicle

RO CL RO CL RO CL RO CL

Average 0.32 0.34 0.95 0.72 0.7 1.7 −0.5 −0.6

Std Dev 0.3 0.3 0.72 0.35 3.6 2.7 5.25 2.64

Max 1.31 1.39 4.12 1.52 9.7 9.1 24.3 6.29

poses are about the same using the CL algorithm while that of 3rd vehicle’s pose
is about twice as large as that of 2nd vehicle’s when using the RO method. The
maximum position error when using RO is more than two times larger than the CL
algorithm while the maximum orientation error is about three times larger. Since the
standard deviation and maximum error of 2nd and 3rd vehicles’ pose estimation is
approximately equivalent when using CL, this implies that the sensor configuration
using single 2D LIDAR for both tracking and localization is scalable.

4.3 Error Correlation

In Fig. 6c, the pose error of the 2nd vehicle induced approximately three times larger
pose error for the 3rd vehicle. The pose estimation error is highly correlated between

Fig. 6 The error amplification effect when using relative measurement only. The mean pose tra-
jectory of the 3rd vehicle is shown in red in (a) and that of the 2nd vehicle is shown in green in (b).
The trajectories of the three vehicles are plotted in red/green/blue colors using RO (c) method and
CL (d) algorithm

Scalable Cooperative Localization with Minimal Sensor Configuration 103

the 2nd and the 3rd vehicle when using RO. Conversely, the trajectories of both 2nd
and 3rd vehicle are very smooth in Fig. 6d, where the pose error was minimized
locally to avoid the huge error propagation. By matching the scan with the prior
occupancy grid map, the orientation error was reduced such that the initial position
of next vehicle given by the detection measurement was accurate enough for next
vehicle’s localization, which makes the system scalable.

5 Conclusion

In this paper, we proved that using only relative observations for cooperative localiza-
tion is not scalable. Given that the measurements on the map are informative enough,
the cooperative localization under our minimal sensor configuration was proven to
be scalable. We proposed the cooperative localization algorithm for a fleet of vehi-
cles localizing on the urban road, which integrates both tracking and localization
techniques. The experimental results showed that the pose estimation uncertainties
for all three vehicles were minimized to an acceptable level by fusing the detection
and map measurements. The uncertainties were reduced to an extent such that the
cooperative localization is scalable.

Acknowledgments This research was supported by the National Research Foundation (NRF)
Singapore through the Campus for Research Excellence And Technological Enterprise (CREATE)
and the Singapore MIT Alliance for Research and Technology’s (FM IRG) research programme, in
addition to the partnership with the Defence Science Organisation (DSO). We are grateful for their
support.

References

1. Blackrnan, S., House, A.: Design and Analysis of Modern Tracking Systems. Artech House,
Boston (1999)

2. Butler, R., Davies, P., Jhun, M., et al.: Asymptotics for the minimum covariance determinant
estimator. Ann. Stat. 21(3), 1385–1400 (1993)

3. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: On the solvability of the localization problem in
robot networks. In: 2008 IEEE International Conference on Robotics and Automation (ICRA),
pp 480–485. IEEE (2008)

4. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: Collaborative multi-robot localization. In: Mus-
tererkennung 1999, Springer, pp. 15–26 (1999)

5. Fox, D., Burgard, W., Kruppa, H., Thrun, S.: A probabilistic approach to collaborative multi-
robot localization. Auton. Robots 8(3), 325–344 (2000)

6. Grisetti, G., Stachniss, C., Burgard, W.: Improved techniques for grid mapping with rao-
blackwellized particle filters. IEEE Trans. Robot. 23(1), 34–46 (2007)

7. Kim, S.W., Chong, Z.J., Qin, B., Shen, X., Cheng, Z., Liu, W., Ang, M.H.: Cooperative percep-
tion for autonomous vehicle control on the road: Motivation and experimental results. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5059–5066.
IEEE (2013)

104 X. Shen et al.

8. Knuth, J., Barooah, P.: Distributed collaborative localization of multiple vehicles from relative
pose measurements. In: 47th Annual Allerton Conference on Communication, Control, and
Computing, 2009. Allerton 2009, pp. 314–321. IEEE (2009)

9. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT Press,
Cambridge (2009)

10. Li, H., Nashashibi, F.: Multi-vehicle cooperative perception and augmented reality for driver
assistance: a possibility to ‘see’ through front vehicle. In: 2011 14th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC), pp. 242–247. IEEE (2011)

11. Madhavan, R., Fregene, K., Parker, L.E.: Distributed heterogeneous outdoor multi-robot local-
ization. In: 2002 IEEE International Conference on Robotics and Automation (ICRA), vol. 1,
pp. 374–381. IEEE (2002)

12. Manyika, J., Durrant-Whyte, H.: Data Fusion and Sensor Management: A Decentralized
Information-Theoretic Approach. Prentice Hall PTR, Englewood Cliffs (1995)

13. Martinelli, A., Pont, F., Siegwart, R.: Multi-robot localization using relative observations. In:
2005 IEEE International Conference on Robotics and Automation (ICRA), pp. 2797–2802
(2005)

14. Montemerlo, D., Roy, N., Thrun, S.: Perspectives on standardization in mobile robot pro-
gramming: the carnegie mellon navigation (carmen) toolkit. In: 2003 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), vol. 3, pp. 2436–2441. IEEE (2003)

15. Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-robot cooperative localization: a study of trade-
offs between efficiency and accuracy. In: 2002 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), vol. 3, pp. 2690–2695. IEEE (2002)

16. Schubert, R., Richter, E., Wanielik, G.: Comparison and evaluation of advanced motion models
for vehicle tracking. In: 2008 11th International Conference on Information Fusion, pp. 1–6.
IEEE (2008)

17. Spletzer, J.R., Taylor, C.J.: A bounded uncertainty approach to multi-robot localization. In:
2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 2,
pp. 1258–1265. IEEE (2003)

18. Switkes, J.P., Gerdes, J.C., Berdichevsky, G., Berdichevsky, E.: Systems and methods for semi-
autonomous vehicular convoys. US Patent App. 13/542,622 (2012)

19. Taylor, C., Spletzer, J.: A bounded uncertainty approach to cooperative localization using
relative bearing constraints. In: 2007 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 2500–2506 (2007)

20. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press, Cambridge (2005)

Towards Cooperative Localization
in Robotic Swarms

Anderson G. Pires, Douglas G. Macharet and Luiz Chaimowicz

Abstract Cooperative localization allows groups of robots to improve their overall
localization by sharing position estimates within the team. In spite of being a well
studied problem, very few works deal with the increased complexity when a large
number of robots is used, as is the case in robotic swarms. In this paper, we present
a characterization and analysis of the cooperative localization problem for robotic
swarms.We use a decentralized cooperative mechanism in which robots take turns as
dynamic landmarks providing information to their teammates. We perform several
simulations and analyze the influence of these dynamic landmarks in the localization.
More specifically, we study the impact of the number of robots in the localization
and how the choice of landmarks affects the results.

Keywords Cooperative localization · Cooperative mobile robots · Swarm robotics

1 Introduction

The localization problem is one of the most fundamental in mobile robotics.
It generally consists in estimating the robot pose relative to a reference frame in
the environment. When robots are equipped with exteroceptive sensors (such as laser
range finders) and a set of known landmarks or a map of the environment is available,

A.G. Pires (B) · D.G. Macharet · L. Chaimowicz
Computer Vision and Robotics Laboratory (VeRLab), Computer Science Department –
Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
e-mail: anderson@leopoldina.cefetmg.br

D.G. Macharet
e-mail: doug@dcc.ufmg.br

L. Chaimowicz
e-mail: chaimo@dcc.ufmg.br

A.G. Pires
Computer and Mechanics Department – Centro Federal de Educação Tecnológica
de Minas Gerais (CEFET-MG), Leopoldina, MG, Brazil

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_8

105

106 A.G. Pires et al.

localization is relatively simple. This is also true for outdoor robots equipped with a
good GPS, which can provide position estimates in a global reference frame. But in
more general settings, in which GPS is not available and the robot has no knowledge
about the environment, robots have to rely on dead reckoning methods that compute
new pose estimates from previous ones. Unfortunately, these methods are subjected
to accumulated errors when traveling long distances, which lead to uncertainties that
may compromise the quality of the localization.

In multi-robot teams, individual localization estimates can be corrected based on
the teammates’ positions instead of landmarks in the environment. This is one of the
benefits of cooperative robotics, which allows robots to share responsibilities and
exchange information to better accomplish tasks. The pose belief adjustment occurs
by means of information exchange, which generally happens when the robots meet
each other (i.e. there are robots within the communication range). Multi-robot sys-
tems employing this technique, commonly denoted Cooperative Localization (CL),
have less dependence on the availability of global localization information. Conse-
quently, this kind of system can be used to explore unknown areas or scenarios where
global localization is not always available.

These advantages can be leveraged with the use of large groups of robots,
which usually present increased flexibility and robustness. Generally called Robotic
Swarms, these systems employ a large number of simpler agents to perform different
types of tasks, acting in a completely decentralized fashion. As will be discussed in
the next section, most of the CL methods have focused on the use of a small number
of robots since the complexity in terms of coordination and information exchange
increases with the number of robots. Thus, the problem of CL in robotic swarms has
not been fully explored and presents relevant questions to be investigated.

In this paper, we present a characterization and analysis of the cooperative local-
ization problem considering a swarm of robots. We use a decentralized method, in
which themain idea is to have some robots in the swarm acting as dynamic landmarks
and providing a localization structure to the group. More specifically, we have the
members of the group alternately working as localization providers. These members,
acting as beacons, publish localization information in their vicinities to allow their
neighbors to adjust their localization beliefs. In this context, we perform an extensive
series of simulations and analyze how the number of dynamic landmarks and their
choice may impact the localization in a robotic swarm.

The remainder of this paper is structured as follows. A review on the CL liter-
ature is presented in Sect. 2. The methodology is presented in Sect. 3, which ini-
tially describes the theoretical formalizations (Sect. 3.1), followed by the coopera-
tive swarm localization method (Sect. 3.2), and the swarmmotion strategy (Sect. 3.3)
used to move the group as a unit. Experiments and statistical analysis are presented
in Sect. 4. Finally, Sect. 5 brings the conclusions and directions for future work.

Towards Cooperative Localization in Robotic Swarms 107

2 Related Work

Oneof the firstworks that use robots as landmarks to performcooperative localization
is [6], in which a group of robots, with awareness of its initial localization, is divided
in two subgroups with alternating motion and roles. At each time-step, one group is
in motion while the other remains static to serve as landmark. After the motion, the
robots update their localization beliefs by using relative observations and then remain
stationary acting as landmarks to the other group. Despite the good results shown in
real applications [5], the need of a centralized entity that controls the actions of all
robots and estimates their beliefs compromises the robustness and scalability of the
method.

Another seminal work is [7], in which the concept of cooperative localization is
employed in a task related to mapping. Two robots are equipped with sensors that
allow them to track each other. The coordination mechanism permits them to divide
the environment by using spatial decomposition, such that at any single time one
robot acting as landmark is positioned in a corner of the environment, while the
other spans the perimeter maintaining visual contact. Therefore, the regions of the
entire free space are covered and a dual graph is generated, which can be used to
posterior exploration of the area.

A more general approach to the CL problem is presented in [10]. The method is
based on the generation of a joint estimation of the robots’ pose in a group, which is
computed using an Extended Kalman Filter (EKF) [4]. Both centralized and decen-
tralized methods were applied to generate the joint estimation. In the decentralized
approach, each robot performs the prediction step of the filter individually while
the update step is performed by exchanging information with others via commu-
nication and exteroceptive sensors. The localization interdependence is considered
and its representation (cross correlation terms) are stored by all robots and explicitly
propagated to the teammates. Using these terms, a robot can estimate its pose by con-
sidering the shared knowledge associated with previous meetings. In spite of having
the best estimate as a consequence of the use of localization interdependence, this
strategy has the disadvantage of requiring a previous knowledge about the group size
and presents a complexity that increases quadratically with the number of robots,
precluding its use for large groups of robots, such as swarms.

To deal with this drawback, other works have proposed approximate strategies to
perform the belief update. These approaches use only part of the group to calculate the
robot’s estimate. In a recent approximate approach [1], the belief update is performed
by using theCovariance IntersectionAlgorithm (CI) [3],which is a consistentmethod
to fuse estimates of a same quantity with unknown cross-correlation terms. This
approach allows each robot to maintain only its own state-covariance estimate with
a cost to generate a new estimate of O(n).

Some works have investigated different strategies to increase the quality of local-
ization. For instance, [2, 14, 15] explore the motion mechanism of the group. Tully
et al. [14], for example, presents a leap-frog motion technique that has been designed
to aid localization for a team of three robots that move alternatively. The results show

108 A.G. Pires et al.

that this motion strategy outperforms the optimal formation-based path. A method
based on leader-following is presented in [16], in which they explore the formation
to generate optimal motion strategies. Two robots are employed and the simulation
results present better localization accuracy in comparison with the other formation
methods used.

However, just a few works have studied the influence of the group size in relation
to the quality of the group localization. In [11], a theoretical analysis relates the effect
of the number of robots and the error accumulation. In this analysis, the continuous
exchange of localization information among the robots is considered and each robot
uses sensors of limited accuracy to provide absolute orientation. It is shown that
the uncertainty growth is inversely proportional to the number of robots and the
rate of growth depends only on this number and the uncertainty of proprioceptive
sensors. In [8], this aspect is evaluated together with the type of measurement used.
Although the results have shown that the increase in the number of robots contributes
to the quality of localization, relevant details have not become explicit, such as the
number of robots used as landmarks, which prevents a more detailed analysis. In a
recent work [12], the influence of the group size is studied in simulated experiments
using groups from two to five robots. A centralized EKF sequentially performs the
localization estimate of the group using the data sent by all robots. Because of the
restricted scope of the experiments, the results cannot be generalized.

Thus, in spite of the different studies in cooperative localization, its use in robotic
swarms is still incipient. In special, the study of scalability issues in this context is a
relevant problem that we consider suitable for investigation.

3 Methodology

In this work, we consider a large group of robots (swarm) that moves in a cohesive
manner. As in [6, 7], the swarm is divided into two subgroups that move in amutually
exclusive way. One group remains stationary broadcasting their pose information
while the robots of the other group move using proprioceptive sensors to estimate
their pose. After moving for a certain amount of time, each of these robots updates its
belief by using some of the stationary robots in its neighborhood as landmarks. The
process is completely decentralized: each robot estimates its distance and orientation
to the landmarks, and use the pose information disseminated by them to correct its
pose. After this, robots exchange roles: the stationary group starts moving while the
robots of the other group become stationary landmarks.

Similarly to [1], we consider that robots are able to identify and measure relative
ranges and bearings to their neighbors and exchange information with them. Also,
robots are equipped with proprioceptive sensors that allow them to measure their
own motion. Since we are using holonomic robots, we do not consider the robot
orientation.We assume that all sensor measurements are subjected to white Gaussian
noise, but communication is performed without errors.

Towards Cooperative Localization in Robotic Swarms 109

3.1 Theoretical Formalization

Let us consider the scenario where a swarmR = {R1,R2, . . . ,Rη

}
of η holonomic

robots must navigate in a static 2D environment. Let pi
k = [xi

k yi
k]� be the vector at

time-step k that represents the true position of the i th robot (Ri) in a common global
frameW , andui

k = [vxi
k vyi

k]� the vector that represents its control action in the same
time-step, in which vxi

k and vyi
k stand for the input velocities in x and y directions,

respectively.
The state xi

k of the robot Ri at time-step k is equal to its position, i.e. xi
k = pi

k =
[xi

k yi
k]�, and its discrete-time motion model is expressed by:

xi
k+1 = f (xi

k, ui
k), i = 1, . . . , η

=
[

xi
k + vxi

kΔk
yi

k + vyi
kΔk

]
.

(1)

A neighborhood N consists of a circular region of radius τ around the current
position of a robot. Thus, we can defineN = {N1,N2, . . . ,Nη

}
as the set of calcu-

lated neighborhoods, all with the same radius. As mentioned, we assume thatRi can
exchange information andmeasure relative range ρ and bearing φ of all robots inside
its neighborhood Ni . Moreover, it is assumed that robots inside a neighborhood Ni

can be uniquely identified by the exteroceptive sensor of robot Ri .
The true range and bearing taken by robot i of a robot j at time-step k are respec-

tively denoted by ρ
i, j
k and φ

i, j
k .1 Thus, the true range ρ

i, j
k and bearing φ

i, j
k taken at

time-step k by robot i of robot j , is given by h(xi
k, x j

k), where

h(xi
k, x j

k) =
[

ρ
i, j
k

φ
i, j
k

]
=

[√
(x j

k − xi
k)

2 + (y j
k − yi

k)
2

atan2(y j
k − yi

k, x j
k − xi

k)

]
. (2)

The measurement model at time-step k + 1, when Ri gets a relative position
measurement ofR j , zi, j

k+1 = [ρ̂i, j
k+1 φ̂

i, j
k+1], i, j = 1, . . . , η, i �= j , j ∈ Ni , is given by

zi, j
k+1 = h(xi

k+1, x j
k+1) + ni, j

k+1, (3)

where ni, j
k+1 is the zero-mean white Gaussian measurement noise with covariance

Ri, j
k+1 added to the true relative measurements given by h(xi

k+1, x j
k+1).

1We use the notation ∗i, j
k to express that a certain value associated with robot i was obtained using

information and/or measurements from robot j at time-step k.

110 A.G. Pires et al.

3.2 Cooperative Swarm Localization

As described earlier, this work uses a swarmR of η holonomic robots. The swarm is
divided in two subgroups, and their motions are coordinated such that the subgroups
move as units in a mutually exclusive way (see Sect. 3.3). Individually, each robot
i maintains only its own state estimate x̂i

k and the respective covariance Pi
k , due to

the costs of processing and communication when cooperatively localizing a large
group of robots. In this work we do not address the cross-correlation terms [10], and
propose an approximate decentralized algorithm for CL.

A robot R j acting as landmark continually broadcasts messages with its state
and covariance to its neighbors. After its motion, a robotRi trying to localize itself,
processes the relative range and bearingmeasurement zi, j

k+1 togetherwith the informa-
tion received from robotR j . Using these data and its own predicted state x̂i

k+1|k2 and
covariance Pi

k+1|k estimates, the robot processes the new state x̂i
k+1|k+1 and covari-

ance Pi
k+1|k+1 estimates. This procedure is repeated incrementally for each landmark

in order to improve the localization estimates. The mathematical details of this pro-
cedure is presented as follows.

The discrete-time motion model described in (1) is used to propagate the state of
the robot Ri as:

x̂i
k+1|k = f (x̂i

k|k, ûi
k), i = 1, . . . , η. (4)

The robot’s state is updated according to a linear function f that considers the
previous state x̂i

k and an input ûi
k = ui

k + wi
k = [v̂xi

k v̂yi
k]�, which is basically the

commanded velocities ui
k augmented with additive zero-mean white Gaussian noise

wi
k , with covariance Qi

k . During the motion, each robot individually evolves this
model with time-steps of length Δk.

Using an EKF [4], the respective covariance propagation for Ri is given by:

Pi
k+1|k = Φ i

kPi
k|k(Φ

i
k)

� + Gi
kQi

k(G
i
k)

�, (5)

where Φ i
k is a 2 × 2 identity matrix (I2) and Gi

k is this same matrix multiplied by the
time-step Δk.

Thus, whenRi receives the message with the state and covariance estimates from
robot j and obtains a relative measurement zi, j

k+1 of it, Ri can generate an estimate
of its state as if such estimate had been calculated by the robot R j . The following
equation illustrates this process:

x̂i, j
k+1 = x̂ j

k+1|k+1 − g(zi, j
k+1), (6)

2Notation is similar to [1], where ŷl|m denotes the estimate of the random variable y at time-step l,
given the measurements up to time-step m.

Towards Cooperative Localization in Robotic Swarms 111

where

g(zi, j
k+1) =

[
ρ̂

i, j
k+1cos(φ̂

i, j
k+1)

ρ̂
i, j
k+1sin(φ̂

i, j
k+1)

]
.

As described in [13], the uncertainty Ri, j
k+1 tied to the measurement zi, j

k+1 can be

converted to the common global frame by the means of the jacobian Ji, j
k+1, as follows:

Ji, j
k+1 = ∇xk g(zi, j

k+1)
∣∣
xi

k=x̂i
k+1|k ,x

i, j
k =x̂i, j

k+1

=
[
cos(φ̂i, j

k+1) −ρ̂
i, j
k+1 sin(φ̂

i, j
k+1)

sin(φ̂i, j
k+1) ρ̂

i, j
k+1 cos(φ̂

i, j
k+1)

]
.

(7)

The jacobian J relates the deviation of the original [Δρ̂ Δφ̂]� and the transformed
[Δx̂ Δŷ]� variables, which represent the distance from robots i and j in x and y
coordinates, respectively. Calculated as:

[
Δx̂
Δŷ

]
= J

[
Δρ̂

Δφ̂

]
. (8)

The covariance is defined by the expectation of the squared deviates. So, the
covariance of the measurement z in the common frame is defined by multiplying
both sides of Eq. (8) by their respective transposes and taking the expectation of the
result. This transformation represents an adequate linear approximation when the
variables are represented by Gaussians with small variances, as stated in [13]. The
uncertainty Pi, j

k+1 related to the x̂i, j
k+1 estimate is generated by the combination of the

covariance matrices:

Pi, j
k+1 = Pi

k+1|k + Ji, j
k+1Ri, j

k+1(J
i, j
k+1)

�. (9)

The estimates x̂i
k+1|k and x̂i, j

k+1 are combinedby theEKFupdate step.This generates

a new state x̂i, j
k+1|k+1 and covariance Pi, j

k+1|k+1, which represent the actual belief of the
robot. New landmark information and relative measurements are combined with this
belief using the procedure described above in an incremental way. The final state
x̂i

k+1|k+1 and covariance Pi
k+1|k+1 estimate is used for the next motion step.

An important point of the methodology is the choice of the neighbors used as
landmarks. We use two different methods: the first one considers the k closest neigh-
bors while the second choses the k neighbors with lowest uncertainties (covariance
trace). The performances of these different methods are compared in Sect. 4.

112 A.G. Pires et al.

3.3 Swarm Motion Strategy

Asmentioned, the swarmR is randomly divided into two subgroups: one that moves
while the other maintains its position. After a pre-specified number of time-steps, the
two subgroups exchange roles. Lets call these subgroups Rm and Rs , for moving
and stationary ones, respectively.

Robots motion is governed by decentralized flocking rules, which allow them to
move in a cohesive way, while avoiding collisions. The motion strategy is based on
some of the basic rules of Reynolds’ flocking algorithm [9]. Each rule establishes a
vector that determines a direction to be followed.

The first rule, separation, aims to maintain a safe distance among the robots. The
separation behavior is calculated by:

vsep
i =

∑

j∈R, j �=i

(
rs

‖di j‖ − 1

)
di j , ‖di j‖ ≤ rs, (10)

which computes a separation vector vsep based on the displacement di j between a
robot and its teammates located inside a specific separation range (rs).

The second rule aims tomaintain the robots together acting as a unit. This cohesion
rule computes the average position of the k moving robots that are located inside a
cohesion range (rc), and generates a vector vcoh

i pointing in this direction as:

vcoh
i = 1

k

∑

j∈Rm , j �=i

di j , ‖di j‖ ≤ rc. (11)

Finally, we consider that the robots have a series of common targets to be reached
during their motion. These targets are used to compute a direction vector (vdir)
to be followed. The displacement vector between a robot i and its next target t is
represented by di t . As shown in Eq. (12), the direction vector consists of the unit
vector in the direction of di t :

vdir
i = di t

‖di t‖ . (12)

The control action ui is given by:

ui = kc vcoh
i + ks vsep

i + kd vdir
i , (13)

which is composed by the weighted sum of the three vectors. The control action is
then decomposed in velocities vxi and vyi , that will be used by robot i .

We assume all robots have a synchronized clock, and the decision to switch robots
from Rs to Rm (i.e. from stationary landmarks to the moving robots group), and
vice versa, is made periodically on a completely decentralized manner. At first, the
swarm is divided in two predefined subgroups, and a common timer is initialized.

Towards Cooperative Localization in Robotic Swarms 113

As soon as the timer reaches a certain value, the robots change their roles, and the
timer is reinitialized. This loop is repeated until the mission is fulfilled.

3.4 Complexity Analysis

In this section, we present a brief analysis of the computational complexity of each
stage of the proposed methodology, as well as bounds regarding the number of
messages used by each robot.

In most systems dealing with the CL problem, the cost to estimate the position is
usually O(n2), where n is the number of robots, since n(n − 1) measurements are
needed to calculate a new estimation.

In this work, the swarm is divided into two subgroups, and all the robots on
a subgroup should measure the relative range and bearing of all robots from the
other subgroup. Therefore, it takes (n/2)(n/2) measurements, still leading to an
O(n2) complexity, where n is the number of robots. However, as will be shown in
Sect. 4, the use of just part of the robots from the other group improves significantly
the position estimation, which takes k(n/2) measurements. Therefore, we have an
O(kn) complexity, since we consider k 	 n/2 as the number of robots that will be
used as landmarks, and n is the total number of robots.

4 Experiments

Several simulations were performed to analyze how the number of dynamic land-
marks and the way they are chosen impact the localization. We have also varied
parameters related to the quality of the information in order to study its influence on
the localization error and the number of necessary landmarks.

The experiments presented here were executed considering a swarm with 30
holonomic robots. The group navigates in an obstacle-free static environment of
approximately one hundred square meters (10m × 10m). Robot motion is directed
by a series ofwaypoints,which define targets to be reachedby the group.These targets
dictates the preferred direction (vdir

i) for each robot and it is used in computing the
commanded velocity ui . These velocities are limited to 0.1m/s, and are subjected to
additive zero-meanGaussian noise of 10%of the true velocity. Each simulation takes
approximately 6500 time-steps, where Δk = 0.1 s is the duration of each time-step,
and the total length of the traveled distance is ≈30m.

Following themethodology, the robots are initially assembled together anddivided
into two subgroups at random. The motion of the groups is coordinated so that they
move in turns for a specific number of time-steps. One subgroup is selected to start
moving while the other remains stationary. After motion, the group stops and each
member computes range and bearing to some of the static robots located inside their

114 A.G. Pires et al.

Fig. 1 Example of the path
executed by the subgroups
(red and blue colors)

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

x (m)

y
(m

)

neighborhoods. In the simulations, the radius of the neighborhoods was made large
enough to allow the analysis of the impact of varying the number of landmarks.

Figure1 presents an example of a path executed by the swarm. The position of
the members of both groups (depicted in red and blue) is presented over time. The
small circles represent the position of each robot in four distinct moments in which
the blue group performed cooperative localization.

The first experiment was performed to evaluate the impact of different error para-
meters in the quality of the final localization. The range noise was defined propor-
tional to the measurements while the bearing noise has been fixed to some absolute
values. The noise n of the measurement model (Eq. 3) was defined using the fol-
lowing values σρ = {0.05, 0.10, 0.20, 0.30, 0.40} × ρ and σφ = {1◦, 2◦, 3◦}. These
parameters were analyzed varying the number of landmark robots used for correcting
the localization estimates, ranging from 1 robot to η

2 robots (i.e. the entire station-
ary group). For each specified combination of noise values (σρ, σφ) and number of
landmarks, a total of 30 simulations were executed. The position mean error after
the path has been completed is presented in Fig. 2.

For each simulation, a mean localization error is calculated by taking the average
of the root mean square error (RMSE) value of the position errors for all robots
during their motion, assuming they are using a determined number of neighbors
as landmarks. It is possible to observe that the bearing noise has a small influence
in the mean error. However, with the increase in the noise of the relative range, a
robot needs to use more landmarks in order to better correct its position estimate.
We can also observe that in situations where the noise is small, the increase in the
number of landmarks over certain values does not contribute to reduce the localization
error. For example, for σρ = 0.05ρ, the error decreases very slowly for more than 6

Towards Cooperative Localization in Robotic Swarms 115

Fig. 2 Mean position error varying the number of landmarks used for correction

landmarks. In other words, depending on the observation noise, robots can improve
their localization using just a small number of landmarks in their neighborhood.

We also analyzed the increase on the RMSE along the execution when a different
number of landmarks is used. Figure3 shows the results of a set of 30 simulations in
which the associated noises were fixed at σρ = 0.10ρ and σφ = 3◦. It is possible to
observe that the error is largely reduced when at least one landmark is used, but this
reduction is smaller for more than four landmarks. This reinforces the analysis that a
small number of robots may suffice for improving localization in swarm navigation.

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

2

Time Steps [0.1 s]

R
M

S
E

 (
m

)

none

1 landmark

4 landmarks

8 landmarks

15 landmarks

Fig. 3 RMSE accordingly to the different number of landmarks used for localization

116 A.G. Pires et al.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

x (m)

y
(m

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

x (m)

y
(m

)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

x (m)

y
(m

)

(a) (b)

(c)

Fig. 4 The real (black line) and cooperative estimated (blue line) path performed by a robot. The
red line is the estimate without cooperative localization. a 1 landmark. b 4 landmarks. c 8 landmarks

As can be seen, theRMSEconsidering the use of 15 landmarks presents a tendency
to converge to a constant growing rate after a certain number of time steps. This is
a particularly important result, since it provides a notion that it will be possible to
obtain a bounded maximum error for the entire swarm.

The improvement on the localization can readily be observed in Fig. 4, which
shows the path followed by one of the robots using different numbers of landmarks
to correct its localization. In this case, the black line is the ground truth (actual path),
the red line represents the robot localization estimates without correction and the
blue line represents the localization using other robots as landmarks. Both Figs. 3
and 4 are related to the same set of experiments.

In the previous experiments, the landmarks to be used were chosen at random,
without any criterion of selection. Themeasurementswere used in the update phase of
the EKF according to the order themessages arrived.With the aim of analyzing how a
different ordering could impact the localization, we defined two criteria for selecting
the landmarks to be used, and compared them with the random selection. The first
considers an ordering process in which the landmarks that are closer to the robot
are chosen. The second sorts the landmarks considering their uncertainties, so that

Towards Cooperative Localization in Robotic Swarms 117

Fig. 5 Mean position error
accordingly to the criterion
used to select the landmarks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
closest
random

lower uncertainty

M
ea

n
er

ro
r

(m
)

Number of landmarks

the ones with the lower uncertainty are chosen. The observation noise was set with
the same value of the previous experiment. Figure5 shows that both criteria improve
the localization over choosing landmarks randomly. Between the two, the selection
of the landmark robots with lower uncertainties is slightly better than choosing the
closest landmark robots, specially when few landmarks are used.

5 Coclusion and Future Work

In this paperwe performed a characterization ofCooperative Localization for swarms
of robots by using an approximate decentralized algorithm. Considering the sensory
and computational limitations of this kind of system, we have explored the coordi-
nated motion of the group, so that the robots could cooperatively localize themselves
using local information, i.e. using only part of the group as landmarks. We per-
formed a series of simulations in order to evaluate the method and results showed
that localization estimates can be significantly improved even using a small number
of neighbors as landmarks. Experiments performed with a larger number of robots
(not showed here) confirmed this trend. This suggests that the method scales well
and can be used when it is necessary to cooperatively localize large groups of robots.

In general, cooperative localization methods have not been used with large group
of robots due to the complexity related to the exchange of localization information.
Therefore, one of the main contributions of this work is the investigation of such
methods in robotic swarms. Although we have not considered the localization inter-
dependence, our results indicate that it is possible to reach good localization even
with a few landmarks, which is important in terms of scalability.

The main limitation of this work is related to the fact that we do not incorpo-
rate the orientation noise and localization interdependence. In order to address this,

118 A.G. Pires et al.

we will direct our future work to extend the proposed methodology to deal with non-
holonomic robots and also with the localization interdependence. Specially to tackle
the latter, we intend Covariance Intersection Algorithm (CI) [1, 3]. We believe that
this will make the methodology more general and robust.

Acknowledgments Thisworkwas developedwith the support of CEFET-MG,CAPES, FAPEMIG
and CNPq.

References

1. Carrillo-Arce, L., Nerurkar, E., Gordillo, J., Roumeliotis, S.: Decentralizedmulti-robot cooper-
ative localization using covariance intersection. In: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 1412–1417 (2013)

2. Hidaka, Y., Mourikis, A., Roumeliotis, S.: Optimal formations for cooperative localization of
mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automa-
tion, pp. 4126–4131. Barcelona, Spain (2005)

3. Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown
correlations. In: Proceedings of theAmericanControlConference, vol. 4, pp. 2369–2373 (1997)

4. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME—J.
Basic Eng. 82(Series D), 35–45 (1960)

5. Kurazume, R., Hirose, S.: An experimental study of a cooperative positioning system. Auton.
Robots 8(1), 43–52 (2000)

6. Kurazume, R., Nagata, S., Hirose, S.: Cooperative positioning with multiple robots. In: Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp.
1250–1257 (1994)

7. Rekleitis, I.M., Dudek, G., Milios, E.E.: On multiagent exploration. In: Proceedings of Vision
Interface, pp. 455–461 (1998)

8. Rekleitis, I.M., Dudek, G., Milios, E.E.: Multi-Robot cooperative localization: a study of trade-
offs between efficiency and accuracy. In: Proceedings of the IEEE/RSJ InternationalConference
on Intelligent Robots and Systems, vol. 3, pp. 2690–2695 (2002)

9. Reynolds, C.W.: Flocks, herds, and schools: a distributed behavioral model. In: Computer
Graphics, pp. 25–34 (1987)

10. Roumeliotis, S.I., Bekey, G.A.: Collective Localization: a distributed Kalman filter approach to
localization of groups of mobile robots. In: Proceedings of the IEEE International Conference
on Robotics and Automation, vol. 3, pp. 2958–2965 (2000)

11. Roumeliotis, S.I., Rekleitis, I.M.: Propagation of uncertainty in cooperative multirobot local-
ization: analysis and experimental results. Auton. Robots 17, 41–54 (2004)

12. Schneider, F.E., Wildermuth, D.: Influences of the robot group size on cooperative multi-robot
localisation—analysis and experimental validation. Robot. Auton. Syst. 60(11), 1421–1428
(2012)

13. Smith, R.C., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J.
Robot. Res. 4, 56–68 (1986)

14. Tully, S., Kantor, G., Choset, H.: Leap-frog path design formulti-robot cooperative localization.
In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics, Springer Tracts in
Advanced Robotics, vol. 62, pp. 307–317. Springer, Berlin (2010)

15. Zhang, F., Grocholsky, B., Kumar, V.: Formations for localization of robot networks. In: Pro-
ceedings of the IEEE International Conference on Robotics and Automation, vol. 4, pp. 3369–
3374. New Orleans, LA, USA (2004)

16. Zhou, X.S., Zhou, K.X., Roumeliotis, S.I.: Optimized motion strategies for localization in
leader-follower formations. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 98–105. San Francisco, CA, USA (2011)

MOARSLAM: Multiple Operator
Augmented RSLAM

John G. Morrison, Dorian Gálvez-López and Gabe Sibley

Abstract To effectively act on the same physical space, robots must first
communicate to share and fuse the map of the area in which they operate. For long-
term online operation, the merging of maps from heterogeneous devices must be
fast and allow for scalable growth in both the number of clients and the size of
the map. This paper presents a system which allows multiple clients to share and
merge maps built from a state-of-the-art relative SLAM system. Maps can also be
augmented with virtual elements that are consistently shared by all the clients. The
visual-inertial mapping framework which underlies this system is discussed, along
with the server architecture and novel integrated multi-session loop closure system.
We show quantitative results of the system. Themap fusion benefits are demonstrated
with an example augmented reality application.

Keywords Slam · Collaborative SLAM · Multi-agent mapping · Long-term
autonomy

1 Introduction

As robotic capabilities increase, cooperative robotic interaction is becoming more
attractive. In order to operate in the same environment together, however, robots must
simultaneously have an understanding of both the physical environment around them
and their location within it. This requires a localization and mapping solution which
can be shared between robots and permits relocalizationwithinmaps created by other
devices. Also, to keep robots affordable, approaches based on low-cost sensors, such

J.G. Morrison (B) · D. Gálvez-López · G. Sibley
Department of Computer Science, University of Colorado, Boulder, CO 80309, USA
e-mail: john.morrison@colorado.edu

D. Gálvez-López
e-mail: Dorian.GalvezLopez@colorado.edu

G. Sibley
e-mail: gsibley@colorado.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_9

119

120 J.G. Morrison et al.

as cameras, are preferable to LIDAR-based solutions because their high cost can be
prohibitive when developing distributed robotic applications.

This paper presents a new system,MOARSLAM, for simultaneously building and
sharing large-scale 3Dmaps frommultiple devices equipped with either a monocular
camera and an IMU or a stereo camera pair. It describes infrastructure, algorithms
and core data structures for building and sharing arbitrarily scalable visual maps.
The paper also presents a means for distributing physically tethered information,
demonstrated here with an augmented reality example.

The presented system operates in a client-server architecture communicating over
the network. This work defines a client as a camera- and network-equipped platform
with computing abilities, such as a mobile phone or an autonomous robot. A session
represents a single continuous MOARSLAM run by a client. A client starts a new
session each time they launchMOARSLAM. The server in MOARSLAM is defined
as a machine that stores a single representation of the accumulated global map. It
offers an API interface to receive and distribute maps to provide endpoints for map
related queries. The MOARSLAM client is capable of fully autonomous SLAM
and only communicates with the server to share maps. The server’s simple and
stateless API allows clients to easily integrate server queries into their processing
when a network connection is available. The server API is also purely image driven,
removing the need for an accurate global location when interacting with the server.
Figure1 shows an example of the capabilities of our approach.

The paper is organized as follows: Sect. 2 presents the relatedwork ofmulti-device
SLAM. Section3 gives details about the map structure and its benefits. Section4
gives an overview of the client-side SLAM processing pipeline which generates
the initial session’s map. Section5 describes the server component of MOARSLAM
which is responsible for storing and joiningmultiple sessions’ maps. Section6 shows
the experimental validation of our proposal, and Sect. 7 includes a discussion on the
potential limitations and futurework for this approach. Section8 concludes the paper.

2 Related Work

Multi-device SLAM has been approached in a decentralized fashion by several
authors. Several vehicles on a sparse communication network create individual maps
that fuse with their neighbors when it is possible, either by following a consensus
policy [1, 21], or by distributing data association [3, 12]. Although decentralized
systems can reduce the computation effort of each device, the complexity of their
communications usually makes it expensive to obtain a global map. On the other
hand, Forster et al. [7] and Riazuelo et al. [17] present a multi-threaded method
for building maps using Micro Aerial Vehicles (MAVs) and mobile robots with a
centralized system. Their approaches both seek to decouple the motion estimation
and map building pipelines by communicating keyframe information to a central
station where it is fused into a cohesive map structure. Loop closure events and map
construction are handled on this central station while the client is left to perform

MOARSLAM: Multiple Operator Augmented RSLAM 121

Fig. 1 Sample MOARSLAM operation. a A map previously created by a MOARSLAM client is
stored in the server. The map and trajectory are depicted as blue edges, and the local loop closures as
red edges. The landmarks are shown as black points and a virtual 3D object is also added, displaying
the text “Writing on the wall”. b A zoomed in portion of the map. c Another client initiates a new
mapping session with MOARLSLAM in the same environment. d MOARSLAM soon recognizes
a loop closure with the previously mapped trajectory and joins the two maps to provide the client
with a richer map

visual odometry with only the map it is provided by the server. These solutions
lower the computational cost on the client, but can reduce its autonomy in the face
of intermittent networking. The system we propose is also based on a client-server
architecture, but unlike approaches above, it allows clients to create individual maps
even if connection to the server is lost. When connection is available, individual
maps are fused by cross loop closures yielded by the server, as done by McDonald
et al. [13]. However, unlike them,we do not require to extract new features to perform
this operation since we exploit the features tracked by the front-end. In addition, we
reuse the map graph to check for loop consistency.

Previous approaches for map representation fall largely into two camps: “hybrid”
sub-mapping techniques and privileged frame fusion approaches. In fully fixed frame
representations, such as the one by Özkucur and Akin [16], an expensive map merg-
ing algorithm is required to joinmeasurements and objects inmultiplemaps together.

122 J.G. Morrison et al.

These approaches offer simplicity in representation, but would not scale well because
of the need to reprocess all data before merging maps. The sub-mapping techniques
are based on limited-area metric maps, such as the occupancy grids used by Chang
et al. [5] or the planar AR workspaces employed in PTAMM [4], the multiple map
extension to PTAM [10]. These approaches apply a privileged frame SLAM algo-
rithm to populate their maps, but in order to bound complexity, after a map’s extent
has grown too large they initialize a new and fully independent metric map. In
PTAMM, they reuse their existing relocalization techniques to switch the system’s
focus between maps, and Chang et al. [5] and McDonald et al. [13] connect maps
using topological linkages based on odometry or “anchor nodes”. These approaches
recognize the bounds of privileged frame representations, but still maintain a depen-
dency on them. In their conclusion Castle et al. [4] discuss future work opportuni-
ties that this paper deals with, including IMU integration and the fusion of many
sequences.

Current lines of research tend to augment feature maps with additional infor-
mation, e.g. objects [20]. Furthermore, multiple robot or device localization allows
clients to share these data in a consistent manner across maps. For example, the
RoboEarth system [22] provides a framework to share semantic maps with object
annotations among different robots. However, it does not define a mechanism to
build a map cooperatively and requires clients to share an arbitrary reference frame.
In contrast, our proposal deals with both cooperative mapping and map reuse, and
makes it possible to consistently incorporate meta information relative to each client
frame.

3 Scalable Mapping

This section describes the map structure which is the key to enabling multi-device
map building, joining and updating in MOARSLAM. First the basic structure of the
map is described, followed by a description of the particular attributes of the map
structure which make multi-device mapping possible. Finally, the means through
which external information is stored in the map is described.

3.1 Map Structure

The map is represented in the “continuous relative representation” of RSLAM [14]:
an undirected graph of nodes, representing key frames taken at poses p, connected
by transformation edges which encode their 6-DOF relative pose estimate, as seen in
Fig. 2. Point landmarks l are stored as inverse-depth estimates back-projected (solid
black lines) from the frame where they were first observed [6] back-projected from
the pixel where were first seen. Patches of size 9-by-9 pixels are stored for tracking
the landmark. Each new observation of a landmark is stored with the frame from

MOARSLAM: Multiple Operator Augmented RSLAM 123

Fig. 2 Graphical representation of a map and of the constraints created after a loop closure. The
poses p of a vehicle create graph nodes at every key frame. Nodes are joined by transformation
edges and are associated to map landmarks l. When the loop detector retrieves a place match, after
several consistent candidate place matches, a new edge Tab is created to fuse maps between the
different sessions a and b

which it was observed (dashed edges). Additionally, the camera calibration, both the
camera intrinsics and extrinsics, is stored for each session. This allows maps created
in separate sessions to be used together. In MOARSLAM, a map is any set of frames
which are connected through a set of edges, regardless of the session in which they
were created.

3.2 Multi-device Mapping

To enable global uniqueness of information created during each SLAM session, the
components of the map require identification. Every time a client begins mapping,
it creates a new Session ID, a UUID which is used to label every frame, edge,
measurement, and landmark created during that session, along with an integer ID
making each object unique within a session. The camera calibration used for map
creation is also tagged with the session’s ID. This identification provides uniqueness
of sessions, frames, measurements, and landmark references during processing and
transfer so the server and client can be confident that they are referring to the same
data.

Using a single relative graph structure to represent a map allows for a consistent
interaction between clients, whether information was created locally or fetched from
the server. Queries on the map are performed as graph searches. Most searches are in
memory and very fast, but the persistent map structure facilitates transparent loading
from disk, as described below. This includes searching for visible landmarks, and
estimating pose transformations between non-adjacent frames.

124 J.G. Morrison et al.

Unlike representations based on a single frame of reference, the relative graph
structure of MOARSLAM allows sections of mapped environments to be referenced
independently of other mapped locations. This means there is no need to share an
entire graph or transform nodes before interacting with them. This ability to interact
and independently alter sections of the map is important for runningmany operations
in parallel, such as loop closures and multi-session mapping. Also, downloaded
sections ofmap are available for use immediately because the systemdoes not depend
on knowledge of a global coordinate frame tomake use of frames. Thus, pieces of the
global map may be downloaded as they are made available or as bandwidth allows.

As it is designed for large-scale mapping and long-term autonomy,MOARSLAM
includes a persistent backend for its map structure. SQLite is used as an interface
for persisting portions of the map which are not in use to disk. A simple SQL query
of the unique identifiers described above allow frames and edges to be loaded from
disk when they are needed. Such a backend structure works well with the sliding
window filter optimization in MOARSLAM [14]. Frames are persisted in real time
after they have exited the filter and are no longer needed.

3.3 Map Metadata

The relative map framework of MOARSLAM allows physical tagging of 3D space
with external information. This information could be anything a robot or an end-user
may want to know about a location. This metadata is stored along with a spatial
transformation on the keyframe from which its location is visible. In this way, when
sharing maps of an environment, all the labeled metadata is distributed with the
physical description of the space. In Sect. 6, we demonstrate this capability by simple
tagging of locations with augmented reality text, but more complex embedding is
possible.

4 Client Processing

MOARSLAM operates in a client-server model. In contrast to Forster et al. [7]
and Riazuelo et al. [17] where only a visual odometry system is run on the client,
the MOARSLAM client runs a full SLAM pipeline and generates the relative map
described in Sect. 3. The overall system architecture is outlined in Fig. 3. The client
components are designed with full navigational autonomy in mind. This reduces
reliance on potentially intermittent networking capabilities. Each client box in Fig. 3
is divided into several threads, as shown by Table1.

The client’s main responsibility in this framework is to produce relative maps of
its environment for sharing. These maps are produced online as the client processes
images and IMU data. The client also periodically communicates with the server

MOARSLAM: Multiple Operator Augmented RSLAM 125

Map

Loop
Closure

Front End

API

Camera

Client

IMU

Map Loop
Closure

Server

Place QueryMap Transfer

Keyframes

Fig. 3 System architecture outline

Table 1 Threads and algorithms run by a MOARSLAM client

Algorithm Purpose

1 Visual-inertial tracking and estimation [9] Feature tracking and high-speed SLAM

2 Adaptive-window bundle adjustment [9] Error reduction in trajectory and landmark estimates

3 Topological loop closure [8] Previously visited place recognition

4 Post-loop closure map relaxation Drift reduction through pose graph relaxation

5 Out-of-core SQLite map interface Reducing memory by writing map data to disk

through the API described in Sect. 5 to query for global loop detections, upload and
download maps.

4.1 Client Front-End

The client front-end is responsible for initial processing of all sensory inputs and
produces a map. It leverages recent state of the art work on visual-inertial state
estimation presented by Keivan et al. [9]. The front-end also asynchronously uploads
all recent frames and edges (including their associated metadata) to the server.

The front-end is split into two threads which run asynchronously. The first thread,
the tracking thread, tracks image point features using a patch-matching based scheme.
This thread is designed to produce approximate pose estimates at a high rate. FAST
corner features [18] are extracted from an image and compared with previously
foundmap landmarks. This generates correspondences to estimate an essentialmatrix

126 J.G. Morrison et al.

whose decomposition yields a relative pose. We disambiguate the translation scale
by incorporating IMU measurements (or by triangulation with a stereo camera).
This information is used in a Gauss-Newton optimization step to jointly improve
the landmark and pose estimates. Using a set of heuristics based on inter-frame
pose differences and the quality of feature tracking, some frames are selected as key
frames. For every selected key frame, a local bundle adjustment is run to further
improve estimates.

The second thread in the front-end is an asynchronous adaptive-window bundle
adjustment thread which grows or shrinks its window to maintain parameter observ-
ability and accuracy. This results in very high quality pose estimates at no cost to
the overall front-end frame rate. This window can grow from the small size of the
synchronous window up to hundreds of key frames, giving it the ability to capture
motion and baselines not available to the fast-moving tracking thread.

4.2 Client Loop Closure

A third thread running on the client performs loop closures. For every key frame
created during a mapping session, the loop closure system tries to detect places that
have already been visited either by the current session or any other. This loop closure
thread also queries the server to get matches with other previously uploaded maps. If
a match is found, the client will download the server’s map of the surrounding area
and integrate it into its own, joining the two disconnected maps.

The place matching is fully integrated in the system and takes advantage of all
place information available to it, whether it was created during the current session
or a previous one. MOARSLAM integrates the loop detector by Gálvez-López and
Tardós [8] into its map graph and operates similarly. We store an image database
to describe places as bags of binary words by using a single hierarchical vocabu-
lary comprising 105 words, trained offline with millions of features obtained from
independent data.

The loop closure thread computesORB [19] descriptors around the corner features
tracked by the front-end. This provides a small (∼100) number of points which have
been observed from multiple angles, are well distributed across the image and and
associated to landmarks with estimated 3D poses. In addition, by reusing the front-
end’s features the overhead of computing new features is avoided. These descriptors
are converted into a bag-of-words vector and used to query the image database. The
top-100 candidate matches are grouped together if their reference frames are close
in the map, and the group with the highest aggregated similarity score is kept [8]. To
avoid false detections, the candidates are accumulated until subsequent queries are
resolved, as shown by the blue dashed circles in Fig. 2. When at least 3 of them are
close each other, a loop closure attempt is made. By comparingORB descriptors, 2D-
to-3D correspondences between the current image and the matched 3D landmarks
are found. Solving the perspective-n-problem yields a relative transformation that
is later optimized by projecting map landmarks to find additional correspondences.

MOARSLAM: Multiple Operator Augmented RSLAM 127

If the transformation can be found, the place match is accepted and an edge is
added to the map. This is illustrated by the thick edge created between poses p2

and ps in Fig. 2 that encodes the spatial transformation Tab. Another thread performs
asynchronous map relaxation after a successful loop detection to jointly improve all
the pose estimations of the map.

5 Server

The MOARSLAM server component acts as an endpoint for storing, querying, and
transmitting the maps which have been built by various MOARSLAM clients. The
server provides a statelessAPIwhich allows clients to connect anddisconnectwithout
affecting the client-server interactions. Through the API, clients can perform three
tasks: place recognition queries against previously uploaded maps, map uploading,
and map downloading. The server uses the same map structure and place matching
approach used on the client, simplifying implementation.

The communication between client and server is implemented using Node [2],
an open-source C++ RPC and PubSub framework built on ZeroMQ and Google
Protocol Buffers (Figs. 4 and 5).

5.1 API

• Place Recognition Query
The client uploads an image and key frame information to the server to be matched
against the server’s database of places. The server’s place recognition operates as
described above in Sect. 4, butmanages a larger jointmap that comprises the places
visited by each client. If a place recognition query request is satisfied, an edge is
added between two different session maps, as shown in Fig. 2 or as seen in bright
green in Fig. 6. A new edge that connects the query frame and thematched frame is
returned to the client. Through this edge, the client can perform a map download
request to access and include landmarks from the downloaded session and use
them in its localization.

• Map Download
A client can request a section of graph by specifying a frame ID and a depth to
which it would like a breadth-first search to be performed. This search will gather
frames, edges, camera calibrations, and all associated metadata, and return it to
the requesting client.
To contain the bandwidth usage of this operation, themaximum size of the returned
map is fixed. In those cases that the limit is exceeded, the clients obtain “leaves”
of the subgraph, which are the nodes at the edge of the fetched map. This gives
the client locations to possibly ask for more map in a new map download request,
if it is necessary.

128 J.G. Morrison et al.

• Map Upload
The client serializes frames, edges and associated places and send them to the
server for later querying by other devices. These are inserted into the server’s
databases, which fuses them automatically if there are any conjoining edges.

6 Experimental Evaluation

6.1 Quantitative Results

To demonstrate an aspect of the scalability of MOARSLAM’s place query system,
this section presents 1099 measurements of the run-time of the a single place query
on the server. Each measurement begins after a request to the server has started
processing and ends when a match is found or all potential matches have been
eliminated. Figure4a plots the query processing time (in milliseconds) against the
number of places in the database. The figure shows the low-constant linear growth
rate for themajority of queries. Figure4b shows the heavy weighting of themeasured
times towards sub-10 millisecond responses. Both plots also demonstrate the long
tail that can occur when interacting with a database, especially a simple on-disk
storage interface like SQLite. The MOARSLAM server in this experiment was run
on a 4-core 1.60GHz Core i5 with a 5400 RPM HDD.

(a) (b)

Fig. 4 Plots showing distribution of server-side place recognition query timings. Six data points
are not shown on the plot because they fall far outside chart boundaries

MOARSLAM: Multiple Operator Augmented RSLAM 129

Fig. 5 Client 1 created a map with virtual text. Clients 2 and 3 simultaneously downloaded the
map, including the virtual text. Clients 2 and 3 are circled in each other’s images for perspective.
a Client 1. b Client 2. c Client 3

6.2 Qualitative Results

In order to qualitatively validate our multi-device SLAM system, we acquired three
sequences of monocular images and inertial data with three Google’s Tango mobile
phones. These describe different trajectories inside a room of approximately 45m2.
We then processed these sequences using a local server to create a global map that
joins all the data.

We first ran our system with one of the sequences to create an initial map that was
uploaded to the server. The two remaining sequences were run as two different client
sessions interacting with the server through its API. Figure6 shows an example of
the map fusion process when one of the sessions finds a match with a frame on the
server.

To illustrate the ability of our approach to augment maps and provide virtual
objects to each client, we inserted a 3D object in the initial environment map dis-
playing the text “Writing on the wall”, as it can be seen in Fig. 6. Figure5 shows a
frame of each sequence after fusing maps, showing that the virtual object is correctly
located for each client device.

7 Discussion

The relative framework is ideal for scalability and constant-time client operation, but
it can present a challenge for users unaccustomed to considering non-euclidean rep-
resentations. In particular, for viewing entire trajectories, it requires a global search
and graph-relaxation to construct a consistent global view of the map. As this paper
shows, global relaxation is not required for consistent metrically accurate multi-
device augmented reality. Further, global relaxation is not needed for path-planning
or obstacle avoidance [14]. In fact, a single global coordinate framemakes the estima-
tion brittle, necessitating robust global loop closure algorithms [11, 15] and is only
required for visualization. MOARSLAM mitigates the cost of global-optimization

130 J.G. Morrison et al.

Fig. 6 Two maps are fused after a cross loop detection. The current image of the current session
(red path) is matched with one the images of a previous session (blue path). An edge (green
line) is added between the matching nodes, encoding a 6-DOF transformation computed from the
correspondences between image features and map landmarks

by caching the global map structure and only responding tomap updates. It should be
emphasized again that viewing global maps is not a requirement for localization or
accuratemetric interactionwith the environment (e.g., for path planning, augmented-
reality, obstacle avoidance, etc.). Similarly, while the relative manifold is accurate
over short graph traversals of a few kilometers, error can accumulate around loops
and cause a “tear” in the global visualization of a map. This is not a problem in
the estimation as relative errors are close to optimal, it merely requires global-frame
graph-relaxation to produce consistent visualizations.

Presently, MOARSLAM’s loop detection method is based on a single visual
vocabulary. Previous research has shown that this approach is suitable for large
heterogeneous environments mapped with very different cameras [8]. The next step
is to research the limits of this approach when mapping trajectories of hundreds
of kilometers overlapping in urban scenarios. In this context it is important to note
that no algorithm is completely exonerated from false positives under all circum-
stances. Thus, long-term robustness can be achieved by applying a recent technique
such as Realizing, Reversing, and Recovering (RRR) [11, 15], which accumulates

MOARSLAM: Multiple Operator Augmented RSLAM 131

several loop hypotheses to remove later those that are inconsistent. Note that the
relative framework itself is not detrimentally harmed by false loop-closures, which
can always be undone, reverting the map to it’s prior condition without damaging
the state estimate.

8 Conclusion

This paper presentedMOARSLAM, a scalable, client-server-based system formulti-
device SLAM. In addition, it showed the potential of this system for shared aug-
mented reality (AR) by distributing AR information as a component in the map
through experiments demonstrating simultaneous AR from multiple perspectives in
an indoor environment.

Sharing SLAM maps in a scalable manner is important for cooperative robotic
tasks as robotic platforms become more capable. Sharing physically grounded infor-
mation will allow teams of robots to operate together in an environment with con-
fidence. MOARSLAM provides a foundation for sharing and reusing the ever more
accurate maps created by modern SLAM systems.

Acknowledgments This work is made possible with generous support fromGoogle Project Tango.

References

1. Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically
merging feature-based maps. IEEE Trans. Robot. 28(4), 840–854 (2012)

2. ARPG. Node. https://github.com/arpg/Node
3. Bryson, M., Sukkarieh, S.: Architectures for cooperative airborne simultaneous localisation

and mapping. J. Intell. Robot. Syst. 55(4–5), 267–297 (2009)
4. Castle, R.O., Klein, G., Murray, D.W.: Wide-area augmented reality using camera tracking and

mapping in multiple regions. Comput. Vision Image Underst. 115(6), 854–867 (2011)
5. Chang, H.J., Lee, C.S.G., Hu, Y.C., Yung-Hsiang, Lu.: Multi-robot SLAM with topologi-

cal/metric maps. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 1467–1472 (2007)

6. Civera, J., Davison,A.J.,Montiel, J.M.M.: Inverse depth parametrization formonocular SLAM.
IEEE Trans. Robot. 24(5), 932–945 (2008)

7. Forster, C., Lynen, S., Kneip, L., Scaramuzza, D.: Collaborative monocular SLAM with mul-
tiple micro aerial vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 3962–3970. IEEE (2013)

8. Gálvez-López, D., Tardós, J.D.: Bags of binary words for fast place recognition in image
sequences. IEEE Trans. Robot. 28(5), 1188–1197 (2012)

9. Keivan,N., Patron-Perez,A., Sibley,G.:Adaptive asynchronous conditioning for visual-inertial
SLAM. In: International Symposium on Experimental Robotics, June 2014

10. Klein, G., Murray, D,: Parallel tracking and mapping for small AR workspaces. In: 6th IEEE
and ACM International Symposium on Mixed and Augmented Reality, pp. 225–234 (2007)

11. Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time for pose graph SLAM. Int. J.
Robot. Res. 32(14), 1611–1626 (2013)

https://github.com/arpg/Node

132 J.G. Morrison et al.

12. Leung, K.Y.K., Barfoot, T.D., Liu, H.H.T.: Distributed and decentralized cooperative simulta-
neous localization and mapping for dynamic and sparse robot networks. In: IEEE International
Conference onRobotics and Automatio, pp. 3841–3847, May 2011

13. McDonald, J., Kaess, M., Cadena, C., Neira, J., Leonard, J.J.: Real-time 6-DOF multi-session
visual SLAM over large-scale environments. Robot. Auton. Syst. 61(10), 1144–1158 (2013)

14. Mei, C., Sibley, G., Cummins, M., Newman, P., Reid, I.: RSLAM: a system for large-scale
mapping in constant-time using stereo. Int. J. Comput. Vision 94(2), 198–214 (2011)

15. Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. Int. J.
Robot. Res. 32(7), 826–840 (2013)

16. Ergin Özkucur, N., Levent Akin, H.: Cooperative multi-robot map merging using fast-SLAM.
In: RoboCup 2009: Robot Soccer World Cup XIII, number 5949 in Lecture Notes in Computer
Science, pp. 449–460, Jan 2010

17. Riazuelo, L., Civera, J., Montiel, J.M.M.: C2TAM: a cloud framework for cooperative tracking
and mapping. Robot. Auton. Syst. 62(4), 401–413 (2014)

18. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: European
Conference on Computer Vision, pp. 430–443 (2006)

19. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or
SURF. In: IEEE International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

20. Salas-Moreno, R.F., Newcombe, R.A., Strasdat, H., Kelly, P.H.J., Davison, A.J.: SLAM++:
simultaneous localisation and mapping at the level of objects. In: IEEE Computer Vision and
Pattern Recognition, June 2013

21. Sharma, R., Taylor, C., Casbeer, D.W., Beard, R.W.: Distributed cooperative slam using an
information consenseus filter. In: AIAA Guidance Navigation and Control Conference, pp.
8334–8342 (2010)

22. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Gálvez-López, D.,
Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zwei-
gle, O., van de Molengraft, R.: Roboearth. IEEE Robot. Autom. Mag. 18(2), 69–82 (2011)

Part II
Cooperative Manipulation

and Task Allocation

Multi-robot Manipulation Without
Communication

Zijian Wang and Mac Schwager

Abstract This paper presents a novel multi-robot manipulation algorithm which
allows a large number of small robots to move a comparatively large object along a
desired trajectory to a goal location. The algorithm does not require an explicit com-
munication network among the robots. Instead, the robots coordinate their actions
through sensing the motion of the object itself. It is proven that this implicit infor-
mation is sufficient to synchronize the forces applied by the robots. A leader robot
then steers the forces of the synchronized group to manipulate the object through the
desired trajectory to the goal. The paper presents algorithms that are proven to control
both translational and rotational motion of the object. Simulations demonstrate the
approach for two scenarios with 20 robots transporting a rectangular plank and 1000
robots transporting a piano.

Keywords Multi-robot Manipulation · Cooperative Control

1 Introduction

In this paper we present a scalable, decentralized control strategy by which a large
number of robots can manipulate a comparatively large object through a desired tra-
jectory to a goal configuration. The key to the approach is to use the object itself as a
medium for transferring information throughout the group of robots. No communica-
tion network is required in this strategy. Instead, the robots sense the local motion of
the object, and use this information to correct their own force through a feedback
law. We prove that this feedback law will cause all robots’ forces to align to the same
direction exponentially fast. Furthermore, the rate of this exponential convergence
increases linearly with the number of robots, so that performance becomes faster as
the number of robots increases, leading to a scalable strategy.

Z. Wang · M. Schwager (B)
Department of Mechanical Engineering, Boston University, Boston, MA, USA
e-mail: schwager@bu.edu

Z. Wang
e-mail: zjwang@bu.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_10

135

136 Z. Wang and M. Schwager

The forces of the robots synchronize to a leader, which can either be a robot or
a human operator. The leader then guides the object through a desired trajectory
to the goal configuration, using the synchronized follower robots to multiply its
effective force. We provide feedback control laws for the leader to steer the whole
system, both in translation and in rotation, under a mild symmetry assumption on the
follower robots. We require the leader to know the object’s location relative to the
desired trajectory, however the follower robots do not need to know their locations,
the locations of other robots, the object, or the desired trajectory. We demonstrate the
approach in simulations with two scenarios, one involving 20 robots manipulating a
plank of wood, and another with 1000 robots manipulating a piano.

Our algorithm is useful in situations where a large number of small, inexpensive
robots are required to coordinate to manipulate large objects. For example, in an
automated construction site our system could be used to transport massive building
materials to a desired location. In a manufacturing facility, this system could be used
to transport large products (e.g. aircraft, trains, or industrial equipment) in various
stages of assembly to different areas on the manufacturing floor. In our system the
leader can be a human operator, enabling one person to move objects that would
otherwise require a forklift or a crane. Similarly, in a disaster relief scenario, such
a system of robots could be used to autonomously clear debris from a collapsed
building to free survivors, or to clean up structurally unstable disaster sites.

The most attractive aspect of our approach is that no explicit communication is
needed among robots. Coordinated control algorithms that rely on a wireless network
must deal with dropped packets, packet collisions, delays, and fundamental scaling
capacity limitations [18]. The presence of a network also requires more sophis-
ticated robots with more sophisticated hardware. In contrast, we take a minimalist
approach to achieve scalability. By sensing the motion of the object itself, our follower
robots can determine the summed forces of all the other robots acting on the object.
This is all the information needed to reach a consensus on the robots’ forces. Hence
our robots do not require networking hardware, localization information, nor a global
reference frame.

1.1 Related Work

Manipulation is a fundamental problem in robotics with an enormous literature,
and many algorithms for multi-robot manipulation have been proposed. An early
approach to multi-robot manipulation can be found in [15, 16], where various push-
ing strategies are designed given different availability of sensing and communication.
Another approach, known as caging was studied in [1], where a group of robots sur-
round an object and then move together, making sure that the object always remains
inside the formation. In this vein, some work has focused on a rigorous geometrical
analysis of how the object can be completely caged [2–4]. Although mathematically
elegant, these methods typically have considerable computational requirements [5].
On the other hand, some authors have studied formation-based caging, which assumes

Multi-robot Manipulation Without Communication 137

that there are enough robots so that the object cannot escape the formation. The object
can then be transported by moving the formation as a rigid body using, for example,
potential fields [6] or vector fields [7]. Other approaches have used novel modes of
actuation, for example tow cables [17, 19]. The approach we describe here is differ-
ent from all of these in that we require no explicit communication between robots.
In this respect, our algorithm is most similar to ensemble control techniques from
[8, 9], which also do not require robot-to-robot communication. Our technique is
different from ensemble control in that each robot individually steers itself according
to its own control actions, as opposed to having one common control signal for the
whole group. In addition to the manipulation problem, the similar idea of using local
sensor readings as implicit communication was investigated in [23], where an offline
evolutionary algorithm was used to design a controller to coordinate the headings of
a group of physically connected robots based on inter-robot force measurements.

The analysis of our control strategy takes some inspiration from the study of
multi-agent consensus [10, 11] and the study of leader-follower networks [20, 21].
In consensus problems, agents locally exchange information about their neighbors’
states through a communication network, in order to reach a consensus on a quantity
of interest. Similarly, in leader-follower networks, local communication protocols
are used for all agents to converge to the state of a leader. As opposed to these works,
we do not have an explicit communication network, however we use analytical tools
from this work to show that the robots in our system will converge to the force of the
leader robot.

Our work is also inspired by collective ant transport strategies studied in Behav-
ioral Biology and Entomology. Ants, like our robots, have no wireless network, yet
they are able to effectively coordinate their actions to manipulate large objects. It was
hypothesized in [13] that ants detect small-scale vibration or deformation of the object
in order to coordinate their forces. Our algorithm suggests an even simpler hypoth-
esis: ants might synchronize their actions using only the rigid body motion of the
object they are trying to transport. In [12] the authors measured the forces exerted
by a group of ants and found that ants aligned their forces better and better as the
manipulation task went on, which agrees with the synchronization approach we pro-
pose here. In addition to translation, [14] determined that only a small number of
ants in the group are crucial for the rotation of the object, which is similar to the role
of the leader robot in our approach.

The rest of this paper is organized as follows. We model the physics of the object
and robots and formally state the problem in Sect. 2. In Sect. 3 we present our multi-
robot control strategy for both the followers and the leader and analyze its conver-
gence properties. Finally, in Sect. 4 we show numerical simulations with 20 robots
and 1000 robots, and we give our conclusions in Sect. 5.

138 Z. Wang and M. Schwager

Fig. 1 Configuration of our
multi-robot manipulation
task. The figure shows an
example where five robots
(in green) are manipulating
an object (in red) v

,cx

ix
cir

iR

,M J

iF
(), ()

Q

2 Modeling and Problem Formulation

We consider a planar region Q ⊂ R
2, where there is a target object with mass M and

moment of inertia J , as shown in Fig. 1. The object has three degrees of freedom, that
is, the position of the center of mass xc ∈ R

2 and the orientation θ ∈ SO(2). There is
friction force in Q, and we model it as the sum of static friction and viscous friction,
whose coefficients are represented as μs and μv, and the acceleration of gravity is g.

We have a group of N identical robots Ri , i ∈ {1, 2, . . . , N }, trying to transport
the object from its initial position to some destination in Q. Each robot is capable
of: (i) gripping the object at xi , which is on the edge of the object, and applying a
force Fi ∈ R

2 in any direction and with any magnitude below its maximum force
limit; (ii) measuring the velocity and acceleration, denoted by v = ẋc and v̇, of the
manipulated object in the global reference frame1; (iii) following the movement of
the object such that the desired force can be maintained. We also have a leader robot,
indexed as R1, that is more powerful than the rest of follower robots in that: (i) in
addition to applying a force, the leader can also apply a torque T1 ∈ R to the object;
(ii) the leader can measure the angle and angular velocity of the object; (iii) the leader
knows the desired trajectory, and it can also measure the relative position between
the trajectory and the object.

Under the forces from the robots and the environment, the object will move with
translational velocity v and angular velocity ω. In the next section, we will derive
the translational and rotational dynamics of the object, and then state our problem
formally.

1This requirement can be relaxed so that robots only know the velocity and acceleration of their
attachment point, ẋi and ẍi , in their local reference frame, however this considerably complicates
the dynamics. We treat the simpler case here for clarity.

Multi-robot Manipulation Without Communication 139

2.1 Translational Dynamics

For translation, the forces are either friction or from robots. So the translational
dynamics can be written according to Newton’s second law

Mv̇ =
N∑

i=1

Fi − μs Mg
v

‖v‖ − μvv. (1)

2.2 Rotational Dynamics

Since the object has geometric extension around the center of mass rather than a point
mass, the force applied to the object will generate a torque if it does not point to or
from the center of mass. In order to characterize the rotational dynamics, we need to
study two types of torques, associated with friction and robots’ forces respectively.

Frictional Torque. Here we derive a model of the torque due to viscous friction on
the object. We neglect any torque due to static friction, as such effects are difficult
to model, and are expected to be small in comparison to viscous and inertial forces.
Consider the velocity of an arbitrary point x on the object, which is translating while
rotating as shown in Fig. 2,

va = v + ω × r,

where va is the absolute velocity, v is the translational velocity at xc, r is the vector
pointing from xc to our selected point. Note that va is different for different points
on the object. Then the viscous friction at any selected point can be written as

Fv = −μvva = −μvv − μv(ω × r). (2)

The total frictional torque can then be calculated by taking the integral of (2) over the
object’s bottom surface. Our conclusion is that the torque generated by the viscous
friction is proportional to the angular velocity, as shown below.

Proposition 1 (Frictional Torque) Given an object with arbitrary shape in Q, denote
the torque caused by the viscous friction by T f . Then

Fig. 2 The synthesis of the
absolute velocity of an
arbitrary point on the object

v

,cx

v

x r

r
av

140 Z. Wang and M. Schwager

T f = −μv

M
Jω. (3)

Proof In (2), the viscous friction Fv has two parts, −μvv and −μv(ω × r). Denote the
torques associated with them by T f 1 and T f 2 respectively. Denote density of the object
by ρ, so we know the center of mass xc can be represented as

xc =
∫

S ρxdx∫
S ρdx

=
∫

S ρxdx

M
.

Then we have

T f 1 = −
∫

S

ρμv

M
(r × ve)dr = −

∫

S

ρμv

M
[(x − xc) × ve] dx

= −μv

M

∫

S
ρx × vedx + μv

M
xc × ve

∫

S
ρdx = −μv

M

(∫

S
ρxdx

)
× ve + μvxc × ve

= −μv

M
Mxc × ve + μvxc × ve = 0.

As for T f 2, note that in the object’s local reference frame, ω is always perpendic-
ular to r , so we have

T f 2 = −
∫

S

ρμv

M
(ω × r)rdr = −

∫

S

ρμv

M
ωr2dr = −

(
μv

M

∫

S
ρr2dr

)
ω = −μv

M
Jω.

Finally we have T f = T f 1 + T f 2 = T f 2 = −μv

M Jω. �

Robots’ Torques. Torques from robots also have two parts. The first part comes from
the forces applied by every robot on the edges of the object. The second part comes
from the leader robot’s direct torque input. The robots cannot compute the first part
because we assume that they do not know their position on the object, rci . However,
with many robots equally spaced around the perimeter, these torques would cancel
out exponentially fast. This is formalized in the following symmetry assumption.

Assumption 1 (Centrosymmetric) The distribution of the positions of robots’ forces
is centrosymmetric around xc. In other words,

∑N
i=1 rci = 0.

Under Assumption 1, when consensus is reached, all Fi will be the same and thus
the resulting torque is zero, which is shown in Fig. 3. In contrast, in Fig. 4 where
the forces are not centrosymmetric, the torque is not necessarily zero. In realistic
situations, if the number of robots is large with respect to the size of the object,
then it is more likely that Assumption 1 will be satisfied or nearly satisfied. However,
Assumption 1 does not guarantee that the torque caused by all Fi will always be zero.
For example, when the leader’s force changes dramatically in a turning process, it
will take some time for followers to track the leader and reach the consensus although
this process is exponentially fast. We view it as the modeling error, which can be
dealt with by the robustness of our controller.

Multi-robot Manipulation Without Communication 141

Fig. 3 Centrosymmetric
forces 1F 2F

3F 4F

cx 0T

1x 2x

3x
4x

Fig. 4 Non-
centrosymmetric
forces 1F 2F

3F
4F

cx
0T

F

1
2x

3x
4x

1x

Therefore, the only torque we consider from robots is the leader’s direct torque
input T1. Hence, the overall rotational dynamics can be written as

J ω̇ = T1 − T f = T1 − μv

M
Jω. (4)

2.3 Problem Formulation

We assume that the object is too heavy for any individual robot to move due to the
static friction force. However, if all the forces from every robot are aligned, the sum
of these forces can overcome the static friction, i.e.,

max
{‖Fi‖

}
< μs Mg (5)

μs Mg

max
{‖Fi‖

} < N . (6)

The goal is to coordinate the forces from all robots to transport the object along
a desired trajectory. We define the desired trajectory as

γ (α) : [0, 1] �→ Q

θ = gθ (γ),
(7)

142 Z. Wang and M. Schwager

where α is the index of the point on the trajectory while gθ is the function that specifies
the desired angles for different points on the trajectory. For example, γ (α = 0) is the
start of the trajectory, and γ (α = 1) is the end of the trajectory. Note that the desired
trajectory is given by other path planners, such as [22].

Robots only know parameters M, μs, μv, g, N , but they do not know the global
position of the object, their own, other robots, nor where they attach to the object,
i.e., xi . There is no explicit communication between any two robots and the desired
trajectory is only known to the leader robot.

3 Control Strategy and Analysis

In this section, we will present how to coordinate the forces from all robots using con-
sensus but without communication. Using consensus, we can transform the original
2N -dimensional force into a reduced state representation. Furthermore, we treat the
leader robot’s force and torque as the inputs of the entire system while the linear and
angular velocity of the object are the outputs. The overall dynamics is studied and
enables us to design the controller for trajectory following based on it.

3.1 Force Coordination with Consensus

Consensus in our case means that all robots will eventually apply the same forces to
the object. In conventional consensus methods, explicit communication is required
among agents to exchange state information. In contrast, we avoid explicit commu-
nication by using the local measurement of the object’s movement.

At the beginning of the task, the motion of the object can be initiated randomly.2

Once the object starts to move, all the robots use the following force updating law

Ḟi (t) =
N∑

j=1, j �=i

(
Fj (t) − Fi (t)

)

=
N∑

j=1

Fj (t) − N Fi (t) = Mv̇ + μs Mg
v

‖v‖ + μvv − N Fi (t).

(8)

Eq. (8) is computable by every robot since all the terms are locally known without
communication. Note that in practice, the robots’ forces are not directly addable
since they are in different local reference frames. However, for the convenience of

2For example, all the robots can repeatedly apply forces in random directions. Eventually enough
of the forces will algin by chance to overcome static friction, and the object will begin to move.

Multi-robot Manipulation Without Communication 143

analysis, in (8) we express the forces in the global reference frame, which does not
effect the correctness of the analysis.

The first row in (8) is the commonly used consensus protocol. If we stack all the
forces into one vector F(t) = (F1(t) F2(t) · · · FN (t))T , then (8) can be also put into
the matrix form

Ḟ(t) = −L F(t) (9)

L =

⎛

⎜⎜⎜⎝

N − 1 −1 · · · −1
−1 N − 1 · · · −1
...

...
. . . −1

−1 −1 · · · N − 1

⎞

⎟⎟⎟⎠ , (10)

where we can find out that L is the graph Laplacian of a completely connected graph.
Since −L is negative semi-definite and (9) is a stable linear system, we have that
F(t) will converge to the null space of L , which is spanned by 1. More specifically,
F(t) will converge to Ave

(
F(0)

)
1 = (∑N

i=1 Fi (0)/N
)
1, as proven in [10]. This is

how we produce the consensus without communication.
The force updating law (8) ensures the force consensus ending up with the average

value of the initial forces. However, we also want to steer the consensus in order to get
any desired manipulation force for trajectory following. In order to do this, we let the
leader robot R1 make its own decision about what force to apply. If the leader does
not change its value, then all the followers will converge to the leader’s value, i.e.,

lim
t→∞ F(t) = F1(0)1, (11)

where F1(0) ∈ R
2 stands for the leader’s force, as proven in [11]. More generally,

if the leader keeps changing its value, the followers will still follow the leader, and
we will discuss this in detail in the next section.

3.2 Reduced State Representation

Here we present a reduced state representation in the following theorem. Having the
reduced state representation, the changing leader can know how the followers will
follow it and what the group force will be, which we will use to control the
object’s movement.

Theorem 1 (Reduced State Representation) Given a multi-robot system containing
N robots, let robot R1 be the only leader in the group, and the rest are followers
which update their forces using (8). Then the reduced state representation can be
written as:

η̇(t) = −η(t) + F1(t)

Fs(t) = (N − 1)η(t) + F1(t)
(12)

144 Z. Wang and M. Schwager

where Fs(t) = ∑N
i=1 Fi (t) is the group force, and η(t) = (

∑N
i=2 Fi (t))/(N − 1)

denotes the average force of all followers.

Proof By adding up (8) when i goes from 2 to N we have

N∑

i=2

Ḟi (t) = (N − 1)

N∑

j=1

Fj (t) − N
N∑

i=2

Fi (t) = (N − 1)

N∑

j=1

Fj (t) − N (

N∑

j=1

Fj (t) − F1(t))

=−
N∑

j=1

Fj (t) + N F1(t) =−
N∑

j=2

Fj (t) + (N − 1)F1(t).

Hence we have η̇(t) = −η(t) + F1(t), and Fs(t) = (N − 1)η(t) + F1(t) since Fs(t)
is the sum of followers’ forces and the leader’s force. �

We can see that by choosing followers’ average force as the state variable, the
group force can be put in the format of a standard linear control system ẋ = Ax +
Bu, y = Cx + Du. As such, the dynamics from the leader’s input force to the
resulting group force is first-order, meaning that the leader robot can easily implement
feedback control to steer the group force with desired specifications.

Furthermore, the internal state η can act as a good approximation of the force of
any individual follower robot, as illustrated by the following theorem.

Theorem 2 The difference among all followers in (9) will converge exponentially
to zero regardless of the leader’s input. The rate of this exponential convergence
increases linearly with the number of robots.

Proof Consider any two follower robots Ri and Rk , according to (8)

Ḟi (t) − Ḟk(t) = −N (Fi − Fk).

So we have

Fi (t) − Fk(t) = Ce−Nt .

�

Theorem 2 implies that after a quick transience, all the followers’ forces will be the
same, so that η will be approximately equal to any follower robot’s force. Continuing
on Theorem 2, we can show that the convergence of the followers’ forces to the
leader’s force is also faster as the number of robots increases. Taking the derivative of
Fs in (12) we have Ḟs = (N − 1)η̇ + Ḟ1 = (N − 1)(F1 − η) + Ḟ1, where (F1 − η)
is the difference between the leader and followers and (N − 1) works as the feedback
amplifying coefficient for the difference. Therefore the larger N is, the faster Fs will
be driven to the desired value.

Multi-robot Manipulation Without Communication 145

3.3 Controller Design and Trajectory Following

Putting everything together, we can write down the overall state-space dynamics of
the system, and derive a controller based on it. The inputs of the system are the
leader robot’s force F1 and torque T1. The outputs are the object’s linear and angular
velocity, v and ω.

Choose v, ω, η as state variables and combine (1), (4) and (12), we get

⎛

⎝
η̇

v̇
ω̇

⎞

⎠ =
⎛

⎝
−1 0 0
N−1

M −μv

M 0
0 0 −μv

M

⎞

⎠

⎛

⎝
η

v
ω

⎞

⎠ +
⎛

⎝
1 0
1
M 0
0 1

J

⎞

⎠
(

F1

T1

)
+

⎛

⎝
0

−μs g v
‖v‖

0

⎞

⎠ . (13)

There are a few remarks on the dynamics above: (i) the rotation and transla-
tion dynamics are independent from each other, although we write them together
for simplicity and clearity; (ii) the nonlinear term induced by the static friction,
−μs gv/‖v‖, can be compensated by offsetting F1, such that the overall dynamics
is still linear. Here we briefly show how the compensation works. Let the com-
pensated force F ′

1 = F1 + μs gv/(N‖v‖) and divide η into two parts: η = η1 + η2,
where η̇1 = −η1 + F1, η̇2 = −η2 + μs gv/(N‖v‖). Note that η2 is not affected by
F1 so we have η2 → μs gv/(N‖v‖). Therefore according to (13), v̇ = N−1

M (η1 +
μs gv
N‖v‖) − μv

M v + 1
M (F1 + μs gv

N‖v‖) = N−1
M η1 − μv

M v + 1
M F1, and we can see that the non-

linear term is eliminated.
We use state feedback to achieve the desired system performance. Let F1 =

K f (vd − v) + μs gv/(N‖v‖) and T1 = Kt (ωd − ω), where vd and ωd come from
higher-level path planning algorithm. Then the objective is to calculate K f and Kt

according to our specifications. Note that the state feedback only involves propor-
tional control. Integral and derivative control can be implemented by introducing
new state variables that are the integral or derivative of the error signal.

Having the controller for v andω, we can now move on to trajectory following. This
requires specifying the desired values of vd and ωd . For vd , we use a straightforward
vector synthesis strategy. Firstly, we define the point on the desired trajectory that is
nearest to object’s current position:

xa = argmin
γ (α),α∈[0,1]

‖γ (α) − xc‖.

Then the desired velocity can be defined as vd = wnvn + wt vt , as shown in Fig. 5,
where vn = xa−xc

‖xa−xc‖ , vt is the unit tangential vector at xa pointing to the destination
and wn, wt are just weights. Intuitively, vn will drag the object towards the trajec-
tory and vt will maintain the object’s velocity along the trajectory. As for rotation,
we define ωd = kθ (θd − θ) = kθ (gθ (xa) − θ), where kθ is a constant gain.

146 Z. Wang and M. Schwager

ax

cx
nv

tv

t twv
tv

a

n nw v

n

ttt

dv

Destination

Initial position

(), ()

Fig. 5 The synthesis of the desired linear velocity vd

Fig. 6 Simulation 1: manipulation of a small plank (purple) with 12 robots. Dimensions of the
object are: weight 1 kg, length 0.6m, width 0.2 m, height 0.1 m. The sphere in blue denotes the
leader robot while the follower robots are yellow spheres. The width of the maze varies from 0.5
to 1 m

4 Simulations

We conduct two manipulation tasks in simulation using Open Dynamic Engine
(ODE), a well-known open-source physics engine. The objective of the tasks is
to transport an object through an S-shaped maze. In simulation 1, we perform the
manipulation for a rectangular plank with 12 robots. In simulation 2, we use 1000
robots to move a large piano of realistic dimensions, which verifies the scalability
of our approach. Note that although our controller is derived based on the simplified
rotational dynamics (4), the simulator does account for the complete dynamics for
the object without any simplification. This suggests that the modeling error of our
approach is acceptable and will not significantly affect the overall performance.

The snapshots of simulation 1 and 2 are shown in Figs. 6 and 7.3 Both the desired
and actual trajectories are shown in Fig. 8. The parameters of the environment are:
μs = 0.5, μv = 0.3, g = 10. The initial forces of the robots are randomized in the
first quadrant, i.e., the angles of the initial forces are in [0, π

2]. In simulation 1, the
force limit of each robot is up to 1.4N , the torque limit for the leader robot is 5 Nm.
In simulation 2, the force limit of each robot is up to 2N , and the torque limit for the
leader robot is 50 Nm. In both simulations, the robotic team successfully transports
the object through the maze with rotation being controlled to avoid collision with the
wall. Although at the beginning there is a large deviation from the desired trajectory
due to the random initial motion of the object, the robots can quickly correct the

3The video is available online, http://youtu.be/emZVxcl3Zg4.

http://youtu.be/emZVxcl3Zg4

Multi-robot Manipulation Without Communication 147

Fig. 7 Simulation 2: manipulation of a large piano (purple) with 1000 robots. The dimensions of
the simulated piano are the same as a realistic Steinway K-52 piano: weight 273 kg, length 1.54 m,
width 0.67 m, height 1.32 m. Robots are centrosymmetrically distributed around the bottom of the
piano. For visualization considerations, we draw 40 robots instead of 1000. The width of the maze
varies from 1.4 to 2 m

Fig. 8 Overall trajectory of the rectangular plank (left) and the realistic piano (right)

Fig. 9 Trajectory tracking error of consecutive 20 runs for the rectangular plank (left) and the
realistic piano (right)

deviation. This is also revealed in Fig. 9. Notice that the tracking error goes down
when on a straight line and goes up when making a turn. Moreover, the variance of
the error of the trajectory following is smaller in 1000 robots case than that in 12
robots case, which verifies that the performance of our algorithm improves as the
number of robots increases.

148 Z. Wang and M. Schwager

5 Conclusion

In this paper, we propose a multi-robot manipulation approach for many small robots
to manipulate a massive object. The robots do not have an explicit communication
network, but they can locally sense the movement of the object, which gives an
indication of the summed forces applied by other robots. We propose a controller
by which the robots use the motion of the object itself to reach a consensus on their
applied forces. We then design a controller for the leader robot to steer the object
based on the analysis of the translational and rotational dynamics of the system.
We demonstrate the effectiveness of the approach with two simulations implemented
in ODE. In the future, we intend to implement our approach experimentally on mobile
robot platforms. We are also investigating using parameter adaptation so that robots
do not need to know the mass of the object or friction coefficients beforehand, but
can learn these quantities on-line.

Acknowledgments This work was supported in part by NSF grant CNS-1330036. We are grateful
for this support. We also would like to thank James McLurkin and Golnaz Habibi for many insightful
discussions on this topic.

References

1. Spletzer, J., Das, A., Fierro, R., Taylor, C., Kumar, V., Ostrowski, J.: Cooperative localiza-
tion and control for multi-robot manipulation. In: Intelligent Robots and Systems, IEEE/RSJ
International Conference on (2001)

2. Wang, Z., Kumar, V.: Object closure and manipulation by multiple cooperating mobile robots.
In: IEEE International Conference on Robotics and Automation (2002)

3. Pereira, G.A., Campos, M.F., Kumar, V.: Decentralized algorithms for multi-robot manipulation
via caging. Int. J. Robot. Res. 23(7–8), 783–795 (2004)

4. Wan, W., Fukui, R., Shimosaka, M., Sato, T., Kuniyoshi, Y.: Cooperative manipulation
with least number of robots via robust caging. In: IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM) (2012)

5. Wang, Z., Kumar, V., Hirata, Y., Kosuge, K.: A strategy and a fast testing algorithm for object
caging by multiple cooperative robots. In: IEEE International Conference on Robotics and
Automation (2003)

6. Song, P., Kumar, V.: A potential field based approach to multi-robot manipulation. In: IEEE
International Conference on Robotics and Automation (2002)

7. Fink, J., Michael, N., Kumar, V.: Composition of vector fields for multi-robot manipulation via
caging. In: Robotics Science and Systems (2007)

8. Becker, A., Habibi, G., Werfel, J., Rubenstein, M., McLurkin, J.: Massive uniform manipu-
lation: controlling large populations of simple robots with a common input signal. In: 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 520–527
(2013)

9. Rubenstein, M., Cabrera, A., Werfel, J., Habibi, G., McLurkin, J., Nagpal, R.: Collective
transport of complex objects by simple robots: theory and experiments. In: Proceedings of
the 2013 International Conference on Autonomous Agents and Multi-agent Systems, pp. 47–
54 (2013)

10. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching
topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

Multi-robot Manipulation Without Communication 149

11. Jadbabaie, A., Lin, J., Morse, A.: Coordination of groups of mobile autonomous agents using
nearest neighbor rules. IEEE Trans. Autom. Control 48(6), 988–1001 (2003)

12. Berman, S., Lindsey, Q., Sakar, M.S., Kumar, V., Pratt, S.: Study of group food retrieval by
ants as a model for multi-robot collective transport strategies. Robot. Sci. Syst. (2010)

13. McCreery, H.F., Breed, M.D.: Cooperative transport in ants: a review of proximate mechanisms.
Insectes Sociaux (2014)

14. Czaczkes, T.J., Ratnieks, F.L.W.: Simple rules result in the adaptive turning of food items to
reduce drag during cooperative food transport in the ant Pheidole oxyops. Insectes Sociaux
(2011)

15. Rus, D., Donald, B., Jennings, J.: Moving furniture with teams of autonomous robots. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (1995)

16. Böhringer, K., Brown, R., Donald, B., Jennings, J., Rus, D.: Distributed Robotic Manipulation:
Experiments in Minimalism Experimental Robotics IV. Springer, NewYork (1997)

17. B. Donald, L. Gariepy and D. Rus. Distributed manipulation of multiple objects using ropes.
In: IEEE International Conference on Robotics and Automation (2000)

18. Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Int. Conf. Inform. Theory
46(2), 388–404 (2000)

19. Fink, J., Michael, N., Kim, S., Kumar, V.: Planning and control for cooperative manipulation
and transportation with aerial robots. Int. J. Robot. Res. 30(3), 324–334 (2011)

20. Ji, M., Muhammad, A., Egerstedt, M.: Leader-based multi-agent coordination: controllability
and optimal control. In: American Control Conference, pp. 1358–1363 (2006)

21. Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-Formation stability. IEEE Trans. Robot.
Autom. 20(3), 443–455 (2004)

22. Habibi, G., Schmidt, L., Jellins, M., McLurkin, J.: K-redundant trees for safe multi-robot
recovery in complex environments. In: International Symposium on Robotics Research (2013)

23. Baldassarre, Gianluca, Trianni, Vito, Bonani, Michael, Mondada, Francesco, Dorigo, Marco,
Nolfi, Stefano: Self-organized coordinated motion in groups of physically connected robots.
IEEE Trans. Syst. Man Cybern. 37(1), 224–239 (2007)

Distributed Path Planning for Collective
Transport Using Homogeneous Multi-robot
Systems

Golnaz Habibi, William Xie, Mathew Jellins and James McLurkin

Abstract We present a scalable distributed path planning algorithm for transporting
a large object through an unknown environment using a group of homogeneous
robots. The robots are randomly scattered across the terrain and collectively sample
the obstacles in the environment in a distributed fashion. Given this sampling and
the dimensions of the bounding box of the object, the robots construct a distributed
configuration space. We then use a variant of the distributed Bellman-Ford algorithm
to construct a shortest-path tree using a custom cost function from the goal location
to all other connected robots. The cost function encompasses the work required to
rotate and translate the object in addition to an extra control penalty to navigate
close to obstacles. Our approach sets up a framework that allows the user to balance
the trade-off between the safety of the path and the mechanical work required to
move the object. The path is optimal given the sampling of the robots and user
input parameters. We implemented our algorithm in both simulated and real-world
environments. Our approach is robust to the size and shape of the object and adapts
to dynamic environments.

Keywords Path planning · Distributed algorithm · Distributed bellman-ford algo-
rithm · Multi-robot system · Collective transport

G. Habibi (B) · J. McLurkin
Department of Computer Science, Rice University, Houston, TX, USA
e-mail: golnaz.habibi@rice.edu

J. McLurkin
e-mail: jmclurkin@rice.edu

W. Xie
Department of Computer Science, University of Texas at Austin, Austin, TX, USA
e-mail: wxie@cs.utexas.edu

M. Jellins
Purdue University, West Lafayette, IN, USA
e-mail: mjellins@purdue.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_11

151

152 G. Habibi et al.

1 Introduction

Multi-robot systems offer the potential to transport many objects simultaneously.
Large populations of robots offer a scalable approach; individual robots can move
small objects, while cooperating robots can move large objects. A necessary require-
ment is to produce a path through the environment that takes into account the key
dimensions of the object, and the costs of rotation and translation. This problem is
especially challenging when traversing through an unknown environment where the
path is undefined, and the environment might change. There have been several studies
on planning the path for object transport. Kamio and Iba [6, 7] used RRT techniques
to transport an object between humanoid robots. Their work used the global position-
ing for robots, and the environment was known. Golnzalez and Tores [15] planned a
path for a box pushing problem. Their algorithm was centralized and global position
information was given. Reina and Caro [16] used aerial ceiling cameras for covering
the environment where the object is transported. These robots cooperatively planned
the path for the object.

We are looking for a scalable and fully distributed path-planning algorithm for
transporting a large object using a multi-robot system, one that cannot easily be
transported by a single robot. We split the task of object transport into two tasks
of path planning and object manipulation. Yamashita et al. [17] have used a similar
approach, however, they used global positioning and centralized algorithms.

We are motivated by using sampling-based planning such as traditional PRM
and RRT [8, 10]. These techniques provide a discrete model of a continuous path
planning problem and is appropriate for distributed algorithms. But, these planners
require global information. We assume the robots have no prior knowledge of the
environment or other global information, mimicking real-world situations where
services such as global positioning are not available or are too expensive to imple-
ment. We assume the environment is larger than the robot’s communication range.
We assume the robots are dispersed throughout the environment randomly, but per-
haps non-uniformly. We present a fully distributed path planning algorithm that uses
a large population of robots to sample the environment. We call these samples as
Smart Samples. Smart samples can communicate and share some knowledge about
the object as well as the information about the relative position of their neighboring
samples and their closed by obstacles. We use a variation of distributed Bellman-Ford
algorithm to generate the shortest path tree from the start position of the object to the
goal. Previously, O’Hara and Balch [14] used a variation of distributed Bellman-Ford
Algorithm [5] to plan paths for dynamic environments. However, their work focused
on robots navigation and it did not incorporate the object transportation.

This paper presents a distributed path planning algorithm. We assume robots
explore the environment with some tools [4]. Robots cover the environment and can
detect the obstacles. Using local obstacle information, robots construct a configu-
ration space for the environment in a distributed fashion. We select a robot near
the goal position as the root, and a shortest-path tree, based on a custom cost func-
tion, is then constructed. The cost for the tree takes into account the amount of

Distributed Path Planning for Collective Transport … 153

(a)

(b)

Path Planning Object Manipulation

Fig. 1 a An environment is sampled by 16 r-one robots (green circles). Our goal is to generate a
path for transporting the object (orange) to the goal location (blue). The different paths in various
colors are generated based on different control costs when navigating through in narrow corridors.
b Carrier r-one robots with grippers attachment can translate and rotate an object

mechanical work required to transport the object and the additional control cost to
navigate in constricted narrow corridors close to obstacles. The resulting tree gives
a path from any other robot to the goal robot. This path is optimal with respect to
the sampling of the environment and dimension of the object. The path-planning
algorithm is self-stabilizing and runs continuously to reconstruct the tree if the envi-
ronment changes. This makes the algorithm robust to dynamic obstacles and changes
in robot population.

We implement our algorithm on the r-one robot platform, which is a low-cost
robot designed for research in multi-robot systems [13]. It has a large sensor suite
and is capable of motion and local communication. We plan to develop distributed
controllers and algorithms based on the r-one platform to form a complete object
transport solution. We have designed and built grippers for the r-ones. Grippers
enables robots to attach, rotate, and translate an object collectively as shown in
Fig. 1b [13]. The detail of object manipulation will be discussed in future work. This
paper focuses on the path planning aspect in an unknown environment.

2 Model and Assumptions

Multi-robot network is modeled as a undirected unit disk graph G = (V, E) [2].
Each robot is represented by a node, u ∈ V , where V is the set of all robots and E is
the set of all robot-to-robot communication links. The neighbors of each robot u ∈ V
are the set of robots with line-of-sight connections and within communication range

154 G. Habibi et al.

r from robot u. Robots can measure relative orientation between its heading and its
neighbors’ as well as their distance from its neighbors and obstacles [13]. A robot is
modeled as a small disk with a pose defined by u pose = (x, y, θ). Each robot is at the
origin of its local coordinate system. The x-axis is aligned with the robot’s current
heading. The robots have a differential drive that allows them to rotate in place or
translate. We model algorithm execution as proceeding in a series of discrete rounds.
While the robots actual operation is asynchronous, implementing a synchronizer
simplifies analysis greatly and is easy to implement [12].

We split robots into two groups: planner robots and carrier robots. Planner robots
generate the path and carrier robots transport the object along the generated path.
We design distributed controllers for carrier robots which enables them to rotate and
translate the object along the path. Future work will focus on these controllers. This
paper focus on planner robots and path planning algorithm. To simplify our notation,
we use robot instead of planner robot in the rest of the paper. Robots require some
knowledge about the object to plan the path. We simplify the object to its bounding
rectangle as illustrated in Fig. 2a. We assume that the object rotate around its center
which is the centroid of its bounding box. This simplification allows us to check
the collision if the bounding rectangle collides with obstacles. Given MaxDim and
MinDim of the object (see Fig. 2a), each robot measures the distance to the nearest
obstacle and checks whether the object collides with the obstacle if its center is

mi
Dn

i
M

MaxDim

(a)

(b)

Major Axis

Minimum Bounding Rectangle(MBR) Nearest obstacle and safe orientation

Fig. 2 a The object and its bounding rectangle. MaxDim is the maximum dimension of the object
during rotation. MinDim is the minimum dimension of the object. The object orientation is defined
as the orientation of major axis of the bounding rectangle. The object center is shown by a blue
circle. b Safe orientation, θsafe, for the object when it moves close to the obstacle (SM robots). To
avoid collision, the object orientation is orthogonal to the normal of the nearest obstacle. dmin is the
distance to the nearest obstacle and is measured by the robot (gray circle)

Distributed Path Planning for Collective Transport … 155

located at robot’s center. Measuring MaxDim and MinDim of the object is left as our
future. This paper assumes these measurement is given to the robots.

3 Distributed Path Planning

We assume there is a disperse but connected network of robots that cover the
environment by using a known expansion algorithm [4]. The object is detected by the
robots and the closest robot is selected as start robot. There is also a distinguished
robot as goal robot at destination. We aim to generate a path among the network of
robots from start robot to the goal robot. Our path planning algorithm executes in three
phases. First, the robots build a configuration space in a distributed fashion. Then,
they construct a shortest-path tree using a variant of the distributed Bellman-Ford
algorithm from the goal robot to every other connected robot in the network.
The closest robot to the object is selected as the start robot and the shortest path
among the tree is constructed from start to the goal. We explain each step in detail
in this section.

3.1 Configuration Space

The goal is to generate a path to carry an object. This path should be safe, meaning
that the object does not collide with any obstacle during the transport. To satisfy the
safety, robots require to find the safe regions in the environment and avoid to generate
a path in unsafe areas. Each robot’s position is considered as a potential position of the
object. Since the object is simplified to its bounding rectangle, each robot checks the
collision of this rectangle if the object center is located at robot’s position. In order to
check the collision, a robot measures its distance to the closest obstacle, called dmin,
and determines its status along the navigation path of the object and classifies itself
as one of Unsafe (U), Safe (S), or Safe Minor (SM). The classification indicates
whether the object would collide with an obstacle if the object center was at the
location of the robot. If the object cannot collide in any orientation, then the robot
position is safe. If the object collides in every orientation, then the robot position is
unsafe. If the object does not collide when its orientation, which is the direction of
minor axis, is perpendicular to the normal of nearest obstacle, then the robot position
is safe minor.

In global reference view, the robots independently sample the environment and
construct an approximation configuration space based on the safety classifications
of their locations. The configuration space is categorized into three types of safety
regions: safe, safe minor, and unsafe. The classification C(x, y) and safe orientation
θsafe(x, y) for a robot at global coordinates (x, y) are defined according to the
following conditions:

156 G. Habibi et al.

if MinDim < dmin ⇒ C(x, y) = S, θsafe(x, y) = undefined
if MinDim ≤ dmin < MaxDim ⇒ C(x, y) = SM, θsafe(x, y) = f (x, y)

if dmin < Max Dim ⇒ C(x, y) = U, θsafe(x, y) = undefined

In this classification θsafe is the safe orientation of the object in order to avoid the
obstacles. θsafe is undefined for S and US regions. In S regions the object can rotate
freely with no risk for collision. There is no need for a specific orientation. Similarly,
in U regions the object collides in any orientation so θsafe is also undefined. However,
in SM regions, the orientation of the object is constrained to a range of angles. We
define f (x, y) as a function that computes θsafe in SM regions. To be conservative,
we limit θsafe to be orthogonal to the normal of the nearest wall as shown in Fig. 2b.
Orienting the object at this angle maximizes the distance between the object and
the wall by making the MinDim side of the bounding box parallel to the normal of
the wall.

Figure 3 shows an environment sampled by a large number of infinitesimally
small robots achieving an infinite resolution configuration space. The configuration
space can be segmented using Voronoi tessellation of edge and vertices of the obsta-
cles [3, 11] into regions that share the same closest obstacle. Combining the two,
we can visualize the SM regions that have the same safe orientation of θsafe. The
individual robots have no global information about the environment and thus cannot
rely on this method. Instead, each robot finds the closest obstacle edge or vertex,
classifies its safety, and sets θsafe individually. If robot’s view is blocked by other
robots, robot uses distance and bearing information of its neighbors, and computes
its θsafe in its own coordinate system.

(a) (b) (c)

Safety classification Voronoi diagram Segmented SM regions

Fig. 3 a The configuration space constructed by an infinite number of robots. The locus of S,
SM, and U points are green, gray, and white respectively. The walls and obstacles are black.
b Voronoi tessellation separates the configuration space into regions based on the location of the
closest obstacle, edge or vertex. c Combining configuration space and Voronoi tessellation, we split
the SM regions into sections with the same safe orientation θsafe

Distributed Path Planning for Collective Transport … 157

3.2 Distributed Bellman-Ford Algorithm

We model path planning problem as finding the shortest-path problem in a directed
graph with single source at goal location (Fig. 4a). The cost of transport from node u
to node v, which is the weight of edge w(u, v), is calculated based on the mechanical
work required to translate and rotate the object from node u to neighbor node v. Note
that w(u, v) and w(v, u) are not necessarily the same. This happens when translating
between S and SM locations. The weight is defined by the following equation:

w(u, v) = αc f d(u, v) + cτ θΔ (1)

where d(u, v) is distance between nodes u and v. θΔ is the change in angle for the
object to be orientated at the safe heading θsafe. c f and cτ are constants of force
and torque that scale d(u, v) and θΔ to the mechanical work required to translate
and rotate the object respectively. These coefficients depend on the dimensions and
weight of the object. α is called minor translation control multiplier, an additional
weight for extra control cost when the object is being transported in confined regions
(SM locations). α is an user-defined value and is ≥1 when moving to a SM region,
where the object’s motion needs to be controlled more tightly to avoid collision.
A rotation cost is also imposed to orient the object to θsafe. When moving to a S
region, the object can rotate freely without collision, the α is 1 and rotation cost is 0.

We use the worst case θΔ (change of object’s orientation) of
π

2
when moving from

a S region to a SM region’s θsafe. The cost function for all different safety region
transitions is summarized by Table 1.

We introduce safety factor γ to quantify safety. This measurement is useful for
analyzing the path planning performance and check if the path is generated in narrow
passages. The larger the γ is, the farther the object is going to be transported away
from the obstacles. In S and SM regions γ ≥ 1.

γ = dmin(x, y)

MinDim/ 2
(2)

To quantify the efficiency of the generated path, we define path efficiency as the
ratio of the shortest path length to the planned path length.

Table 1 Translation and rotation cost for different safety regions

Edge type Translation cost Rotation cost

S → S c f d(u, v) 0

SM → S c f d(u, v) 0

S → SM αc f d(u, v) cτ
π
2

SM → SM αc f d(u, v) cτ θΔ

158 G. Habibi et al.

Start

Goal(source)

W(u,v)
u

v

W(v,u)

(b)(a)

Graph model Distributed Path Planning

Fig. 4 a A directed graph as the model for the robot network. Robots in S, SM, and U are shown
in green, gray, and white respectively. Goal is blue and start is orange. W(u,v) and W(v,u) are the
cost of moving the object from node u to v and moving from v to u respectively. b The optimal
path (blue) is found using a variant of the distributed Bellman-Ford algorithm for a simulated
environment sampled by 275 robots. The goal robot is indicated by a large blue circle. Start point
is the robot in red, which is the closest robot to the object (orange shape). All other robots are
designated by small circles and are classified as S (green), SM (gray), and U (white). Red lines on
SM robots denote the safe orientation for the object at that location.

ψ = Pshortest

Pplanned
(3)

where Pshortest is the sum of all edges for the shortest distance path. Pplanned is the
sum of all edges for the path planned by our algorithm.

We use a variant of the distributed Bellman-Ford Algorithm [1, 5] to build the
shortest-path tree. We use the above cost function to find a minimum cost path from
any S or SM connected robot in the network to the goal position. U robots are
not traversable locations and are excluded in the tree. We assume that there is a
sufficiently large population of robots that are scattered to sample the environment
and there is at least one path from the starting location to the goal. We also assume
that robots sample the environment so efficiently that they detect all the edges and
vertices of the obstacles.

Figure 4b shows the result of our algorithm in a simulated environment. Robots
categorize themselves into three types of safe, safe minor and unsafe in a distributed
fashion. Safe minor robot are oriented along with safe orientation. The shortest path
tree is built through S and SM robots. Path is built continuously which allows changes
in robots network topology.

Distributed Path Planning for Collective Transport … 159

3.3 Transporting the Object

After the minimum-cost path-tree is generated, the object transport starts from any
location on the tree and is transported by carrier robots. When the object moves to
a SM location, the object is rotated until it is oriented to the safe orientation of that
location (θsafe or θsafe + π for an undirected object). We design distributed controllers
to rotate and the translate the object. The prescriptions of the controller is outside
of the scope of this work, but preliminary results show that translation, rotation, and
combined controllers can successfully transport an object by carrier robots. Physical
interference from the robots will be a significant problem and is left for later work.

4 Experimental Results

We tested our path planning algorithm in a simulated environment. Figure 5 shows
a complex environment sampled by a large number of robots. Using our algorithm,
different paths are generated by altering the minor translation control multiplier α.
From left to right, images show the change of the path by increasing (α). The path
becomes longer due to inclusion of safe and less safe minor robots. We can balance
the trade-off between safety and overall path length by adjusting α. Path efficiency
ψ and safety factor γ for this environment are plotted in Fig. 6. As we expect, path
efficiency decreases and the safety factor increases by increasing α.

Basically, our algorithm is a sampling path planning in which robots sample
the environment. Similar to other sample-based path planning, the path efficiency
directly depends on the number of the sample(robots). Figure 6 shows the effect of
network degree on path efficiency. By increasing the degree of the network, which
implies network size, the path efficiency approaches to the unity. For the degree
larger than 12, the environment is sampled enough so that our algorithm generates
the path close to the shortest path. The population with degree <5 is disconnected

Fig. 5 Simulation of the path planning algorithm for an environment sampled by 339 planner
robots. Robots have safety designation of S (green), SM (gray), and U (white). Start and goal
positions for the object are marked red and blue respectively. The blue line shows the planned path
found by our algorithm. By altering α in the cost function in the simulation from left to the right,
the algorithm generates different topology for the shortest-path tree and the final path changes

160 G. Habibi et al.

Fig. 6 Left Plot for path efficiency ψ (blue) and safety factor γ (red) with respect to minor transla-
tion control multiplier α for the environment used in the simulation of Fig. 5 with 1000 robots. Right
The effect of network degree on the average of path efficiency of algorithm in the environment used
in Fig. 6, with minor translation control multiplier α = 1, the result is for the average path efficiency
of 10 networks for each degree

and the algorithm cannot find any path from start to the goal and path efficiency is
zero. For careful analysis of this behavior see the work by Kleinrock [9].

We conducted several experiments using the r-one robots. They have knowledge
of their pose and their neighbors’ in their local coordinate frames. They communicate
with their neighbors through line-of-sight infrared transmitters and sensors (we tune
communication power to give maximum range of 0.375 m). Robots also sense nearby
obstacles with infrared ranging to find their safety classifications. The SM robots
orient themselves to their respective θsafe angles based on the nearest obstacle. This
aids debugging, and simplifies the coordinate systems. For the experiments, the cost
function is simplified. We assume each robot has a distance of 1 form its neighbors
and the distance-work scaling factor c f is 1 (i.e. c f d(u, v) = 1).

We constructed three large and complex environments with multiple paths from
start to goal in Fig. 7. Each row shows the algorithm running with different minor
translation control multiplier values. These values increase from left to the right. By
measuring the path distance and the average distance for all robots on the path from
the nearest obstacle, we are able to measure the path efficiency, ψ , and the safety
factor, γ for each path. The data can be found in Fig. 8. Similar to Fig. 6, ψ decreases
and γ increases with α increases.

Our algorithm is self-stabilizing, meaning that it is robust to changes of the net-
work topology. We test self stabilization property in a dynamic environment by
constructing an environment with a “room” and two “doors” that lead to the des-
tination (Fig. 9). The doors serve as movable obstacles. Our algorithm first selects
the shortest path when the doors are open. After the environment is altered and a
door is closed, the initial path is destroyed. The algorithm successfully regenerates
an alternate path to the goal. This Experiment demonstrates our algorithm’s ability
to respond to evolving network topology and to regenerate the path when the initial
path is broken.

Distributed Path Planning for Collective Transport … 161

Fig. 7 The path planning algorithm tested on three different complex environments with a varying
minor translation control cost α for each. S and SM robots are labeled green and magenta respec-
tively. The dimensions of the environments are 2.6 × 2.6 m. Goal robot is blue and starting robot is
orange. α increases from left to right. The path changes with increasing α value to include fewer
SM robots for a safer transport

Fig. 8 The result of path efficiency (blue) and safety factor (red) are plotted against minor translation
control multiplier. The data was gained from the experiments shown in Fig. 7. The region around
each plot shows standard deviation from the mean for the three tested environments

162 G. Habibi et al.

Fig. 9 Experiment with 11 robots. Goal robot is shown in blue. The object bounding rectangle is
orange. Other robots are green. At first, a door (red rectangle) was open (left) and the shortest path
through the robots is generated (blue line). When the door is closed (right) the initial path is broken
and algorithm find an alternative path

5 Scope and Limitations

The path planning algorithm is fully distributed and is robust to changes in the envi-
ronment and the robot network topology. We can balance the trade-off between safety
and efficiency by tuning parameter α. Since the algorithm is a variant of distributed
Bellman-Ford algorithm, it has a running time complexity of O(diam(G)), where
diam(G) is the diameter of the graph.

Our models and algorithms have made some simplifications and assumptions to
make the path planning computationally feasible. However, they do have limitations.
Figure 10 shows a case that the path between two SM robots is not safe, while it is
selected by algorithm. One solution to fix this issue is to remove the path that connects
two SM robots with different safe orientation constraints. However, the algorithm
is conservative and may not be able to find any solutions. This problem could be
addressed in future work by adding additional rotational metrics when constructing
the configuration space. The path given by Fig. 10 should be disconnected due to
rotational constraints. Alternatively, the model for the object could be modified into
a larger rectangular enclosing box. While this method would not solve the problem
completely, it could alleviate the degree of the problem at the expense of efficiency.

6 Conclusion and Future Work

We designed a fully distributed path planning algorithm to generate a path for an
object transport task. We use a large number of homogeneous robots to sample an
unknown environment and construct a configuration space based on safety of object
constraints. We then used a variant of the distributed Bellman-Ford algorithm with
a custom cost function to find a path for an object to be transported from the start to
the goal location. We implemented our algorithm both in simulated and real-world

Distributed Path Planning for Collective Transport … 163

Fig. 10 The path between
two nodes A and B is not
safe, although the object can
be safe at each of these
positions if it is oriented as
illustrated

environments. As our results show, our approach robustly constructs safe paths and
adapts to dynamic environments. We have also investigated a path planning problem
that provides a framework for the user to balance the trade-off between safety and
mechanical work required to move the object using a multi-robot system.

The proposed path planning algorithm simplifies many aspects of the transporta-
tion. A more extensive study could be done in the future to model the system in
greater details. The manipulation and transportation of the object are still left for
future investigation, although preliminary results are promising. The object dimen-
sion and orientation should be measured dynamically by the manipulator robots and
propagate through the network. Additionally, moving the object may cause physical
interference. We will address these issues in our future work.

In conclusion, our proposed path planning method is the first step for an effective
object transportation using a multi-robot system. More research still need to be done
in order to utilize it to its full capacity.

Acknowledgments The authors would like to thank Zachary Kingston for his tremendous help in
running experiments on real robots. This work has been supported by National Science Foundation,
Division of Computer and Network Systems under CNS-1330085.

References

1. Cheng, C., Riley, R., Kumar, S.P.R, Garcia-Aceves, J.J.: A loop-free extended Bellman-Ford
routing protocol without bouncing effect. In: SIGCOMM ’89 Symposium Proceedings on
Communications Architectures and Protocols, vol. 19, pp. 224–236 (1989)

2. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discr. Math. 86(1–3), 165–177
(1990)

164 G. Habibi et al.

3. Fabbri, R., Estrozi, L.F.: On Voronoi diagrams and medial axes. J. Math. Imaging Vis. 17,
27–40 (2002)

4. Fekete, S.P., Kamphans, T., Kröller, A., Mitchell, J.S.B., Schmidt, C.: Exploring and triangulat-
ing a region by a swarm of robots. In: 14th International Workshop, 2011, and 15th International
Workshop, pp. 206–217, Princeton, NJ, USA (2011)

5. Ford, L., Fulkerson, D., Bland, R.: Flows in Networks, ser, Princeton Landmarks in Mathe-
matics. Princeton University Press, Princeton (2010)

6. Kamio, S., Iba, H.: Random sampling algorithm for multi-agent cooperation planning. In:
IROS, pp. 1265–1270. IEEE (2005)

7. Kamio, S., Iba, H.: Cooperative object transport with humanoid robots using rrt path planning
and re-planning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2608–2613. IEEE (2006)

8. Kavraki, L., Svestka, P., claude Latombe, J., Overmars, M.: Probabilistic roadmaps for path
planning in high-dimensional configuration spaces. In: ICRA, pp. 566–580 (1996)

9. Kleinrock, L., Silvester, J.: Optimum transmission radii for packet radio networks or why six
is a magic number. In: Conference Record, National Telecommunications Conference, pp.
4.3.2–4.3.5, Birmingham, Alabama, Dec 1978

10. LaValle, S.M.: Rapidly-exploring random trees: a new tool for path planning. Computer Science
Department, Iowa State University, Technical report (1998)

11. Mayya, N., Rajan, V.T.: Voronoi diagrams of polygons: a framework for shape representation.
J. Math. Imaging Vis. 6(4), 355–378 (1996)

12. McLurkin, J.: Analysis and implementation of distributed algorithms for multi-robot systems.
Ph.D. dissertation, MIT, USA (2008)

13. McLurkin, J., McMullen, A., Robbins, N., Habibi, G., Becker, A., Chou, A., Li, H., John, M.,
Okeke, N., Rykowski, J., et al.: A robot system design for low-cost multi-robot manipulation.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp.
912–918. IEEE (2014)

14. O’Hara, K.J.O., Balch, T.R.: Distributed path planning for robots in dynamic environments
using a pervasive embedded network. In: Proceedings of the Thrid International Joint Confer-
ence on Autonomous Agent and Multiagent Systems, pp. 1538–1539, July 2004

15. Parra-González, E.F., Ramírez-Torres, J.G., Toscano-Pulido, G.: A new object path planner for
the box pushing problem. In: Electronics, Robotics and Automotive Mechanics Conference:
CERMA’09, pp. 119–124. IEEE (2009)

16. Reina, A., Di Caro, G.A., Ducatelle, F., Gambardella, L.M.: Distributed motion planning for
ground objects using a network of robotic ceiling cameras. In: Towards Autonomous Robotic
Systems, pp. 137–148. Springer (2011)

17. Yamashita, A., Arai, T., Ota, J., Asama, H.: Motion planning of multiple mobile robots for
cooperative manipulation and transportation. IEEE Trans. Robot. Autom. 19, 223–237 (2003)

Collective Construction of Dynamic
Equilibrium Structure Through Interaction
of Simple Robots with Semi-active Blocks

Ken Sugawara and Yohei Doi

Abstract This paper proposes a collective construction method through interaction
between simple robots and intelligent blocks that has a rule set and functions to
communicate with neighboring blocks. In our proposed method, the structure is
formed by growing chain of blocks. The growth direction is determined by the rule
set and a counter value passed between the blocks. The robots load or unload the
block based on a simple algorithm and a local signal from the blocks. Because of
the simplicity of each robot’s behavior, the structure is locally unstable: the blocks
can be attached or detached randomly from the structure even if they have already
formed a part of the structure. The structure is considered a dynamic equilibrium
structure that is locally unstable but globally stable. In this paper, we first explain the
mechanism of our proposal and show some fundamental characteristics obtained by
computer simulation. Then, we show the adaptability of the system by introducing
simple sensing dynamics for an external stimulus.

Keywords Collective construction · Dynamic equilibrium · Swarm robots · Semi-
active blocks

1 Introduction

Collective construction is one of the most attractive and challenging topics in swarm
robotics. Construction is a practical and indispensable task for humans, and we often
desire that robots will provide support or work fully instead of us. Construction by
robots is expected to improve productivity, and to reduce accidents in the construction
field. Collective construction by swarm robots is also promising. Once we succeed in

K. Sugawara (B) · Y. Doi
Tohoku Gakuin University, Sendai, Japan
e-mail: sugaken@mail.tohoku-gakuin.ac.jp

Y. Doi
e-mail: yohei.doy@gmail.com

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_12

165

166 K. Sugawara and Y. Doi

establishing collective construction by swarm robots, we expect our method to work
effectively not only in a normal environment, but also in an extreme environment
that is difficult to reach, such as deep sea or other planets.

We can classify construction into two types of management approaches: central-
ized and distributed. In centralized management, we have a complete set of blue-
prints, and manage all workers in every assembly process. Artificial buildings are
constructed by this method. The working efficiency is relatively high because every-
thing is completely controlled by a supervisor. We know, however, that another
method is also possible: distributed management. Social insects, such as bees, ants,
and termites, can construct a large and complex nest using the distributed method.
Although these insects seem to have neither clear blueprints, nor a central supervisory
control system, they can still construct a functional nest.

It is challenging to solve the collective construction problem using a distributed
system because we can expect to get a novel methodology for the problem. Once
we succeed in establishing the problem based on the distributed approach, we can
increase the variety of collective construction methods for our use. In this paper, we
propose a novel method for collective construction by introducing a simple dynamics
for each robot and each block, and discuss the characteristics of the formed structure
by considering the dynamic equilibrium phenomenon.

1.1 Related Work

The algorithm for constructing a cluster proposed by Deneubourg et al. [1] was
epoch-making in the research of distributed autonomous system. In spite of a simple
algorithm, distributed items are collected automatically. The algorithm’s feasibility
was also confirmed by a real robot system [2]. The idea was extended to the sorting
problem, in which the extended method sorted and clustered a mixture of differ-
ent items. Its practicability was confirmed by robotic implementation [3], and by
clustering tasks in database engineering [4].

There are other approaches for robotic construction. By simple physical contact
between the robot and items, it was confirmed that the robots organized a heap
of items [5] or created a circular area by pushing the items away [6]. In addition,
introducing a beacon system allowed construction of more complicated structures
[7, 8].

Stigmergy is also a key concept for collective construction [9]. Some researchers
proposed simple dynamics, which explains how insects construct their nests
autonomously [10, 11]. Theraulaz and Bonabeau also reported an epochal model
[12, 13]. They proposed an asynchronous automata model with some micro-rule
sets, and showed it could generate various types of structures, which resemble to real
nests constructed by insects, such as bees and ants.

Collective Construction of Dynamic Equilibrium Structure … 167

Concerning robotics, another series of researches inspired by termite nest con-
struction shows great promise [14–16]. These researches show a method of using
simple rules to construct not only a two-dimensional, but also a three-dimensional
structure; the researches also showed that real robots can construct the structure by
bringing from the field tand piling up the blocks.

1.2 Contribution of This Paper

We propose a novel method for collective construction of some geometric structures,
introducing simple dynamics for swarm robots and semi-active blocks. We focus on
the behavior of a collection mechanism that was reported by Deneubourg et al.
through the observation of real ant behavior. They reported a simple algorithm, in
which each robot stochastically loads or unloads an item based on the density of
items around the robot. This algorithm is remarkable as the simplest algorithm for
item collections by simple robots. This paper, however, reveals another aspect of this
phenomenon. Once we focus on the position of each item in this dynamics, we notice
that the relative positions of the items keep changing dynamically. Even though all
items gather as a cluster, each item is always attached or detached locally. In other
words, the cluster is in the state of dynamics equilibrium. Some interesting research
for collective construction has been reported in the field of swarm robotics; most
research has treated static structures and only a small amount of research has treated
the collective construction from this viewpoint [16]. We studied this problem using
a simple algorithm for the robots based on Deneubourg’s algorithm and the blocks
which has a rule, internal value, and a limited communication method. In order to
form a designed structure by a simple system, not only the robots but also the blocks
should have some intelligence [14]. Here, the robots and blocks interact and assemble
a structure globally, but the blocks that compose the structure are always moved in
and out locally. This characteristic also enables the structures to have fault-tolerant
characteristics or high adaptability for environmental changes.

We discuss fundamental properties of the proposed system in the next section.
We then provide workability of our proposal by showing some results obtained by
computer simulation in Sect. 3. This section also describes simple analysis by master
equation. In Sect. 4, we discuss the adaptability of the structure to environmental
change. The discussion and conclusion are in the last section.

2 Model

Our model is composed of two parts. One is for robots, and the other is for blocks.
First, we show an algorithm for the robots, and next, we explain the dynamics of the
blocks.

168 K. Sugawara and Y. Doi

2.1 Algorithm for a Robot

Deneubourg et al. proposed a simple clustering model based on stochastic dynamics
for picking up or depositing the items. The simplest algorithm of their proposal can
be described as follows (Algorithm1).

Algorithm 1
LOOP

DO random walk UNTIL find a block

IF holding no block THEN
Pick up the block

ENDIF

ELSE IF holding a block THEN
Drop off the holding block close to the found block

ENDIF

Weextend this algorithm as shown inAlgorithm2.As described below, each block
is assumed to have a function to send signals and to indicate the side on which the
next block should be dropped off.

Algorithm 2
LOOP

DO random walk UNTIL find a block

IF holding no block THEN
Pick up the block

ENDIF
ELSE IF holding a block THEN

IF detect signal from the found block THEN
Drop off the holding block at the signal source

ENDIF
ENDIF

Figure1 shows a schematic of our proposal, using an example of a robot’s behavior.
As the robot that is not holding a block finds one, it picks up the block. When it finds
another block by a random-walk and detects a signal from it, the robot puts the held
block on the surface of signal source.

Collective Construction of Dynamic Equilibrium Structure … 169

Fig. 1 Schematic of our
proposal. a Each robot walks
around randomly. b A robot
in the unloaded condition
picks up the found block.
c The block is dropped off
where the robot detects the
signal. d The laid block starts
to transmit a signal based on
the neighbor’s information
(see detailed explanation in
the next section)

2.2 Dynamics of a Block

Blocks introduced in this research are not passive items but rather semi-active ones,
which have a function to communicate with robots and/or other blocks. This concept
was already proposed in [14]. In this paper, we assume all blocks have a set of rules,
memory for a counter value, and a minimal communication method. The block
introduced in this paper can indicate the side on which another block should be
placed.

The rule of our block is composed of trigger values, growth directions, and a new
counter value as an option. For simplicity, we assume the grid world in this paper,
in which a series of blocks has seven growth directions with various combinations
of the directions. The following symbols indicate the side on which the next block
should be placed.

S: straight from the former block
DL: diagonally forward left
L: left
DR: diagonally forward right
R: right
DBL: diagonally backward left
DBR: diagonally backward right

It is also possible to indicate two or more directions in parallel, meaning that a
block can communicate from two or more sides at once; hence, its growth can branch
out.

We introduced the counter to control the length of the growth. For example, when
we design a branch with ten blocks, the counter is set as 10. In other words, this
system needs to have an origination.

Here we define the rule set as {initial count value: (trigger value, direction, (new
value, as an option))}. The following examples illustrate the rule set process.

170 K. Sugawara and Y. Doi

Fig. 2 Constructed structures of examples in the text. The numbers show the counter value in each
block

(ex1) A rule set {6: (3, L)} generates an L shape
(ex2) A rule set {7: (3, DL), (3, DR)} generates a Y shape
(ex3) A rule set {5: (1, L, 2)} generates a q shape
(ex4) A rule set {5: (2, S, 4), (2, L, 4)} generates a lattice
(ex5) A rule set {12: (8, L), (6, L), (2, L)} generates a rectangle

Each block also has the following rules.

• A single block does not transmit a growth direction signal. Even if a block com-
poses a part of the structure, it stops transmission and clears its counter value once
it becomes single.

• The block in the structure does not change its communicating side. Even when
another branch grows and makes contact with a part of the structure, the contacted
block does not accept the signal from the newcomer.

Figure2 shows the concrete structures described in (ex1)–(ex5).

2.3 Dynamic Equilibrium Structure

Because the robots do not care if a found block organizes a part of the structure,
they pick up the block when they are in unloaded condition (Fig. 3). Even if there
is a lack of blocks, another robot in loaded condition may reach the point and place
another block again. This system essentially has a local instability: The blocks are
not guaranteed to stay in the structure. All blocks can be attached to or detached from

Collective Construction of Dynamic Equilibrium Structure … 171

Fig. 3 One possible loading
process. Because the
algorithm of each robot is
simple, the robot easily
happens to pick up the block
that forms the structure. This
behavior plays an important
role in our proposal

Table 1 Simulation condition

Simulation field Discrete (lattice) space

Field size 300×300 pixels

Neighborhood Moore neighborhood

(Eight surrounding cells are available for robots and blocks)

The number of robots 5–300

The number of blocks 100, 400, 500

the structure, even if the block forms a part of the structure. However, the structure
is stable because of the rule: The rules of blocks guarantee stability of structure
formation.

3 Results and Analysis

We confirmed the behavior of our proposal by computer simulation. The simulation
conditions are shown in Table1.

Figure4 shows a snapshot of two examples of construction. White dots are single
blocks and red dots are the blocks in the structure.

Asdescribed inSect. 2.3, the blocks in the structure canbepulledout. If the number
of blocks in the field is fewer than the required number, holes appear in the structure
(Fig. 5a). The holes are also unstable. They appear and disappear dynamically. If the
number of blocks is greater than the required number, the structure becomes stable.
Once the structure is completed and all robots pick up unused blocks, there is no
chance that the robots will pick up the block in the structure (Fig. 5b).

We also tried to analyze a basic characteristic of structure growth by introducing
the dynamics of the states of the robots and the blocks in a line structure of length
L . Let us denote the number of the robots that are holding blocks as RH and the
robots that are not holding blocks as RE . The number of blocks that compose the
line structure is denoted as BL . We describe the dynamics of each number as follows.

ṘH = αRE − β RH − pRH

ṘE = −αRE − β RH − pRH (1)

ḂL = β RH − ε(L − BL)RH − γ · BL · RE

172 K. Sugawara and Y. Doi

Fig. 4 Examples of construction of structure. a Rectangle b honeycomb

Fig. 5 a In case the total number of blocks is less than the required number for completion, the
global structure is maintained as a square but there are many holes. b In case the total number
of blocks is much greater than the required number for completion, the global structure is stable
without holes

where α is the probability to pick up the block; β is the probability to put down
the block; p is a probability to drop off the block; ε is a rate that robots holding
blocks put down their block as a part of the structure; L is the length of the structure
to be completed; and γ is the probability that the blocks forming the structure are
detached by the robots that are not holding blocks. Figure6 shows the time evolution
of the length of the structure in robot simulation (left) and the solution of the equations
described previously. Here we set α=10−3; β=γ =2.5×10−5; p=5.0×10−4; and
ε=1.3×10−4.

Collective Construction of Dynamic Equilibrium Structure … 173

Fig. 6 (Left) Time evolution of the length of the structure, showing the result of 10 trials (color
lines except the black) and their average (black). The designed length is 40 and the number of robots
is 30. (Right) the solution of the equations. The length of the designed structure is 40 (L =40)

4 Extension for Adaptive Behavior

Another interesting aspect of the system that forms a dynamic equilibrium structure
is its adaptability to environmental changes. In this section, we introduce small
modifications to the blocks and attempt to implement adaptive function. For example,
we treat a line structure. We also assume an external stimulus, such as a strong wind
or a flow of hazardous substances; the line works as a barrier against the stimulus by
being constructed to be orthogonal to the direction of the wind or other stimulus.

We introduce a sensor to each block and control the flow direction of the counter
value. In this case, each block detects the direction of an external stimulus and
receives or transmits its counter value to the orthogonal direction. Figure7 shows
a concept of this application. A flow direction of counter value is lateral as long
as the stimulus comes from the top (Fig. 7a). Once the direction changes, as shown
in Fig. 7b, however, each module stops transmitting its counter value to the lateral
direction and starts transmitting in the vertical direction. The lateral communication
is essentially abandoned. Figure7c shows the structure just after the direction of the
external stimulus changes from the top. The blocks stop their communication for the
lateral direction and starts to transmit signal to the longitudinal direction. As a result,
other blocks are attached to the vertical direction. Because the anchor block in which
the counter value is encircled in red in Fig. 7c, d is fixed, the leftmost column can
grow and keep the line structure. However, another column will finally disappear.

Figure8 shows snapshots of the adaptive behavior for environmental change.Once
the direction of the external stimulus changes, the line structure gradually changes
the direction of construction.

174 K. Sugawara and Y. Doi

Fig. 7 a Each block is assumed to have a sensor to detect external stimuli and a property to flow
the counter value to the orthogonal direction. b Once the direction of the external stimulus changes,
the flow direction of the counter value also changes. c There is no essential connection between the
blocks because of the direction of the external stimulus. d Line structures can grow in the vertical
direction, but the line without the anchor block will be removed

5 Discussion

This system also has the potential to realize amoving shape (Fig. 9). This figure shows
that a ribbon-like structure seems to move in an oblique direction. By allowing the
anchor to be removed by the robots, we can realize a moving object. We can also
say that the structure itself is regarded as a robot, which is maintained by dynamic
equilibrium [17]. We need a more detailed discussion for this aspect, but we are
confident that this characteristic leads to a proposal for a new type of robotics.

6 Conclusion

Wepropose a novel method for collective construction, which is accomplished by the
interaction between simple swarm robots and semi-active blocks. Each robot works
using an extension of the fundamental clustering algorithm, in which it picks up or
drops off the block according to local conditions. The blocks are not passive but semi-

Collective Construction of Dynamic Equilibrium Structure … 175

Fig. 8 Snapshots of the adaptive behavior. Red dots and yellow dots represent the blocks and
the indications from the neighboring blocks for unloading, respectively. Blue dots and green dots
represent the robot with a block and the robot without a block, respectively. As the external stimulus
(a white arrow) firstly comes from the top (a–d), a line structure is formed in the lateral direction.
Once the direction of external stimulus changes, each block attempts to grow in the vertical direction,
but only one line structure which contains the anchor block remains

Fig. 9 Snapshots of moving structure. A line structure moves in the diagonal direction

active, that is, they have rules and the capability to communicate with neighboring
blocks. Each block transmits a counter value to its neighboring block. In spite of their
simplicity, the blocks and the robots cooperatively construct structures we designed.
A remarkable aspect of this method is that the structure is stable globally, but the
blocks are locally attached or detached frequently. We can say that the structure is
under dynamic equilibrium. This characteristic is advantageous to adaptability to
environmental changes. It is also confirmed by small simulations.

176 K. Sugawara and Y. Doi

Acknowledgments This work was partially supported by a Grant-in-Aid for Scientific Research
on Innovative Areas “Molecular Robotics” (No. 24104005) of The Ministry of Education, Culture,
Sports, Science, and Technology, Japan.

References

1. Deneubourg, J.L., et al. The dynamics of collective sorting robot-like ants and ant-like robots.
In: Animals to Animats. 356–363 (1990)

2. Beckers, R., Holland, O.E., Deneubourg, J.L.: From Local Actions ToGlobal Tasks: Stigmergy
and Collective Robotics, pp. 181–189. Artificial Life IV, MIT Press (1994)

3. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots with min-
imal sensing. In: Proceedings of the Fifth International Conference on Simulation of Adaptive
Behavior, pp. 465-470 (1998)

4. Lumer, E., Faieta, B.: Exploratory database analysis via self-organization. In: Proceedings of
the Computer Assisted Information Retrieval (1995)

5. Maris, M., Boeckhorst, R.: Exploiting physical constraints: heap formation through behavioral
error in a group of robots. Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. 3, 1655–1660 (1996)

6. Parker, C., Zhang, H.: Robot collective construction by blind bulldozing. IEEE Int. Conf. Syst.
Man Cybern. 2, 59–63 (2002)

7. Werfel, J.: Building blocks for multi-robot construction. In: Distributed Autonomous Robotic
System 6, pp. 285–294. Springer (2007)

8. Stewart, R.L., Russell, R.A.: A distributed feedback mechanism to regulate wall construction
by a robotic swarm. Adapt. Behav. 14(1), 21–51 (2006)

9. Grasse, P.P.: La reconstruction du nid et les coordinations interindividuelles chez bellicositer-
mes natalensis et cubitermes sp. La theorie de la stigmergie: essai d’interpretation du com-
portement des termites constructeurs, Insectes Sociaux 6, 41–81 (1959)

10. Deneubourg, J.L.: Application de l’ordre par fluctuations a la description de certaines étapes
de la construction du nid chez les Termites. Insectes Sociaux 24, 117–130 (1977)

11. Skarka, V., Deneubourg, J.L., Belic, M.R.: Mathematical model of building behavior of Apis
mellifera. J. Theor. Biol. 147, 1–16 (1990)

12. Theraulaz,G.,Bonabeau,E.:Coordination in distributedbuilding. Science 269, 686–688 (1995)
13. Theraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in

social insects with lattice swarms. J. Theor. Biol. 177, 381–400 (1995)
14. Werfel, J., Yaneer, B-Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with

enhanced building blocks. In: Proceedings of the IEEE International Conference on Robotics
and Automation, pp. 2787–2794 (2006)

15. Werfel, J., Petersen, K., Nagpal, R.: Distributed multi-robot algorithms for the TERMES 3D
collective construction system. In: Proceedings of IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (2011)

16. Werfel, J., Bar-Yam, Y., Nagpal, R.: Building patterned structures with robot swarms. In:
International Joint Conference on Artificial Intelligence (2005)

17. Shimizu, M., Tsukidate, T., Sugawara, K., Ishiguro, A.: Dynamic self-assembly based on
dynamic equilibriumof building and scrapping. In: Proceedings of JSMEConference onRobot-
ics and Mechatronics, 2A1-G09(1)-(4) (2010)

Cooperative Mobile Robot Control
Architecture for Lifting and Transportation
of Any Shape Payload

B. Hichri, L. Adouane, J.-C. Fauroux, Y. Mezouar and I. Doroftei

Abstract This paper addresses cooperative manipulation and transportation of any
payload shape, by assembling a group of simple mobile robots (denoted m-bots)
into a modular poly-robot (p-bot). The focus is made in this paper on the chosen
methodology to obtain sub-optimal positioning of the robots around the payload to
lift it and to transport it while maintaining a geometric multi-robot formation. This
appropriate positioning is obtained by combining the constraint to ensure Force Clo-
sure Grasping (FCG) for stable and safe lifting of the payload and the maximization
of the Static Stability Margin (SSM) during the transport. A predefined control law
is then used to track a virtual structure in which each elementary robot has to keep
the desired position relative to the payload. Simulation results for an object of any
shape, described by a parametric curve, are presented. Additional 3D simulation
results with a multi-body dynamic software validate our proposal.

Keywords Cooperative mobile robots · Control architecture · Payload transport
and co-manipulation · Force closure grasping · Static stability margin

B. Hichri (B) · L. Adouane · J.-C. Fauroux · Y. Mezouar
Institut Pascal, Clermont Ferrand, France
e-mail: Bassem.Hichri@ifma.fr

L. Adouane
e-mail: Lounis.Adouane@univ-bpclermont.fr

J.-C. Fauroux
e-mail: Jean-Christophe.Fauroux@ifma.fr

Y. Mezouar
e-mail: Youcef.Mezouar@univ-bpclermont.fr

I. Doroftei
Gheorghe Asachi Technical University of Iasi, Iasi, Romania
e-mail: idorofte@mail.tuiasi.ro

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_13

177

178 B. Hichri et al.

1 Introduction

In recent years, many researches were oriented to survey and design collaborative
mobile robotic systems [1, 2] gathering different engineering and science disciplines.
This blend between those disciplines allows the design of autonomous systems able
to interact with the environment without human mediation and also to achieve diverse
complex tasks or infeasible by humans, such as exploring dangerous and/or unreach-
able areas [3] or navigation in formation for a group of autonomous robots [4].
Autonomous mobile robots have the ability for sensing and reacting in the environ-
ment by acquiring additional abilities. They can also collaborate when a task needs
more than one robot, such as heavy objects co-manipulation or transport [3, 5–7].
The aim of our research is to co-manipulate and to transport objects using a group
of mobile robots. We aim to design an innovative architecture for payload transport
on structured environment. Collaborative robots behaviors may be also interesting
for transporting tasks with mobile robots. Many robotic examples can be mentioned
such as in [6, 8–11]. Our goal in the C3Bots project (Collaborative Cross and Carry
mobile roBots) is to design several mobile robots with a simple mechanical archi-
tecture called m-bots that will be able to autonomously co-manipulate and transport
objects of any shape by connecting together. The resulting poly-robot system, called
p-bot, will be able to solve the so-called removal-man-task to transport object of
any shape and mass repartition. Reconfiguring the p-bot by adjusting the number of
m-bots allows to manipulate heavy objects with any shape, particularly if they are
wider than a single m-bot. During the manipulation, the grasping task [12, 13] is a
crucial phase for payload lifting and if it fails the whole task cannot be achieved.

To ensure the co-manipulation task, he group of m-bots must succeed to ensure
the payload Force Closure Grasping (FCG) [12–17] until putting it on their top
platform. FCG refers to Newton laws which allows to ensure the payload immo-
bility [13]. In the aim of ensuring object stability, which is the goal of any used
grasping strategy, several methods have been developed using various approaches.
Avoiding too large forces allows to reduce the power for the manipulator’s actua-
tion and the deformation of the manipulated object. A grasp is considered stable
when a miniature disturbance on the position of the manipulated object or contact
force, generates a restoring wrench that brings the system back to a stable configu-
ration [12]. In [18], Nguyen presents an algorithm for stable grasps construction and
he proved the possibility of making stable all 3D force closure grasps. According to
[12, 13], a grasping strategy should ensure stability, task compatibility and adaptabil-
ity to novel objects. Analytical and empirical approaches were developed in different
literatures to ensure a stable grasping. The former approach choose the manipula-
tor configuration and contact positions with kinematical and dynamical formulation
whereas empirical approaches use learning to achieve a grasp depending on the task
and on the geometry of the object. Diverse analytical methods were developed to
find a force closure grasp [14, 15, 17]. The latter approach avoids the complexity
of computation by attempting to mimic human strategies for grasping. Datagloves
and map human hand were used by researchers for empirical approaches to learn

Cooperative Mobile Robot Control Architecture … 179

the different joint angles [19, 20], hand preshape [21]. Vision based approach is also
used to demonstrate grasping skills. A robot can track an operator hand for several
times to collect sufficient data [22, 23].

Payload stability during movement is evaluated according to developed metrics in
literature. In the late sixties, stability margin metrics were developed and classified
mainly in two categories: static [1, 6, 7, 9, 10, 15, 16, 18, 19, 21, 23–29] and dynamic
[6, 14, 18, 22, 24, 25, 30, 31] stability margins. We consider the Static Stability
Margin (SSM) since our system evolves at low speed in a structured environment.
This margin was defined by McGhee and Frank [29] as follows: “static stability
margin is the shortest distance from the vertical projection of the centre of gravity to
any point on the boundary of the support pattern”. Considering the payload lifting
and transport using mobile robots, stability is also ensured by coordinating the group
of transporting robots which means multi-robot control problem.

The multi-robot navigation in formation is the main research area linked to the
phase of payload transportation. A multitude of control architecture to deal with this
task were proposed in the literature [4, 28, 32]. A multi-robot system control can be
either centralized or distributed.

The control problem is discussed to provide a suitable control strategy for this
task. Formation control can be classified according to recent literature, [4, 32], into
three main approaches: the behavior-based approach, the leader-follower approach
and the virtual structure approach.

This paper presents an algorithm allowing to determine an optimal positioning of
m-bots around a general payload in order to maximize the Static Stability Margin
(SSM) and to ensure Force Closure Grasping (FCG). A centralized control will be
used for its higher calculation performances to calculate different desired positions
according to a payload of any shape. For targets reaching and payload transport,
the groups of robots will act according to centralized control approach. A predefined
control law is then used to track a virtual structure in which each elementary robot has
to keep the desired position relative to the payload. This paper is organized as follow:
in Sect. 2 the paradigm of C3Bots project is introduced and the general problem is
presented for co-manipulation and transport using multi-robot system; Sect. 3 will
present the robots positioning according to both criteria SSM and FCG computation
and the multi-robot transport strategy. Simulation results for an object of any shape,
described by a parametric curve, and 3D simulations with a multi-body dynamic
software are also presented. Finally Sect. 4 provides a conclusion and future works.

2 Paradigm and Problem Statement

The paradigm of C3Bots project is to co-manipulate and transport a common pay-
load through collaboration between several similar elementary robots (see Fig. 1).
Wheeled robots were selected for their versatility on various terrains and good effi-
ciency on regular grounds compared to legs and tracks. The C3Bots transport strategy
takes inspiration from Army Ants [9] by laying the payload on top of robot’s bodies,

180 B. Hichri et al.

(a)
(b) (c)

(d)

Fig. 1 Co-manipulation of a box by a group of m-bots. a Prototype for object lifting and transport
[33]. b Payload prehension by two m-bots. c Payload lifted by two m-bots. d Two M-bots pushing
on the payload to elevate it with parallelogram manipulator [34]

and from the structure given in [10], that has a rotative arm on top of it. The con-
cept of modularity was also kept and each m-bot is built from two parts: a mobile
platform and a manipulation mechanism [33]. The mobile platform is a single-axle
Khepera robot and the manipulator is fixed on a rotary platform that lets the robot turn
freely on itself when the object lays on the transporting platform. The manipulator
has a parallelogram structure to bring the payload from the ground to the m-bot top
platform with a circular trajectory [34].

The resulting p-bot system (cf. Fig. 1a, c) is thus allowed to translate along any
direction and rotate around any point in the ground plane. Before starting the transport
task, the m-bots have to achieve the co-manipulation process using the mechanism
presented in [33] and detailed in [34]. Its role is to hold firmly the payload and
to ensure FCG [16] to lift the object by applying a sufficient normal force fm,p,n

(cf. Figs. 1d and 4) which generates a vertical tangential lifting force fm,p,t (cf.
Fig. 1d) with:

fm,p,n ∈ [0, fmax] = [0, μgmm g] and fm,p,t ∈ [0, μpμgmm g] (1)

Cooperative Mobile Robot Control Architecture … 181

μp is the payload-end-effector friction coefficient; μg the wheel-ground friction
coefficient; mm is the robot mass and g is the gravity. The value of fmax is obtained
while applying the well known resultant of the force/moment for the all system
(First and Second principle of Newton). We obtained thus a simple formulation of
fmax while taking into account the mentioned parameters. To improve the system
efficiency in term of payload holding and avoiding its slipping, an additional mech-
anism, that ensures the payload tightening and avoids friction uncertainties, is under
development.

The minimum number mmin of m-bots that have to be used to lift and transport
the payload is obtained according to Eq. (2). The payload is considered in this paper
as an homogeneous body, its shape and weight are known and its center of mass is
predetermined.

mmin∑

m=1

fm,p,t = Mpl g (2)

3 Cooperative Mobile Robot Manipulation and Transport

The proposed overall cooperative manipulation and transport strategy, for any pay-
load shape, by a group of m-bots is presented in Fig. 2. This figure gives the most
important steps to be achieved during this cooperative task. The details of the cho-
sen criteria for cooperative manipulation and transportation are given respectively in
Sects. 3.1 and 3.2.

Step 1 (cf. Fig. 2) presents the first phase of the task and which consists on payload
detection and estimation of its mass and gravity center position. Step 2 consists on
determining the minimum number of m-bots (mmin) that could be used to ensure the
payload lifting and transport with relative to (2). Step 3 presents the main contribution
of this paper. It is detailed by the flowchart in the right side of Fig. 2 and will be
discussed in Sects. 3.1.1 and 3.1.2. Sasaki et al. in [27] treated a similar problem for
optimal robots positioning taking into account two criterion: the payload stability
and the energy consumption. It was considered that the positioning is optimal when
the payload is stable and the robots consume the minimum of energy (according
to the data received from the robots sensors). In the proposed strategy, the m-bots
positioning is optimal when FCG and SSM are ensured. Finally, Step 4 corresponds
to multi-robot transport the payload toward the assigned final pose, this part will be
detailed in Sect. 3.2.

3.1 Cooperative m-bots Positioning and Co-manipulation

Since the features of the payload are known (step 1 in Fig. 2) the minimum number
of m-bots (mmin) is obtained while using Eq. 2 (step 2), the group of m-bots must be
well positioned around the payload (step 3) to permit to safely lift it and to maintain

182 B. Hichri et al.

The
configuration
ensures FCGObtaining of the minimum

number of m-bots to lift the
payload (cf. Eq. 2)

Generate the initial grasp (it=1)
that ensures a SSM (cf. Eq. 4)

The
configuration
ensures SSM

The SSM
value is higher

than the
previous value

Change the grasp configuration
ensuring SSM (cf. Eq. 4)

Save the grasp configuration

it<itmax Return the last
saved configuration

yes

no

no

no

no

yes

yes

yes

Payload detection and
estimation of Mpl and Gpl

Determine the appropriate
m-bots configuration

Go forward to the obtained
positions

Lift the payload

Transport the payload
toward a final

configuration while keeping
a specific formation

Step 1

Step 2

Step 3

Step 4

Step 3

Fig. 2 Flowchart given the sequenced steps for the co-manipulation and transportation of any
payload shape

a well stability of the payload in the top of the p-bot during the transportation phase
(step 4). During this manipulation phase (sub-step 2 in step 4), FCG (cf. Sect. 3.1.1)
as well as SSM (cf. Sect. 3.1.2) must be thus ensured to lift and transport safely the
object (cf. details given for Step 3 in Fig. 2).

3.1.1 Force Closure Grasping

Force closure grasping problem is extensively treated and studied for objects manip-
ulation using multi fingered robotic hand [35, 36]. This problem was adapted to
mobile robot co-manipulation and transport in C3Bots project to ensure lifting and
transport task.

The co-manipulation problem (cf. Sect. 2) is restricted to a 2D problem in plane
(O, x, y) while robots are acting simultaneously and applying a tightening forces on
the payload on the same plane (Fig. 3).

The aim of this part is to ensure force closure grasping when choosing the m-bots
positions which returns to fully constraint the payload motion with mmin m-bots. In
other words, the static equilibrium must be ensured while positioning the group of
mobile robots. The problem of force closure grasping is studied under the following
assumptions (cf. Fig. 3c):

Cooperative Mobile Robot Control Architecture … 183

C

(a) (b) (c)

Fig. 3 Applied tightening forces on the payload. a Side view. b Top view. c m-bot planar contact

• A contact force lies inside the friction cone centred about the normal direction to
the contact surface with half angle α.

• The tangent of α represent the friction coefficient.
• The friction cone of the mth contact is denoted C pm .

A necessary and sufficient condition to have force closure is that the intersection
of three friction cones is not empty [17]. This condition was extended to mmin m-
bots. In [17], the treated problem concerns multi fingered hand grasping although the
problem treated in this paper focuses on co-manipulation using a group of modular
mobile robots. The proposed algorithm is based on ensuring force closure if forces
and moments equilibrium satisfy (3) and when the payload center of mass is inside
the friction cones intersection (4). The later condition allows to reduce the moments
generated on the payload by the m-bots because the direction of the applied force on
the plane is closer to the gravity center.

mmin∑

m=1

(Pm G pl ⊗ fm,p,n) = 0;
mmin∑

m=1

fm,p,n = 0 (3)

G pl ∈ Convexhull(∩C pm) | m = 1..mmin (4)

where C pm presents the friction cone for the contact force on Pm and fm,p,n is the
applied normal on the payload (cf. Fig. 3c).

3.1.2 Static Stability Margin (SSM)

In this part, Static Stability Margin (SSM) is considered to ensure the payload stability
during the transporting phase. Stability margins were extensively studied for walking
mobile robots [26, 31, 37]. In C3Bots project, to ensure a stable payload transport, the
Static Stability Margin (SSM) is a crucial criterion for a successful task achievement.
Before describing the proposed algorithm for m-bots positioning ensuring an optimal
SSM during object transport using m-bots, let’s detail the following assumptions (cf.
Fig. 4):

184 B. Hichri et al.

Fig. 4 Support polygon
formed by four robots
positioned at Pm|m=1..4

G

• The payload shape from the top view is a closed curve (B) and defined by polar
curve defined by P(θ); θ ∈ [0, 2π].

• In function of the payload mass Mp, mmin is the minimum number of m-bots
allowing to lift and transport the object.

• The payload center of mass is denoted Gpl .

Let R(G pl , xpl , ypl , zpl) be the frame linked to the payload with respect to the
reference frame R(O, x, y, z) (cf. Fig. 4). Cartesian coordinates will be used in the
proposed algorithm. As given in Sect. 2, P(θ) be the parametric description of the
payload closed boundary (B). Pm|m=1..mmin are the m-bots positions, Hm,m+1 is the
projection of the payload center of mass G on the edge linking two consecutive points
Pm and Pm+1 and dm,m+1 is the stability margin on the same edge. Pm and Pmmin+1

are confounded and as a consequence dm,mmin+1 is equal to dmmin ,1.
The idea behind the algorithm is to run through (B) and to find the set of points

Pm ensuring a maximal SSM while maximizing the objective function (5). The con-
straint imposed by (6) must be satisfied for mmin m-bots≥3 which gives a necessary
condition to keep the center of mass G pl inside the polygon (P1..Pm)

f (θm, . . . θmmin) = Min(dm,m+1) | m = 1..mmin (5)

θm+1 − θm < π |m = {1...mmin} (6)

In the case where we have only two m-bots to co-manipulate the object, the
constraint expressed by (6) is not considered and the robots are positioned in opposed
positions which means θm+1 − θm = π . For each configuration where n m-bots ≥ 3,
the algorithm aims at determining the equation of the line Pm Pm+1 and at computing
the shortest distance of G pl (xG pl , yG pl) from it.

Cooperative Mobile Robot Control Architecture … 185

Then dm,m+1 is calculated by (7) which represent the stability margin relative
to each edge and the static stability margin SSM given by (5). Pm coordinates are
expressed in R(G pl , xpl , ypl , zpl) (cf. Fig. 4).

dm,m+1 = d(G, (Pm Pm+1)) =
xG

yPm+1 −yPm

xPm+1 −xPm
− yG + yPm − xPm

yPm+1 −yPm

xPm+1 −xPm√
(

yPm+1 −yPm

xPm+1 −xPm
)2 + 1

(7)

3.1.3 Simulation Results

The proposed algorithm allows to determine a sub-optimal configuration for a group
of mobile robots in order to lift and transport a payload of any shape. Two criteria
have been respected (FCG and SSM) which reduces the total configurations to be
tested by the algorithm taking into consideration (3) and (4). The Algorithm was
simulated by using an Intel Core i5 2400 CPU 3.1 GHz system. Figure 5 presents
the simulation results for the developed algorithm for robots positioning in order to
guarantee an optimal static stability margin respecting the force closure condition.
The blue bold polygon presents the polygon of support ensuring the optimal SSM (cf.
Sect. 3.1.2), the thin blue lines presents the friction cones sides and the intersection
is presented by contrasted area resulted by the superposition of friction cones. It is
shown how the algorithm keeps the payload center of mass G pl inside the intersection
area and it allows to build a polygon of support ensuring the payload stability during
the transport. The duration to find results depends on the chosen steps of θm to run
throw the payload curve.

The payload stability during the lifting phase was simulated with respect to both
criteria (SSM and FCG) using ADAMS multi-body dynamic software to validate
the proposed algorithm (cf. Fig. 2) while testing the m-bots performances when they
are positioned to co-manipulate the object. Figure 6 shows that the robots ensure the
payload lifting without loss of stability of the lift. Videos for simulation are visible
under [38].

(a) (b) (c)

Fig. 5 Simulation results. a–b 3 m-bots positioning with different configuration according to the
localization of the payload center of mass; c 4 m-bots positioning

186 B. Hichri et al.

Fig. 6 Multibody simulation results with ADMAS software. Top view (a, c), and 3D lifting phase
(b, d)

3.2 Multi-robot Transport

After lifting the payload, which is positioned now on the top of the p-bot, the group of
m-bots must transport the payload toward a final configuration. During this last phase
(Step 4 in Fig. 2), and in order to guarantee the payload stability, the p-bot should
navigate as rigid formation shape and for this, a virtual structure architecture was used
[4]. After the end of Step 3, each m-bot receives its attributed position which insures
the sub-optimal p-bot positioning that permits to ensure Force Closure Grasping
(FCG) and to maximize the Static Stability Margin (SSM) during the transport. For
transport task, the m-bots have to reach their goals, computed using the algorithm
presented in the previous section (cf. Step 4 in Fig. 2). After reaching the desired
positions, the transport task starts considering that the payload lays on robots bodies.
To avoid payload slippage, the group of m-bots has to track a fixed position relative
to the object when it follows a trajectory. In this section, a control law is proposed
to solve the goal reaching problem (Pm in Sect. 3.1.2) and the navigation as Virtual
Structure (VS) of the set of m-bots. In VS approach [4, 32], the entire formation is
considered as a rigid body and the notion of hierarchy do not exist. The control law
for each entity is derived by defining the VS dynamics and then translate the motion
of the VS into the desired motion of each elementary robot. The main advantages of
this approach are its simplicity to prescribe the coordinate behavior of the group and
the maintaining of the formation during manoeuvres.

The result of the algorithm for a given object shape described by a parametric curve
(B) is a set of n targets to be reached by the m-bots. Considering a unicycle mobile
robot, the state vector Xm = (xm, ym, θm)T denotes the position of the mthrobot center
of mass Gm(xm, ym) and its orientation θm with respect to x axis of the global frame.
The m-bots control inputs are the forward velocity V and the angular velocity ω.

Let e be the error between the m-bot current pose and the desired pose defined by
Xdm = (xdm, ydm, θdm)T : e = Xdm − Xm .

After positioning the m-bots, they must keep their desired position (xdm, ydm) with
respect to the payload center of mass Gpl and must respect the following conditions
during the task achievement:

Cooperative Mobile Robot Control Architecture … 187

(a)

(b)

Fig. 7 M-bot position and mobility during payload transport. a Desired position of the robot relative
to the payload; b free steering of the mobile platform relative to the manipulator

xdm = xG pl + lxm cos θdm − lym sin θdm (8)

ydm = yG pl + lxm sin θdm + lym cos θdm

where lxm and lym (cf. Fig. 7a) are the relative distances GmGpl according the axis
xm and ym respectively. These two distances define rigid links maintaining the robot
position with respect to Gpl . It is to be noted that the mobile platform has a steering
mobility around its vertical axis z (cf. Fig. 7b). This mobility allows to each robot to
rotate around itself (Vm = 0 and ωm =Constant (cf. Eq. (9))) while maintaining the
payload static on its top. According to this effector new degree of freedom, the group
of mobile robots could ensure easily the payload approach, lifting and transportation.

The used control law [4] is given by (9):

Vm = Vmax − (Vmax − Vd)e
−(d2

m/σ 2) (9)

ωm = ωSm + kθm

• Vm and ωm are the linear and angular velocities of the m-bot.
• Vmax is the maximum linear speed of the m-bot.
• Vd is the desired velocity of the p-bot and considered to be constant.

• dm =
√

e2
x + e2

y is the current distance between the mth robot and its desired target.

• ωSm is the angular velocity of set point angle θSm applied to the robot in order to
reach the desired goal: ωSm = θ̇Sm

• σ , k are positive constants (control law gains).

The control law was simulated for a group of three m-bots transporting an object.
Figure 8a presents the goal reaching problem with k=22 and σ = 0.1. In order that
the m-bots reach the desired positions, the desired speed when reaching the goal
is set to zero and then the whole structure will navigate with a speed of 10 cm/s
(Fig. 8d, e and f). The payload lays on robot bodies during transport and the group

188 B. Hichri et al.

−0.5 0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

1.5

2

x (m)

y
(m

)
m−bot

1

m−bot
2

m−bot
3

T
1

T
2

T
3

Payload

(a)

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

 t (s)

D
is

ta
nc

e
(m

)

m−bot
1

m−bot
2

m−bot
3

(b)

0 2 4 6 8 10 12 14 16 18
−60

−50

−40

−30

−20

−10

0

10

 t (s)

θ e (
de
gr

ee
)

m−bot
1

m−bot
2

m−bot
3

(c)

1.5 2 2.5 3 3.5 4 4.5
−1

−0.5

0

0.5

1

1.5

2

X

Y

m−bot
1

m−bot
2

m−bot
3

T
1

T
2

T
3

Payload

(d)

−1 0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X

Y

(e)

−1 0 1 2 3 4 5 6 7 8
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

X

Y

(f)

Fig. 8 M-bots target reaching (TR) and Virtual structure (VS) navigation: a Trajectories of the
m-bots reaching the desired positions; b position error for TR; c angle Error for TR; d the p-bot
is navigating as a rigid Virtual Structure (VS); e the p-bot avoids the obstacle and keeps the same
orientation; f the p-bot avoids obstacle and changes the payload orientation

of m-bots is navigating while maintaining constant distances. Figure 8b shows the
convergence of the position error e to zero during target reaching phase. Figure 8c
presents the angular error for each robot. One can note the convergence to zero of
the error which shows the target reaching achievement. Figure 8d, e and f) show
respectively the payload transport in a straight line, considering obstacle avoidance

Cooperative Mobile Robot Control Architecture … 189

while keeping the payload orientation and finally with a new payload orientation. One
can note that all m-bots keep a null position errors which means that the formation is
properly maintained and that slippage avoidance and task performance are ensured. It
is important to notice, that in this paper, we suppose a centralized control of the fleet
of robots, thus, the movement of the virtual structure is already defined according
to the configuration of the environment. Indeed, the focus of this paper is on the
presentation of the virtual structure and the way how each elementary robot keeps
the desired position relative to the payload.

4 Conclusions and Future Work

This work takes place within the C3Bots project, that aims to design simple robot
entities (m-bots) able to co-manipulate and transport payloads of any shape by aggre-
gating in a modular way into a poly-robot (p-bot). This work has the ambition to
combine two criteria in an original way:

• On one side, the Static Stability Margin (SSM), generally used for legged loco-
motion.

• On the other side, Force Closure Grasping (FCG), used for stable multi-finger
manipulation.

The m-bots used in this work include in their lower part a wheeled-axle, which
is similar to a foot of a multi-leg mobile robot, and in their top part a manipulator
acting like the finger of a robotic hand. The resulting p-bot ensures the stable payload
grasping and transport. An algorithm was developed in order to search the optimal
positions of n unicycle m-bots that ensure force closure grasping and maximize the
static stability margin for the transport of a payload of any shape, defined by its closed
curve boundary. Simulation results using a multi-body dynamic software validates
our proposal and shows the ability of robots to maintain the payload stability during
lifting process. A flexible control architecture was used to validate the target reaching
problem while maintaining the chosen formation. This navigation was considered
in a flat structured environment. Future works will consider the problem of payload
manipulation and lifting in all terrain. Unreachable areas on the payload boundary
will also have to be taken into consideration (as for example one side of a square
object opposed to a wall).

Acknowledgments The C3Bots project acknowledges the following entities: LABEX IMobS3
Innovative Mobility: Smart and Sustainable Solutions, the French National Centre for Scientific
Research (CNRS), Auvergne Regional Council and the European funds of regional development
(FEDER).

190 B. Hichri et al.

References

1. Souma Alhaj Ali, M.G.: Mobile Robotics, Moving Intelligence (2006)
2. Siegwart, R., Nourbakhsh, I.R.: Introduction to Autonomous Mobile Robots. The MIT Press

(2004)
3. Wilcox, B.H., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend,

J., Ahmad, N., Sirota, A., Cooper, B.: Athlete: a cargo handling and manipulation robot for the
moon. J. Field Robot. 24(5), 421–434 (2007)

4. Benzerrouk, A., Adouane, L., Lequievre, L., Martinet, P.: Navigation of multi-robot formation
in unstructured environment using dynamical virtual structures. In: 2010 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 5589–5594 (2010)

5. Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through the exploita-
tion of local interactions in autonomous collective robotics: the stick pulling experiment. Auton.
Robots 11(2), 149–171 (2001)

6. Dorigo, D.F.M.: Swarmanoid: a novel concept for the study of heterogeneous robotic swarms.
IEEE Robotics & Automation Magazine. In Press (2012)

7. Adouane, L., Le Fort-Piat, N.: Hybrid behavioral control architecture for the cooperation of
minimalist mobile robots. In: 2004 IEEE International Conference on Robotics and Automa-
tion, 2004. Proceedings. ICRA ’04, vol. 4, pp. 3735–3740 (2004)

8. Yamashita, A., et al.: Cooperative manipulation of objects by multiple mobile robots with
tools. In: Proceedings of the 4th Japan-France/2nd Asia-Europe Congress on Mechatronics,
pp. 310–315 (1998)

9. Bay, J.S.: Design of the army-ant cooperative lifting robot. IEEE Robot. & Autom. Mag. 1,
36–43 (1995)

10. Abou-Samah, M.: Optimal configuration selection for a cooperating system of mobile manip-
ulators. In: 2002 ASME Design Engineering Technical Conferences (2002)

11. Kernbach, S., et al.: Symbiotic robot organisms: REPLICATOR and SYMBRION projects. In:
Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, pp. 62–69.
New York (2008)

12. Sahbani, A., El-khoury, S., Bidaud, P.: An overview of 3D object grasp synthesis algorithms.
Robot. Auton. Syst. 60(3), 326–336 (2012)

13. El-Khoury, S., Sahbani, A., Bidaud, P.: 3D objects grasps synthesis: a survey. In: 13th World
Congress in Mechanism and Machine Science. Guanajuato (2011)

14. Ding, D., et al.: Computing 3-D optimal form-closure grasps. In: IEEE International Conference
on Robotics and Automation. Proceedings. ICRA, vol. 4, pp. 3573–3578 (2000)

15. Li, J.-W., Jin, M.-H., Liu, H.: A new algorithm for three-finger force-closure grasp of polygonal
objects. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings.
ICRA, vol. 2, pp. 1800–1804 (2003)

16. Roa, M.A., Suarez, R.: Finding locally optimum force-closure grasps. Robot. Comput. Integr.
Manuf. 25(3), 536–544 (2009)

17. Liu, Y.H.: Qualitative test and force optimization of 3-D frictional form closure grasps using
linear programming. IEEE Trans. Robot. Autom. 15(1) (1999)

18. Nguyen, D.: Constructing stable grasps in 3D. In: Proceedings of IEEE International Confer-
ence on Robotics and Automation, pp. 234–239 (1987)

19. Fischer, M., van der Smagt, P., Hirzinger, G.: Learning techniques in a dataglove based tele-
manipulation system for the DLR hand. In: 1998 IEEE International Conference on Robotics
and Automation, 1998. Proceedings, vol. 2, pp. 1603–1608 (1998)

20. Ekvall, S., Kragic, D.: Interactive grasp learning based on humain demonstration. In: IEEE/RSJ
International Conference on Robotics and Automation. New Orleans (2004)

21. Kyota, F., et al.: Detection and evaluation of grasping positions for autonomous agents. In:
International Conference on Cyberworlds, 2005, pp. 453–460 (2005)

22. Aarno, D., et al.: Early reactive grasping with second order 3D feature relations. In: Lee, S.,
Suh, I.H., Kim, M.S. (eds.) Recent Progress in Robotics: Viable Robotic Service to Human,
pp. 91–105. Springer, Berlin (2008)

Cooperative Mobile Robot Control Architecture … 191

23. Hueser, M., Baier, T., Zhang, J.: Learning of demonstrated grasping skills by stereoscopic
tracking of human head configuration. In: Proceedings 2006 IEEE International Conference
on Robotics and Automation, 2006. ICRA, pp. 2795–2800 (2006)

24. Orin, D.E., Mcghee, R.B., Jaswa, V.C.: Interactive compute-control of a six-legged robot vehicle
with optimization of stability, terrain adaptibility and energy. In: 1976 IEEE Conference on
Decision and Control including the 15th Symposium on Adaptive Processes, vol. 15, pp. 382–
391 (1976)

25. Papadopoulos, E.G., Rey, D.A.: A new measure of tipover stability margin for mobile manipula-
tors. In: 1996 IEEE International Conference on Robotics and Automation, 1996. Proceedings,
vol. 4, pp. 3111–3116 (1996)

26. Estremera, J., Cobano, J.A., Gonzalez de Santos, P.: Continuous free-crab gaits for hexapod
robots on a natural terrain with forbidden zones: an application to humanitarian demining.
Robot. Auton. Syst. 58(5), 700–711 (2010)

27. Sasaki, J., Ota, J., Yoshida, E., Kurabayashi, D., Arai, T.: Cooperating grasping of a large
object by multiple mobile robots. In: 1995 IEEE International Conference on Robotics and
Automation, 1995. Proceedings, vol. 1, pp. 1205–1210 (1995)

28. Adouane, L.: Architectures de controle comportementales et reactives pour la cooperation d’un
groupe de robots mobiles. Université de Franche-Comté, PhD Thesis Report (2005)

29. McGhee, R.B., Frank, A.A.: On the stability properties of quadruped creeping gaits. Math.
Biosci. 3, 331–351 (1968)

30. Grand, C., et al.: Stability and traction optimization of a reconfigurable wheel-legged robot.
Int. J. Robot. Res. 23(10–11), 1041–1058 (2004)

31. Queiroz, C.: A study on static gaits for a four legged robot. In: International Conference
CONTROL’2000. Cambridge, UK (2000)

32. Van den Broek, T.H.A., et al.: Formation control of unicycle mobile robots: a virtual structure
approach. In: Proceedings of the 48th IEEE Conference on Decision and Control, held jointly
with the 2009 28th Chinese Control Conference. CDC/CCC, pp. 8328–8333 (2009)

33. Hichri, B., Fauroux, J.C., Adouane, L., Mezouar, Y., Doroftei, I.: Design of collaborative, cross
and carry mobile robots (C3Bots). Adv. Mater. Res. 837, 588–593 (2013)

34. Hichri, B., Fauroux, J.C., Adouane, L., Doroftei, I., Mezouar, Y.: Lifting mechanism for pay-
load transport by collaborative mobile robots. In: Flores, P., Viadero, F. (eds.) New Trends in
Mechanism and Machine Science, pp. 157–165. Springer (2015)

35. Yoshikawa, T.: Multifingered robot hands: control for grasping and manipulation. Annu. Rev.
Control 34(2), 199–208 (2010)

36. Zheng, Y., Qian, W.-H.: Limiting and minimizing the contact forces in multifingered grasping.
Mech. Mach. Theory 41(10), 1243–1257 (2006)

37. Wang, Z., Ding, X., Rovetta, A., Giusti, A.: Mobility analysis of the typical gait of a radial
symmetrical six-legged robot. Mechatronics 21(7), 1133–1146 (2011)

38. Simulation results: https://www.dropbox.com/sh/d6plmdqmnizm8j6/AABy52fbl65lhC870
ZBdjdQfa

https://www.dropbox.com/sh/d6plmdqmnizm8j6/AABy52fbl65lhC870ZBdjdQfa
https://www.dropbox.com/sh/d6plmdqmnizm8j6/AABy52fbl65lhC870ZBdjdQfa

A Response Threshold Sigmoid Function
Model for Swarm Robot Collaboration

Anshul Kanakia, John Klingner and Nikolaus Correll

Abstract We present a multi agent collaboration algorithm to recruit an approxi-
mate number of individually simple robots with controllable variance. We propose
a sigmoid response threshold function motivated by task allocation in social insects,
and describe macro-level models backed by micro-level simulations to predict the
resulting team sizes and their variance. These results are further validated through
physical experiments using the “Droplet” swarm robotics platform. We show that
the slope of the response threshold function can be used to control the variance of
group size, allowing agents to trade off deterministic team size with coordination
speed, and making the proposed mechanism applicable to a variety of applications.

Keywords Swarmrobotics ·Multi-agent systems ·Collaboration ·Task-allocation ·
Response-threshold

1 Introduction

We propose a probabilistic, threshold based multi agent collaboration algorithm and
analysis to recruit an approximate number of robots for a collective task. Recruiting
robots to collaboratively solve a task is a canonical problem in robotics [13]. Formally
introduced in the stick-pulling experiment, as described by Martinoli et al. [19, 20],
to recruit exactly two robots to collaboratively pull a stick out of the ground, Lerman
et al. [18] have extended this model to larger teams of constant size. In each case
the result of collaboration is binary, success or failure, based on whether an exact
number of robots are present at the collaboration site or not.

A. Kanakia (B) · J. Klingner · N. Correll
Department of Computer Science, University of Colorado, Boulder, USA
e-mail: anshul.kanakia@colorado.edu

J. Klingner
e-mail: john.klingner@colorado.edu

N. Correll
e-mail: nikolaus.correll@colorado.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_14

193

194 A. Kanakia et al.

We wish to extend the stick pulling model of constant group sizes of robots to
include a more general case of collaboration tasks that involve only approximate
robot group sizes for successful collaboration. More specifically, we deal with tasks
that have the property of “concurrent benefit” where single agents must wait for a
group—with a range of permissible size—to form at their collaboration site before
being able to collectively begin the task and complete it successfully. Examples of
such tasks include fire containment, collective transport [22], pattern recognition
[3], real-time mapping of oil spills [2], determining coverage area of forest fires
[17], and many others that require a subset of a swarm to coalesce and tackle a task
collaboratively.

A concrete example is fire containment (See Fig. 1). Dropping incremental
amounts of water on a fire will be futile until a critical mass of robots drop their
water at the same time. Waiting for an exact number of robots, however, is not neces-
sary either, motivating a task allocation scheme that will result in an average number
of robots with predictable variance.

It is important to note that we do not study any particular task in detail but rather,
outline a general approach to modeling scenarios with the aforementioned proper-
ties. Here, tuning the permissible variance allows one to tune the likelihood with
which collaborations happen. Formally understanding the dynamics of the underly-
ing coordination mechanisms allows the designer not only to predict performance,
but also to optimize a swarming system [8].

The proposed algorithm and model is inspired from task allocation in biological
systems such as ant colonies [5, 16]. We employ the use of a response threshold
sigmoid function that probabilistically triggers the beginning of a collaboration step
between robots at the samecollaboration site.We study this approachviamacroscopic
models and microscopic simulations. The sigmoid function used in our model is
commonly referred to as the Logistic function and has control parameters that allow
us to alter its offset and slope. We study the effects that changing these parameters
has on the system-wide behavior of the robot swarm. We also draw comparisons
between this collaboration model and similar models used by Lerman et al. for the
n-robot stick pulling experiment [18] and discuss situations where it is beneficial to
use one model over the other.

The rest of the paper is organized as follows. Section2 introduces the task alloca-
tion algorithm that we will be studying throughout the course of the paper. Section3
provides a mathematical basis for the threshold based collaboration model and
attempts to explain how the voting strategy being employed affects group sizes and
their variance. Section4 provides an explanation of the agent level controller in the
system. This section further outlines the experimental setup being used to run simu-
lations and the important parameters of the system. We compare collaboration rates
of our model with the constant group size model introduced by Lerman et al. [18]
usingmicro-level Gillespie simulation in Sect. 4, showing that the dynamics are com-
parable for similar team sizes, yet allow us to tune the variance of the resulting group
size. We also discuss results obtained from conducting real physical experiments
and compare them to microscopic simulation results. Finally, Sects. 6 and 7 provide

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration 195

discussion of the drawbacks and limitations of the proposed model and scenarios
where it could fail as well as discussing possible avenues for future work.

1.1 Related Work

Task allocation is a canonical problem in multi-robot systems [13]. Whereas capable
robots might be able to approximate optimal task allocation, e.g., usingmarket-based
approaches [1, 23] or using leader-follower coalition algorithms [7], probabilistic
algorithms are of particular interest for swarm robotics with individually simple
controllers [10]. Recruitment of an exact number of robots to a particular task has
been extensively studied using the “Stick Pulling” experiment [18, 19]. The problem
of distributing a swarmof robots across a discrete number of sites/taskswith a specific
desired distribution has been studied in [4, 8]. The proposed algorithm extends upon
the first group of work, and we show how the proposed stochastic task allocation
algorithm reduces to the ones described in [18, 19] when using appropriate para-
meters. Mather [21] instead presents a stochastic approach that is a hybrid between
the work in [4] and [19], allowing allocation to tasks requiring a varying number of
robots. While a response threshold function can also be applied to the swarm distri-
bution problem, this problem is complementary to the problem of recruiting teams
of varying sizes addressed in this paper.

2 Response Threshold-Based Task Allocation

We consider a generic collaboration task with m uniformly distributed collaboration
sites within a flat arena with area A. A swarm of individually simple robots such as
the Droplet platform [11, 15] is deployed within the arena, uniformly and at random.
The number of robots being used per experiment varies, as we discuss results for a
number of different scenarios. Collaboration sites in the arena can be of various sizes
and configurations.

Each individual agent is capable of locomotion [15] and local sensing [11]. The
agents do not require global positioning and no centralized controller exists, but we
assume each agent to be capable of local omnidirectional communication with other
agents within its communication range. The agents are also capable of sensing the
boundary of a collaboration site—we assume that sites have easily distinguishable
boundary regions, as shown in Fig. 1, for the purposes of the model studied in this
paper.

The objective of each agent in the robot swarm is to find a collaboration site in
the arena and perform a collective task with other agents at that site. The precise
details of the collective task are not important for the purpose of understanding the
coordination mechanism. We assume the actual collective task takes each agent a
probabilistic, finite amount of time to complete. Once collaboration is complete, the

196 A. Kanakia et al.

Fig. 1 A visual representation of the collaboration experiment firefighting scenario using the
Droplet swarm robotic platform

agent detaches itself from its current site and returns to searching for other sites in
the arena.

It is perfectly reasonable to assume that agents arrive at the same collaboration
site after having just completed a task there (possibly unsuccessfully) but will now be
part of a new collaboration group. Each agent individually decides whether or not to
collaborate at a given time step, while waiting at a collaboration site. If the majority
of agents at that site decide to collaborate then the entire population is recruited for
the task and thus a collective consensus is reached using a majority voting scheme.
Here, we consider a “majority” to mean exactly half or more of a given population.

An individual agent-i’s willingness to collaborate is a stochastic term governed
by a sigmoid based threshold function that takes as input, the number of agents
xm̂ currently at the same collaboration site as agent-i and outputs a probability of
collaboration using control parameters θ and τ :

S (xm̂) = 1

1 + eθ(τ−xm̂)
(1)

The parameter θ controls the slope of the sigmoid function, while τ controls its off-
set along the x axis, as seen in Fig. 2. Each agent is independently responsible for
estimating the group size xm̂ at a given time either by direct sensing or by commu-
nication. In practice, this involves building a list of unique identifiers of the agents
sharing its collaboration site. The overall algorithm, followed by each individual
agent in the system, is provided in Algorithm 1.

Note that the proposed response threshold function is different from [5], who uses
high-order polynomials. While these functions work well in regimes with moderate
slope, they create numerical problems when approximating unit-step-like responses
such as those (implicitly) used in [18]. We particularly chose the Logistic function
from the large class of sigmoid functions due to the intuitive nature of the parameters
τ and θ .

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration 197

Fig. 2 Sigmoidal response threshold function and its parameters. a Changing τ offsets the curve
along the x axis, allowing to set the desired mean team size. b Changing θ changes the slope at the
point x∗ = τ , S (x∗) = 0.5, allowing to control the team’s variance

Algorithm 1 Task allocation algorithm for an individual agent using the sigmoid
threshold function

function Task_Allocation(θ , τ)
estimate ← discover_group_size()
decision ← run_sigmoid(estimate, θ , τ)
communicate_decision(decision)
decisions[] ← gather_decisions()
result ← Count(decisions[], true) � Count() Returns the number of successes in the

decisions
if result ≥ (estimate/2) then

Collaborate()
return

else
Task_Allocation(θ , τ)

end if
end function

3 Macroscopic Analysis

In this section we study how the local parameters τ and θ from an individual agent’s
sigmoid threshold function affect formation of groups of different sizes at the macro-
scopic system level.

3.1 A General Model of Probabilistic Task Allocation

Equation (1) is a cumulative probability density function approaching 1.0 as the
number of agents approaches infinity, that is limx→∞ S (x) = 1. For θ → ∞, Eq. (1)
approximates the unit step:

198 A. Kanakia et al.

lim
θ→∞

1

1 + eθ(τ−xm̂)
≈

⎧
⎨

⎩

1 xm̂ > τ

1/2 xm̂ = τ

0 xm̂ < τ

(2)

Although, unlike the unit step function, the limit on the left in (2) is always continuous,
even at xm̂ = τ where the value of the sigmoid is 1/2. The proposedmodel is therefore
a generalization of the “stick-pulling” task allocation model with deterministic team
size [18], allowing us to tune the variable resulting group sizes using the tuning
parameters τ and θ in (1).

3.2 From Individual Choices to Team-Level Collaboration

Assuming the agents to be loosely synchronized, e.g., by considering decisionswithin
a finite window of time, determining a majority vote corresponds to a Bernoulli
trial with each agent flipping a biased coin—the bias being computed using the
sigmoid function—to decide whether or not to collaborate in the next time step.
The probability that exactly k agents collaborate from a population of n agents at
a collaboration site is given by the probability mass function (PMF) of a Binomial
distribution.

B(n, k) =
(

n

k

)
S (n)k (1 − S (n))n−k (3)

Since we care about the case when half or more of the agents (n/2) decide to
collaborate, the probability P(n) that half or more agents in a group of n collaborate
is the cumulative probability of the above PMF from k = n/2 to k = n.

P(n) =
n∑

i=n/2

(
n

i

)
S (n)i (1 − S (n))n−i (4)

This equation describes the probability with which a group of size n at a given
collaboration site will decide to successfully collaborate. Note that (4) is only an
approximation for odd n, which requires rounding 	n/2
 to the next integer.

For large group sizes, the Binomial distribution approximates the Normal distri-
bution and (4) reduces to

P(n) =
∫ n

n/2
N (nS (n), nS (n)(1 − S (n))) (5)

Therefore, in a group of size n, and n reasonably high (see below), an average of
nS (n) robots will collaborate with group sizes of variance nS (n)(1 − S (n)). In
the special case of n = τ , i.e., the group size has the desired value of τ , (5) evaluates to
P(τ) = S (τ) = 0.5. Therefore, the probability of a group of n agents to collaborate

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration 199

is identical to the probability of a individual agent to collaborate. In all other cases
(5) allows us to calculate the micro-macro matching fromS (n) to P(n).

A caveat of (5) is that the Normal approximation yields poor results for small n,
usually smaller than 20, and is better when S (x) is neither close to 0 or 1 [6]. In
these cases, exact solutions for P(n) require numerical solutions of (4) using what
is known as continuity correction [12].

4 Microscopic Model

As the proposed collaboration mechanism are strongly non-linear, we chose micro-
scopic stochastic simulations to explore the underlying dynamics of the system. The
approach followed to build the stochastic Gillespie simulation of the system is as
follows.

• Perform random walk till a collaboration site is found (search state).
• Perform algorithm, Task_Allocation (see Algorithm 1) (wait state).
• Complete collective task and disperse. (collaborate state).
• Return to search.

The probabilistic finite state machine that describes individual agent behavior
for this swarm system is shown in Fig. 3. From the individual agent’s perspective
only one state each exists for wait and collaborate. From a probabilistic modeling
perspective, the wait and collaborate states are meta states, divided into m states
each, one for each collaboration site in the arena. This is done to clarify that the
probability of collaborating at a given site only depends on the number of agents at
that specific site and collaborations only happen between agents at the same site.

Fig. 3 Agent controller used
to drive group collaboration.
There is a search state and m
wait and collaboration states,
Wi and Ci respectively—one
for each collaboration site

S Wi

W1

Wm

W

Ci

C1

Cm

C

pSWi pWiCi

pCiS

200 A. Kanakia et al.

The probability pSWi in the PFSM model of the system shown in Fig. 3 is the
probability that an agent encounters a collaboration site. This is geometrically com-
puted as the ratio between the total area of the search space (arena) and the total
area of collaboration sites, i.e. pSWi = ns(As)/A (ns = number of sites, As = area
per site). The probability, PWi Ci , of going from a wait state to a collaboration state
is given by Eq. (4) with input NWi , the number of agents at collaboration site-i . PCi S

stochastically models the time it takes for an agent to complete a generic collabo-
rative task and is equal to 1/T , where T is the amount of time (on average) that it
takes an agent to complete the collective task. Note that agents have a zero proba-
bility of transitioning from the wait state back to the search without collaborating,
i.e. once an agent is at a collaboration site, it will not leave till a collaboration event
happens at that site. We chose the following numerical values for all simulations,
unless otherwise noted: A = 100 and As = 10 cm2.

For the sake of simplicity, consensus between agents—i.e. going from Wi to Ci—
at the same collaboration site is assumed to happen instantly and therefore the extra
state(s) is/are omitted from robot controller.

In order to compare the dynamics of the proposed probabilistic task alloca-
tion mechanism with the deterministic one by Lerman et. al [18], we implemented
a variation of the above algorithm using a unit-step at τ instead of the sigmoid
function and removing the consensus step, which is not necessary in this model.

We use Gillespie simulation [14] to explore the dynamics of the proposed collab-
oration model. For both experiments a single collaboration site is used and each run
simulates 300s of time. The desired group size (τ , in Eq.1) is set to 4, 8, 16 and 32
agents out of a total of 100 robots. The collaboration task is programmed to take 10s,
on average, per agent. Data points are gathered by averaging data from 100 iden-
tically set up runs in each case. The rate of collaboration for the threshold model
is computed by summing the number of groups that successfully collaborate and
dividing by the total experiment time (300s). For the deterministic model, collabo-
ration rate is computed by summing all successful collaborations, i.e. collaborations
involving team sizes equal to τ , and dividing the the experiment time (300s).

5 Results

We will first compare the dynamics of the proposed approach with Lerman et al.’s
k-collaboration model [18] and then validate the emergence of group sizes with
similar means but varying variances.

Figure4a shows collaboration rates for both models when θ is set to 2 (for the
probabilistic model) and the wait time is set to ∞ (for the deterministic model),
in order to allow for a fair comparison. (All experiments are run in a regime where
infinitewait times are optimalwait times, i.e., there aremore agents than collaboration
sites.) Figure4a, b and c show collaboration rates for θ = 2, θ = 1 and θ = 0 with
infinite wait time. With θ = 0, the Logistic function is uniformly 0.5, allowing any

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration 201

Fig. 4 Comparison of the collaboration rate for task allocation with probabilistic and deterministic
[18] for different values of θ and team sizes τ in an environment with one collaboration site and
one hundred robots. a θ = 2. b θ = 1. c θ = 0

team size to form. With increasing θ the Logistic function approximates a unit step,
minimizing the variance.

Weobserve the collaboration rate to bequalitatively andquantitatively very similar
for high values of θ (steep slope), and to exceed that of the deterministic model for
very low values of θ (flat slope). This is expected as flat slopes increase the variance
of the observed group size and therefore allow much smaller teams than τ agents to
collaborate.

Figure5 shows histograms of the resulting group sizes for various values of τ =
4, 8, 16, 32 and θ = [0; 0.1; 1] (100 simulations per data point). It is clearly seen
that when θ is set to 0, the sigmoid becomes constant (S (x) = 1/(1 + e0) = 0.5)
so agents have an equal probability to want to collaborate or not, no matter what the
desired group size is. We therefore see a large number of small groups forming, with
most groups consisting of 2 agents. This is to be expected since the expected number
of agents willing to collaborate in a group of size 2 is 1, given the probability of
collaboration is constant at 0.5.

Figure6a displays average group sizes as θ is varied from 0 to 1 and τ from 4 to
32 based on the data from Fig. 5. We observe that for large enough values of θ the
mean of the group size distribution approaches the desired group size and is largely
unaffected by increasing θ . Thereafter, its magnitude depends only on τ except in
the special case where θ = 0 where it is constant. The relative error of the mean
compared to the desired average decreases with increasing number of agents as the
Binomial distribution (4) approximates the Normal distribution (5).

Figure6b shows how the variance of group size decreases with increasing θ .
This is because the sigmoid function approximates the unit step, making the team
size more and more deterministic. On the other hand, low values of θ lead to large
variances in the group size. For θ = 0, the variance is constant for all values of τ and
depends exclusively on the total number of robots.

Finally, we use the Droplet swarm robot platform to perform real experiments to
study the effects of using the proposed task allocation scheme on a physical system.
TheDroplets are small individually simple robots capable of omni-directionalmotion
and communication (via IR) as well as sensing patterns projected from above. In our
experiment we assume that all agents have already arrived at a collaboration site and

202 A. Kanakia et al.

Fig. 5 Histograms of resulting team sizes for various values of τ and θ with one hundred robots
and one collaboration site. a τ = 4. b τ = 8. c τ = 16. d τ = 32

Fig. 6 Showing the effects of varying θ on means and variances corresponding to the histograms
seen in Fig. 5

measure the corresponding collaboration rates for a team of 6 robots while varying
values of τ and θ . Each agent is individually running the algorithm described in
Algorithm 1. A collaboration event is recognized by having all the robots turn on
their green LEDs for 5 s. After such a collaboration event, each agent resets its group
size estimate and runs Algorithm 1 again.

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration 203

Fig. 7 The solid lines show
collaborations per min, over
15min, for a group of 6 real
robots as the desired group
size is varied from 3 to 7 and
the slope of S is varied
between 0.1, 1 and 10. The
dashed lines indicate
simulation results with the
same parameters

We ran 5 repeated experiments for all 15 combinations of τ = 3, 4, 5, 6 and 7,
and θ = 0.1, 1 and 10, totally 75 runs. Each experiment lasted 15min and an over-
head camera system was set up to detect collaboration events using the software
RoboRealm. The collaboration rate was a value computed by counting the number
of collaborations over the course of each 15min experiment, normalizing to col-
laborations per minute, and averaging over the 5 repeated runs. To account for the
vision software’s detection errors, the raw data gathered from each experiment was
de-bounced and passed through a low-pass filter to expose real collaboration events
while eliminating observation error. The results of these experiments are seen in
Fig. 7. While results are in accordance with simulation for θ being low, the collab-
oration rate on the real robot platform is much lower than expected for larger θ as
simulation assumes perfect communication and group size estimates.

6 Discussion

Results in Figs. 4, 5 and 6 show that the proposed threshold-based task allocation
mechanism is a generalization of the deterministic Lerman model in that it allows to
approach what is seen with deterministic group sizes while retaining the elasticity
to vary group sizes along any desired range of values. Also, these plots show how
altering microscopic control parameters within the agents, θ and τ of their sigmoid
functions, directly affects macroscopic behavior of the swarm system by altering
means and variances of formed group sizes, respectively. Although the matching
between microscopic results and macroscopic prediction is not perfect due to the
discrete approximation, the plots show that a wide range of means and variances are
feasible. Finding appropriate parameters to reach these could be easily achieved using
a suitable optimization framework such as presented in [4, 8], using the macroscopic
predictions as initial estimate.

The proposed task allocation algorithm requires an estimate of the group size at
each collaboration site as well as the ability to communicate with the group in order

204 A. Kanakia et al.

to reach a consensus. While these assumptions seem to be limiting at first sight,
they can be rolled into the analysis process and possibly exploited to design the
task allocation process. For example, an increasing variance for observing the group
size τ or noise in the consensus process simply increase the variance of the task
allocation process and could therefore be countered—to some extent—by altering
the properties of the response threshold function.

This effect is clearly observed in the physical experiment results (see Fig. 7).
Since the communication between real robots is not perfect, they almost always
underestimate the size of their group resulting in lower collaborations for high θ

and τ values. As we observe from comparing the micro simulation results—that
are modeled with perfect communication—with real experiment data, we observe
a large discrepancy when θ = 10. This happens because although individual agents
are set up to be in a group of size 6, their estimates for the group size never cross 4
due to imperfect and blocked communication. Coupled with the fact that the sigmoid
threshold effectively acts as a step function when θ = 10, this results in approx. 0
probability of collaboration between agents for a desired group size of 6 but a group
size estimate of ≤4. Lower values of θ result in better matching between real and
simulation data since lower slopes effectively increase the variance in allowed group
sizes and mitigate this effect.

We note that there is no optimal wait time as in stick pulling-like collaboration
[18]. This optimum exists in swarms with less robots than sticks, which is shown
analytically in [19]. Such an optimum does not exist in the proposed model as there
is a non-zero probability team sizes with n < τ will eventually collaborate. Indeed,
Algorithm 1 eventually completes asS (x) > 0 ∀ x , i.e., even if only very few robots
are at a collaboration site and τ is large, there is a non-zero probability that half or
more of the agents at the site eventually collaborate (see also Eq.4).

Although the algorithm does not deadlock—the probability to collaborate even if
the team size is far off the desired value—the resulting behaviormight be undesirable,
resulting in potentially very longwait times and poor task performance. This could be
mitigated by introducing preferential detachment from small groups and preferential
attachment to larger groups as customary in swarm robotic aggregation [9].

In practice, effective collaboration rates will also be limited by the embodiment
of the robots, which might make finding physical space at a site cumbersome. In the
presented microscopic simulation, for both stochastic and deterministic team sizes,
the number of robots per site were not limited, allowing scenarios in which multiple
groups collaborate in quick succession at the same site.While comparing bothmodels
without embodiment is reasonable, we wish to study the effect of embodiment in
future work.

7 Conclusion

This paper introduces a task allocation algorithm that allows to recruit an approximate
number of agents with a desired variance to a task. This allows to trade-off task
execution accuracy with speed, resulting in increasing collaboration rates for teams

A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration 205

with larger variances.We demonstrate that task allocation of teamswith deterministic
size is a subset of the proposed stochastic task allocation mechanism. As such,
the proposed framework provides a computationally simple, adaptive, and robust
alternative for coordination.

We investigate the limitations of the proposed approach, which shows lesser
fidelity in macroscopic predictions if team sizes are small. In future work, we wish
to investigate the impact of variance in estimating the number of agents waiting at a
collaboration site as well as the impact of unrel iable communication between agents,
both of whichwe conjecture to impact the variance of resulting team sizes in a similar
way as the slope of the response threshold function. We are also interested in study-
ing preferential attachment/detachment techniques from swarm robotic aggregation
in order to improve scenarios with insufficient numbers of robots for strong teams to
emerge.

Acknowledgments This research has been supported by NSF grant #1150223. We are grateful for
this support.

References

1. Amstutz, P., Correll, N.,Martinoli, A.: Distributed boundary coveragewith a teamof networked
miniature robots using a robust market-based algorithm. Ann.Math. Artif. Intell. 52(2–4), 307–
333 (2008)

2. Beni, G.: From swarm intelligence to swarm robotics. In: Swarm Robotics, pp. 1–9. Springer
(2005)

3. Beni, G., Wang, J.: Swarm intelligence in cellular robotic systems. In: Robots and Biological
Systems: Towards a New Bionics?, pp. 703–712. Springer (1993)

4. Berman, S., Halász, Á., Hsieh, M.A., Kumar, V.: Optimized stochastic policies for task allo-
cation in swarms of robots. IEEE Trans. Robot. 25(4), 927–937 (2009)

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence, From Natural to Artificial Sys-
tems. Oxford University Press, New York (1999)

6. Box, G.E.P., Hunter, W.G., Hunter, J.S., et al.: Statistics for Experimenters. Wiley, New York
(1978)

7. Chen, J., Sun, D.: Resource constrained multirobot task allocation based on leader-follower
coalition methodology. Int. J. Robot. Res. 30(12), 1423–1434 (2011)

8. Correll, N.: Parameter estimation and optimal control of swarm-robotic systems: a case study
in distributed task allocation. In: IEEE International Conference on Robotics and Automation
(ICRA) (2008)

9. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a swarm of
miniature robots. Int. J. Robot. Res. 30(5), 615–626 (2011)

10. Dantu, K., Berman, S., Kate, B., Nagpal, R.: A comparison of deterministic and stochastic
approaches for allocating spatially dependent tasks in micro-aerial vehicle collectives. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 793–800
(2012)

11. Farrow, N., Klingner, J., Reishus, D., Correll, N.: Miniature six-channel range and bearing
system: algorithm, analysis and experimental validation. In: IEEE International Conference on
Robotics and Automation (ICRA), Hong Kong (2014)

12. Feller, W.: On the normal approximation to the binomial distribution. Ann. Math. Stat. 16(4),
319–329 (1945)

206 A. Kanakia et al.

13. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot
systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

14. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. J. Comput. Phys. 22(403), 403–434 (1976)

15. Klingner, J., Kanakia, A., Farrow, N., Reishus, D., Correll, N.: A stick-slip omnidirectional
drive-train for low-cost swarm robotics: mechanism, calibration, and control. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (2014)

16. Krieger, M.J.B., Billeter, J.-B., Keller, L.: Ant-like task allocation and recruitment in cooper-
ative robots. Nature 406(6799), 992–995 (2000)

17. Krishnanand, K.N., Amruth, P., Guruprasad, M.H., Bidargaddi, S.V., Ghose, D.: Glowworm-
inspired robot swarm for simultaneous taxis towardsmultiple radiation sources. In: Proceedings
of 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, pp.
958–963. IEEE (2006)

18. Lerman, K., Galstyan, A., Martinoli, A., Ijspeert, A.: A macroscopic analytical model of col-
laboration in distributed robotic systems. Artif. Life 7, 93–375 (2001)

19. Martinoli, A., Easton, K., Agassounon, W.: Modeling swarm robotic systems: a case study in
collaborative distributed manipulation. Int. J. Robot. Res. 23, 415–436 (2004)

20. Martinoli, A., Mondada, F., Collective and cooperative group behaviours: biologically inspired
experiments in robotics. In: Proceedings of the Fourth International Symposium on Experi-
mental Robotics, pp. 3–10. Springer (1995)

21. Mather, T.W., Hsieh,M.A., Frazzoli, E.: Towards dynamic team formation for robot ensembles.
In: IEEE International Conference on Robotics and Automation (ICRA), 2010, pp. 4970–4975.
IEEE (2010)

22. Sugawara, K., Correll, N., Reishus, D.: Object transportation by granular convection using
swarm robots. In: Distributed and Autonomous Robotic Systems (DARS) (2012)

23. Vig, L., Adams, J.A.: Coalition formation: from software agents to robots. J. Intell. Robot.
Syst. 50(1), 85–118 (2007)

Potential Game-Theoretic Analysis
of a Market-Based Decentralized Task
Allocation Algorithm

Han-Lim Choi, Keum-Seong Kim, Luke B. Johnson and Jonathan P. How

Abstract This paper presents a potential game-theoretic interpretation and analysis
of a decentralized task allocation algorithm, consensus-based bundled algorithm,
which was developed by the authors’ prior work. It is, in particular, proved that the
consensus-based bundle algorithm converges to a pure strategy Nash equilibrium of
some distributed welfare game, and the price of anarchy and the price of stability of
this equilibrium are 1/2 and 1, respectively.

Keywords Task allocation · Potential game ·Multi-robot planning ·Decentralized
planning · Cooperative control

1 Introduction

1.1 Multi-assignment Task Allocation

Consider a multi-robot multi-assignment task allocation that assigns a sequence of
tasks to robots to maximize the mission performance metric expressed as sum of
rewards from assigned tasks.

H.-L. Choi (B) · K.-S. Kim
Department of Aerospace Engineering, KAIST, 291 Daehak-ro, Yuseong,
Daejeon 305-701, Korea
e-mail: hanlimc@lics.kaist.ac.kr

K.-S. Kim
e-mail: kskim@lics.kaist.ac.kr

L.B. Johnson · J.P. How
Department of Aeronautics and Astronautics, MIT, 77 Massachusetts Ave.,
Cambridge, MA 02139, USA
e-mail: lbj16@mit.edu

J.P. How
e-mail: jhow@mit.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_15

207

208 H.-L. Choi et al.

max
xrn

∑

r∈R

∑

n∈N
srn(pr (xr))xrn

∑

r∈R
xrn = 1

∑

n∈N
xrn ≤ L

xrn ∈ {0, 1}, ∀(r, n) ∈ R × N

(P)

whereR is the set of robot indices, andN is the set of task indices. srn is the reward
robot r can obtain by performing task n, along path pr consisting of sequence of
tasks in xr � {xrn : n ∈ N }. As this score of doing a task is a function of other
tasks assigned to the same robot, this srn can be considered as some type of marginal
reward from the task n—this paper intentionally does not call this asmarginal reward,
because such term is reserved for the marginal contribution concept in the context
of distributed welfare game. The decision variable xrn = 1 if robot r is assigned to
n and zero otherwise. The constraints are to ensure that (a) one task can be assigned
to only one robot, and (b) one robot can be assigned to a set of (or a sequence of)
maximum L tasks.

Assumption 1 As indicated in the formulation in (P), this paper assumes that there
exists a deterministic scheme that uniquely defines the path (pr) associated with the
assignment (xr). In other words, given set of tasks to be done, a robot is assumed
to be able to uniquely determine the order of the tasks. Note that the notion of path
in this context of task allocation indicates the temporal precedence relation rather
than the spatial trajectory of the robot. Thus, the uniqueness assumption on the path
means that for a given list of tasks to do, a robot uniquely determines the time of
execution of those tasks.

Notice that the marginal reward srn does depend on the assigned tasks to robot r .
Giving several examples of reward would be useful to clarify the meaning of this
marginal reward. Consider time-critical service tasks come up at some physical
locations in the mission space. Then, the reward for the task can be modeled as
a time-discounted reward

srn = s0n gd(trn)

with some monotonically decreasing function gd , where s0n is the base score of task
n and trn is the arrival time of robot r at task n. In this case, the arrival time may
depend on the other tasks for the robot to visit. Denote the arrival time for the case
where the robot performs only a single task n as trn[{n}]. If the robot needs to
visit another task k as well as n, then the robot may not be able to arrive at n at
trn[{n}]. For this particular example of time-discounted reward, if the robot visits k
first, trn[{n, k}] ≥ trn[{n}]; otherwise, trn[{n, k}] = trn[{n, k}].1 The implication of

1This inequality/equality relation may not always hold; for the case of time-windowed, adjustment
of the arrival time of the first-visiting task may be needed to make both tasks.

Potential Game-Theoretic Analysis of a Market-Based … 209

Assumption1 in this example is that the arrival times are uniquely determined for
give set of tasks for a robot to visit.

In someother problems, the definition of themarginal rewardmaynot be very clear
as the time-discounted reward. Consider tasking of sensory robot tomake observation
of some physical phenomena at some regions of interest. If the phenomena at region
n is correlatedwith that at another region k, then resulting entropy reduction typically
satisfies:

Sr ({n, k}) = srn({n}) + srk({k}) − ρr,nk

where Sr ({n, k} is the total reward from n and k, and ρr,nk represents the amount of
information contained in n to infer about k (or vice versa). In this case, definition
of marginal reward srn({n, k}) and srk({n, k}) has degree of freedom; one possible
way is to set it as srn({n, k}) = srn({n}) and srk({n, k}) = Sr ({n, k}) − srn({n}), but
the other way is also valid. Although not explicit, it is assumed in this work that
there exists a consistent mechanism to define the marginal reward so that the sum of
individual rewards corresponds to the total reward from the set of tasks.

1.2 Objectives

The present authors’ prior work [2] has presented a decentralized scheme for this
multi-assignment task allocation problem, termed consensus-based bundle algorithm
(CBBA); in the process, itwas proved that the solution by this decentralized algorithm
is identical to that of a sequential greedy algorithm. This allows for proving theworst-
case performance of the algorithm, which is 1/2 of the optimal solution. With this
theoretical finding still holding, this paper takes a game-theoretic perspective on the
same problem of multi-assignment task allocation.

This paper heavily relies on recent advancements in the theory of potential games.
This game concept was first introduced by [12] in the context of congestion games
and rigorously formalized by Monderer and Shapley [11], the Nobel Prize Win-
ner in Economics 2012. The link between the potential game theory and cooper-
ative/coordinated control/decision making has been heavily studied by Marden [1,
6–10]. The present paper takes advantage of recent theoretical advancements by
Marden’s work, in particular, on the distributed welfare game [9], dynamic ordered
protocol [10], and state-based potential games [6].

The main purpose of the present paper is: (a) to report on some interesting
relation between the multi-assignment task allocation and the distributed welfare
game, and (b) to provide more concrete analysis on the solution properties of
CBBA [2]. Although not recognized/described in a game-theoretic way, the key con-
cepts/assumptions introduced in the algorithm can directly be interpreted as some
notions in potential games. In particular, this paper proves that: (a) CBBA converges
to a pure strategy Nash equilibrium of some distributed welfare game, and (b) the

210 H.-L. Choi et al.

solution exhibits price of anarchy of 1/2, which is equivalent to 50% optimality
guarantee proved in [2] and price of stability of 1, which is newly proved in this
paper.

2 Background

2.1 Distributed Welfare Game

The distributedwelfare game considers a class of resource allocation problemswhere
there are a set of N agents and set of resources that are sharedby the agents. Each agent
i possesses an action setAn ⊂ RwhereR is the set of resources.2 An action profile is
presented by an action tuple a = (a1, a2, . . . , aN) ∈ Awhere the set of action profiles
is denoted by A := A1 × · · · × AN . Allocation a is often represented as (ai , a−i)

where a−i := (a1, . . . , ai−1, ai+1, . . . , aN), i.e., the action of all agents except agent i
in the allocation. For the separablewelfare functions, the total welfare for assignment
a is expressed as the arithmetic sum of individual rewards per resource:

W (a) =
∑

r∈R
Wr ({a}r) (1)

where Wr : 2N → R+ is the welfare function for resource r and {a}r := {i ∈ N :
r ∈ ai } is the set of agents using resource r in the allocation a. With this separable
welfare function, the welfare generated at a particular resource depends only on
which agents are currently using that resource.

The local utility that agent i tries to maximize is represented by

Ui (ai , a−i) =
∑

r∈ai

fr (i, {a}r)

where fr : N × 2N → R represents the protocol at resource r . A fixed set of pro-
tocols { fr }r∈R results in a well defined game for any collection of action sets
{Ai }’s. This game is termed distributed welfare game and defined by the tuple
G = {N ,R, {Ai }, {Wr }, { fr }}. This distributedwelfare game is known to be a poten-
tial game, in which local utility is aligned with the global potential function so that
self-interested agents lead to global cooperative behavior.

Definition 1 The welfare function is called submodular if the following holds:

Wr (T1 ∪ {i}) − Wr (T1) ≥ Wr (T2 ∪ {i}) − Wr (T2) (2)

2The action set can be defined over 2R as long as the separability condition in (1) is satisfied.

Potential Game-Theoretic Analysis of a Market-Based … 211

for all r , for any player sets T1 ⊆ T2 ⊆ N . In other words, the welfare for player i
would obtain from resource r is diminishing as the player shares the resource with
inclusively more other players.

2.1.1 Dynamic Ordered Protocol

Let denote P(N) represent the set of possible orders (or permutations) of the agent
set N . Therefore, an order p ∈ P(N) is a vector of length N where each entry of
p is associated with a unique entry in {1, . . . , N }. Let p j represent the index of
agent j in the order p. For any agent set S ⊆ N and agent i ∈ S define Ni (p,S) :=
{k ∈ S : pk ≤ p j } as the set of agents with an index less than the index of agent i .
With a specified order, the resource distribution protocol for resource r ∈ R can be
expressed as

f ORDr (i, xr ; pr) := Wr (Ni (pr , xr)) − Wr (Ni (pr ,S \ {i})).

An ordered protocol assigns each agent a distributed share in accordance with their
marginal contribution to the welfare in their respective order.

The dynamic ordered protocol allows for some notion of state transition for the
order of the form:

pr (t + 1) = gr (pr (t), {a(t)}r),

with some (probabilistic) mapping g. This notion of ordering can be regarded as
some “state” variable in the game and the utility function is defined dependent on the
state value. An equilibrium, which is some extended version of pure strategy Nash
equilibrium, for the game with a dynamic protocol is defined as:

Definition 2 The equilibria of the dynamic order adjustment process is the set of all
action state pairs [a�, p�] such that the following conditions hold:

1. p�
r = gr (p�

r , {a�}r) for every resource r ∈ R.
2. Ui (a�

i , a�
−i ; p�) = maxai ∈Ai Ui (ai , a�

−i ; p�) for every agent i ∈ N .

In other words, at an equilibrium, the state, i.e., the ordering, is invariant, and the
action is the pure strategy Nash equilibrium under the given converged equilibrium.

It was shown in [10] that for the dynamic protocol satisfying the following con-
ditions converges to an equilibrium.

C1 Associate with each agent i ∈ Z = {a(t − 1)}r ∩ {a(t)}r a unique order pi
r (t) ∈

{1, . . . , |Z |} according to the following condition: For any two agent i, j ∈ Z

pi
r (t − 1) < p j

r (t − 1) ⇒ pi
r (t) < p j

r (t).

In other words, if two agents are sharing the resource consecutively, the ordering
does not change.

212 H.-L. Choi et al.

C2 Associate with each agent i ∈ {a(t)}r \ {a(t − 1)}r a unique ordering p j
r (t) ∈

{|Z | + 1, . . . , |{a(t)}r |} according to any deterministic rule. In other words, if
new agent takes part in the share of the resource, it should take a lower order
than the agents already sharing the resource.

It was also noted that with this dynamics,

a(t) = a(t − 1) ⇒ p(t + 1) = p(t).

In other words, if the assignment converges then the ordering becomes invariant.

Theorem 1 (Theorem4.1 in [10]) Let G be the set of distributed welfare games with
submodular welfare functions and dynamic ordered protocols. The equilibria of the
dynamic process is nonempty for any game G ∈ G. Furthermore, the price of anarchy
is 1/2 and the price of stability is 1 across the set of games G.

2.2 Consensus-Based Bundle Algorithm (CBBA)

The consensus-based bundle algorithm (CBBA) [2] is a decentralized task allocation
algorithm that provides provably good task assignments for multi-agent, multi-task
allocation problems. The algorithmic structure of CBBA is an iterative, two-phase
algorithm. These two phases are: a bundle building phase where each vehicle greed-
ily generates an ordered bundle of tasks, and a task consensus phase where conflict-
ing assignments are identified and resolved through local communication between
neighboring agents. These two phases are repeated until the algorithm has reached
convergence, which is proven to happen in finite upperbounded time. While the
algorithmic details of CBBA can be found in [2], this section summarizes a new
description of the algorithm presented in the authors’ recent work [5] utilizing the
notion of bid space, which allows for clearer explanation of the main results of this
paper. Some key notions to be defined are:

• A bid is represented as a triple: Srn = 〈r, n, srn〉, where i represents the bidding
robot’s index, j represents the task’s index, and srn represents the bid score for
this robot-task pair.

• A bundle is an ordered data structure internal to each robot r , br = {rrn1 , . . . , srnk }
that consists of all k of its current bids.When new bids aremade, they are appended
to the end of the bundle, thus the order in the bundle reflects the relative age of
each bid and thus the dependency structure of the bids.

• The global bid space is an unordered set of bids, defined asA = {sr1n1 , . . . , srm nm },
which contains a globally consistent set of the current winning bids over the team.
In the decentralized decision framework, this information is not available to the
robots. In actual implementation of CBBA, this entity is not explicitly computed,
but this concept is useful to analyze the properties of the algorithm. The procedure
of constructing a global bid space (for generalization of CBBA) is given in the
authors’ recent work [3, 4]

Potential Game-Theoretic Analysis of a Market-Based … 213

• A local bid space Ar is defined as a set that contains robot r ’s current local
understanding of the global bid space, i.e., local view on the winning robot-task
pairs and the corresponding score value. In a fully connected network, Ar = A
after each consensus phase, but in general, the geometry of agents in the network
may lead to information propagation latencies and thus non-identical local bid
spaces.

The bidding score srn is determined by the marginal reward for robot r would
obtain from the task n, if the task is added to the robots current bundle (i.e., the list
of tasks that have been committed by robot r):

srn[br] = Sr [br⊕end] − Sr [br] (3)

where Sr [br] is the total reward robot r would obtain by performing all the tasks
in br , and the binary operator A ⊕end B denotes appending the entity B at the end
of the list A.3 In the context of robot task planning, the task order in a bundle
is not necessarily identical to the (temporal) order of task execution. The order
represents the dependency structure in the calculation of marginal scores rather than
temporal/spatial precedence.

Assumption 2 (Diminishing Marginal Gain) One key assumption in CBBA is that:

srn[br] ≥ srn[br ⊕end b] (4)

for any ordered list of tasks b. This condition was referred to as diminishing marginal
gain (DMG) condition in [2], and is the key assumption for proof of convergence
and the performance guarantee of CBBA.

The bundle building phase of CBBA, which is run independently for each robot,
is summarized in Algorithm1. In this phase, each robot sequentially add bids to the
bundle, by first choosing a candidate task in a greedy manner, and then checking if
it can outperform other robots on the task based on its current local bid space Ar .

After the bundle building phase completes, each robot r synchronously shares its
current local bid space Ai with each of its adjacent neighbors. This local bid space,
in combination with time-stamp information, is then passed through some decision
table (see [2], Table1 for details) that provides all of the conflict resolution logic to
merge local bid spaces. In general, the consensus logic prefers larger andmore recent
bids. If the consensus phase has occurredmore than twice the network diameter times
without any bids changing, the algorithm has converged and terminates; if not, each
agent re-enters the bundle building phase and the algorithm continues.

3Notice the notational difference in the meaning of srn(A) and srn[B]. The formal indicates the
marginal reward of n with the total assignment of A including n, while the second indicates the
marginal reward of n when committed on B, which excludes n.

214 H.-L. Choi et al.

Algorithm 1 CBBA: Bundle Building Phase
(for robot r)
1: procedure Build Bundle(Ar)
2: for all k such that srnk ∈ Ar do
3: Ar = Ar \ srnk

4: end for
5: set br = ∅
6: while |br | < L do
7: for all n ∈ {1, . . . , N } \ bi do
8: srn = srn[br],
9: hrn = I(srn > sr ′n), ∀sr ′n ∈ Ar
10: end for
11: n� = argmaxn srn · hrn
12: Srn� = 〈i, j�, srn� 〉
13: if srn� > 0 then
14: br = br ⊕ Srn�

15: else
16: break
17: end if
18: end while
19: end procedure

2.2.1 Properties of CBBA

Theorem 2 (Theorem1 in [2])With the DMG satisfying scoring functions, the CBBA
process over a static communication network with diameter D satisfies:

• CBBA produces the same solution as the sequential greedy algorithm with all the
local bid spaces are the same over the network.

• The convergence time is bounded above by min{N , L|R|} · D.

Theorem 3 (Theorem2 in [2]) Assuming the agents have accurate knowledge of the
situational awareness, CBBA guarantees 50% optimality for the multi-assignment
problem with diminishing marginal gain scoring schemes.

Remark 1 Although the notion of “diminishing marginal gain” is defined with the
concept of bundle, which is a ordered list of tasks a certain robot is assigned to,
with some repeatable mechanism of bundle construction rules, the same notion can
be defined and described for the unordered set functions. Then, this DMG notion
is equivalent to the concept of submodularity that has been investigated in many
contexts including the distributed welfare game submodularity.

Potential Game-Theoretic Analysis of a Market-Based … 215

3 Multi-assignment Task Allocation as Distributed Welfare
Game

3.1 Resource Allocation Formulation

It should be noted that the formulation in (P) that assigns a set of tasks to a robot
can be viewed as allocation of sharable resources, i.e., robots, to multiple agents that
want to be serviced, i.e., tasks. In this sharing process, agent n obtains some portion
of total resource, if it takes resource r . Let define anr ∈ {0, 1} be one if agent n takes
resource r and zero otherwise, and wnr be the portion of resource r allotted to agent
n. Also, each resource can be allotted to at most L agents, and one agent cannot
utilize multiple resources. Then, the resource allocation problem to maximize the
total resource utilization can be written as:

max
anr

∑

r∈R

∑

n∈N
wnr (ar)anr

∑

r∈R
anr = 1

∑

k∈N
anr ≤ L

anr ∈ {0, 1} ∀(n, r) ∈ N × R

(DP)

where ar = {anr , n ∈ N }. Note that with

anr = xrn, wnr = srn,

the resource allocation formulation in (DP) is identical to the original multi-
assignment task allocation in (P).

3.2 Interpretation as Distributed Welfare Game

For the resource allocation in (DP), the welfare from each resource r can be
defined xsas:

Wr (ar) =
∑

n∈ar

wnr =
∑

n∈N
wnr anr , (5)

where ar = {n ∈ N : anr = 1}. Then, the total welfare can be expressed the sum of
the welfare from individual resources:

W (a) =
∑

r∈R
Wr (ar) (6)

where a = (a1, . . . , aN) with an ∈ R being the action of agent n.

216 H.-L. Choi et al.

Notice that for the multi-assignment task allocation problem considered in this
paper, each agent can utilize only one resource and thus the domain of agent action
is the set of resources (as opposed to the power set ofR. The local utility of agent n
can be defined as:

Ui (an, a−n) = fr (n, ar), (7)

with some protocol fr at resource r . Different types of protocols can defined for the
welfare function (5), but the natural choice from the original definition of the task
allocation problem is to conform the protocol to the marginal reward defined for the
allocation problem:

fr (n, ar) = wnr (ar) = srn(xr). (8)

It should be noted that the protocol in (8) is by construction budget-balanced in the
sense that: ∑

n∈ar

fr (n, ar) = Wr (ar). (9)

Therefore, the resource allocation problem in (DP) can be interpreted as a distributed
welfare gamewith the welfare functions in (6), the local utility in (7), and the budget-
balanced distribution protocol in (8).

As described in the original formulation in (P), the score value snr is defined
as the marginal reward the robot would get by performing task n. The notional of
“marginal” inherits some notion of dependency structure. As discussed in Sect. 1.2,
this dependency structure is closely related to the notion of ordered protocol in the
distributed welfare game. In other words, the marginal reward can be expressed as:

srn(ar) = Wr (Ni (pr , ar)) − Wr (Ni (pr , ar \ {n})). (10)

4 CBBA as Dynamic Ordered Protocol

First notice that the bid calculation in (3) in the bundle building phase of CBBA can
be regarded as the computation of the marginal reward with some ordering protocol
as the bids are computed with a recursive structure.

For example, for bundle br , we can straightforwardly define the ordering such
that

pbri
r = i, ∀i ≤ |br |. (11)

In other words, the task (or agent) located at i-th position in robot r ’s bundle takes the
order i . This (simple-looking) ordering is valid, because the CBBA bundle building
phase appends a new task at the end of the current bundle, conforming the dependency
structure between the task scores. The order of the tasks that are not in br can be
defined some distinctive indexing between |br | + 1 and N .

Potential Game-Theoretic Analysis of a Market-Based … 217

The ordering is not invariant throughout the CBBA process, because via the plan
consensus phase, robots may change/update their local bid spaces. If a robot drops a
task from its bundle by realizing that there exists a better robot that can service the
task, then it drops all the bids added later than this outbid bid; the original ordering
structure is no longer valid and start adding new task at the dropped task. Although
the ordering protocol is varying over the iteration, in the end CBBA converges and
no changes are made on each robot’s bid space (and on the bundle).

4.1 Sequential Greedy Solution Equivalence

One way to prove the equivalence of the CBBA process to the distributed welfare
game with the dynamic ordered protocol is to first take advantage of the convergence
proof of the CBBA to the centralized sequential greedy solution. In other words,
by showing that the centralized greedy selection process can be interpreted as a
legitimate dynamic ordered protocol, we can indirectly prove the equivalence of the
CBBA to the DWG. More direct way that constructs the global bid space directly in
the procedure of the CBBA is given in the next section.

To recollect the equivalence of the CBBA solution and the sequential greedy
solution, [2] proved that with the score functions with diminishing marginal gain,
equivalently submodular reward function, the CBBA converges to a solution that is
identical to the sequential greedy solution obtained by Algorithm2.

Algorithm 2 Sequential greedy algorithm [2]
1: R1 = R, N1 = N
2: ηi = 0, ∀i ∈ I
3: s(1)

rn = srn[{∅}], ∀(r, n) ∈ R × N
4: for m = 1 to min{|N |, L|R| do
5: (r�

m , n�
m) = argmax(r,n)∈R×N s(m)

rn
6: ηr�

m
= ηr�

m
+ 1

7: Nm+1 = Nm \ {n�
m}

8: b(m)
r�

m
= b(m−1)

r�
m

⊕end {n�
m}

9: b(m)
r = b(m−1)

r , ∀r �= r�
m

10: if ηr�
m

= L then
11: Rm+1 = Rm \ {r�

m}
12: s(m+1)

r�
m ,n = 0,∀n ∈ N

13: else
14: Rm+1 = Rm
15: end if
16: s(m+1)

r,n�
m

= 0, ∀r ∈ Rm+1

17: s(m+1)
rn = ci j [b(m)

r], ∀(r, n) ∈ Rm+1 × Nm+1
18: end for

218 H.-L. Choi et al.

Lemma 1 (Adapted from Lemma 2 in [2]) The CBBA process with synchronized
consensus phase over a static network of diameter D, every agent agrees on the first
k SGA assignments by iteration k D. In other words, defining the set of bids consisting
of these SGA assignments:

ASG
k = {〈r �

m, n�
m, s(m)

r�
m ,n�

m
〉, m ≤ k},

then, the global bid space contains this SGA bids:

ASG
k ⊆ A(k D),

so does every robot’s local bid space:

ASG
k ⊆ Ar (k D), ∀r ∈ R.

Consider a dynamic ordered protocol alignedwith the sequential greedy recursion.
In other words, the state transition of the dynamic ordered protocol occurs every
iteration of the SGA procedure. At iteration m, robot r ’s bundle is b(m)

r ; consider its
bundle at the next SGA iteration (equivalently next stage of the distributed welfare
game). Depending on the winning robot of the (m + 1)-th SGA robot-task pair, there
could be two cases:

b(m+1)
r =

{
b(m)

r if r �
m+1 �= r

b(m)
r ⊕end 〈r, n�

m+1, sr,n�
m+1

〉 if r �
m+1 = r

(12)

as the SGA bundle does not delete the task already included. Since the score update
rules in lines 12, 16, and 17 allow for adding a task that gives the largestmarginal score
(conditioned on the previously selected tasks), the following protocol can naturally
be defined for this SGA procedure.

pbri
r (m) =

{
i if i ≤ |b(m)

r |
|br | + idx(1, |N | − |br |) if i > |b(m)

r | (13)

where idx(m1, m2) ∈ {m1, . . . , m2} denotes a consistent assignment of indices
between m1 and m2. Notice that for the tasks allocated to robot r at both m and
(m + 1)-th iteration, the ordering is invariant; thus, the relative ordering require-
ment in C1 in Sect. 2.1.1 is satisfied. Also, for newly added tasks the above protocol
provides a valid deterministic ordering. Thus, the second requirement in C2 is also
satisfied. Therefore, the SGA selection procedure is equivalent to a distributed wel-
fare game with the dynamic protocol in (13).

Claim 1 There exists a distributedwelfare gamewith valid dynamic ordered protocol
that is equivalent to the sequential greedy algorithm.

Potential Game-Theoretic Analysis of a Market-Based … 219

4.2 Properties

Thus, at converged CBBA solution, there is one agreed upon ordering structure
agreed upon over the network. This allows for proving that the CBBA solution is a
pure strategy Nash equilibrium of a state-based potential game with a certain ordered
protocol.

Lemma 2 The CBBA solution with submodular reward function is a pure strat-
egy Nash equilibrium of the distributed welfare game defined in Sect.3.2 with the
following converged ordered protocol:

p
b�

ri
r =

{
i if i ≤ |b�

r |
|br | + idx(1, |N | − |b�

r |) if i > |b�
r |

(14)

where b�
r denotes the bundle of robot r for the converged CBBA solution.

Proof It suffices to show that assignment of a task k to another robot always decreases
marginal reward of the task under the ordering (14). Suppose that task n is assigned
to robot r and the (r, n) robot-task pair is the kth sequential greedy solution. By
construction, it is true that

srn[b(k−1)
r] ≥ sr ′n[b(k−1)

r ′], r ′ ∈ R,

because otherwise r ′ must have allocated to task n. From the submodularity

sr ′n[b(k−1)
r ′] ≥ sr ′k[b(k−1)

r ′ ∪ {b}], r ′ ∈ R.

for any bundle (i.e., list of bids) b. If the ordering upto k is fixed, the incumbent
ordering provides the largest marginal reward for the task n. By the definition of
unilateral variation, tasks other than n are assigned to the original robots, which
means that tasks from the 1st through k − 1th solution are still assigned to the same
robots. Under the same ordering, assignment of n other agent always decreases the
total reward.

Theorem 4 The CBBA solution guarantees the price of anarchy of 1/2 and the price
of stability of 1. In other words,

min
CBBA
OPT

= 1

2
, max

CBBA
OPT

= 1,

where CBBA and OPT denote the total welfare by the CBBA solution and the optimal
solution, respectively. This not only means that the optimality of CBBA is bounded
below and above but also means that those bounds are attainable.

Proof The proof is straightforward by noting that the CBBA solution is a pure strat-
egy Nash equilibrium (Lemma2) and the CBBA process can be interpreted as a valid
dynamic ordered protocol (Claim1).

220 H.-L. Choi et al.

5 Conclusions

Agame-theoretic reformulation of the multi-assignment task allocation problemwas
presented, in which the game players are the set of tasks (rather than the robots) and
the solution properties of a distributed greedy assignment algorithm, specifically the
consensus-based bundle algorithm, were analyzed. The analysis has proved that the
converged solution from the algorithm is a Nash equilibrium with price of anarchy
1/2 and price of stability 1. Futureworkwill investigate an algorithm advancement on
the decentralized greedy selection process to develop a procedure to incrementally
converges to the optimal solution.

Acknowledgments This work was supported in part by the Agency for Defense Development
(Contract # UE123026JD) and in part by the KI project through KAIST Institute of Design of
Complex Systems.

References

1. Arslan, G., Marden, J.R., Shamma, J.S.: Autonomous vehicle-target assignment: a game the-
oretical formulation. ASME J. Dyn. Syst. Measur. Control 129(5), 584–596 (2007)

2. Choi, H.L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task
allocation. IEEE Trans. Robot. 25(4), 912–926 (2009). doi:10.1109/TRO.2009.2022423

3. Johnson, L., Choi, H.L., How, J.P.: Using non-submodular score functions in decentralized task
allocation. IEEE Trans. Robot. (submitted)

4. Johnson, L.B., Choi, H.L., How., J.P.: Convergence analysis of the hybrid information and plan
consensus algorithm. In: American Control Conference (ACC) (2014)

5. Johnson, L.B., Choi, H.L., Ponda, S.S., How., J.P.: Allowing non-submodular score functions
in distributed task allocation. In: IEEE Conference on Decision and Control (CDC) (2012)

6. Marden, J.R.: State based potential games. Automatica 48(12), 3075–3088 (2012)
7. Marden, J.R., Arslan, G., Shamma, J.: Cooperative control and potential games. IEEE Trans.

Syst. Man Cybern. Part B Cybern. 39(6), 1393–1407 (2009)
8. Marden, J.R., Arslan, G., Shamma, J.: Joint strategy fictitious play with inertia for potential

games. IEEE Trans. Autom. Control 54(2), 208–220 (2013)
9. Marden, J.R., Wierman, A.: Distributed welfare games. Oper. Res. 61(1), 155–168 (2013)
10. Marden, J.R.,Wierman,A.:Overcoming the limitations of utility design formultiagent systems.

IEEE Trans. Autom. Control 58(6), 1402–1415 (2013)
11. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)
12. Rosenthal, R.: The network equilibrium problem in integers. Networks 3(1), 53–59 (1973)

http://dx.doi.org/10.1109/TRO.2009.2022423

The Hybrid Information and Plan Consensus
Algorithm with Imperfect Situational
Awareness

Luke Johnson, Han-Lim Choi and Jonathan P. How

Abstract This paper presents an extension to the Hybrid Information and Plan Con-
sensus Algorithm (HIPC) that accounts for imperfect situational awareness (SA).
This algorithm uses implicit coordination to plan for a subset of the team on-board
each agent, then uses plan consensus to satisfy assignment constraints. By combining
the ideas of implicit coordination and local plan consensus, the algorithm empirically
reduces the convergence time for distributed task allocation problems. The contribu-
tion of this work is that it extends previous results to account for the likely possibility
of imperfect situational awareness across the team. This is accomplished by tracking
when predictions are incorrect and removing offending predictions if they are hin-
dering algorithmic convergence. Empirical results are provided to demonstrate that
this new approach allows the use of inconsistent situational awareness to improve
convergence speed.

Keywords Task allocation · Distributed planning · Multi-agent systems

1 Introduction

The goal of standard multi-agent task allocation algorithms [1, 2] is to coordinate
a team of cooperative agents to achieve an overall mission objective. These mis-
sion objectives can often be broken up into tasks that require agents to visit certain
locations or regions, all while minimizing some resource usage (i.e. fuel, power,
etc.) Centralized solutions are typically preferred when an application requires high
levels of collaboration. However, in contested environments where communications

L. Johnson (B) · J.P. How
Department of Aeronautics and Astronautics, MIT, Cambridge, MA, USA
e-mail: lbj16@mit.edu

J.P. How
e-mail: jhow@mit.edu

H.-L. Choi
Division of Aerospace Engineering, KAIST, Yuseon, Daejeon, Korea
e-mail: hanlimc@kaist.ac.kr

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_16

221

222 L. Johnson et al.

may be unavailable, unreliable, have high latency, or high cost, relying on centralized
solutions can be impractical. In these communication limited environments, it is nec-
essary to consider distributed or decentralized algorithms [3]. Unfortunately, using
distributed or decentralized algorithms usually introduces additional complications,
including difficulties establishing both algorithmic convergence and performance.
The major reason for these complications is that in decentralized environments,
agents may operate on only partial information, and thus independent agent opti-
mizations may not align perfectly with each another. To correct for this misalign-
ment, advanced communication protocols are typically required for decentralized
algorithms. These communication protocols can utilize two different information
assumptions: global information consistency and local information consistency.

1. Global information consistency assumptions require that all agents agree upon
certain relevant pieces of information during the task allocation algorithm’s exe-
cution. This agreement forms a set of “correct” information that agents can
independently recognize as team-wide truth. Given that these global informa-
tion consistency assumptions require recognizing information across the entire
team, reaching information consistency happens on a global communication time
scale. Algorithms that utilize these assumptions can be found in Refs. [4–23].

2. Local information consistency assumptions do not require global consistency
of any information, however, it is still assumed that information will propagate
to the entire team eventually (just not by any particular time.) Only requiring
local information consistency can provide a much shorter time-scale for utilizing
new information (than global information consistency), because agents are not
required to ensure that this information has propagated to the entire team before
using it. The natural downside of this is that agents cannot guarantee any piece of
information is globally consistent and thus algorithms utilizing these assumptions
must take this into account during the planning process [24–27].

Additionally, the type of information communicated in task allocation algorithms
can traditionally be divided into two different paradigms: (1) implicit coordination [5,
7, 28], and (2) plan consensus [17, 18, 24–27, 29, 30]. Implicit coordination task
allocation algorithms require that all agents in a multi-agent team come to consen-
sus on all parameters that would be relevant to solving the planning problem (this
set of information will be called situational awareness). The consensus process then
provides each agent the independent capability to compute the full team-wide assign-
ment. Implicit coordination requires global information consistency assumptions to
guarantee a consistent view of world for all agents. In fact, when agents do not have a
consistent view of the world, (i.e. under local information consistency assumptions)
it is possible to experience an arbitrarily large performance gap.

In plan consensus [17, 18, 22–27, 29, 30], all agents are allowed different views
of the world, but communication is explicitly used to enforce consistency of the
allocation assignments. This paradigm works well when agents are specialized (in
location or capability,) such that assignment conflicts are minimized. Plan consensus
algorithms can be specialized to operate either with global information consistency

The Hybrid Information and Plan Consensus Algorithm … 223

assumptions such as in [17, 18, 22, 23] orwith local information consistency assump-
tions [24–27].

The insight used in this paper is that the two paradigms can have complementary
advantages if care is taken to properly integrate them. With implicit coordination,
agents may plan in what are effectively locally centralized teams to provide highly
coupled allocations. Conversely, plan consensus can be used to enforce assignment
constraints that may have been violated due to mismatches in the situational aware-
ness across the team. Combining algorithms in each paradigm is a complex endeavor
because the integration requires that each paradigm know exactly what the others
provide. A naive combination of these paradigms in the best case may lead to an
inefficient use of computation and communication resources and, in the worst case,
can lead to arbitrarily bad task allocations. Previous work [31, 32] developed an
algorithm called the hybrid information and plan consensus (HIPC) algorithm which
used local information consistency assumptions to provide provable performance and
convergence guarantees if individual agents obtained perfect situational awareness
over subsets of the team. This work extends the previous work to incorporate imper-
fect situational awareness in the planning problem, providing a non-trivial extension
of previous work that involves adding algorithmic mechanisms to detect when using
incorrect information is actually reducing planner performance.

2 Problem Statement

This section presents the general problem statement and formalizes the class of
problems being solved by HIPC. Given a set of Na agents and Nt tasks, the goal
of the task allocation algorithm is to find an assignment of tasks to agents that
maximizes the global reward. The global objective function for the mission is given
by a sum over local objective functions for each agent, while each local reward is
determined as a function of the tasks assigned to that agent, and the times at which
those tasks will be serviced. This task assignment problem can be written as the
following mixed-integer (possibly nonlinear) program:

max
x,τ

Na∑

i=1

Nt∑

j=1

Fi j (x, τ) xi j (1)

s.t. H(x, τ) ≤ d

x ∈ {0, 1}Na×Nt , τ ∈ {R+ ∪ ∅}Na×Nt

where x ∈ {0, 1}Na×Nt , is a set of Na × Nt binary decision variables, xi j , which are
used to indicate whether or not task j is assigned to agent i ; τ ∈ {R+ ∪ ∅}Na×Nt

is the set of real-positive decision variables τi j indicating when agent i will ser-
vice its assigned task j (where τi j = ∅ if task j is not assigned to agent i); Fi j is
the score function for agent i servicing task j given the overall assignment; and
H = [

h1 . . . hNc

]T
, with d = [

d1 . . . dNc

]T
, define a set of Nc possibly nonlinear

224 L. Johnson et al.

constraints of the form hk(x, τ) ≤ dk that capture transition dynamics, resource lim-
itations, etc. This problem formulation can accommodate most design objectives
and constraints used in multi-agent decision making problems (e.g. search and sur-
veillance missions where Fi j represents the value of acquired information and the
constraintshk capture fuel limitations and/or no-fly zones, or rescue operationswhere
Fi j is time-critical favoring earlier τi j execution times, etc.). An important observa-
tion is that, in Eq. (1), the scoring and constraint functions explicitly depend on the
decision variables x and τ , which makes this general mixed-integer programming
problem (NP-hard) [33].

The algorithms used in this paper solve distributed greedy multi-agent multi-
assignment problems. For each agent, these problems take a similar form to Eq. (1),
except individual agents independently create assignments for themselves, and then
iterate with others using a consensus algorithm to produce a final team-wide assign-
ment. The details of this process will be explored throughout the rest of this paper.

3 HIPC Overview

The Hybrid Information and Plan Consensus (HIPC) algorithm is a distributed algo-
rithm that provides task assignments for multi-agent, multi-task allocation problems.
The algorithmic structure ofHIPC is an iterative, 2 phase algorithm.These twophases
are: a local bid space creation phasewhere each agent generates a personal allocation
of tasks (possibly using situational awareness of other agents in the team), and a task
consensus phase where conflicting assignments are identified and resolved through
local communication between adjacent agents. These two phases are repeated until
the algorithm converges. To further explain the relevant details of the algorithm,
some notation will be formalized.

3.1 HIPC Notation

Bid A bid is represented as a triple: si j = 〈i, j, c〉, where i is the bidding agent’s
index, j is the bid’s task id, and c represents the bid score.

Bundle A bundle is an ordered data structure internal to each agent i , bi =
{si j1 , . . . , si jn } that consists of all n of its current bids. When new bids are made,
they are appended to the end of the bundle, thus the order in the bundle reflects
the relative age of each bid and thus the dependency structure of the bids, where
later bids scored depend on the assignment of all earlier bids in the bundle.

Bid Space The bid space is an unordered set of bids, defined as

A = {si1 j1 , . . . , siN jN },

where N is the index of the last element in the bid space. This set contains a
globally consistent set of the current winning bids in the fleet.

The Hybrid Information and Plan Consensus Algorithm … 225

Algorithm 1 HIPC for each agent i

1: procedure HIPC(A0
i ,J ,Ni)

2: set Ai = A0
i , A′

i = A0
i

3: i terationNumber = 1
4: while convergenceCounter < 2D do
5: (Ai ,Ni) = CreateHIPCAssignment(A′

i ,Ni)

6: A′
i = Consensus Phase(A′

i ,Ai)

7: if A′
i = Ai then

8: convergenceCounter = convergenceCounter + 1
9: else
10: convergenceCounter = 0
11: end if
12: i terationNumber = i terationNumber + 1
13: end while
14: end procedure

Local Bid Space A local bid space Ai is defined as a set that contains agent i’s
current local understanding of the global bid space. In a fully connected network,
Ai = A after each communication phase, but in general, the geometry of agents in
the network may lead to information propagation latencies and thus non-identical
local bid spaces.

Network Diameter The network diameter, D, is defined as the communication
distance between the furthest agents in the communication network. More for-
mally, define the communication distance between any pair of agents i and i ′ to
be Di→i ′ . Define D = maxi,i ′ Di→i ′ to be the maximum communication distance
over all agent pairs i and i ′.

Neighborhood The neighborhood, Ni , of an agent i is defined as the set of agents
that agent i has situational awareness over. Similarly an agent i’s exact neighbor-
hood N̄i is the set of agents that agent i has perfect situational awareness over.
By definition, an agent’s perfect neighborhood always includes itself (i ∈ N̄i)
and an agent’s perfect neighborhood is always a subset of its full neighborhood
(N̄i ⊆ Ni). If an agent i ′ ∈ Ni , then agent i expects that it can predict the objec-
tive values for agent i ′. This does not mean that their task allocations will be
trivially identical even when perfect information is known because neither their
neighborhoods (Ni �= Ni ′) nor their local bid spaces (Ai �= Ai ′) will be identical
in general.

3.2 HIPC Algorithmic Description

The high level HIPC algorithmic description is given in Algorithm1.

1. HIPC is a procedure run on-board each agent independently. HIPC is initialized
with an initial bid space A0

i , an available task set J , and a set of agents Ni that

226 L. Johnson et al.

Algorithm 2 Creating the HIPC Assignment i
1: procedure CreateHIPCAssignment(A′

i ,Ni)
2: N̂i ← ∅
3: while N̂i �= Ni do
4: N̂i ← Ni
5: Âi ← A′

i

6: for all si ′ j ∈ Âi s.t. i ′ ∈ N̄i do
7: Âi ← Âi /∈ si ′ j
8: end for
9: Âi ← T AA(Âi ,Ni)

10: N̂i = CheckSAConsistency(Âi ,A′
i ,Ni)

11: end while
12: Return (Âi , N̂i)

13: end procedure

each agent i has situational awareness over (Line 1). Note that Ni will contain a
set of agents N̄i that agent i knowingly has perfect situational awareness over.

2. Before each bid space construction operation, each agent checks for convergence.
If Ai hasn’t changed for two times the network diameter (2D) number of itera-
tions, then the algorithm has converged (Line 4).

3. The algorithm calls the CreateHIPCAssignment subroutine. The objective
of this function is to take in the current local bid space A′

i and the neighborhood
set Ni and compute an updated local bid space Ai and potentially an updated
neighborhood set Ni (Line 5). The neighborhood set would only be updated
if agent i decided that planning for some agent i ′ was hindering algorithmic
performance and it dropped i ′ from Ni . The exact details of this subroutine are
outlined in Algorithm2.

4. The next algorithmic step involves running the consensus phase where each agent
i , shares its personal bundlebi with its network neighbors (Line 6). This consensus
phase can be implemented identically to the one proposed in [26]. (If the network
is static, other consensus protocols exist where each agent only needs to share the
changes to bi reducing overall communication. If the communication network is
non-static during plan construction, the full bi will need to be shared to retain the
worst convergence bounds.)

5. The algorithmic convergence condition is checked (Line 7), if it is true then the
convergenceCounter is incremented by one (Line 8), if not convergence −
Counter is reset to zero (Line 10).

6. Lastly the iteration counter is incremented (Line 12) and the algorithm returns to
Line 4.

3.2.1 Creating the HIPC Assignment

The following section describes Algorithm2 which dictates how the local bid space
A and the neighborhood Ni are incrementally updated inside the HIPC algorithm.

The Hybrid Information and Plan Consensus Algorithm … 227

Algorithm 3 Checking SA consistency with assignments i
1: procedure CheckSAconsistency(Ai ,A′

i ,Ni)
2: for all i ′ ∈ Ni \ N̄i do
3: s̄i ′ j = max(si ′ j) s.t. si ′ j ∈ Ai , si ′ j /∈ A′

i
4: γ ← 〈·, s̄i ′ j 〉
5: if γ ∈ Γi ′ then
6: if z + Di→i ′ + Di ′→i < i terationNumber then
7: Ni ← Ni \ i ′
8: continue
9: end if
10: else
11: Γi ′ = Γi ′ ∪ 〈i terationNumber, s̄i ′ j 〉
12: end if
13: end for
14: Return (Ni)

15: end procedure

1. The procedure takes in the output from consensus at the previous iterationA′
i and

the current neighborhood set Ni (Line 1).
2. The first time the algorithm reaches N̂i �= Ni , (Line 3), the while loop will triv-

ially return true (|Ni | ≥ 1). Each subsequent time through (Line 3) checks if the
neighborhood set has changed, when it hasn’t, the procedure returns.

3. Drop all tasks from the local bid space Âi that belong to agents in known perfect
situational awareness set N̄i (Lines 6–8).

4. Use the TAA to compute an updated local bid space, Âi . New bids are computed
locally for every agent in the neighborhood setNi (Line 9). The default behavior
inside of the TAA function is that agents cannot remove any bids that they have
already committed to, they can only bid on unassigned tasks, or outbid a current
winner of a task. Note that all bids made by agents in N̄i are removed before
entering TAA, so the bundles for these agents are built up from scratch.

5. Update neighborhood set N̂i from the output of CheckSAConsistency (Line
10).

6. Return new local bid space Âi and new neighborhood set N̂i (Line 12).

3.2.2 Checking Situational Awareness Consistency

The following section describes Algorithm3 which describes how agents i ′ are
removed from agent i’s neighborhood Ni .

1. The procedure takes in the new predicted bid spaceAi the output from consensus
at the previous iteration A′

i and the current neighborhood set Ni (Line 1).
2. Iterate over all agents that i has imperfect SA over (Line 2).
3. Find the max bid predicted for agent i ′ that is in the new bid space Ai but not in

the old one A′
i (Line 3)

228 L. Johnson et al.

4. Check if this bid is in agent i’s previous overbid list for agent i ′, defined as Γi ′

(Line 5). Γi ′ consists of pairs 〈zs̄i ′ j
, s̄i ′ j 〉 where zs̄i ′ j

is the iteration number where
s̄i ′ j was added to Γi ′ .

5. Check if the pair 〈zs̄i ′ j
, s̄i ′ j 〉 has been in the previous overbid list for longer than

a communication loop to the agent being planned for (Di→i ′ + Di ′→i) (Line 6),
and if the predicted bid has been in local bid space too long remove i ′ from Ni

(Line 7) and continue checking other agents (Line 8).
6. If overbid is new, construct a pair of iterationNumber and bid s̄i ′ j and add to Γi ′

(Line 11).
7. Return updated neighborhood Ni (Line 14).

3.2.3 Task Assignment Algorithm (TAA)

This implementation of HIPC can utilize any centralized task allocation algorithms
with a few required features (Line 9 from Algorithm2).

• Bids on separate tasks must follow a bundle structure. Specifically, this means that
bids are created in an ordered way, where the value of each bid is based on acyclic
dependencies. In CBBA, bundles are constructed as ordered lists, where bids at
later places in the list are dependent on the assignment of every previous task in
the list. This can be implemented with a generalized score function by value of the
most recent bid must be the incremental value of adding it to the overall collection
of personal tasks.

• The value of tasks shared with other agents is monotonically decreasing with
respect to their dependency structure. i.e. if a bid s1 is dependent on a bid s2, then
c1 ≤ c2. This can also accommodate arbitrary score functions by using a process
called Bid Warping described in [29].

• Agents cannot remove any bids that they have already committed too inside of the
TAA, they can only bid on unassigned tasks, or outbid a current winner of a task.

The implementation of HIPC in this paper uses a centralized implementation of
CBBA [26], but this is not required and may not be desired for some objective
functions.

3.3 Convergence and Performance Insights

Due to space limitations the full convergence and performance proofs are not pro-
vided in this paper. Instead the key ideas of the proofs will be provided below with
their main result. The full convergence result is only a slight modification of the
result published in [32].

Theorem 1 HIPC converges in at most 2Nt (Na + 1)D iterations, where Nt is the
number of available tasks, and Na is the number of agents in the team.

The Hybrid Information and Plan Consensus Algorithm … 229

Proof Roughly, each agent can only mispredict the next task to be locked in, (see
[32] for a precise definition of this) for 2D iterations. This misprediction can cycle
through every agent for a maximum of 2NaD number of iterations. At this point,
the next task to be locked in will be bid on by its winning agent and this will take
2D iterations to propagate for a total of 2(Na + 1)D iterations to lock in each task.
However, every agent now has reduced the cardinality of their neighborhood set N
by 1. The full allocation will then be realized in at most 2Nt (Na + 1)D iterations.

This bound will not be tight unless Nt = 1 andwould require an incredibly malicious
set of circumstances to realize because every single prediction that each agent makes
will need to give the worst possible answer (in a convergence sense). If the SA is
really this bad, each neighborhood will end up containing only the agents’ self and
all subsequent replanning iterations will be purely plan consensus. Additionally if
Nt � Na (which is normally true) the convergence bound becomes ≈2NtD, the
perfect SA worst case bound.

Theorem 2 HIPC with imperfect situational awareness will converge to the same
solution as a centralized TAA

Proof This result follows closely with the convergence proof. The winning bids that
a centralized TAA algorithm would return are sequentially locked in (again see [32]
for a precise definition of this) in order of largest score using exactly the same logic
as the convergence proof.

4 Experimental Results

To validate the claimed results in this paper two Monte Carlo experiments were run
to demonstrate expected performance. The environments were created in a room
resembling the physical flight volume at the Aerospace Controls Lab as can be seen
in Fig. 1. In the Monte Carlo experiments run for this paper, both agents and tasks
were randomly placed in the room according to a uniform distribution over the open
space.

The first Monte Carlo experiment was run where situational awareness was per-
fectly known for a subset of the fleet. The scenario run in Fig. 2 was with 5 agents
and a varying number of tasks for 100 Monte Carlo iterations where the number
of iterations are averaged over all of the runs. The parameter “HIPC size” refers to
the number of other agents that each agent has perfect situational awareness over
(i.e. HIPC size: (|N̄i | − 1),∀i). In this figure a dramatic reduction of convergence
iterations can be seen as the HIPC size increases. The blue line in this figure, corre-
sponding to HIPC size: 0 is the result that pure plan consensus would give (exactly
the CBBA solution [26]). The magenta line in the figure, corresponding to HIPC
size: 4 would be the global implicit coordination solution. All the space between
these two lines consist of hybrid solutions. In the experiment the HIPC size was kept

230 L. Johnson et al.

Fig. 1 Figure shows an
example of what the
planning environment and
solution would look like for
a random example with 10
agents and 100 tasks. The
small colored circles in the
figure represent the agents
initial locations, the x’s are
the task locations and the
colored line segments
represent the winning agent’s
estimated trajectory to
service its winning bids

Fig. 2 Figure shows the
reduction in convergence
iterations introduced by
when perfect situational
awareness is provided to
HIPC. This example is a 5
agent scenario run on a
varying number of tasks.
HIPC size refers to the
number of other agents each
agent knowingly has perfect
SA over (corresponding to
(|N̄i | − 1)

consistent for all agents, but recall this does not need to be true in practice. The HIPC
size can even be asymmetric between agents planning for each other.

The second Monte Carlo experiment highlights the contribution of this paper
specifically. The results of this experiment are shown in Fig. 3. This experiment was
run on 7 agents with 45 tasks for 300 Monte Carlo iterations where the number of
iterations is averaged over all runs. Again in this graphHIPC size refers to the number
of other agents each agent is planning for (|N̄i | − 1) except in this example situational
awareness is imperfect. The x-axis in this figure is called “Starting Location Error”.
The way that this environment was constructed is at each true location for a given
task, a box was centered at this true task location. The imperfect locations were
constructed by sampling a 2 dimensional uniform distributionwhere the edge lengths
of the sample regionswere “Starting Location Error” times themaximumdimensions
of the arena. If multiple agents i were predicting the same agent i ′, each agent i
had a unique sample for the expected location of agent i ′. As expected, when the

The Hybrid Information and Plan Consensus Algorithm … 231

Fig. 3 Figure shows the
how the convergence rate of
HIPC decays when
situational awareness is
degraded. The example used
in this figure was 7 agents
competing over 45 tasks. The
starting location error refers
to a percentage of the entire
arena over which the initial
location of agents in Ni can
be wrong. HIPC size refers
to the number of other
agents, each agent has partial
situational awareness over
(corresponding to |Ni | − 1)

information is more consistent, planning for more agents reduces the number of
convergence iterations dramatically.

An interesting case to consider is when the HIPC size 1 − 6 lines cross above the
(HIPC size: 0) line. The crossing point for each respective line corresponds to when
the error in information is bad enough such that not considering any extra information
would have led to faster convergence. This increase in average convergence time is
a result of cases where the incorrect SA is leading to bad predictions and the agents
needed to learn to stop planning for those agents. This learning takes more time than
the savings due to predictive capability of other parts of the network. In general,
missions may have a combination of perfect and imperfect situational awareness and
the algorithm would handle this naturally. The convergence speed would be between
the extreme cases. Also worth noting here is that for identical problem statements, all
“HIPC sizes” and “Starting Location Errors” returned the same allocation with the
only difference being the time to convergence. The fact that the solutions converged to
the same score was part of the design of the algorithm and is a positive feature of this
approach. Worth note is that for both experiments a global consistency assumption
planner [22, 23] could be used, and the number of iterations for these planners would
be the number of tasks assigned. This would lead to slower algorithmic convergence
in each of the two experiments considered in this paper.

5 Conclusion

This paper presents an extension to the Hybrid Information and Plan Consensus
Algorithm previously introduced in [31, 32] that accounts for imperfect situational
awareness. This algorithm uses implicit coordination to plan for a subset of the team
on-board each agent, then uses plan consensus to fix conflicts in the assignment

232 L. Johnson et al.

constraints that may arise. By combining these ideas of local plan consensus and
implicit coordination the algorithm empirically reduces the convergence time for
distributed task allocation. The algorithm extends previous results to imperfect situ-
ational awareness by trackingwhen predictions are incorrect and removing offending
predictions if they are hindering algorithmic convergence. Empirical results demon-
strate that this approach allows the use of fairly rough situational awareness to still
improve convergence speed.

Acknowledgments This work was sponsored (in part) by the AFOSR and USAF under grant
(FA9550-11-1-0134). The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Air Force Office of Scientific Research or the U.S. Government.

References

1. Ponda, S.S., Johnson, L.B., Geramifard, A., How, J.P.: Cooperative mission planning forMulti-
UAV teams. In: Handbook of Unmanned Aerial Vehicles. Springer (2012)

2. Gerkey, B.P., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot
systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

3. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Athena Scientific, MA (1997)

4. Dias, M.B., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: a survey and
analysis. Proc. IEEE 94(7), 1257–1270 (2006)

5. McLain, T.M., Beard, R.W.: Coordination variables, coordination functions, and cooperative
timing missions. AIAA J. Guidance Control Dyn. 28(1), 150–161 (2005)

6. Castanon, D.A., Wu, C.: Distributed algorithms for dynamic reassignment. IEEE Conf. Decis.
Control (CDC) 1(9–12), 13–18 (2003)

7. Curtis, J., Murphey, R.: Simultaneous area search and task assignment for a team of cooperative
agents. In: AIAAGuidance, Navigation, and Control Conference (GNC) (2003). (AIAA-2003-
5584)

8. Ren,W., Beard, R.W.,Kingston,D.B.:Multi-agentKalman consensuswith relative uncertainty.
Am. Control Conf. (ACC) 3(8–10), 1865–1870 (2005)

9. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching
topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

10. Alighanbari, M., How, J.P.: An unbiased kalman consensus algorithm. In: American Control
Conference (ACC), pp. 3519–3524.Minneapolis, 14–16 June (2006). http://acl.mit.edu/papers/
ACC06_AlighanbariHow.pdf

11. Moallemi, C.C., Roy, B.V.: Consensus propagation. IEEE Trans. Inf. Theory 52(11), 4753–
4766 (2006)

12. Olshevsky, A., Tsitsiklis, J.N.: Convergence speed in distributed consensus and averaging.
IEEE Conf. Decis. Control (CDC) 3387–3392 (2006)

13. Ren,W., Beard, R.W.,Atkins, E.M.: Information consensus inmultivehicle cooperative control.
IEEE Control Syst. Mag. 27(2), 71–82 (2007)

14. Hatano, Y., Mesbahi, M.: Agreement over random networks. In: 43rd IEEE Conference on
Decision and Control (2004)

15. Wu, C.W.: Synchronization and convergence of linear dynamics in random directed networks.
IEEE Trans. Autom. Control 51(7), 1207–1210 (2006)

16. Tahbaz-Salehi, A., Jadbabaie, A.: On consensus over random networks. In: 44th Annual Aller-
ton Conference (2006)

http://acl.mit.edu/papers/ACC06_AlighanbariHow.pdf
http://acl.mit.edu/papers/ACC06_AlighanbariHow.pdf

The Hybrid Information and Plan Consensus Algorithm … 233

17. Sariel, S., Balch, T.: Real time auction based allocation of tasks for multi-robot exploration
problem in dynamic environments. In: AIAAWorkshop on Integrating Planning Into Schedul-
ing (2005)

18. Ahmed, A., Patel, A., Brown, T., Ham, M., Jang, M., Agha, G.: Task assignment for a physical
agent team via a dynamic forward/reverse auction mechanism. In: International Conference on
Integration of Knowledge Intensive Multi-Agent Systems (2005)

19. Atkinson, M.L.: Results analysis of using free market auctions to distribute control of UAVs.
In: AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit (2004)

20. Lemaire, T., Alami, R., Lacroix, S.: A distributed task allocation scheme in multi-UAV context.
IEEE Int. Conf. Robot. Autom. (ICRA) 4, 3622–3627 (2004)

21. Walsh, W., Wellman, M.: A market protocol for decentralized task allocation. Proc. Int. Conf.
Multi Agent Syst. (1998)

22. Lagoudakis, M.G., Markakis, E., Kempe, D., Keskinocak, P., Kleywegt, A., Koenig, S., Tovey,
C.,Meyerson, A., Jain, S.: Auction-basedmulti-robot routing. In: Proc. Robot. Sci. Syst. (2005)

23. Amstutz, P., Correll, N.,Martinoli, A.: Distributed boundary coveragewith a teamof networked
miniature robots using a robust market-based algorithm. Ann.Math. Artif. Intell. 52(2–4), 307–
333 (2008). http://dx.doi.org/10.1007/s10472-009-9127-8

24. Hoeing, M., Dasgupta, P., Petrov, P., O’Hara, S.: Auction-based multi-robot task allocation in
comstar. In: Proceedings of the 6th International Joint Conference on Autonomous agents and
multiagent systems (2007)

25. Sujit, P.B., Beard, R., Distributed sequential auctions for multiple UAV task allocation. Proc.
Am. Control Conf. (2007)

26. Choi, H.-L., Brunet, L., How, J.P.: Consensus-based decentralized auctions for robust task
allocation. IEEE Trans. Robot. 25(4), 912–926 (2009). http://dx.doi.org/10.1109/TRO.2009.
2022423

27. Marden, J., Wierman, A.: Overcoming the limitations of utility design for multiagent systems.
IEEE Trans. Autom. Control 58(6), 1402–1415 (2013)

28. Shima, T., Rasmussen, S.J., Chandler, P.: UAV team decision and control using efficient col-
laborative estimation. Am. Control Conf. (ACC) 6(8–10), 4107–4112 (2005)

29. Johnson, L.B., Choi, H.L., Ponda, S.S., How, J.P.: Allowing non-submodular score functions
in distributed task allocation. IEEE Conf. Decis. Control (CDC) (2012). http://acl.mit.edu/
papers/cdc_12_cbba_submitted.pdf

30. Johnson, L.B., Ponda, S.S., Choi, H.L., How, J.P.: Improving the efficiency of a decentral-
ized tasking algorithm for UAV teams with asynchronous communications. In: AIAA Guid-
ance, Navigation, and Control Conference (GNC) (2010). http://acl.mit.edu/papers/ACBBA_
GNC10_submitted_07272010.pdf

31. Johnson, L., Choi, H.-L., How, J.P.: Hybrid information and plan consensus in distributed task
allocation. In: AIAA Guidance, Navigation, and Control Conference (GNC) (2013)

32. Johnson, L., Choi, H.-L., How, J.P.: Convergence analysis of the hybrid information and plan
consensus algorithm. In: American Control Conference (ACC), Portland (2014)

33. Bertsimas, D., Weismantel, R.: Optimization Over Integers. Dynamic Ideas Belmont, MA
(2005)

http://dx.doi.org/10.1007/s10472-009-9127-8
http://dx.doi.org/10.1109/TRO.2009.2022423
http://dx.doi.org/10.1109/TRO.2009.2022423
http://acl.mit.edu/papers/cdc_12_cbba_submitted.pdf
http://acl.mit.edu/papers/cdc_12_cbba_submitted.pdf
http://acl.mit.edu/papers/ACBBA_GNC10_submitted_07272010.pdf
http://acl.mit.edu/papers/ACBBA_GNC10_submitted_07272010.pdf

Part III
Formation Control and Path Planning

Adaptive Leader-Follower Formation
in Cluttered Environment Using Dynamic
Target Reconfiguration

José Vilca, Lounis Adouane and Youcef Mezouar

Abstract This paper presents a control architecture for safe and smooth navigation
of a group of UnmannedGroundVehicles (UGV)while keeping a specific formation.
The formation control is based on Leader-follower and Behavioral approaches. The
proposed control architecture is designed to allow the use of a single control law for
different multi-vehicle contexts (navigation in formation, transition between differ-
ent formation shapes, obstacle avoidance, etc.). The obstacle avoidance strategy is
based on the limit-cycle approach while taking into account the dimension of the for-
mation. A new Strategy for Formation Reconfiguration (SFR) of the group of UGVs
based on suitable smooth switching of the set-points (according, for instance, to the
encountered obstacles or the new task to achieve) is proposed. The inter-vehicles
collisions are avoided during the SFR using a penalty function acting on the vehicle
velocities. Different simulations on cluttered environments show the performance
and the efficiency of the proposal, to obtain fully reactive and distributed control
strategy for the navigation in formation of a group of UGVs.

Keywords Cooperative robots · Autonomous navigation · Formation control ·
Dynamic formation · Target-reaching control

1 Introduction

In the last decades, research interest in control and coordination ofmultiple robots has
increased significantly. Different tasks that may be performed by a single complex
robot can be performed with more flexibility and efficiency by a group of elementary

J. Vilca (B) · L. Adouane · Y. Mezouar
Institut Pascal, Blaise Pascal University—UMR CNRS, 6602 Clermont-Ferrand, France
e-mail: jose.vilca@univ-bpclermont.fr

L. Adouane
e-mail: lounis.adouane@univ-bpclermont.fr

Y. Mezouar
e-mail: youcef.mezouar@univ-bpclermont.fr

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_17

237

238 J. Vilca et al.

cooperative robots. These cooperatives robots join their capacities and information
to improve the task achievement.

Exploration [16], management and platooning of autonomous vehicles [5], map-
ping of unknown locations [19], coverage of unknown area [9], transport of heavy
objects [3], rendez-vous of multiple agents [21] are some examples of multi-robot
tasks (Fig. 1).

Nonetheless, the coordination of multi-robot navigation is among the most chal-
lenging tasks, due notably, to its implication for instance for public transportation
[15]. This paper addresses the navigation of a group of vehicles in formation (i.e.,
when a group of mobile robots has to navigate and to keep a desired relative posi-
tions to each other or to a reference).Mostly, three approaches have been investigated
to deal with this problem: behavior-based [22], virtual structure [10] and Leader-
follower [12] approaches. In this work, the proposed control architecture is based on
Leader-follower and behavior-based approaches for the formation control problem.

In the Leader-follower approach, the leader is the reference for the desired con-
figuration of the followers. Different works exploit graph theory to describe the
inter-vehicle communications [5, 8, 18, 20]. Different formation cases (leader reas-
signment, robot adding and control saturation) were presented in [18]. The authors
proposed a formation control law based on the combination of LinearMatrix Inequal-
ities and hybrid system. The case of dynamic formation, i.e., the formation shape
changes to another (e.g. from square to triangle), and obstacle avoidance was dealt
in [5, 8, 20]. In [5], the leader generates a free-collision trajectory in a dynamic envi-
ronment which is tracked using a formation control law based on neural network,
Lyapunov function and dynamic model of the robot. The stability of the dynamic
formation and dynamic topology (adjacency matrix) are also demonstrated. In [8],
switches between different formation shapes are exploited (from triangle to line) to
avoid encountered obstacles in the environment. The formation control law is based
on input-output feedback linearization and vision sensors (omnidirectional camera)
are embedded in each robot for localization and navigation purpose. A strategy to
modify the formation configuration by scaling the distance between the vehicles

Fig. 1 Autonomous
navigation in formation of a
group of UGVs in an urban
environment
(Clermont-Ferrand, France)

Adaptive Leader-Follower Formation … 239

is proposed in [20]. Obstacle avoidance is dealt with using potential fields. In the
already presented works, interesting solutions for formation control problem are pro-
posed. Nevertheless, they are based on predefined trajectories and do not address the
issues related to the constraints of the formation shape and to the dimension of the
vehicles (large vehicles need large space for navigation and obstacle avoidance). In
this paper, the main proposal is to present a fully reactive and distributed navigation
in formation of a fleet of UGVs. Additionally, we make a focus on the reconfigura-
tion phase based on a suitable smooth switches between the formation shapes while
considering the follower configurations.

In this paper, the dynamics of the followers’ set-points are given by the specific
dynamic of the leader (Leader-follower approach). This strategy allows a good flex-
ibility proprieties for the formation shape [7]. The behavior-based approach allows
to use different elementary controllers to perform several sub-tasks (cf. Fig. 2). The
obstacle avoidance controller for the whole formation is based on limit-cycle princi-
ple [1]. This control architecture is designed in order that each follower tracks safely
the assigned configuration (given by the leader) while using an appropriate dynamic
target-reaching controller. The proposed strategy for formation reconfiguration takes
into account the presence of obstacles in the environment as well as the inter-vehicles
distance to avoid collision between the UGVs.

The rest of this paper is organized as follows: in the next section, the control
architecture for the navigation of UGVs in formation is introduced. The model of
the UGV and its controllers are also detailed. In Sect. 3, the navigation in formation
based on Leader-follower approach is described.Moreover, this section presents also
the reconfiguration method for the multi-robot formation. Simulations showing the
efficiency of the proposed strategy are detailed in Sect. 4. Finally, conclusion and
future works are given in Sect. 5.

2 Control Architecture

The control architecture for the navigation in formation of a group of UGVs is shown
in Fig. 2. This control architecture is designed for a group of UGVs modeled as
tricycle robots. This architecture aims to manage the interactions among elementary
controllers while guaranteeing the stability of the overall control [2]. It allows to
obtain safe and smooth navigation of the formation (cf. Sect. 3). The global navigation
in formation framework is operated by the Formation parameters block that sends
to each elementary controller (Dynamic target reaching and Obstacle avoidance)
its desired set-points. Each elementary controller (cf. Fig. 2) provides as output a
Control Input CI to the Control law block through a Hierarchical action selection
block which selects between CIT or CIO .

In this work, a single control law for the UGV (tricycle robot) is used. It con-
siders the vehicle poses and velocities. This control law allows the UGV to reach a
static or dynamic target with a desired orientation and velocity (cf. Sect. 2.2.3). The
inputs of the control law (pose errors between the vehicle and its assigned target) are

240 J. Vilca et al.

Fig. 2 Proposed control
architecture embedded in
each UGV navigating in the
formation

provided by the elementary controllers (cf. Sect. 2.2). The control law is synthesized
according to Lyapunov theorem (more details are given in [23]). The main blocks of
the architecture are detailed below.

The Perceptions and communication block incorporates the propriocetive and
exteroceptive sensors such as range sensor, cameras, odometers and RTK-GPS. Its
goal is to capture information related to the robot environment, mainly potential
obstacles [6, 8]. The communication is related with the vehicle capability to send
and to receive information from other vehicles. In the sequel, we assume a stable
communication between UGVs without latency) and that each UGV has a RTK-GPS
and a range sensor LIDAR.

The Formation parameters block determines the desired configuration for the
group ofUGVs to keep a specific distance and orientation between them. The Leader-
follower approach is used to obtain the formation configuration of the UGVs accord-
ing to the Leader configuration (cf. Sect. 3). Moreover, a reconfiguration strategy
between the formation shapes according to the context of the environment (dynamic
and/or cluttered or not) is described in Sect. 3.2.

The control architecture uses a Hierarchical action selection mechanism to man-
age the switches between the two elementary controllers (Behavior-based approach),
Dynamic target reaching and Obstacle avoidance blocks, according to the formation
parameters and environment perception. The hierarchical action selection mecha-
nism activates the Obstacle avoidance block as soon as it detects at least one obstacle
which can hinder the future vehiclemovement toward its dynamic virtual target (more
details are given in [1]). It allows to anticipate the activation of obstacle avoidance
controller and to decrease the time to reach the assigned target (static or dynamic).
In order to provide the enough overall details of the presented control architecture,
the following subsections present the UGV model and elementary controllers.

Adaptive Leader-Follower Formation … 241

Fig. 3 UGV and dynamic
target configuration variables
in (local and global)
Cartesian reference frames

YG

OG

y

l b

XG

Ym
Xm

Om

x

Target

d

vT
ex

ey

T

e

Icc

rcr RT

eRT
yT

xT

v

2.1 Vehicle and Target Set-Point Modeling

We assume that the UGVs evolves in asphalt road and in cluttered urban environment
with relatively low speed (less than vmax = 2 m/s). Hence, the use of kinematic
model (which relies on pure rolling without slipping) of the UGV is sufficient. The
kinematic model of the UGV is based on the well-known tricycle model [17]. The
two front wheels are replaced by a single virtual wheel located at the center between
the front wheels. The equations of UGV model can be written as (cf. Fig. 3):

ẋ = v cos(θ); ẏ = v sin(θ); θ̇ = v tan(γ)/ lb (1)

where (x, y, θ) is the UGV pose in the global reference frame XGYG . v and γ are
respectively the linear velocity and the orientation of the vehicle front wheel. lb is
the wheelbase of the vehicle.

2.2 Elementary Controllers

Each elementary controller generates the control inputs CI (pose errors (ex , ey, eθ)

and velocities vT) of the Control law block (cf. Fig. 2).

2.2.1 Dynamic Target Reaching Controller

The target set-point modeling is defined by the formation shape (Formation para-
meters block) and it is computed according to the leader configuration (cf. Sect. 3).
The target is defined by (xT , yT , θT) and vT which are respectively the target poses
and linear velocity in the global reference frame. Indeed, an RTK-GPS embedded in
each vehicle allows to estimate its current configuration.

242 J. Vilca et al.

Before to introduce the control law, let us describe the following notations
(cf. Fig. 3):

• Icc is the instantaneous center of curvature of the vehicle trajectory, rc = lb/ tan(γ)

is the radius of curvature and cc = 1/rc is the curvature.
• (

ex , ey, eθ

)
are the errors w.r.t local frame (XmYm) between the vehicle and the

target poses.
• θRT and d are respectively the angle and distance between the target and vehicle
positions.

• eRT is the error related to the vehicle position (x, y) w.r.t the target orientation.

This controller guides the vehicle towards the dynamic target. It is based on the
pose control of the UGV w.r.t. the target (represented by errors variables (ex , ey, eθ)

in Fig. 3). These errors are computed w.r.t the local reference frame XmYm and they
are given by: ⎧

⎨

⎩

ex = cos(θ)(xT − x) + sin(θ)(yT − y)

ey = − sin(θ)(xT − x) + cos(θ)(yT − y)

eθ = θT − θ

(2)

The error function eRT is added to the canonical error system (2) (cf. Fig. 3). Let
us now write d and θRT as (cf. Fig. 3):

d =
√

(xT − x)2 + (yT − y)2 (3)
{

θRT = arctan ((yT − y)/(xT − x)) if d > ξ

θRT = θT if d ≤ ξ
(4)

where ξ is a small positive value (ξ ≈ 0). The error eRT is defined as (cf. Fig. 3):

eRT = θT − θRT (5)

Furthermore, the velocity set-points of the dynamic target (in global frame XGYG)
are computed according to the leader velocities and formation shape (cf. Sect. 3).
Finally the pose errors and velocities (ex , ey, eθ , vT) are the input of the Control law
block (cf. Sect. 2.2.3).

2.2.2 Obstacle Avoidance Controller

Different methods can be found in the literature for obstacle avoidance [14, 24]. One
of them is the limit-cycle method, the UGV avoids reactively the obstacle if it tracks
accurately limit-cycle trajectories as detailed in [1] (ellipse of influence). The main
ideas behind this controller are briefly detailed below:

Adaptive Leader-Follower Formation … 243

The differential equations of the elliptic limit-cycles are:

ẋs = m(Bys + 0.5Cxs) + xs(1 − Ax2
s − By2s − Cxs ys) (6)

ẏs = −m(Axs + 0.5Cys) + ys(1 − Ax2
s − By2s − Cxs ys) (7)

withm = ±1 according to the avoidance direction (clockwise or counter-clockwise).
(xs, ys) corresponds to the position of the UGV according to the center of the ellipse.
The variables A, B and C are given by:

A = (sin(Ω)/blc)
2 + (cos(Ω)/alc)

2 (8)

B = (cos(Ω)/blc)
2 + (sin(Ω)/alc)

2 (9)

C = (1/a2
lc − 1/b2

lc) sin(2Ω) (10)

where alc and blc characterize respectively the major and minor elliptic semi-axes
and Ω gives the ellipse orientation when it is not equal to 0.

Let us now extend this method, initially proposed for the navigation of a mono-
robot, to the case of a group of UGVs. In Sect. 3, the formation is defined by lon-
gitudinal hi and lateral li coordinates (15) (cf. Fig. 4). At this aim, the dimensions
of the ellipse (alc, blc) are increased according to the maximum lateral coordinate
of the formation shape li max , i.e., the dimension of the ellipse to avoid will be
(alc + li max , blc + li max). The advantage of the proposed method is to maintain the
shape of the whole formation even when obstacles hinder the formation navigation,
instead of each robot avoids locally the obstacles [2].

In our case, the controller can be written as an orientation control. We consider
thus ex = 0 and ey = 0 in (2) (cf. Fig. 3), i.e., the vehicle position is at each sample
time in the desired position. The limit-cycle propriety allows to avoid the obstacles.
The desired vehicle orientation is given by the differential equation of the limit-cycle
(6) and (7):

θd = arctan (ẏs/ẋs) (11)

Furthermore, the linear velocities of the UGVs are decreased for safe avoidance
when the obstacle avoidance controller is activated, e.g., vT = vmax/2.

2.2.3 Control Law

The used control law is designed according to Lyapunov stability analysis [23]. The
desired vehicle’s linear velocity v and its front wheel orientation γ that make the
errors (ex , ey, eθ) converge always to zero can be chosen as:

v = vT cos(eθ) + Kx (Kdex + Kld sin(eRT) sin(eθ) + Ko sin(eθ)cc) (12)

γ = arctan(lb
[
r−1

cT
cos−1(eθ) + cc

]
) (13)

244 J. Vilca et al.

where cc is given by:

cc =d2Kl sin(eRT) cos(eRT)

rcT Ko sin(eθ) cos(eθ)
+ Kθ tan(eθ) + Kd ey − Kl d sin(eRT) cos(eθ)

Ko cos(eθ)
+ K RT sin2(eRT)

sin(eθ) cos(eθ)

(14)

K = (Kd , Kl , Ko, Kx , K RT , Kθ) is a vector of positive constants which must
be defined by the designer. Kd , Kl and Ko are respectively related to the desired
convergence of the distance, lateral and angular errors w.r.t. the assigned target. Kx ,
K RT and kθ are related to the maximum linear and angular velocities (more details
are given in [23]).

3 Navigation in Formation

We consider a group of N UGVs with the objective of reaching and keeping their
assigned configuration according to the desired formation and leader configuration
[8, 25]. The proposed strategy consists on controlling each UGV (follower) to track
its assigned virtual dynamic target (cf. Sect. 3.1 and Fig. 4). The strategy of formation
reconfiguration (cf. Sect. 3.2) is based on a suitable smooth switch of these virtual
dynamic targets while considering the inter-vehicle collisions.

3.1 Leader-Follower Approach

Leader-follower approach allows to maintain a rigid geometric shape (e.g. a triangle
in Fig. 4). The formation is defined in this case w.r.t. the Cartesian frame (local
frame of the leader) (cf. Fig. 4). The proposed formation, based on Leader-follower
approach, is defined by:

• A leader (UGVL in Fig. 4); its pose (xL , yL , θL) and its linear velocity vL determine
the dynamic of the formation (cf. Fig. 4).

• The formation structure is defined with as much nodes as necessary to obtain
the desired formation shape. Each node i is a virtual dynamic target (Tdi). The
formation is defined as F = {fi , i = 1 . . . N }, where fi are the coordinates (hi , li)

T

of the dynamic target Tdi w.r.t. the leader local reference frame (cf. Fig. 4).

The position and orientation of each node (virtual target) are computed from the
leader configuration. The leader position determines the nodes positions according
to the formation shape. The instantaneous center of curvature IccL of the formation
is determined by the leader according to its movements (cf. Fig. 4). IccL allows to
compute the desired orientation of the nodes according to the formation shape (cf.
Fig. 4). The leader turns around IccL (positioned perpendicularly to its rear wheel),
then the other target set-points Tdi must also turn around IccL to maintain the rigid

Adaptive Leader-Follower Formation … 245

formation. Thus, the target velocity vTi must be tangent to the circle which has IccL

as center and the distance between Tdi and IccL as radius rcTi
.

The idea behind this strategy is to eliminate the dependency of each UGV to a
global reference frame. A straightforward transformation can be applied to obtain the
set-point w.r.t. a local reference frame attached to the leader. The polar coordinates
(ri , Φi) can also be used by applying a straightforward transformation. An impor-
tant advantage of the used Leader-follower approach is that it does not depend here
on any reference trajectory and the formation is fully defined by the instantaneous
dynamic of the leader. An important advantage of the proposed formation definition
based on Leader-follower approach is that it takes, in addition to the target positions
(xT , yT), the heading θT of the virtual targets, which allows to have even more accu-
rate formation navigation (cf. Sect. 4). Furthermore, the proposed approach is more
reactive in the sense that it takes at each sample time only the current configuration
and velocity of the Leader, instead of using the trajectory of the Leader as a reference
for the formation [5, 20].

One important consideration to take into account to achieve the presented nav-
igation of formation strategy, is that the followers have to know, as accurately as
possible, the leader state (pose and velocity). As mentioned before, we assume that
the leader sends its state by stable Wi-Fi communication without latency. However,
cameras and/or LIDAR sensors embedded in each follower, can be used to estimate
the leader state [8, 11].

In the sequel, fi is given in Global Cartesian frame to homogenize the notation
of the equations. The pose of the virtual target Tdi w.r.t the leader pose in the Global
reference frame can be written as (cf. Fig. 4):

Fig. 4 Formation definition
in mobile Cartesian frame
linked to the leader

246 J. Vilca et al.

⎧
⎨

⎩

xTi = xL + hi cos(θL) − li sin(θL)

yTi = yL + hi sin(θL) + li cos(θL)

θTi = θL + βi

(15)

where (xL , yL , θL) is the current pose of the leader and βi is the Tdi orientation w.r.t.
the leader pose. It is given by:

βi = arctan
(
hi/(rcL − li)

)
(16)

where rcL is the radius of curvature of the leader. Differentiating (15), the velocities
of each Tdi are given thus by:

vTi =
√

(vL − liωL)2 + (hiωL)2 (17)

ωTi =ωL + β̇i (18)

where vL and ωL are respectively the linear and angular velocities of the leader, β̇i

is computed as:
β̇i = −hi ṙcL/

(
(rcL − li)

2 + (hi)
2
)

(19)

One can note from (19) that when β̇i is equal to zero, the formation has a constant
radius of curvature rcL and the angular velocities of the virtual targets are equal to
the angular velocity of the leader (ωTi = ωL) (18).

3.2 Proposed Strategy for Formation Reconfiguration

Different methods dealing with formation reconfiguration for a group of UGV have
been proposed in the literature [4, 5, 8].Manymethods exploitModel PredictiveCon-
trol (MPC) based on time horizon and optimization of a cost function [4]. Thesemeth-
ods are generally time consuming due to predictive computation w.r.t. a time horizon.
Moreover, they were applied to small unicycle robots and they are based on prede-
fined trajectories computed along a time horizon. This subsection proposes a new
Strategy for Formation Reconfiguration (SFR) based on suitable smooth switches
between different virtual target configurations (cf. Sect. 3.2.1). This strategy allows
to obtain a fully reactive architecture in the sense that the UGV followers track the
instantaneous state (pose and velocity) of its virtual targets (thus, without any use of a
reference trajectory or a trajectory planning process). Additionally to the reconfigu-
ration process, one should manage potential collisions between UGVs and allocation
of virtual targets to UGVs (cf. Sect. 3.2.2).

Different algorithms optimizing target assignment can be easily integrated in
our multi-block control architecture (cf. Fig. 2) (refer to [2, 25]). Nonetheless, this
paper is focused on the control strategy for formation reconfiguration. Therefore,
the allocation of virtual targets to UGVs is achieved using elementary rules when a

Adaptive Leader-Follower Formation … 247

Fig. 5 Formation reconfiguration between, for instance, triangular and linear formation shapes

formation reconfiguration is required (cf. Sect. 4). These rules assign a label Hi of
the virtual target Tdi to the U GVi at the beginning of the experiments. This label is
kept by each UGV along of the reconfiguration process (cf. Fig. 5).

3.2.1 Reconfiguration Method

A typical example of application of formation reconfiguration is when the formation
detects a narrow tight corridor, therefore the formation have to adapt to the corridor
dimension to continue the navigation. The proposed strategy for formation reconfig-
uration is based on suitable smooth switching of the virtual target configurations. The
new virtual targets defined on the new formation shape must be ahead to the UGVs
to guarantee the stability of the overall system (the vehicle must not go back to reach
the new virtual target). If this condition is not satisfied then the former formation will
be adapted by increasing smoothly and contentiously the longitudinal coordinates
hi until that all UGVs will be positioned in the right configuration (21). The error
between the coordinates of the former and the new formation e fi (ehi , eli) is defined
as:

e fi = fn
i − f f

i (20)

where f f
i (h f

i , l f
i) and fn

i (h
n
i , ln

i) are respectively the coordinates of the former for-
mation and new desired formation (cf. Figs. 4 and 5).

The reconfiguration process between the different formation shapes is given by:

fi =
{

hi = hn
i − ehi e

−kr (t−tr), li = ln
i ; if ehi < 0

hi = hn
i , li = ln

i ; if ehi ≥ 0
(21)

where fi (hi , li) are the coordinates of the current virtual target Tdi to be tracked by
the follower UGVi . ehi is the longitudinal coordinate of e fi that allows to detect if the
virtual target is ahead to its respective follower (ehi ≥ 0). The adaptation function
when ehi < 0 (virtual target behind to followeri) is set as proportional to the error

248 J. Vilca et al.

between formation shapes, where kr is a real positive constant designed according to
the dynamic of the leader and tr > 0 is the initial time for the reconfiguration process.
An accurate analysis of this adaptive reconfiguration function will be developed in
future works.

3.2.2 Collision Between UGV

Collision between UGVs can occur during the reconfiguration phase of the group of
UGVs. To address this collision risk, we use a penalty function acting on the linear
velocity of the UGVs. Moreover, this reduced velocity of UGVs allows to obtain a
smooth and less oscillating vehicles’ movements (cf. Sect. 4). Each UGV is enclosed
by two circle Cint and Cext with respectively radius Rint and Rext (Rint < Rext). The
collision occurs when the distance di j between U GVi and U GVj are less than Rint .
Hence, the penalty function ψ

j
i for the U GVi w.r.t. the U GVj is defined as:

ψ
j

i =
⎧
⎨

⎩

1 if di j ≥ Rext

(di j − Rinti)/(Rext − Rinti) if Rinti < di j < Rext

0 if di j ≤ Rinti

(22)

The modified linear velocity of the U GVi is then given by:

v̄ j = v jψ
j

i (23)

Using the definition of Rinti (where Rinti �= Rint j), it is guaranteed that twoUGVs
do not stop simultaneously. Indeed, if the UGVs have the same Rinti we can observe
local minima in certain configurations, in fact, when di j < Rinti then ψ

j
i = ψ i

j = 0
and the robots are stopped at the same time.vRext is designed according to commu-
nication constraints (latency) and localization errors (GPS). This penalty function
can be straightforward integrated to our control architecture (cf. Fig. 2) by adding a
block after the output of the Control law block (cf. Fig. 6).

Fig. 6 Integration of the
penalty function in the
proposed architecture

Adaptive Leader-Follower Formation … 249

4 Simulations

This section shows the navigation of a group of N = 3 UGVs in a cluttered environ-
ment using the proposed control architecture. The reconfiguration strategy (SFR)
between the formation shapes is also analyzed. All simulations were made in
MATLAB� software. The physical parameters of the used UGV are based on the
urban vehicle VIPALAB fromApojee company [13]. The UGV constraints are mini-
mum velocity vmin = 0.1 m/s, maximum velocity 1.5 m/s, maximum steering angle
γmax = ±30◦ andmaximum acceleration 1.0m/s2.We consider that the sample time
is 0.01 s. Each UGV has a range sensor (LIDAR) with a maximum detected range
equal to Dmax = 10 m and a stable communication network.

The controller parameters are set toK = (1, 2.2, 8, 0.1, 0.01, 0.6) (cf. Sect. 2.2.3).
These parameters were chosen to obtain a safe and smooth trajectory, fast response
and velocity value within the limits of the vehicle capacities. The radius for non-
collision between UGVs are selected as Rint L = 1.8m, Rint1 = 2.2m, Rint2 = 2.0m
and Rext = 2.7 m. For each simulation the vehicles start at the same configuration
andmust reach the same final configuration. The initial positions of the vehicles have
an offset (Δx,Δy) = (1, 0.5) m from the initial position of their assigned virtual
targets.

The simulations given in Figs. 7, 8, 9, 10 and 11 are selected from several conclu-
sive simulations because they make a focus on the proposed reconfiguration method

Fig. 7 Distance and orientation errors of the UGVs w.r.t. their virtual targets

250 J. Vilca et al.

Fig. 8 Distance among the UGVs

Fig. 9 Navigation with reconfiguration in formation for a group of N = 3 UGVs

between the two formation shape (triangular and linear shapes) while navigating in
a cluttered environment (this simulation can be found online1). We consider that the
initial formation coordinates are defined by F = (f1, f2), with f1 = (−4,−2)T m and
f2 = (−4, 2)T m (triangular shape). Therefore, the group of UGVs must keep the
formation while moving in a cluttered environment. A static target is defined in the

1http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/FormationReconfiguration.mp4.

http://maccs.univ-bpclermont.fr/uploads/Profiles/VilcaJM/FormationReconfiguration.mp4

Adaptive Leader-Follower Formation … 251

Fig. 10 Velocities commands of the UGVs

Fig. 11 Progress of the set-point definition fi according to the proposed SFR

252 J. Vilca et al.

environment, the leader (and thus the formation) must go toward it while avoiding
the hinder obstacle. The new targeted formation is defined as straight line with the
following coordinates Fn = (fn

1, fn
2), with fn

1 = (−6, 0)T m and fn
2 = (−3, 0)T m.

At the beginning of the simulation (cf. Fig. 9), the navigation of the group ofUGVs
is in triangular formation F. When the leader detects an obstacle with adequate range
to allow the formation reconfiguration, then the leader avoids the obstacle using the
limit-cycle method (limit-cycle is increased by R f = 2 m to allow a safe navigation
(cf. Sect. 2.2.2) and sends the newdesired formationFn to the otherUGVs (followers)
to modify the configuration of the formation. The formation returns to triangular
shape F, when the leader does not detect obstacles that can hinder the other UGVs
movement and the last follower left behind the avoided obstacle. The adaptation
phase allows to have the virtual target always ahead to the followers to obtain a
suitable adaptive formation reconfiguration (cf. Figs. 7 and 11).

Figure7 shows the values of errors d and eθ between each UGV and its virtual
target. At first reconfiguration, it can be observed that the follower 1 wait until its
assigned virtual target is ahead (cf. Sect. 3.2.1). Moreover, it is noted some small
peaks that are related to the fast dynamic change of the leader (the dynamic of the
formation increased and the saturation occurs in the followers when the leader cur-
vature increased). Figure8 shows the distance between each UGV of the formation.
This last figure shows clearly non-collision between the vehicles in the formation,
i.e., di j > Rint12 (cf. Sect. 3.2.2). The figures show some peaks which are related to
the adaptation and reconfiguration phase between formations.

Figures9 and 10 show respectively the trajectories and velocities of the UGVs.
It can be noted that the vehicles trajectories are smooth along the navigation and
there is not neither collisions with the obstacles nor inter-vehicle collisions. The
reconfiguration strategy was designed to reduce the peaks of the control commands
of each UGV when the transition between the formation occurs (cf. Fig. 10). The
proposed control architecture allows thus to adapt the formation according to the
environment context. Figure11 shows the evolution of the formation coordinates
(hi , li) (virtual target positions). It can be observed that adaptation phase of hi when
the follower is always ahead of its new assigned virtual target (21) which attest on
the efficiency of the strategy for formation reconfiguration.

5 Conclusions and Prospects

This paper presented an overall control architecture to cope with the navigation in
formation of a group ofUGVs in cluttered environment. A singleControl law embed-
ded in each UGV is used in the proposed architecture which allows the simplification
of the overall control strategy for the navigation in formation. The obstacle avoid-
ance based on the limit-cycle trajectories allows to keep the desired formation shape
during the navigation even in cluttered environments. In the proposed formation def-
inition based on Leader-follower approach, the leader reference path is not taken
into account, only its current pose and dynamic has to be known by the follow-

Adaptive Leader-Follower Formation … 253

ers. It allows thus more accurate and flexible formation navigation. A fully reactive
reconfiguration strategy between the UGVs based on suitable smooth switching of
the virtual target configurations was also proposed. This strategy avoids the use of
predefined trajectories and it can be applied for different situations when the forma-
tion has to be modified according to the environment context (dynamic, cluttered,
etc.). Furthermore, this strategy takes into account the probable collisions between
vehicles as well as the vehicle constraints to ensure safe navigation to reach the new
desired formation. Different accurate simulations using a tricycle vehicles show the
efficiency and the flexibility of the proposed strategy for multi-robot navigation.

In future works, formation reconfiguration strategy even in uncertain environ-
ments (for instance, w.r.t. the vehicle’s perception/localization) will be addressed.

Acknowledgments This work was supported by the French National Research Agency through
the Safeplatoon project.

References

1. Adouane, L., Benzerrouk, A., Martinet, P.: Mobile robot navigation in cluttered environment
using reactive elliptic trajectories. In: 18th IFAC World Congress (2011)

2. Benzerrouk, A., Adouane, L., Martinet, P.: Altruistic distributed target allocation for stable
navigation in formation of multi-robot system. In: 10th International IFAC Symposium on
Robot Control (SYROCO’12), Dubrovnik, Croatia (2012)

3. Chaimowicz, L., Kumar, R.V., Campos, M.F.M.: A mechanism for dynamic coordination of
multiple robots. Auton. Robot. 17, 7–21 (2004)

4. Chao, Z., Zhou, S.L., Ming, L., Zhang, W.G.: UAV formation flight based on nonlinear model
predictive control. Math. Prob. Eng. 2012, 1–15 (2012)

5. Chen, X., Li, Y.: Smooth formation navigation of multiple mobile robots for avoiding moving
obstacles. Int. J. Control Autom. 4(4), 466–479 (2006)

6. Clark, J., Fierro, R.: Mobile robotic sensors for perimeter detection and tracking. ISA Trans.
46(1), 3–13 (2007)

7. Consolini, L., Morbidi, F., Prattichizzo, D., Tosques, M.: Leader-follower formation control of
nonholonomic mobile robots with input constraints. Automatica 44(5), 1343–1349 (2008)

8. Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spletzer, J., Taylor, C.: A vision-based formation
control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)

9. Dasgupta, P., Whipple, T., Cheng, K.: Effects of multi-robot team formations on distributed
area coverage. Int. J. Swarm Intell. Res. 2(1), 44–69 (2011)

10. Desai, J., Ostrowski, J., Kumar, V.: Modeling and control of formations of nonholonomic
mobile robots. IEEE Trans. Robot. Autom. 17(6), 905–908 (2001)

11. El-Zaher, M., Contet, J.M., Gechter, F., Koukam, A.: Echelon platoon organisation: a distrib-
uted approach based on 2-spring virtual links. In: 15th International Conference on Artificial
Intelligence: methodology, Systems, Applications (AIMSA), Germany (2012)

12. Ghommam, J.,Mehrjerdi, H., Saad,M.,Mnif, F.: Formation path following control of unicycle-
type mobile robots. Robot. Auton. Syst. 58(5), 727–736 (2010)

13. The Institut Pascal Data Sets.: http://ipds.univ-bpclermont.fr (2013)
14. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.

Res. 5, 90–99 (1986)
15. Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic

maps. In: IEEE International Conference on Robotics and Automation, Alaska, USA (2010)

http://ipds.univ-bpclermont.fr

254 J. Vilca et al.

16. Lozenguez, G., Adouane, L., Beynier, A., Mouaddib, A., Martinet, P.: Map partitioning to
approximate an exploration strategy in mobile robotics. In: MAGS—Multiagent and Grid
Systems (2012)

17. Luca, A.D., Oriolo, G., Samson, C.: Feedback control of a nonholonomic car-like robot. In:
J.P. Laumond (ed.) Robot Motion Planning and Control, pp. 171–253. Springer-Verlag (1998)

18. Mesbahi, M., Hadaegh, F.: Formation flying control of multiple spacecraft via graphs, matrix
inequalities, and switching. In: Proceedings of the 1999 IEEE International Conference on
Control Applications, vol. 2, pp. 1211–1216 (1999)

19. Miner, D.: Swarm Robotics Algorithms: A Survey (2007)
20. Shames, I., Deghat, M., Anderson, B.: Safe formation control with obstacle avoidance. In:

IFAC World Congress, Milan, Italy (2011)
21. Sinha, A., Ghose, D.: Generalization of linear cyclic pursuit with application to rendezvous of

multiple autonomous agents. IEEE Trans. Autom. Control 51, 1819–1824 (2006)
22. Tang, H., Song, A., Zhang, X.: Hybrid behavior coordination mechanism for navigation of

reconnaissance robot. In: International Conference on Intelligent Robots and Systems (2006)
23. Vilca, J., Adouane, L., Mezouar, Y., Lébraly, P.: An overall control strategy based on target

reaching for the navigation of an urban electric vehicle. In: IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’13), Tokyo, Japan (2013)

24. Zapata, R., Cacitti, A., Lepinay, P.: Dvz-based collision avoidance control of non-holonomic
mobile manipulators. JESA, Eur. J. Autom. Syst. 38(5), 559–588 (2004)

25. Ze-su, C., Jie, Z., Jian, C.: Formation control and obstacle avoidance for multiple robots subject
to wheel-slip. Int. J. Adv. Rob. Syst. 9, 1–15 (2012)

A Graph-Based Formation Algorithm
for Odor Plume Tracing

Jorge M. Soares, A. Pedro Aguiar, António M. Pascoal
and Alcherio Martinoli

Abstract Odor plume tracing is a challenging robotics application, made difficult
by the combination of the patchy characteristics of odor distribution and the slow
response of the available sensors. This work proposes a graph-based formation con-
trol algorithm to coordinate a group of small robots equipped with odor sensors,
with the goal of tracing an odor plume to its source. This approach makes it possible
to organize the robots in arbitrary and evolving formation shapes with the aim of
improving tracing performance. The algorithm was evaluated in a high-fidelity sub-
microscopic simulator, using different formations and achieving quick convergence
and negligible distance overhead in laminar wind flows.

Keywords Odor source localization · Plume tracing · Formation control · Robotic
olfaction

J.M. Soares (B) · A. Martinoli
Distributed Intelligent Systems and Algorithms Laboratory, School of Architecture, Civil and
Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
e-mail: jorge.soares@epfl.ch

A. Martinoli
e-mail: alcherio.martinoli@epfl.ch

J.M. Soares · A.M. Pascoal
Institute for Systems and Robotics, Instituto Superior Técnico, University of Lisbon, Lisbon,
Portugal

A.P. Aguiar
Department of Electrical and Computer Engineering, Faculty of Engineering, University of Porto,
Porto, Portugal
e-mail: pedro.aguiar@fe.up.pt

A.M. Pascoal
National Institute of Oceanography, Dona Paula, Goa, India
e-mail: antonio@isr.ist.utl.pt

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_18

255

256 J.M. Soares et al.

1 Introduction

As early as the 1950s, researchers were looking into the use of electronic devices
for odor sensing, an application commonly referred to as machine olfaction [9, 24].
While it was not until several decades later thatwork in robotic olfaction began [27], it
has been steadily intensifying ever since. The possibilities are endless, including very
promising applications in search and rescue operations [11], as well as environmental
and industrial safety [5].

Odor source localization is frequently divided into three stages: plume finding,
plume traversal, and source declaration. We concentrate on the intermediate and
most frequently studied, plume traversal or tracing, i.e., following a chemical plume
to its source. Odor plume tracing presents particular challenges when compared to
other search problems: due to turbulent transport, chemical concentration in a plume
tends to be very patchy, with packets of high concentration and periods of low or
completely absent odor [26]. Alongwith the relatively slow response of odor sensors,
this makes it hard or impractical to use simple gradient ascent techniques.

Previous work in the field has resulted in a significant number of methods for
odor tracing, of which a detailed survey is provided in [14]. Many algorithms take
inspiration from living creatures, such as bacteria [4] or silkworm moths [20], and
generally operate by switching a single robot among a set of simple behaviors.
Experiments have also been conducted with multiple robots [10, 13, 17], acting both
independently and cooperatively. Other approaches include Braitenberg-type control
[16], probabilistic inference [15, 17, 28] and meta-heuristic optimization methods
[1–3, 12, 21].

We choose to focus on formation-based algorithms, which take advantage of
multiple cooperating robots moving in formation to locate the source with minimal
wandering. Our work is strongly inspired by the crosswind formation work in [18],
as well as other formation- and swarm-based approaches [8, 10, 19]. This decision
is driven by the choice of success metric: while the energy budget goes up with the
number of robots, these techniques allow us to minimize the distance overhead and
time to the source, a requirement in scenarios such as the aforementioned search and
rescue operations. Furthermore, our solution requires very little processing power,
is easy to implement, and requires no sensor information other than wind, odor and
relative positions—wheel encoder information can optionally be used to improve the
behavior of the algorithm.

A graph-based formation controller drives the robots to an arbitrary leaderless
formation. It is based on the principle of Laplacian feedback, which has been used
extensively in other contexts [6, 22]. The only information required by each robot is
the relative position of its neighbors, and the formation may take an arbitrary shape
and dynamically change over time. Each robot broadcasts its own odor reading,
which is used to adjust the separation between robots and to bias the movement of
the formation so as to center it over the plume. At all times, robots are configured
with an urge to move upwind, i.e., in the expected direction of the plume source. The

A Graph-Based Formation Algorithm for Odor Plume Tracing 257

Fig. 1 Left Fully equipped Khepera III robot, including the range and bearing board (bottom), odor
sensing board (middle) and wind sensing board (top). Right Inside view of the DISAL wind tunnel

details of the algorithm are presented in Sect. 2. Note that the core of this paper is
not a specific formation proposal, but a framework that allows us to use any desired
formation, possibly shaped by the underlying odor plume.

The proposed solution was validated and evaluated in a submicroscopic simulator
that mimics our existing real-world infrastructure, including theKhepera III differen-
tial wheeled robots and add-on odor and wind sensing boards. The simulation arena
is a model of the DISAL wind tunnel, using laminar wind flow and a filament-based
odor propagation model. The fully equipped Khepera III robot and an inside view of
the wind tunnel are shown in Fig. 1, while Sect. 3 details the simulations and results
obtained for two example formation shapes.

2 Controller Design

Wind takes a central role in our algorithm, as odor displacement (and desired robot
displacement) mostly takes place along the wind direction. Furthermore, the lack of
a heading sensor renders wind our only source for global orientation.

The formation shape is specified in terms of robot positions relative to the forma-
tion center, in an upwind–crosswind frame, coupled with the wind direction. This
allows the entire formation to rotate and align to the wind. Throughout this paper,
we use the terms forward and backward to refer to the nodes respectively upwind
and downwind in the desired formation. The definition of left and right of center
follows naturally. The reference formation shape, as well as the relative position of
each robot in it, are defined a priori and known by all robots—therefore, robots are
able to independently determine which should be treated as left or forward of center.

The controller consists of a minimal set of independent behaviors: formation
keeping, which drives and maintains the robots in the desired formation, upwind
movement, which moves robots upwind to the source, and plume centering, which
keeps the overall formation centered on the plume. Each behavior outputs a desired

258 J.M. Soares et al.

velocity vector and these vectors are then combined and transformed into a control
signal.

Control is distributed and asynchronous, and no supervisory information or inter-
vention is assumed; moreover, there is no absolute positioning. Consequently, the
controller operates on a local frame, in which the y axis is aligned with the robot
front, pointing forward, and the x axis points 90◦ anticlockwise. Given the short inter-
distances involved, we consider that all robots are within communication range. Nev-
ertheless, data exchange isminimized, and the only information explicitly exchanged
among the robots is the most current odor measurement.

Each behavior is described in detail in the subsequent sections. As control laws are
formulated locally and homogeneous across all robots, the subscript self-identifying
the node is omitted except where otherwise noted.

2.1 Sensing

Wind and odor are assumed to be measured by the sensors introduced in [17], where
they are fully described. No extensive discussion of the sensor characteristics will
be done in this section as experiments took place using simulation equivalents for
which the errors models are provided in the evaluation section.

Wind measurements are provided by a custom board featuring six NTC thermis-
tors inside individual 3D printed tubes arranged in a star shape. As wind measure-
ments are affected by significant noise, a discrete scalarKalman filter is used to obtain
an estimate of the relative wind direction. The wind observations are complemented
by odometry information from the wheel encoders, compensating for the rotation of
the robot. We consider the wind angle θ to be zero when the robot is facing the wind.

For the odor measurements, a MiCS-5521 VOC sensor is used, with a gas pump
ensuring continuous flow. The sensor provides noisy quantized measurements, in
the 0–1000 range. The odor readings are broadcast by each robot, along with its
identification. Each robot stores the latest concentration received from every team
mate, c j , and updates three values used in the algorithm to influence the geometry
and movement of the formation:

• cc, the mean of concentrations measured by the center robots
• cl , the mean of concentrations measured by robots left of the formation center
• cr , the mean of concentrations measured by robots right of the formation center

Finally, relative positions between the robots are provided by an extension board
equipped with sixteen LEDs, allowing the robot to obtain the range, bearing and ID
of each neighbor in sight [25].

A Graph-Based Formation Algorithm for Odor Plume Tracing 259

2.2 Laplacian Feedback

Our formation can be expressed as an undirected graphG = (V, E), inwhich vertices
V correspond to robots and edges E correspond to inter-robot relative positioning
links, or a subset thereof. From there, we can use the work in [22] and standard
results in graph theory to attain a provably stable solution to the formation control
problem:

ẋ = − (L ⊗ I2) (x − b) (1)

where L = BBT is the positive-semidefinite Laplacian matrix, obtained from the
incidence matrixB that describes the edges of G. The (x, y) absolute position vector
for all robots is given by x, and the desired offsets to the formation centroid are given
by the bias vectorb. As stated above, the law is only applicable under the assumptions
of holonomicity, absolute positioning, and full connectivity.

The same approach can, however, be implemented in a decentralized fashion and
using only relative positioning information, assuming a connected but not necessarily
complete graph, and accounting for nonholonomicity either natively or by offloading
to a lower level controller [6]. As previously discussed, we want the formation to be
oriented with respect to the wind, requiring the rotation of the bias vectors by the
measured wind speed θ . The resulting velocity vector for formation control is

uf = −

⎡

⎢⎢⎢⎣

N∑
j=0

L j

(
x j − βx

j

)

N∑
j=0

L j

(
y j − β

y
j

)

⎤

⎥⎥⎥⎦ (2)

where L j = Li, j is the entry of the Laplacian matrix relating the controlled node
i to neighbor j , x j and y j are the relative positions to robot j in the body frame,
and β j is a local analogue to b, describing the desired relative position between the
two robots in the robot frame, i.e. β j = R(θi)[p̄j − p̄i], p̄i and p̄j expressed in the
wind/formation frame. We do not consider role assignment in this work, and so the
position of each robot in the formation is defined by its identifier.

2.3 Dynamic Spacing

Depending on the size and growth rate of the odor plume, a fixed formationmight not
be an optimal choice. Therefore, we implement a method to change the formation
spacing by varying the bias vector as a function of the measurements.

For simplicity,we define two scalar parameters, scw and suw, which represent adap-
tive bias coefficients in the crosswind and upwind direction, respectively. Assuming

260 J.M. Soares et al.

biases (and, hence, the formation) are symmetric, this results in aminormodification.
Equation (2) remains valid, but β j assumes a new formulation:

β j = R(θi)

[
scw 0
0 suw

]
[p̄j − p̄i] (3)

In the remainder of the paper, we use a constant upwind scaling factor and con-
tinuously vary the crosswind scaling according to Eq. (4). The underlying rationale
is that, at our evaluation scale, the differences in the plume structure are more pro-
nounced in the crosswind direction. The scaling methods may, however, be easily
modified to adapt to different realities.

scw = kcw
cl + cr

1 + cc
(4)

Proper limits need to be set to account for the minimum safe distance and the
maximum communication/movement range. We have tuned kcw to approximately
maintain the side robots on the detectable edges of the plume, for both the consid-
ered line and rectangular formations; values between 0.5 and 1.0 appear to yield
reasonable results. However, the distribution of robots in the plume depends on its
aspect ratio, strongly influenced by wind speed and other factors mediating odor
dispersal.

2.4 Upwind Movement and Centering

While in the plume, robots should move upwind in the presumed direction of the
source. Therefore, a movement urge in the direction of the apparent wind is defined
as

uw = R(θ)

[
0
1

]
(5)

Wewant to keep the formation centered in the plume, which is achieved by adding
a crosswind force depending on the difference between cl and cr , the aforementioned
means of the odor readings to the left and right of the formation center. To prevent
extreme variations in control outputs due to the wide amplitude of odor measurement
variations, we implement a logistic response given by

uc = R(θ)

[1
1+e−(cl −cr)/kl

− 0.5
0

]
(6)

The value of kl should be approximately of the same dimension as the range of
the sensor. In our experiments, kl = 200. This asymptotically limits the maximum

A Graph-Based Formation Algorithm for Odor Plume Tracing 261

requested crosswind velocity to ±0.5, a value that is only approached for highly
asymmetric odor readings.

2.5 Behavior Aggregation

We combine the requested velocity vectors of each behavior with a weighted sum

u = kwuw + kcuc + k f uf (7)

At this stage, constant weights kw = kc = k f = 1 are used. For the particular
functions described above, this yields

u = −

⎡

⎢⎢⎢⎣

N∑
j=0

L j

(
x j − βx

j

)

N∑
j=0

L j

(
y j − β

y
j

)

⎤

⎥⎥⎥⎦ + R(θ)

[1
1+e−(cl −cr)/kl

− 0.5
1

]
(8)

where β j is given by (3). The resulting vector u = [
ux uy

]T
is then used to determine

the requested (dimensionless) linear and angular velocities using simple proportional
controllers (9) and (10), limited to forward movement and saturated at a reasonable
maximum within the operating range. These are passed to a motion controller that
computes the actual control signals.

v = kvuy 0 ≤ v ≤ vmax (9)

ω = kωux −ωmax ≤ ω ≤ ωmax (10)

3 Evaluation

To validate and evaluate the performance of our solution, we use a simulated equiva-
lent of our realworldwind tunnel, robots and related sensors. It is built aroundWebots
[23], a submicroscopic robotics simulator, configured and calibrated to approximate
real world behavior [17].

262 J.M. Soares et al.

Fig. 2 Simulation setup, with the source on the right and robots starting on the left. The plume is
shown in blue, and consists of filaments with growth rate γ = 4 × 10−7 m2 s−1. The wind flows
right-to-left. For ease of visualization, the filaments are drawn enlarged

3.1 Setup

The simulation arena, shown in Fig. 2, is a 20m × 4m plane. The robots start approx-
imately 14 m downwind (depending on the exact starting formation), and the source
is placed at the 1 m mark, centered.

Odor propagation is modeled using filaments and the wind flow is constant. We
use the built-in model of the Khepera III, and the wind, odor and range and bearing
mechanisms are based on those available to the real robots [18]. Details of the wind
and odor simulations are provided in the following subsections. Relative positioning,
in the form of range and bearingmeasurements, is provided to the robots with angular
error of 0.1 rad and range error of 10% of the distance, and is locally converted to
x − y coordinates.

Our simulation environment does not presently handle occlusion and always pro-
vides the range and bearing to every other robot. This is a significant limitation in the
case of line formations, where occlusions are the norm. We compensate by design-
ing the graph so that a robot only considers its two nearest neighbors in the desired
formation (or just the nearest, for robots at the ends). As measurements are noisy,
considering fewer neighbors leads to a less stable formation, and so our simulation
underestimates expected real-world formation control performance. It also hinders
the built-in collision avoidance mechanism, a problem not addressed in this work.
Source declaration is outside the scope of this paper, so simulations are terminated
by an external supervisor when the robots are in the vicinity of the source.

No attempt was made to maximize the robot movement speed and, consequently,
minimize themission completion time. Instead, the target speed is defined by the low-
level translation of |uw| = 1 into wheel speeds, and is of approximately 7 cm s−1.
The simulation step is 32ms. Communication is assumed perfect, althoughmoderate
packet loss can be tolerated with no substantial impact.

3.1.1 Wind Simulation and Sensing

A constant wind field of 1m s−1 was used, simulating laminar flow. The wind sensor
provides noisy wind velocity measurements, resulting of the sum of the (x, y, z)

A Graph-Based Formation Algorithm for Odor Plume Tracing 263

wind velocity at the position of the robot (w) with a vector of three independent
Gaussian random variables, N (0, σ 2

a).
As the wind field is constant, the magnitude of w is also constant and only its

orientation changes. The standard deviation of the Gaussian noise is set to σa =
0.1m s−1. This differs from the noise distribution of the real sensor, for which the
experimentally determined distribution of the direction noise is N (0, σ 2

d), σd = 4◦.

3.1.2 Odor Simulation and Sensing

The odor propagation implementation is based on the the filament-based model
proposed by Farrell et al. [7], and generates an intermittent plume similar to the one
observed in the wind tunnel. Odor is simulated as a set of filaments (i = 0, ..., N),
each containing a constant amount s = 8.3 × 109 of molecules. Each filament is
defined by its (x, y, z) position pi,t , and its width wi,t .

At each time step, the position of a filament is updated according to the wind flow
and a stochastic process vp, consisting of a vector of three independent Gaussian
random variables, N (0, σ 2

p), with σp = 0.1m. Molecular dispersion is modeled by
having the filament width increase with time while the peak concentration decreases.
The resulting evolution of the filaments is described by

pi,t+Δt = pi,t + a(pi,t)Δt + vp (11)

wi,t+Δt = wi,t + γ

2wi,t
(12)

The filament dispersion rate approximating the wind tunnel conditions was pre-
viously determined to be γ = 4 × 10−7m2 s−1. The virtual odor source releases 100
filaments per second with an initial width of wi,0 = 10 cm and initial position dis-
tributed over the circular area of the source. The odor concentration at time t and
position p is the sum of the concentration contribution of all filaments, which decays
exponentially with the increasing distance to the center of a filament, that is,

ct (p) =
N∑

i=0

s

w3
i,t

exp

(
−|p − pi,t |

w2
i,t

)
(13)

No noise is added to the measured concentration as the chemical-to-electrical
transduction noisy was observed to be negligible on the real platform [17]. The
samples are run through a sliding window filter, which outputs the highest amongst
the 50 most recent readings; in our simulation, this corresponds to a window of 1.6
s. This serves the dual purpose of emulating the approximately 1 s recovery time of
the physical sensor and of adding additional noise filtering.

264 J.M. Soares et al.

Fig. 3 Robot trajectories for a three-robot line formation in a plume with filament growth rate
γ = 10−3m2 s−1. Black lines connect the robot positions at intervals of approximately 35 s

Fig. 4 Control outputs v and ω for the center robot. Both are dimensionless quantities, converted
by a low level controller into the actual linear and angular speeds. The robots were parked waiting
for the first nonzero odor measurements during the first 11 s

3.2 Results

Experiments were run for multiple formation shapes in distinct plume conditions.
We provide the results for two illustrative formations: a three-robot line formation,
and a five-robot rectangular formation. The results presented here are the product of
single simulations, but representative of what was observed in multiple runs.

3.2.1 Line Formation

The first simulation was run using a three-robot linear formation, oriented along
the crosswind axis, corresponding to predefined biases bupwind = [

0 0 0
]T

and

bcrosswind = [
1 0 −1

]T
. This simulation uses a high filament growth rate γ =

10−3m2 s−1 to better highlight the adaptive formation spacing. For the same reason,
the robots start centered on the plume, in close proximity—this is not a requirement,
and the next section presents simulations with off-center starting positions.

Figure3 shows the trajectories negotiated by the three robots over a total time
of 180 s, overlapped with a snapshot of the simulation environment at an arbitrary
time. According to the odor concentrations measured, robots begin by widening the
formation and then successfully trace the limits of the plume to its source. At this
scale, the trajectories appear smooth, with no major disturbances.

A Graph-Based Formation Algorithm for Odor Plume Tracing 265

Fig. 5 Wind direction measurements z and Kalman estimate θ , relative to the front of the center
robot

Fig. 6 Odor measurements for robots 1 (left) and 2 (center). The red lines show the instant odor
measurements, and the black lines a sliding window maximum filtering. Note the different scales

In fact, looking at the control signals in Fig. 4, we can see that the controller is
very stable in the angular speed ω, but less so in the linear speed v, which shows a
standard deviation σ = 0.0762.

Closer analysis of the results shows that, in spite of the noisy wind and odor
measurements, the dominating noise present in the control outputs is introduced by
the formation control, a consequence of errors in the relative positions received from
the range and bearing module. Improvements could be realized by introducing a
Bayesian filter for neighbor tracking, and even further by broadcasting the control
outputs and wind direction estimate of each vehicle and using them to better predict
future relative positions. However, the fast rate of the sensor allows us to obtain good
results even in the absence of more involved strategies.

Given the central role the wind direction takes in our control law, measurement
error can have a significant impact on the performance. Figure5 shows the wind
direction measurements along the complete trajectory, as well as the Kalman filter
estimate of the true wind direction, a considerable improvement over the raw data.

Finally, we illustrate our statements about the intermittency of the odor plumewith
the recorded odor measurements from robots 1 (left) and 2 (center) in Fig. 6. While
the center robot reports higher odor readings, both series show high frequency and
high amplitude variation. The 50-slot sliding window maximum filter helps obtain
more relevant readings, but even its output is highly noisy. Nevertheless, the logistic

266 J.M. Soares et al.

Fig. 7 Square formation. The green lines over the robots represent instant wind velocity measure-
ments

Fig. 8 Max-filtered odor measurements for robots 1 (left, back) and 2 (left, front), and resulting
mean

response in centering and relatively limited changes in formation spacing are able to
minimize the impact of these variations.

3.2.2 Rectangular Formation

The rectangular formation is composed of five robots: four on the vertices and one
in the center of the rear edge. This corresponds to predefined biases bupwind =[
0 1 0 1 0

]T
and bcrosswind = [

1 1 0 −1 −1
]T
. An image of the formation is pro-

vided in Fig. 7. The robots start in two clusters on the sides of the tunnel, to showcase
the plume centering and formation control capabilities. Each robot is connected to
the two closest neighbors along the perimeter of the formation.

In contrast to the line formation, this one introduces spatial diversity in the upwind
direction. Robots along the same upwind line are able to average their readings, in
order to provide the aggregatemeasurement cl and cr , less affected by individual odor
packets. Figure8 shows a 60 s plot of the readings obtained by the two robots on the
left edge of the rectangle and the resulting mean value, used as input to the controller.
An additional benefit of upwind diversity, unexplored in this paper, is the possibility
of using comparatively simple formation-based source declaration mechanisms.

A Graph-Based Formation Algorithm for Odor Plume Tracing 267

Fig. 9 Robot trajectories for a square formation in a plume with growth rate γ = 4 × 10−7m2 s−1.
The trajectories of the forward robots are traced in blue, and those of the backward robots are traced
in red. Black lines connect the robot positions at intervals of approximately 35 s

The trajectories followed by the robots are presented in Fig. 9. The robots converge
to the desired formation and plume center in the first 30 s, and continue upwind along
the target trajectory. This simulation was run with the standard filament growth rate,
therefore no change in plume width is observable in this short distance.

4 Conclusions

This paper presented a formation-based controller for odor plume tracing that uses
multiple cooperating robots to trace a chemical plume to its source in laminar flow
conditions. Formation control is based on Laplacian feedback and is capable of
stabilizing arbitrary shapes. The formation geometry is adjusted over time to bet-
ter envelope the plume and its motion combines upwind movement and crosswind
alignment.

Simulations were performed to validate the performance of the algorithm, using
both a three-robot linear formation and a five-robot rectangular formation. The exper-
iments show that the algorithm can cope with noisy readings of wind direction, odor
intensity and relative positions and that, after converging to the desired positions, the
robots move along the centerline of the plume, tracing it to the source.

In the future, we plan to move from simulation to real-world experiments in
our wind tunnel, possibly introducing Bayesian filtering on the relative positions.
Afterwards, we will continue this work by further exploring the impact of different
formation shapes and wind conditions through systematic experimentation.

Acknowledgments This work was partially funded by project PEst-OE/EEI/LA0009/2013 and
grant SFRH/BD/51073/2010 from Fundação para a Ciência e Tecnologia. We sincerely thank Ali
Marjovi at DISAL for the detailed and constructive comments.

268 J.M. Soares et al.

References

1. Cabrita, G., Marques, L., Gazi, V.: Virtual cancelation plume for multiple odor source localiza-
tion. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5552–5558
(2013). doi:10.1109/IROS.2013.6697161

2. Cao, M.L., Meng, Q.H., Wang, X.W., Luo, B., Zeng, M., Li, W.: Localization of multiple
odor sources via selective olfaction and adapted ant colony optimization algorithm. In: IEEE
International Conference on Robotics and Biomimetics, pp. 1222–1227 (2013). doi:10.1109/
ROBIO.2013.6739631

3. de Croon, G., O’Connor, L., Nicol, C., Izzo, D.: Evolutionary robotics approach to odor source
localization. Neurocomputing 121, 481–497 (2013). doi:10.1016/j.neucom.2013.05.028

4. Dhariwal, A., Sukhatme, G., Requicha, A.: Bacterium-inspired robots for environmental moni-
toring. In: IEEE International Conference on Robotics and Automation, pp. 1436–1443 (2004).
doi:10.1109/ROBOT.2004.1308026

5. Distante, C., Indiveri, G., Reina, G.: An application of mobile robotics for olfactory mon-
itoring of hazardous industrial sites. Ind. Rob. Int. J. 36(1), 51–59 (2009). doi:10.1108/
01439910910924675

6. Falconi, R., Gowal, S., Martinoli, A.: Graph based distributed control of non-holonomic vehi-
cles endowed with local positioning information engaged in escorting missions. In: IEEE
International Conference on Robotics and Automation, pp. 3207–3214 (2010). doi:10.1109/
ROBOT.2010.5509139

7. Farrell, J.A., Murlis, J., Long, X., Li, W., Cardé, R.T.: Filament-based atmospheric dispersion
model to achieve short time-scale structure of odor plumes. Environ. Fluid Mech. 2(1–2),
143–169 (2002). doi:10.1023/A:1016283702837

8. Genovese, V., Dario, P., Magni, R., Odetti, L.: Self organizing behavior and swarm intelligence
in a pack of mobile miniature robots in search of pollutants. IEEE/RSJ Int. Conf. Intell. Rob.
Syst. 3, 1575–1582 (1992). doi:10.1109/IROS.1992.594225

9. Hartman, J.: A possible method for the rapid estimation of flavours in vegetables. Proc. Am.
Soc. Hort. Sci. 64, 335–342 (1954)

10. Hayes, A., Martinoli, A., Goodman, R.: Distributed odor source localization. IEEE Sens. J.
2(3), 260–271 (2002). doi:10.1109/JSEN.2002.800682

11. Ishida, H., Nakamoto, T., Moriizumi, T., Kikas, T., Janata, J.: Plume-tracking robots: a new
application of chemical sensors. Biol. Bull. 200(2), 222–226 (2001)

12. Jatmiko,W., Sekiyama, K., Fukuda, T.: A PSO-based mobile robot for odor source localization
in dynamic advection-diffusion with obstacles environment: theory, simulation and measure-
ment. IEEE Comput. Intell. Mag. 2(2), 37–51 (2007). doi:10.1109/MCI.2007.353419

13. Khalili, A., Rastegarnia, A., Islam, M.K., Yang, Z.: A bio-inspired cooperative algorithm for
distributed source localization with mobile nodes. In: Annual International Conference of
the IEEE Engineering in Medicine and Biology Society, pp. 3515–3518 (2013). doi:10.1109/
EMBC.2013.6610300

14. Kowadlo, G., Russell, R.A.: Robot odor localization: a taxonomy and survey. Int. J. Robot.
Res. 27(8), 869–894 (2008). doi:10.1177/0278364908095118

15. Li, J.G., Meng, Q.H., Wang, Y., Zeng, M.: Odor source localization using a mobile robot
in outdoor airflow environments with a particle filter algorithm. Auton. Rob. 30(3), 281–292
(2011). doi:10.1007/s10514-011-9219-2

16. Lilienthal, A., Duckett, T.: Experimental analysis of gas-sensitive Braitenberg vehicles. Adv.
Robot. 18(8), 817–834 (2004). doi:10.1163/1568553041738103

17. Lochmatter, T.: Bio-inspired and probabilistic algorithms for distributed odor source localiza-
tion using mobile robots. Ph.D. thesis 4628, EPFL (2010). doi:10.5075/epfl-thesis-4628

18. Lochmatter, T., Göl, E., Navarro, I., Martinoli, A.: A plume tracking algorithm based on cross-
wind formations. In: International Symposium on Distributed Autonomous Robotic Systems.
Springer Tracts in Advanced Robotics (2013), vol. 83, pp. 91–102 (2010). doi:10.1007/978-
3-642-32723-0_7

http://dx.doi.org/10.1109/IROS.2013.6697161
http://dx.doi.org/10.1109/ROBIO.2013.6739631
http://dx.doi.org/10.1109/ROBIO.2013.6739631
http://dx.doi.org/10.1016/j.neucom.2013.05.028
http://dx.doi.org/10.1109/ROBOT.2004.1308026
http://dx.doi.org/10.1108/01439910910924675
http://dx.doi.org/10.1108/01439910910924675
http://dx.doi.org/10.1109/ROBOT.2010.5509139
http://dx.doi.org/10.1109/ROBOT.2010.5509139
http://dx.doi.org/10.1023/A:1016283702837
http://dx.doi.org/10.1109/IROS.1992.594225
http://dx.doi.org/10.1109/JSEN.2002.800682
http://dx.doi.org/10.1109/MCI.2007.353419
http://dx.doi.org/10.1109/EMBC.2013.6610300
http://dx.doi.org/10.1109/EMBC.2013.6610300
http://dx.doi.org/10.1177/0278364908095118
http://dx.doi.org/10.1007/s10514-011-9219-2
http://dx.doi.org/10.1163/1568553041738103
http://dx.doi.org/10.5075/epfl-thesis-4628
http://dx.doi.org/10.1007/978-3-642-32723-0_7
http://dx.doi.org/10.1007/978-3-642-32723-0_7

A Graph-Based Formation Algorithm for Odor Plume Tracing 269

19. Marjovi, A., Marques, L.: Optimal swarm formation for odor plume finding. IEEE Trans.
Cybern. 99 (2014). doi:10.1109/TCYB.2014.2306291

20. Marques, L., Nunes, U., deAlmeida, A.T.: Olfaction-basedmobile robot navigation. Thin Solid
Films 418(1), 51–58 (2002). doi:10.1016/S0040-6090(02)00593-X

21. Marques, L., Nunes, U., Almeida, A.T.: Particle swarm-based olfactory guided search. Auton.
Rob. 20(3), 277–287 (2006). doi:10.1007/s10514-006-7567-0

22. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton
University Press, Princeton (2010)

23. Michel, O.: Webots: professional mobile robot simulation. Int. J. Adv. Rob. Syst. 1(1), 39–42
(2004). doi:10.5772/5618

24. Moncrieff, R.W.: An instrument for measuring and classifying odors. J. Appl. Physiol. 16(4),
742–749 (1961)

25. Pugh, J., Raemy, X., Favre, C., Falconi, R., Martinoli, A.: A Fast onboard relative positioning
module formultirobot systems. IEEE/ASMETrans.Mechatron. 14(2), 151–162 (2009). doi:10.
1109/TMECH.2008.2011810

26. Roberts, P.J.W., Webster, D.R.: Turbulent Diffusion. ASCE Press, Reston, Virginia (2002)
27. Rozas, R., Morales, J., Vega, D.: Artificial smell detection for robotic navigation. In: Inter-

national Conference on Advanced Robotics, pp. 1730–1733 (1991). doi:10.1109/ICAR.1991.
240354

28. Vergassola, M., Villermaux, E., Shraiman, B.I.: ‘Infotaxis’ as a strategy for searching without
gradients. Nature 445(7126), 406–409 (2007). doi:10.1038/nature05464

http://dx.doi.org/10.1109/TCYB.2014.2306291
http://dx.doi.org/10.1016/S0040-6090(02)00593-X
http://dx.doi.org/10.1007/s10514-006-7567-0
http://dx.doi.org/10.5772/5618
http://dx.doi.org/10.1109/TMECH.2008.2011810
http://dx.doi.org/10.1109/TMECH.2008.2011810
http://dx.doi.org/10.1109/ICAR.1991.240354
http://dx.doi.org/10.1109/ICAR.1991.240354
http://dx.doi.org/10.1038/nature05464

Multi-agent Visibility-Based
Target Tracking Game

Mengzhe Zhang and Sourabh Bhattacharya

Abstract In this paper, we address the problem of visibility-based target tracking
for a team of mobile observers trying to track a team of mobile targets. Based on
the results of previous work, the notion of pursuit fields around a single corner is
introduced. We use the pursuit fields to generate navigation strategies for a single
observer to track a single target in general environments. In order to tackle the case
when more than one observer or target is present in the environment, we propose
a two level hierarchical approach. At the upper level, the team of observers use a
ranking and aggregation technique for allocating each target to an observer. At the
lower level, each observer computes its navigation strategy based on the results of
the single observer-single target problem, thereby, decomposing a large multi-agent
problem into several 2-agent problems. Finally, we present a scalable algorithm that
can accommodate an arbitrary number of observers and targets. The performance of
this algorithm is evaluated based on simulation and implementation.

Keywords Multi-agent · Target tracking · Pursuit-evasion game

1 Introduction

Surveillance can be described as themonitoring of behavior, activities of other chang-
ing information. It includesmany application areas such as crime prevention, wildlife
monitoring, trafficmonitoring and industrial processes.Government and lawenforce-
ment utilize relevant technologies on maintaining social control, recognizing and
monitoring threats, and preventing criminal activities. Target tracking is a special
class of surveillance in which the objective is to track the current state of a dynamic
entity or an object of interest. Traditionally, sonar, radio [1] or infrared sensors [2]
are used for target tracking tasks. With the emergence of computer vision, visibility-

M. Zhang · S. Bhattacharya (B)
Iowa State University, Ames, USA
e-mail: sbhattac@iastate.edu

M. Zhang
e-mail: mengzhez@iastate.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_19

271

272 M. Zhang and S. Bhattacharya

based target tracking received a lot of interest in the research community. In [3],
the problem of maintaining visibility of a moving target is introduced. Authors pro-
pose algorithms for both predictable and unpredictable target, based on the received
information of target’s future actions. In our work, we consider the latter case. A cen-
tralized algorithm is proposed for a team of observers to track a team of targets. In
[4], a distributed control algorithm is suggested which utilizes the information from
vision sensors and communication. The algorithm also contains a mechanism which
can predict the minimum time before an observer loses its target. In [5], vision-based
object detection and tracking techniques are studied in depth for underwater robots.

There has been a considerable amount of research to address the single observer-
single target tracking problem.We only mention a few of them here. You can refer to
[6, 7] for an extensive review of previouswork in target tracking. In [8], authors intro-
duce a notion of escape risk and generates the escape-path tree for computing motion
strategy of the observer. The escape-path tree can be obtained by taking local mea-
surements and storing themost effective escape routes for a target to escape observer’s
field of view. In [9–11], stealth tracking problem is analyzed using vision sensors.
Risk function is formulated so that observer can determine its moving direction. In
[12], authors tackle the tracking task of a single evader in a dynamic environment.
The approach is carried out based on three separate components, namely, occlusion
advisor, collision advisor and decision maker. In [13], authors present a stochastic
approach to maintain a nominal distance between an unmanned aerial vehicle and
a ground-based moving target. The aforementioned works are different from ours
because they only consider the scenario of single observer and single target.

Recently, there has been some effort to address the problem when a team of
observers is deployed for the tracking task. In [14], authors utilize the local force
vectors that cause robots to be attracted to nearby targets, and to be repelled from
nearby robots.Adistributed heuristic approach is proposedbasedon the force vectors.
In [15], a new task assignment algorithm is presented which integrates area search
and target tracking. In [16–18], authors use a coarse deployment controller and
a target-following controller to control the robot deployment based on a region-
based approach. They present an algorithm that treats the densities of robots and
targets as properties of the environment in which they are embedded. In [19], authors
address the path planning of multiple robotic searchers to locate a non-adversarial
target. A scalable algorithm is proposed to solve the problem efficiently. In [20],
authors introduce aweighted visibility graph and propose an optimization framework
guaranteeing that each target is tracked by at least one single team member. In
[21], authors address the problem of tracking multiple unpredictable targets using
a distributed approach. The approach contains both local interaction algorithm and
target tracking algorithm. In [22], a switching strategy is proposed for tracking a
single target using mobile sensing agents that take bearings-only measurements. In
[23], authors model the cooperative localization and target tracking problem within
multiple agents as a least squares minimization problem. Their work shows that the
problem can be efficiently solved by sparse optimization methods. In [24], authors
suggest learning models for target tracking, and further propose a mechanism which
reduces the required communications among agents. However, the aforementioned

Multi-agent Visibility-Based Target Tracking Game 273

works do not consider the presence of obstacles in the environment. Since obstacles
occlude vision sensors, consideration of them are necessary and important to our
problem formulation.

The main contribution of the paper is to present a scalable algorithm for multi-
ple observers and targets that builds on the results of guaranteed tracking strategies
provided in [7] for single observer-single target tracking problem in simple environ-
ments which models the tracking task as a pursuit-evasion game [25]. An empirical
evidence of the efficacy of our algorithm is presented based on simulation results.
Finally, experimental results show the feasibility and effectiveness of the proposed
strategies.

This paper is outlined as follows. In Sect. 2, we present the problem formulation.
In Sect. 3, previous work about a cell decomposition of the workspace based on
strategies of the players is described, and the notion of pursuit fields is introduced.
In Sect. 4, we propose the moving strategies for pursuers within general polygonal
environment and a ranking and aggregate algorithm for allocating pursuers. In Sect. 5,
simulation and implementation results are provided tovalidate theproposed strategies
and algorithm. In Sect. 6, we present the conclusions.

2 Problem Description

Consider a planar environment containing polygonal obstacles and two teams of
mobile agents. One team of mobile agents, called the observers (pursuers), are
equipped with a vision sensor for surveillance. In this work, we assume that the
vision sensor mounted on top of each observer is an omni-directional camera hav-
ing an infinite range. Thus, the line-of-sight between the target and the observer
is assumed to be only obstructed by the presence of obstacles in the environment.
The objective of the team of observers is to track another team of mobile agents,
called the targets (evaders). We define the tracking as that each member in the target
team should be visible to at least one member in the observer team. Let Np and Ne

denote the numbers of pursuers and evaders, respectively. Throughout this paper, the
term “observer” will be used interchangeably with the term “pursuer”, and the term
“target” will be used interchangeably with the term “evader”.

Next, we describe themotionmodel for themobile agents. In thiswork,we assume
that all the agents have the following kinematic model

ẋ = u cos θ, ẏ = u sin θ, (1)

where (x, y) denotes the coordinate of the agent in the plane, and u denotes the
speed of agent. In this work, we assume that all agents in each team possess the
same maximum speed. So let vp and ve denote the maximum speed of the pursuer
and evader, respectively. Let a denote the ratio of their maximum speeds, i.e., a =
ve/vp. Next, we describe the common information available to agents in each team.
All agents in both teams are assumed to have a complete map of the environment,

274 M. Zhang and S. Bhattacharya

and are also assumed to know the exact positions of their team mates at all times,
including themselves. Finally, we assume that initially each evader is visible to at
least one pursuer.Given the initial positions of all the agents,we address the following
question:What should be the strategy for the team of pursuers to track all the evaders
for the maximum possible time?

In order to consider the worst-case scenarios, we assume that the evaders are
adversarial in nature, and try to minimize the time required to escape from the region
visible to the team of pursuers. For the simplest case, when all the agents have a
complete information about the positions of others, the assumption of an antagonistic
team of evaders leads to a two-person zero-sum differential game in between the
two teams. In [26], authors have presented a thorough investigation of the problem
for the special case when Np = Ne = 1. A complete solution is provided to the
problem for specific environments such as the environment containing a semi-infinite
obstacle having one corner. However, the complete solution to the aforementioned
case in general environments containing polygonal obstacles is still unknown [6]. In
this work, we extend previous work to propose algorithms for general environment
containing polygonal obstacles that can handle arbitrary number of observers and
targets. In the next section, we summarize the main results from [7].

3 Cell Decomposition Around a Corner

In [7], the authors pose the target-tracking problem as a pursuit-evasion game of
kind [27] in which the observer is modeled as a pursuer and the evader is modeled
as a target. The pursuer intends to maintain the line-of-sight to the target, and the
evader would like to break the line-of-sight in finite amount of time. The authors
present a cell decomposition of the workspace around a corner based on the strategy
used by the winner to ensure a successful outcome. Given the initial position of the
pursuer, Fig. 1 depicts the geometry of the individual cells or partitions, and Table1
provides the strategies for the winners. Figure2 depicts the same partitions computed

Fig. 1 The environment
partition with given pursuer
position. The pursuer wins
the game in all partitions
except for Region 1 (Blue
area)

Multi-agent Visibility-Based Target Tracking Game 275

Table 1 Policies for the winners

Evader policies Evader region Control law

A 1 and φe ∈ [α − π, π
2] ṙe(t) = −ve

1 and φe ∈ [π
2 , π + φp] ẏe(t) = −ve

Pursuer policies Evader region Control law

B 2, 4 ẏp(t) = vp

C 3 ut (t) = rp(t)
re(t)

|vt (t)|
ur (t) = − rp(t)

re(t)
|vr (t)|

D 5 ut (t) = vp

The evader wins the game when it is in region 1, otherwise the pursuer has winning strategies and
wins the game

Fig. 2 The partitions
computed by fixing evader
position

by fixing the position of the evader. The pursuer wins the game in all partitions except
for Region 1. However, the strategy used by the pursuer in Region 1 maximizes the
time for which it can keep the evader in sight irrespective of the evader’s strategy.

Based on the current position of the evader around the corner, the pursuer has an
optimal direction of motion that maximizes the time for which the evader is visible
depending on the partition in which it is placed. Since the optimal direction of motion
at a point can be denoted by a vector, we can generate a vector field in the environment
that defines the optimal direction of motion for the pursuer at any time instant. Since
the pursuer and the evader are mobile agents, the vector fields are time varying in
nature. We use the term Pursuit Fields to represent these vector fields. The pursuer
can navigate this time varying vector field to optimally track the evader. Figure3
shows the vector fields for a given position of the evader. Table2 provides the vector
fields generated by the evader in the partitions.

276 M. Zhang and S. Bhattacharya

Fig. 3 Pursuit fields with
given evader position

Table 2 Vector Fields for optimal navigation around a corner

Region Vector fields

1LU, 2RU cosα ∂
∂x − sin α ∂

∂y

1LD, 2RD cos θ ∂
∂x − sin θ ∂

∂y

1R − sin θ ∂
∂x + cos θ ∂

∂y

2R ∂
∂y

3 − sin θ ∂
∂x + cos θ ∂

∂y

4 ∂
∂y

5 1√
x2+y2

(− sin θ ∂
∂x + cos θ ∂

∂y)

∂
∂x and ∂

∂y represent the basis vectors of the tangent space at a given point

4 Extension to General Environments

4.1 Case 1: N p = Ne = 1

In this subsection, we use the results for a single corner in order to provide naviga-
tion strategies for the pursuer in general polygonal environments. From the previous
section, one can construct pursuit fields based on the position of the evader around
a corner. One can use the pursuit fields to generate pursuit strategies for environ-
ments containing multiple obstacles. A plausible way to do so is described next.
The presence of an evader in the environment generates a set of pursuit fields, each
corresponding to a corner visible to the pursuer around which the evader can escape.
In order to generate the guidance law for the pursuer, one can use different metrics
to obtain a resultant vector field from the set of pursuit fields. In this work, we use a
weighted summation of the individual pursuit fields in order to compute the resultant
vector field for pursuer navigation, i.e.,

v =
∑

|Ci |
wi vi , (2)

Multi-agent Visibility-Based Target Tracking Game 277

where Ci is the i th corner in the environment visible to the pursuer. The vector
w = [w1, . . . , wk] is called the Risk Vector. The i th element of the risk vector models
the relative risk of the evader breaking the line-of-sight with the pursuer around the
i th corner. Define di to be the distance between evader and the i th corner, we consider
the following metrics for measuring risk:

1. Equidistributed risk: wi = 1
k

2. Majority risk: wi = 1, where i = argmax 1
di

3. Proportional risk: wi = d−1
i∑

|C j | d−1
j

The equidistributed risk vector provides equal weight to all the corners visible to
the pursuer around which the evader can escape. The majority risk vector only takes
into account the pursuit field generated by the corner that is nearest to the evader.
The proportional risk vector assigns a weight to each corner that depends on the
proximity of the evader from the corner. Figure4 shows the vector fields that are
generated for an environment using the three different techniques. The strategy of
the pursuer at any given instant is to navigate along the vector field based on a chosen
risk vector. Figure5 shows the trajectories of the pursuer generated by the three risk

Fig. 4 Vector fields. a Equidistributed risk. b Majority risk. c Proportional risk

Fig. 5 Red dots stand for the trajectory of evader. Green, black and blue dots show the trajectories
of pursuers using equidistributed, majority and proportional risk, respectively. Three pursuers are
placed at the same place initially

278 M. Zhang and S. Bhattacharya

vectors for a fixed evader trajectory. In this paper, we do not compare the three
risk vectors because they reflect different situations and their performances largely
depend on the environment. Performing comparisons with different risk vectors will
be one direction of our future research.

4.2 Case 2: Np > 1, Ne > 1

In this section, we present an extension of the previous technique for the case Np > 1,
Ne > 1. Initially, we discuss the case when all the pursuers use the same risk function
to compute the risk associated with a team of targets, following which, we discuss
the case when each pursuer may have its own risk function.

First, let us analyze the case when all pursuers have the same risk function. For
a given pursuer and evader, one can compute the risk of evasion directly. For two
teams of pursuers and evaders, one can compute the risks associated with each pair
of pursuer and evader, and use the Hungarian algorithm [28] in order to compute the
minimum matching. When pursuer does not see the evader, the risk will be infinity.
This works perfectly if Np = Ne. If Np > Ne, we have some pursuers that remain
unassigned for the tracking task. In this case, there can be several ways to solve
the reassignment problem. In our implementation, for each pursuer that remains
unassigned, we let it stay stationary until it is included in the output of Hungarian
algorithm. On the other hand, if Np < Ne, there are some evaders that might not be
assigned to any pursuer. As long as they are visible to at least one pursuer, they are
being tracked by definition.

Next we discuss the case when all pursuers do not use the same risk function.
In this case, it is not possible to use the above technique since the values of risk
generated by all pursuers may not be comparable. In order to resolve this issue, we
propose a ranking and aggregation algorithm. Each pursuer ranks the evaders that are
in its field of view. Based on the risk function, pursuer i will have a sequence of risks
associated with each evader in its field of view. By sorting this sequence of risks, the
pursuer obtains a ranking for the evaders. Therefore, each pursuer will have a ranking
of the evaders in its visibility polygon. In order to aggregate the ranking obtained
from different pursuers, we use the Borda Count [29] corresponding to each evader.
In each ranking, points are allocated to an evader based on its position in the ranking.
Finally, the cumulative score for an evader is obtained by adding the points obtained
from all the rankings. All the evaders present in the environment can be ranked based
on this score. This provides an aggregation scheme to generate a unique ranking of
the evaders from the individual preference of the pursuers.

After the aggregation stage, pursuers are allocated to the evaders based on the final
scores obtained from the Borda Counts. First, we define S ∈ R

Np×Ne as follows:

Si j =
{
Borda Score of Evader j If evader j is visible to pursuer i

∞ If evader j is not visible to pursuer i
(3)

Multi-agent Visibility-Based Target Tracking Game 279

We apply Hungarian algorithm to S, and obtain an assignment minimizing the
total score. Based on the result, we allocate pursuers to the targets. If Np ≤ Ne,
we have a matching which leaves no pursuer unassigned. However, if Np > Ne, we
assign to each unassigned pursuer an evader that is in its field of view, and has the
maximum non-infinity Borda score. This reflects that the remaining pursuers try to
track the most risky evaders. The complete algorithm is presented in Algorithm 1.

Algorithm 1 Ranking and aggregation algorithm

1: call BordaCountMethod(ri j) and return score ∈ R
Ne and rank ∈ R

Ne

2: declare S ∈ R
Np×Ne

3: for i = 1 → Np do
4: for j = 1 → Ne do
5: if evader j is visible to pursuer i then
6: Si j = score j
7: else
8: Si j = ∞
9: end if
10: end for
11: end for
12: Apply Hungarian algorithm to S and assign pursuers accordingly
13: if Np > Ne then
14: for i = 1 → number of remaining pursuers do
15: for j = 1 → Ne do
16: if evader rank j is visible to pursuer i , and Sirank j �= ∞ then
17: Assign pursuer i to evader rank j ; break;
18: end if
19: end for
20: end for
21: end if
22: function BordaCountMethod(ri j)

23: declare score ∈ R
Ne and rank ∈ R

Ne

24: for i = 1 → Np do
25: Rank the i th row of ri j from high to low
26: for j = 1 → Ne do
27: scorek = scorek + (Ne − j) where k is the original column index of ri j
28: end for
29: end for
30: Rank score from high to low and save each element’s original index to rank
31: return score and rank

5 Simulation

In this section, we present the simulation results. Simulations are conducted within a
4000 units ×4000 units environment with rectangular obstacles. t1, t2 and t3 denote
the time for which the pursuers can track the evaders using the three risk vectors

280 M. Zhang and S. Bhattacharya

above. In our simulations, we choose a = 0.4 and vp = 100. The following simula-
tions are done for random initial positions of the agents with the constraint that every
evader is visible to at least one pursuer.

In the first simulation, we consider using the same risk function for computing
the risk of each pair of pursuer and evader. The risk function is described as follows

ri j =
∑

|Ck |
d−1

jk . (4)

whereCk is the kth corner which is visible to both pursuer i and evader j , d jk denotes
the distance between evader j and corner k. Figures6, 7 and 8 show the average values
of t1, t2 and t3 for 1000 simulations as we change the number of pursuers and evaders
in the environment. These histograms indicate that the proposed strategies offer
pursuers good tracking performances. When Np ≥ Ne, all the values of t1 are greater
than 50 time units. The minimum average value of t1 is 74.62 when Np = 1 and
Ne = 4, which shows that the strategies can still work when more evaders present. It
can be seen that t2 and t3 are much longer than t1, which indicates the performance
to some extent depends on the selected risk vector. Furthermore, as the number of

Fig. 6 Tracking time t1 of
pursuers using
equidistributed risk vector

Fig. 7 Tracking time t2 of
pursuers using majority risk
vector

Multi-agent Visibility-Based Target Tracking Game 281

Fig. 8 Tracking time t3 of
pursuers using proportional
risk vector

Fig. 9 Tracking time with
different allocations

agents increases, the variances between t1, t2 and t3 increase, which means using
different risk vectors has a growing influence on the tracking time.

In the second simulation, we consider the case of three pursuers using three
disparate risk functions. Figure9 shows the average tracking time of using ranking
and aggregation algorithm for 1000 simulations. As a reference, we arrange another
two teams of pursuers in the game. Each team has three pursuers, using the same
risk functions with the first team. Pursuers in one team are assigned randomly to
their visible targets, pursuers in the other team are assigned to the most risky evader
according to their own ranking results. When Ne = 1, all the teams of pursuers reach
the maximum time we count. But in the cases of multiple evaders, especially when
Np ≥ Ne, ranking and aggregation algorithm shows a better performance.

As shown in Fig. 10, implementations of above strategies with real robots are
done in a 4000 mm × 4000 mm plane. The results and videos can be found at http://
mengzhez.public.iastate.edu/Research/mvbttg.htm. The implementation results are
influenced by some practical factors such as robot calibration error and communica-
tion delay. But the experimental results mainly match the simulation results which
reflect the feasibility of proposed strategy in reality.

http://mengzhez.public.iastate.edu/Research/mvbttg.htm
http://mengzhez.public.iastate.edu/Research/mvbttg.htm

282 M. Zhang and S. Bhattacharya

Fig. 10 Implementation
set-up

6 Conclusion

In this paper, the problem of visibility-based target tracking for a team of mobile
observers trying to track a team of mobile targets was addressed. Initially, we intro-
duced the notion of pursuit fields for a single observer to track a single target around
a corner based on the results in [7]. We used the pursuit fields to generate navigation
strategies for a single observer. In order to tackle the scenario when more than one
observer or target is present, we proposed a hierarchical approach. At first a ranking
and aggregation technique was used for allocating each observer to a target. Sub-
sequently, each observer computed its navigation strategy based on the results of
the single observer-single target problem, thereby, decomposing a large multi-agent
problem into numerous 2-agent problems. Based on the aforementioned analysis,
we presented a scalable algorithm that can accommodate an arbitrary number of
observers and targets. The performance of this algorithm was evaluated based on
simulation and implementation. Future work includes considering other risk vec-
tors and making necessary comparisons in some specific environments. Also, other
methods will be considered for ranking and aggregation algorithm to improve the
tracking system.

References

1. Hollinger, G.A., Djugash, J., Singh, S.: Target tracking without line of sight using range from
radio. Auton. Rob. 32(1), 1–14 (2012)

2. Li, T.-H.S., Chang, S.-J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots
by using infrared sensors. IEEE Trans. Fuzzy Syst. 12, 491–501 (2004)

3. LaValle, S., Gonzalez-Banos, H., Becker, C., Latombe, J.-C.: Motion strategies for maintaining
visibility of a moving target. In: IEEE International Conference on Robotics and Automation,
Proceedings, vol. 1, pp. 731–736, Apr 1997

4. Kolling, A., Carpin, S.: Cooperative observation of multiple moving targets: an algorithm and
its formalization. Int. J. Robot. Res. 26(9), 935–953 (2007)

5. Lee, D., Kim, G., Kim, D., Myung, H., Choi, H.-T.: Vision-based object detection and tracking
for autonomous navigation of underwater robots. Ocean Eng. 48, 59–68 (2012)

Multi-agent Visibility-Based Target Tracking Game 283

6. Bhattacharya, S.,Hutchinson, S.:Approximation schemes for two-player pursuit evasion games
with visibility constraints. In: Proceedings of Robotics: Science and Systems IV, Zurich,
Switzerland, June 2008

7. Bhattacharya, S., Hutchinson, S.: A cell decomposition approach to visibility-based pursuit
evasion among obstacles. Int. J. Robot. Res. 30(14), 1709–1727 (2011)

8. Gonzalez-Banos, H., Lee, C.-Y., Latombe, J.-C.: Real-time combinatorial tracking of a target
moving unpredictably among obstacles. In: IEEE International Conference on Robotics and
Automation. Proceedings. ICRA ’02, vol. 2, pp. 1683–1690 (2002)

9. Bandyopadhyay, T., Li, Y., Ang, Jr., M.H., Hsu, D.: Stealth Tracking of anUnpredictable Target
Among Obstacles (2004)

10. Bandyopadhyay, T., Li, Y., Ang, Jr., M.H., Hsu, D.: A greedy strategy for tracking a locally pre-
dictable target among obstacles. In: IEEE International Conference on Robotics and Automa-
tion, ICRA 2006, Proceedings, pp. 2342–2347, May 2006

11. Bandyopadhyay, T., Hsu, D., Ang, J., Marcelo, H.: Motion strategies for people tracking in
cluttered and dynamic environments. In: Khatib, O., Kumar, V., Pappas, G. (eds.) Experimen-
tal Robotics, Springer Tracts in Advanced Robotics, vol. 54, pp. 463–472. Springer, Berlin
Heidelberg (2009)

12. Al-Bluwi, I., Elnagar, A.: Maintaining visibility of a moving target: maximizing escape time
versus exposure time. In: 11th InternationalConferenceonControlAutomationRoboticsVision
(ICARCV), pp. 982–987, Dec 2010

13. Anderson, R., Milutinovic, D.: A stochastic approach to dubins feedback control for target
tracking. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 3917–3922, Sept 2011

14. Parker, L.: Distributed algorithms for multi-robot observation of multiple moving targets.
Auton. Rob. 12(3), 231–255 (2002)

15. Frew, E.W., Elston, J.: Target assignment for integrated search and tracking by active robot
networks. In: Proceedings of the 2008 IEEE International Conference onRobotics andAutoma-
tion, Pasadena, CA, pp. 2354–9, May 2008

16. Jung, B., Sukhatme, G.: Tracking targets using multiple robots: the effect of environment
occlusion. Auton. Rob. 13(3), 191–205 (2002)

17. Jung, B., Sukhatme, G.: Cooperative multi-robot target tracking. In: Gini, M., Voyles, R. (eds.)
Distributed Autonomous Robotic Systems, vol. 7, pp. 81–90. Springer, Japan (2006)

18. Jung, B., Sukhatme, G.: Real-time motion tracking from a mobile robot. Int. J. Soc. Robot.
2(1), 63–78 (2010)

19. Hollinger, G., Singh, S., Djugash, J., Kehagias, A.: Efficient multi-robot search for a moving
target. Int. J. Robot. Res. 28(2), 201–219 (2009)

20. Derenick, J., Spletzer, J., Hsieh, A.: An optimal approach to collaborative target tracking with
performance guarantees. J. Intell. Rob. Syst. 56(1–2), 47–67 (2009)

21. Lee, G., Chong, N., Christensen, H.: Tracking multiple moving targets with swarms of mobile
robots. Intell. Serv. Robot. 3(2), 61–72 (2010)

22. Wu, W., Zhang, F.: A switching strategy for target tracking by mobile sensing agents. J. Com-
mun. 8(1), 47–54 (2013)

23. Ahmad, A., Tipaldi, G., Lima, P., Burgard, W.: Cooperative robot localization and target track-
ing based on least squares minimization. In: IEEE International Conference on Robotics and
Automation (ICRA), pp. 5696–5701, May 2013

24. Xu, Z., Fitch, R., Sukkarieh, S.: Decentralised coordination of mobile robots for target tracking
with learnt utility models. In: IEEE International Conference on Robotics and Automation
(ICRA), pp. 2014–2020, May 2013

25. Chung, T., Hollinger, G., Isler, V.: Search and pursuit-evasion in mobile robotics. Auton. Rob.
31(4), 299–316 (2011)

284 M. Zhang and S. Bhattacharya

26. Bhattacharya, S., Candido, S., Hutchinson, S.: Motion strategies for surveillance. In: Proceed-
ings of Robotics: Science and Systems, Atlanta, GA, USA, June 2007

27. Isaacs, R.: Differential Games: A Mathematical Theory with Applications to Warfare and
Pursuit, Control and Optimization. Dover Publications, Mineola (1965)

28. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logistics Quart.
2, 83–97 (1955)

29. Emerson, P.: The original borda count and partial voting. Soc. Choice Welf. 40(2), 353–358
(2013)

Glider CT: Analysis and Experimental
Validation

Dongsik Chang, Wencen Wu and Fumin Zhang

Abstract Underwater gliders are robust ocean sensor platforms characterized by
high reliability and endurance. Because of their relatively low speed, the motion
of underwater gliders is strongly affected by the ocean current, providing data to
estimate the depth averaged flow velocity. The glider computerized tomography
(Glider CT) algorithm reconstructs a depth-averaged flow field from the navigation
errors accumulated along the glider trajectories. This paper justifies the convergence
of the Glider CT algorithm as a row action method solving nonlinear equations
previously used for bent-ray ultrasonic CT. The paper also validates the algorithm
through experiments where the horizontal motion of underwater gliders under flow
is imitated by mobile robots in an indoor lab setting. Both theoretical analysis and
experimental results suggest Glider CT as a promisingmethod for marine operations.

Keywords Flow field reconstruction · Underwater gliders

1 Introduction

The underwater glider has found a broad range of applications such as oil field sur-
veys, military operations, and deep-sea and coastal research [10, 13]. The sampling
and monitoring performance of gliders significantly relies on the navigation per-
formance of gliders. Because of their relatively low speed, the motion of gliders is
sensitive to the ocean current. Therefore, control systems [3, 4, 11] and algorithms
[5, 17], and path planning algorithms [3, 4, 15] have been developed to navigate
gliders through ocean flow with improved performance.

D. Chang (B) · F. Zhang
Georgia Institute of Technology, Atlanta, USA
e-mail: dsfrancis3@gatech.edu

F. Zhang
e-mail: fumin@gatech.edu

W. Wu
Rensselaer Polytechnic Institute, Troy, USA
e-mail: wuw8@rpi.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_20

285

286 D. Chang et al.

The primary means of localization for underwater gliders is the global positioning
system (GPS) [7]. However, since GPS signals cannot propagate through sea water,
gliders estimate their underwater positions via dead-reckoning between regular sur-
facing events for GPS updates. Because gliders swim at relatively low speed, their
trajectories are strongly perturbed by the ocean current. Hence, we can typically
observe a difference between the dead-reckoning and actual surfacing positions of a
glider. We refer to this difference as a dead-reckoning error. To mitigate the dead-
reckoning error, a glider computes an estimate of average flow velocity along the
trajectory between the last and current surfacing positions, and incorporates the flow
estimate into navigation until the following surfacing event [8]. However, the esti-
mate does not account for the temporal/spatial variations of the flow field during
navigation, and our recent work [3] emphasized the importance of incorporating
such variations into navigation algorithms in field deployments.

In [2, 3], we proposed efficient methods for real-time ocean current modeling
based on estimates of flow from underwater gliders to improve navigation perfor-
mance. The method in [3] first approximates slowly-varying non-tidal flow from
glider-derived flow estimates and then adds rapidly-varying tidal flow from an tidal
ocean model to the non-tidal flow. However, since the non-tidal flow in the method
is empirically estimated from only glider-derived flow estimates, its accuracy is
limited to a local area around each glider. The method in [2] approximates ocean
currents using spatial and temporal basis functions. The ocean model constructed
there requires historic data, such as HF-radar observation data or general circulation
model output data, to initialize. Once initialized, the model is updated based on the
flow estimates from a group of gliders in real-time and provides ocean current data
at higher resolution than existing approaches.

In our previous work in [16], we developed the glider computerized tomography
(Glider CT) algorithm that reconstructs the spatial distribution of a depth-averaged
flow field with no a priori knowledge of the field. Glider CT is named after CT,
which reconstructs an image of the internal structure of an object from signals (e.g.,
X-rays) that are projected onto the object. A typical setup of CT has the transmitters
and receivers of signals around an object. The transmitters emit signals onto an
object, and while penetrating the object, the signals attenuate. Then, the remaining
strength of the signals is measured at the receivers. Based on the signal paths and
the measured signal strengths attenuated along the paths, an image of the object
is reconstructed. In a similar way to CT, Glider CT reconstructs a flow field from
the trajectories and dead-reckoning errors of gliders. We draw analogies between
signal paths of CT and glider trajectories of Glider CT and between measured signal
strengths attenuated along the signal paths and dead-reckoning errors accumulated
along the glider trajectories.

The structure of the Glider CT algorithm is very similar to a general CT recon-
struction algorithm for bent ultrasound-rays [14]. In this paper, we extend our work
in [16] by analyzing the Glider CT algorithm and providing a convergence proof,
which is applicable to the method in [14] as well. Our algorithm solves a specific
type of nonlinear systems of equations by extending the Kaczmarz method for linear
equations. The Kaczmarz method is one of the row-action methods [1]. Convergence

Glider CT: Analysis and Experimental Validation 287

results have previously been obtained [6, 9] regarding various Kaczmarz-type meth-
ods for nonlinear equations. The glider CT algorithm can be viewed as one special
case of these methods, and our proof of convergence adds to the collection.

In addition to the convergence analysis, this paper provides experimental results
demonstrating the Glider CT algorithm. We imitate the horizontal motion of under-
water gliders under a flow field using Khepera III robots under a simulated flow field.
We place a light source in a target domain and simulate a flow field based on light
intensity. By applying the dead-reckoning technique of gliders, we estimate the dead-
reckoning trajectories of Khepera III robots. We control the motion of Khepera III
robots as if their trajectories are affected by the simulated flow field. Since the actual
underwater trajectories of gliders are unknown because of unavailable GPS signals
underwater, we treat the trajectories of Khepera III robots as unknown. Only the
starting and ending positions of the robots are used to compute the dead-reckoning
error. Then, we apply the Glider CT algorithm to reconstruct the simulated flow field.
The experimental results show a promising performance of the algorithm in practical
settings.

The rest of the paper is organized as follows. Section2 provides background
information about underwater glider navigation, and Sect. 3 reviews our preliminary
work on the Glider CT algorithm. In Sects. 4 and 5, we analyze the details of Glider
CT and prove the convergence of the algorithm, respectively. Section6 validates the
algorithm through experiments, and Sect. 7 concludes the paper.

2 Background: Underwater Glider Navigation

An underwater glider regularly comes to the surface of water for GPS updates and
data transfer. Between two surfacing events, glider navigation consists of two phases:
surface and subsurface.We denote the actual and dead-reckoning positions of a glider
at time t by r(t) and r̃(t), respectively. We also denote the time associated with the
kth surfacing and diving events by t s

k and td
k , respectively. Figure1 illustrates glider

navigation from the (k − 1)th diving event to the kth diving event.
In this paper, we deal with the glider and the flow in the horizontal plane. Suppose

we navigate a glider towards a waypoint during the kth subsurface phase. Before
it dives, the glider computes its heading θk towards the waypoint. Then, the glider
dives at r(td

k−1) and navigates underwater until it reaches the waypoint by dead-
reckoning, which estimates the position r̃(t) of the glider using estimates of glider
speed, compass heading, and flow velocity. Because of the influence of flow, when
the glider comes back to the surface of water at the kth surfacing event, the glider
experiences the dead-reckoning error, which is the difference between the dead-
reckoning surfacing position r̃(t s

k) and the GPS surfacing position r(t s
k).

Upon the kth surfacing event, a glider computes an estimate of average flow
velocity along the glider trajectory based on the dead-reckoning error accumulated
over the (k − 1)th subsurface phase. This glider-derived flow estimate can be either
incorporated into navigation to reduce the dead-reckoning error or deactivated so

288 D. Chang et al.

Fig. 1 Glider navigation
during the (k − 1)th
subsurface phase followed
by the kth surface phase. The
figure shows the actual (blue
dashed line) and
dead-reckoning (blue solid
line) trajectories of a glider.
The dead-reckoning error is
shown as a red arrow

that no flow estimate is used in navigation. Let us introduce a switching signal If to
indicate whether the estimated flow is used for navigation or not. The signal If = 1
indicates that the estimated flow is used for navigation and 0, otherwise. Then, the
glider-derived flow estimate at the kth surfacing event is given by

f̄k = f̄k−1 If + r(t s
k) − r̃(t s

k)

t s
k − td

k−1

, (1)

which combines the previous flow estimate used to navigate over the (k − 1)th sub-
surface phase with the new flow estimate based on the dead-reckoning error accu-
mulated during the (k − 1)th subsurface phase.

To describe the motion of a glider in the plane, we use a particle model with a
constant through-water speed sh. The position of a glider along the dead-reckoning
trajectory between the kth and (k + 1)th surfacing events can be predicted by inte-
grating the following equation over time:

˙̃r(t) = sh

[
cos θk

sin θk

]
+ f̄k If. (2)

However, the real flow experienced by a glider may be different from the glider-
estimated flow. Hence, the actual trajectory can be described by integrating the fol-
lowing equation over time:

ṙ(t) = sh

[
cos θk

sin θk

]
+ f(r, t) = ˙̃r(t) + f(r, t) − f̄k If, (3)

which is usually unknown because of the unknown flow velocity f(r, t).

Glider CT: Analysis and Experimental Validation 289

3 Preliminary Work: Problem Formulation of Glider CT

The Glider CT problem is formulated from the fact that the dead-reckoning error
accumulated along the glider trajectory is determined by a line integral of the differ-
ence between real flow experienced by the glider and glider-estimated flow incorpo-
rated in navigation. Suppose we deploy m gliders in the ocean and consider glider
navigation over one subsurface phase only. Hereafter, we drop the subscript index
k for the surfacing events and use the subscript index i = {1, . . . , m} for the glid-
ers for simplicity. After each glider finishes one subsurface phase, we will obtain a
dead-reckoning error di and a glider-derived flow estimate f̄i from each glider. The
dead-reckoning error accumulates over one subsurface phase, and from Eqs. (2) and
(3), it is given by

di =
∫ t s

i

td
i

(
ṙi (τ) − ˙̃ri (τ)

)
dτ =

∫ t s
i

td
i

f(ri)dτ − f̄ · If
(
t s
i − td

i

)
, (4)

in which td
i and t s

i are the diving and surfacing times of the i th glider. We introduce
arc-length parameter l of the trajectory, given by

dl = strdt, (5)

in which str is the speed of the glider along its actual trajectory, which satisfies

str(ri) = ‖ṙi‖ =
∥∥∥∥sh

[
cos θi

sin θi

]
+ f(ri)

∥∥∥∥ . (6)

Substituting Eqs. (5) and (6) into Eq. (4), we derive

di =
∫

C

1

str(ri)
f(ri)dl − f̄ · If

(
t s
i − td

i

)
. (7)

Since the second term on the right side of the equation is known, for simplicity we let
If = 0 throughout the paper. However, our results apply to the general case without
requiring If = 0.

Suppose we navigate gliders in area A. Let us discretize A into R × S grids
with A(r,s) referring to the (r, s)th grid. We denote the flow velocity in each cell by
f j , j = {1, . . . , n = RS}. Indices j , r , and s satisfy j = (r − 1)S + s. For the i th
glider passing through the j th grid, we denote the length of the trajectory in the
cell by L(i, j). Since we have a constant flow in each grid, the glider speed along the
trajectory is given by

s(i, j)
tr (f j) =

∥∥∥∥sh

[
cos θi

sin θi

]
+ f j

∥∥∥∥ .

290 D. Chang et al.

We assume that the horizontal projection of the glider trajectory is straight and the
heading θi is constant along the trajectory. Then, the discretized version of Eq. (7)
with If = 0 is

di =
n∑

j=1

L(i, j)

s(i, j)
tr (f j)

f j , i = {1, . . . , m}.

Now, consider the flow velocity along the x and y directions separately. For
i = {1, . . . , m}, we can write

dx,i =
n∑

j=1

L(i, j)

s(i, j)
tr (f j)

fx, j , dy,i =
n∑

j=1

L(i, j)

s(i, j)
tr (f j)

fy, j . (8)

By introducing vectors dx = [dx,1, dx,2, . . . , dx,m]T , dy = [dy,1, dy,2, . . . , dy,m]T ,
fx = [fx,1, fx,2, . . . , fx,n]T , and fy = [fy,1, fy,2, . . . , fy,n]T , we can rewrite Eq. (8) as

dx = L(f)fx , dy = L(f)fy, (9)

where

L(f) =

⎡

⎢⎢⎣

L(1,1)

s(1,1)
tr (f1)

. . .
L(1,n)

s(1,n)

tr (fn)

...
. . .

...
L(m,1)

s(m,1)
tr (f1)

. . .
L(m,n)

s(m,n)

tr (fn)

⎤

⎥⎥⎦ , (10)

which is nonlinear and typically underdetermined (m < n). By solving Eq. (9) for fx

and fy , we can estimate flow.

4 Analysis of Glider CT

To solve the underdetermined and nonlinear system of equations in Eq. (9), we devel-
oped the Glider CT algorithm (Algorithm 1) that iteratively updates a solution to the
equations with relaxation parameter λ(k,i−1). The relaxation parameter affects the
convergence rate of the algorithm, and for simplicity, we assume λ(k,i−1) = 1, ∀k, i
here. Let us omit x and y in the system for now. Given a nonlinear system

L(f)f = d, (11)

where

L(f) =
⎡

⎢⎣
L1(f)

...

Lm(f)

⎤

⎥⎦ , f =
⎡

⎢⎣
f1
...

fn

⎤

⎥⎦ , d =
⎡

⎢⎣
d1
...

dm

⎤

⎥⎦ ,

Glider CT: Analysis and Experimental Validation 291

the Glider CT algorithm finds a solution to the system equations in an iterative way.

For the kth iteration, let f (k,0) =
(

f (k,0)
1 , f (k,0)

2 , . . . , f (k,0)
n

)T
be the initial solution,

and let us divide a new solution into m sequences given by

f (k,1) =
(

f (k,1)
1 , f (k,1)

2 , . . . , f (k,1)
n

)T
,

...

f (k,m) =
(

f (k,m)
1 , f (k,m)

2 , . . . , f (k,m)
n

)T
.

Since the system (11) is underdetermined, there may exist infinitely many solutions.
Suppose given f (k,i−1), we want to update solution f (k,i) to the system in the form of

f (k,i) = f (k,i−1) + αi
(
Li (f (k,i−1))

)T
, i = {1, . . . , m}, (12)

which updates the solution by adding
(
Li (f (k,i−1))

)T
weighted by αi sequentially

from i = 1 to m for the kth iteration.

Algorithm 1: Glider CT
Data: Dead-reckoning errors di , i = {1, . . . , m}

1 Set k = 0. Make an initial guess of the solution f (k+1,0)
x and f (k+1,0)

y .
2 repeat
3 Let k = k + 1.
4 for i = 1 to m do
5 Update the solution by

f (k,i)
x = f (k,i−1)

x + λ(k,i−1) dx,i − Li (f (k,i−1))f (k,i−1)
x

‖Li (f (k,i−1))‖2
(

Li (f (k,i−1))
)T

,

f (k,i)
y = f (k,i−1)

y + λ(k,i−1) dy,i − Li (f (k,i−1))f (k,i−1)
y

‖Li (f (k,i−1))‖2
(

Li (f (k,i−1))
)T

.

6 end

7 Let f (k+1,0)
x = f (k,m)

x and f (k+1,0)
y = f (k,m)

y .
8 until a stopping condition is met

Let us define a residual term

r (k,i−1)(f) = Li (f (k,i−1))f − di . (13)

To find αi in Eq. (12), we let r (k,i−1)(f) = 0 at f = f (k,i) and substitute Eq. (12) into
Eq. (13), which yields

Li (f (k,i−1))f (k,i−1) + Li (f (k,i−1))
(
Li (f (k,i−1))

)T
αi − di = 0.

292 D. Chang et al.

Assuming Li LT
i �= 0, the equation has the unique solution

αi = di − Li (f (k,i−1))f (k,i−1)

Li (f (k,i−1))
(
Li (f (k,i−1))

)T = di − Li (f (k,i−1))f (k,i−1)

‖Li (f (k,i−1))‖2 . (14)

Substituting Eq. (14) into Eq. (12), we have

f (k,i) = f (k,i−1) + di − Li (f (k,i−1))f (k,i−1)

‖Li (f (k,i−1))‖2
(
Li (f (k,i−1))

)T
, (15)

which is used to update the solution in Algorithm 1 with λ(k,i−1) = 1. Once we have
f (k,m), we obtain the initial sequence for the (k + 1)th iteration by f (k+1,0) = f (k,m).

5 The Convergence of the Glider CT Algorithm

Given a nonlinear system (11), we claim that the solution to the system equa-

tions derived from the Glider CT algorithm f (k,i) =
(

f (k,i)
1 , f (k,i)

2 , . . . , f (k,i)
n

)
, k =

{1, 2, . . .}, i = {1, . . . , m} converges to the true solution f∗ = (
f ∗
1 , f ∗

2 , . . . , f ∗
n

)
.

Suppose there exists a ball B(f∗, δ) around f∗ with radius δ > 0 where the follow-
ing two assumptions hold for all f ∈ B(f∗, δ):

Assumption 1 Li (f) is Lipschitz continuous for all i with the largest Lipschitz
constant γ , i.e., given Lipschitz constant γi > 0 for Li (f), i = {1, . . . , m}, γ =
maxi γi .

Assumption 2 There exists ε > 0 that satisfies the following:

(1) λmax
(
I − L+

i (f)Li (f)
)

< 1 − ε for all i , where λmax(·) is the largest eigenvalue,
(2)

γ ‖f∗‖
‖Li (f)‖ <

√
ε for all i .

Let us define L+
i (f) = Li (f)T

‖Li (f)‖2 , referred to as the pseudoinverse of Li (f) in this paper.

Lemma 1 L+
i (f) satisfies the following four conditions for the Moore-Penrose

pseudoinverse [12]:

1. Li (f)L+
i (f)Li (f) = Li (f)

2. L+
i (f)Li (f)L+

i (f) = L+
i (f)

3. (Li (f)L+
i (f))T = Li (f)L+

i (f)
4. (L+

i (f)Li (f))T = L+
i (f)Li (f)

Proof By simply substituting L+
i (f) into the above four conditions, we can show

that Lemma 1 holds. �

Glider CT: Analysis and Experimental Validation 293

Let us denote the Euclidean distance between p and q by dist(p, q). In the following
theorem, we prove the convergence of the Glider CT algorithm.

Theorem 1 Suppose there exists a ball B(f∗, δ) around f∗ with radius δ > 0 where
Assumptions 1 and 2 hold. Starting from any initial point f (1,0) within the ball, e.g.,
dist(f∗, f (1,0)) < δ, the sequence f (k,i) generated by Algorithm 1 converges to f∗.

Proof Let us define an error term e(k,i) = f (k,i) − f∗. By subtracting f∗ from the both
sides of Eq. (15) and substituting L+

i (f) and r (k,i−1)(f (k,i−1)), we have

e(k,i) = e(k,i−1) − L+
i (f (k,i−1))r (k,i−1)(f (k,i−1)), i = {1, . . . , m},

The square of the Euclidean norm of the error is

〈
e(k,i), e(k,i)

〉 = 〈
e(k,i−1), e(k,i−1)

〉 − 2
〈
L+

i (f (k,i−1))r (k,i−1)(f (k,i−1)), e(k,i−1)
〉

+ 〈
L+

i (f (k,i−1))r (k,i−1)(f (k,i−1)), L+
i (f (k,i−1))r (k,i−1)(f (k,i−1))

〉
. (16)

Since di = Li (f∗)f∗, we can express residual r (k,i−1)(f (k,i−1)) as

r (k,i−1)(f (k,i−1)) = Li (f (k,i−1))f (k,i−1) − di

= Li (f (k,i−1))f (k,i−1) − Li (f∗)f∗

= Li (f (k,i−1))f (k,i−1) − Li (f (k,i−1))f∗ + Li (f (k,i−1))f∗ − Li (f∗)f∗

= Li (f (k,i−1))e(k,i−1) + h(k,i−1)f∗, (17)

where we define h(k,i−1) = Li (f (k,i−1)) − Li (f∗). By substituting r (k,i−1)(f (k,i−1)) in
Eq. (17) into Eq. (16), we have

〈
e(k,i), e(k,i)

〉 = 〈
e(k,i−1), e(k,i−1)

〉 − 2
〈
L+

i (f (k,i−1))h(k,i−1)f∗, e(k,i−1)
〉

− 2
〈
L+

i (f (k,i−1))Li (f (k,i−1))e(k,i−1), e(k,i−1)
〉

+ 〈
L+

i (f (k,i−1))Li (f (k,i−1))e(k,i−1), L+
i (f (k,i−1))Li (f (k,i−1))e(k,i−1)

〉

+ 2
〈
L+

i (f (k,i−1))h(k,i−1)f∗, L+
i (f (k,i−1))Li (f (k,i−1))e(k,i−1)

〉

+ 〈
L+

i (f (k,i−1))h(k,i−1)f∗, L+
i (f (k,i−1))h(k,i−1)f∗〉 .

(18)
By the property of the inner product and Lemma 1, the fourth and fifth terms on the
right side of Eq. (18) become

〈
L+

i (f (k,i−1))Li (f (k,i−1))e(k,i−1), L+
i (f (k,i−1))Li (f (k,i−1))e(k,i−1)

〉

=
〈(

L+
i (f (k,i−1))Li (f (k,i−1))

)T
L+

i (f (k,i−1))Li (f (k,i−1))e(k,i−1), e(k,i−1)
〉

= 〈
L+

i (f (k,i−1))Li (f (k,i−1))e(k,i−1), e(k,i−1)
〉

(19)

294 D. Chang et al.

and

〈
L+

i (f (k,i−1))h(k,i−1)f∗, L+
i (f (k,i−1))Li (f (k,i−1))e(k,i−1)

〉

=
〈(

L+
i (f (k,i−1))Li (f (k,i−1))

)T
L+

i (f (k,i−1))h(k,i−1)f∗, e(k,i−1)
〉

= 〈
L+

i (f (k,i−1))h(k,i−1)f∗, e(k,i−1)
〉
, (20)

respectively. By substituting Eqs. (19) and (20) into Eq. (18), we have

〈
e(k,i), e(k,i)

〉 = 〈(
I − L+

i (f (k,i−1))Li (f (k,i−1))
)

e(k,i−1), e(k,i−1)
〉

+ 〈
L+

i (f (k,i−1))h(k,i−1)f∗, L+
i (f (k,i−1))h(k,i−1)f∗〉 .

(21)

Let us define 〈x, y〉G = 〈Gx, y〉 as an inner product of x, y ∈ R
n induced by matrix

G and ‖x‖G = √〈x, x〉G as a norm of x ∈ R
n induced by 〈·, ·〉G . Then, Eq. (21) can

be rewritten as

‖e(k,i)‖2 = ‖e(k,i−1)‖2
(I−L+

i (f (k,i−1))Li (f (k,i−1)))
+ ‖L+

i (f (k,i−1))h(k,i−1)f∗‖2.

Since Li (f) is Lipschitz continuous,

‖h(k,i−1)‖ = ‖Li (f (k,i−1)) − Li (f∗)‖ ≤ γ ‖f (k,i−1) − f∗‖ = γ ‖e(k,i−1)‖,

in which γ is the Lipschitz constant in Assumption 1. Then, we have

‖e(k,i)‖2 ≤ λmax
(
I − L+

i (f (k,i−1))Li (f (k,i−1))
) ‖e(k,i−1)‖2

+ γ 2‖L+
i (f (k,i−1))‖2‖e(k,i−1)‖2‖f∗‖2.

Since L+
i (f (k,i−1)) = Li (f (k,i−1))T

‖Li (f (k,i−1))‖2 , ‖L+
i (f (k,i−1))‖2 = 1

‖Li (f (k,i−1))‖2 , which gives

‖e(k,i)‖2 ≤
(

λmax
(
I − L+

i (f (k,i−1))Li (f (k,i−1))
) + γ 2‖f∗‖2

‖Li (f (k,i−1))‖2
)

‖e(k,i−1)‖2

= ν(k,i−1)‖e(k,i−1)‖2 k = {1, 2, . . .}, i = {1, . . . , m}, (22)

where e(k,i) = f∗ − f (k,i). Since we set the initial solution for each iteration to be the
last sequence of the solution from the previous iteration, e.g., f (k+1,0) = f (k,m) for the
(k + 1)th iteration, we can express Eq. (22) as ‖es‖2 ≤ νs−1‖es−1‖2, where s = (k −
1)m + i corresponds to (k, i). Since f (1,0) = f0 ∈ B(f∗, δ)whereAssumptions 1 and
2 hold, ν0 < 1, and therefore f1 ∈ B(f∗, δ). This applies to the following iterations
sequentially, which leads to ν1, ν2, . . . < 1 and f2, f3, . . . ∈ B(f∗, δ). Therefore,
starting from f (1,0) ∈ B(f∗, δ), we have ν(k,i) < 1 and f (k,i) ∈ B(f∗, δ) for all k and
i . Hence, e(k,i) → 0, and f (k,i) → f∗. �

Glider CT: Analysis and Experimental Validation 295

6 Experimental Results

We validate the Glider CT algorithm through experiments using Khepera III robots.
The experimental setup is shown in Fig. 2a. The starting and ending positions of
robots are identified by a camera installed on top of the experimental domain. Even
though the actual trajectory of a robot is observable through the camera, we treat
the nominal trajectory of a robot as unknown to us since the underwater trajectory
of a glider is unknown in glider operations. To construct a flow field, we place a
light source at the left bottom corner (x, y) = (0, 0) of a domain and simulate a 2-D
flow field such that all the flow vectors are in the direction of [1√

2
, 1√

2
]T and their

magnitudes are scaled by the light intensity throughout the domain shown in Fig. 2b.
The intensity of ambient light around Khepera III robots is measured by 9 IR sensors
located on the side of each robot. The measurements of the light intensity range from
0 to Imax = 4096, where a lower value indicates higher light intensity.

The horizontal motion of underwater gliders is imitated using Khepera III robots
under a simulated flow field. Given an initial heading θ of a robot, its dead-reckoning
trajectory is computed by integrating the dead-reckoning motion of gliders in Eq. (2).
As discussed in Sect. 3, we set If = 0. The nominal motion of a Khepera III robot is
implemented followingAlgorithm2. At step k, each robot first measures the intensity
of ambient light from the nine IR sensors at the current positions of the robots and
computes the mean of the sensor measurements. To make a lower mean value of
the sensor measurements represent a lower light intensity, we subtract the mean of
the measurements from Imax and compute a ratio of the mean light intensity around
each robot. Then, we obtain the magnitude of the simulated flow at the current
positions of the robots by scaling the ratio with scaling factor c. The simulated flow
field is constructed by multiplying the magnitude by direction vector [1√

2
, 1√

2
]T .

x (m)

y
(m

)

0.4 0.6 0.8 1

0.4

0.6

0.8

1

0.028

0.0462

0.0644

0.0826

0.101

0.119(a) (b)

Fig. 2 Experimental setup with Khepera III robots in a light field. a Four Khepera III robots
are differentiated using letters ‘G’,‘T’,‘S’, and ‘R’. National Instruments LabVIEW identifies
the positions (the colored rectangle around each robot) and headings (the line attached to each
robot) of the robots. A light source is located at the left bottom corner to simulate a flow field.
b The simulated true flow field of the domain

296 D. Chang et al.

We compute the motion ṙ = [ṙx , ṙy]T of a Khepera III robot under the simulated
flow using Eq. (3). To implement motion ṙ in a Khepera III robot, we decompose ṙ
into its magnitude and angle, i.e., ṙ = ‖ṙ‖∠ṙ. We define the speed of a robot and
the change of its heading that are affected by the simulated flow field as sk

h = ‖ṙ‖
andΔθk = ∠ṙ = arctan

(
ṙy/ṙx

)
, respectively. Then, with time step sizeΔt , we rotate

each robot byΔθkΔt andmove them forward by sk
hΔt .We repeat this process until the

length of the dead-reckoning trajectory of each robot reaches a predetermined travel
distance D (i.e., kshΔt < D). For our experiments, we used c = 3

√
2

10 , Δt = 0.1,
sh = 0.3m/s, and D = 1.4m.

Algorithm 2: Nominal motion of a Khepera III robot
Data: Initial heading θ0 of the robot

1 Set k = 0.
2 repeat
3 Let k = k + 1.
4 for i = 1 to 9 do
5 Ii ← the intensity of ambient light from the i th IR sensor
6 end

7 I =
∑

i Ii

9

8 f = c(Imax − I)

Imax

[
1√
2
1√
2

]

9 ṙ = sh

[
cos(θ0)
sin(θ0)

]
+ f

10 Δθk = arctan

(
ṙy

ṙx

)

11 sk
h = ‖ṙ‖

12 Rotate the robot by ΔθkΔt
13 Move the robot forward by sk

hΔt

14 until k <
D

shΔt

We ran multiple sets of experiment using four Khepera III robots and chose ten
navigation data sets of the robots—five from the right side of the domain to the
left and five from the top to the bottom—shown in Fig. 3a. Given the collected nav-
igation data sets, we reconstructed the simulated flow field from the trajectories
and dead-reckoning errors of the robots by running the Glider CT algorithm (Algo-
rithm 1). Because of the unknown trajectories of the robots, we assume the actual
robot trajectories are straight lines between their starting and final positions. For
the algorithm, the true field is unknown. We chose λ(k,i) = 0.01 for all k, i where
k = {1, 2, . . .}, i = {1, . . . , m}, and for the kth iteration, the iteration ended when
both ‖f (k,m)

x − f (k,0)
x ‖ and ‖f (k,m)

y − f (k,0)
y ‖ are less than 10−3. Figure3b shows the

reconstructed flow f reconst. Compared to the true field f true in Fig. 2b, the recon-
structed field suffers from noise. The magnitude of flow in the true field ranges

Glider CT: Analysis and Experimental Validation 297

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

x (m)

y
(m

)
Starting pos.
Target pos.
Final pos.
Real traj.
DR traj.

x (m)

y
(m

)

0.4 0.6 0.8 1

0.4

0.6

0.8

1

0.0212

0.0315

0.0417

0.052

0.0623

0.0725(a) (b)

Fig. 3 Experimental results. a Trajectories of Khepera III robots. The green circles, red stars, and
cyan triangles represent the starting positions, target positions, and ending positions of the robots,
respectively. Solid lines connecting starting positions and ending positions are real trajectories, and
dashed lines connecting starting positions and target positions are dead-reckoning trajectories. b
The 4 × 4 flow field is reconstructed from navigation data of Khepera III robots shown in (a)

from 0.028 to 0.119m/s, and that in the reconstructed field ranges from 0.0212
to 0.0725m/s. We compute the error between the true and reconstructed fields by
e = f true − f reconst. The root-mean-square errors in the x and y components are
erms

x = 0.0182m/s and erms
y = 0.0169m/s, respectively. We analyze that the error is

partially due to the limitation of motor control for the differential wheels of Khepera
III robots. The motor is controlled by pulse signals, and one pulse signal sent to the
motors of a Khepera III robot rotates the robot by 0.06°. That is, the rotation angle
is a multiple of 0.06°. Accumulated errors along the trajectories by the limitation of
motor control may significantly affect the reconstruction of the field.

7 Conclusion

Glider CT reconstructs a depth-averaged flow field from the dead-reckoning errors
of gliders. The Glider CT algorithm is a row-action iterative numerical method that
converges to the solution of a set of nonlinear system equations sequentially. This
paper proved the convergence of the Glider CT algorithm and demonstrated the
effectiveness of the algorithm through experiments, in which Khepera III imitated
the horizontal motion of underwater gliders under a simulated flow field. The exper-
imental results suggest that the Glider CT algorithm may be applied to real gliders
in future ocean sensing deployments.

Acknowledgments The research work is supported by ONR grants N00014-09-1-1074 and
N00014-10-10712 (YIP), and NSF grants ECCS-0841195 (CAREER), CNS-0931576, OCE-
1032285, and IIS-1319874.

298 D. Chang et al.

References

1. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM
Rev. 23(4), 444–466 (1981)

2. Chang, D., Liang, X., Wu,W., Edwards, C.R., Zhang, F.: Real-time modeling of ocean currents
for navigating underwater glider sensing networks. In: Koubâa, A., Khelil, A. (eds.) Coopera-
tive Robots and Sensor Networks, Studies in Computational Intelligence, vol. 507, pp. 61–75
Springer, Berlin, Heidelberg (2014)

3. Chang, D., Zhang, F., Edwards, C.R.: Real-time guidance of underwater gliders assisted by
predictive ocean models. J. Atmos. Oceanic Technol. 32(3), 562–578 (2015)

4. Fernández-Perdomo, E., Cabrera-Gámez, J., Hernández-Sosa, D., Isern-González, J.,
Domínguez-Brito, A.C., Redondo, A., Coca, J., Ramos, A.G., Fanjul, E.A., García, M.: Path
planning for gliders using Regional Ocean Models: Application of Pinzón path planner with
the ESEOATmodel and the RU27 trans-Atlantic flight data. In: Proceedings of OCEANS 2010,
pp. 1–10 (2010)

5. Leonard, N.E., Paley, D.A., Davis, R.E., Fratantoni, D.M., Lekien, F., Zhang, F.: Coordinated
control of an underwater glider fleet in an adaptive ocean sampling field experiment inMonterey
Bay. J. Field Robot. 27(6), 718–740 (2010)

6. Martínez, J.M., De Sampaio, R.J.: Parallel and sequential Kaczmarzmethods for solving under-
determined nonlinear equations. J. Comput. Appl. Math. 15(3), 311–321 (1986)

7. Meldrum, D.T., Haddrell, T.: GPS in autonomous underwater vehicles. In: Proceedings of the
Sixth International Conference on Electronic Engineering in Oceanography, pp. 11–17 (1994)

8. Merckelbach, L.M., Briggs, R.D., Smeed, D.A., Griffiths, G.: Current measurements from
autonomous underwater gliders. In: Proceedings of the IEEE/OES/CMTCNinthWorking Con-
ference on Current Measurement Technology, pp. 61–67 (2008)

9. Meyn, K.H.: Solution of underdetermined nonlinear equations by stationary iteration methods.
Numerische Mathematik 42(2), 161–172 (1983)

10. Nicholson, J.W., Healey, A.J.: The present state of autonomous underwater vehicle (AUV)
applications and technologies. Marine Technol. Soc. J. 42(1), 44–51 (2008)

11. Paley, D.A., Zhang, F., Leonard, N.E.: Cooperative control for ocean sampling: the glider
coordinated control system. IEEE Trans. Control Syst. Technol. 16(4), 735–744 (2008)

12. Penrose, R.: A generalized inverse for matrices. Math. Proc. Cambridge Philos. Soc. 51(3),
406–413 (1955)

13. Schofield, O., Kohut, J., Aragon, D., Creed, L., Graver, J., Haldeman, C., Kerfoot, J., Roarty,
H., Jones, C.P., Webb, D., Glenn, S.: Slocum gliders: robust and ready. J. Field Robot. 24(6),
473–485 (2007)

14. Schomberg, H.: An improved approach to reconstructive ultrasound tomography. J. Phys. D:
Appl. Phys. 11(15), L181–L185 (1978)

15. Smith, R.N., Pereira, A.A., Chao, Y., Li, P.P., Caron, D.A., Jones, B.H., Sukhatme, G.S.:
Autonomous underwater vehicle trajectory design coupledwith predictive oceanmodels: a case
study. In: Proceedings of the 2010 IEEE International Conference onRobotics andAutomation,
pp. 4770–4777 (2010)

16. Wu, W., Chang, D., Zhang, F.: Glider CT: Reconstructing flow fields from predicted motion of
underwater gliders. In: The Eighth ACM International Conference on Underwater Networks
and Systems, p. 47 (2013)

17. Zhang, F., Fratantoni, D.M., Paley, D.A., Lund, J.M., Leonard, N.E.: Control of coordinated
patterns for ocean sampling. Int. J. Control 80(7), 1186–1199 (2007)

Path Planning for Multi-agent Jellyfish
Removal Robot System JEROS
and Experimental Tests

Donghoon Kim, Hanguen Kim, Hyungjin Kim, Jae-Uk Shin,
Hyun Myung and Young-Geun Kim

Abstract Over the recent years, the increasing influence of climate change has given
rise to an uncontrolled proliferation of jellyfish in marine habitats, which has visibly
damaged many ecosystems, industries, and human health. To resolve this issue, our
team developed a robotic system to successfully and efficiently remove jellyfishes,
named JEROS (Jellyfish Elimination RObotic Swarm). The JEROS consists of mul-
tiple USVs (Unmanned Surface Vehicles) that freely move in a marine environment
to scavenge for and eliminate jellyfishes. In this paper, we propose a constrained for-
mation control algorithm that enhances the efficiency of jellyfish removal. Our for-
mation control algorithm is designed in consideration of the characteristic features of
JEROS. It is designed to effectively work with the simple leader-follower algorithm.
The leader-follower formation control does not work well if a reference path of the
leader is generated without considering a minimum turning radius. In order to over-
come such a limitation, a new path planning method—angular rate-constrained path
planning—is proposed in this paper. The performance of the jellyfish removal func-
tion was tested at Masan Bay in the Southern coast of South Korea and formation
control tests were conducted at Bang-dong Reservoir in Daejeon, South Korea.

D. Kim · H. Kim · H. Kim · J.-U. Shin · H. Myung (B)
URL (Urban Robotics Lab), KAIST, 291 Daehak-ro, Yuseong-gu,
Daejeon 305-701, South Korea
e-mail: hmyung@kaist.ac.kr

D. Kim
e-mail: dh8607@kaist.ac.kr

H. Kim
e-mail: sskhk05@kaist.ac.kr

H. Kim
e-mail: hjkim86@kaist.ac.kr

J.-U. Shin
e-mail: jacksju@kaist.ac.kr

Y.-G. Kim
#303 Daejeon Intelligent Robot Engineering Center, Rastech, Inc,
35, Techno 9-ro, Yuseong-gu, Daejeon 305-510, South Korea
e-mail: kimyg@rastech.co.kr

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_21

299

300 D. Kim et al.

Keywords Jellyfish removal robot · Unamanned surface vehicle · Path planning ·
Multi-agent robot

1 Introduction

Recently, the proliferation of jellyfish has emerged as a serious environmental issue
that has threatened marine ecosystems and caused an enormous damage to marine-
related industries in more than 14 countries around the world. In South Korea, the
overall financial damage to marine-related industries was estimated to be over 300
million USD per year in 2009 [2]. In particular, the fishery industries, seaside power
plants, and oceanic tourism enterprises have taken the most serious hit. The most
prevalent species of jellyfish along the coast of South Korea are Aurelia aurita and
Nemopilema nomurai. Some jellyfish species such as Nemopilema nomurai even
have strong venom that can lead people to death. To cope with this problem, a
number of studies pertaining to jellyfish removal have been actively performed.
A previous study has developed a system consisting of two trawl boats equipped
with jellyfish cutting nets [5, 13]. Utilizing large ships and many human operators,
the system has shown high performance in jellyfish removal, but was limited in
terms of its difficulty to operate in narrow and shallow coastal areas. In addition,
numerous other systems were developed for the purpose of preventing the influx of
jellyfish into water intake pipes of power plants. One of these systems consisted of a
camera and a water pump [11]. Yet another system utilized a bubble generator and a
conveyor device [10]. However, these types of systems are very expensive to install
and maintain. To provide a cost-effective solution to the jellyfish problem, an earlier
version of the autonomous jellyfish removal robot system, named JEROS (Jellyfish
Elimination RObotic Swarm) consisting of a USV (Unmanned Surface Vehicle) part
and a jellyfish remover part, was presented in [7]. The USV is designed based on a
twin-hull-type ship that is stable to external disturbances, and the remover part shreds
jellyfish using a rapidly rotating blade. An electrical control system for autonomous
navigation is embedded in the prototype of JEROS. The design of the ship, navigation
and image processing algorithms, and feasibility tests for the algorithms and jellyfish
removal were introduced.

In this paper, the enhanced design of mechanical and electrical systems and the
multi-agent robot system of JEROS are presented. The robot system is extended
to a multi-agent robot system composed of three USVs to enhance the efficiency
of jellyfish removal, and the leader-follower scheme [1] is employed and enhanced
to control the formation of multiple robots. In the enhanced scheme, each follower
robot follows not only its desired position for formation control, but also the speed
and heading angle of the leader robot by utilizing the line-of-sight (LOS) guidance
algorithm [4]. Additionally, for the autonomous navigation functionality considering
formation control of the multi-agent robot system, a novel angular rate-constrained
path planning algorithm based on the Theta* path planning algorithm [12] is intro-
duced. Since the minimal turning radius and backward steering of JEROS are limited,

Path Planning for Multi-agent Jellyfish Removal Robot System JEROS … 301

the small turning radius or backward input to follower robots caused by sharp turn
of leader robot can lead to a large formation error. The proposed algorithm generates
a smooth path considering these constraints. Finally, we carried out field tests at
Bang-dong Reservoir in Daejeon, South Korea to demonstrate the enhancement in
the performance of formation control by using a path generated by the proposed path
planning algorithm. The result of formation control with the generated path using
the proposed path planning algorithm is compared with those using A* and Theta*.
The performance of the jellyfish removal was also demonstrated through field tests
in Masan Bay located in South Korea.

The paper is organized as follows: in Sect. 2, the design and implementation of
JEROS, the formation control based on the leader-follower scheme, and the novel path
planning algorithm based on Theta* are described; in Sect. 3, experimental results
of field tests for formation control and jellyfish removal are presented. Finally, in
Sect. 4, we summarize this paper and discuss future works.

2 Formation Control and Path Planning of JEROS

2.1 Design of JEROS

The JEROS is composed of two parts as outlined in Fig. 1. One is the USV part, and
the other is the remover part. The USV part can be operated alone, independent of
the attachment of the remover part. In the remover part, a funnel-shaped net guides
jellyfish to be gathered near the blade. The total mass of the USV part of JEROS
weighs about 45 kg. Through some experiments at a fresh water tank, it is found
that the maximum payload of USV is about 40 kg for the robot to remain stable in
sea-state 2. The sea-state is the condition index of sea with respect to wind and wave,

Fig. 1 JEROS consisting of
a USV part and a remover
part. a USV part. b Removal
part. c JEROS

ControllerThruster

Net
to guide jellyfish
to the blade

Blade
to shred jellyfishes

Sub-hulls

(a)

(b)

(c)

302 D. Kim et al.

Table 1 Components used in controller

Component Model Manufacturer

GPS OEM Star Novatel

IMU EBIMU-9DOF E2BOX

Global network 3G Modem Qualcomm

Local network EZBee-M100-EXT (Zigbee) Chipsen

Computer Core i7 SBC Intel

Microprocessor TMS320F2808 Texas Instrument

Thruster Endura C2 Minnkota

Fig. 2 Control scheme of
JEROS

Monitoring

Path planning Path following

Thrust control

Position &
Velocity

Formation
control

Thrust control

Position &
Velocity

Server Computer Leader Robot Follower Robots

and sea-state 2 is characterized as smooth wave. The payload is increased at the sea
due to the larger specific gravity of seawater than that of fresh water. The remover
part can float by itself by virtue of the sub-hulls. The USV is operated as a differential
drive robot with two thrusters installed on the rear portion of the USV. The tested
maximum speed is about 2m/s. The USV is designed as a twin-hull-type since it
is more stable against waves than mono-hull-type and easy to increase the payload
using large hull.

The components used to make the controller are listed in Table 1. The position
and heading angle are measured by GPS and IMU. The high-level control algorithm
such as path-planning and formation control is computed by the SBC (Single Board
Computer), and the low-level control such as controlling the thrusts is performed by
the DSP. The control scheme is illustrated in Fig. 2. For communications between
the USVs and the server computer at a remote place, two kinds of networks are used.
To monitor and operate manually, the 3rd Generation mobile network (3G) is used.
For local communications between the USVs, the ZigBee wireless network is used.

2.2 Formation Control

In order to overcome the limited area coverage of a single robot system, we employ
a multi-agent cooperation system. The application of a multi-agent robot system

Path Planning for Multi-agent Jellyfish Removal Robot System JEROS … 303

enhances the jellyfish removal capacity that is commensurate with the number of
robot systems used.

For the formation control of the multi-agent robot system, the leader-follower
method is employed due to its simplicity and low computation time. According to the
intended scheme of the leader-follower method, the leader robot follows the reference
path generated from the path planning algorithm using LOS guidance law, whereas
the follower receives the location and velocity information of the leader robot and
maintains the formation. The follower robot, for maintaining the formation, creates
a waypoint based on the information of the leader robot, and is controlled to follow
the waypoint. In order to properly perform formation control, it is imperative to
accurately pursue the waypoint’s location, heading angle, and the target speed at the
location, but in marine environment faced with numerous disturbances, making the
robot follow correct positions is not an easy task. In order to solve this problem, the
follower robot is controlled as simply controlling a target its heading angle and a speed
using the LOS guidance law in our system. The LOS guidance law provides target
heading angle to asymptotically follow the position and target heading angle of the
waypoint, which is case 1 as shown in Fig. 3. However, if the distance from follower
robot to the waypoint is larger than R, the location of the waypoint is followed, which
is the case 2 and 3 as shown in Fig. 3. The speed is controlled proportional to the
distance from the follower robot to the waypoint.

The position of each robot is described by Xi = (xi , yi , Ψi) where xi , yi , and Ψi

denote x , y coordinates, and heading angle of the robot, respectively. Ψ ∗
i indicates

target heading angle. The position of the leader and follower robots are denoted
by Xl , X f , and the waypoint which is the desired position of the follower robot is

Fig. 3 Overview of the
proposed formation control
algorithm and explanation of
notations

304 D. Kim et al.

denoted by Xw, as shown in Fig. 3. Xw is determined by the desired displacement
and heading angle from Xl , and is calculated as follows:

Xw =
⎛

⎝
xl − ρd cos (Ψd + Ψw)

yl − ρd sin (Ψd + Ψw)

Ψl

⎞

⎠ , (1)

where ρd and Ψd denote the desired displacement and heading angle. Ψw and Ψ ∗
w

should be Ψl and Ψ ∗
l , respectively. The desired speed of a follower robot at the

location of the waypoint, vw, is determined with consideration of the yaw rate of the
leader robot, Ψ̇l , and the displacement of the follower robot as follows:

vw = vl + ρd sin (Ψd) Ψ̇l . (2)

The target heading angle of the follower robot, Ψ ∗
f , is calculated as follows:

Ψ ∗
f =

⎧
⎪⎪⎨

⎪⎪⎩

tan−1

(
ylos − y f

xlos − x f

)
0 ≤ ρc < R + kαvw (case 1)

tan−1

(
yw − y f

xw − x f

)
otherwise (case 2, 3)

, (3)

where kα is a constant gain. ρc is the distance between Xw and the LOS point,
(xlos, ylos), in the direction of Ψ ∗

w. In case 1 as shown in Fig. 3, the follower robot
follows the waypoint and the leader robot’s target heading angle by tracking a virtual
path asymptotically using the LOS guidance law. The virtual path means a straight
line from Xw in direction of Ψ ∗

w. The LOS vector is a vector from X f to the LOS point
and its length is constant, R. The LOS point is a target point to track the virtual path.
The case 2 and 3 indicate the large error state of the follower robot in the conditions
of ρc < 0 and ρc > R + kαvw, respectively. In these cases, Ψ ∗

f is the angle from the
follower robot to the waypoint and is calculated as shown in the second row of (3).

The target speed of the follower robot, v∗
f , is described as follows:

v∗
f =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

v f,max −
(
v f,max − vw

)
ρc

R
0 ≤ ρc < R

vw − vw (ρc − R)

kαvw

R ≤ ρc < R + kαvw

v f,max (ρc − R + kαvw)

kαvw

R + kαvw ≤ ρc

and ρc < R + 2kαvw

v f,max otherwise

, (4)

where v∗
f ∈ [

0, v f,max
)

and v f,max is the maximum speed of the follower robot. Equa-
tion (4) indicates a speed profile for the follower robot’s waypoint tracking, which
is designed as a linear interpolation with four inflection points with respect to ρc.

Path Planning for Multi-agent Jellyfish Removal Robot System JEROS … 305

The points are
(
0, v f,max

)
, (R, vw), (R + kαvw, 0),

(
R + 2kαvw, v f,max

)
. When the

follower robot reaches near the waypoint, i.e., ρc � R, v∗
f converges to vw. If the

robot reaches near the point of ρc = R + kαvw beyond the waypoint, v∗
f converges

to 0. If ρc > R + kαvw, the follower goes behind itself toward Xw with calculated
speed. Otherwise, the follower heads for Xw directly with maximum speed.

Since the leader-follower formation control does not consider the information of
the follower robot in generating waypoints, the path which the follower cannot follow
can be generated. For example, the waypoint behind the follower can cause a serious
problem. Therefore, the constraints such as the minimum turning radius need to be
considered when the leader’s path is generated.

2.3 Path Planning and Following

Based on [6, 8], we propose a new approach, named Angular Rate-Constrained
Theta* (ARC-Theta*), to create paths with considerations of the formation state
and the vehicle’s performance. The proposed algorithm in this study is based on
Theta*, which is similar to A* [12]. The basic Theta* selects a parent node by
checking the LOS (Line of Sight). When connecting between the current search
node s and its parent node s.parent , Theta* always checks the LOS, enabling it to
search its neighbors sneighbor in any direction within a specified distance. One of the
key concepts used in the proposed algorithm is to restrict the range of LOS and the
angular rate by accommodating for the turning ability of the USV formation. Thus,
the angular rate of each LOS is calculated when the node is expanded in Theta*.
The angular rate r is defined as the ratio of the leader’s speed V to the turning radius
Ttotal, that is calculated from the leader’s turning radius Tleader and the distance ρl f

between the leader and the follower for a USV formation as follows:

r = V

Ttotal
Ttotal = Tleader + ρl f .

(5)

Figure 4 shows an example of the modified LOS, named as Angular Rate-
Constrained LOS (ARC-LOS) that reflects the constraints. The ARC-LOS function
always checks whether or not the current angular rate is greater than the maximum
angular rate. If the current angular rate is greater than the maximum angular rate,
the ARC-LOS function returns a false state. A function, IsWalakble checks the occu-
pancy states around the current search node s on the weighted occupancy grid map.
The occupancy states are calculated according to the vehicle orientation and size. If
LOS is ensured, the ARC-LOS function returns the average occupancy cost accord-
ing to the distance. Even so, the method cannot satisfy the arrival heading angle at
the goal point because the ARC-LOS algorithm only verifies LOS between current
and previous nodes (explored node and its parent node). To mitigate this problem,
Dubin’s curve algorithm is applied at the start point and the goal point. Dubin’s
curve algorithm is used to get an optimal path under the rule that the vehicle turns

306 D. Kim et al.

Fig. 4 Example of angular
rate-constrained LOS result

Way Point

Basic line of sight result

Modified line of sight result

left or right when the angular rate of the vehicle is given, with the assumption that
the vehicle cannot reverse [9]. To apply Dubin’s curve algorithm at the start and
goal points, at first, a path from the start point to the goal point is created by Theta*
with the ARC-LOS function. Then additional way-points are calculated using the
Dubin’s curve algorithm. This is possible because Theta* creates way-points using
LOS so that the LOS between any two contiguous way-points is ensured. Thus, the
influence of obstacles on the path can be avoided by creating Dubin’s curve except
in cases where the start angle or goal angle do not satisfy the LOS condition. If
obstacles exist on the path generated with maximum angular rate at the start and goal
points, the problem can be solved by decreasing the angular rate and re-calculating
Dubin’s curve. The pseudo code of the proposed path planning algorithm is shown
in Algorithm 1. A function, CreateDubinsCurves generates the Dubin’s curve at the
start point and goal point after applying Theta* with the ARC-LOS function.

Algorithm 1 ARC-Theta*(sstart, sgoal)
1: sstart.Parent ← sstart
2: while open �= ∅ do
3: s ← open.Pop()
4: for each sneighbor do
5: if AngularRateConstrained LOS(sneighbor, s) then
6: sneighbor.parent← parent
7: open.Push(sneighbor)
8: end if
9: end for
10: end while
11: if CreateDubinsCurves(sstart, sgoal) then
12: return path found
13: else
14: return no path found
15: end if

Path Planning for Multi-agent Jellyfish Removal Robot System JEROS … 307

The navigation system calculates desired heading angles to follow given paths
using the LOS guidance algorithm. The LOS guidance algorithm computes the LOS
vector to calculate a control input to steer the vehicle. The LOS vector is formed by
connecting the robot position to an intersecting point on the path at a distance of the
tracking radius ahead of the robot.

3 Experiments

3.1 Formation Control Tests

Field tests were conducted at Bang-dong Reservoir, Daejeon in South Korea to eval-
uate the feasibility of the formation control. Our multi-agent system consists of
three JEROS prototypes (1 leader robot, 2 follower robots). Each robot is equipped
with a GPS receiver (Novatel OEM-Star), which has 1.5 m accuracy, and an IMU
(EBIMU), which measures the robot’s position, heading angle, and velocity, for
conducting localization. The leader robot followed the paths of A*, Theta*, and
the proposed path, while the two follower robots generated waypoints from the
information received from the leader robot and followed those paths. Both lengths
of LoS vector for path following guidance and formation control were set to 3 m.
The desired displacements and heading angles were set to (ρd1, Ψd1) = (4, π/3)

and (ρd2, Ψd2) = (4,−π/3), respectively, which represented an equilateral triangle
formation. The target speed of the leader robot v∗

l and the maximum speed of the
follower robot v f,max were set to 0.9 and 1.8 m/s, respectively.

Figure 5 shows the generated paths from A*, Theta*, and the proposed algorithm.
To create the Zig-Zag paths in a specific area, we have assumed that the virtual

Fig. 5 Obstacle map
denoted by dotted pattern
and paths from A*, Theta*,
and the proposed algorithms

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

x (m)

y
(m

)

A* Algorithm
Theta* Algorithm
Proposed Algorithm

308 D. Kim et al.

Table 2 RMSE of the follower robots’ position

Follower robot 1 (m) Follower robot 2 (m)

A* 1.01 0.97

Theta* 1.01 1.00

Proposed 0.83 0.72

obstacles were installed. A* and Theta* generate rapidly changing curves, in which
some waypoints were generated behind the follower. However, it is clear that the
proposed path, by virtue of its formation control function, successfully incorporated
the restrictions in the turning radius, hence the previously observed problems did
not occur. In the case of A*, the zig-zag patterns shown on the straight path due
to map resolution caused regular occurrence of large errors, even when the leader
was moving forward. In the case of Theta*, the generated path is composed of the
waypoints on the inflection points. There were few errors when the robot was moving
forward, but the event of a sudden curve resulted in a high error. The proposed path
maintained a stable formation in comparison to A* and Theta*, and there was little
error. The RMSE (Root-mean-squared error) results are listed in Table 2.

3.2 Jellyfish Removal Tests

The performance of the jellyfish removal function was tested at Masan Bay located in
southern coast of South Korea. When the robot moved, the jellyfish swimming in the
periphery of the robot’s path were guided to the shredding blade by a net installed
on the remover part. Then, the jellyfishes were cut into small pieces as shown in
Fig. 6. In this experiment, it was verified that JEROS can remove approximately 36
Aurelia aurita jellyfish per 1 min (approximately 3.6 kg) when the speed of JEROS
is 0.5 m/s and the entrance area of the remover part 1.44 m2. Figure 6 visually shows
the shredded remnants of many jellyfishes caught in the cutting blades.

Fig. 6 Jellyfish removal
test: a JEROS on the water
b image of small pieces of
shredded jellyfishes c image
of small pieces of shredded
jellyfishes in taken
underwater d the jellyfishes
guided to the blade

Path Planning for Multi-agent Jellyfish Removal Robot System JEROS … 309

4 Conclusions

In this paper, we presented the leader-follower scheme-based formation control and
a novel path planning algorithm based on Theta* for the multi-agent autonomous jel-
lyfish removal robot system, JEROS. In addition, field tests were performed in order
to assess the performance of formation control and jellyfish removal functionality.
To enhance the performance of jellyfish removal, the robot system was modified
compared to the previous version with respect to its dimensions, thrust force, and
wireless communication method; and it was extended to a multi-agent robot system
composed of three prototypes of JEROS. To accomplish the autonomous navigation
of the multi-agent robot system, a leader-follower scheme was employed to control
their formation. A novel path planning algorithm based on Theta* was employed to
plan a path considering the formation state and the vehicle’s constraints. The perfor-
mance of the formation control was demonstrated through field tests in a reservoir
in South Korea. The result of the test using a path generated by the proposed path
planning algorithm showed smooth and stable formation control compared with the
results using A* and Theta*. Additionally, the performance of jellyfish removal was
estimated to be about 3.6 kg/min, on average, through field tests at Masan Bay located
in South Korea. Future research will be focused on creating more advanced formation
control algorithms and conducting more elaborate investigations of the efficiency of
JEROS through various field tests.

Acknowledgments This research was supported by Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (NRF-2013R1A1A1A05011746). Mr. H. Kim and Mr. H. Kim are supported by Korea
Ministry of Land, Transport and Maritime Affairs (MLTM) as U-City Master and Doctor Course
Grant Program.

References

1. Breivik, M., Hovstein, V.E., Fossen, T.I.: Ship formation control: a guided leader-follower
approach. In: IFAC World Congress (2008)

2. Choi, H.-S.: Scientists seek beneficial uses for jellyfish. The Korea Herald. http://www.
koreaherald.com/view.php?ud=20120826000052 (2012). Accessed 17 June 2014

3. Dunbabin, M., Lang, B., Wood, B.: Vision-based docking using an autonomous surface vehicle.
In: IEEE International Conference on Robot and Automation (ICRA) (2008)

4. Fossen, T.: Marine control systems: guidance, navigation and control of ships, rigs and under-
water vehicles. Mar. Cybern. (2002)

5. Kim, I.-O., An, H.-C., Shin, J.-K., Cha, B.-J.: The development of basic structure of jellyfish
separator system for a trawl net. J. Korean Soc. Fish Technol. 44(2), 99–111 (2008). (in Korean
with English abstract)

6. Kim, H., Lee, T., Chung, H., Son, N., Myung, H.: Any-angle path planning with limit-cycle
circle set for marine surface vehicle. IEEEInternational Conference on Robot and Automation
(ICRA) (2012)

http://www.koreaherald.com/view.php?ud=20120826000052
http://www.koreaherald.com/view.php?ud=20120826000052

310 D. Kim et al.

7. Kim, D., Shin, J.-U., Kim, H., Kim, H., Lee, D., Lee, S.-M., Myung, H.: Design and Imple-
mentation of Unmanned Surface Vehicle JEROS for Jellyfish removal. J. Korea Robot. Soc.
8(1), 51–57 (2013)

8. Kim, H., Kim, D., Shin, J.-U., Kim, H., Myung, H.: Angular rate-constrained path planning
algorithm for unmanned surface vehicles. Ocean Eng. 84, 37–44 (2014)

9. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
10. Lee, J.-H., Kim, D.-S., Lee, W.-J., Lee, S.-B.: System and method to prevent the impingement

of marine organisms at the intake of power plants. Korean Patent 10-0558267-00-00 (2006)
11. Matsuura, F., Fujisawa, N., Ishikawa, S.: Detection and removal of jellyfish using underwater

image analysis. J. Vis. 10(3), 259–260 (2007)
12. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: any-angle path planning on grids. In:

National Conference on Artificial Intelligence (AAAI) (2007)
13. NFRDI.: Trends of overseas fisheries. Technical Report 2 (National Fisheries Research and

Development Institute (NFRDI) of South Korea issued in Korean) (2005)

Motion Planning of Multiple Mobile Robots
Based on Artificial Potential for Human
Behavior and Robot Congestion

Satoshi Hoshino and Koichiro Maki

Abstract In order for robots to exist together with humans, safety for humans has
to be ensured. On the other hand, safety might decrease working efficiency of robots.
Namely, this is a trade-off problem between the human safety and robot efficiency in
a field of human-robot interaction. For this problem, we propose a novel motion plan-
ning technique of multiple mobile robots. Two artificial potentials are presented for
generating repulsive force.Abehavior potential is provided for humans.A congestion
potential is provided for robots. Through simulation experiments, the effectiveness
of the behavior and congestion potentials used in the motion planning technique for
the human safety and robot efficiency is discussed. Moreover, a sensing system for
humans in a real environment is developed. Finally, the significance of the potential
generated from the actual human behavior is discussed.

Keywords Multi-robot systems · Motion planning · Artificial potential method ·
Human-robot interaction

1 Introduction

Nowadays, service robots, such as automatedguidedvehicles in factories, nursing and
caring robots in hospitals and care facilities, and cleaning andguiding robots in offices
play an important role. In such robot systems, human safety is a primary concern [1].
Next to the safety, working efficiency of robots is improved. In consideration of this
practical issue, we focus on systems in which multiple autonomous mobile robots
exist together with humans.

In the systems, working robots are required to avoid collisions with humans while
moving toward a destination. This is so-called the motion planning of the robots. In
this paper, an artificial potential method is basically applied [2]. The configuration
space is defined by attractive and repulsive potential fields. In general, the repulsive

S. Hoshino (B) · K. Maki
Department of Mechanical and Intelligent Engineering, Utsunomiya University,
7-1-2 Yoto, Utsunomiya 321-8585, Japan
e-mail: hosino@cc.utsunomiya-u.ac.jp

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_22

311

312 S. Hoshino and K. Maki

(a) (b)

Fig. 1 Trade-off between safety and efficiency depending on the size of repulsive potential. a High
safety versus low efficiency. b Low safety versus high efficiency

potential has been provided to the obstacle on the basis of the position. However,
for moving obstacles such as humans, this approach is destined to cause a trade-off
problem between the human safety and robot efficiency, as illustrated in Fig. 1.

If a robot performs avoidance motion based on a large potential for increasing
human safety, working efficiency of the robot is decreased as the avoidance path
lengthens (see Fig. 1a). On the other hand, as the avoidance path shortens by means
of a small potential for increasing the working efficiency, collision risk due to a
change in human behavior is increased (see Fig. 1b). In this case, the human safety
is decreased. Moreover, robots that performing the avoidance motions based on the
repulsive potential move in the same direction as illustrated in Fig. 2.

This swarm behavior results in a congestion of the robots. If other humans come
to the congestion, the robots are not enabled to avoid the collisions with the human
because of the others. Eventually, safety is not ensured. Furthermore, working effi-
ciency of the robots is also decreased in the congested situation.

For the challenges, we present a repulsive potential that takes into account the
behavior of obstacles in addition to the position. This is named as a behavior poten-
tial. For the robot congestion, we present another repulsive potential that takes into
account the density of the robots. This is named as a congestion potential.

Through simulation experiments, the effectiveness of the behavior and congestion
potentials used in the motion planning technique for the human safety and robot
efficiency is discussed. Moreover, a sensing system for humans in a real environment
is developed. Finally, the significance of the potential generated from the actual
human behavior is discussed.

Fig. 2 Robot congestion
caused by swarming
behavior based on the same
potential

Motion Planning of Multiple Mobile Robots … 313

2 Artificial Potential Method

2.1 Potential Field

Equation (1) expresses a basic model of the artificial potential method used in the
motion planning. The attractive potential, Uxd , allows robots to move toward a des-
tination, xd . The repulsive potential, Uo, allows robots to avoid collisions with an
obstacle, o.

U = Uxd + Uo (1)

In this paper, the following attractive potential is provided in consideration of
the gravitational energy: Uxd (x) = kp(x − xd), where kp is a coefficient, x and xd

represent the positions of a robot and its destination. Hence, Uxd affects the constant
attractive force kp on the robots as follows: Fxd = −∇Uxd = −kp.

For avoiding the collisions with obstacles, the following repulsive potential

has been widely used [2]: Uo(x) = 1
2η

(
1

ρ(x)
− 1

ρ0

)2
, where η is a coefficient,

ρ(x) represents the distance from the robot position, x , to the center of the
obstacle o, and ρ0 defines the threshold. This means that the robot within the thresh-
old, ρ(x) ≤ ρ0, is affected by the repulsive force as follows: Fo(x) = −∇Uo =
η

(
1

ρ(x)
− 1

ρ0

)
1

ρ2(x)
∇ρ(x).

2.2 Approaches to Problems of Previous Repulsive Potential

The repulsive potential has been provided so as to uniformly affect the repulsive
force on robots around an obstacle. However, actual robots have a limitation in the
moving velocity. Additionally, such a uniform potential for moving obstacles, which
are humans gives rise to the trade-off problem (see Fig. 1). For this problem, a more
flexible potential, Uoh , the shape of which varies according to the moving velocity
and direction of the humans, in addition to the position, is required.

For each of the robots, a repulsive potential, uor , is additionally provided. Hence,
each robot is enabled to avoid collisions with other robots. In this regard, the total
repulsive potential of the robots is derived as follows: Uor = ∑

uor . This means that
the shape of the potential has multiple peaks. As a result, the robots are moved in
the gradient directions from the different peaks and finally congested. Therefore, a
repulsive potential with a single peak, Uor , is required.

For the problems described above, we provide behavior and congestion potentials
for humans and robots. The approaches are as follows:

• Quantify the behavioral property of obstacles using the von Mises distribution;
• Identify the global robot congestion using Kernel density estimation (KDE).

314 S. Hoshino and K. Maki

The von Mises distribution is based on statistic, such as an angle and its disper-
sion on a circle. Therefore, it is capable of parameterizing the moving velocity and
direction of an object. Thus, an existence probability of a human is given by the
probability density function. This is used as the behavior potential Uoh . The KDE is
capable of extrapolating the probability density function of the existence probabil-
ity for the entire space on the basis of the existence probability of each robot. The
probability density function is identified as the global robot congestion and used as
the congestion potential Uor with a single peak. Finally, the repulsive potential Uo in
consideration of the behavioral property of humans and the global robot congestion
is given by merging the potentials as follows: Uoh + Uor .

3 Behavior Potential for Moving Obstacles

3.1 Related Works on Moving Obstacles

A local path planning method that changed the shape of the repulsive potential func-
tion has been proposed [3]. However, static obstacles were assumed in the literature.
For moving obstacles, motion planning techniques based on the moving velocity and
direction, in addition to the position, have been proposed [4, 5]. However, the shape
of the repulsive potential fields were provided in the same way as previously [2]. In
the potential fields, only the area where robots were affected by the repulsive force
was defined depending on the behavioral property and position of the obstacle.

3.2 Mathematical Formulation of Behavior Potential

The behavior potential is capable of changing the shape on the basis of the moving
velocity and direction of humans in addition to the position. Unlike the previous
repulsive potential, a threshold of the distance between the robot and obstacle, ρ0, is
not defined. The behavior potential based on the von Mises distribution is provided
as follows:

Uoh (r, θ) =
n∑

i=1

exp [κ cos(θi − μi)]

2π I0(κ)
αh

exp
[
− ri

2σ

]

2πσ
β||vi ||, (2)

where r represents the distance from the humans and θ defines the relative direction.
κ is a measure of concentration on the moving direction derived from SD × ||v||. In
this regard, SD is named as the statistical direction since it is defined as the inverse
number of statistical variance of the human moving direction represented by μ. v
represents the human moving velocity. σ is the variance of the radial component,
αh is the coefficient, and β is a coefficient of the velocity v. I0(κ) represents the
modified Bessel function of order 0.

Motion Planning of Multiple Mobile Robots … 315

From Eq. (2), the robots are enabled to define the repulsive potential for the
moving obstacles depending on the relative positions, velocities, and directions. As
a result, the potential affects the following repulsive force on the robots so that the
robots avoid the collisions with the obstacles:

Foh (r, θ) = −∇Uoh (r, θ) =
n∑

i=1

−αhβ||vi ||
4π2σ I0(κ)

exp
[
κ cos(θi − μi) − ri

2σ

]
Joh , (3)

where Joh represents the following Jacobian:

Joh =
⎡

⎢⎣
−cos θ

2σ
+ κ sin θ sin(θ − μ)

r

− sin θ

2σ
− κ cos θ sin(θ − μ)

r

⎤

⎥⎦ . (4)

Figure 3 illustrates that a robot in the different potential fields is moving toward a
destination while avoiding the collision with a human. The human moves from left
to right linearly ignoring the robot. The attractive force moves the robot toward the
destination. Therefore, the robot begins to avoid the human at the point where the
repulsive force is greater than the attractive force.

In Fig. 3a, the repulsive potential with a circular shape is provided for the
human from the following two-dimensional normal distribution function: Uoh (r) =

1
2πσ 2 exp

[
− r2

2σ 2

]
. Although the repulsive force affects the robot, the robot keeps

moving forward until the force is greater than the attractive one. Thus, the human
and robot approaching each other result in the high collision risk. In addition, even
if the robot is behind the human, it is affected by the repulsive force.

Fig. 3 Previous and proposed repulsive potential fields for moving obstacle. a Normal (uniform)
potential. b Behavior potential

316 S. Hoshino and K. Maki

In Fig. 3b, Eq. (2) provides the behavior potential. In contrast to Fig. 3a, the shape
of the potential is elongated in the moving direction. The volume of elongation
is determined by the moving velocity. For the faster human, the robot is enabled to
perform the avoidance motion from a distance. On other hand, for the humanmoving
slowly, the robot performs the avoidance motion near the human. Furthermore, the
robot behind the human is allowed to keep moving without any influence from the
potential.

4 Congestion Potential for Robots

4.1 Related Works on Congestion

The first author, Hoshino, has shown that traffic jam of robots in the same straight line
was solvedby controlling the velocity [6]. For the robotsmoving in a two-dimensional
surface, the moving direction is also useful for solving the jam [7]. However, if a
team of robots performed the same congestion avoidance motion, the robots were
congested in another area, while the current congestion was reduced. In recently,
the global crowd has been calculated on the basis of a cellular automaton model
[8]. However, the calculated result depended on the number of cells. Focusing on
continuous systems, the congestion models based on the hydrodynamics have been
proposed [9, 10]. However, while the detailed and global congestion was derivable,
the fluid model required a huge amount of calculation.

4.2 Mathematical Formulation of Congestion Potential

For the problems described above, the KDE, Kernel density estimation, is used to
identify the global robot congestion. Thus, each robot is enabled to know the density
of the position on the basis of the global congestion. Finally, the congestion potential
with a single peak is provided as follows:

Uor (r) = αr

nb2

n∑

i=1

1

2π
exp

[
− r2i
2b2

]
, (5)

where r represents the distance from the robots.αr is a coefficient andb is a smoothing
parameter determining the width of the peak in the potential.

Since the density of each robot is derived from the relative position, the total
calculation cost for n robots is equal to n(n − 1). From Eq. (5), the potential with
the single peak affects the following repulsive force on the robots so that the robots
occupy the system uniformly:

Motion Planning of Multiple Mobile Robots … 317

For (r) = −∇Uor (r) = αr Jor

2πnb2

n∑

i=1

ri

b2
exp

[
− r2i
2b2

]
, (6)

where Jor is the following Jacobian based on the relative direction θ among the
robots:

Jor =
[
cos θ

sin θ

]
. (7)

Figure 4 illustrates that two different potentials are provided to robots for the
congestion. The robots are moving toward the center of the square. Note that it is not
necessary to calculate the density of other points excepting the robot positions. The
potentials are shown for illustrative purposes. In this paper, the robots are assumed to
have uniform performance on the motion. From the assumptions, the following two-
dimensional normal distribution function based only on the position is provided to

each robot for the collision avoidance among the robots: uor (r) = 1
2πσ 2 exp

[
− r2

2σ 2

]
.

In Fig. 4a, multiple peaks are generated in the potential field. Since each robot
has the individual potential, uor , all the potentials are combined in a simple manner
as follows: Uor = ∑

uor . In this potential field, for the robots in adjacent peaks,
different repulsive forces are affected in opposite direction. In consequence, the
robots are newly congested at the trough of the potential.

In Fig. 4b, Eq. (5) provides the congestion potential for the robots. In contrast
to Fig. 4a, a single peak is generated in the potential field by estimating the global
robot congestion. In this potential, the repulsive force is affected on the robots in the
gradient direction from the same peak. The robots are, therefore, enabled to perform
the globally-coordinated motions for the congestion reduction.

(a) (b)

Fig. 4 Previous and proposed repulsive potential fields for robot congestion. a Multiple peaks
generated from individual normal potentials uor . b Single peak of globally estimated congestion
potential Uor

318 S. Hoshino and K. Maki

Fig. 5 Three humans and
two/six robots are used in
simulated rooms with
6 × 6m2. Gi , Gi j , and G j i in
(a) and (b) represent
destinations of robots Ri ,
Ri j , and R j i . Inattentive
person that moves directly to
randomly-given destinations
ignoring the robots is
assumed. a Uncrowded
room. b Crowded room

(a) (b)

5 Simulation Experiments

5.1 Experimental Conditions

In this simulation experiment, holonomic robots are used as depicted in Fig. 5. For
the humans, the behavior potential Uoh based on Eq. (2) is provided. In addition, a
two-dimensional normal potential and social potential field model presented in [11]
are applied. For the robots, the normal potential uor is provided for the collision
avoidance. Moreover, the congestion potential Uor given by Eq. (5) is provided.

The maximum velocities of the humans and robots are given as 0.8 and 0.4 [m/s],
respectively. Parameters in Eqs. (2) and (5) for the behavior and congestion potentials
are: κ = SD × ||v||, SD = 5.0, σ = 1.5, αh = 10000, β = 1.0, αr = 2000, and b =
4.0. The robots are required to avoid collisions even with inattentive person such as
children. Therefore, three humans are assumed to go straight to their randomly-given
destinations without avoiding the robots.

As an index of safety, we focus on the number of collisions between the robots
and humans. As for the robot efficiency, we measure the time before the total number
of arrivals to their destinations is 100. Furthermore, the time and collision, which
are the trade-off relationship, are multiplied together and called as T-O (abbr. of
trade-off) value. The lower value indicates higher effectiveness of the potential.

5.2 Experimental Results and Effectiveness of Motion
Planning

Tables 1 and 2 show the averaged results of five simulations for the combinations
of potentials. NP, SPF, and BP represent the normal potential, social potential field
model, and behavior potential. CP represents the congestion potential. Hereafter, the
combination of the potentials is expressed by the form of Uoh–Uor .

Motion Planning of Multiple Mobile Robots … 319

Table 1 Result for environment shown in Fig. 5a

Uo Uoh NP SPF BP NP

Uor NP CP

Time [s] 736.7 417.3 476.6 586.7

Collisions 202.4 181 18.4 187.4

Time×Collisions 148,672 75,531 8,769 109,582

Table 2 Result for environment shown in Fig. 5b

Uo Uoh NP SPF BP NP

Uor NP CP

Time [s] 228.5 128.2 154.0 230.6

Collisions 71.8 60.4 6.1 67.4

Time×Collisions 16,406 7,743 934 15,542

Table 3 Proposed potential Uo: Uoh is “BP” and Uor is “CP”

Time [s] Collisions Time×Collisions

Figure 5a 434.3 15.3 6,645

Figure 5b 149.8 4.6 689

In Table1, NP–NP resulted in the longest time and most collisions when the Uor

was NP. While SPF–NP resulted in the shortest time, the number of collisions was
increased compared to that of BP–NP.Moreover, BP resulted in the lowest T-O value
in theUoh . WhenUoh was NP, NP–CP reduced both the time and collisions compared
to those of NP–NP. As a result, the lower T-O value was obtained by CP.

In Table2, even in the crowded room, NP–NP resulted in the longest time and
most collisions.While SPF–NP resulted in the shortest time, the number of collisions
was increased compared to that of BP–NP. As for the T-O values, BP was the lowest
in the Uoh . On the other hand, NP–CP did not reduce the time compared to that of
NP–NP. However, the number of collisions was reduced. Consequently, CP resulted
in the lower T-O value in the Uor .

From these results, the behavior and congestion potentials were combined. The
repulsive potential given by Uo = Uoh + Uor was provided for both the humans and
robots in Fig. 5a, b. The simulation result is shown in Table3.

Compared to the results shown in Tables1 and 2, time was shortened and the
number of collisions was reduced. Finally, the T-O value was also decreased to
6,645 and 689. From the results described above, we can see that each of the behavior
and congestion potentials did not negate the effect of the other one. Therefore, the
effectiveness of the motion planning technique using the repulsive potential for the
human safety and robot efficiency was shown.

320 S. Hoshino and K. Maki

6 Human Sensing System

6.1 Behavior Potential Based on Measurement

In order to apply the behavior potential to humans in a real environment, the robot
system is required to measure the actual human behavior. For this purpose, we devel-
oped a human sensing system with Microsoft Kinect as shown in Fig. 6. The system,
thus, enables to measure the human position, velocity, and direction.

A parameter, κ , used in Eq. (2) is a measure of concentration on the moving
direction of humans. This is derived as follows: κ = SD × ||v||. In the previous
section, the simulation experiments assumed the constant statistical direction, SD =
5.0, for the linearlymovinghumans.However, this is not a distant assumptionbecause
actual human behavior varies among different individuals. In addition, it is not always
true that the humans move linearly.

In order to provide the behavior potential taking a variety of the human behavior
into account, we focus on the statistical direction of the actual humans, SD(t). From
the measured position, the moving direction in each image is obtained. Given the
moving direction in the n-th image isμn , the following function of SD(t) is defined:

A(SD(t)) = 1

N

N∑

n=1

cos(μn − μM L
0), (8)

where N is the total number of accumulated data μ, and μM L
0 is a maximum likeli-

hood estimator. μM L
0 is calculated from the following equation based on the moving

direction of the humans μ obtained in the n-th image: μM L
0 = tan−1

∑N
n=1 sinμn∑N
n=1 cosμn

.

Fig. 6 Developed human sensing system with Microsoft Kinect. A square space with 2 × 2 [m]
was prepared in our laboratory. An optical lens, i.e., Zoom for Kinect, produced by NYKO was
used to make a wide view angle. Although the lens reduces the sensing range, the immeasurable
area around Kinect is decreased to 1.0 [m]

Motion Planning of Multiple Mobile Robots … 321

Fig. 7 Original images (upper) andmeasured human position projected to simulation space (lower)

Therefore, we can statistically calculate A(·) from the measured human data. On
the other hand, A(·) is also defined by the following non-linear function:

A(SD(t)) = I1(SD(t))

I0(SD(t))
, (9)

where I1(SD(t)) represents the modified Bessel function of the first kind.
From Eqs. (8) and (9), SD(t), which is an inverse function of A(·), is found

by using the Newton-Raphson method. Finally, the behavior potential based on the
actual human, κ̂ = SD(t) × ||v(t)||, is provided as shown in Fig. 7.

Kinect measures the human position in the original images. From the position
data in each image and the frame rate, moving velocity and direction of the human
are obtained. Simultaneously, the position, velocity, and direction data are sent to
the developed simulator, and the behavior potential based on the measurement is
generated in the simulation space.

6.2 Potential Generated from Actual Human Behavior

To discuss the significance of taking the actual human behavior into account, two
behavior potentials Uoh based on κ and κ̂ were provided for humans in this experi-
ment. For the robots, the congestion potentialUor was provided. As the actual human
data, the following three behavior patterns weremeasured beforehand: curve, zigzag,
and straight as shown in Fig. 8. Figure 9 shows the two behavior potentials for the
zigzag behavior.

322 S. Hoshino and K. Maki

(a) (b) (c)

Fig. 8 Measured trajectories of the actual human depending on the behavior patterns. a Curve. b
Zigzag. c Straight

Fig. 9 Behavior potential Uoh changed in accordance with zigzag behavior shown in Fig. 8b.
a Uoh based on κ . b Uoh based on κ̂

In Fig. 9a, the behavior potential was generated in themoving direction depending
on the velocity of the human. However, the shape of the potential was almost constant
regardless of the turn and straight behaviors. On the other hand, in Fig. 9b, since the
statistical direction, SD(t), was decreased when the human made a turn to the left,
the lower shape of the potential was provided over a wide range around the human.
In contrast, when the human moved in a straight direction, the potential with an
elongate shape was provided to the human.

Abehavior pattern from the three shown inFig. 8was selected in a randommanner,
and the human based on the behavior pattern was used repeatedly. Although only
one human was used in the simulation space with 2 × 2 [m], two and six robots
moved between their destinations as illustrated in Fig. 5a, b. The total number of

Motion Planning of Multiple Mobile Robots … 323

Table 4 One human and two robots

Time [s] Collisions Time×Collisions SDR

κ 248.3 21.0 5,214 10.2

κ̂ 287.9 4.6 1,324 6.90

Table 5 One human and six robots

Time [s] Collisions Time×Collisions SDR

κ 192.9 4.8 926 9.6

κ̂ 232.9 2.7 629 8.6

accumulated data in Eq. (8) was N = 20. Other experimental conditions were as
described in Sect. 5.1.

Tables4 and 5 show the averaged results of five simulations, which are the time,
collisions, and T-O value. In addition, the mean value of the statistical direction of
all the robots, SDR is listed. The larger SDR indicates that a directional change of
the robots during the motion planning is smaller. Therefore, robots with the larger
SDR move toward their destinations more linearly than those with the smaller SDR .

As well as the results listed in Tables1, 2 and 3, it is noticeable that the number
of collisions was not increased even if the number of robots was increased. This is
because that the time with the six robots was shorter than that with the two robots.

In both the tables, the behavior potential based on κ̂ resulted in the longer time for
the actual human behavior. This is because that the robots in the potential field based
on κ performed the collision avoidance motions with fewer changes in direction. As
a result, the statistical directions of the robots were higher than those of the robots
in the potential field based on κ̂ . In this regard, however, κ̂ successfully reduced the
number of collisions. Finally, the T-O values were also decreased.

From the results described above, the developed sensing system was shown to be
sufficient to provide the behavior potential for the actual humans in a real environ-
ment. Moreover, the significance of the potential based on the actual human behavior
κ̂ was shown.

7 Conclusions

This paper focused on systems in which multiple mobile robots exist together with
humans. For such systems, in consideration of human safety and robot efficiency, a
novel motion planning technique was proposed. For generating repulsive force on
robots, two artificial potentials were presented. Through simulation experiments, the
effectiveness of the behavior and congestion potentials used in the motion planning
technique for the human safety and robot efficiency was shown. Moreover, a sensing

324 S. Hoshino and K. Maki

system for humans in a real environment was developed. Finally, the significance of
the potential generated from the actual human behavior was shown.

References

1. Yamada, Y.: Safety robot technology in the future. Adv. Robot. 23(11), 1513–1516 (2009)
2. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.

Res. 5(1), 90–98 (1986)
3. Kim, D.H., Shin, S.: New repulsive potential functions with angle distributions for local path

planning. Adv. Robot. 20(1), 25–47 (2006)
4. Ge, S.S., Cui, Y.J.: Dynamic motion planning for mobile robots using potential field method.

Auton. Robots 13(3), 207–222 (2002)
5. Huang, L.: Velocity planning for a mobile robot to track a moving target—a potential field

approach. Robot. Auton. Syst. 57(1), 55–63 (2009)
6. Hoshino, S., Seki, H.: Multi-robot coordination for jams in congested systems. Robot. Auton.

Syst. 61(8), 808–820 (2013)
7. Maniccam, S.: Adaptive decentralized congestion avoidance in two-dimensional traffic. Phys-

ica A 363(2), 512–526 (2006)
8. Burstedde, C., et al.: Simulation of pedestrian dynamics using a two-dimensional cellular

automaton. Physica A: Stat. Mech. Appl. 295(3–4), 507–525 (2001)
9. Pimenta, L.C.A., et al.: Control of swarms based on hydrodynamic models. In: IEEE Interna-

tional Conference on Robotics and Automation, pp. 1948–1953 (2008)
10. Okada, M., et al.: Human Swarmmodeling in exhibition space and space design. In: IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 25–30 (2011)
11. Reif, J.H., Wang, H.: Social potential fields: a distributed behavioral control for autonomous

robots. Robot. Auton. Syst. 27(3), 171–194 (1999)

DisCoF: Cooperative Pathfinding
in Distributed Systems with Limited
Sensing and Communication Range

Yu Zhang, Kangjin Kim and Georgios Fainekos

Abstract Cooperative pathfinding is often addressed in one of two ways in the
literature. In fully coupled approaches, robots are considered together and the plans
for all robots are constructed simultaneously. In decoupled approaches, the plans are
constructed only for a subset of robots at a time. While decoupled approaches can
be much faster than fully coupled approaches, they are often suboptimal and incom-
plete. Although there exist a few decoupled approaches that achieve completeness,
global information (which makes global coordination possible) is assumed. Global
information may not be accessible in distributed robotic systems. In this paper, we
provide a window-based approach to cooperative pathfinding with limited sensing
and communication range in distributed systems (called DisCoF). In DisCoF, robots
are assumed to be fully decoupled initially, and may gradually increase the level of
coupling in an online and distributed fashion. In some cases, e.g., when global infor-
mation is needed to solve the problem instance, DisCoF would eventually couple all
robots together. DisCoF represents an inherently online approach since robots may
only be aware of a subset of robots in the environment at any given point of time.
Hence, they do not have enough information to determine non-conflicting plans with
all the other robots. Completeness analysis of DisCoF is provided.

Keywords Distributed robot systems · Cooperative pathfinding

Y. Zhang (B) · K. Kim (B) · G. Fainekos (B)
School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, Tempe, USA
e-mail: yzhan442@asu.edu

K. Kim
e-mail: Kangjin.Kim@asu.edu

G. Fainekos
e-mail: fainekos@asu.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_23

325

326 Y. Zhang et al.

1 Introduction

Cooperative pathfinding for multi-robot systems has many applications. However,
this problem is fundamentally hard in general (i.e., PSPACE-hard [7]). Previ-
ous approaches often address this problem in one of two ways. In fully coupled
approaches, all robots are considered together and the plans for them are constructed
simultaneously. However, given that the complexity grows exponentially with the
number of robots, these approaches can easily become impractical. As a result, recent
researchmore often concentrates ondecoupled approaches. In decoupled approaches,
the plans are constructed (partially or fully) only for a subset of robots at a time; the
remaining robots must then take the others’ constructed plans into account when
constructing their own plans. While decoupled approaches are often suboptimal and
incomplete, they typically run much faster than fully coupled approaches, since the
number of robots that need to be coupled can be significantly smaller. While there
are decoupled approaches that achieve optimality and completeness, they all assume
global information, which implies global coordination. However, global information
may not be accessible in distributed robotic systems, since such systems are often
subject to limited sensing and communication range. As a result, these approaches
cannot be implemented on many distributed systems.

In this paper, we introduce a window-based approach for cooperative pathfind-
ing in distributed systems, called DisCoF, with the window size corresponding to
the limited sensing and communication range. DisCoF is inherently online, since a
robot may not be aware of all the other robots in the environment at any given point
of time, let alone determining a non-conflicting plan with them. In DisCoF, a robot
can only communicate directly with robots within its sensing range (i.e., local win-
dow) to coordinate. However, two robots can communicate indirectly through other
robots using a message relay protocol. All robots are assumed to be fully decou-
pled initially: they plan and execute independently and simultaneously. Robots can
gradually increase the level of coupling in an online and distributed fashion.

To reduce computation, we need to determine when to couple robots and only
couple them when necessary. We follow an intuitive approach to achieving this:
couple robots only when they have potential conflicts (i.e., predictable conflicts
in DisCoF). Furthermore, to efficiently reduce the possibility of future coupling
given only local knowledge, instead of making full plans to final goals, robots in
each coupling only plan to local goals that minimize conflicts within a pre-specified
horizon. This process also ensures that these robots make progress to final goals.

However, given the localized nature of this approach, it is subject to live-locks.
We identify a live-lock when robots in a coupling cannot make further progress to
final goals within the finite horizon, which is a necessary (but insufficient) condition
to detect live-locks. Note that detecting live-locks requires global information in
general. DisCoF allows “live-locks” to be detected and resolved in a distributed
manner. When a live-lock is detected, robots in the coupling use a technique, called
Push and Pull, to keep within each other’s sensing and communication range, while
progressing to final goals one at a time.

DisCoF: Cooperative Pathfinding in Distributed Systems … 327

By combining these methods, DisCoF achieves an efficient solution that also
guarantees completeness. Note that for a problem instance that requires global infor-
mation, DisCoF solves it by eventually coupling all robots together. To the best of
our knowledge, this is the first work that guarantees completeness for cooperative
pathfinding in distributed systems with limited sensing and communication range.
The remainder of this paper is organized as follows. After a brief review of related
literature in Sect. 2, we introduce DisCoF in Sect. 3. The live-lock resolution tech-
nique is discussed separately in Sect. 4. Conclusions and discussions of future work
are presented afterwards.

2 Related Work

The most convenient way to address cooperative pathfinding is to consider robots as
fully coupled, since then many existing state-space search algorithms (e.g., A∗) can
be applied. While this fully coupled search is intractable, approaches have been pro-
vided to reduce the branching factors to improve the performance, e.g., [16]. There are
also approaches that compile cooperative pathfinding problems into related problem
formulations [1, 5, 9, 20] (e.g., maximum flow [20]), and then apply the correspond-
ing algorithms to solve them. However, these approaches are unscalable due to the
large state space. Methods for spatial abstraction to reduce the state space have also
been discussed [14, 18], but they often suffer optimality and even completeness. By
restricting the underlying graphs of problem instances to have certain topologies,
optimal solutions can be found fast [12, 13, 19].

More research has been concentrated on decoupled approaches due to its better
scalability. One commonly used approach is the hierarchical cooperative A∗ (HCA∗
[15]), which is a prioritized planning method. HCA∗ chooses fixed priorities for
robots and makes a plan for a single robot at a time based on its priority, while
respecting the computed plans for robots of higher priorities. This process is per-
formed through the use of a reservation table that all robots can access. To reduce
the influence of the computed plans for robots of higher priorities (on robots of
lower priorities), a windowed HCA∗ approach (WHCA∗) is also discussed in [15].
In WHCA∗, robots only send the portions of their plans within a fixed window
size (from their current locations) to the reservation table, which has been shown
to enable WHCA∗ to solve more problem instances. More recently, an extension
of WHCA∗ (CO-WHCA∗ [2]) is proposed, which improves over WHCA∗ by only
reserving plans when there are conflicts. Another common decoupled approach is to
create traffic laws for the robots to follow, e.g., [8], thus reducing the possibility of
conflicts. Although these decoupled approaches can often find solutions fast, they
are incomplete.

There are decoupled approaches that achieve completeness and optimality, e.g.,
[16, 17]. However, these approaches are still intractable for many problem instances
due to the inherent complexity. Hence, more recent approaches often relax optimality
while maintaining completeness [4, 10]. In [10], a Push and a Swap operation are

328 Y. Zhang et al.

introduced, which are used to move robots to their goals one at a time; the result-
ing individual plans are then optimized for all robots. The authors in [4] further
introduce a new operation, Rotate, to complement Push and Swap, in order to guar-
antee completeness in more general problem instances. These approaches, however,
assume global information (e.g., the individual plans of all robots at any time). Global
information may not be accessible in distributed robotic systems with sensing and
communication range, in which each robot must create its individual plan based on
its local knowledge (including the sensed and communicated information).

In this paper,we introduce an approach that achieves completenesswithout assum-
ing global information in distributed systems. While cooperative pathfinding with
limited sensing and communication range has been investigated before, e.g., [3, 11,
21], to the best of our knowledge, guarantee of completeness has never been provided.
Note that cooperative pathfinding with only local knowledge can be considered as
a special case of pathfinding with dynamic obstacles. The difficulty lies partly in
the existence of live-locks, as global information is required to detect live-locks in
general. To achieve completeness, our approach allows robots to gradually increase
the level of coupling when potential live-locks are detected.

3 DisCoF

3.1 Problem Formulation

Given a graph G = (V, E) and a set of robotsR, the initial locations of the robots are
denoted as I ⊆ V and the goals are denoted as G ⊆ V . Edges in E are undirected.
Any robot can move to any adjacent vertex in one time step or remain where they
are. A plan P is a set of individual plans of robots, and P[i] denotes the individual
plan for robot i ∈ R. Each individual plan is composed of a sequence of actions. For
simplicity of presentation, each action is identified by the next vertex to be visited.
We denote by Pk[i] (k ≥ 1) the action to be taken at time step k − 1 (or the vertex
to be visited at k) for robot i , and by Pk,l[i] (k ≤ l) the subplan that results by
considering only the actions Pk[i] up to Pl[i]. The goal of cooperative pathfinding
is to find a plan P such that robots start in I and end in G after executing it, without
any conflicts. The set of locations of robots at time step k is denoted by Sk , and the
set of locations of robots after executing a plan P from S is denoted by S(P). Thus,
we have S0 = I, S0(P) = G and Sk = S0(P1,k). A conflict happens at time step k,
if two robots are in the same location, or their locations at k − 1 are exchanged.
Formally,

Sk[i] = Sk[j] ∨ (Sk[i] = Sk−1[j] ∧ Sk−1[i] = Sk[j]) (1)

in which i ∈ R, j ∈ R and i 	= j .

DisCoF: Cooperative Pathfinding in Distributed Systems … 329

Each robot can independently compute a plan (without considering other robots)
to a given goal from a starting location using a shortest-path planner. For simplicity,
we assume that when given the same starting location and goal to different robots,
the computed shortest-path plans are the same. Hence, we can denote the shortest-
path plan that moves a robot from vertex u to v as P(u, v). The length of P(u, v)

is denoted as C(u, v), i.e., C(u, v) = |P(u, v)|. Furthermore, we make the following
assumptions:

1. Robots are homogeneous and have the same sensing and communication range
(this assumption only simplifies the presentation and it can be relaxed).

2. Robots are equippedwith a communication protocol that allows them to efficiently
relay messages.

3. Time steps are synchronized (asynchronous time steps are to be investigated in
future work).

4. Each robot has full knowledge of the environment, i.e., G.

The individual plans are constructed and updated in an online fashion in DisCoF.
Initially, for each robot i , the individual plan is constructed as P[i] = P(I[i],G[i]).
Robots then start executing their individual plans until conflicts can be predicted
(discussed later). In such cases, the individual plans of robots that are involved are
updated from Pk+1 to avoid these conflicts, given that the current time step is k.

3.2 Local Window

While the window size in WHCA∗ [15] is a parameter to determine the number of
next plan steps to be sent by each robot to the reservation table, the window size in
DisCoF represents the sensing range of the robot. To reduce communication, we only
allow a robot to directly communicate with other robots that it can see. However,
two robots can communicate indirectly through other robots to coordinate using the
message relay protocol. This window is called a local window in DisCoF, which is
used in the prediction and resolution of potential conflicts.

Definition 1 (Local Window) At time step k, the local window of robot i ∈ R,
denoted by Wk[i], is defined as Wk[i] = {v ∈ V (vertices in G) | v can be reached
by i from its current location (i.e., Sk[i]) in λ steps}, in which λ is the window size,
a positive integer that is greater than 1.

When a robot j satisfiesSk[j] ∈ Wk[i], wewrite i �k j to indicate that robot i can
communicate with robot j . A simplifying assumption made here is that the visibility
of the sensor is only influenced by the distance, which can be relaxed. Given our
assumptions, �k is symmetric, i.e., i and j can communicate with each other. We
indicate this symmetric relation as i ��k j . Furthermore, given the communication
relay protocol,��k also defines a transitive relation. Namely, if i ��k r and r ��k

j , we also have that i ��k j . The ��k relation introduces the coordination graph.

330 Y. Zhang et al.

Definition 2 (Coordination Graph) At time step k, the coordination graph G∗
k =

(V ∗
k , E∗

k) of the robots is constructed as follows:

• V ∗
k = R.

• (i, j) ∈ E∗
k if and only if i ��k j .

Note that the coordination graph is only a structure introduced to facilitate our
following discussions. InDisCoF, robots are not required to compute this graph at any
time step. Next, we partition the coordination graph into disconnected components
that indicate which robots communicate with each other.

Definition 3 (Outer Closure (OC)) At time step k, the coordination graph G∗
k is

partitioned into disjoint connected subgraphs. Denote Φk as the set of vertex sets of
these subgraphs. Then, for any (φx , φ y) ∈ Φk × Φk , the following is satisfied:

∀(i, j) ∈ R × R, if i 	= j ∧ i ∈ φx ∧ j ∈ φ y holds, we have i ��k j , if and only
if x = y. Each φ ∈ Φk defines an outer closure.

Since two robots in different outer closures (OCs) do not communicate in DisCoF
(whether directly or indirectly), they do not know about each other’s current plan or
location (they may not even be aware of each other). Hence, only robots within the
same OCs can coordinate with each other.

Definition 4 (Predictable Conflicts) At time step k, given an OC φ ∈ Φk , we define
that a robot i ∈ φ has a predictable conflict with parameter δ, if it would be involved
in a conflict at k + δ (δ ≤ β, in which β is a pre-specified finite horizon) with another
robot in φ, and that i would not be involved in any conflicts with robots in φ at any
time step earlier than k + δ, assuming that robots in φ continue with their current
individual plans.

The reason for imposing the finite horizon β is due in part to the limited sensing
range (i.e., visibility) of the robots since resolution for potential conflicts in the far
future is likely to onlywaste computation resource and time.Note thatλ (i.e., window
size) and β do not have to be related.

At time step k, if a robot i has a predictable conflict with parameter δ (see Defin-
ition 4), we denote it as Δi

k(δ). We also use Δi
k when the parameter does not need to

be identified. Predictable conflicts are associated with the notion of inner closure.

Definition 5 (Inner Closure (IC)) At time step k, the IC ψ of a given OC φ ∈ Φk is
the set of robots that satisfy: ψ = {i | Δi

k ∧ i ∈ φ}.
Similarly, we denote Ψk as the set of ICs for the OCs (there is a one-to-one

correspondence) at time step k. Note that the IC of an OCmay be empty. We provide
an example of OC and IC below.

Example 1 Figure1 visualizes such a scenario for λ = 2 and β = 2. Robots are
shown at their initial locations at time step 0. The arrows indicate their respective
individual plans for the next few steps and the highlighted gray areas their local
windows. We have r2 ��0 r3 and r3 ��0 r4 and hence r2 ��0 r4 through r3. Thus,

DisCoF: Cooperative Pathfinding in Distributed Systems … 331

Fig. 1 Scenario that
illustrates OC and IC. Two
OCs are present, and one of
them contains a predictable
conflict. Here, ri indicates
the sensing and
communication range of
each robot i

the OC at time 0 are φ1 = {r2, r3, r4}, and φ2 = {r1}. Even though r2, r3, r4 are in the
same OC, only r3 and r4 belong to the corresponding IC, since there is a predictable
conflict with parameter 1. Hence, ψ1 = {r3, r4} and ψ2 = ∅.

3.3 Coupling in OC

Given anOCwith predictable conflicts, the goal of coupling is to update the individual
plans of robots to proactively resolve these conflicts while avoiding introducing new
conflicts in the finite horizon (i.e., specified by β).

At time step k, suppose that conflicts are predicted in an OC φ ∈ Φk , robots in φ

need to update their individual plans from Pk+1. Note that robots may join and leave
different couplings during the online planning process. To make sure that robots
make progress to their final goals as a team, we associate a contribution value γ

with each robot, which captures the individual contribution of the robot to updating
the summation of (shortest) distances between all robots’ current locations and their
final goals. Initially, this value is zero (i.e., ∀i, γ0[i] = 0). For robot i , we denote this
value just before the coupling at k by γk−[i] and after δ-steps by γk+δ[i]. When δ is
0, γ represents the updated value immediately after the coupling at k (see below).

First, robots in φ compute a plan Q (such that |Q| ≤ β) which satisfies the fol-
lowing two conditions:

∑

i∈φ

C(Sk[i],G[i]) + γk−[i] >
∑

i∈φ

C(Sk[i](Q[i]),G[i]) (2)

∀i ∈ φ,¬Δi
k (3)

in which Δi
k is computed based on the updated individual plans that are constructed

as follows: the new individual plan P[i] for robot i ∈ φ is constructed by replacing
actions starting from Pk+1[i] by Q[i] + P(Sk[i](Q[i]),G[i]). Here, Sk[i](Q[i]) is

332 Y. Zhang et al.

the local goal for i , which is the location of i (currently at Sk[i]) after executing
Q[i]. The + symbol is used here to denote concatenation.

At time step k, and after executing each action inQ[i], the contribution value for
i is updated as follows, until a conflict is predicted or this value becomes 0:

γk+δ[i] = C(Sk[i](Q[i]),G[i]) − C(Sk+δ[i],G[i]) (4)

in which 0 ≤ δ ≤ |Q|, is the steps after the coupling (i.e., number of actions in Q
that are executed). Note that Sk+δ[i] = S0[i](P1,k+δ[i]) in Eq. (4) is the location of
robot i at time step k + δ under the updated individual plan P[i] at time step k.

Lemma 1 Planning (i.e., the computation of Q) in the coupling process converges
R to their final goals as k grows, if Eq. (2) can always be satisfied.

Proof From Eqs. (2) and (4), we have the following holds:

∑

i∈φ

C(Sk[i],G[i]) + γk−[i] >
∑

i∈φ

C(Sk+δ[i],G[i]) + γk+δ[i] (5)

First, Eq. (5) holds for all robots that are still executing the coupled plan (i.e.,
Q) to move to their local goals; furthermore, Eq. (5) also holds for robots that have
already reached their local goals or robots that have not engaged in any coupling yet.
As a result, Eq. (5) holds forR. As k grows, we know that

∑
i∈R C(Sk+δ[i],G[i]) +

γk+δ[i] would gradually decrease. This also means that
∑

i∈R C(Sk[i](Q[i]),G[i])
would gradually decrease fromEqs. (2) and (4). Given |Q| ≤ β, the conclusion holds.

Assuming that the condition in Eq. (2) holds, Lemma 1 shows that planning con-
verges to final goals for R. This condition requires robots in a coupling to always
make progress jointly within the finite horizon. However, this assumption does not
hold in the presence of live-locks. In such cases, robots in a coupling would even-
tually be unable to find a Q that satisfies both Eqs. (2) and (3).1 Furthermore, the
limited horizon can also cause the search ofQ to fail. However, we realize that when
live-locks are present in distributed systems with only local knowledge, the search is
bound to fail eventually even with unlimited horizon. Hence, we do not distinguish
the two causes, and consider it as a “live-lock” being detected when when Eq. (2)
becomes unsatisfiable (while satisfying Eq. (3)).

3.4 Computing Q

Before discussing how “live-locks” are addressed in DisCoF, we provide details on
howQ is computed. Given that coupled search is expensive, we aim to minimize |Q|
as well as the number of robots that need to be coupled.

1Note that Eq. (3) can always be satisfied by forcing all the robots in a coupling to stay, which may
cause deadlocks. Eq. (2) prevents deadlocks.

DisCoF: Cooperative Pathfinding in Distributed Systems … 333

To achieve this, we try to constructQ that satisfies Eqs. (2) and (3) for ρ (ρ ⊆ φ),
which is initially set to be the corresponding IC for φ, while forcing robots in ρ to
respect the plans (i.e., avoiding predictable conflicts) of robots in φ \ ρ in the next β
steps. Note that having ρ instead of φ satisfy Eq. (2) does not influence the planning
convergence.

The search first checks Q for ρ with θ = 1, in which θ = |Q|, and gradually
increases θ until θ = β. If a valid Q is found for the current θ , the Q is returned.
Otherwise, if φ \ ρ 	= ∅, ρ is expanded to include robots in φ \ ρ that are also within
the combined region of local windows of robots in ρ, and the current θ is re-checked;
else, θ is incremented or unsatisfiability is returned when θ = β.

4 Push and Pull

InDisCoF,when unsatisfiability is returned in computingQ for anOCφ, we consider
it as a “live-lock” (i.e., robots in φ may have contributed in creating a live-lock situa-
tion) being detected. To resolve it, information of all robots in φ must be accessible.
In distributed systems, this requires the robots in φ to maintain within each other’s
sensing and communication range (thus remain coupled). Furthermore, note that a
live-lock may not involve all robots inR and there may be multiple live-locks in the
environment. When a live-lock is detected, robots in φ form a coupling group, ω,
which executes a live-lock resolution process described next. This process also allows
a coupling group to merge with other groups and robots, thus gradually increasing
the level of coupling. In some cases, e.g., when a global live-lock is present, robots
in DisCoF can eventually become fully coupled.

4.1 Overview

To achieve completeness, DisCoF uses a technique that is similar to Push and Rotate
[4], which we call Push and Pull. To ensure completeness in Push and Rotate, robots
must move to goals one at a time according to the priorities of subproblems to
which they belong. Robots that have already reached their goals are respected (i.e.,
considered as obstacles) by the subsequent Push operations. When Push fails, Push
and Rotate uses a Swap operation to ensure that these robots move back in their
goals as the remaining robotsmove. Such a priority orderingmust also be respected in
DisCoF.At time step k, for all coupling groups that have been formed, the basic idea is
to: (1)maintain robots in these groupswithin eachother’s sensing and communication
range; (2) for each group, move robots to goals one at a time based on a relaxed
version of the priority ordering, which is consistent to that in Push and Rotate; (3)
add robots that introduce predictable conflicts with a coupling group as robots in the
group move to their goals. Each coupling group progresses independently of other

334 Y. Zhang et al.

robots and coupling groups unless there are predictable conflicts. The main process
is described in Algorithm1.

Algorithm 1 Live-lock Resolution Process in DisCoF for a Coupling Group ω

1: Current time step is k.
2: while ∃i ∈ ω, Sk [i] 	= G[i] do
3: if predictable conflicts detected with other robots then
4: Add other robots with predictable conflicts to, or merge their groups with ω.
5: Recompute the priorities of subproblems.
6: end if
7: if r is not defined ∨ robots with a higher priority than r is found ∨ r reaches G[r] then
8: r ← the robot with (equal) highest priority in ω.
9: end if
10: Push and Pull r to G[r].
11: end while

In Algorithm 1, the coupling of robots in ω is maintained by the Push and Pull
technique. As a result, predictable conflicts can only be introduced by other robots.
When a coupling group detects predictable conflicts with another group, two groups
are merged. Furthermore, when a robot that has already reached its goal is added
to a coupling group in the live-lock resolution process, if the robot’s priority is not
the highest among all robots that have not reached their goals after recomputing
the priorities, this robot is not considered as having reached its goal in Push and
Pull. This means that the Push and Pull operations can move these robots. Also,
the priority ordering (i.e., the ≺ relations in [4]) is maintained and aggregated by
the robots whenever new relations are identified (in Line 5); given that the relaxed
priority ordering is consistent with that in Push and Rotate, robots can gradually
achieve a consensus of this ordering.

4.2 Assigning Priorities

To ensure completeness, the priorities of subproblems in Push and Rotate [4] must be
respected. However, given the limited visibility of the robots, this priority ordering
can only be partially computed for each coupling group. This partially computed
ordering in DisCoF is kept consistent with the priority ordering in Push and Rotate.

To compute the priorities, first, Push and Rotate identifies the subproblems. Since
this computation is only dependent on the graph structure, robots in DisCoF can
individually identify the set of subproblems.

Next, Push and Rotate assigns robots to subproblems. DisCoF computes a relaxed
version of this assignment to ensure that assignments are only made when they
are consistent with those in Push and Rotate. Denote the set of subproblems as D.
Algorithm 2 presents the algorithm to compute the assignment in a coupling groupω.

DisCoF: Cooperative Pathfinding in Distributed Systems … 335

Algorithm 2 Algorithm for Assigning Robots to Subproblems in ω

1: for all Dh ∈ D do
2: for all v ∈ Dh do
3: for all u /∈ Dh for which (u, v) ∈ Eω do
4: m′ ← number of unoccupied vertices reachable from v in Gω \ {u}.
5: m′′ ← number of unoccupied vertices reachable from Dh in Gω \ {v}; ¬m ← number

of unoccupied vertices unreachable from v in G \ {u}, given only robots in Gω .
6: if (m′ ≥ 1 ∧ ¬m ≥ 1) ∨ m′′ ≥ 1 then
7: Assign robot in v to Dh .
8: end if
9: Follow path from u away from v and assign the first m′ − 1 (all if less than m′ − 1) on

this path to Dh in Gω.
10: end for
11: end for
12: end for

The differences of Algorithm 2 from that in Push and Rotate lie in Line 4, 5, 6
and 9. While the computation for these lines is performed based on the global graph
(i.e., G) in Push and Rotate, the computation in DisCoF is based on Gω = (V ω, Eω)

(which represents the combined region of the local windows of robots in ω), and G
given only robots in Gω. Note that not every robot may be assigned to a subproblem
and the unassigned robots are assumed to have the lowest priorities.

Lemma 2 The assignment of robots to subproblems in DisCoF is consistent to that
in Push and Rotate [4]: if a robot r is assigned to subproblem Dh in Algorithm 2, it
is also assigned to Dh in Push and Rotate.

Proof We only need to prove that: (1) when the condition in Line 6 is satisfied,
the corresponding condition in Push and Rotate is also satisfied; (2) m ′ and m ′′ in
Algorithm2 are smaller than those in [4], and¬m ≥ 1 inAlgorithm2 impliesm ′ < m
in [4]. These directly follow from how they are computed.

In the third step, Push and Rotate assigns priorities to the subproblems. Robots
within the same subproblems receive the same priorities. Similarly, the reference of
global graph is changed to Gω; otherwise, the process is unchanged.

Lemma 3 The assignment of priorities to subproblems in DisCoF is consistent to
that in Push and Rotate [4]: if two subproblems Dh1 and Dh2 satisfy Dh1 ≺ Dh2,
they must also satisfy Dh1 ≺ Dh2 in Push and Rotate.

Proof This conclusion follows almost directly from Lemma 2 and the process for
assigning priorities to subproblems.

Note that this assignment process is executed by each coupling group in DisCoF
instead of all robots in Push and Rotate. This means that while the assignments are
consistent with that in Push and Rotate, they are computed for different (and disjoint)
sets of robots in DisCoF.

336 Y. Zhang et al.

4.3 Maintaining and Expanding ω

Robots in a coupling group can use the operations (i.e., Push, Swap and Rotate)
in Push and Rotate to move to their goals one at a time (for details, refer to [4]).
To maintain robots within ω in sensing and communication range, we introduce a
new operation, called Pull. Denote r as the current robot that is being moved to its
final goal in ω. As r moves to its goal, it can use any of the Push, Swap and Rotate
operations. Every step that r moves as a result of these operations, it also invokes
the Pull operation on the other robots in ω.

The Pull operation computes a shortest-path plan p from r to any robot s ∈ ω \ r .
A set U is created, which contains only r initially. If p does not pass through other
robots in ω, and the first step in p leads s closer to r , s is added to U . If the first
step in p does not introduce conflicts with other robots in ω, this step is added to
the individual plan of s; otherwise, an action to stay is added to the individual plan
of s. For robots that have been newly added into U , they recursively apply the Pull
operation on robots that are not in U . This process ends until all robots in ω are in U .
The Pull operation is presented in Algorithm 3. Figure2 illustrates the Pull operation
in a simple scenario.

Lemma 4 The Pull operation maintains robots in each coupling group within each
other’s sensing and communication range.

Proof The Pull operation, after execution, ensures that any robot s ∈ ω is no further
away from one of the robots in ω before its execution. Hence, the conclusion holds.

Similar to Push, Pull may fail (Line 13 in Algorithm 3) since it must respect the
robots (with equal or higher priorities) that have already reached their goals. In such
cases, a similar procedure using Swaps as for the Push operation in [4] can be used;
these Swaps can cause robots that are being swapped to recursively invoke Pull.

Fig. 2 Scenario that
illustrates the Pull operation.
Left figure shows that robot
r2 is moving to its goal.
Right figure shows the same
scenario after one time step.
Blue arrows show the actions
being added to the individual
plans of the corresponding
robots at each step by the
Pull operation

DisCoF: Cooperative Pathfinding in Distributed Systems … 337

Fig. 3 Scenario that
illustrates the expanding
process, in which two
coupling groups, each with
two robots, are merged when
a conflict is predicted in the
next step

Algorithm 3 Pull operation in ω

1: U ← {r}; N ← ∅
2: while U 	= ω do
3: for all s ∈ ω \ U do
4: p ← P(Sk [s],Sk [r]), consider robots that have reached goals as obstacles.
5: if p does not pass through robots in ω that have not reached goals ∧ p moves s closer to r

then
6: if no conflicts with other robots in ω after executing the first step in p then
7: Add the first step in p to the individual plan of s.
8: else
9: Add an action for s to stay in the next step.
10: end if
11: U ← U ∪ {s}; N ← N ∪ {s}
12: else
13: return False.
14: end if
15: end for
16: r ← Pop(N).
17: end while

When there are other robots within the combined region of the local windows of
robots in ω, robots must plan to consider predicted conflicts. Each coupling group
makes a plan for the next β steps considering only robots in the group. When no
conflicts are predicted, robots continue with this plan. When conflicts are predicted,
ω is expanded as we previously discussed. The expanded coupling group chooses
the robot currently with the (equal) highest priority to move to the goal.2 Figure3
illustrates the merge of two coupling groups. In the group on the left (r2 and r3), r2 is
moving to its goal, pulling r3, and in the other group, r1 is moving to its goal, puling
r4. Since a predictable conflict exists between r2 and r1, the two groups are merged.

2If more than one robot have the same (highest) priority, we can arbitrarily choose among them.

338 Y. Zhang et al.

4.4 Analysis

To prove the completeness of DisCoF, we use a property that is derived directly from
Theorem 2 in Push and Rotate [4].

Corollary 1 If the cooperative pathfinding problem is solvable, the assignment of
robots in a coupling group to subproblems remains unchanged unless the group is
expanded.

Theorem 1 DisCoF is complete for the class of cooperative pathfinding problems
in which there are two or more unoccupied vertices in each connected component.

Proof We provide the proof sketch here, which is based on the following observa-
tions: (1) When every coupling group is independent of other robots and groups,
DisCoF is complete; this is almost a direct result from Push and Rotate, since the
Pull operation does not influence the other operations. (2) When a coupling group is
expanded, robots in the group are maintained within each other’s sensing and com-
municating range; this is a direct result from Lemma 4. (3) The priority ordering
relations (i.e., ≺) are maintained and gradually aggregated (to reach a consensus)
as they are identified; this is a result from Lemma 2, Lemma 3 and Corollary 1. (4)
Robots with the highest priorities are respected (in Push and Pull operations) by the
coupling groups in the Push and Pull process (similar to that in Push and Rotate),
which moves robots with the highest priorities to goals first.

Since it has been shown in [4] that robotswith the highest prioritiesmust bemoved
to goals first in order to ensure a solution, these robots must eventually be assigned
the highest priorities as the coupling groups move. Hence, these robots would be
moved to their final goals. This process then continues to robots with the second
highest priorities and so on. Hence, DisCoF is complete.

5 Conclusions

In this paper, we introduce a window-based approach for cooperative pathfinding in
distributed systems, with the window size corresponding to the limited sensing and
communication range in such systems. This approach, calledDisCoF, is an inherently
online approach. To limit coupling in order to reduce computation, we introduce
a formulation that allows robots to avoid future conflicts while still making joint
progress to their final goals. This formulation also allows “live-locks” to be detected;
in such cases, we use a Push and Pull technique. We show that DisCoF is complete.
To the best of our knowledge, this is the first work that guarantees completeness for
cooperative pathfindingwith limited sensing and communication range in distributed
systems. Note that the general definition of conflict potentially allows DisCoF to be
applied to cooperative pathfinding with different robotic platforms, e.g., adding the
consideration of height for UAVs.

DisCoF: Cooperative Pathfinding in Distributed Systems … 339

In future work, we plan to provide a detailed evaluation of DisCoF and compare
it with other related approaches. We also plan to extend the formulations to consider
more complex environment and goal specifications (e.g., using temporal logic speci-
fications [6]). Other directions include extending the approach to support continuous
motions, heterogeneous robots, and asynchronous time steps. For recent progresses,
refer to https://cpslab.assembla.com/spaces/discof/.

Acknowledgments This research is supported in part by the ARO grant W911NF-13-1-0023, the
ONR grants N00014-13-1-0176 and N00014-13-1-0519, and the NSF award CNS 1116136.

References

1. Ayanian, N., Rus, d., Kumar, V.: Decentralized multirobot control in partially known environ-
ments with dynamic task reassignment. In: 3rd IFACWorkshop on Distributed Estimation and
Control in Networked Systems (2012)

2. Bnaya, Z., Felner, A.: Conflict-orientedwindowed hierarchical cooperativeA∗. In: Proceedings
of the 2014 IEEE International Conference on Robotics and Automation (2014)

3. Clark, C.M., Rock, S.M., Latombe, J.-C.: Motion planning for multiple mobile robots using
dynamic networks. In: Proceedings of the IEEE International Conference on Robotics and
Automation, vol. 3, pp. 4222–4227, Sep 2003

4. de Wilde, B., ter Mors, A.W., Witteveen, C.: Push and rotate: cooperative multi-agent path
planning. In: 12th International Conference on Autonomous Agents and Multiagent Systems
(2013)

5. Desaraju, Vishnu R., How, Jonathan P.: Decentralized path planning for multi-agent teams with
complex constraints. Auton. Robots 32(4), 385–403 (2012)

6. Fainekos, Georgios E., Girard, Antoine, Kress-Gazit, Hadas, Pappas, George J.: Temporal logic
motion planning for dynamic robots. Automatica 45(2), 343–352 (2009)

7. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for multiple
independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot. Res.
3(4), 76–88 (1984)

8. Jansen,R., Sturtevant,N.:Anewapproach to cooperative pathfinding. In: Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS, pp.
1401–1404, Richland, SC, International Foundation for Autonomous Agents and Multiagent
Systems (2008)

9. Liu, L., Shell, A.: Physically routing robots in a multi-robot network: flexibility through a
three-dimensional matching graph. Int. J. Robot. Res. 32(12), 1475–1494 (2013)

10. Luna, R., Bekris, K.: Efficient and complete centralizedmultirobot path planning. In: IEEE/RSJ
International Conference on Intelligent Robots and Systems (2011)

11. Otte, M., Bialkowski, J., Frazzoli, E.: Any-com collision checking: sharing certificates in
decentralized multi-robot teams. In: Proceedings of the 2014 IEEE International Conference
on Robotics and Automation (2014)

12. Parker, L.E.: Encyclopedia of Complexity and System Science, Path Planning and Motion
Coordination in Multiple Mobile Robot Teams. Springer, New York (2009)

13. Peasgood, M., Clark, C.M., McPhee, J.: A complete and scalable strategy for coordinating
multiple robots within roadmaps. IEEE Trans. Robot. 24(2), 283–292 (2008). April

14. Ryan, M.: Graph decomposition for efficient multi-robot path planning. In Proceedings of the
20th International Joint Conference on Artifical Intelligence, pp. 2003–2008. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 2007

15. Silver, D.: Cooperative pathfinding. In: Conference on Artificial Intelligence and Interactive
Digital Entertainment (2005)

https://cpslab.assembla.com/spaces/discof/

340 Y. Zhang et al.

16. Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: AAAI Con-
ference on Artificial Intelligence (2010)

17. Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: Proceed-
ings of the 22nd International Joint Conference on Artifical Intelligence (2011)

18. Sturtevant, N., Buro, M.: Improving collaborative pathfinding using map abstraction. In: Arti-
ficial Intelligence and Interactive Digital Entertainment (AIIDE), pp. 80–85 (2006)

19. Wang, K.H.C., Botea, A.: Fast and memory-efficient multi-agent pathfinding. In: International
Conference on Automated Planning and Scheduling, pp. 380–387 (2008)

20. Yu, J., LaValle, S.M.:Multi-agent path planning and network flow. In:Algorithmic Foundations
of Robotics X, vol. 86, pp. 157–173. Springer (2013)

21. Zuluaga, M., Vaughan, R.: Reducing spatial interference in robot teams by local-investment
aggression. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005. (IROS 2005), pp. 2798–2805, Aug 2005

Decentralized Multi-agent Path Selection
Using Minimal Information

Andrew Kimmel and Kostas Bekris

Abstract This work studies conflict avoidance between moving, non-
communicating agents with minimum sensing information. While safety can be
provided by reactive obstacle avoidance methods for holonomic systems, deadlock
avoidance requires reasoning over different homotopic paths in cluttered scenes. A
method to compute the “interaction cost” of a path is proposed, which considers only
the neighboring agents’ observed positions. Minimizing the interaction cost in a pro-
totypical challenge with two agents moving through two corridors from opposing
sides guarantees the selection of non-conflicting paths. More complex scenes, how-
ever, are more challenging. This leads to a study of alternatives for decentralized path
selection. Simulations indicate that following a “minimum-conflict” path given the
other agents’ observed positions provides deadlock avoidance. A scheme that selects
between the minimum-conflict path and a set of shortest paths given their interaction
cost improves path quality while still achieving deadlock avoidance. Finally, learning
to select between the minimum-conflict and one of the shortest paths allows agents
to be adaptive to the behavior of their neighbors and can be achieved using regret
minimization.

Keywords Multi-agent · Decentralized · Coordination · Path planning

1 Introduction

Advances in robotic technology allow applications where multiple robots operate in
the same cluttered environment, potentially also in the presence of people or animals.
Explicit communication with the other agents, especially when humans are involved,
may not be feasible or desirable. Similarly, it may be difficult to model or predict the
actions of the other agents. This motivates decentralized methods that allow a robot

A. Kimmel · K. Bekris (B)
Rutgers University, Piscataway, NJ, USA
e-mail: andrew.kimmel@cs.rutgers.edu

K. Bekris
e-mail: kostas.bekris@cs.rutgers.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_24

341

342 A. Kimmel and K. Bekris

Fig. 1 If both agents A and
B insist on following the
same corridor, a reactive
collision avoidance method
may not allow them to make
progress to their goals, G A
and G B

to reach its goal safely given minimal information and without strong assumptions
about the intentions of its moving neighbors. Such solutions should avoid deadlocks
and minimize executed path length or task completion time.

Challenges, Foundations and Objectives: Avoiding collisions with unexpected
obstacles or mobile agents, can be effectively addressed by reactive collision avoid-
ance methods, such as those based on the popular Velocity Obstacle framework
[5, 31] or trajectory deformation methods [6, 15]. These methods generally provide
smooth, natural-looking paths, but they are primarily local techniques and do not
reason about the robot’s global path. Although local motion coordination can be
achieved [16], if the agents select conflicting paths, reactive collision avoidance can
still give rise to deadlocks and poor performance. For instance, consider the situation
in Fig. 1, where two robots on opposing sides of two corridors need to exchange
positions. If both robots decide to move along the lower corridor, e.g., because it
corresponds to their individual shortest path, the space is narrow enough to prevent
the robots from crossing.

Robots in such situations that replan [23] and change their path to a different
homotopy class [3, 12] can potentially resolve conflicts. Such coordination can be
achieved by assuming that the robots share information [1], or follow a form of
centralized planning [24], or by respecting a set of pre-specified “social” rules [19],
or performing sophisticated prediction [28, 32], agent modeling [25, 26], learning
[11] or game-theoretic reasoning [13]. The information required to use such solutions
may correspond (a) to the actions selected by neighbors, (b) the utilities of different
motions, (c) the goals of neighbors, or (d) extensive prior experience interacting with
other agents. Such information is difficult to attain quickly and reliably, especially
when a robot interacts with a human, since the robot has little knowledge about the
human’s future actionswithout explicit communication. Furthermore, it is interesting
to study what is achievable without any prediction, intent recognition or modeling
of the moving agents.

Considered Methodology: This work employs strictly decentralized methods while
utilizing minimal information. Each robot has access only to the current position and
velocity of its neighbors from sensing data. The basic framework assumes that robots
replan paths frequently [23] and employ reciprocal velocity obstacles [27, 30] so as
to follow these paths while avoiding collisions. The velocity information is actually
used only for the adopted reactive obstacle avoidance method based on Velocity
Obstacles [31] and not for the proposed path planning techniques. Learning is also
considered, corresponding to online learning of appropriate strategies in response

Decentralized Multi-agent Path Selection Using Minimal Information 343

to the behavior of other agents. The considered techniques are evaluated in various
simulated benchmarks.

If agents greedily select the globally shortest path to their goal, this frequently
results in deadlocks as in the case of Fig. 1. To address this issue, one alternative is
to consider a set of diverse paths instead of only the shortest one. The notion of path
diversity has been shown to be helpful in many different challenges, but frequently
corresponds to a local concept [7, 18]. One way to compute a diverse set of global
paths is to consider different homotopy classes using search-based primitives [2, 3]
over an underlying roadmap. This work provides a method for selecting a minimally
conflicting path out of this set by defining an “interaction cost” for each path given
the other agents’ current positions. This process is designed so as to address the issue
in the prototypical example provided of Fig. 1.

Computing a large number of diverse paths is computationally challenging in
complex scenes. If, instead, only a small set of k shortest paths in distinct homo-
topy classes is considered deadlocks can still arise. An alternative is to compute
the “minimum-conflict” homotopy class, which minimizes interactions with other
agents. This notion is related to the “minimum constraint displacement” problem,
which has recently attracted attention [10].Here, constraints on theminimum-conflict
homotopy class correspond to the observed locations of other agents and can be
discovered in a computationally efficient manner using an underlying roadmap. The
experimental evaluation shows that when the moving agents follow their “minimum-
conflict” paths, they can avoid deadlocks even in complex scenes.

While minimum conflict paths achieve deadlock avoidance experimentally, they
can be inefficient, forcing agents to follow long paths to reach their goals. Considering
both the minimum-conflict path and a set of k shortest paths in distinct homotopy
classes typically results in improved performance in terms of path length. This work
considers two approaches for choosing between (a) the conservative alternative of
following the “minimum-conflict” path and (b) the greedy choice corresponding to
one of the k shortest paths. The first approach is a deterministic strategy that selects
the path among the k + 1 choices, which minimizes the “interaction cost”.

The second approach is based on the notion of regret minimization and corre-
sponds to the Polynomial Weights PW algorithm [21, 22]. Regret minimization is a
favorable way to reason among unpredictable agents, without knowing their goals,
utilities, intents, or beliefs, as in the setup of thiswork. The application of thePW algo-
rithm here accumulates regret for the “minimum-conflict” strategy and the “greedy”
choice strategy by observing the choices of the other agents in the same workspace
and assigning a loss to each strategy in hindsight. A probability is then assigned for
selecting each strategy based on the accumulated losses.

Both the deterministic and the learning-based solution result in deadlock avoid-
ance in the simulated benchmarks considered in this work. The learning approach
can also adapt to different behaviors by neighboring agents.

344 A. Kimmel and K. Bekris

Contribution and Overview of Results: The key observations from this work can
be summarized as the following points:

(a) Using “interaction cost” to select a path among multiple choices assists in min-
imizing the occurrence of deadlocks. In a prototypical benchmark with few
homotopy classes and agents, it can guarantee deadlock avoidance.

(b) Computing minimum-conflict paths is experimentally shown to be critical for
avoiding deadlocks even in more complex scenes with many homotopy classes
and is interesting to further analyze the properties of this strategy.

(c) Considering multiple paths in distinct homotopy classes together with the
minimum-conflict path results in improved path quality and execution time.

(d) Regret minimization is a computationally efficient way for robots to react to the
behavior of other agents in the scene without explicit communication.

2 Problem Setup

Path deconfliction problems can be defined in general configuration spaces but this
discussion will focus on holonomic planar navigation as it provides an easy way to
describe the framework and corresponds to the accompanying simulations.

Consider a set ofm planar, holonomic agents {a1, . . . , am} thatmovewith bounded
velocity v ∈ [0, vmax] in the sameworkspaceW. The configuration space of an agent
is Q = R

2, where Q f ree represents the obstacle free subset given static obstacles.
Given a configuration qi ∈ Q, the expression a(qi) corresponds to the collision vol-
ume of agent ai inW.

A path πi = {qi |qi : [0, 1] → Q f ree} for agent ai corresponds to a continuous
curve in Q f ree. Given a time scaling function σi : R≥0 → [0, 1] it is also possible to
define the sequence of configuration τi = πi ◦ σi that the agent visits at each point
in time.

The problem formulation assumes that each agent ai wants to reach a desired goal
qG

i ∈ Q without conflicts. The objective then is for the agents to select the sequence
of configurations {τ1, . . . , τm} they will follow in a decentralized manner, such that
in finite time T : ∀ i ∈ {1, . . . , m} : τi [T] = qG

i . Collisions between agents must be
avoided, unless one of the agents has reached its goal, i.e.,

a(τi [t]) ∩ a(τ j [t]) = ∅ ∨ a(τi [t]) = qG

i ∨ a(τ j [t]) = qG

j .

The above description implies a version of the so called “garage” assumption. When
agents reach their goal, they are removed from the workspace and are not considered
for collisions when other agents pass through that goal.

Agents are never aware of the goal of any other agent or the path selected by
another agent. At any point in time an agent can only observe the positions of other
agents as long as their configurations are within a certain sensing radius.

Decentralized Multi-agent Path Selection Using Minimal Information 345

Agents are assumed to have access to a collision avoidance method (e.g., Recip-
rocal Velocity Obstacles [30] are used in the accompanying experiments), which is
used to follow their selected path while still avoiding collisions with other agents.
This means that the planned path may not be executed perfectly due to the influence
of neighboring agents and the use of the obstacle avoidance method.

Note that the above discussion can be easily extended to include the casewhere one
agent is the planning robot that employs a method for achieving deconfliction while
all the other agents are unpredictable dynamic obstacles that ignore the presence of
the planning agent. In these situations, the relative velocity of the planning agent and
the dynamic obstacles should be such so that the collision avoidance method can
always guarantee the safety of the planning agent.

The above setup involving unpredictable neighboring agents motivates a replan-
ning framework for recomputing paths given the latest observed configurations of
agents. This replanning approach forms the basis of the overall methodology that is
described in the following section.

3 Methods

This section first describes a straightforward method for integrating global path
planning and local collision avoidance, which, however, can lead to deadlocks in
many setups. Then a sequence of alternative strategies for computing the global path
are considered so as to avoid such situations.

Replanning Framework: During execution of an action, a robot can deviate from its
corresponding planned path due to the reactive collision avoidance executing a safety
control. Naïvely following the original planned path is therefore not sufficient, as the
robot will most likely not be able to reach its goal as intended. A replanning frame-
work [9, 23] as illustrated in Fig. 2 is used to address such issues. The framework
follows related work, where first a roadmap is precomputed using a sampling-based
motion planning method and then integrated with a collision-avoidance method [29].
The sampling-based planner used in this work is PRM∗ [14]. The path computed for
time t − 1 to t will not be executed perfectly, as shown in Fig. 2; however, the frame-
work updates the predicted state of the robot accordingly. By using such a replanning

Fig. 2 The path computed
[t − 1, t] is executed during
time [t, t + 1]. The state at
time t can deviate from the
predicted initial state for the
computed plan, so planning
for cycle [t + 1, t + 2] must
start from an updated
predicted state

346 A. Kimmel and K. Bekris

framework, where the agent updates its new predicted state given the perceived dif-
ferences between its true state and the previous predicted state, the agent becomes
robust to perturbations in the solution path caused by the use of reactive methods.
The most straightforward path selection process corresponds to selecting the short-
est path to the goal ignoring other agents. As argued before, this choice can lead to
deadlocks despite the availability of the reactive collision avoidance method, when
the shortest paths of two agents conflict.

K-Best Paths from Different Homotopy Classes: Rather than simply selecting the
greedy path at each planning cycle, one alternative is for each agent to consider a
diverse set of paths and select one that reduces possible interactionswith other agents.
In an environment with many obstacles and narrow corridors which cause conflicts
between agents that cannot be resolved by reactive obstacle avoidance, it makes sense
to consider paths that belong to different homotopy classes [3]. Homology classes [4]
can also be used to compute a diverse set of paths, however this work does not utilize
homologies since they do not differentiate between paths that symmetrically loop
around obstacles. When considering 2D problems, paths are in different homotopy
classes when the area between them contains an obstacle. A complete definition for
homotopy can be found in the related literature [8].

By ignoring paths that loop around obstacles, the set of non-homotopic paths
describes all of the shortest-length paths that bring the agent from its current position
to the goal. These computations take place over an underlying roadmap, and use a
set of search-based primitives. An example of the resulting set of computed paths in
a simulated environment is shown in Fig. 3.

Minimizing Interaction Cost The question that arises is how should agents differ-
entiate among the available paths in order to select motions that will allow them to
make progress to their goals. To describe the proposed process, consider the situ-
ation depicted in Fig. 1, where agent A can follow action a1 to move through the
lower corridor and action a2 to move through the upper corridor towards its goal G A.
These actions correspond to two solutions returned from the homotopy class compu-
tation described in the previous section, regardless of the current configuration of the
robot qA. Similarly, agent B has choices b1 and b2.

Fig. 3 Selecting the path
with the lowest interaction
cost from k different
homotopy classes is the
“k-best” strategy

Decentralized Multi-agent Path Selection Using Minimal Information 347

Fig. 4 Backtracking
increases path length by εA
and εB for robots A and B
respectively, while
remaining in the current
corridor reduces path length
by εA and εB respectively

Then the question is how costs C(a1), C(a2), C(b1), C(b2) can be computed
appropriately, and in a decentralized manner, so that in any situation the two agents
will decide to follow different corridors when they try to select the action with
minimum cost. The most conflicted situation occurs when both robots are already
following the same corridor. Without loss of generality set both agents to be inside
corridor 1, i.e., the lower corridor.

Assume that the goals for the agents are symmetrically placed at the end of each
side of the corridor. Then the shortest path between the two goal points through the
corridors is x , as illustrated in Fig. 4. If the corridors are too narrow, then one of
the paths will go through the current configurations of robots A and B. Assume that
the distance between the goal G B and qA is εA and the distance between the goal G A

and qB is εB along the path that goes through corridor 1 (the lower corridor). Then the
lengths of the shortest paths for the robots to reach their goals via the corresponding
homotopic paths can be computed as follows:

P A
1 = x − εA, P A

2 = x + εA, P B
1 = x − εB, P B

2 = x + εB,

where P X
i corresponds to the length of the shortest path for robot X from its current

configuration qX to its goal G X via corridor i .
The proposed approach also considers an interaction cost along each action for

every agent. The interaction cost of an action is 0 if there is no other agent occupying
the corresponding path given the latest observation. If there is an agent occupying
the path, then the interaction cost is computed as follows:

I A
i = 1 − distance between A and B along πi

length of πi
(1)

The reasoning behind this definition is that agents closer to the current position of
an agent should incur a higher interaction cost. Then for the above scenario the
interaction costs are:

I A
1 = εB

x − εA
, I A

2 = 0, I B
1 = εA

x − εB
, I B

2 = 0.

Then the proposed cost function for actions is C X
i = P X

i (1 + 2 · I X
i), which trans-

lates to the following costs in the above scenario:

C A
1 = x − εA + 2 · εB, C A

2 = x + εA, C B
1 = x − εB + 2 · εA, C B

2 = x + εB .

348 A. Kimmel and K. Bekris

Then, note that in order for A to select action 1 it has to be the case that:

C A
1 = x − εA + 2 · εB < x + εA = C A

2 ⇒ A selects corridor 1 iff: εB < εA (2)

Similarly for robot B to select action 1 it has to be the case that:

C B
1 = x − εB + 2 · εA < x + εB = C A

2 ⇒ B selects corridor 1 iff: εA < εB (3)

From Eqs. 2 and 3 it becomes apparent that the agents are not able to simultaneously
pick the same corridor given the above definitions for the interaction cost and the
overall cost functions. The agent who is farther away from its goal will have to pick
the other homotopy class.

The entire above discussion was based on the assumption that the goal locations
of the two agents were symmetrical relative to the corridors, i.e., the length of the
path connecting the agents that goes through corridor 1 is the same as the length
of the path through corridor 2. If the goals are not symmetrical, then instead of a
common path length of x , the initial path costs P X

i should include different lengths
x1 and x2 for the connections of the goals via corridor 1 and 2 respectively. Then,
the cost of actions should be defined in a general manner: C X

i = P X
i (1 + α · I X

i) for
a constant α, which will depend on the relative difference Δx = |x1 − x2|. This is
information, however, that is not available to the robots, since it requires knowledge
of the goals for the other agents.

In practice, using the value α = 2 as was done in this section, results in good
performance in the classification of different homotopic paths in terms of their inter-
action cost. So, in the context of the replanning framework in order to replace the
greedy choice, a “k-best” choice is used. First, compute the k-shortest paths that
belong to k different homotopy classes. Then, for each one of these paths, compute
their costs according to the definition of C X

i , where the interaction cost is computed
according to Eq.1. The action with minimum cost both minimizes distance from the
goal as well as interaction with other agents. The above “k-best” strategy is supe-
rior to the “greedy” strategy of always selecting the shortest path, since it allows a
robot to consider multiple alternative choices as well as interactions with neighbors.
In this manner, it provides a resolution to the basic “corridor” challenge under the
assumption that the goals of the two agents are symmetric.

Minimum Conflict (MC) Path: The “k-best” strategy was able to avoid deadlocks
as long as the total number of simple homotopy classes did not significantly exceed
k, where simple homotopy classes correspond to those that do not include loops.
When this property is true, then the strategy described in the previous section results
in the selection of paths which allow the team to make progress overall. Even in
relatively simplistic scenes, however, the number of homotopy classes can quickly
become large.This introduces a computational challenge, since the k + 1th homotopy
class corresponds to an increasingly longer path, which translates to a longer search
time on the underlying roadmap. To keep the proposed method computationally

Decentralized Multi-agent Path Selection Using Minimal Information 349

effective, however, it is important to keep a small planning cycle and perform each
path computation as fast as possible.

In order to address this issue, the value of k is kept relatively small, and to accom-
modate the potential lack of a desirable path, the current work proposes that the
“minimum-conflict path” should always be included as an available action to the
agents. To compute such a path, each agent ai considers the current set of config-
urations for the agents it can observe: {q1, . . . , qi−1, qi+1, . . . , qm}. For each one
of those configurations q j , agent ai marks edges in the roadmap that intersect q j .
Edges that are marked then have their weights inflated by a large amount, effectively
removing them from consideration during the heuristic search to find the shortest
path on the roadmap from qi to qG

i . This means that the heuristic search process will
first return the shortest path that does not collide with any agents. If no such path
exists, then one which collides only with one agent will be returned and so on.

The inclusion of such paths in the set of available strategies results in methodolo-
gies that always solve challenges where the “greedy” or the “k-best” method failed.
Interestingly, a strategy which only considers the “minimum conflict” action, con-
structed at each replanning cycle using the process described above, is also able to
always solve all the challenges considered in the accompanying simulations.

Even so, the resulting pathsmay not be as desirablewhen all the agents follow their
minimum conflict action. As shown in Fig. 5, this action may be significantly longer
than the shortest path to the goal. Thus, it is interesting to consider the combination
of the “k-best” strategy with the “minimum conflict” one. In this case, the process
works as follows: first, a homotopy class computation algorithm is used to extract the
k-shortest paths that belong to k different homotopy classes. Next, the “minimum-
conflict” action is computed. For each one of the above k + 1 paths, their costs are
computed according to the definition of C X

i , where the interaction cost is from Eq.1.
Finally, the action with the minimum cost is returned.

Fig. 5 A “minimum-
conflict” path computed for
the right-most agent for a
goal to the left. The shortest
path without conflicts is
returned. For a large
distribution of agents, the
“minimum-conflict” path
will typically intersect some
agents

350 A. Kimmel and K. Bekris

This “deterministic” approach for combining the agent’s greedy choices, i.e.,
k-shortest paths, and the safe/conservative choice, i.e., the minimum conflict path,
takes advantage of the process for evaluating interaction costs. It allows agents to
sometimes select one of the shortest paths, even if they conflict with other agents, as
long as these paths are significantly shorter than the minimum conflict path and do
not overlap with other agents early on.

A Probabilistic Selection Strategy To allow some adaptability to the choices of
other agents, this work considers an online learning method to select the appropriate
strategy out of the following: (a) the “minimum conflict” (the shortest path with
the least amount of agent interaction), and (b) a greedy strategy, where this work
considers two possible alternatives for the greedy strategy—returning the shortest
path ignoring other agents or, returning the action selected by the “k-best” strategy.
The objective of this approach is to learn during the execution of a path whether it is
better to play the conservative/“minimum conflict”strategy or the greedy alternative,
given the cost that it experiences for the outcomes of these strategies over time.

The learning approach corresponds to the Polynomial Weights method, which
applies regret minimization [21, 22]. It begins by assigning uniform weights on the
two strategies: wmin_con f lict = wgreedy = 1. Then, when the agent must choose an
action, one of the strategies is chosen at random proportionally to their weights, i.e.,

Pr(“minimum-conflict”) = wmin_con f lict

wmin_con f lict + wgreedy
.

During each planning cycle, the method updates these weights by calculating a loss
value for each one of them: lmin_con f lict , lgreedy , in hindsight, i.e., assuming that all
the other agents would have acted the same way, the method computes a value that
corresponds to the regret of choosing that value. Given the other agents’ motion, one
of the two pure strategies would have performed better. This action has low regret
and its weight is not reduced, while the worse performing strategy incurs regret, and
thus receives a lowered weight. The implementation of Polynomial Weights in the
context of this challenge implies a loss computation as follows:

li = Ci − mini (Ci)

maxi (Ci) − mini (Ci)

The term Ci again corresponds to the weighted interaction cost. The weights are
then updated according to the following rule and the computed loss value: wi =
wi · (1 − η · li).Thismeans that the actionwith the highestweighted cost in hindsight
gets its weight reduced by η, while the other action is not penalized. A value of
η = 0.2 was used for the simulations presented here.

The Polynomial Weights method has several advantages. First, it does not require
knowledge of the other agent’s utilities and requires no information to be passed
from the other agents. Furthermore, as the weights are learned, the expected utility

Decentralized Multi-agent Path Selection Using Minimal Information 351

is guaranteed to be within a bound of the best pure strategy [21, 22]. Lastly, it allows
a high degree of adaptability to changing conditions, as large regret costs will be
quickly accumulated for choosing a sub-optimal strategy.

4 Simulations

Each of the strategies presented in the previous sections was evaluated exper-
imentally using appropriate simulation software [17]: shortest path (Greedy),
K-best (KBest), Minimum-conflict (Min Conf), Deterministic combination of
Min Conf and KBest (Determ), and Polynomial-Weights with (Greedy)
(PWGreedy) and with KBest (PWBest).

The metrics used were average completion time in seconds for all agents and
average length of the solution path for all agents. Evaluating the average experimental
solution time provides a goodmeasure of the performance of themethod, as it directly
indicates how much progress agents are making towards their goals. The purpose
of examining the average path length is to have some measurement of how much
“effort” an agent must spend to achieve its desired solution time.

Each agent had a physical radius of 18cm and a sensing radius of 200cm. A
visualization of the environments used in the experiments is shown in Fig. 6. In the
Grid environment, the block obstacles measured 30 × 30 cm, and were placed so
as to create corridors with width 40cm. In the Random Obstacle environment, the
obstacles were cylinders with variable radius from 10 to 40cm.

A centralized optimal path planner is not compared against in the performance
section, as it would remove the “minimum information” requirement while only
providing a comparison point for small numbers of agents. Scenes without enough
agents in them would not introduce many conflicts, so the proposed approaches do
not provide benefit over using existing reactive obstacle avoidance.

Evaluating Validity: The current work can only provide guarantees on conflict
avoidance in scenarios such as the one presented in Sect. 3: Minimizing Interaction
Cost. Accordingly, the experiments begin with a simple corridor setup, with two
agents having symmetrical goals and attempting to reach opposite sides of the corri-
dor. The purpose of such a simplistic setup is to find whether the proposed methods,

Fig. 6 The environments
used to evaluate the proposed
methods. The blue disks are
the agent’s initial positions,
when they are not
randomized

352 A. Kimmel and K. Bekris

Fig. 7 Validation results in the corridor scenario of Fig. 1

including the Greedy approach, are able to solve simple congestion problems as
well as testing the validity of the framework in simulation. The results are averaged
over 10 runs, with the average path lengths and solution times shown in Fig. 7.

Although Greedy always had the lowest averages, it failed to solve even a simple
deconfliction problem such as this 50% of the time. This is again due to the fact that
no other paths are considered by the agent. All of the other strategies were able to
solve the corridor problem without a single failure.

Evaluating Performance: The performance of the four methods is evaluated using
two environments, the grid environment and a randomobstacle environment as shown
in Fig. 6. Since theGreedy strategy failed to consistently solve the corridor problem,
it is omitted from the rest of the experiments. An important observation of theKBest
strategy is for small values of k, and for large numbers of homotopy classes, it is
possible for the strategy to become deadlocked/livelocked. Such was the case in
the grid and random environments, so accordingly the KBest strategy is no longer
considered in further experiments.

Agents are given a pseudo-random start location, and a fixed goal location, with
the intention of having agents swap locations with one another, which promotes
conflicts and congestion in the environment. The results for the grid environment are
averaged over 10 runs and presented in Fig. 8.

Fig. 8 Results for randomly selected starting positions in the grid environment

Decentralized Multi-agent Path Selection Using Minimal Information 353

The deterministic approach, Determ, which considers both the “minimum-
conflict” and the “k-best” strategies, always selects the action that minimizes the
proposed interaction cost. In the Grid environment, Determ outperformed the other
approaches. Thismakes sense since these experiments were homogeneous (all agents
used the same approach), so the adaptive strategies could not take advantage of any
differences in strategies (such as learning to follow a greedy strategy against agents
that play conservatively and follow a minimum-conflict strategy).

A set of experiments was conducted in the random obstacle scene, however, the
results showed that all the approaches performed at roughly the same level. The
explanation for this is that the random placement of obstacles, combined with a
larger workspace, did not cause a constrained enough environment, hence there were
not frequent conflicts between agents. This allowed agents to consider a larger set of
possible actions that are conflict-free, so each of the strategies presented were able
to provide an equivalent quality solution.

Evaluating Performance Without Reciprocal Velocity Obstacles A requirement
of the Reciprocal Velocity Obstacle (RVO)method is that agents are able to sense the
velocities of neighboring agents. In order to study the viability of the proposed meth-
ods without relying on sensing velocities, a “lite” version of the methods are evalu-
ated, where the RVO method is replaced with a simplistic, position-based approach
(agents stop moving in a particular direction if this direction brings it too close to
another agent).

To get a better idea of how well the proposed methods perform, and to serve as a
comparison point, a “straw-man” type algorithm was implemented: when an agent
finds its currently selected path results in a conflict, it randomly selects a different,
potentially viable path. This algorithm is presented in the results as the “KRand”
algorithm. The results are presented in Fig. 9.

All of the methods, except for KRand, were able to solve the problems a 100%
of the time. The comparison method, KRand, provided competitive solution path
lengths, at the expense of much longer solution times, as well as a 40% failure rate
in the 32 agent scenario. Although Min Conf always solved the problems, both
Determ and PWBest outperformed it in solution time and solution length.

Fig. 9 Results for randomized grid using the “lite” versions of the algorithms. The Reciprocal
Velocity Obstacle collision avoidance method is replaced with a simple, position-based method

354 A. Kimmel and K. Bekris

Fig. 10 The average path length and average time to finish for simulations using the polynomial
weight with greedy (PWGreedy) and with k-best selection (PWBest)

Evaluating Scalability In these experiments the start location of the agents were set
to be symmetrical, so as to promote conflicts and congestion quickly. The results are
averaged over 15 different runs and are shown in Fig. 10. The purpose of this set of
experiments was to evaluate the scalability of the adaptive-strategies, PWGreedy
and PWBest, as both of these approaches utilize the other deconfliction methods,
and are consequently the most computationally complex.

The results show that for increasingly larger number of agents, the average solution
time and the average path lengths for the methods scales sublinearly.

Heterogeneous Setups A set of experiments was conducted among heterogeneous
agents in the grid environment,where 7 agentswere assigned the “minimum-conflict”
strategy and 1 agentwas assigned thePWBest strategy. The idea herewas to examine
the probabilistic learning algorithm, PWBest, and see if it was able to adapt its
weights according to the strategies the other agents were playing. Interestingly, over
a course of 5 separate runs, PWBest selected the “k-best” strategy 65% of the time
on average. Since the “minimum-conflict” agents were actively attempting to avoid
interaction with other agents, it makes sense that the PWBest agent is able to be
more “greedy” in its selection of paths.

Carrying on with this line of thought, another set of experiments was run where 4
agents were given the pure “greedy” strategy, and the other 4 agents ran PWBest. In
this case, the PWBest agents adapted and chose to select the “k-best” strategy only
41% of the time. Since the 4 purely greedy agents caused a deadlock in the center of
the environment, the PWBest agents had to adapt and select the safer “minimum-
conflict” strategy more often. Together these results seem to show promise for the
adaptability of the learning strategy, aswell asmotivating its use over the “determinis-
tic” strategy in the general case, since their path length is equivalent in homogeneous
setups. A video providing a qualitative description of the performed experiments can
be found at: http://www.cs.rutgers.edu/~kb572/dars2014.mp4.

http://www.cs.rutgers.edu/~kb572/dars2014.mp4

Decentralized Multi-agent Path Selection Using Minimal Information 355

5 Discussion

The proposed framework brings together path planning primitives, such as search-
based methods for computing paths in different homotopy classes [3] and sampling-
based motion planners for computing roadmaps [14], reactive obstacle avoidance
methods [27, 30] as well as game theoretic and learning tools [22] to provide an
algorithmic framework capable of computing acceptable solutions to motion coor-
dination challenges in a decentralized, communication-less way.

There aremany interesting future directions for this line of research. This includes
the evaluation of approaches on dynamical systems as well as more complex envi-
ronments and removing the “garage” assumption from the framework. This would
require agents to continue reasoning about their observed states, potentially adapting
a “passive” mode to more easily allow other agents through their goal positions.
Additional experimentation of the adaptive, learning methods in a larger set of het-
erogeneous setups is interesting, as well as imposing a stricter sensing range on the
agents. Furthermore, it is important to analyze the conditions under which the current
framework, in particular the consideration of the “minimum-conflict” path, is able
to guarantee that the robots are free of deadlocks and livelocks, using tools that have
been developed towards this direction [20].

References

1. Bekris, K.E., Grady, D.K., Moll, M., Kavraki, L.E.: Safe distributed motion coordination for
second-order systems with different planning cycles. IJRR 31(2) (2012)

2. Bhattacharya, S., Kumar, V., Likhachev, M.: Search-based path planning with homotopy class
constraints. In: Third Annual Symposium on Combinatorial Search (2010)

3. Bhattacharya, S., Likhachev, M., Kumar, V.: Identification and representation of homotopy
classes of trajectories for search-based path planning in 3D. In: RSS (2011)

4. Bhattacharya, S., Likhachev,M., Kumar, V.: Topological constraints in search-based robot path
planning. Auton. Robots 33(3), 273–290 (2012)

5. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using velocity obstacles.
IJRR 17(7) (1998)

6. Fraichard, T., Delsart, V.: Navigating dynamic environments with trajectory deformation. J.
Comput. Inf. Technol. 17(1) (2009)

7. Green, C., Kelly, A.: Toward optimal sampling in the space of paths. In: ISRR (2007)
8. Hatcher, A.: Algebraic Topology. Cambridge University Press (2002)
9. Hauser, K.: Adaptive time stepping in real-time motion planning. In: Algorithmic Foundations

of Robotics IX, pp. 139–155. Springer (2011)
10. Hauser, K.: Minimum constraint displacement motion planning. In: RSS (2013)
11. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded environments.

In: ICRA. Anchorage, AK (2010)
12. Jaillet, L., Siméon, T.: Path deformation roadmaps. In: Workhop on the Algorithmic Founda-

tions of Robotics (WAFR) (2006)
13. Kaminka, G., Erusalimchik, D., Kraus, S.: Adaptivemulti-robot coordination: a game-theoretic

perspective. In: ICRA (2010)
14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. In: IJRR

(2011)

356 A. Kimmel and K. Bekris

15. Karamouzas, I., Geraerts, R., Overmars, M.: Indicative routes for path planning and crowd
simulation. In: Foundations of Digital Games (FDG), pp. 113–120 (2009)

16. Kimmel, A., Dobson, A., Bekris, K.E.:Maintaining team coherence under the velocity obstacle
framework. In: Autonomous Agents and Multiagent Systems (AAMAS) (2012)

17. Kimmel, A., Dobson, A., Littlefield, Z., Krontiris, A., Marble, J., Bekris, K.E.: Pracsys: an
extensible architecture for composing motion controllers and planners. In: SIMPAR (2012)

18. Knepper, R.A., Mason, M.T.: Path diversity is only part of the problem. In: ICRA (2009)
19. Knepper, R.A., Rus, D.: Pedestrian-inspired sampling-based multi-Robot collision avoidance.

In: IEEE RO-MAN, pp. 94–100. IEEE, Paris, France (2012)
20. Knepper, R.A., Rus, D.: On the completeness of ensembles ofmotion planners for decentralized

planning. In: ICRA. Karlsruhe, Germany (2013)
21. Littlestone, N., Warmuth, M.K.: The weighted majority algorithm. Inf. Comput. 108, 212–261

(1994)
22. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge

University Press (2007)
23. Petti, S., Fraichard, T.: Partialmotion planning framework for reactive planningwithin dynamic

environments. In: ICINCO, pp. 199–204 (2005)
24. Qutub, S., Alami, R., Ingrand, F.: How to solve deadlock situations within the plan-merging

paradigm for multi-Robot cooperation. IROS 3, 1610–1615 (1997)
25. Shi, D., Collins, E.G., Donate, A., Liu, X., Goldiez, B., Dunlap, D.: Human-aware Robot

motion planning with velocity constraints. In: IEEE International Symposium on Collaborative
Technologies and Systems, pp. 490–497 (2008)

26. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Siméon, T.: A human-aware mobile Robot motion
planner. IEEE Trans. Robot. 23(5), 874–883 (2007)

27. Snape, J., van Den Berg, J., Guy, S., Manocha, D.: The hybrid reciprocal velocity obstacle.
IEEE Trans. Robot. 27(4), 696–706 (2011)

28. Thompson, S., Horiuchi, T., Kagami, S.: A probabilisticmodel of humanmotion and navigation
intent for mobile Robot path planning. In: ICARA (2009)

29. van Den Berg, J., Patil, S., Sewall, J., Manocha, D., Lin,M.: Interactive navigation of individual
agents in crowded environments. In: I3D (2008)

30. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent
navigation. In: Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA) (2008)

31. van den Berg, J., Snape, J., Guy, S., Manocha, D.: Reciprocal collision avoidance with
acceleration-velocity obstacles. In: ICRA (2011)

32. Ziebart, B.D., Ratliff, N., Gallagher, G., Mertz, C., Peterson, K., Bagnell, J.A., Hebert, M.,
Dey, A., Srinivasa, S.: Planning-based prediction for pedestrians. In: IROS (2009)

Scalable Formation Control of Multi-robot
Chain Networks Using a PDE Abstraction

Karthik Elamvazhuthi and Spring Berman

Abstract This work investigates the application of boundary control of the wave
equation to achieve leader-induced formation control of a multi-robot network with
a chain topology. In contrast to previous related work on controlling formations
of single integrator agents, we consider a model for double integrator agents. For
trajectory planning, we use the flatness based method for assigning trajectories to
leader agents so that the agents’ trajectories and control inputs are computed in a
decentralized way. We show how the approximation greatly simplifies the planning
problem and the resulting synthesized controls are bounded and independent of the
number of agents in the network. We validate our formation control approach with
simulations of 100 and 1000 agents that converge to configurations on three different
type of target curves.

Keywords Formation control · Boundary control ·Wave equation · Flatness-based
trajectory planning · Chain networks · Scalable control

1 Introduction

A considerable amount of effort has been applied in recent years to problems of
achieving consensus, coverage, task allocation, and coordinated motion in multi-
robot systems. In particular, certain multi-robot applications will require formation
control of the robots to positions along a specified closed or open curve within a
certain amount of time. For instance, the curve could lie along an object to be trans-
ported or a structure to be monitored, or it could contain target formations or flocking
trajectories for aerial vehicles and spacecraft. Moreover, formation control provides
useful benchmarks for investigating the range of coordinated behaviors that can be

K. Elamvazhuthi · S. Berman (B)
School for Engineering of Matter, Transport and Energy, Arizona State University,
Tempe, AZ, USA
e-mail: Spring.Berman@asu.edu

K. Elamvazhuthi
e-mail: karthikevaz@asu.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_25

357

358 K. Elamvazhuthi and S. Berman

achieved under the constraints that are typical to multi-robot systems. These con-
straints include unreliable or absent communication and global information, limited
resources for sensing and computation, and the presence of unpredictable environ-
mental disturbances. In addition, control schemes for coordinating large multi-robot
systems should be scalable to arbitrary robot population sizes.

The virtual structure method is a well-known approach to formation control [18].
It is based on a combination of consensus and graph rigidity concepts, in which
agents know the target distance to be maintained from their neighbors on a graph
that defines their interaction topology.While maintaining these inter-agent distances,
they must also simultaneously reach consensus on the center of the formation. Other
approaches to this problem include potential fieldmethods [11] and control Lyapunov
functions for multi-agent coordination [15].

Alternative approaches to multi-robot formation control have been derived from
partial differential equation (PDE) models of the system. The applicability of many
of these PDE models is based on the fact that finite difference approximations of
differential operators on continuous domains have the same structure as analogous
operators defined on graphs (e.g., the Laplacian) and also provide intuition on the
use of analogous operators on graphs such as advection-based coordination [5]. In
[3], finite difference approximations of PDEs used in image processing are applied
to a cooperative boundary coverage problem. The work in [17] used another numer-
ical solution method for PDEs, the smoothed particle hydrodynamics method, to
model finite-sized robots as an incompressible fluid, incorporating nonholonomic
constraints and obstacle avoidance. PDE models were used in [20] to analyze the
string stability of large vehicle platoons, and PDE approximations of vehicle pla-
toons were applied in [2] to study the scaling behavior of system stability margins
with the number of agents. Linear and nonlinear advection-diffusion models are
used in [8] to enable deployment of multiple agents into formations using a bound-
ary control methodology. Similar work was done by [13] on planar deployments of
multiple agents using flatness-based trajectory planning of the Burgers’ equation.
Fluid flow models are also extensively used in traffic flow problems [7]. Closely
related to partial differential equations is the concept of partial difference equations
on graphs, which has also been a subject of a number of studies. Spatially invariant
systems are another type of infinite-dimensional approximation of large-scale net-
works. These have proven to be quite insightful in understanding scaling laws and
structure-dependent performance limitations of large vehicle networks [1, 10].

In this work, we address a formation control problem for a multi-agent network
with an undirected chain graph topology. None of the agents have communication
capabilities, and two of the agents (the leader agents) have global position informa-
tion while the remaining robots (the follower agents) have only local sensing and
cannot measure their global positions. Each agent’s motion is governed by double
integrator dynamics, which integrate force actuation as the local control parameter.
For agents with double integrator dynamics, the wave equation serves as a useful
abstraction. This is in contrast with the single integrator agent models studied in
[8, 13], which employed advection-diffusion equation abstractions for formation
control. We demonstrate that trajectory planning based on the wave equation can

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction 359

implicitly account for delays in system controllability that are inherent to this type
of model. In doing so, our approach enables the synthesis of bounded control inputs
that drive chain networks with arbitrarily large numbers of agents to configurations
on target open and closed curves. For our trajectory planning approach, we use the
flatness based method, a well-known method in the context of finite-dimensional
systems [21]. Namely, using the so-called flat output, we achieve an explicit para-
metrization of the system states and control input. Since its introduction, the method
has been extended to infinite-dimensional systems as well [12, 19]. This approach
serves as a useful alternative to optimal control methods, which require numerous
cycles of integration and, in the case of PDE models, lead to ill-conditioning issues
arising from numerical discretization.

2 Problem Formulation

We consider a group of N non-communicating agents that move in the space R
n ,

n ∈ {1, 2, 3}. The position and control input of agent j at time t are denoted by
z j (t) = [z1j (t) ... zn

j (t)]T ∈ R
n and u j (t) = [u1

j (t) ... un
j (t)]T ∈ R

n , respectively.
We assume that agent j can measure its distance from two other agents j − 1 and
j + 1 at all times, or in other words, that agent j is connected to agents j − 1
and j + 1. The agent interconnection topology forms a one-dimensional undirected
chain graph. No agent canmeasure its global position z j (t) except for agents 1 and N ,
which we call the leader agents. The positions of the leader agents evolve according
to specified trajectories:

zi
1(t) = ui

1(t), zi
N (t) = ui

N (t), i = 1, . . . , n. (1)

The dynamics of the follower agents j = 2, . . . , N − 1 are given by double-
integrators with control inputs on their acceleration:

ui
j (t) =

d2zi
j (t)

dt2
= c2

[
(zi

j+1(t) − zi
j (t)) − (zi

j (t) − zi
j−1(t))

]
+ f i

j , i = 1, . . . , n,

(2)
where c and f i

j are constants.
The control objective is to drive the agents’ positions to points along a target

open or closed curve, γ : [0 1] → R
n , at equilibrium. We will show that we can

achieve this objective by designing the leader agents’ position control inputs, u1(t)
and uN (t), and the follower agents’ constant acceleration inputs f i

j . Toward this end,
we define h = 1/N and rewrite Eq. (2) as

ui
j (t) = d2zi

j (t)

dt2
= (ch)2

(zi
j+1(t) − 2zi

j (t) + zi
j−1(t))

h2
+ f i

j , i = 1, . . . , n. (3)

360 K. Elamvazhuthi and S. Berman

As N → ∞, Eq. (3) converges to n one-dimensional partial differential equations
(PDE’s) that evolve in time over a continuous spatial domain, which we normalize to
the interval [0 1]. The agent population is represented as a continuum with a spatial
distribution in dimension i given by zi (x, t), x ∈ [0 1]. Note that the positions of the
leader agents are then zi (0, t) and zi (1, t), which are defined at the endpoints of the
domain. We assume zero initial conditions, so the entire agent population begins at
rest at the origin. The spatiotemporal evolution of zi (x, t) is then governed by the
following set of n forced wave equations with time-dependent Dirichlet boundary
conditions:

∂2zi (x, t)

∂t2
= (ch)2

∂2zi (x, t)

∂x2
+ f i (x) (4)

zi (0, t) = ui
0(t), zi (1, t) = ui

N (t) (5)

zi (x, 0) = 0,
dzi (x, 0)

dt
= 0. (6)

The time-independent source function f i (x) can be designed to specify the target
curve γ to which the agent positions converge at equilibrium. The product ch defines
the speed of wave propagation over the domain.

We will use the nonhomogeneous boundary value problem Eqs. (4)–(6) to plan
trajectories for the multi-agent system. We will discuss how this continuous approx-
imation simplifies the planning problem and takes into account some inherent limi-
tations that are not obvious in the original discrete control system Eqs. (1) and (2).

3 Limitations on Controllability

The continuous PDE approximation, which is an infinite-dimensional system, shares
certain controllability limitations with the original system, which has a finite-
dimensional state space. If a finite-dimensional system is controllable at a particular
time, the Kalman rank condition can be used to show that the system is controllable
at any time. This result implies that leader-follower protocols on grid networks are
controllable for any number of agents in the network. Analysis of the controllability
gramian shows that as the agent population increases, there is a rise in the minimum
energy required to drive the network to a chosen target state [16, 23]. However, there
is a more fundamental problem in controlling large networks of double-integrator
agents than the need for a correspondingly large amount of control energy. This prob-
lem is the constraint on the minimum time needed to drive the network to a target
state.

In contrast to finite-dimensional systems, infinite-dimensional systems havemuch
more varied notions of controllability. In particular, for a system described by a wave
equationwhose Laplacian operator has coefficient k2, a minimum time of T = 2/k is
required to attain exact controllability of the system [9]. This is due to the finite speed

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction 361

of propagation of a wave over a one-dimensional spatial domain. Even if a leader
agent introduces an infinite amount of control effort, information cannot travel faster
than this speed through the network.Moreover, high-frequency disturbances over the
networkwill take even longer to stabilize due to the relatively lower speed of thewave
packets. Conversely, systems described by the heat equation,which can be considered
to be an infinite-dimensional version of the single-integrator based Laplacian models
[4], are not subject to a delay in controllability. These models have an infinite speed
of information propagation over the domain, and hence controllability at any time,
albeit only approximately in the continuous case.

Consequently, while a single-integrator agent network with a grid topology can
be controlled to any state at any time, the minimum time T needed to control a
double-integrator network with continuous approximation Eq. (4) increases with the
number of agents N as T = 2/(ch) = 2N/c. For large N , it therefore takes a long
time for the control effort of a leader agent to propagate through the entire network,
resulting in a large set of states that are unreachable for times t ≤ T . This issue can
be identified with the problem of numerically approximating optimal controllers of
the wave equation by constructing optimal controllers of the corresponding semi-
discrete system [24]. When the controls are constructed in this manner, they diverge
as the number of mesh points (equivalent to agents in our case) increases, in spite of
the convergence of the discrete model to the continuous model. This divergence has
been attributed to (a) the finite time needed for controllability, and (b) the mismatch
between the wave speeds of high-frequency perturbations in discrete and continuous
media [24]. Owing to the richer dynamics of the semi-discrete system, the minimum
time required to reach a target state might be even higher than that indicated by the
continuum approximation.

4 Trajectory Planning

In this section, we show that trajectory planning based on the wave equation can
implicitly account for the delay in system controllability that is described in Sect. 3.
In doing so, this approach enables the synthesis of bounded control inputs that drive
chain networks with arbitrarily large numbers of agents to target configurations.

We modify the follower agent control inputs defined in Eq. (2) by scaling the
constant c by the agent population N , which changes the coefficient c2 to (cN)2 =
(c/h)2. Then, as N → ∞, Eq. (2) converges to the wave equation in Eq. (4) with the
coefficient (ch)2 replaced by c2. The corresponding speed of wave propagation is c,
which is independent of the number of agents. The control effort per agent defined
in Eq. (2) remains bounded as N → ∞ due to the convergence of the semi-discrete
system to its continuous approximation. Strictly speaking, this argument requires
strong convergence, which can be easily achieved by introducing a small amount of
damping in the system using velocity-based compensation [14].

To simplify the construction of the control inputs, we decompose the boundary
value problem Eqs. (4)–(6), with (ch)2 replaced by c2, into two components. This

362 K. Elamvazhuthi and S. Berman

decomposition is possible because the wave equation Eq. (4) is a linear PDE. The
first component is a boundary value problem for an unforced wave equation (note
that the superscript i has been suppressed to simplify the notation):

∂2z(x, t)

∂t2
= c2

∂2z(x, t)

∂x2
(7)

z(0, t) = 0, z(1, t) = u1a(t) (8)

z(x, 0) = 0,
∂z(x, 0)

∂t
= 0 (9)

The second component is a boundary value problem for a forced wave equation:

∂2z(x, t)

∂t2
= c2

∂2z(x, t)

∂x2
+ f (x) (10)

z(0, t) = u0(t), z(1, t) = u1b(t) (11)

z(x, 0) = 0,
∂z(x, 0)

∂t
= 0 (12)

Here, u1a(t) drives the system to equilibrium, while u0(t) and u1b(t) shift the datum
of the solution depending on the desired target state.

4.1 Unforced Wave Equation Component

Following the approach of [22] for flatness based trajectory generation, we take the
Laplace transform of Eq. (7) in the time variable and obtain

s2Z(x, s) = c2
d2Z(x, s)

dx2
(13)

The general solution of this equation is

Z(x, s) = A(s) cosh
(xs

c

)
+ B(s) sinh

(xs

c

)
(14)

where A(s) and B(s) are arbitrary functions of s. Applying the boundary condition
Z(0, s) = 0 to Eq. (14), we find that A(s) = 0. Now define the function r(t) =
∂z(0, t)/∂x . The Laplace transform of this function is R(s) = d Z(0, s)/dx , which
is the derivative of Eq. (14) with x = 0. This derivative is R(s) = B(s) s

c cosh(0) =
B(s) s

c , which yields B(s) = R(s) c
s . Let y(t) denote the flat output, and define its

Laplace transform as Y (s) = R(s) c
s . Then, Eq. (14) becomes

Z(x, s) = Y (s) sinh
(xs

c

)
= 1

2
Y (s)exs/c − 1

2
Y (s)e−xs/c (15)

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction 363

Applying the boundary condition Z(1, s) = U1a(s) to Eq. (15), we obtain

U1a(s) = Y (s) sinh
(s

c

)
= 1

2
Y (s)es/c − 1

2
Y (s)e−s/c. (16)

Taking the inverseLaplace transformofEqs. (15) and (16) yields a parametrization
of the state and input trajectories in terms of the output:

z(x, t) = 1

2
y
(

t + x

c

)
− 1

2
y
(

t − x

c

)
(17)

u1a(t) = 1

2
y

(
t + 1

c

)
− 1

2
y

(
t − 1

c

)
(18)

The input is therefore defined by the output values at times t − 1
c and t + 1

c . Since
time must be nonnegative, (t − 1

c) ≥ 0, which implies that (t + 1
c) ≥ 2

c . Hence, a
minimum time of t = 2/c is needed to drive the system from its initial state to its
final state. This is consistent with the controllability results for the wave equation
that were discussed in Sect. 3.

Let T be the time at which the system is to be driven to the target state. We define
the functions g(x) = y(T + x

c) and h(x) = y(T − x
c) and denote the target state and

its desired time derivative by z∗(x) and z∗
t (x), respectively. We obtain the following

expressions for z∗(x) and z∗
t (x):

z∗(x) = z(x, T) = 1

2
g (x) − 1

2
h (x) (19)

z∗
t (x) = ∂z(x, T)

∂t
= 1

2c

dg (x)

dx
+ 1

2c

dh (x)

dx
(20)

Solving Eqs. (19) and (20) for g(x) and h(x) yields:

g(x) = c
∫ x

0
z∗

t (σ)dσ + z∗(x) (21)

h(x) = c
∫ x

0
z∗

t (σ)dσ − z∗(x) (22)

We set y(t) = 0 for t ≤ T − 2
c . Then, a boundary control trajectory u1a(t) that

drives system to the desired target state can be constructed as:

u1a(t) =

⎧
⎪⎨

⎪⎩

0, t ∈ [0, T − 2
c)

1
2h(cT − 2 − ct), t ∈ [T − 2

c , T − 1
c)

1
2g(ct − cT + 2), t ∈ [T − 1

c , T]
(23)

364 K. Elamvazhuthi and S. Berman

4.2 Forced Wave Equation Component

The boundary control inputs Eq. (11) in the forced wave equation Eq. (10) are defined
as u0(t) = z∗(0) and u1b(t) = z∗(1) for t ≥ T . These control inputs drive the leader
agents to their target final locations and anchor them there. Their design accounts for
the fact that the left boundary in the unforced wave equation Eq. (7) is always fixed
at zero. Using the superposition principle, the control input Eq. (23) to the unforced
equation can be designed to simultaneously drive the system to the target state and
negate the undesirable transient effect of the control inputs to the forced equation.
This can be done by modifying Eqs. (21) and (22) to be:

g(x) =
∫ x

0

(
z∗

t (σ) − z pt (σ, T)
)

dσ + (z∗(x) − z p(x, T)), (24)

h(x) =
∫ x

0

(
z∗

t (σ) − z pt (σ, T)
)

dσ − (z∗(x) − z p(x, T)), (25)

where z p(x, t) is the solution of the boundary value problem Eqs. (10)–(12) and
z pt (x, t) is its time derivative.

Another role of the forced component is to encode the target equilibrium state
through the function f (x). The system equilibrium state zeq(x), obtained by setting
the second time derivative to zero in Eq. (10), is the solution to the resulting boundary
value problem,

c2
d2z(x)

dx2
= − f (x), z(0) = ue0, z(1) = ue1 (26)

where ue0 and ue1 are the equilibrium values of u0(t) and u1b(t), respectively. When
f (x) = n2π2 sin(nπx), n ∈ Z

+, and ue0 = ue1, we see that zeq(x) = 1
c2 sin(nπx) +

ue0. Since the sine series forms a complete basis of L2[0, 1], the set of square inte-
grable functions over the domain [0 1], any function in L2[0, 1] can therefore be
designed as a target state and reached at least in an average sense. For example,
for the desired target state zd(x) = sin(2πx) + sin(6πx), we could assign f (x) =
c2(2π)2sin(2πx) + c2(6πx)2sin(6πx) and ue0 = ue1 = 0. In order to implement
nonzero boundary conditions, ue0 and ue1 may be nonzero to shift the datum of the
sinusoids from the origin.

5 Simulation Results

We validated our formation control approach for populations of N = 100 and
N = 1000 agents. The agents start at the origin and are required to reach their
final equilibrium configuration in time T = 2 s. The agent equilibrium configura-
tions were specified along three target curves: a line, a circle, and a 3D closed curve
in the form of a Lissajous knot.

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction 365

(a) (b)

(d)(c)

Fig. 1 Evolution of agent trajectories from the origin to a target line or a target circle at equilibrium.
For clarity, the trajectories of only 10 agents are shown in each plot. a Line, N = 100 agents.
b Line, N = 1000 agents. c Circle, N = 100 agents. d Circle, N = 1000 agents

Figures1 and 2 show the time evolution of the agent positions for both population
sizes and each type of target curve. The plots in Fig. 1 demonstrate that for populations
of both N = 100 and N = 1000, the agent positions remain near the target curve
when t ≥ T = 2 s. For both target curves, the population of 1000 agents exhibits
smaller oscillations around the desired equilibrium positions than the population
of 100 agents. This is because the network with the larger number of agents more
closely approximates the continuum PDE model from which the control inputs are
derived. The snapshots in Fig. 2 show that the networks of 100 and 1000 agents have
similar transient dynamics (i.e., similar agent position distributions at t = 0.1s and
t = 0.5s), but that by T = 2 s, the larger network has converged much closer to the
target 3D curve than the smaller network.

Figure3 shows the time evolution of the absolute errors between the actual agent
positions and their designed equilibrium positions along a circle for both N = 100
and N = 1000. The plots show that the agent position errors decrease markedly
after T = 2 s, indicating that the agent positions approach the desired equilibria in
the required amount of time. The population of 1000 agents clearly displays smaller
oscillations about these equilibria than the population of 100 agents.

366 K. Elamvazhuthi and S. Berman

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Snapshots of agent positions (blue markers) at t = 0.1, 0.5, and 2s as they converge from
the origin to a target 3D curve (black line). The positions of 100 agents are shown in each plot.
a N = 100, t = 0.1s. b N = 100, t = 0.5s. c N = 100, t = 2 s. d N = 1000, t = 0.1s. e N =
1000, t = 0.5s. f N = 1000, t = 2 s

6 Conclusions and Future Work

We have presented a trajectory planning methodology for a formation control prob-
lem on a chain network of agents with double integrator dynamics. Our approach is
based on a wave equation abstraction of the system dynamics, and it is scalable with
the number of agents and produces bounded control inputs. Despite the marginal
stability of the system, the resulting open-loop control laws successfully drive the
system to a target equilibrium state.

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction 367

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

t (s) t (s)

E
rr
or

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

E
rr
or

(a) (b)

Fig. 3 Time evolution of the agent position errors when the target curve is the circle shown in
Fig. 1c, d. For clarity, the position errors of only 10 agents are shown in both plots a Circle,
N = 100 agents b Circle, N = 1000 agents

Due to the open-loop nature of the control strategy and the approximation error
between the continuous and discrete models, our method shows higher accuracy in
achieving the desired state as the number of agents in the network increases. Future
work is needed on including feedback stabilization or other compensation schemes
so that a wider class of systems is controllable using this approach.

It was also observed that double integrator networks have certain fundamental
limitations for one-dimensional agent interconnection topologies. The wave equa-
tion has similar limitations in higher dimensions. Hence, graph topologies that have
equivalent continuum approximations can be expected to have similar limitations. It
would be interesting to see how the minimum time for controllability is reflected in
double integrator networks with arbitrary topologies.

In addition, we plan to extend our methodology to multi-robot systems with real-
istic constraints and limitations. For instance, the robots’ motion may be subject
to holonomic constraints, which could be addressed by using infinite-dimensional
equivalents of such networks with non-holonomic agents [19]. Robust control tools
for distributed parameter systems [6] could be applied to systems with stochasticity
and uncertainty in the robot dynamics. We will also need to account for possible loss
of network connectivity and dynamically changing network topologies.

Furthermore, we would like to develop methods for formation control of systems
that can be modeled by a wider class of linear and nonlinear PDEs. Additional vari-
ability can be incorporated either by usingmore leader agents or changing the control
gains. For this reason, controlling a multi-agent system using nonlinear interconnec-
tion schemes can increase the set of reachable states at equilibrium.Another direction
for future work is modeling grid networks of higher dimensions, and thus enabling
deployment to formations on two-dimensional and three-dimensional manifolds.

368 K. Elamvazhuthi and S. Berman

References

1. Bamieh, B., Jovanovic, M.R., Mitra, P., Patterson, S.: Coherence in large-scale networks:
dimension-dependent limitations of local feedback. IEEE Trans. Autom. Control 57(9), 2235–
2249 (2012)

2. Barooah, P., Mehta, P.G., Hespanha, J.P.: Mistuning-based control design to improve closed-
loop stability margin of vehicular platoons. IEEE Trans. Autom. Control 54(9), 2100–2113
(2009)

3. Bertozzi, A.L., Kemp, M., Marthaler, D.: Determining environmental boundaries: asynchro-
nous communication and physical scales. In: Cooperative Control, pp. 25–42. Springer (2005)

4. Bliman, P.A., Ferrari-Trecate, G.: Average consensus problems in networks of agents with
delayed communications. Automatica 44(8), 1985–1995 (2008)

5. Chapman, A., Mesbahi, M.: Advection on graphs. In: Proceedings of the IEEE Conference on
Decision and Control and European Control Conference (CDC-ECC), pp. 1461–1466. IEEE
(2011)

6. Curtain, R.F., Zwart, H.: An Introduction to Infinite-Dimensional Linear Systems Theory,
vol. 21. Springer (1995)

7. Daganzo, C.F.: Requiem for second-order fluid approximations of traffic flow. Transp. Res.
Part B: Methodol. 29(4), 277–286 (1995)

8. Frihauf, P., Krstic, M.: Leader-enabled deployment onto planar curves: a PDE-based approach.
IEEE Trans. Autom. Control 56(8), 1791–1806 (2011)

9. Glowinski, R., Lions, J.L.: Exact and approximate controllability for distributed parameter
systems. Acta Numer. 3, 269–378 (1994). doi:10.1017/S0962492900002452

10. Jovanovic, M., Bamieh, B.: On the ill-posedness of certain vehicular platoon control problems.
IEEE Trans. Autom. Control 50(9), 1307–1321 (2005)

11. Leonard, N.E., Fiorelli, E.: Virtual leaders, artificial potentials and coordinated control of
groups. In: Proceedings of the IEEE Conference on Decision and Control (CDC), vol. 3, pp.
2968–2973. IEEE (2001)

12. Meurer, T.: Control of Higher-Dimensional PDEs. Springer (2012)
13. Meurer, T., Krstic, M.: Finite-time multi-agent deployment: a nonlinear PDE motion planning

approach. Automatica 47(11), 2534–2542 (2011)
14. Micu, S.: Uniform boundary controllability of a semidiscrete 1-Dwave equationwith vanishing

viscosity. SIAM J. Control Optim. 47(6), 2857–2885 (2008)
15. Ogren, P., Egerstedt, M., Hu, X.: A control Lyapunov function approach to multi-agent coor-

dination. In: Proceedings of the IEEE Conference on Decision and Control (CDC), vol. 2, pp.
1150–1155. IEEE (2001)

16. Pasqualetti, F., Zampieri, S., Bullo, F.: Controllability metrics, limitations and algorithms for
complex networks. IEEE Trans. Control Netw. Syst. 1(1), 40–52 (2014). doi:10.1109/TCNS.
2014.2310254

17. Pimenta, L.C., Michael, N., Mesquita, R.C., Pereira, G.A., Kumar, V.: Control of swarms based
on hydrodynamic models. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), pp. 1948–1953. IEEE (2008)

18. Ren, W., Beard, R.: Distributed Consensus in Multi-vehicle Cooperative Control: Theory and
Applications. Springer (2007)

19. Rouchon, P.: Motion planning, equivalence, infinite dimensional systems. Int’l. J. Appl. Math.
Comput. Sci. 11, 165–188 (2001)

20. Sarlette, A., Sepulchre, R.: A PDE viewpoint on basic properties of coordination algorithms
with symmetries. In: Proceedings of the IEEE Conference Decision and Control, held jointly
with the Chinese Control Conference (CDC/CCC), pp. 5139–5144. IEEE (2009)

21. Sira-Ramirez, H., Agrawal, S.K.: Differentially Flat Systems, vol. 17. CRC Press (2004)
22. Woittennek, F.: On flatness and controllability of simple hyperbolic distributed parameter sys-

tems. In: Proceedings of the 18th IFAC World Congress, pp. 14,452–14,457. Milano, Italy
(2011). doi:10.3182/20110828-6-IT-1002.02618

http://dx.doi.org/10.1017/S0962492900002452
http://dx.doi.org/10.1109/TCNS.2014.2310254
http://dx.doi.org/10.1109/TCNS.2014.2310254
http://dx.doi.org/10.3182/20110828-6-IT-1002.02618

Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction 369

23. Yan, G., Ren, J., Lai, Y.C., Lai, C.H., Li, B.: Controlling complex networks: how much energy
is needed? Phys. Rev. Lett. 108(21), 218703 (2012)

24. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference
methods. SIAM Rev. 47(2), 197–243 (2005)

Decoupled Formal Synthesis for Almost
Separable Systems with Temporal Logic
Specifications

Scott C. Livingston and Pavithra Prabhakar

Abstract Weconsider the problemof synthesizing controllers automatically for dis-
tributed robots that are loosely coupled using a formal synthesis approach. Formal
synthesis entails construction of game strategies for a discrete transition system such
that the system under the strategy satisfies a specification, given for instance in linear
temporal logic (LTL). The general problem of automated synthesis for distributed
discrete transition systems suffers from state-space explosion because the combined
state-space has size exponential in the number of subsystems. Motivated by multi-
robot motion planning problems, we focus on distributed systems whose interaction
is nearly decoupled, allowing the overall specification to be decomposed into specifi-
cations for individual subsystems and a specification about the joint system.We treat
specifically reactive synthesis for the GR(1) fragment of LTL. Each robot is subject
to a GR(1) formula, and a safety formula describes constraints on their interaction.
We propose an approach wherein we synthesize strategies independently for each
subsystem; then we patch the separate controllers around interaction regions such
that the specification about the joint system is satisfied.

Keywords Reactive synthesis · LTL · Collision avoidance · Motion planning

1 Introduction

Formal synthesis has gained prominence over the last few years as a promising
method to design correct-by-construction controllers [3]. Formal synthesis consists
of a formal model of the object that is to be controlled and a formal specification
of the property this object along with the synthesized controller need to satisfy. The
problem has been studied for several classes of models including discrete systems,

S.C. Livingston (B)
California Institute of Technology, Pasadena, USA
e-mail: slivingston@cds.caltech.edu

P. Prabhakar
IMDEA Software Institute, Madrid, Spain
e-mail: pavithra.prabhakar@imdea.org

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_26

371

372 S.C. Livingston and P. Prabhakar

timed systems and hybrid systems and several classes of specification languages
including linear-time temporal logic (LTL), computation tree logic (CTL),μ-calculus
as well as timed logics such as Metric Temporal Logic; e.g., [9, 10, 17].

In this paper, we focus on models that are distributed systems. Our motivation is
the problem of synthesizing controllers for multi-robot systems wherein each robot
has a task to achieve. For simplicity we consider the setting with two robots, but
extension to a multi-robot setting is straightforward. The two robots can operate
fairly independently except that they perform their tasks on a common workspace
and hencemight need to jointly satisfy certain constraints such as collision avoidance.
We formalize this problem as a synthesis problem involving three specifications: one
for each robot and one on the joint workspace.

A naive approach to deal with controller synthesis for distributed systemswherein
the system is flattened to a single system using a product construction is inefficient
because the size of the flattened system grows exponentially in the number of compo-
nents. Thus a variety of robot architectures and control methods have been proposed
that avoid this by various assumptions about communication among the agents, types
of tasks, and allocation of responsibility [5, 8, 15, 16]. Relatively little prior work
considers distributed robotics where tasks are formally specified using LTL. How-
ever, we remark that distributed computer systems (no continuous dynamics) is a
well-known context for formal synthesis, though there are undecidability results for
the general case [18]. Chen and collaborators address the problem of synchroniza-
tion and task allocation by exploiting previous results for trace-closed languages
[6]. Unlike the present work, they do not consider uncertainty in the environment.
Ozay and collaborators present a methodology for decomposition of a specification,
thus exploiting some symmetry present in the setting of multiple-target tracking in a
network of actuated cameras [14]. Like the present work, they consider GR(1) for-
mulae that can handle nondeterministic (uncertain) environments. However, unlike
the present work, their decomposition is top-down in that a global specification is
initially given, from which separate component specifications are manually con-
structed. While here we assume a discrete abstraction is given, there is prior work
using sampling-based motion planning [20].

Our systems are not completely decoupled, but interact in some minimal way.
Hence, we propose the following approach to deal with the state-space explosion.
We synthesize the controllers independently for each robot so as to satisfy their
corresponding specifications. The simultaneous execution of the strategies however
might violate the specification on the joint workspace. We identify the states which
violate the joint specification and patch the individual controllers in such a way
that they satisfy their original specification and also satisfy the joint specification.
More precisely, we identify a neighborhood around the joint property violation point
and resynthesize a joint strategy for the two robots in this neighborhood satisfying
the individual specification as well as the joint specification. We then decompose
this joint strategy to obtain the patching strategy for individual robots. Note that
patching involves solving a synthesis problem on the joint state-space of the two
robots restricted to a small neighborhood of this space.

Decoupled Formal Synthesis for Almost Separable Systems … 373

2 Preliminaries

We are concerned with the control of robots that satisfy a specification expressed
in a fragment of linear temporal logic (LTL) known as GR(1). These robots operate
in a shared workspace; their interaction is important and expressed formally as part
of a joint specification. While most of our treatment concerns dynamics of discrete
systems, such systems are practically obtained from continuous systems by a process
of abstraction [1] (or [19] for a textbook introduction). The basic idea is that a finite
transition system is bisimilar—in a precise sense—to a hybrid system if transitions
between cells in a partition of the state space are achievable in one system if and only
if they are achievable in the other. We omit further detail here because it suffices for
our purposes to know that at least some of the discrete variables were obtained from
a continuous dynamical system and thus admit a notion of distance.

A specification is an LTL formula that formally describes how the system should
behave. It is written in terms of finitely-valued variables, some of which may be
uncontrolled, like a disturbance. In this paper we use the GR(1) fragment because it
has useful structure that we can exploit [4]. Our treatment of the syntax and semantics
is brief and informal; an introduction can be found, e.g., in [2].

LTL is an extension to Boolean logic for describing sequences of events. Syn-
tactically, a Boolean logic formula can contain operators ∨ “or” or ¬ “negation”,
along with derivative operators ∧ “and”, =⇒ “implies”, and ⇐⇒ “if and only
if”. These operators can be combined with the Boolean constants True and False
and finitely-valued variables. Depending on its domain, a variable may appear in
a subformula with inequality, e.g., x < 5. A Boolean formula evaluates to True or
False for a particular assignment of the variables that appear in it.

A variety of operators concerning both future and past events have been introduced
in LTL [7]. In this paper, we only make use of three: � “always”, � “eventually”,
and © “next”. An LTL formula is evaluated with respect to an infinite sequence of
assignments to variables. Let f be a Boolean formula. Then � f is True if and only
if f is True at every time step. � f is True if and only if f is True at some future
time. © f is True if and only if f is True at the next time step.

LetX be a set of environment (or “uncontrolled input”) variables, and letY be a
set of system (or “controlled output”) variables. The sets of states, i.e., assignments
from the domains, of these variables are denotedΣX andΣY , respectively. AGR(1)
formula is of the form

θenv ∧ � ρenv ∧
⎛

⎝
m−1∧

j=0

� � ψenv
j

⎞

⎠ =⇒ θsys ∧ � ρsys ∧
(

n−1∧

i=0

� � ψ
sys
i

)
(1)

where the various subformulae are as follows. First notice the analogous form of
both sides of the implication in (1), ϕa =⇒ ϕg; the left-side ϕa is commonly called

374 S.C. Livingston and P. Prabhakar

the “assumption,” and the right-side ϕg the “guarantee.” θenv and ψenv
0 , . . . , ψenv

m−1
are Boolean formulae in terms of X ∪ Y . θenv is a condition that any initial state
is assumed to satisfy. ψenv

0 , . . . , ψenv
m−1 are liveness conditions; the environment must

set the variables in X infinitely often so as to satisfy these. ρenv is a Boolean for-
mula in terms of X ∪ Y ∪ X ′ that constrains from any particular state how the
environment may move, i.e., set variables in X at the next time step (hence the
primed notationX ′). The right-side is defined analogously, with the noticeable dif-
ference that ρsys is in terms ofX ∪ Y ∪ X ′ ∪ Y ′, thus governing how the system
may move from a particular state and given an anticipated environment move. The
conditions ψ

sys
0 , . . . , ψ

sys
n−1 are also called “system goals.”

There exist algorithms for the synthesis of finite-memory strategies realizing a
given GR(1) formula [4]. In previous work, we proposed an annotation for strategies
that facilitates online patching for coping with uncertainty [12, 13]. More precisely,
suppose we are given a new specification ϕ′ frommodification of the original ϕ, e.g.,
due to online sensing necessitating updating an environmental model. Under certain
conditions, the algorithm in [13] provides a way to locally change an original strategy
to recover correctnesswith respect toϕ′. The present paper builds on thatmethod, and
thus we summarize here the relevant results and notation. Unless stated otherwise, all
GR(1) formulae in this paper are assumed to be realizable. Let ϕ be a GR(1) formula.
A finite-memory strategy can be represented as an automaton A = (V, δ, L), where
V is a finite set of nodes, δ ⊂ V × ΣX × V is a transition relation, and L : V →
ΣX × ΣY labels nodes with states. (u, e, v) ∈ δ is also denoted δ(u, e) = v. An
automaton is said to be a strategy automaton for ϕ if its transition relation selects a
valid next state from any state reachable in a play under ϕ. A is said to be winning
if all plays resulting from its application satisfy ϕ.

Without loss of generality, winning strategy automata in this paper are assumed to
be equipped with reach annotations, which are defined as follows. Denote the set of
nonnegative integers by Z+. Given ϕ of the form (1), a state s is said to be a i-system
goal if s satisfies ψ

sys
i . πi is the mapping providing the i th component of elements

of a Cartesian product. E.g., if x = (x1, x2) ∈ R
2, then π1(x) = x1.

Definition 1 (adapted from [12]) A reach annotation on a strategy automaton A =
(V, δ, L) for a GR(1) formula ϕ is a function RA : V → {0, . . . , n − 1} × Z+ that
satisfies the following conditions.Given p < q, the numbers between p andq are p +
1, . . . , q − 1, and if q ≤ p, then the numbers between p and q are p + 1, . . . , n −
1, 0, . . . , q − 1.

1. For each v ∈ V , π2 ◦ RA(v) = 0 if and only if L(v) is a π1 ◦ RA(v)-system goal.
2. For each v ∈ V and u ∈ Post(v), if π2 ◦ RA(v) �= 0, then π1 ◦ RA(v) = π1 ◦

RA(u) and π2 ◦ RA(v) ≥ π2 ◦ RA(u).
3. For any path 〈v1, v2, . . . , vK 〉 such that π2 ◦ RA(v1) = · · · = π2 ◦ RA(vK) > 0,

there exists an environment goalψenv
j such that for all k ∈ {1, . . . , K }, L(vk) does

not satisfy ψenv
j .

4. For each v ∈ V and u ∈ Post(v), ifπ2 ◦ RA(v) = 0, then there exists a p such that
for all r betweenπ1 ◦ RA(v) and p, L(v) is a r -system goal, andπ1 ◦ RA(u) = p.

Decoupled Formal Synthesis for Almost Separable Systems … 375

In addition to other uses, reach annotation plays a crucial role in the patching algo-
rithm of [13]. If a new reach annotation can be constructed after modifying a strategy
automaton, then we immediately have that the new automaton is winning.

3 Problem Formulation

We are now ready to present the problem of formal synthesis for multiple robots
addressed in this paper. Let ϕ1 be a GR(1) formula (recall (1)) defined in terms of
the environment variablesX1 and the system variablesY1. Similarly for ϕ2,X2, and
Y2, where we require that the sets of system variables are disjoint, i.e.,Y1 ∩ Y2 = ∅.
(It may be that X1 ∩ X2 �= ∅.) As for the single robot case of the previous section,
a state is an assignment of values to variables. Unless indicated otherwise, a state
assigns values to all of X1 ∪ X2 ∪ Y1 ∪ Y2. Notice there is some redundancy in
referring to states ΣX1 × ΣX2 when X1 and X2 share variables. All variables are
finitely valued.

We will be concerned with a joint specification. To that end, we need a way to
compose ϕ1 and ϕ2. This is achieved by introducing an operator ⊗ over the set
of GR(1) formulae. Making the “assumption” and “guarantee” components of the
separate robot formulae explicit, write ϕ1 = (

ϕa
1 =⇒ ϕ

g
1

)
and ϕ2 = (

ϕa
2 =⇒ ϕ

g
2

)
,

and then define ϕ1 ⊗ ϕ2 as

(
ϕa
1 ∧ ϕa

2

) =⇒ (
ϕ

g
1 ∧ ϕ

g
2

)
.

This is clearly a GR(1) formula, hence the operation⊗ is closed over the set of GR(1)
formulae.

Though the sets of discrete variables Y1 and Y2 are disjoint—and thus may be
assigned independently by each respective robot—the robots perform their tasks in
a shared workspace and thus may also need to meet a specification written in terms
of both. This is achieved by introducing a Boolean formula ϕ1,2 in terms of Y1 ∪ Y2

and requiring that it is always satisfied. Finally, the target specification is

ϕ1 ⊗ ϕ2 ⊗ (
�ϕ1,2

)
. (2)

in which we have omitted the “assumption” portion of GR(1) formula � ϕ1,2.
This problem could be solved by synthesizing in a product space to obtain a joint

strategy that simultaneously selects actions for both agents. To avoid exponential
increase in problem size entailed by such an approach, we propose to exploit the
availability of an indicator function on states that provides a sufficient condition
for satisfaction of ϕ1,2. Concretely, suppose that Y1 and Y2 describe agents with
identical dynamics that are operating in a shared workspace. Suppose further that

376 S.C. Livingston and P. Prabhakar

ϕ1,2 describes states where the agents are dangerously close to each other. Because
some discrete variables are abstractions of physical positions of the agents, we can
construct from Euclidean distances a function

d : ΣY1 × ΣY2 → {0, 1} (3)

such that
d(s1, s2) > 0 =⇒ (

ϕ1,2 = True
)

(4)

where s1 and s2 are states of the variables in Y1 and Y2, respectively. Intuitively, the
safety condition ϕ1,2 can only be violated when d is not positive. If the occurrence of
d positive is uncommon, then we may be able to solve ϕ1 and ϕ2 independently and
then correct parts of the strategies where interaction occurs, i.e., where extra effort
is required to ensure �ϕ1,2.

4 Solution Approach

In this section the proposed solution is outlined, and detailed algorithms are presented
in Sect. 5. Throughout this paper it is assumed that time is in discrete steps, and all
agents are synchronized. More precisely, time evolves as it would in the product
game, where at each step the environment first selects a move, and then, observing
this, the system (i.e., the team of robots viewed as a single entity) selects a move
corresponding to a simultaneous assignment of all variables in Y1 ∪ Y2. Thus the
next state is formed, and the process is repeated. This assumption allows us to avoid
addressing what is otherwise a key issue in distributed robotics: synchronization. It is
a reasonable approximation in the case of slowly moving robots, e.g., planar mobile
robots, where such tools as the Network and Precision Time Protocols (IEEE stan-
dard 1588) are available. Furthermore, the specification (2) only requires the robots
to be aware of each other to maintain the safety condition ϕ1,2, which can be imple-
mented passively using a range finder if this is collision avoidance. Finally, a shared
environment (i.e.,X1 ∩ X2 �= ∅) provides an external, event-triggered reference for
coordination.

With the preceding assumption, synthesize winning strategies A1 = (V1, δ1, L1)

and A2 = (V2, δ2, L2) for ϕ1 and ϕ2, respectively and independently, where ϕ1 and
ϕ2 are as introduced in Sect. 3. Also compute reach annotations RA1 and RA2 for A1

and A2, respectively. Intuitively, we begin by treating the component specifications
as being entirely separate and realize them using existingmethods. To achieve (2), we
must ensure that simultaneous execution of A1 and A2 does not lead to violation of
ϕ1,2. Since A1 and A2 were synthesized separately, it is possible that ϕ1,2 is violated
during their joint (simultaneous) execution. The proposed method addresses this in
two parts:

Decoupled Formal Synthesis for Almost Separable Systems … 377

1. During each time step, compute the set of nodes reachable by each robot’s strategy
Ai up to a horizon h. A dangerous configuration is one that may violate ϕ1,2 and
is checked for using the function (4) applied to the continuous positions of the
robots. If no dangerous configurations are found within the designated horizon,
then the robots’ respective moves are performed. Else, proceed to the next part.

2. In order to guarantee avoidance of dangerous configurations, the robots must be
aware of each other during motion planning. Accordingly, a local reachability
game is constructed in terms of the joint specification (2). Its solution provides a
local strategy for both robots to move from the current configuration, from which
the danger was detected, to some configuration occurring after the danger. The
notion of “after” is made precise by the reach annotations of A1 and A2, which are
used to ensure that the respective goals in (2) are met infinitely often for the new
robot strategies A′

1 and A′
2 that result from patching-in the local joint strategy.

5 Algorithms

The proposedmethod consists of twomajor steps: identification of dangerous config-
urations, and joint patching around those configurations. Our method is run online,
and the main loop is listed in Algorithm 1.When dangerous configurations are found
there, Algorithms 2 and 3 are invoked to patch the robots’ control strategies. Com-
ments on particular lines in those algorithms follow.

Algorithm 1 Main loop, including online detection of dangerous node pairs
1: INPUT: multi-robot task specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, strategies A1, A2, reach annotations,

RA1,RA2
2: Initialize with (v1, v2) ∈ V1 × V2 depending on initial environment state.
3: while True do
4: for k in 1, 2, . . . , h do
5: Compute Postk1(v1) and Postk2(v2).
6: if d(s1, s2) = 0 for some (s1, s2) ∈ L1(Postk1(v1)) × L2(Postk2(v2)) then
7: D1 × D2 := {

(u1, u2) ∈ Postk1(v1) × Postk2(v2) | d(L1(u1), L2(u2)) = 0
}

8: Invoke Algorithm 2 with v1, v2 and the dangerous node pairs of A1 and A2.
9: if Algorithm 2 returned (A′

1,RA
′
1, A′

2,RA
′
2) then

10: Replace A1,RA1 and A2,RA2 with the returned patched versions.
11: else
12: abort //Local reachability game unsolvable
13: end if
14: end if
15: end for
16: Each robot observes environment move: e1, e2
17: v1 := δ1(v1, e1); v2 := δ2(v2, e2) //Take moves
18: end while

378 S.C. Livingston and P. Prabhakar

Algorithm 2 Jointly patch strategies
1: INPUT: joint GR(1) formula ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, strategies A1, A2, reach annotations RA1,RA2,

current node-pair (v1, v2), and respective danger nodes D1, D2
2: OUTPUT: new component strategy automata A′

1, A′
2, and new reach annotations RA′

1,RA
′
2

3: i := π1 ◦ RA1(v1) //Relevant goal mode for first robot
4: j := π1 ◦ RA2(v2) //Relevant goal mode for second robot
5: mi := mind∈D1 π2 ◦ RA1(d) //Min. reach annotation among dangerous nodes for first robot
6: m j := mind∈D2 π2 ◦ RA2(d)

7: B1 := {v ∈ V1 | π1 ◦ RA1(v) = i ∧ π2 ◦ RA1(v) < mi }
8: B2 := {

v ∈ V2 | π1 ◦ RA2(v) = j ∧ π2 ◦ RA2(v) < m j
}

9: Entry := {(v1, v2)}
10: Exit := B1 × B2
11: A(i, j) := Reachϕ(L(Entry), L(Exit))
12: if A(i, j) = nil then
13: abort //Local reachability game unsolvable
14: end if
15: (Ai , A j) := Decompose(A(i, j))

16: Patch A1 with Ai and A2 with A j as in [13].
17: return A′

1,RA
′
1, A′

2,RA
′
2

Algorithm 3 Decompose local strategy
1: INPUT: A(i, j) = (

V(i, j), δ(i, j), L(i, j)
)
with state labels in ΣX1 × ΣY1 × ΣX2 × ΣY2

2: OUTPUT: Ai with state labels in ΣX1 × ΣY1 , and A j with state labels in ΣX2 × ΣY2

3: V i := ∅; V j := ∅
4: for (v1, v2) ∈ V(i, j) do
5: V i := V i ∪ {v1}; V j := V j ∪ {v2}
6: for (u1, u2) ∈ Pre((v1, v2)) do
7: δi (u1, e1) := v1, where e1 = L1(v1) ↓ ΣX1

8: δ j (u2, e2) := v2, where e2 = L2(v2) ↓ ΣX2

9: if L1(u1) = L1(v1) then
10: Li (v1) := L1(v1) ⊕ Hash(v1)
11: else
12: Li (v1) := L1(v1)
13: end if
14: if L2(u2) = L2(v2) then
15: L j (v2) := L2(v2) ⊕ Hash(v2)
16: else
17: L j (v2) := L2(v2)
18: end if
19: end for
20: end for
21: return Ai = (

V i , δi , Li
)
, A j = (

V j , δ j , L j
)

5.1 Comments on Algorithm 1

• Line 3 : because the specification describes infinite plays by the robots, the main
loop should run forever to provide for online usage.

Decoupled Formal Synthesis for Almost Separable Systems … 379

• Line 4 : to ensure that a dangerous configuration is not stepped over during the
search, horizon lengths must be in increasing order, as listed in the for-loop of
Algorithm 1.

• Line 5 : Postk1(v1) is the set of nodes in A1 reachable in k time steps beginning at
v1, for some sequence of environment moves. Postk2(v2) is defined similarly for the
second robot. For clarity, Algorithm 1 does not include the obvious improvement
of incrementally computing Postk2(v2) using the value from the previous iteration
of the for-loop.

• Line 6 : the predicate is in terms of continuous robot states; recall (4).
• Line 7 : compute all “dangerous” nodes that satisfy the predicate of line 6. Those
of D1 belong to the first robot; those of D2 to the second.

• Line 16 : recall that there is only one environment, though each robot may see
different parts of it. Their respective perspectives are indicated by using e1 and e2.
On the next line, these are used to move to the appropriate next strategy automaton
nodes.

5.2 Comments on Algorithm 2

• Lines 5–6 : for each robot strategy, compute the minimum reach annotation value
for all nodes that are part of a dangerous configuration.

• Lines 7–8 : for each robot strategy, find all existing automaton nodes with the
current goal mode and that have reach annotation strictly less than all dangerous
nodes.

• Line 11 : L is the product labeling constructed from L1 and L2. Using the transition
rules and safety conditions of the joint specification ϕ := ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, solve
a reachability game that drives any play initially from a state in L(Entry) to some
state in L(Exit), or else block one of the environment liveness conditions (recall
(1)) if this is not possible. For brevity we omit a code segment for constructing a
strategy automaton realizing a solution. Many algorithms to do this are known, for
instance a μ-calculus fixed point is used in [13]. A reachability game is defined as
an LTL formula, called Reachϕ(L(Entry), L(Exit)),

χL(Entry) ∧ � ρenv ∧
⎛

⎝
m−1∧

j=0

� � ψenv
j

⎞

⎠ =⇒ � ρsys ∧ � χL(Exit)

for which a strategy must be synthesized. The solution may be found by restricting
attention to a set of states within a distance of the dangerous configuration, as
described in [13]. While we omit details here, the basic idea is to form a smaller
synthesis problem bymodifying ρenv and ρsys given the subset of states over which
patching is performed.

• Line 13 : local reachability games can be unsolvable even when the multi-robot
specification (2) has solutions. In the present context, there are two possible causes.

380 S.C. Livingston and P. Prabhakar

First, if one of the Entry will inevitably lead to violation of the inter-robot safety
requirement ϕ1,2. Second, we only treat the case of patching within a particular
goal mode. Accordingly, it is not necessary to consider intermediate satisfaction
robots’ liveness goals as part of solving local reachability games. However, this
may result in a trivially unsolvable reachability game, e.g., if B1 is empty. Consult
discussion in Sect. 6 concerning extension to the general case.

• Line 15 : invoke subroutine Decompose(), as provided in Algorithm 3, for decom-
posing local strategies into corresponding local strategies for separate agents, on
respective discrete states ΣX1 × ΣY1 and ΣX2 × ΣY2 .

• Line 16 : having obtained local strategies Ai and A j on the previous line, which
may be used to patch A1 and A2 for goal modes i and j , respectively, the single-
agent algorithm of [13] can now be applied directly. We omit it for brevity.

5.3 Comments on Algorithm 3

• Lines 7–8: the notation e1 = L1(v1) ↓ ΣX1 indicates projection onto the set of
environment states from the perspective of agent 1, i.e., ΣX1 . Thus, the transition
δi (u1, e1) := v1 means that upon reaching node u1 in any play, if the environment
takes the move e1, then the strategy automaton will select a system state in ΣY1

such that the resulting discrete state in ΣX1 × ΣY1 is L(v1).
• Lines 9–18 : avoid stuttering in component local strategies. We assume a unique
number generatorHash() is available and append it to the state labelings on lines 10
and 15.

6 Analysis

As shown below, the proposed method is sound in the sense that infinite executions
by a team of robots using it will realize the specification.

Theorem 2 Any infinite play resulting from the combined operation of Algorithms
1–3 is correct with respect to specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2, provided the initial state
does not violate ϕ1,2.

Proof Let σ be an infinite play, i.e., a mapping

σ : N → ΣX1 × ΣY1 × ΣX2 × ΣY2

that assigns to each discrete time step a product state. Denote the projection onto the
variables used by the first and second robots respectively by

σ1 : N → ΣX1 × ΣY1 , (5)

Decoupled Formal Synthesis for Almost Separable Systems … 381

σ2 : N → ΣX2 × ΣY2 , (6)

so that σ(t) = (σ1(t), σ2(t)) for each time t . The proof proceeds by induction. By
hypothesis, thefirst stateσ(1)must not violateϕ1,2. Since A1 and A2 were synthesized
for ϕ1 and ϕ2, respectively, the initial states of both robots σ1(1) and σ2(1) satisfy
the initial conditions of ϕ1 and ϕ2, respectively. Therefore the joint initial state σ(1)
satisfies the initial conditions of the specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2.

Suppose that for some time t , the finite play fragment σ(1) · · · σ(t) satisfies the
safety requirements of the specification. In terms of the components of the spec-
ification, satisfaction of the safety requirements means that for each τ ≤ t , σ(τ)

satisfies ϕ1,2, and for each transition (σ (τ), σ (τ + 1)), the transition requirements
of ϕ1 are met by (σ1(τ), σ1(τ + 1)) and the transition requirements of ϕ2 are met by
(σ2(τ), σ2(τ + 1)) for τ ≤ t − 1. The robots’ strategy automata A1 and A2 transition
on line 17 of Algorithm 1, which from the labelings determines the next state, i.e.,

σ1(t) = L1(v1) (7)

σ2(t) = L2(v2) (8)

σ1(t + 1) = L1(δ1(v1, e1)) (9)

σ2(t + 1) = L2(δ2(v2, e2)). (10)

Observe that L1 in (7) may differ from L1 in (9), since A1 may have changed as a
result of patching (Algorithm 2). A similar statement applies to L2 in (8) and (10).
Thus we consider two cases. For the first case, if patching does not occur, i.e., if
the condition of the if-statement on line 6 of Algorithm 1 is always false, then the
robot strategy automata are not changed in the present iteration. In particular, the
labelings L1 and L2 are not changed and it suffices to check that the transitions
resulting from δ1 and δ2 are safe. If these transitions are as in the originally given
A1 and A2, then by hypothesis they are safe with respect to ϕ1 and ϕ2, respectively.
They are also safe with respect to ϕ1,2 since the condition of the if-statement on line 6
was false in the present case. Summarizing the second case, the solution of the local
reachability game in Alogrithm 2 implies that transitions in the modified A′

1 and A′
2

are safe with respect to the multi-robot specification. Therefore, by induction the
safety requirements of the specification ϕ1 ⊗ ϕ2 ⊗ �ϕ1,2 are always met.

It remains to show that the liveness requirements ofϕ1 ⊗ ϕ2 ⊗ �ϕ1,2 are satisfied.
By the definition ofGR(1) formulae (1), this occurs if one of the environment liveness
conditions is eventually never satisfied, or if all robots’ goals are repeatedly achieved.
Note that �ϕ1,2 is not relevant here, and therefore, it suffices to check the first robot
goals as in ϕ1 and the second robot goals as in ϕ2. By hypothesis, we have an infinite
play and thus the abort-statement in Algorithm 2 must never occur, i.e., for every
time that patching is attempted, a solution is found for the local reachability game.
That means a product strategy automaton A(i, j) (“product” in the sense of concerning
both robots’ system variables Y1 and Y2) is found in which either an environment
liveness condition is blocked or strict progress is made toward the respective robots’
goals (modes i and j as appearing in ϕ1 and ϕ2, respectively). Because Algorithm 3

382 S.C. Livingston and P. Prabhakar

decomposes this joint solution of the local reachability game into strategy automata
Ai and A j for each robot so that simultaneous execution of Ai and A j is identical
to A(i, j), it follows that the results A′

1 and A′
2 of patching robot strategy automata

ensure the robot goals are repeatedly reached, or else a liveness condition in ϕ1 or
ϕ2 is blocked.

An important part of the hypothesis for the previous theorem is that it concerns
infinite plays. However, during usage of the presented algorithms, a patching attempt
may fail and result in a finite play. To simplify the presentation, the algorithms in
this paper rely on patching to be completed within the same goal mode. While an
extension to the method of [13] has been developed that can visit robot goals while
connecting Entry and Exit sets, it has not yet been published and length constraints
prevent inclusion of it here. Thus our present treatment is restrictive and may fail to
find a joint strategy when one exists.

7 Experiments

In this section preliminary results concerning the complexity of themethod presented
in this paper are described. The experiment setting considered is illustrated in Fig. 1.
The underlying dynamics can be driven among cells using gradient methods [11],
so to simplify the presentation we model the robots as entirely discrete transition
systems.

Informally, the multi-robot specification in Fig. 1 requires that both robots visit
both stars repeatedly while avoiding collisions with each other. It can be shown that,
in the absence of an adversarial environment, winning strategies are of the form of
“lassos,” with a prefix and suffix loop; example paths are illustrated by dashed lines
in the figure. In this example, a collision state occurs at row 5, column 7, and it
would first be found h-steps away, where h is the maximum horizon parameter used
in Algorithm 1.

Fig. 1 Illustration of
experiment setting:
two-robot gridworlds. Cells
that are to be visited
repeatedly are indicated by
stars. The robots are shown
in their initial positions

Decoupled Formal Synthesis for Almost Separable Systems … 383

7.1 Quantifying Coupling

The usefulness of the proposed method depends largely on how “loose” is the cou-
pling of the robots imposed by ϕ1,2 (recall (2)), given that nominal strategy automata
constructed for ϕ1 and ϕ2 assume independence. We studied this in the gridworld
setting as follows. Generate a random gridworld with fixed static obstacle density 0.2
(i.e., 20% of cells are occupied), and create two robot specifications ϕ1 and ϕ2 in it
by randomly placing, for each robot, one initial position and multiple goal positions.
Synthesize strategy automata A1 and A2 independently for ϕ1 and ϕ2, respectively.
Compute the synchronous product of A1 and A2 (viewed as finite transition systems),
and find all nodes that are labeled with the same grid position, i.e., all nodes at which
the robots would be in collision. These are referred to as “dangerous configurations”,
and histograms of occurrences for varying numbers of goals andworld sizes is shown
in Fig. 2. It is clear that in all cases, most counts are zero, i.e., the independently syn-
thesized robot strategies A1 and A2 never result in dangerous configurations. While
this observation holds as well for both gridworld sizes considered, the plots indicate

Fig. 2 Histograms for the number of trials in which a given count of dangerous configurations
occurred, after generating multi-robot specifications for random gridworld instances as described
in Sect. 7.1. In each case 32 trials were performed

384 S.C. Livingston and P. Prabhakar

Table 1 Automaton synthesis times for multi-robot random gridworlds

Setting Mean time (s) for specification
ϕ1 ⊗ ϕ2

Mean time (s) for distributed
synthesis

Size 16 × 16, 2 goals 0.938 0.196

Size 16 × 16, 4 goals 1.75 0.297

that increasing the number of goal positions increases the occurrences of dangerous
configurations. Intuitively we may expect this because the goal positions are ran-
domly placed in the gridworld and thus may cause motion plans to cover more of
the workspace, thereby increasing possibilities for collisions.

7.2 Simulation Trials

Using the experiment setting described in the previous section, the times required for
independently synthesizing strategy automata are compared with those required for
using a combined specification. In terms of the previous section, strategy automata
are synthesized for ϕ1, ϕ2, and ϕ1 ⊗ ϕ2. Synthesis times are shown in Table1.

References

1. Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems.
Proc. IEEE 88(7), 971–984 (2000)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
3. Belta, C., Bicchi, A., Egerstedt, M., Frazzoli, E., Klavins, E., Pappas, G.J.: Symbolic planning

and control of robot motion: finding the missing pieces of current methods and ideas. IEEE
Robot. Autom. Mag. 61–70 (2007)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reactive(1) designs.
J. Comput. Syst. Sci. 78, 911–938 (2012)

5. Bullo, F., Cortés, J., Martínez, S.: Distributed Control of Robotic Networks. Applied Mathe-
matics Series. Princeton University Press (2009). http://coordinationbook.info

6. Chen, Y., Ding, X.C., Stefanescu, A., Belta, C.: Formal approach to the deployment of distrib-
uted robotic teams. IEEE Trans. Robot. 28(1), 158–171 (2012)

7. Emerson, E.A.: Handbook of Theoretical Computer Science (vol. B): Formal Models and
Semantics, chapter Temporal and Modal Logic, pp. 995–1072. MIT Press (1990)

8. Gerkey, B.P., Matarić, M.J.: A formal analysis and taxonomy of task allocation in multi-robot
systems. Int. J. Robot. Res. 23(9), 939–954 (2004)

9. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic specifications.
In: Proceedings of the 47th IEEE Conference on Decision and Control (CDC), pp. 3953–3958,
Cancun, Mexico, December (2008)

10. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning with deter-
ministicμ-calculus specifications. In: Proceedings of theAmericanControlConference (ACC),
pp. 735–742, Montréal, Canada, June (2012)

http://coordinationbook.info

Decoupled Formal Synthesis for Almost Separable Systems … 385

11. Lindemann, S.R., LaValle, S.M.: Simple and efficient algorithms for computing smooth,
collision-free feedback laws over given cell decompositions. Int. J. Robot. Res. 28(5), 600–621
(2009)

12. Livingston, S.C., Murray, R.M.: Hot-swapping robot task goals in reactive formal synthesis.
Technical report, California Institute of Technology, September (2014). http://resolver.caltech.
edu/CaltechCDSTR:2014.001

13. Livingston, S.C., Prabhakar, P., Jose, A.B., Murray, R.M.: Patching task-level robot controllers
based on a local μ-calculus formula. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 4573–4580, Karlsruhe, Germany, May (2013)

14. Ozay, N., Topcu, U., Wongpiromsarn, T., Murray, R.M.: Distributed synthesis of control pro-
tocols for smart camera networks. In: International Conference on Cyber-physical Systems
(2011)

15. Parker, L.E.: Current state of the art in distributed autonomousmobile robotics. In: Proceedings
of Distributed Autonomous Robotic Systems, vol. 4, pp. 3–12. Springer, Japan (2000)

16. Parker, L.E.: Distributed intelligence: overview of the field and its application in multi-robot
systems. J. Phys. Agents 2(1), 5–14 (2008)

17. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’89, pp.
179–190, New York, USA. ACM (1989)

18. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In: Proceedings of
the 31st Annual Symposium on Foundations of Computer Science, October (1990)

19. Tabuada, P.: Verification and Control of Hybrid Systems: A Symbolic Approach. Springer
(2009)

20. Zhu, M., Otte, M., Chaudhari, P., Frazzoli, E.: Game theoretic controller synthesis for multi-
robot motion planning, Part I: trajectory based algorithms. In: Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), pp. 1646–1651, Hong Kong,
China (2014)

http://resolver.caltech.edu/CaltechCDSTR:2014.001
http://resolver.caltech.edu/CaltechCDSTR:2014.001

Part IV
Multi-Robot Communication

and Control Architecture

Knowledge Co-creation Framework: Novel
Transfer Learning Method in Heterogeneous
Multi-agent Systems

Hitoshi Kono, Yuta Murata, Akiya Kamimura, Kohji Tomita
and Tsuyoshi Suzuki

Abstract This paper presents a framework, called the knowledge co-creation
framework (KCF), for the heterogeneous multi-robot transfer learning method with
utilization of cloud-computing resources. A multi-agent robot system (MARS) that
utilizes reinforcement learning and transfer learning methods has recently been
deployed in real-world situations. In MARS, autonomous agents obtain behavior
autonomously through multi-agent reinforcement learning and the transfer learning
method enables the reuse of the knowledge of other robots’ behavior, such as for
cooperative behavior. These methods, however, have not been fully and systemat-
ically discussed. To address this, KCF leverages the transfer learning method and
cloud-computing resources. In prior research, we developed a hierarchical transfer
learning (HTL) method as the core technology of knowledge co-creation and inves-
tigated its effectiveness in a dynamic multi-agent environment. The HTL method
hierarchically abstracts obtained knowledge by ontological methods. Here, we eval-
uate the effectiveness of HTL with two types of ontology: action and state.

Keywords Transfer learning · Reinforcement learning · Heterogeneous agents ·
Multi-agent system

H. Kono (B) · Y. Murata · T. Suzuki
Tokyo Denki University, Tokyo, Japan
e-mail: hitoshi@nrl.c.dendai.ac.jp

Y. Murata
e-mail: y.murata@nrl.c.dendai.ac.jp

T. Suzuki
e-mail: tszk@ieee.org

A. Kamimura · K. Tomita
National Institute of Advanced Industrial Science and Technology (AIST),
Ibaraki, Japan
e-mail: kamimura.a@aist.go.jp

K. Tomita
e-mail: k.tomita@aist.go.jp

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_27

389

390 H. Kono et al.

1 Introduction

Actual multi-agent robot systems (MARSs) that use reinforcement learning have
recently been deployed in real-world situations. Among other applications, a multi-
robot inspection system for disaster-stricken areas, autonomous multi-robot secu-
rity systems, and autonomous multi-robot conveyance systems for warehouses have
been developed [1–3]. However, the real world, where such MARSs are expected
to operate, is a dynamic environment that complicates the development of the sys-
tems because developers must customize the robots to this dynamic environment.
The application of multi-agent reinforcement learning (MARL) to MARSs is one of
the approaches taken in response to this problem. MARL is a mechanism for imple-
menting a posteriori cooperation among agents, which can behave adaptively in a
dynamic environment even when they are not provided with specific control poli-
cies. The benefits of MARL have been demonstrated in various studies over the past
decade [4–6]. The application of MARL to actual robots has been studied by
Matarić [7]. A method for accelerating the learning process has also been inves-
tigated because reinforcement learning in dynamic environments requires a long
time to obtain an optimal (or nearly optimal) solution [6]. However, this method
is difficult to apply to MARS with MARL in dynamic environments because the
learning speed is impractically low. Moreover, a MARS typically contains at least
one pre-programmed robot, and MARL has the following drawbacks.

• The learning process requires a long time.
• The obtained knowledge depends on the situation.
• There is a limit to a robot’s capacity to store the knowledge.

In contrast, cloud robotics has recently been proposed [8, 9] as a means to
increase the availability of standalone robots by utilizing cloud computing resources.
Cloud robotics may increase the utility of MARSs because the robots gain access to
broader knowledge, vast computing resources, and external functions. This should
be helpful for achieving practical implementation of MARSs with MARL.

In this context, we propose a knowledge co-creation framework (KCF) by
in-tegrating MARS, MARL, and cloud robotics [10, 11]. We developed KCF by
leveraging the transfer learning method and cloud-computing resources. To imple-
ment this framework, an autonomous mobile robot in a MARS internally executes
cyclical processes, and we implement cloud services for gathering and assimilating
knowledge (Fig. 1) as follows.

• Knowledge data are generated by using computer simulation and other MARL
systems.

• A robot saves knowledge to its own repository via a network connected to cloud
computing resources.

• The robot observes the environmental state.
• The robot selects particular knowledge from the repository on the basis of the
observed environment.

Knowledge Co-creation Framework: Novel Transfer Learning … 391

Fig. 1 Simplified representation of KCF. All systems (including the MARS simulator) are con-
nected to cloud-computing resources

• If the observed environment is unknown, the robot acquires the learned knowledge
of other robots (reuse of knowledge) [12].

• As a result of this action, the robot obtains new knowledge about unknown
en-vironments and shares new knowledge with other robots and systems.

Note that an autonomous agent acts on the basis of existing knowledge if the
ob-served environment is known.

We developed the hierarchical transfer learning (HTL) method as the core tech-
nology of KCF. The HTL method enables inter-task mapping (ITM) by using action
ontology among heterogeneous agents. This allows autonomous robots and virtual
agents to reuse knowledge from other types of agents. Here, we describe experi-
ments that confirm that HTL enables reuse of knowledge by using action and state
ontologies to mediate between heterogeneous MARSs.

The rest of the paper is organized as follows. Section2 describes the theory and
assumptions of reinforcement learning and transfer learning. Section3 is an overview
of the proposed KCF. Section4 provides details about the preconditions of simula-
tion experiments. Section5 details evaluation of the effectiveness of KCF through
simulation and contains a discussion of the results, which suggest that autonomous
learning agents can reuse knowledge from other heterogeneous agents by using KCF.
Section6 contains concluding remarks.

392 H. Kono et al.

2 Learning Mechanisms and Transfer Method
of Knowledge

2.1 Reinforcement Learning

Reinforcement learning is one type of machine learning, in which agents can use
a trial-and-error method to create policies for accomplishing tasks. In this study,
we adopt Q-learning, defined below, as the reinforcement learning mechanism:

Q(s, a) ← Q(s, a) + α{r + γ V (s′) − Q(s, a)} (1)

Here, a value function V (·) is defined as follows.

V (s) = max
a∈A

Q(s, a) (2)

Here, S is a state space, with s, s′ ∈ S; a an element of an action space A; α(0 <

α ≤ 1) is the learning rate; γ (0 < γ ≤ 1) is the discount rate; and r is the reward.
Q-learning is simple algorithm, and it contributes straightforward implementation
with programming language. The learning agents select each defined a with a prob-
ability given by the Boltzmann distribution according to

p(a|s) = exp
(Q(s,a)

T

)
∑

b∈A exp
(Q(s,b)

T

) (3)

Here, T is a parameter that determines the randomness of selection. The Q-learning
model can select actions in descending order according to the action value from
learned knowledge. When the values of available actions are the same or are
equal to default value, the Boltzmann distribution is used to select the action at
random.

2.2 Transfer Learning in Reinforcement Learning

Transfer learning, as proposed byTaylor, is a framework for reuse of a policy obtained
through reinforcement learning [12]. The policies and solutions obtained through
reinforcement learning are here regarded as knowledge. In the transfer learning
method, an agent first learns the policy as an action-state pair during the source
task. Next, an agent performing the target task can reuse the knowledge obtained
during the source task via ITM. ITM defines the relation of the spaces S and A
between the target and source tasks. If the target task agent has state space Starget and
action space Atarget , and the source task agent has state space Ssource and action space

Knowledge Co-creation Framework: Novel Transfer Learning … 393

Asource, then ITM for simple tasks will map S and A between the target and source
tasks. This is formulated as follows:

χS(s) : Starget → Ssource

χA(a) : Atarget → Asource (4)

The agent completing the target task can have different characteristics from the agent
that learned the source task. Hence, the agent performing the target task can adapt
its behavior for a new environment or target task. This method is fundamental in a
single-agent environment.

2.3 Transfer Learning in Multi-agent Domains

In recent years, transfer learning has been investigated not only for single-agent
systems but also for MARSs. For example, Boutsioukis et al. proposed a transfer
learning method with multi-agent reinforcement learning, which enables the use of
ITM among agents [13].

Taylor et al. proposed a parallel transfer learning method, which runs the target
and source tasks simultaneously [14]. Their method speeds up learning in multi
agent transfer learning. However, many such methods do not take into account the
operation of large numbers of single-agent systems and MARSs, which means that
an inter-task map must be either created or modified with every entry of a new
agent system.

The quality of ITM is the most important factor in agent performance on target
tasks. Therefore, we believe that ITM for a system should be designed by humans
(such as researchers and engineers) on the basis of experience and intuition. How-
ever, as already mentioned, manually designing an ITM system is problematic when
large numbers of single-agent systems and MARSs are involved in the transfer
learning system.

3 Hierarchical Transfer Learning

3.1 Ontology-Based ITMs

Our KCF with HTL enables integration of ITMs among agents [11]. In a previous
paper, we proposed HTL, which uses the concept of ontologies as a method for
creating ITMs. We call this technique ontology-based ITM (OITM). Ontology is
introduced here as an “explicit specification of a conceptualization” for the purpose
of learning [15]. Our OITM leverages functions by which we can describe many
different relations in terms of ontology, and specifically we can describe integrative

394 H. Kono et al.

Fig. 2 OITM for agent actions. The agent’s developer maps concrete actions of the agent to abstract
actions as upper classes, and these upper classes can be mapped into higher classes. Therefore, all
actions of all agents are mapped to an ontology

ITM among agents.Moreover, if we first define ITMof a system in terms of ontology,
then agents can use ITM to search the knowledge of many other agents. We assume
that a concrete action of an agent is called an instance of ontology and an abstract
action of ontology is called a class or upper class. We additionally assume that any
ontology present in cloud resources can be accessed by all agents.

An example of OITM is shown in Fig. 2. First, the agent developer maps the con-
crete action of an agent to the ontology. Another agent developer also maps an action
to this ontology. When the agent reuses the knowledge of the other agent, it searches
the mapping between its actions and other agent actions. Second, the agent transfers
knowledge from other agents to itself using the knowledge and mapping of ontology
for ITM. Note that when the agent transfers the knowledge from other agents, OITM
requires two ontologies, such as an action ontology and a state ontology. Hence, the
agent individually searches corresponding actions and states of other agents.

3.2 Transfer of Knowledge

As mentioned above, the agent can reuse knowledge of other agents through HTL.
In this study, we adopted Q-learning as the reinforcement learning model. For the
Q-learning mechanisms, transferred knowledge is reused as follows.

Qc(s, a) = Qt(s, a) + τQs(χO
S (s), χO

A (a)) (5)

Here, Qt(s, a) is knowledge about the target task and Qs(s, a) is knowledge about a
source task, via HTL. The transferred knowledge also uses OITM, and the function

Knowledge Co-creation Framework: Novel Transfer Learning … 395

Fig. 3 Simplified internal
reinforcement learning
model in target task agent.
A learner can receive state
and reward from the
environment, and transferred
knowledge cannot receive
the reward

of χO
S (·) and χO

A (·) means OITM. The term Qc(s, a) is the combined knowledge
of the target and source tasks, and τ(0 < τ ≤ 1) is a parameter for adjusting the
action’s value for the difference between the target and source task. A target task
agent selects an action from Qc(s, a) according to a Boltzmann distribution (Eq. (3)).
However, updating of knowledge occurs only for Qt(s, a) by Q-learning (Fig. 3).
In an actual environment, when an actual agent, such as a robot, reuses transferred
knowledge, the knowledge of source tasks consists of a data file generated by the
source task agent, and the target task agent must receive the transferred knowledge
(in the form of these files) about the source task via the network infrastructure. Hence,
to reuse knowledge, HTL requires a communication infrastructure, list of available
repositories of knowledge and public ontology servers.

4 Task Description

4.1 Pursuit Game

Previous studies have adopted tasks such as zero-sum games, foraging tasks, and
cooperative carrying tasks for evaluating MARL. Here, we adopt a pursuit game to
evaluate performance. The pursuit game is a benchmark test of agent performance,
measured as time to capture. We set an N × N grid as the world. An arbitrary num-
ber of hunter agents and prey agents are deployed in this world, and we evaluate the
number of steps (i.e., time) until the hunters capture all prey. This game is over when
the prey is captured, i.e., all hunters are adjacent to the prey at the end of a turn. In our
pursuit game, the locations of all agents are reset to their initial positions after cap-
ture. A single episode is defined as the time until a state of capture has been reached.
Agents act according to a predefined order, such as hunter 1 → hunter 2 → prey,
and one set of actions is regarded as a single step. A cell cannot be simultaneously
occupied by multiple agents, and agents cannot cross the world boundaries.
Moreover, hunters can learn cooperative capture actions, but prey cannot learn.

396 H. Kono et al.

Fig. 4 Difference in tasks. a Two hunters versus one prey in 7 × 7 grid world, with initial positions
of each agent. b Three hunters versus one prey in 7 × 7 grid world with initial positions of agents
in the four corners

4.2 Difference in Tasks

Wedefine the gridworld of a pursuit game according to a study by Tan [4]. In this par-
ticular implementation, hunters and prey can move in a 7 × 7 grid world. The initial
position of each agent is shown in Fig. 4. The difference between tasks is the number
of hunters (Fig. 4a, b). We call the task in Fig. 4a “2 vs. 1” and that in Fig. 4b “3 vs.
1”. Note that in the 2 versus 1 task, the observable environmental state of a hunter is
the set containing the coordinates of the other hunter and of the prey. In the 3 versus
1 task, the observable environmental state is set containing the coordinates of the
two other hunters and of prey. Therefore, the concrete difference between tasks is
the observable number s of the set of S. In each task, the observable environmental
state as a set S is defined as follows.

S2 vs. 1 ={self -location, coordinates of other hunter, coordinate of prey} (6)

S3 vs. 1 ={coordinates of self -location, coordinates of a second hunter,

coordinates of a third hunter, coordinates of prey} (7)

4.3 Heterogeneity of Agents

As mentioned above, the game involves two types of agents: hunters and prey.
Only hunters are provided with learning mechanisms; the actions of the prey are
according to a fixed strategy, as discussed in detail below.

Agents can select only one action per step. Prey can choose from among five
actions in an action space Aprey, which is defined as follows.

Aprey = {front, back, right, left, stop} (8)

Knowledge Co-creation Framework: Novel Transfer Learning … 397

Fig. 5 Actions and sight range of each agent. Arrows denote movable direction and distance in
grid world. Gray area is sight range of each agent, and if other agents are in sight range, agent can
observe coordinate of other agents

Heterogeneity of hunters means that differences are permitted between the strate-
gies and action spaces of different hunters. In addition, each agent is provided with
a sensor, such as sight. We define the allowed actions of each hunter as follows.

Ahunter1 ={front, back, right, left, stop} (9)

Ahunter2 ={upper right, lower right, lower left, upper left, stop} (10)

Ahunter3 ={front (2 cell), right (2 cell), lower right,

lower left, left (2 cell), stop} (11)

Here, characteristics of Ahunter1, Ahunter2 and Ahunter3 is shown in Fig. 5a–c, respec-
tively. Each agent has its own sight range (shown as shaded cells), and the shape
of this range differs among agents. The sight range of the prey is the same as that
shown in Fig. 5c. Initially, hunters and prey choose their actions randomly. Hunters
adjust the probabilities with which actions are selected as the learning progresses.
Although the prey does not learn, it selects an escape action when it recognizes a
hunter. The prey moves away from the hunter when it detects only one hunter, or
in any of the possible escape directions (uniformly chosen) when it detects multiple
hunters in its vicinity.

4.4 Experimental Conditions

To confirm the effectiveness of transfer withHTL,we set the experimental conditions
as listed in Table1. In this experiment, we adopted the 2 versus 1 task as the source
task, and the 3 versus 1 task as the target task. In the source task, hunters 1 and 2
and the prey are deployed in a 7 × 7 grid world. In the target task, hunters 1, 2, and
3 and the prey are deployed in a 7 × 7 grid world. If hunter 1 in the target task uses

398 H. Kono et al.

Table 1 Experimental conditions of transfer

Experiment Self-transfer HTL

Source task Target task Source task Target task

Task 2 versus1 2 versus 1 2 versus 1 3 versus 1

Hunters (1) and (2) (1) and (2) (1) and (2) (1), (2) and
(3)

Direction of
transfer

(1) → (1) (1) → (1)

(2) → (2) (2) → (2)

(1) → (3)

The target task agent uses transferred knowledge from a source task agent of the same type . Only
hunter 3 of the target task does not have an analogous agent in the source task, and it can select the
transferred knowledge of hunter 1. In this table (1) is Hutner1, (2) is Hunter2, and (3) is Hunter3

Fig. 6 Transfer learning and self-transfer. Transfer learning condition transfers knowledge from a
source task to a target task. The self-transfer condition transfers knowledge from a source task to
an identical task

transferred knowledge, it is transferred from hunter 1 in the source task. Hunter 2 in
the target task also uses knowledge from hunter 2 of the source task. However, hunter
3 of the target task does not have an analogous agent in the source task. Under this
experimental condition, hunter 3 can select the transferred knowledge of hunter 1
because hunter 3 is more similar to hunter 1 than to hunter 2 (Fig. 6). Moreover, on
top of the above experimental conditions, we test the self-transfer condition. Self-
transfer is used as confirmation of transferred knowledge properly generated by the
agent of the source task, and we transfer the generated knowledge from the source
task to the source task agents.

In the source task, the Q-learning parameters are set to α = 0.7, γ = 0.9, and
r = 1. The Boltzmann parameter T is 0.01. These parameters are common to the
self-transfer condition, and the transfer rate τ is 1.0. In the target task, Q-learning
parameters are set to α = 0.1, γ = 0.99, and r = 1, and T is set to 0.01. The default
Q-values are 0 in all experiments, and τ is 1.0. In each experiment, 5000 episodes
are conducted for the source and target tasks, and we execute 10 trial.

When the agent has learned behavior in the source task, the obtained knowledge
is formatted as a function approximation by using an artificial neural network (ANN)
because the format of the obtained knowledge depends on the internal mechanism
of the agent in the source task. An example of function approximation is shown in
Fig. 7. Therefore, in the HTL framework, we adopted function approximations as

Knowledge Co-creation Framework: Novel Transfer Learning … 399

Fig. 7 Function approximation of obtained knowledge as Q-table. This table typically has action
values for all of states. Its size becomes dramatically enlarged when the number of states is large.
In our proposed method, we approximate the Q-table with artificial neural networks

the common format of knowledge among agents. Furthermore, parameters of ANN
are set as follows. The number of input nodes = S2vs.1. The number of hidden nodes
is double number of input nodes and the number of output nodes is the number of
elements of Ahunter1 or Ahunter2. We adopt a backpropagation algorithm for training
ANN. Note that actual transferred data as obtained knowledge is ANN parameters
such as the connection weights, the number of neurons and connection architecture.

In this experiment, we designed two ontologies for HTL; action ontology in Fig.8
and state ontology in Fig. 9. For example, when the hunter 3 reuses the knowledge
of hunter 1 by utilizing action ontology and state ontology, information of observed
states are put in state ontology. The hunter 3 can translate own observed states
to observable states of hunter 1, and translated states are input to the knowledge
transferred from hunter 1. Then knowledge outputs the action values of hunter1, and
hunter 3 translates it to own actions by utilizing action ontology. Finally, hunter 3
calculates joint knowledge (Eq. (5)), and it selects valuable action using Boltzmann
distribution (Eq. (3)). Here we assume that the two ontologies are pre-programmed
in the all hunters.

400 H. Kono et al.

Fig. 8 Action ontology. In action ontology, we map the instance of actions to the similar upper
class

Fig. 9 State ontology. This ontology is according to the transfer from source task to target task

5 Experimental Results and Discussion

In this section,we describe the experimental results and discuss Jumpstart (JS),which
is the mean difference in initial performance (average steps in initial 100 episodes)
between an agent with transfer and one without transfer.

5.1 Self-transfer Results

In this experiment, the result of learning without transfer shows improved per-
formance (Fig. 10). This learning curve does not converge to a single solution, in
contrast to the performance of general reinforcement learning in a static environ-
ment, because the agents in all of our experiments learn in a dynamic environment.
The learning curve of self-transfer exhibits an obvious JS compared with that without
transfer. This is caused mainly by reuse knowledge via self-transfer. The average of
improvement rate in JS is shown in Table2. The average self-transfer of the initial
100 episodes improves 74% from the source task without transfer. Moreover, the
number of steps of the initial episode with transfer is low compared with the number
of steps in the limit of the learning curve without transfer. The main cause of this is
the function approximation by the ANN. This suggests that when there is transfer,
transferred knowledge is optimized. This phenomena is the secondary cause of func-
tion approximation aimed at formatting of knowledge.

Knowledge Co-creation Framework: Novel Transfer Learning … 401

Fig. 10 Comparison of learning curves between source task and self-transfer (same domain target
task). In this figure, each plot is average of 10 trials, and error bar means standard deviation

Table 2 Comparison of JS value, self-transfer, and HTL

Domain Without transfer With transfer JS (improvement rate)

Source task
(Self-transfer)

338.65 89.19 0.74

Target task (HTL) 4674.70 616.61 0.87

5.2 HTL Results

In HTL, the results exhibit an obvious JS, as shown in Fig. 11. The improvement
rate in JS is shown in Table2. These results indicate the effectiveness of HTL using
OITM. The average of the initial 100 episodes scores with transfer is improved by
87% compared with the average without transfer. This is caused mainly by reuse
knowledge via HTL. As mentioned above, the number of steps of initial steps of
learning curve with transfer is low compared with the steps in the limit of the system
without transfer, and the main cause of this is also ANN. When the knowledge is
approximated in source task, it is suspected that the action value of learned knowledge
is optimized. The above results suggest that HTL can be used for transfer learning in
heterogeneous MARSs.

402 H. Kono et al.

Fig. 11 Comparison of
learning curves between with
transfer and without transfer.
The learning curve without
transfer is normal
reinforcement learning.
These results show that the
learning curve with transfer
exhibits a JS compared with
the learning curve without
transfer. In this figure, each
plot is average of 10 trials,
and error bar means standard
deviation

6 Conclusion

In this paper, we proposed KCF for implementation of MARL, and presented HTL
as a transfer learning method suitable for large numbers of heterogeneous agents.
The HTL method is one of the functions of KCF. Moreover, we also carried out an
experiment under two transfer conditions by conducting computer simulation of a
pursuit game. The experimental results suggest that HTL can transfer knowledge
among heterogeneous agents and between different tasks. For future work, we plan
to demonstrate the effectiveness of HTL by conducting experiments in actual multi-
robot systems andmore difficult tasks. In this experiment, the action sets and state sets
were discrete, as was the experimental environment. As a continuation, HTL should
be applied to continuous sets. A guideline for designing ontologies should be devel-
oped, which is important because the architectures of ontologies (e.g., instances and
classes with relations among them) depend on the ontology developer’s experience.

Acknowledgments This work was partially supported by Research Institute for Science and
Technology of Tokyo Denki University Grant Number Q14J-01 Japan.

References

1. Sugiyama,H., Tsujioka, T.,Murata,M.:Coordination of rescue robots for real-time exploration
over disaster areas. In: The 11th IEEE International Symposium onObject Oriented Real-Time
Distributed Computing, Orlando, FL, pp. 170–177 (2008)

Knowledge Co-creation Framework: Novel Transfer Learning … 403

2. Marino, A., Parker, L.E., Antonelli, G., Caccavale, F.: A decentralized architecture for multi-
robot systems based on the null-space-behavioral controlwith application tomulti-robot border
patrolling. J. Intell. Robot. Syst. (2012). doi:10.1007/s10846-012-9783-5

3. d’Andrea, R.: Guest editorial: a revolution in the warehouse: a retrospective on Kiva systems
and the grand challenges ahead. IEEE Trans. Autom. Sci. Eng. 9(4), 638–639 (2012)

4. Tan, M.: Multi-agent reinforcement learning: independent vs. cooperative agents. In: 10th
International Conference on Machine learning, pp. 330–337 (1993)

5. Arai, S., Sycara, K., Payne, T.R.: Experience-based reinforcement learning to acquire effective
behavior in a multi-agent domain. In: PRICAI 2000 Topics in Artificial Intelligence, pp. 125–
135 (2000)

6. Yang, E., Gu, D.: A survey on multiagent reinforcement learning towards multi-robot systems.
In: IEEE Symposium on Computational Intelligence and Games, ID2012, Essex, UK (2005)

7. Matarić, M.: Reinforcement learning in the multi-robot domain. Auton. Robots 4(1), 73–83
(1997)

8. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galván-López, D., Haussermann,
K., Janssen, R., Montiel, J.M., Perzylo, A., Schießle, B., Tenorth, M., Zweigle, O., van de
Molengraft, R.: A world wide web for robots roboearth. IEEE Robot. Autom. Mag. 18(2),
69–82 (2011)

9. Hu, G., Tay, W.P., Wen, Y.: Cloud robotics: architecture, challenges and applications. IEEE
Netw. 26(3), 21–28 (2012)

10. Kono, H., Sawai, K., Suzuki, T.: Convergence estimation utilizing fractal dimensional analysis
for reinforcement learning. In: SICE Annual Conference 2013, pp. 2752–2757 (2013)

11. Kono,H., Kamimura, A., Tomita, K.,Murata, Y., Suzuki, T.: Transfer learningmethod utilizing
ontology for heterogeneousmulti-agent reinforcement learning. Int. J.Adv.Comput. Sci.Appl.
5(10), 156–164 (2014)

12. Taylor, M.E.: Transfer in Reinforcement Learning Domains. Studies in Computational Intel-
ligence, vol. 216. Springer, New York (2009)

13. Boutsioukis, G., Partalas, I., Vlahavas, I.: Transfer Learning in Multi-agent Reinforcement
Learning Domains. Recent Advances in Reinforcement, Learning, pp. 249–260 (2012)

14. Taylor, A., Dusparic, I., Galvn-Lpez, E., Clarke, S., Cahill, V.: Transfer learning in multi-agent
systems through parallel transfer. In: 30th International Conference on Machine Learning
(2013)

15. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hbner,
S.: Ontology-based integration of information—a survey of existing approaches. In: IJCAI-01
Workshop: Ontologies and Information Sharing, pp. 108-117 (2001)

http://dx.doi.org/10.1007/s10846-012-9783-5

Distributed Communication
and Localization Algorithms
for Homogeneous Robotic Swarm

Donghwa Jeong and Kiju Lee

Abstract Swarm robotics aims to achieve physical flexibility, overall system
robustness, and enhanced reliability and efficiency by employing a group of
autonomous robots for collective task performance. Achieving collective perfor-
mance by individual robots with limited sensing, processing, and communication
capabilities, however, faces several technical challenges, such as difficulties in estab-
lishing reliable communication and decentralized control among the robots. This
paper presents the following wireless communication algorithms that can be applied
to homogeneous swarm robots: (1) infrared-based short-distance communication
between the adjacent robots using a self-synchronization technique; and (2) long-
distance communication and localization based on distance measurement using radio
signals. In addition, two decentralized global shape formation algorithms for homo-
geneous swarm robots are presented for simulating dispersion and line formation
collectively achieved by homogeneous swarm robots.

Keywords Swarm robots · Wireless communication network · Global shape
formation · Distributed sensing

1 Introduction

Social insects, such as ants, bees, and termites, exhibit collective behavior by sensing
local information, communicating with each other, and sharing information [1]. For
instance, ants carry food in an optimal path using a pheromone to create a chem-
ical trail followed by other ants [2]. Bees and termites construct complex hives or
caves in a decentralized manner without a global leader [1, 3]. Inspired by such bio-
logical swarm intelligence, robotics researchers have been developing distributed,

D. Jeong · K. Lee (B)
Department of Mechanical and Aerospace Engineering, Case Western
Reserve University, Cleveland 44106, USA
e-mail: kiju.lee@case.edu
URL: http://case.edu/mae/robotics

D. Jeong
e-mail: donghwa.jeong@case.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_28

405

406 D. Jeong and K. Lee

cooperative methods for a group of robots with limited functional capabilities to per-
form tasks that are typically difficult to be achieved by an individual robot. Several
benefits are expected by using swarm robots over a single integrated system, includ-
ing flexibility and accessibility due to the relatively small physical size, robustness
achieved by the overall sustainability, and cost-effective control strategies by employ-
ing distributed control. For example, a couple of broken robots in a robotic swarm
would not affect the overall task performance significantly. Despite these potential
advantages, swarm robotics is also deemed to present several technical challenges
in (a) forming wireless network using a specific type(s) of sensors; (b) establishing
reliable and fast communication among the robots; and (c) controlling the flock of
robots to perform a global task without centralized control.

In an attempt to address the above challenges, this paper presents the distributed
sensing and communication algorithms in homogeneous networked robots with lim-
ited sensing, processing, and communication capabilities. We also present algorithms
for global shape formation (i.e. dispersion and forming a line) to demonstrate global
task performance via wireless communication.

Related Works

One of the primary goals of swarm robotics is to achieve collective task execution
by communicating and collaborating with each other. To do so, the system must
form a communication network among the swarm entities for detecting which robots
are nearby and the distance between them, sending and receiving data among those
within the communication range, and performing a task collectively. The specific task
to be performed may vary depending on the application, but the reliable and efficient
communication and localization capability serves as the fundamental functionality
of the swarm system as a whole.

Ultrasound-, IR-, or RF-based technologies are most commonly used for wireless
communication and localization in swarm robotics. Firstly, ultrasonic-based technol-
ogy requires a pair of ultrasonic transmitter and receiver. For example, the Millibot
system used a sonar sensor with an acoustic reflector for reflecting incoming acoustic
signals toward the ultrasound transducer [4]. An ultrasonic relative positioning sys-
tem with high accuracy of about ±4 mm and a 3 m range was developed for localiza-
tion in multi-robot systems [5, 6]. The experiments on this positioning system were
conducted using only two robots and suffered from echo effects causing poor perfor-
mance when more than two robots were employed in the test. Instead, communication
and localization techniques using IR has several advantages over ultrasonic-based
approaches. Although the ultrasonic-based technology is relatively cheap, the accu-
racy is lower in comparison with IR-based technology. Also, the whole infrastructure
of the IR method is simpler than one for ultrasonic [7]. In addition, interference in
ultrasonic-based communication is often higher than IR-based communication [8].
Alice and E-Puck are the robotic hardware platforms that used IR-based technolo-
gies for robot-to-robot communication [9, 10]. The Alice microrobot is driven by

Distributed Communication and Localization Algorithms … 407

two wheels for locomotion and is equipped with four IR modules for short-range
communication with neighboring robots [9]. E-puck is a hockey puck-like circular
robot driven by two stepper motors for locomotion. E-puck also has eight IR mod-
ules to achieve short-distance communication [10]. Although IR is still the most
commonly used technology for wireless communication in swarm robotics, it has a
significant drawback that IR signals can be easily blocked or interfered with by an
object because of the high directivity.

The methods using radio signals attempt to overcome the limitations of the IR-
based techniques. Radio signals have wider coverage than IR, while the hardware
implementation is still easy and the data-communication link is robust [11–13].
Localization using the RF data is typically achieved by processing the Received Sig-
nal Strength Indicator (RSSI) values, converting this data into physical distances,
and performing triangulation or trilateration for localization [14, 15]. To further
enhance performance on finding the radio source, some studies employed additional
hardware structures, such as antennae, to increase directivity [16, 17]. These studies
showed improved direction sensing achieved by adding a relatively simple hard-
ware structure(s), but neither study was fully validated for a large number of robots.
Unfortunately, radio signals can be easily interfered with by obstacles or redirected
by another antenna in close proximity. Moreover, fast and precise RSSI acquisition
is difficult due to settling time for receiving the data packet. In addition, a small
amount of data requires a large amount of data packets to be transmitted to the other
receiver reliably. In theory, RSSI packets can be sent in less than a millisecond [18].
However, due to the existing problems such as latency, distance from the access
point, and interference, actual transmission time is more than a millisecond. Partic-
ularly, collisions occur during bi-directional communication increases transmission
time in high-speed modules as there is no mutual time coordination. A relevant study
revealed that a transmitter can send only 170–180 packets in 30 s [19].

There exist several communication protocols for establishing a wireless network
using radio or IR, including ZigBee, Bluetooth, Wi-Fi, NFC, and IrDA. Table 1 sum-
marizes these protocols in terms of bandwidth, transmission range, power consump-
tion, network size and type, cost, system complexity, and signal type. NFC (Near
Field Communication) and Bluetooth are considered not suitable for swarm robotics
due to limitations in network size. The Wi-Fi-based approach may be adopted for
a small group of robots with high performance, but it is not desirable for swarm
robotics due to the high system complexity and high cost. IrDA and ZigBee are
widely accepted in swarm robotics because of the low complexity in hardware, rel-
atively easy system implementation, and low power consumption. Despite the small
bandwidths in these protocols, the swarm robots are expected to share only a limited
amount of information through the wireless communication channel and therefore
these protocols can accommodate the needs. Although the network size of IrDA
is only 1, the module size is much smaller while the communication range is much
larger than NFC. Therefore it is suitable for one-to-one communication among swarm
robots.

408 D. Jeong and K. Lee

Table 1 Comparison among different wireless communication protocols in terms of bandwidth,
transmission range, power consumption, network size/type, cost, and system complexity

Properties ZigBee Bluetooth Wi-Fi NFC IrDA

Bandwidth 20, 40, and
250 Kbit/s

<1.0 Mbit/s 11, 54 Mbit/s 424 Kbit/s 20–40, 115
Kbit/s, 4, 16
Mbit/s

Transmission
range

<300 ft <30 ft <300 ft <1 ft <30 ft (line of
sight)

Power
consumption

Very low Medium High Low Low

Network size 32,000 1–7 <10 1 1

Network type Ad-hoc Ad-hoc Point to hub Point to point Point to point

Cost Low Low High High Low

System
complexity

Low Low High High Low

Signal type Radio Radio Radio Radio IR

In swarm robotics, like many other multi-robotic systems, synchronization in com-
munication is one of the most challenging technical problems as it requires mutual
time coordination among the multiple mobile nodes [20, 21]. It becomes particularly
important for small and low-cost robots as they carry a limited amount of energy [21].
One of the commonly used approaches for synchronization involves a specific ref-
erence node generating a logical clock that can be shared among the multiple robots
via wireless network such as radio frequency (RF) [21]. The reference node may
be predesignated or it can be elected by a minimum number of connection nodes
covering all the connected swarms [20]. As another approach, self-synchronization,
or peer-to-peer synchronization without a master, can be realized using a variable-
length source code [22]. However, a common problem with this approach is that
channel errors may cause synchronization slippage.

2 Wireless Network for Communication and Localization

We consider a decentralized system consisting of a group of swarm robots where
each robot has limited sensing capabilities and communication range. An IR-based
method was adopted for synchronization via short-distance communication (≤1 in.)
and an RF-based approach was used for localization and long-distance communica-
tion (≤60 in. for localization and 300 ft for communication). Detailed description on
the developed communication and localization algorithms is provided in this section.

Distributed Communication and Localization Algorithms … 409

2.1 Hybrid Wireless Network Strategy Using IR and RF

Each IR- or RF-based method has its own advantages and disadvantages as
discussed earlier. To establish a reliable and efficient wireless network among a group
of swarm robots, we developed a hybrid algorithm that uses both IR and RF tech-
nologies. The IR-based method is adopted for precise short-distance communication
within less than an inch for synchronization and the RF-based ZigBee technology
is used for localization and long-distance communication as shown in Fig. 1. The
general communication range of ZigBee is up to 300 ft where the range for local-
ization by distance measurement using RSSI is limited to 60 in. Within this range,
a linear relationship between the RSSI data and physical distances is observed [17].
For IR-based communication, we used pairs of an IR emitting diode and a photo-
transistor (QRD1114) instead of commonly used IR data association (IrDA) devices.
These optical IR sensors are cheaper and easier to implement without requiring many
additional hardware components than IrDA devices.

2.2 Self-synchronization via IR-Based Communication

Without a predetermined priority or a master-slave architecture, synchronization is
required to initiate local communication between the robots. Synchronization is com-
monly performed by providing a common timescale for local clocks in the network.
However, every hardware’s clock is imperfect and may drift away from each other
over time. Therefore, observed time or duration of time intervals may differ at each
node in the network. Our algorithm uses an internal clock, transmitted pulses, and
received pulses and compares these three for self-synchronization among the nodes
(i.e. robots). When two robots get close to each other, the IR sensor in each robot
transmits and receives pulses. By comparing these pulses and an internal clock, one
of the robots decides to listen while the other talks. Ideally, for two nodes, A and B,
A should listen while B talks, and vice versa in order to avoid any communication

Fig. 1 Hybrid wireless network scheme: Short-distance communication using IR sensors and long-
distance communication with RF modules: d ≤ 1 in. and R ≤ 60 in. The RF signal can reach up to
300 ft while reliable distance measurement for localization can be made within 60 in. of distance

410 D. Jeong and K. Lee

Fig. 2 Self-synchronization scheme with port A and port B; gray bar is talking bytes while the
white bar indicates listening bytes

conflict and data loss. In general, however, the robots may not be fully synchronized
and both may try to either talk or listen at the same time resulting in deadlocks.
Because there is no priority in the communication order, shifting bits for synchro-
nization in a certain direction is also not deterministic.

As illustrated in Fig. 2, once conflict in communication between A and B is
observed, the talking bytes of A are shortened and synchronized after a couple of
cycles. This bit-shift strategy is performed as follows, for the port A:

IA = [1, 2, 3, . . . , 14, 15, 16, 17, 18, 19, . . . , 30, 31, 32]; (1)

TA = [0, 0, 0, . . . , 0, 0, 0, 1, 1, 1, . . . , 1, 1, 1]; (2)

RA = [∗, ∗, ∗, . . . , ∗, ∗, ∗, ∗, ∗, ∗, . . . , ∗, ∗, ∗] (3)

IA is the 32-bits cyclic bit number index generated by the internal clock, TA is the
transmitted binary data, and RA is the received signal from the other port. The pulse
train from the TA is generated from the IR photo diode according to the bit number
of the IA. When the two ports, A and B, are within the local communication range,
RA receives the data from TB as well as reflected signal from TA. Due to the pull-up
resistors attached to the photo transistors, RA is set as one initially or when no IR
signals received and changes to zero when IR input is detected.

Algorithm 1 shows the pseudo-code for the self-synchronization technique. Shift-
ing either forward or backward can be decided stochastically but can take a long
duration. Every 31st bit of the 32 bits (4 bytes), the binary train moves one step
forward or two steps forward based on the received data. The decision to shift either
forwards or backwards for synchronization can be made stochastically; however, this
process can take a long time. For every 31st bit of the 32 bits (4 bytes), the binary
train moves one step forward or two steps forward based on the received data. If the∑bit8

n=bit1 RA(n) is smaller than the
∑bit16

n=bit9 RA(n), then the pulse train proceeds one
step forward whereas the pulse train moves two steps forward when

∑bit8
n=bit1 RA(n)

is bigger than the
∑bit16

n=bit9 RA(n). Algorithm 1 is implemented in each node so in

Distributed Communication and Localization Algorithms … 411

Algorithm 1 Self Synchronization Technique for IR Sensors
1: while Not synchronized
2: if bit n = 31 then
3: if

∑bit8
bit1 RA(n) <

∑bit16
bit9 RA(n) then

4: bit n ← bit n+1
5: else if

∑bit8
bit1 RA(n) = ∑bit16

bit9 RA(n) and
∑bit16

bit1 RA(n) = 16 then
6: bit n ← bit n+ r and (1,2)
7: else if

∑bit8
bit1 RA(n) = ∑bit16

bit9 RA(n) and
∑bit16

bit1 RA(n) = 0 then
8: Synchronization is done!
9: end if
10: end if
11: bit n ← bit n+1
12: if bit n = 33 then
13: bit n ← bit 1
14: end if
15: end while

the case that A encounters
∑bit8

bit1 RA(n) >
∑bit16

bit9 RA(n), B will encounter
∑bit8

bit1

RB(n) <
∑bit16

bit9 RB(n). In this case, robot B would shift one bit forward and robot
A would not shift. When the two transmitted signals are the same, a random shift
is applied to each port so that it makes partial synchronization. When the synchro-
nization is completed, IR communication data packets are replaced in the last two
bytes of TA. When the synchronization is completed, IR communication data packets
are replaced in the last two bytes of TX . Once the synchronization is completed, the
following two bytes of TX are replaced with the data packets (Fig. 3).

2.3 RF-Based Distance Measurement
Using Bi-directional RSSI

To realize distance measurement in a decentralized manner, we developed a fast and
reliable bi-directional RSSI technique to estimate distance and establish communica-
tion network in swarm robotics. All transceivers are programmed identically without
a master. One common problem in bi-directional communication with high speed is
that each transceiver may keep sending the data even when they collide with each
other. The total time for sending and receiving signal, therefore, include the time for

Fig. 3 IR communication data packets (two bytes of talking)

412 D. Jeong and K. Lee

Fig. 4 ZigBee synchronization after adopting additional receiving period with random delay

CSMA-CA and retrials. To avoid this problem, a simple synchronization method is
developed for the conflicted radio signals. Let A and B be arbitrary wireless trans-
ceivers without priority in between the two. Regardless of which one starts first,
there will be a collision in communication (see Fig. 4). A sends packets consisting
of two payloads: MY (my address), UR (your address). Initial UR is void when syn-
chronization is not accomplished. During a fixed timeout period, each transceiver
receives the packet and checks whether UR is void or filled with a received packet.
If it is void, then the transceiver makes random time delay for receiving a packet and
sending it afterwards. The collision-free bi-directional RSSI collection algorithm is
described in Algorithm 2. The collected RSSI data can then be converted into phys-
ical distances using the log-distance path loss model and processed into position
information via triangulation or trilateration [15].

Algorithm 2 Collision-free Bi-directional RSSI
1: while Not synchronized
2: Send packets
3: Receive packets for timeout
4: Read the first packet and save to packet[0]
5: Read the second packet and save to packet[1]
6: if packet[1] == MY then
7: random delay = 0
8: else if packet[1] == 0 then
9: random delay = random(0 to 50ms)
10: end if
11: end while

2.4 Algorithm Evaluation

The IR self-synchronization algorithm was evaluated by the synchronization time
between two robots. The duration between the times when an IR port of a robot
receives an IR signal from another port and when synchronization is completed was
recorded. Although outliers were detected when two robots were not well aligned,
these outliers were disregarded in this preliminary evaluation as it focuses on test-
ing the algorithm itself by keeping a well-structured condition. With the developed
algorithm with reduced packet length, the frequency of RSSI was increased. In very

Distributed Communication and Localization Algorithms … 413

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

Fr
eq

ue
nc

y
(H

z)

Time (ms)
0 20 40 60

35

40

45

50

55

60

65

70

75

80

85
Fr

eq
ue

nc
y

(H
z)

Distance between two nodes (in)

Fig. 5 Histogram of the self-synchronization time for 50 trials (Mean = 340 ms; SD = 200 ms).
Frequency of measured RSSI by distance

close distance, frequency of updating RSSI recorded 70–80 Hz (Fig. 5). However,
the frequency decreased by the distance. We initially expected the frequency would
be consistent over distance as the radio signal travels with the speed of light, but in
reality, the physical distance affected the frequency of RSSI collection.

3 Distributed Algorithms for Global Shape Formation

To demonstrate collective task execution by swarm robots with limited sensing and
communication capabilities, we considered a group of swarm robots, each equipped
with IR sensors for self-synchronization and a ZigBee module with about 60 in. of
localization range. The swarm robotic system was modeled based on a virtual spring
damper model. Algorithms for dispersion without a leader and line formation with
an interim leader using only the distance estimation among the neighbors.

3.1 Dynamic Model of the Robotic Swarm

Our dynamic model of swarm systems involving multiple agents is based on a virtual
spring damper model. To realize attractive and repulsive forces in a stable manner,
a virtual damper is added to the spring system to suppress the oscillatory motion
of the agents. Modeling dynamic multi-agent systems frequently requires global
optimization by designing objective functions. As the number of agents increases, the
computational cost for optimization increases exponentially. To address this problem,
we used geometric conditions that guarantee global shape formation from geometric
primitives based on the attractive and repulsive forces between the agents.

414 D. Jeong and K. Lee

Fig. 6 Attractive and
repulsive forces between the
nodes are modeled with a
spring and a damper

We consider a dynamic model of collective agents while maintaining connectivity
using attractive and repulsive potential fields based on a mass, spring, and damper
system as shown in Fig. 6. Each node and edge represent an agent and a communica-
tion/sensing/social connection respectively where the spring constant and damping
ratio may be differently defined depending on each application. The mass of each
node may indicate the weight or relative importance of that agent within the group.

Let A1, A2, . . . , An be the agents in two-dimensional space. For the i th agent,
the two-dimensional Cartesian coordinate is denoted by xi = [xi , yi]T . Likewise,
the vector from the i th agent to the j th agent is given by xi j = [xi − x j , yi − y j]T

where ||xi j || = √
(xi − x j)2 + (yi − y j)2. Assuming that the i th agent has a mass,

mi . Then it follows the Newton’s second law: f m
i = mi ẍi where f m

i is the force
at the i th node and xi is the position of i th node. The force exerted by the spring
and damper is described by f k

i = −ki j d i j and f b
i = −bi j ẋi j where ki j is the spring

constant, bi j is the damping coefficient between agent i and neighboring agent j , and
di j is a displacement vector between the two. In this modeling, orientation from the
agent to another agent is uncertain since each agent measures the distances to other
agents only. However, d i j is expressed in a vector form since the sum of multiple
interactions to an agent will force the agent to a certain direction in global coordinate
system. Therefore, the net force acting on the i th agent in the global coordinate can
be derived by above relationships:

f m
i = f k

i + f b
i = −

∑

j∈Mi

(ki j d i j + bi j ẋi j)

where Mi is the number of neighboring agents of the i th agent. The acceleration of the
i th agent is calculated as ẍi = −∑

j∈Mi
(ki j d i j + bi j ẋi j)/mi . In practical control with

a microprocessor, the above equation can be rewritten in a discrete time representation
given by

ẋi [t + 1] − ẋi [t] = −∑
j∈Mi

(ki j d i j + bi j ẋi j [t])
mi

.

Distributed Communication and Localization Algorithms … 415

Fig. 7 Elementary
geometric shapes: a trigonal
planar and b paired line

In case of mi = 1 for all i = 1, . . . , n, the anticipated velocity at t + 1 and position
at t + 2 are given by

ẋi [t + 1] = ẋ[t] −
∑

j∈Mi

(ki j d i j + bi j ẋi j [t])

xi [t + 2] = 2xi [t + 1] − xi [t] −
∑

j∈Mi

(ki j d i j + bi j ẋi j [t]).

3.2 Dispersion and Paired Line-Formation Algorithms

Two algorithms are introduced here: (1) dispersion based on trigonal planar elements
without a leader (Fig. 7a) and (2) line formation using paired line elements using an
interim leader (Fig. 7b). We assume that only the distance data measured from the
RSSI whine the sensing range is available.

Dispersion using trigonal planar elements: Let N be a set of dynamic agents. For
every O ∈ N , label the closest three neighbor agents as A, B, and C . By using the
proposed attractive and repulsive forces, let L O A = L O B = L OC = Ld where Ld is
the desired distance between the agents.

Forming a line using paired line elements: Let N be a set of dynamic agents. For
every O ∈ N , label the closest agent as A. Let L O A = ε and form a pair, (O, A).
Find the nearest pair and label as (B, C). Let L O B = L OC = L AB = L AC . Note that
L O B = L OC for L O A = L BC = ε as ε → 0. When all rectangles are connected to
each other, two ends are designated as interim leaders of the connected chains in
order to stretch the line to opposite directions.

3.3 Simulation Results

MATLAB simulations were performed with 50 agents randomly spread in two-
dimensional space. The simple trigonal elements guarantee dispersion of the agents
and paired line elements guarantees line shape while maintaining connectivity as

416 D. Jeong and K. Lee

Fig. 8 Dispersion based on trigonal planar elements (top), Line formation using paired line elements
(bottom)

Fig. 9 Separated discs and connected disc with different sensing range: a 40 in., b 60 in. with 100
agents

shown in Fig. 8. If the communication range is less than 60 in., it is possible to form
several smaller discs or lines resulting in outliers. Figure 9 shows two simulation
results using two different communication ranges, 40 in. and 60 in.

4 Conclusion and Discussion

This paper presented wireless communication and distance sensing algorithms using
the IR- and RF-based technologies. To realize decentralized communication in swarm
robotics, we presented a self-synchronization technique using IR sensors between
the adjacent robots. An algorithm using bi-directional RSSI achieved distance mea-
surement between two robots. Also, we further presented two decentralized global
shape formation algorithms such as dispersion and forming a line, and showed sim-
ulation results using 50 robots. As briefly discussed in the previous section, there
exist several physical challenges in order to establish reliable IR/RF-based commu-
nication in the swarm robots (e.g. signal interference). Three main challenges are (1)
unreliability of RSSI measurement over a long-distance, (2) interference of the RSSI
signal when there are blocking objects or robots between the two, and (3) accurate

Distributed Communication and Localization Algorithms … 417

localization combining RSSI data and IR communication. These issues may be
resolved by limiting the communication range to the range of reliable RSSI measure-
ment range (up to 60 in.) despite a typical communication range of the XBee module is
300 ft. In addition, by combining the existing physical constraints into signal process,
the faulty RSS data can be filtered out. For instance, if the robot moves up to a certain
speed and the RSSI values measured between a certain time-step indicates a farther
distance, this value may be discarded. Regarding the accurate localization with short
IR coverage and noisy RSSI, dynamically variable IR coverage can be considered
with digital potentiometer to increase the sensing range.

References

1. Bonabeau, E., Theraulaz, G.: Swarm Smarts, pp. 73–79. Scientific American, Inc. (2000)
2. Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the

traveling salesman problem. IEEE Trans. Evol. Comput. 53–66 (2002)
3. Seeley, T.D., Camazine, S., Sneyd, J.: Collective decision-making in honey bees: how colonies

choose among nectar sources. Behav. Ecol. Sociobiol. 28, 277–290 (1991)
4. Navaro-Serment, L.E., Paredis, C.J.J., Khosla, P.K.: A beacon system for the localization of

distributed robotic teams. In: Proceedings of International Conference on Field and Service,
Robotics (1999)

5. Bisson, J., Michaud, F., Letourneau, D.: Relative positioning of mobile robots using ultrasounds.
In: Proceedings of IEEE/RSJ Conference on Intelligent Robots and Systems, pp. 1783–1788
(2003)

6. Rivard, F., Bisson, J., Michaud, F., Letourneau, D.: Ultrasonic relative positioning for multi-
robot systems. In: Proceedings of IEEE International Conference on Robotics and Automation,
pp. 323–328 (2008)

7. Grabowski, R., Khosla, P.: Localization techniques for a team of small robots. In: Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1067–1072
(2001)

8. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small
devices. Pers. Commun. 7(5), 28–34 (2000)

9. Garnier, S., Tache, F., Combe, M., Grimal, A., Theraulaz, G.: Alice in pheromone land: an
experimental setup for the study of ant-like robots. In: Swarm Intelligence Symposium, pp.
37–44 (2007)

10. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. IEEE ICARSC
1(1), 59–65 (2009)

11. Lorincz, K., Welsh, M.: Motetrack: a robust, decentralized approach to RF-based location
tracking. In: Location-and Context-Awareness, pp. 63–82 (2005)

12. Mondada, F., Franzi, E., Guignard, A.: The development of Khepera. In: Experiments with the
Mini-Robot Khepera, Proceedings of the First International Khepera Workshop, No. LSRO-
CONF-2006-060, pp. 7–14 (2006)

13. Dantu, K., Rahimi, M., Shah, H., Babel, S., Dhariwal, A., Sukhatme, G.S.: Robomote: enabling
mobility in sensor networks. In: Proceedings of the 4th International Symposium on Information
Processing in Sensor Networks, pp. 55 (2005)

14. Benkic, K., et al.: Using RSSI value for distance estimation in wireless sensor networks based
on ZigBee. In: IWSSIP, pp. 303–306 (2008)

15. Seybold, J.S.: Introduction to RF Propagation. Wiley Interscience, New York (2005)
16. Kim, M., Chong, N.Y.: Direction sensing RFID reader for mobile robot navigation. IEEE Trans.

Autom. Sci. Eng. 6, 44–54 (2009)

418 D. Jeong and K. Lee

17. Jeong, D., Lee, K.: Directional RSS-based localization of multi-robot applications. In: 12th
WSEAS, Cambridge, UK, Feb 2013

18. Pugh, J., Raemy, X., Falconi, R., Martinoli, A.: A fast on-board relative positioning module
for multi-robot systems. IEEE Trans. Mechatron. 14(2), 151–162 (2009)

19. Awad, A., Frunzke, T., Dressler, F.: Adaptive distance estimation and localization in WSN
using RSSI measures. In: 10th Euromicro Conference on Digital System Design Architectures,
Methods and Tools, pp. 471–478 (2007)

20. Khaluf, Y., Micus, S., Weiss, F.: Master election for time synchronization in swarm robotic
systems. In: 10th International Symposium on Parallel and Distributed Processing with Appli-
cations, pp. 285–292 (2012)

21. Elson, J., Girod, L., Estrin, D.: Fine-grained network time synchronization using reference
broadcasts. In: OSDI’02, vol. 36, pp. 147–163 (2002)

22. Lam, W.M., Reibman, A.R.: Self-synchronizing variable-length codes for image transmission.
In: IEEE ICASSP, pp. 477–480 (1992)

Distributed Co-optimisation of Throughput
for Mobile Sensor Networks

Trung Dung Ngo

Abstract We study the problems of throughput optimisation of mobile sensor
networks. A network ofmobile sensor nodes equippedwith limited sensing and com-
munication capabilities for connectivity maintenance and measurement of quality of
communication links with the nearest neighbours is deployed to exploit and collect
environmental data. Communication throughput of the multi-hop ad-hoc network of
mobile sensor nodes ismaximised for fast and reliable data transmission from sources
to destinations. We propose a method of designing the distributed control for mobile
sensor nodes for throughput optimisation in two stages: (1) position-aware optimi-
sation and (2) communication-aware optimisation. We demonstrate effectiveness of
the method through Monte-Carlo simulation based statistical results.

Keywords Mobile sensor networks · Throughput · Distributed co-optimisation ·
Communication-aware optimisation · Position-aware optimisation

1 Introduction

Mobile sensor networks have recently received significant attentions due to their
potential applications. This new research field is roughly considered as the inter-
section of the two well established fields, wireless sensor networks and multi-robot
systems, but enriched with diversification of integrating sensing awareness, commu-
nication awareness into mobility control for mobile sensor nodes in order to enhance
system performances.

A mobile wireless sensor network of mobile sensors obtains several advantages
over a traditional wireless sensor network due to controllable mobility of mobile
sensors. For instances, a small number of mobile sensors can cooperatively navi-
gate to explore and cover large hazardous environmental areas, detect and exploit

T.D. Ngo (B)
The More Than One Robotics Laboratory, Faculty of Science,
University of Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
e-mail: dungnt@ieee.org
URL:http://www.morelab.org

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_29

419

420 T. D. Ngo

environmental data with various equipped sensors, and transmit exploited data to
human operators using amulti-hop network ofmobile relays. However, we encounter
more challenges when deploying and managing a mobile sensor network rather than
a transitional wireless sensor network due to spatio-temporal dynamics of mobile
sensor nodes, i.e., connectivity maintenance, network topology, data transmission.
On the other hand, typical aspects of communication networks, such as commu-
nication channels, routing protocols, quality of services have not often considered
as research problems in multi-robot systems, instead it is assumed as being avail-
able for facilitating the development of various applications, i.e., coordinative explo-
ration, cooperative coverage, collaborative environmental patrolling andmonitoring.
Connectivitymaintenance/preservation—the concept oftenmentioned inmulti-robot
systems—is mostly considered in terms of sensing connectivities rather communi-
cation connectivities (communication links), and its roles in guaranteeing quality
of data communication in a multi-hop network of mobile nodes used to facilitate
many applications of networked robotic systems has been not significantly studied.
Nevertheless, the quality of communication links is the key element to guarantee
inter-communication among sensor agents for their cooperative, coordinative, and
collaborative operations. In this paper, we address comprehensive understanding of
how to integrate advantageous properties of wireless sensor networks, i.e., commu-
nication awareness, and multi-robot systems, i.e., localisation awareness, to enhance
the system performance in terms of communication throughput.

1.1 Literature Review

Graph theoretic network: graph theory is widely utilised as an useful tool to model
networked systems including wireless sensor network and networked robotic sys-
tems. Agents (either robotic or sensor agents) and their connectivities in a networked
system are mathematically modelled by nodes and edges of either directed or undi-
rected graph. The Laplacian matrix-based algebraic connectivity is often used to
check the global connectivity of the network. Coordinative and cooperative opera-
tions of networked systems can be modelled, controlled, and optimised using graph
theories and properties [1–5]. However, the primary drawback of representing a
multi-agent network in graph theory is that the second smallest eigenvalue—the
Fielder value—of the Laplacian matrix is not differentiable so that it is not possi-
ble to design feedback control for connectivity maintenance. Connectivity of pairs
of agents is therefore equipped with either linear [6] or non-linear weights [2] that
works as potential functions to facilitate the feedback control design and stability
validation [7–10].

Artificial potential field: the artificial potential field, coined out by Khatib [11],
is the well-known method developing artificial potential force-based control by syn-
thesising attractive and repulsive forces. This method is purely based on the local

Distributed Co-optimisation of Throughput … 421

sensing and perception of mobile agents about their peers and environments to drive
the mobile robots towards the goal without colliding with obstacles. The artificial
potential field method has been extended to develop decentralised mobility control
for mobile agents in multi-agent systems (including multi-robot systems and mobile
sensor networks) [3, 12–17].

Mobility in wireless networks: Research on impacts of mobility in wireless net-
works has been traditionally investigated along the other known wireless communi-
cation issues causing reduction of quality of communication services i.e., multi-path
falling, shadowing, interferences, andDoppler phenomenon. In contrast,mobility has
been increasingly considered as an impact factor enhancing usabilities of wireless
networks [18–23].

1.2 Motivation

In the real-world applications, a mobile wireless sensor network is deployed into an
unknown environment for exploration and environmental data exploitation through
two stages: network deployment, and network utilisation. In the first stage, the wire-
less network of mobile sensors is sent into the environment to self-organise a multi-
hop network used to transfer exploited data to human operators. In the second stage,
once the multi-hop wireless network is established through interconnected mobile
sensor nodes, communication throughput of the network should be maximised for
faster and more reliable data transmission from sources to destinations. Controllable
mobility of mobile nodes can be utilised to improve the communication through-
put of the wireless ad-hoc network. However, this research direction has not been
significantly studied, to the best of our knowledge.

In the scope of this paper, we assume that the first stage of the network deployment
has been done since mobile sensor nodes have been deployed in the environment.We
primarily consider the second stage of the network utilisation with an emphasis on
throughput optimisation of mobile sensor networks by incorporating two distributed
optimisation techniques: position-aware optimisation and communication-aware
optimisation. Specifically, the distributed co-optimisation is developed by integrat-
ing advantages of artificial potential fields maintaining sensing and communication
connectivities of mobile sensor nodes, and theMax-Flow-Min-Cut graph theory rep-
resenting communication capacity and information flows of communication links.

1.3 Contributions of This Paper

This paper provides a novel method of distributed co-optimisation of throughput for
mobile sensor networks. The contributions can be seen in twofolds:

422 T. D. Ngo

• Enforcing two research fields, wireless sensor networks and multi-robot systems,
closer by integrating advantages of artificial potential force field and the Max-
Flow Min-Cut graph theorem to design the distributed control of mobile sensors
for throughput optimisation.

• Realising a method of distributed co-optimisation—an event-triggered optimi-
sation—based on information flows between mobile sensor notes. This method is
fully distributed, allowing a mobile sensor network to enhance its convergence,
adaptability, and scalability.

1.4 Paper Outline

The rest of this paper is organised as follows. A short tutorial on graph-theoretic
network model of the Max-Flow Min-Cut theorem is described in Sect. 2. Prelim-
inaries of research statement and motivation are in Sect. 3. Detailed description of
distributed co-optimisation method consisting of position-aware optimisation and
communication-aware optimisation is explained in Sect. 4. Monte-Carlo simulation
based statistical results are shown and discussed in Sect. 5. We conclude this paper
with future research directions in Sect. 6.

2 Graph-Based Network Model—A Short Tutorial

A graph G(V, E) is employed to describe a multi-hop wireless ad-hoc network of
mobile sensor nodes. V is defined as collection of mobile sensor nodes while E is
denoted for the set of peer-to-peer communication links between them. V is divided
in three groups: sources S—sending data packets, sinks T—receiving data packets,
and routers R—relaying data packets from a source to a destination, where S and T
must be non-empty. Each edge e(vi , v j) ∈ E represents a communication link with a
nonnegative capacity c(vi , v j) ≥ 0. Actual data flow f (vi , v j) between two mobile
nodes vi and v j must be less than capacity of the communication link, f (vi , v j) ≤
c(vi , v j) for every v ∈ V \{s, t}. On a node r ∈ R, inflow data must be equal to
outflow data, fi (r) = fo(r), where inflow fi (r) is the sum of incoming data into
the node while outflow fo(r) is the total data coming out from such a node. Data
packets can be transferred from a source s ∈ S to a destination t ∈ T through either
single or multiple communication channels in the wireless ad-hoc network of mobile
nodes. The value of a flow f , denoted val(f), from a source s is the amount of data
sending out from a source s to a sink t : val(f) = ∑

v∈V f (s, t). Maximum flow,
denoted f max , is the maximum network flow: val(f max) ≥ val(f),∀ f . A cut is
a group of edges connecting a group of sources Vs and a group of destinations Vt

through a number of relay nodes Vr ∈ V . Capacity of a cut is the total capacity of
communication links on the cut, c(Vs, Vt).Minimum cut, denoted cmin(Vs, Vt), of the
network is the minimum total capacity of the set of communication links involved
in the cut.

Distributed Co-optimisation of Throughput … 423

Bottlenecks of a network are where communication links with maximum flows
are existing. According to the Max-Flow Min-Cut graph theorem [24], maximum
flows are minimum cuts so that we can search for minimum cuts, instead maximum
flows, to find bottlenecks of a network. The residual graph, G(V, E) : c f (e j , ei) =
c(ei , e j) − f (ei , e j) is used to check whether an augmenting path exists in the resid-
ual graph G(V, E) connecting a source S to a destination T . No existence of augment-
ing path in the residual graph guarantees that the network is at maximum flow. Note
that, if the network has more than one source (destination), a super-source (super-
destination) connectingwith all sources (all destinations) by edges of infinity capacity
is required for generating the residual graph.

3 Preliminaries and Problem Statement

3.1 Relative Localisation and Communication Capacity

We consider a kind of wireless networks of mobile sensor nodes communicating
each other in the peer-to-peer fashion. The network is deployed into an unknown
environment for fast exploration, monitoring, patrolling, and data collection. The
mobile sensor nodes automatically navigate to explore in the environment while
preserving connectivities with their neighbouring peers. Mobile sensor nodes are
capable of self-organising a multi-hop wireless network for information exchange.
A node becomes a source if it transfers environment-exploited data through the
self-organising network of mobile routers—working as relays of the network—to a
destination. Data packets are delivered through either single or multiple communi-
cation channels of the wireless network before reaching the destination. Therefore,
communication throughput of such channels is expectedly maximised for faster and
more reliable data transmission.

Weassume that themobile sensor nodes are equippedwith ranging sensors that can
sense and measure the relative distance to other sensor nodes and obstacles within its
local vicinity for their manoeuvrability. Without loss of generality, we presume that
the communication range is longer than the sensing range for all mobile sensors so
that two sensor nodes can communicate well if they are mutually within their sensing
range. In other words, communication connectivity can be identified through sensing
connectivity. According to the principle of path-loss of signal propagation (without
considering effectiveness of multi-path fading and shadowing as explained in [25,
26]), capacity of a communication link established by two mobile sensor nodes is
inversely proportional to their relative distance so that capacity of a communication
link of two mobile sensor nodes increases if such mobile sensor nodes manoeuvre
towards each other. However, this principle can not apply for the actual information
flow because it depends on usage of such a communication link in the network—a
communication link is established between two nodes but no actual information is
delivered throughout this link due to routing protocols.

424 T. D. Ngo

Relative localisation of the mobile sensor nodes can be identified through esti-
mation of relative distance and relative bearing extracted by the ranging sensors.
Artificial potential force field (APF) coined out in [11] is the popular method main-
taining relative localisation of mobile sensor nodes by the trade-off of attractive
forces pulling the nodes closer and repulse forces pushing the nodes away. Artifi-
cial Physics-based potential force field introduced in [14] is a simple but efficient
method for preserving sensing connectivities of mobile sensor nodes using a combi-
nation of relative distance and relative bearing. However, the Artificial Physics-based
mobility control might not directly optimise communication throughput of the net-
work because this mobility control is not aware of capacity and information flow of
communication links. Note that the Artificial Physics-based mobility control might
implicitly improve capacity of communication links since the potential forces drive
mobile sensor nodes to equilibrium positioning among their neighbouring nodes.

Communication-aware mobility control on a sensor node is expected to relocate
the node to appropriate positioning among their nearest neighbours where they con-
tribute better to the network throughput. To do so, this sensor node must be aware of
its relative localisation and capacity and information flow of communication links
made with its nearest neighbours. However, on one hand, measures of capacity and
actual information flow of communication links are not sufficient enough to design
the mobility control of mobile sensor nodes due to lacking information of relative
localisation because most of communication mechanisms used for wireless sensor
networks is a kind of unidirectional signal propagation. On the other hand, sensing-
based relative localisation is not sufficient enough to design mobility control of
mobile sensor nodes for throughput optimisation as this control is not aware of
capacity and information flow of communication links. As a result, we synthesise
sensing-based relative localisation and measures of capacity and information flows
of communication links to design the distributed mobility control of mobile sensor
nodes that is capable of improving the network throughput.

3.2 Shortcomings of the Max-Flow Min-Cut Theorem
in Distributed Schemes

TheMax-FlowMin-Cut theorem cannot be directly applied to search for bottlenecks
of a mobile sensor network due to the following shortcomings: (1) information of
the entire network about the nodes and communication links must be determinis-
tic; (2) computational complexity is high according to the centralisation scheme;
(3) a super-source(-destination) is required if more than one communication channel
exist. Indeed, in the Max-Flow-Min-Cut theorem [24], maximum flows are identified
through capacity of minimum cuts, f max (Vs, Vt) = cmin(Vs, Vt), in a network, so
that we can search for minimum cuts instead maximum flows in a multi-hop wireless
network of mobile routers. However, to search for minimum cuts of a graph repre-
senting a network of mobile sensor nodes using the Max-FlowMin-Cut theorem, the

Distributed Co-optimisation of Throughput … 425

database of all the nodes and their communicational links must be deterministic for
any heuristic searching algorithms applied for finding an augmenting path. That is,
all the mobile nodes must exchange information about communication capacity and
information flows of their communication links through the entire network, which is
usually not applicable to wireless networks of mobile sensor nodes due to dynamic
changes in terms of relative localisation and communication link capacity.Moreover,
if multiple sources (destinations) exist, a virtual super source (destination) must be
created and all sources (sinks) are connected to this super source (destination) with
∞ capacity of communication links to make a multi-commodity source (destina-
tion) for augmenting path algorithms, which is not often implementable for wireless
networks in the real world. Computational complexity of the Max-Flow Min-Cut
theorem is dependent to number of nodes and communication links in the network,
i.e., Ford-Fulkerson algorithm O(E | f |), Edmonds-Karp algorithm O(V E2), Dinitz
blocking flow algorithm O(V 2E), as so the more nodes and communication, the
higher computational cost. As a result, a large-scale network of mobile sensor nodes
is not scalable to number of nodes as the sensor nodes encounter highly computa-
tional cost while a part of network bandwidth is reserved for transferring updating
information of communication capacity of communication links and actual informa-
tion flows from all other sensor nodes to every node for its operations of searching
for minimum cuts of the network.

4 Distributed Co-optimisation

The great advantage of the Max-Flow Min-Cut theorem is to find bottlenecks—
minimum cuts—of a graph-modelled network. Without this algorithm, we cannot
find minimum cuts where the mobile sensor nodes should move towards in order
for increasing capacity of the existing communication links. However, to employ
the Max-Flow Min-Cut algorithm for throughput optimisation of mobile sensor net-
works, we encounter the limitations which are not feasible in distributed schemes as
explained in Sect. 3.2.

We propose a distributed co-optimisation that decentralises the Max-Flow Min-
Cut theorem by searching for possible minimum cuts, where there highly possibly
exist saturated communication links, f (vi , v j) ≤ c(vi , v j). The mobile sensor nodes
are capable of estimating possible minimum cuts by measuring differential between
capacity and information flow of communication links made with their neighbour-
ing nodes, c(vi , v j) − f (vi , v j). Such nodes also need to identify relative directions
of possible minimum cuts and maintain relative localisation (relative distance and
relative bearing) with their neighbouring nodes through the Artificial Physics-based
potential forces. As a result, we synthesise capacity and information flows of com-
munication links and the Artificial Physics-governed relative localisation to develop

426 T. D. Ngo

a distributed mobility control of mobile sensor nodes for throughput optimisation as
seen in (1):

Fdco(vi) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

v j ∈N (vi)

f (vi , v j)

ε + (c(vi , v j) − f (vi , v j))
∗

−−→
FAP (vi , v j)

‖ −−→
FAP (vi , v j) ‖

if f (vi , v j)
= 0

∑

v j ∈N (vi)

−−→
FAP (vi , v j) if f (vi , v j) = 0

(1)

where c(vi , v j) and f (vi , v j) is the capacity and information flow of communication
link e(vi , v j) made by the sensor node vi with its neighbouring nodes, v j ∈ N (vi),

respectively;
−−→
FAP(vi , v j) = G∗m(vi)∗m(v j)

r2 is the Artificial-Physics-based potential
force between the sensor node vi and its neighbouring nodes, v j ∈ N (vi), in which r
is the relative distance between i and j and the gravitational constant G is arbitrarily
chosen; ε is arbitrarily chosen as small as possible, ε � ∑

v j ∈N (vi)
c(vi , v j), to avoid

the case of fully saturated communication links, c(vi , v j) = f (vi , v j), ∀v j ∈ N (vi).
All the mobile sensor nodes with the distribtued mobility control described in (1)

operate in two stages:

• Position-Aware Optimisation: If no information flow is detected by the mobile
sensor node, it only uses the Artificial Physics-based potential forces to maintain
connectivities with their neighbouring nodes, which might indirectly impact on
improvement of capacity of communication links leading to better throughput.

Fpao(vi) =
∑

v j ∈N (vi)

−−→
FAP(vi , v j) if f (vi , v j) = 0 (2)

• Communication-Aware Optimisation: If information flows are detected by the
mobile sensor node, it uses possible minimum cut based potential force Fcao to
navigate towards the neighbouring node involved in theminimum cut with themost
saturated communication links in order for gaining capacity of communication
links leading to better throughput (Fig. 1).

Fcao(vi) =
∑

v j ∈N (vi)

f (vi , v j)

ε + (c(vi , v j) − f (vi , v j))
∗

−−→
FAP(vi , v j)

‖ −−→
FAP(vi , v j) ‖

if f (vi , v j)
= 0

(3)

5 Monte-Carlo Simulations and Discussions

5.1 Experiment Setup and Performance Metrics:

TheMonte-Carlo simulation method is applied to generate randomised experimental
scenarios. A typical scenario with three stationary base stations operated as sources

Distributed Co-optimisation of Throughput … 427

Fig. 1 Distributed co-optimisation for mobile sensor networks—information flow triggered
optimisation—in two stages: if the information flows are detected, the communication-aware opti-
misation is activated to relocatemobile sensor nodes to new positionswith better throughput through
Eq.3; if information flows are not detected, the position-aware optimisation is used to preserve the
communication connectivities among the sensor nodes, which might implicitly improve throughput
through Eq.2

Fig. 2 The experimental scenario with three stationary base stations (LHS) stationary base stations,
(RHS) randomlyplacedmobile robots.aThree stationarybase stations.b15 randomlyplaced sensor
nodes

and destinations are created as seen in Fig. 2a. We have applied the Gaussian random
distribution to place the sensor nodes into the experimental scenario as an example
illustrated in Fig. 2b. The generated scenarios are selected for experiments if three
base stations arewell connected through an ad-hocwireless network ofmobile sensor
nodes. For each experiment, we executed 10000 simulation steps to measure the
network throughput between the base stations. The statistical results shown in Fig. 3
were collected from 100 randomised scenarios.

We propose four key performance metrics to evaluate the developed distributed
co-optimisation algorithm:

• Optimality: how much is the network throughout of the mobile wireless sensor
network gained over time?

• Adaptability: is the network throughput adaptable to incremental number of sen-
sor nodes added into the network?

• Convergence: how fast does the network throughput converge to a steady state?
• Scalability: does computational complexity of sensor nodes increase to infinity if
the number of sensor nodes added into the network increases to infinity?

428 T. D. Ngo

Fig. 3 The Monte-Carlo
simulation based statistical
results of 3 stationary base
stations. a 10 sensor nodes
b 15 sensor nodes c 20
sensor nodes

Distributed Co-optimisation of Throughput … 429

Fig. 4 Statistical results of random scenarios with the number of sensor nodes increased from
9 to 20

5.2 Results and Discussions

Based on the statistical results, we discuss on the key performance metrics of the
distributed co-optimisation algorithm.

Optimality: Looking at the statistical results shown in Figs. 3 and 4, the network
throughput is improved at all cases, which affirms that the distributed co-optimisation
algorithm is capable of locally optimising the overall network throughout of mobile
sensor networks.

Adaptability: The statistical results shown in Figs. 3 and 4 show that the network
throughput ofmobile sensor networks is gainedwith the improvement rate from 15 to
50% approximately when the number of sensor nodes used in the network increases
from 10 to 20 nodes. It is proved that the distributed co-optimisation adaptively deals
with the number of sensor nodes used in the network.

Convergence: Looking into the statistical results of the network throughput in
Fig. 3, the distributed co-optimisation algorithm enables the network throughput of
mobile sensor networks converge to a steady state after 5000 running steps approxi-
mately in all cases. Convergence is one of the most important issues of mobile sensor
networks because the sensor nodes no longer need to consume energy for their mobil-
ity control, and the communication channels become stable for data transmission
between the base stations.

Scalability: Supposing that we use a centralisation method, i.e., Ford-Fulkerson
algorithm,Edmonds-Karp, orDinitz blockingflowalgorithm, to search forminimum-

430 T. D. Ngo

cuts, a sensor node must collect all information about capacity of communication
links and information flows from the other sensor nodes through the network com-
munication. This leads to dramatically increased computational cost on every sensor
nodes i.e., Ford-Fulkerson algorithm O(E | f |), Edmonds-Karp algorithm O(V E2),
Dinitz blocking flow algorithm O(V 2E) as well as an substantial amount of the
network bandwidth reserved for updating such information (depending the number
of sensor nodes deployed in the network). Applying the distributed co-optimisation
algorithm, each mobile sensor node only uses its local information of information
flows and capacity of communication links made with its nearest neighbours, as so
no network bandwidth is reserved for updating such information of the network.
Moreover, the computational complexity of mobile sensor nodes is almost constant,
O(1), as it is only dependant to the number of its nearest neighbours which is usually
a small number in the real world.

Overall, the distributed co-optimisation method is reliably practical in the real-
world applications because it enables mobile sensor networks to be adaptable in
dynamic environments where communication links of mobile sensor nodes do not
often last long due tomobility ofmobile sensor nodes and uncertainty of environmen-
tal conditions, and scalable with the number of sensor nodes according to applicable
requirements.

6 Conclusions and Future Directions

We have addressed the problems of throughput optimisation in mobile sensor net-
works. The distributed co-optimisation algorithm used to control mobility of mobile
sensor nodes for throughput optimisation is developed by cross-fertilising advan-
tages of the artificial potential force field and the Max-FlowMin-Cut graph theorem.
The concept possible minimum-cuts is proposed as the key factor to optimise the
throughput using the distributed optimisation algorithm. Through the Monte-Carlo
simulations, we have proved that the developed algorithm have achieved all the four
performance metrics: optimality, adaptability, scalability, and convergence.

In the near future, we are going to work on realistic communication models of
communication links with considerations of multi-path fading, shadowing, and inter-
ferences as discussed in [26, 27] and even delay models of mobile relays before we
call back this distributed co-optimisation method to validate system performances.
We believe that network throughput might vary according to new parameters intro-
ducted, but this distributed optimisation method is highly applicable due to its sys-
tematic characteristics in terms of adaptability, scalability and convergence.

Acknowledgments This research was supported in part by the University Research Grant (UBD/
PNC2/2/RG/1(259)).

Distributed Co-optimisation of Throughput … 431

References

1. Tanner, H., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part I: fixed topology.
In: IEEE Conference on Decision and Control, pp. 2010–2015 (2003)

2. Tanner, H.G., Jadbabaie, A., Pappas, G.J.: Stable flocking of mobile agents, part II: dynamic
topology. In: IEEE Conference On Decision And Control, pp. 2016–2021 (2003)

3. Kim, D.H., Wang, H., Shin, S.: Decentralized control of autonomous swarm systems using
artificial potential functions: analytical design guidelines. J. Intell. Robotic Syst. 45(4), 369–
394 (2006)

4. Ji, M., Egerstedt, M.: Distributed coordination control of multiagent systems while preserving
connectedness. IEEE Trans. Robot. 23(4), 693–703 (2007)

5. Olfati-Saber, R., Murray, R.M.: Consensus problems in networks of agents with switching
topology and time-delays. IEEE Trans. Automat. Control 49(9), 1520–1533 (2004)

6. Olfati-saber, R.: Flocking formulti-agent dynamic systems: algorithms and theory. IEEETrans.
Autom. Control 51, 401–420 (2006)

7. Dimarogonas, D.V., Kyriakopoulos, K.J.: Connectedness preserving distributed swarm aggre-
gation for multiple kinematic robots. IEEE Trans. Robot. 24(5), 1213–1223 (2008)

8. Stump, E., Jadbabaie, A., Kumar, V.: Connectivity management in mobile robot teams. In:
ICRA, pp. 1525–1530 (2008)

9. Schwager, M., Rus, D., Slotine, J.J.: Unifying geometric, probabilistic, and potential field
approaches to multi-robot deployment. Int. J. Robot. Res. 30(3), 371–383 (2011)

10. Tu, Z., Wang, Q., Qi, H., Shen, Y.: Flocking based distributed self-deployment algorithms in
mobile sensor networks. J. Parallel Distrib. Comput. 72(3), 437–449 (2012)

11. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot.
Res. 5(1), 90–98 (1986)

12. Elkaim, G.H., Kelbley, R.J.: Extension of a lightweight formation control methodology to
groups of autonomous vehicles. In: ISAIRAS. Muchen (2005)

13. Reif, J.H., Wang, H.: Social potential fields: A distributed behavioral control for autonomous
robots. Robot. Auton. Syst. (1999)

14. Spears, D.F., Hamann, J.C., Heil, R.: Distributed, physics-based control of swarms of vehicles.
Auton. Robots 17, 137–162 (2004)

15. Ge, S.S., Fua, C.H.: Queues and artificial potential trenches for multi-robot formations. IEEE
Trans. Robot. 21(4), 646–656 (2005)

16. Andrew Howard, M.J.M., Sukhatme, G.S.: Mobile sensor network deployment using potential
fields: A distributed, scalable solution to the area coverage problem. In: Proceedings of the
International Symposium on Distributed Autonomous Robotic Systems, pp. 299–308 (2002)

17. Mikkelsen, S.B., Jespersen, R., Ngo, T.D.: Probabilistic communication based potential force
for robot formations: a practical approach. In: DARS, pp. 243–253 (2010)

18. Grossglauser, M., Tse, D.N.C.: Mobility increases the capacity of ad hoc wireless networks.
IEEE/ACM Trans. Netw. 10(4), 477–486 (2002)

19. de Moraes, R.M., Sadjadpour, H.R., Garcia-Luna-Aceves, J.J.: Mobility-capacity-delay trade-
off in wireless ad hoc networks. Ad Hoc Netw. 4(5), 607–620 (2006)

20. Mostofi, Y.: Decentralized communication-aware motion planning in mobile networks: an
information-gain approach. J. Intell. Robot. Syst. 56(1–2), 233–256 (2009)

21. Ngo, T.D.: Linkmind: link optimization in swarming mobile sensor networks. Sensors 11(8),
8180–8202 (2011)

22. Seol, J.Y., Kim, S.L.: Node mobility and capacity in wireless controllable ad hoc networks.
Comput. Commun. 35(11), 1345–1354 (2012)

23. Natalizio, E., Loscrì, V.: Controlled mobility in mobile sensor networks: advantages, issues
and challenges. Telecommun. Syst. 52(4), 2411–2418 (2013)

24. Ford, L., Fulkerson, D.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)
25. Haenggi, M.: Analysis and design of diversity schemes for ad hoc wireless networks. IEEE J.

Sel. Areas Commun. 23(1), 19–27 (2005)

432 T. D. Ngo

26. Liu, X., Haenggi, M.: Throughput analysis of fading sensor networks with regular and random
topologies. EURASIP J. Wirel. Commun. Netw. 2005(4), 554–564 (2005)

27. Fida, A., Iqbal, M., Ngo, T.D.: Communication—and position-aware reconfigurable route opti-
mization in large-scale mobile sensor networks. EURASIP J. Wirel. Commun. Netw. 2014,
207 (2014)

Detection and Notification of Failures
in Distributed Component-Based Robot
Applications Using Blackboard Architecture

Michael Shin, Taeghyun Kang and Sunghoon Kim

Abstract This paper describes detection and notification of component failures
in distributed component-based robot applications using the blackboard architec-
ture. The blackboard architecture monitors each component of robot applications in
order to detect component failures at runtime and it identifies the causes of failures.
Using the dependency relationships between components, the blackboard architec-
ture performs impact analysis between components so that it determines the scope
of failure notification in the components of a distributed robot application. The noti-
fication messages delivered to components can trigger actions against the failures
if robot application developers have implemented the actions along with applica-
tion functions. The prototype of blackboard architecture has been implemented for
the Microsoft Robotics Developer Studio (MSRDS) environment, and it has been
applied to the Unmanned Ground Vehicle (UGV) application implemented on the
simulator as a case study.

Keywords Detection ·Notification · Blackboard architecture · Robot component ·
Impact analysis

M. Shin (B)
Department of Computer Science, Texas Tech University, Lubbock, TX, USA
e-mail: michael.shin@ttu.edu

T. Kang
Department of Computer Science, Wake Forest University, Winston-salem, NC, USA
e-mail: kangth@wfu.edu

S. Kim
Intelligent Robot Control Research, Electronics and Telecommunications
Research Institute, Daejeon, Republic of Korea
e-mail: saint@etri.re.kr

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_30

433

434 M. Shin et al.

1 Introduction

As robots are getting used in various application areas, more and more distributed
robot applications are increasingly built with robot components. A robot component
is a software unit that is functionally modularized and self-contained, that is, it can
be compiled, instantiated, and linked separately into a distributed robot application
[1]. Mission-critical, safety-critical, or business-critical robot applications, such as
an unmanned ground vehicle (UGV) application, are being built with robot com-
ponents for several advantages—abstraction, reusability, and maintainability. Also,
component-based robot application development can reduce the cost and delivery
time to market [2].

In spite of the advantages of robot components, distributed component-based
robot applications [3, 4] need to be resilient against runtime failures, such as unan-
ticipated sensor failures or periodic data failures. Unlike traditional industrial robots,
distributed robot applications for intelligent robots should run under uncertain and
dynamic environment and, in many cases, without human intervention. It is well
known that runtime failures arising from robot components may not be discovered
until all the components of an application are deployed together.

Several frameworks and platforms [5–13] have been proposed to develop
robot applications using robot components in a systematic manner. Some of these
approaches may provide the mechanisms for handling low level faults. However,
the approaches to supporting component-based robot applications do not address
detection of runtime component failures and notification of those to the associated
components of robot applications. It is necessary for an approach to managing run-
time component failures so that the distributed component-based robot applications
are resilient to failures.

This paper describes an approach for detection and notification of robot com-
ponent failures to the associated components of robot applications using the black-
board architecture. The blackboard architecture monitors each component of robot
applications in order to detect component failures at runtime. Once the blackboard
architecture detects a failure, it notifies the failure to the associated components. The
proposed approach enables robot application developers to implement the actions
against each failure, which can make the application resilient to the failures. The
prototype of blackboard architecture has been developed for the Microsoft Robotics
Developer Studio (MSRDS) environment, and it has been applied to the Unmanned
Ground Vehicle (UGV) application implemented on the MSRDS simulator.

2 Blackboard Architecture

Figure1 depicts the blackboard architecture that manages failures in component-
based robot applications. The blackboard architecture is structured to failure/recovery
monitor, failure/recovery notifier, and failure/recovery repository.

Detection and Notification of Failures in Distributed Component-Based Robot … 435

Robot
Applications

Blackboard

Component-based
Robot Software

Fig. 1 Blackboard architecture

• Failure/Recovery Monitor. The blackboard architecture monitors components of
robot applications and detects the runtime failures of components. The typical
features of robot applications are sensor and actuator interaction, periodic data
handling, real-time response to sensor inputs, and communication between dis-
tributed robot components. The blackboard architecture is capable of monitoring
and detecting the failures of these features at runtime, analyzing them to find out
which component is the cause of the failures. Also, the blackboard architecture
can recognize the recovery of failed components.

• Failure/Recovery Notifier. The blackboard architecture provides notification mes-
sages to the components associated with a component failure. For this, the black-
board architecture maintains the dependency relationships between components
of each application, performing failure impact analysis in order to determine the
scope of notification. The notificationmessages delivered to components may trig-
ger the failure handling actions automatically if robot application developers have
implemented the actions in the components. In addition, if a failure is recovered,
the blackboard architecture updates the components associated with the recovery
so that the components resume their failed services.

• Failure/Recovery Repository. The blackboard architecture contains the failure/
recovery repository to maintain the status of components. The failure/recovery
repository includes the name of failed/recovered components and their failure
types.

Although we assume that a robot application is designed and implemented
by means of robot components, the blackboard architecture does not make any

436 M. Shin et al.

assumption about component models for applications. A robot component can be
one that is developed with or without a formal robot component model like MSRDS
or Robot Operating System (ROS).

3 Failure/Recovery Monitor

3.1 Failure/Recovery Functions

The blackboard architecture provides component-based robot applications with
detection functions, which can detect runtime failures of components. The types of
runtime failures that can be detected by the blackboard architecture are as follows:

• Sensor failure: A sensor failure occurs when a sensor cannot measure values in
the environment periodically. The sensor failure is detected by a sensor interface
component bymeans of either the sensor input arrival rate or sensor input sampling
rate. The blackboard architecture detects a sensor failure if the sensor input values
are not delivered to a sensor interface component periodically.

• Sensor measurement range failure. The values that a sensor reads in the environ-
ment may be out of the range specified for the sensor. It may not be easy to detect
sensor measurement range failures because there are many different brands for
each sensor type. However, this failure can be detected if the sensor input value
range is known.

• Real-time operation failure. When an operation provided by a robot component
is invoked, it may not finish its execution within a specified time interval. The
execution time of an operation is measured to check if the operation meets at least
the worst case of its hard real-time deadline. The execution time for an operation
is calculated with the operation’s starting time and finishing time.

• Operation parameter range failure. An operation in a robot component may be
invoked with the wrong values of parameters. Before an operation executes, the
values of parameters for the operation are checked if they are in the ranges specified.

• Operation output range failure. An operation in a robot component may produce
an output that is out of the specified range. The operation output range failure is
detected by comparing an operation output to the range specified.

• Periodic data failure. Most of the robot components receives data from either sen-
sors or other components periodically and then processes them. A data receiver
component cannot process the data if a sender component does not send the data
to the receiver. If a sender component cannot send the data to the receiver com-
ponent periodically, the receiver can detect a data period failure of the sender.
The periodic data failure may be caused by a network failure between the sender
and receiver components. The blackboard architecture determines whether it is a
network failure or sender’s periodic data failure.

• Periodic data processing failure. The data delivered by a robot component to
another may need to be processed within the time duration specified. The data

Detection and Notification of Failures in Distributed Component-Based Robot … 437

processing time of a component is checked to detect whether a component
processes the data within the duration.

• Event processing failure. An urgent event, such as wheel stop, can be commu-
nicated between robot components to avoid an accident. Such an event should
be processed immediately. A robot component may fail if it does not process
the urgent events immediately. An event processing failure is detected if a robot
component cannot process a received event as specified.

• Network failure. Distributed robot components cannot communicate with each
other if the network encounters a failure. The blackboard architecture may detect
the network failures between distributed robot components by cooperating with
the operating system

• Actuator failure: It is assumed that an actuator encounters a failure if it cannot
commit the commands as specified. Like sensors, it is difficult to detect actuator
failures because there are many different types and brands of actuators. But, an
interface component to an actuator may know that an actuator encounters a failure
if the actuator driver (provided by the actuator supplier) detects the failure. In that
case, the interface component notifies the blackboard architecture of the failure.

In order to detect the failures of components, each component has its own profile
that describes the runtime conditions in terms of functions provided by components
and data processed by components. The component profiles are presented using an
Extensible Markup Language (XML).

3.2 Aspect-Oriented Detection of Failures

Aspect-oriented programming modularizes the failure/recovery functions separately
from robot application logic. The failure/recovery detection functions need to be
plugged in to robot application components in which the detection functions monitor
the failure/recovery of the component. As the failure/recovery detection functions are
mixed with application functions of components, they can increase the complexity
of robot applications. In particular, when the application functions of components
are changed, the failure/recovery detection functions can be affected accordingly.

In this paper, the failure/recovery detection functions are designed and imple-
mented as aspects in aspect-oriented programming (AOP). Aspect oriented program-
ming provides robot application developers with a tool to separate concerns from
core application functionality. It promotes the separation of each crosscutting con-
cern into its own aspect. An aspect can be broken down into four parts: the aspect, a
join point(s), a pointcut(s), and advice. An aspect may be used at various points in
applications. For instance, periodic data failure/recovery detection function can be
used at multiple points in robot components in order to detect the failures/recovery of
periodic data. The periodic data failure/recovery detection is a crosscutting concern
of the application separated from the application logic.

438 M. Shin et al.

An aspect has two important components namely the pointcut(s) and advice. Point-
cuts are the moments of execution in an application, commonly referred to as join
points. These join points can be object initializations, method calls, and method exe-
cutions for instance. A pointcut clearly defines the collection of join points at which
an aspect should be injected for use. The advice of an aspect provides the additional
code or methods required to give the aspect the functionality desired. In this paper,
the advice includes the algorithms and methods needed to detect failure/recovery
of components. The failure/recovery detection functions have been implemented as
advices in the AOP by means of the PostSharp [14] under MSRDS.

3.3 Cause Analysis of Failures

The blackboard architecture analyzes the causes of component failures that are noti-
fied by robot components. The blackboard architecture determines which component
has failed using the failure messages from components. In case of a periodic data
failure, it should keep track of failure messages to find out the failed component(s).
A periodic data failure takes place if a component cannot receive a data from sen-
sors or other components periodically. A periodic data can be processed by multiple
components in an application.

Once a periodic data failure occurs, multiple components processing the periodic
data notify the failures to the blackboard architecture. The blackboard architecture
needs to determine which component has caused the failure. Instead of all the com-
ponents that notify the blackboard architecture of the same failures, the blackboard
architecture keeps track of the status of the component(s) that has generated the
failure.

The cause of failures is analyzed by means of the dependency relationships
between components in terms of data or operations [15]. A component may require
data or operations from another. In this case, the two components have a data depen-
dency relationship if a component processes the data coming from another.

The dataflow between components is depicted in (a) of Fig. 2, which is part of
the unmanned ground vehicle (UGV) application. The Laser Range Finder (LRF)
Interface component and Camera Interface component generate LRF data array and
24 bits raw RGB, respectively. The Car Detection component produces other cars
trajectory after analyzing the data that comes from the LRF Interface component and
Camera Interface components. Using the data from the CarDetection component, the
Dangerous Situation component determines whether it should generate an alarm to
prevent a critical accident. The (b) of Fig. 2 depicts the data dependency relationships
between components, which are defined based on the dataflow in (a) of Fig. 2. The
data dependency relationship between components is represented as the opposite
direction of the dataflow between components. The dataflow and data dependency
relationship between components are represented with an arrow and a dotted arrow,
respectively.

Detection and Notification of Failures in Distributed Component-Based Robot … 439

<<component>>
Car Detection

<<component>>
Laser Range

Finder Interface

LRF data array

24 bits raw
RGB

List of car
trajectory

<<component>>
Camera Interface

<<component>>
Dangerous
Situation

<<component>>
Car Detection

<<component>>
Laser Range

Finder Interface

<<component>>
Camera Interface

<<component>>
Dangerous
Situation

(a)

(b)

Fig. 2 Dataflow and data dependency relationship between components in UGV application.
a Dataflow between components. b Data dependency between components

Suppose that the Camera Interface component (Fig. 2) is out of service. The failure
of Camera Interface component can be detected by the Car Detection component
and then by the Dangerous Situation component. Both Car Detection and Dangerous
Situation components may notify the blackboard architecture of these failures. The
blackboard architecture infers that the Camera Interface component has a failure
based on the data dependency relationship.

4 Failure/Recovery Notifier

The failure/recovery notifier in the blackboard architecture informs robot components
of either detected or recovered failures. The blackboard architecture can communi-
cate with components via a function call or asynchronous message communication.
Each component has failure flags representing the status of different types of failures.
The failure flags are set to true or false in response to a notification message. When
the value of a failure flag changes, some actions in a component can be taken against
the failure message or for the recovery message if the actions have been implemented
by robot application developers.

Impact analysis between components determines the scope of notification in the
failure/recovery notifier. The impact of a component failure on other components is
determinedby considering howmuch a component is affected froma failure.A failure
impact may be localized within a component or spread to multiple components in

440 M. Shin et al.

the application. The impact of a component failure on other components can change
depending on the failure types defined in Sect. 3.1.

The failure impact will be modeled by means of an impact level on the depen-
dency relationships between components. The impact level of a component failure
on its dependent is categorized as insignificant, tolerable, serious, and catastrophic
[15]. An insignificant impact level describes a dependency relationship in which a
component uses information from a failed component to verify or increase reliability
of component output additionally. A component can provide its full functionality
required even though there is no additional information from a failed component
with an insignificant impact level.

Figure3 depicts the impact levels corresponding to the periodic data between
components described in Fig. 2, which has one more Camera device for higher reli-
ability. The Laser Range Finder (LRF) Interface component is insignificant for the
Car Detection component, which uses the data from the Laser Range Finder (LRF)
Interface component and two Camera Interface components to keep track of other
cars trajectory. Even though the LRF Interface component fails, the Car Detection
component can still produce other cars trajectory using the data coming from the
Camera Interface components. The LRF component is added to the application as an
additional component so that the Car Detection component can produce high quality
of other cars trajectory.

A tolerable impact level describes a dependency relationship in which a compo-
nent is dependent on the same type of multiple components. The dependent com-
ponent may have a minor impact if one of the multiple components encounters a
failure. However, a tolerable failure does not disrupt the normal functionality of its
affected component if some of themultiple components still work. TheCarDetection
component (Fig. 3) is supported by two Camera components, impact level of each of
which is defined as tolerable. Even though one of the Camera Interface components

<<component>>
Car Detection

<<component>>
Laser Range

Finder Interface

<<component>>
Camera1 Interface

<<component>>
Dangerous
Situation

<<component>>
Camera2 Interface

insignificant

tolerable

tolerable

serious

Fig. 3 Impact levels between components in UGV application

Detection and Notification of Failures in Distributed Component-Based Robot … 441

fails to capture other cars pictures, the Car Detection component can make other cars
trajectory using the remaining Camera Interface component.

The tolerable impact level needs to be changed to the serious impact level if
at least a number of tolerable components do not work (referred to as cardinality
condition). Each Camera Interface component (Fig. 3) has a tolerable impact on the
Car Detection component, but the tolerable impact level changes to serious if both
Camera Interface components encounter failures. This is because the Car Detection
component requires the data from at least one Camera Interface component so as to
generate the reliable output for the Dangerous Situation component.

A component failure thatmakes serious impact on its dependent component causes
the dependent to be out of service. This is because the dependent component cannot
provide a reliable output anymorewithout the failed component. Stopping the depen-
dent component could bring a ripple effect to the next dependent components so that
it may paralyze part or all of an application. If stopping the dependent components
does not lead the application to a total failure, the application can still provide partial
services using the remaining components, which have no critical impact from the
stopped components. The data generated by the Car Detection component (Fig. 3)
is critical to the Dangerous Situation component, so the impact of Car Detection
component on the Dangerous Situation component is defined as serious. When the
Car Detection component fails, the Dangerous Situation component should stop
processing the data.

A catastrophic impact is used to describe a situation where a component fail-
ure needs to stop all components constituting an application. An application may
encounter a critical accident if all the components do not stop immediately. A
catastrophic impact may be associated with safety of robots. The Virtual Robot
component in the UGV application controls devices such as engine and steering
wheel. A failure of Virtual Robot component may cause the UGV to encounter an
accident, which could lead to lose human lives.

5 Blackboard Architecture for MSRDS

5.1 Implementation of Blackboard Architecture with MSRDS

A prototype of the blackboard architecture has been developed for MSRDS appli-
cations to validate the proposed approach. In the MSRDS, a robot application is
built with multiple components, referred to as services, which are highly decoupled
from each other. Figure4 depicts the blackboard architecture for MSRDS applica-
tions. Each service (component) for applications declares its partnerships with the
monitoring and notification services in the blackboard architecture. The blackboard
architecture communicates with applications’ services via message ports.

The monitoring service collects failure information from the application’s ser-
vices. A failure in a service may occur due to the impact of other services’ failures.

442 M. Shin et al.

Fig. 4 Blackboard architecture for MSRDS applications

When a failure is reported to the monitoring service, the service stores the failure
to a buffer for some period time. The failures in the buffer are analyzed to find out
the root cause of the failures using the dependencies between services and failure
types. These dependencies are described in application’s profile that is represented
by an XML. In the application profile, one part defines the dependencies between
components and impact levels in their relationship, and the other part includes the
cardinality conditions which are explained in Sect. 4. The notification service in the
blackboard architecture notifies the components of the failure/recovery of a compo-
nent. When a new root failure is reported or recovered, the notification service starts
the impact analysis to determine the scope of components being notified.

5.2 Unmanned Ground Vehicle (UGV) Application with
MSRDS

The unmanned ground vehicle (UGV) application has been developed using the
MSRDS simulator in order to validate the blackboard architecture. The UGV drives
to the destination place safely without a human driver’s intervention. The UGV
application is a real-time system requiring high safety in order not to lose human
lives from car collapses. The MSRDS provides a three-dimensional simulator in
which the services and road environment for the UGV application are constructed.

Detection and Notification of Failures in Distributed Component-Based Robot … 443

Fig. 5 Unmanned ground vehicle application with MSRDS simulator

Figure5 depicts a UGV and the road environment that have been developed with
the MSRDS simulator. The UGV is equipped with various sensors such as cameras,
sonar sensor, laser sensor, and actuators such as wheels, display, speaker, and light.
The UGV application is composed of 19 software components (services) including
Curb Detection, Dangerous Situation, and Localization.

The blackboard architecture for the MSRDS has been tested with the UGV appli-
cation in which each service (component) communicates with the blackboard archi-
tecture to detect and notify failures/recoveries. For each different type of failures, the
application has been designed with intended safety actions. Components can take
the safety actions against failures, such as (1) sound UGV’s horn, (2) turn on alarm
light, (3) slow the speed, (4) drive to side road, and (5) stop the UGV immediately.

5.3 Analysis of Blackboard Architecture

This research has analyzed the performance of applications when the applications
runwith the blackboard architecture. The blackboard architecture requires additional
message communication with application components in terms of monitoring and
notification. The messages may affect the performance of applications. For this,
this research measures the performances of UGV application with and without the
blackboard architecture in order to see howmuch the blackboard architecture affects
the performance of applications.

Three components—Curb Detection, Dangerous Situation, and Localization—in
UGV application are selected because these components take important roles in the
application. The real execution times for the selected components are measured by
recording the timewhenever the components start their processes as execution cycles
predefined. For each component, 50 samples for the components’ execution times

444 M. Shin et al.

are observed. This experiments are done with 8GB memory, i5-3330(3GHz) CPU
and 64 bit Window 8.

The blackboard architecture does not significantly degrade the performance of
UGV application under the limited experiments. The performance degradation in
execution time varies in the range of 0.03–0.34% in the Curb Detection, Dangerous
Situation, and Localization components. This means that the starting times of each
periodic execution cycle of these components have been delayed in the range as the
blackboard architecture is deployed with the UGV. However, our other experiments,
which measure the UGV application without the blackboard architecture, show that
the components have been activated late periodically in the similar range.

6 Related Work

Component-based robot software development [3, 4, 16–19] has become primary
concern due to the dramatic increasing of complexity in robot applications. The tradi-
tional robot programming has been designed as monolithic. That is, all functions and
data in the program are tightly coupled so that developers should know the details to
cope with the changes of hardware and software. Component-based software engi-
neering (CBSE) aims to shift a means of system building from traditional approach to
component-based approach. Component-based approach reduces the amount of time
to develop a new application and makes a system more robust because pre-existing
components are already tested.

However, existing robot software framework and platforms, which support
development of component-based robot applications, do not provide the runtime fail-
ure management approach proposed in this paper. Many researches for component-
based robot application development have been done in the field of robotics,
providing robot software framework and platforms that help to develop robot applica-
tions using robot components or reusable service building blocks. Those approaches
include Microsoft Robotics Developer Studio (MSRDS) [5], Robot Operating Sys-
tem (ROS) [6], Robotic Technology Component (RTC) [7], Open Robot Control
Software (OROCOS) [8], Middleware for Autonomous Mobile Robots (MIRO) [9,
10], Open Platform for Robotic Service (OPRoS) [12], iRobot AWARE [20], and RT-
Middleware [11]. Some of these approaches provide the mechanisms for handling
low-level faults, but they do not support the approach that detects runtime failures
and notifies the components of them on an application level.

Ad hoc approaches [21, 22] have been proposed for handling runtime failures
for robot control software or hardware. Authors in [22] introduce an approach to
monitor the driving device of a mobile robot using model-based reasoning. Authors
in [21] present a method that detects runtime faults and recovers from the faults in
robot control software. This approach covers restricted fault types in client-server
based robot control software, whereas our approach handles broader runtime failure
types separately from robot applications.

Detection and Notification of Failures in Distributed Component-Based Robot … 445

7 Conclusion

This paper has described an approach to detecting and notifying the failures in
component-based robot applications using the blackboard architecture. The black-
board architecture provides the detection and notification mechanisms to distributed
component-based robot applications in which each component can be monitored and
notified of the failures of other components. Robot applications can be developed
separately from the blackboard architecture, and then they can be connected to the
blackboard in order to get failure detection and notification services. In this paper,
the backboard architecture has been implemented for MSRDS applications.

This paragraph describes future research for the blackboard architecture. More
MSRDS applications need to be developed to validate the blackboard architecture
further. Current blackboard architecture has been tested with the UGV application.
Another way of future research is to develop a different version of blackboard archi-
tecture for Robot Operating System (ROS) [6], which is another popular tool for
robot software development.

Acknowledgments This work was supported in part by the Knowledge Economy Technology
Innovation Program of MOTIE/KEIT, Rep. of Korea [10044006, Development of Open Robot
Middleware Supporting User-Friend Developer Tools and Standard Robot API Components]

References

1. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML.
Addison-Wesley, Boston (2000)

2. Pfleeger, S.L., Atlee, J.M.: Software Engineering Theory and Practice, 3rd edn. Prentice-Hall,
Upper Saddle River (2006)

3. Crnkovic, I.: Component-based Approach for Embedded Systems. IEEE Press, New York
(2004)

4. Brugali, D., Scandurra, P.: Component-based robotic engineering. Robot Autom Mag IEEE
16(4), 84–96 (2009)

5. Jackson, J.: Microsoft Robotics Studio: A Technical Introduction, IEEE Robotics and Automa-
tion Magazine, Dec, pp. 82–87 (2007)

6. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R.,
Ng, A.: ROS: an open-source robot operating System. In: ICRA Workshop on Open Source
Software, Kobe Japan (2009)

7. OMG The Robot Technology Component Specification. http://www.omg.org/spec/ (2012)
8. Soetens, P.: The OROCOS (Open Robot Control Software) Component Builder’s Manual.

Version 1.10.2. FMTC (2007)
9. Enderle, S., Utz, H., Sablatnog, S., Simon, S., Kraetzschmar, G., Palm, G.: MIRO: middleware

for autonomousmobile robots. In: Telematics Applications in Automation and Robotics (2001)
10. Utz, H., Sablatnog, S., Enderle, S., et al.: Miro-middleware for mobile robot application. In:

IEEE Transactions on Robotics and Automation, pp. 493–497 (2002)
11. Ando, N., Suehiro, T., Kitagaki, K.,et al.: RT-Middleware: distributed component middleware

for RT (robot technology). In: IEEE/RSJ International conference on robots and intelligent
systems 2005, pp. 3555–3560 (2005)

http://www.omg.org/spec/

446 M. Shin et al.

12. Song, B., Jung, S., Jang, C., Kim, S.: An introduction to robot component model for OPRoS
(Opend Platform for Robotic Services). In: International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, Venice, Italy (2008)

13. Jang, C., Lee, S., Jung, S., Song, B., Kim, R., Kim, S., Lee, C.: OPRoS: a new component-based
robot software platform. ETRI J 32(5), 646–656 (2010)

14. PostSharp 3.1 http://doc.postsharp.net/conceptual-documentation (2013)
15. Shin,M.E.,Kang, T.Kim, S. Jung, S., Roh,M.:Reconfiguration of robot applications using data

dependency and impact analysis. In: 24nd International Conference on Software Engineering
and Knowledge Engineering, San Francisco, July 1–3, pp. 684–687 (2012)

16. Wei, H. Duan, X., Li. S., Tong, G., Wang, T.: A component based design framework for
robot software architecture. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS09), St. Louis, USA, Oct 11–15, pp. 3429–3434 (2009)

17. Åkerholm, M., Möller, A., Hansson, H., Nolin, M.: Towards a dependable component tech-
nology for embedded system applications. In: 10th IEEE International Workshop on Object-
oriented Real-Time Dependable Systems (WORDS05), Feb, Sedona, Arizona, USA (2005)

18. Biggs, G.: Flexible, adaptable utility components for component-based robot software. In:
2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska, May
3–8 (2010)

19. Brooks, A., Kaupp, T., Makarenko, A., Oreback, A., Williams, S.: Towards component-based
robotics. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS05), Alberta, Canada, 2005, pp. 163–168 (2005)

20. IRobot Create http://www.irobot.com (2011)
21. Steinbauer, G., Morth, M.,Wotawa, F.: Real-time diagnosis and repair of faults of robot control

software. In: Bredenfeld, A., et al. (eds.) RobotCup 2005, LNAI 4020, pp. 13–23 (2006)
22. Hofbaur, M., Kob, J., Steinbauer, G., Wotawa, F.: Improving robustness of mobile robots using

model-based reasoning. J. Intell. Robot Syst. 48(1), 37–54 (2007)

http://doc.postsharp.net/conceptual-documentation
http://www.irobot.com

Coordination of Modular Robots by Means
of Topology Discovery and Leader Election:
Improvement of the Locomotion Case

José Baca, Bradley Woosley, Prithviraj Dasgupta, Ayan Dutta
and Carl Nelson

Abstract An important aspect of successful locomotion in Modular Self-recon-
figurable Robots (MSRs) is to be able to autonomously coordinate the movement of
the modules so that the robot canmove towards the goal.We consider the locomotion
problem in a partially distributed setting where multiple MSRs (disconnected groups
of connected modules) are within the communication range of each other and mod-
ules do not have a priori information about other modules that belong to the same
configuration. Coordinating the movement of modules in such a setting becomes a
challenging problem because of the limited perception and computation resources
available on each module. To address these problems, we propose a strategy that first
combines neighbor-to-neighbormessagepassing techniques via infrared andwireless
communication to enable eachmodule to autonomously determine the set ofmodules
that belong to the same MSR. The strategy then uses a distributed leader election
algorithm to identify the leader, which thereafter coordinates the actions of the mod-
ules in its configuration. We have verified the performance of our approach using an
accurately simulated model of the ModRED MSR within the Webots simulator and
in the embedded system of ModRED (This work was done as part of the ModRED
project which is supported by NASA EPSCoR grant no. NNH11ZHA003C.). It is
shown that our strategy can successfully determine the set of connected modules,
elect a leader for each configuration and coordinate the locomotion of MSRs for
different numbers of modules.

Keywords Modular robots · Coordination · Locomotion

J. Baca (B) · B. Woosley · P. Dasgupta · A. Dutta
Computer Science Department, University of Nebraska at Omaha, Omaha, USA
e-mail: jbacagarcia@unomaha.edu

P. Dasgupta
e-mail: pdasgupta@unomaha.edu

A. Dutta
e-mail: adutta@unomaha.edu

C. Nelson
Mechanical and Materials Engineering Department, University
of Nebraska-Lincoln, Lincoln, USA
e-mail: cnelson5@unl.edu

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_31

447

448 J. Baca et al.

1 Introduction

Modular self-reconfigurable robots (MSRs) are robotic systems consisting of mod-
ules which can connect with each other to form different shapes. Because of their
highly dexterous nature, MSRs are attractive for maneuvering and performing tasks
autonomously in environments that are highly unstructured [1]. To enable a MSR
to maneuver successfully, it is essential to ensure that each module performs its
required movement in coordination with other modules, so that the overall desired
motion of the MSR is manifested. This problem is called the MSR locomotion prob-
lem; it becomes challenging, especially as the size of the MSR grows, because of
the limited perception capabilities and computation resources on each MSRmodule,
and the time delay between the motion of modules that are not adjacent to each other
in the MSR.

To address this problem, the motion between the different modules needs to be
coordinated so that each module is provided information about its appropriate move-
ment at each time step [2–5]. Some techniques to solve this problem include using
a centralized pattern generator [6] that generates appropriate time-delayed signals
to actuate each module, generating a synchronization signal successively on each
module that can be perceived by adjacent modules to commence actuation [7], or
defining a module’s role as a function of time [8]. For instance, the hormone-based
implementation offers two advantages: it keeps the modules of the system synchro-
nized and modules can be added or removed from the chain configuration. The
modules stay synchronized because upon starting an action, the module at the head
of the chain passes a message to the following module (via IR) instructing which
action it should perform in the current step. Similarly, the second module propagates
the message to the following module instructing which action it should perform. The
process continues until it reaches the end of the chain. Modules can be added to the
chain configuration because the message is given by the predecessor of each new
module. Two major drawbacks of this approach are observed. First, the initiator has
to be defined by the user or programmer, and second, if one of the modules in the
chain configuration fails (e.g., hardware malfunction, etc.) then locomotion cannot
be accomplished because the propagation of the message has been broken, as shown
in Fig. 2a. Another interesting technique is role-based control. This approach does
not use a gait control table with a sequence of actions; rather, the positions of the
internal joints of a module are defined as a function of time. The technique presents
three main features: the speed can be changed simply by choosing different periods
in the function, it is not synchronization-based, and it does not require an initiator.
One drawback is that since the function is based on the module’s internal representa-
tion of time, any differences in clock speeds (within the embedded system) between
modules can lead to irregular motions of the configuration.

In this paper, we have considered interesting features from both these techniques
and fused them—we consider a scenario wheremultipleMSRs (disconnected groups
of connected modules) are in close proximity of each other; each module has to
autonomously determine the set of modules within the configuration it belongs to;

Coordination of Modular Robots by Means of Topology Discovery … 449

Fig. 1 In a typical scenario,
it is possible to find two or
three configurations (made
up of n modules) working in
the same area. The
assignment of a leader’s role
to one module in each
configuration can facilitate
the coordination of the entire
configuration and help
achieve a common goal.
Since each configuration can
have different tasks or goals,
it is convenient that the
leader is elected by, and only
by, the modules comprising
the configuration

ID=1
ID=4

ID=2

ID=6

ID=3 ID=5

Configuration 1 - Wireless communication range

Configuration 2 - Wireless communication range

Configuration 3 - Wireless communication range

and finally eachMSR has to select a module, called the leader, that coordinates all the
modules in the same MSR to move in the desired direction. One of the advantages
of having a leader in the configuration is that if during a mission a new task has
to be assigned to that specific configuration then it is easier to establish connection
between the leader and the control station and transmit the new instructions. We
focus on finding a way to coordinate the activities performed by each of the modules
to accomplish a common goal (for instance, the activation of a goal-driven controller
presented in [9]). At the same time, we develop approaches that meet two main crite-
ria, i.e., the limited resources that can be found in different modular robotic systems
(e.g., limitations of sensors, computation capability, size, etc.) and the approach has
to consider an equilibrium between flexibility, time response and complexity for a
small set of modules (due to payload constraints in space missions). The approach
assigns the leader’s role to a module belonging to the same configuration. Assum-
ing that all modules are identical (as in a homogeneous system), it will not matter
which module becomes the leader. However, it is important that the leader is auto-
matically elected only by the modules forming the same configuration (Fig. 1). The
election algorithm should be running only in the corresponding modules. For such
purpose, we propose that each module maps the topology’s configuration to know
which modules are involved in the election process. In other words, the map of the
modular configuration (MMC) generated by each module contains the modules that
are currently in the same MSR and their position in the configuration (Fig. 2)

Thework in this paper also complements and improves our previous work inMSR
locomotion where we had proposed a fuzzy logic controller (FLC) that prescribes a
movement for each module in an MSR connected in a chain configuration without
coordination [9]. By adding coordination into the system, we are able to improve the

450 J. Baca et al.

1

Module 1 Module 2

Module 2 Module 3 2

Module 1 Module 2

x
Module 3 3 Module 2 Module 3

x

(a)

1 Module 2 Module 3Module 1 2
x

Module 2 Module 3Module 1 3
x

Module 2 Module 3Module 1

(b)

Fig. 2 a The propagation of the message (via IR) is broken if one of the modules between the
chain configuration fails. b The advantage of having point-to-point communication is that even if
a module fails in the configuration, actions can be executed by other modules at the corresponding
time

overall performance of the MSR when performing locomotion. We have verified the
performance of our algorithm using an accurately simulated model of the ModRED
MSR [10] within the Webots simulator while using multiple MSRs in chain con-
figurations, with different numbers of modules on each MSR. Moreover, we have
implemented the strategy in the hardware of ModRED to verify its real performance.
Our results show that our algorithm can successfully determine the set of connected
modules, elect a leader for each MSR and coordinate the locomotion of MSRs to
move them in the goal directio.

2 ModRED System

ModRED (Modular Robot for Exploration and Discovery) is a homogeneous modu-
lar robot system that is suitable for efficient maneuver over unstructured surfaces
such as extra-terrestrial environments [11]. As an autonomous system, modular
robots must be capable of sensing their environment and acting on this informa-
tion for task completion purposes. Each of the ModRED modules is equipped with
necessary electronics to give them such autonomy, as shown in Fig. 3. Each module
performs the computation and control tasks using two Arduino Fio (ATmega328P)

Fig. 3 Embedded system of
a ModRED module

M1

-Arduino FIO

-XBEE Modem

- 9-DOF Razor IMU

-LiPo Battery

M1

M2

M3

Coordination of Modular Robots by Means of Topology Discovery … 451

microcontrollers or one BeagleBone Black board. For powering the overall system
including all the sensors, actuators and microcontrollers, a rechargeable lithium-
polymer battery pack is used. Eachmodule is equippedwith anXBeemodemdirectly
connected to the Arduino board to enable wireless communication among the mod-
ules. In addition to this, an array of infrared (IR) sensors is used for communication,
proximity sensing and local localization strategies. For obstacle detection purposes,
and to ensure successful docking, bump switches are incorporated in the front/rear
faces of the docking brackets.

3 Topology Discovery

The idea of mapping the configuration’s topology or location of each of the modules
within amodular configuration is to give to the system knowledge of the arrangement
of the various modules in the actual system, as in network topologies. In other
words, each module would know the neighbors of each of the modules in the current
configuration.This featurewould allow the executionof complex tasks by specifically
coordinating each module comprising the current configuration. For instance, in this
work we will coordinate the activation of a fuzzy controller contained in each of the
modules at different intervals of time so that the overall locomotion’s efficiency of
the global configuration increases.

3.1 Mapping Local Neighbors

Infrared (IR) communication is used to allow the modules to exchange their identifi-
cation number (ID)with the neighbors connected to either the front or rear connecting
faces, as shown in Fig. 4a. All modules are given unique IDs which allow them to
be distinguished from all the other modules in the area and communicate wirelessly
among them. The IR sensors are set up in such a way that communication is only

Module ID=1 Module ID=4 Module ID=2

Module ID=3 Module ID=5

Module ID=6(a)

Root ID Front ID Rear ID

1 -1 4

Module ID=1

Root ID Front ID Rear ID

4 1 2

Module ID=4

Root ID Front ID Rear ID

2 4 -1

Module ID=2

Root ID Front ID Rear ID

6 -1 -1

Module ID=6

Root ID Front ID Rear ID

3 -1 5

Module ID=3
Root ID Front ID Rear ID

5 3 -1

Module ID=5

(b)

Fig. 4 a Example of neighbors connected to the front and rear connecting faces. b Local configu-
ration structure (LCS) generated by each module. The value −1 means no module attached to the
connecting face

452 J. Baca et al.

possible if a module is connected to the connecting face. Each module transmits its
ID out both the front and rear connecting faces, and listens for an ID to be received
on the front and rear data channel. When the data has been collected, it is placed into
a local configuration structure (Root ID | Front ID | Rear ID), that shows the current
module’s ID, and the ID of the module(s) connected to its front and rear connecting
faces, as shown in Fig. 4b.

3.2 Broadcasting My Neighbors’ List Among the Modules

Wireless communication is used by each of the modules to broadcast its previously
mentioned local configuration structure (LCS) and its current clock value (it is used
in Sect. 4 for the leader election process) to all modules within wireless communica-
tion range. It is important to mention that when broadcasting the data to the entire set
of modules, there might be modules belonging to a different configuration but still
within the communication range. For instance, Fig. 1 shows three different configu-
rations (a singleton, two module and three module configurations) displaying their
wireless communication range. At this point, each module does not know to which
configuration it belongs, but it broadcasts and receives the data to/from the modules
within the communication range. For illustration purposes, Fig. 5 shows the received
LCSs for modules with ID = 5, 6 and 4.

Root ID Front ID Rear ID

6 -1 -1

Module ID=6

Root ID Front ID Rear ID

3 -1 5

Module ID=3
Root ID Front ID Rear ID

5 3 -1

Module ID=5

Root ID Front ID Rear ID

1 -1 4

Module ID=1

Root ID Front ID Rear ID

1 -1 4

Module ID=1

Root ID Front ID Rear ID

4 1 2

Module ID=4

Root ID Front ID Rear ID

2 4 -1

Module ID=2

Root ID Front ID Rear ID

6 -1 -1

Module ID=6

Root ID Front ID Rear ID

6 -1 -1

Module ID=6
Root ID Front ID Rear ID

3 -1 5

Module ID=3

Root ID Front ID Rear ID

5 3 -1

Module ID=5

Fig. 5 Received LCSs from modules within communication range (obtained from Fig.1)

Coordination of Modular Robots by Means of Topology Discovery … 453

3.3 Topology Generation Process

In order to generate the final configuration’s topology, each module has to analyze
and merge its own LCS and the received LCSs into a single structure. For example,
Fig. 1 shows a scenario with three different configurations. Configuration 1 is formed
by three modules with ID = 1, 4 and 2. Due to the LCS generated by IR communi-
cation, module ID = 4 knows that module ID = 1 and module ID = 2 are connected
to its front and rear connecting faces respectively, as shown in Fig. 5 (bottom case).
However, it doesn’t know if there are other modules connected to the same configu-
ration beyond those twomodules. Then, through wireless communication, it receives
the LCSs from modules with ID = 1, 2 and 6. All LCSs received may or may not
belong to the same configuration. To find out the configuration’s topology, Algo-
rithm 1 is used. By looking at each LCS from each ID and the correct arrangement
of data (line 16), each of the modules finds out that module ID = 6 does not belong
to configuration 1. The final map is displayed as |1|4|2| or |2|4|1|.

Algorithm 1: Building topology’s configuration structure
Input: n: size of the set of modules, LCSi : local configuration structure of module i , ID:

module’s id
Output: MMC: map of the modular configuration
creation of a structure of 2n size ≡ MMC’1
currentID = ID; index = n2
while currentID �= −1 and currentID � MMC’ do3

store currentID in MMC’index4
i = currentID from LCSi , currentID = FrontID5
if currentID = −1 or currentID ∈ MMC’ then6

from LCSi , currentID = RearID7

index++8

from LCSI D , currentID = RearID9
while currentID �= −1 and currentID � MMC’ do10

store currentID in MMC’index11
i = currentID from LCSi , currentID = FrontID12
if currentID = −1 or currentID ∈ MMC’ then13

from LCSi , currentID = RearID;14

index−−15

∃ j ∈ {0, |M MC ′| − 1}∀i ∈ {0, |M MC | − 1}M MCi ← M MC ′
j , if M MC ′

j �= NU L L16

4 Leader Election

The coordination of modules would be led by a module who has been elected from
among the modules belonging exclusively to the same configuration. The advantage
of providing the “map” of the configuration to each of themodules is that anymodule

454 J. Baca et al.

is eligible to play the leader’s role. Although it is possible to set the module that is
located at the front of the configuration as a leader (user-defined),weopted for a leader
selection based on an election process that provides greater robustness to the system.
This feature allows the system to automatically elect a new leader in case of the
leader’s malfunction. Since eachModREDmodule contains its own microprocessor,
hence, its own timer, we decided to use the clock’s value as an input variable for the
election algorithm. To continue with the philosophy of implementing light-weight
processes for the limited resources that can be found in embedded systems, we have
chosen a modified version of the bully algorithm [12] which satisfies the criteria.

4.1 Bully Algorithm

The leader’s role would be assigned to the module with the highest clock value at the
beginning of the election process. When the election starts, the clock value is stored
and transmitted to all modules within the communication range. This stored clock
valuewill remain the same throughout the entire election process, and is only changed
when a re-election is requested. Throughout this time, the module’s clock continues
normally and is never held constant. Only modules in the current map of the modular
configuration (MMC) are eligible to become the leader. Each configurationmay have
its own task, and leaders need to stay in constant communication with those in their
configuration. The list of modules inside the current configuration comes from the
MMC presented in Algorithm 1. Once the modules know the clock values for every
module in the configuration, the clock values are compared to determine who the
leader is. The leader then notifies each module in the MMC that it is the leader.
For the current leader to remain as the leader, it must transmit a keep-alive packet
periodically.

A propagation function (user defined) provides the order the modules in the con-
figuration should be activated to provide the required motion. For demonstration
purposes, a simple propagation function has been implemented (Eq.1). The leader
activates each module starting at one end of the chain configuration and each time
step activates the nextmodule in the chain until it reaches the other end of the configu-
ration. At this point, the propagation function is reset to the start of the configuration.
The following equation describes the order in which modules are activated.

module = M MC[time%si ze(M MC)] (1)

where % is the modulo operator, size() returns the number of modules in MMC and
MMC[i] returns the ID of the module in the i th position of MMC from the end of
the configuration.

Coordination of Modular Robots by Means of Topology Discovery … 455

5 Experimental Results

In this section, we present various experimental results from applying this technique
in an accurately simulated model of ModRED within the Webots robot simulator
and its implementation in the embedded system of ModRED. We have tested the
approach in four different scenarios.

5.1 Simulation Results

Each scenario displays situations in which there are two and three configurations
and each configuration is made of one up to four modules, as shown in Fig. 6a–d.
The configurations are placed in the scenario so that all modules are within wireless
communication range. Figure6e shows the results of the election process. Each con-
figuration is represented by a geometric shape and each case is shown in a different

ID=5 ID=3 ID=1

ID=2 ID=6 ID=4
Leader

(a)
ID=5 ID=3 ID=1 ID=2

ID=6 ID=4Leader

(b)

ID=3
ID=1

ID=2
ID=6 ID=4

ID=5ID=5

Leader

(c)
ID=3

ID=6

ID=4ID=1
ID=2

ID=5ID=5

Leader

(d)

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Vote given by each Module (Module ID)

E
le

ct
ed

 L
ea

de
r

(M
od

ul
e

ID
)

Case (a)

Case (a)

Case (c)

Case (c)

Case (c)
Case (d)
Case (d)
Case (d)

Case (b)

Case (b)

(e)

0 1 2 3 4 5 6 7
0

45
90

136
181
227
272
318
363
409
454
500
545
590
636
681
727
772
818
863
909
954

1000

Number of modules in current configuration

T
im

e
(m

s)

Time taken to finish mapping
and leader election

(f)

Fig. 6 a–d Cases with different configurations. e Results of the election. f Time taken to complete
the election. Set of five runs in each case

456 J. Baca et al.

color. It is observed that all modules belonging to the same configuration agree with
the elected leader. For example in case (b), four modules belonging to the same con-
figuration (red circle) agree that module with ID = 5 becomes the leader. Similarly,
the modules comprising the second configuration (red diamond) agree that module
with ID= 6 becomes the leader. Figure6f illustrates the time taken (milliseconds) to
finish mapping the topology of the configuration and the corresponding leader. Once
the leader’s role has been assigned to the configuration, the leader coordinates the
activation of modules’ actions using the propagation function (Eq.1). This function
is used to send the activation’s signal to each of the modules in different ways.

Additionally, we have implemented this coordination strategy along with our
previous work (a distributed fuzzy controller) to demonstrate how the coordination
affects the behavior of the configurations. The experiments show that when applying
the coordination approach along with the same controller’s output to move in one
direction, it is possible to change the direction of the configuration’s displacement.
It is also shown that when implementing the coordination strategy in longer con-
figurations, it allows the correct displacement of the configuration. Videos of the
experiments are given as an attachment and additional information can be found at:
http://cmantic.unomaha.edu/projects/modred/index.htm.

5.2 Implementation in the Hardware of ModRED

We have checked the performance of the strategy by implementing the algorithms
in the embedded system of ModRED and performed an experiment, as shown in
Fig. 7. The objective is to verify if the strategy is able to discover the topology of
the configuration of a randomly selected module and then to elect the appropriate
leader according to the clock values. The experiment consists of two MSRs within

XBee

M 0,2,3,4,5,6,7,8,9

M1

XBee

LCSs CLKs

0 1 2 3 4 5 6MSR1
7 8 9MSR2

PHASE 1

Identification of modules
and CLKs within its
own MSR 1

Module ID=1

PHASE 2

M 1
M 0

M 2
M 3

M 4

M 5

M 6

These modules
have not been
identified as part
of MSR 1

Fig. 7 Implementation and verification of the strategy in the embedded system of ModRED. In
phase 1, all modules generate the local configuration structures (LCSs) with the corresponding
clock values (CLKs) and broadcast them. In phase 2, each module identifies the modules that are
in the same configuration and determines if it is the leader

http://cmantic.unomaha.edu/projects/modred/index.htm

Coordination of Modular Robots by Means of Topology Discovery … 457

the communication range with different numbers of connected modules. MSR1 is
made of 7 modules (Module ID = 0, 1, 2, 3, 4, 5, and 6) and MSR2 is formed by 3
modules (Module ID= 7, 8, and 9). The module with ID= 1 (M1) in the experiment
represents a module in an initially unknown chain configuration (BeagleBone+XBee
enclosed by a blue square). The Arduino+XBee board (enclosed by a red square)
represents all the other modules in the environment by transmitting each of the
LCSs from that set of modules that would be broadcasting in the real case of having
9 modules (BeagleBone+XBee boards). Phase 1 of the experiment starts after all
the individual LCSs have been generated. The Arduino broadcasts a series of data
packets, each packet containing the LCS and clock value of one of the modules.
M1 transmits its own LCS/clock combination while listening for the LCSs from the
other modules. Once it has received the same number of LCSs as there are modules
in the environment, or a timeout has expired between receiving new LCSs, the data
is passed to the next phase. In phase 2, the algorithm determines which modules are
in the sameMSR ofM1, and determines the leader of this specific configuration. The
solution is enclosed by a green dotted box. The entire process (phase 1 and phase 2)
takes approximately 740ms to find the solution. The size of the algorithm is 65kB,
and it takes 3kB of RAM.

6 Conclusions and Future Work

In this work we have presented a coordination strategy by which the modules com-
prising a configuration agree on the election of a leader. This leader is elected only
by the modules belonging to the same configuration. The technique first builds a map
of the modular configuration (MMC) based on the combination of local configura-
tions structures (LCSs) shared by each module within communication range. Then,
modules in the MMC select a leader by introducing clock values into a bully algo-
rithm. The leader makes use of a propagation function to coordinate the activation
of actions inside each of the modules belonging to the same configuration. The main
contribution of this work lies in the design of having a distributed leader election
among the modules in the configuration, which brings robustness to the system in
case of the leader’s failure and the possibility of direct control on the activation of
each module’s actions without chain-propagation restrictions. In addition, by run-
ning the propagation function only on the leader module, we avoid problems that
arise from modules having different clock speeds.

We have shown our approach works successfully on a ModRED model inside the
Webots simulator and in the real hardware of ModRED. The experimental results
demonstrate that the strategy gives the correct information to the system, allowing
the correct election of a leader. In addition, we have implemented the coordination
strategy along with our previous work (distributed fuzzy controller for locomotion)
and performed some locomotion experiments. It can been seen how the coordination
technique changes the overall behavior of the configuration using the same con-
troller’s output inside each module. We have tested different configuration sizes to

458 J. Baca et al.

get their performance. We continue working with a small set of modules since we
try to keep an equilibrium between flexibility and complexity of the system. The
strategy has been designed considering actual sensors, devices, and microprocessors
found in ModRED modules. A good advantage of this type of approach is that it
can run in limited embedded systems such as in ModRED modules. As future work,
we plan to extend the coordination strategy to more complex configurations such as
lattice configurations by substituting the array of LCSs with a matrix of LCSs and
perform communication experiments [13].

References

1. Yim, M., Shen, W.-M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian,
G.S.: Modular self-reconfigurable robot systems [grand challenges of robotics]. IEEE Robot.
Autom. Mag. 14(1), 43–52 (2007)

2. Butler, Z., Fitch, R., Rus,D.:Distributed control for unit-compressible robots: goal-recognition,
locomotion, and splitting. IEEE/ASME Trans. Mechatron. 7(4), 418–430 (2002)

3. Christensen, D., Schultz, U., Stoy, K.: A distributed strategy for gait adaptation in modular
robots. In: IEEE International Conference on Robotics and Automation, May 2010, pp. 2765–
2770

4. Yu, C.-H.,Werfel, J., Nagpal, R.: Coordinating collective locomotion in an amorphousmodular
robot. In: IEEE International Conference on Robotics and Automation (2010)

5. Baca, J., Rossi, C., Ferre, M., Aracil, R.: Cooperative task execution between modular robots
based on tight-loose cooperation strategies. In: Proceedings of IEEE International Conference
on Robotics and Automation (2011)

6. Kamimura, A., Kurokawa, H., Yoshida, E., Tomita, K., Murata, S., Kokaji, S.: Automatic loco-
motion pattern generation for modular robots. In: IEEE International Conference on Robotics
and Automation, pp. 714–720 (2003)

7. Shen, W.M., Salemi, B., Will, P.: Hormone-inspired adaptive communication and distributed
control for conro self-reconfigurable robots. IEEETrans. Robot. Autom. 18(5), 700–712 (2002)

8. Stoy, K., Shen,W.-M.,Will, P.: Global locomotion from local interaction in self-reconfigurable
robots. In: 7th International Conference on Intelligent Autonomous Systems, pp. 309–316
(2002)

9. Baca, J., Dasgupta, P., Hossain, S., Nelson, C.: Modular robot locomotion based on a distrib-
uted fuzzy controller: the combination of ModRED’s basic module motions. In: International
Conference on Intelligent Robots and Systems (2013)

10. Baca, J., Hossain, S., Dasgupta, P., Nelson, P. C., Dutta, A.: ModRED: hardware design
and reconfiguration planning for a high dexterity modular self-reconfigurable robot for extra-
terrestrial exploration. Robot. Auton. Syst. 62(7), 1002–1015 (2013)

11. Hossain, S.G.M., Nelson, C.A., Dasgupta, P.: Hardware design and testing of ModRED—
a modular self-reconfigurable robot system. In: Proceedings of ASME/IEEE International
Conference on Reconfigurable Mechanisms and Robots (2012)

12. Garcia-Molina, H.: Elections in a distributed computing system. IEEE Trans. Comput. 31,
48–59 (1982)

13. Fitch, R., Lal, R.: Experiments with a ZigBee wireless communication system for self-
reconfiguring modular robots. In: Proceedings of IEEE International Conference on Robotics
and Automation (2009)

Muscle Synergy Analysis of Human
Standing-up Motion Using Forward Dynamic
Simulation with Four Body Segment Model

Qi An, Yuki Ishikawa, Tetsuro Funato, Shinya Aoi, Hiroyuki Oka,
Hiroshi Yamakawa, Atsushi Yamashita and Hajime Asama

Abstract Human motor behavior can be generated by distributed system. In this
study, human standing-up motion is focused as an important daily activity. Especially,
13 muscle activation of lower body and trunk measured during human standing-up
motion is decomposed into small numbers of modules of synchronized muscle acti-
vation called muscle synergy. Moreover human musculoskeletal model is developed
with four rigid body segments based on dynamics and anatomical characteristics of
human body. Forward dynamic simulation with the developed model showed that
four muscle synergies had their own contribution toward body function: bending
forward, moving the center of mass forward, extending whole body, and deceler-
ating the center of mass. Results also indicated that combinations of four modules
of synchronized muscle activation could generate human standing-up motion rather
than controlling individual muscles.

Keywords Muscle synergy · Human standing-up motion · Musculoskeletal model

1 Introduction

In this study, we analyze the human motion in terms of distributed modules of syn-
chronized muscle activation called muscle synergy. When humans move, they need
to incorporate with their redundant body system, i.e. humans have to control larger
degrees of freedom of muscles than those of joints in order to achieve the targeted
kinematics. Therefore, muscle activation cannot be determined even if the target
kinematics is given. To solve this ill-posed problem, the concept of muscle synergy

Q. An (B) · Y. Ishikawa · H. Oka · H. Yamakawa · A. Yamashita · H. Asama
The University of Tokyo, 3-7-1 Hongo, Bunkyou-ku, Tokyo 1138656, Japan
e-mail: anqi@robot.t.u-tokyo.ac.jp

T. Funato
The University of Electro-Communications, 1-5-1 Chofugaoka,
Chofu, Tokyo 1828585, Japan

S. Aoi
Kyoto University, Kyoto Daigaku Katsura, Nishikyo-ku, Kyoto 6158540, Japan

© Springer Japan 2016
N.-Y. Chong and Y.-J. Cho (eds.), Distributed Autonomous Robotic Systems,
Springer Tracts in Advanced Robotics 112, DOI 10.1007/978-4-431-55879-8_32

459

460 Q. An et al.

was previously proposed by Bernstein [1]. It suggested that humans did not con-
trol their individual muscles, but they autonomously coordinated muscle synergies.
Regarding the analysis of muscle synergy, it has been suggested that five modules of
synchronized muscle activation can account for a large amount of muscle activities
during human locomotion [2]. Another study demonstrated that some basic behavior
of a frog movement could be explained with small sets of synergies [3].

In our previous study, we analyzed human standing-up motion as an important
daily activity, where we developed a musculoskeletal model to ensure that three
muscle synergies were corresponded to characteristic kinematic movement of human
standing-up motion [4]. Moreover forward dynamic simulation validated that three
muscle synergies could generate human standing-up motion. However, our previous
study considered only the muscles in lower body and it could not explain one of
the four important phases of the standing-up motion, which was forward bending
of trunk. In order to fully understand and express human standing-up motion with
muscle synergies, it is necessary to extract important modules from both lower body
and upper trunk.

Therefore, in this study, our objectives are to elucidate important muscle synergies
from measured muscle activation of both lower body and trunk of human standing-
up motion. Moreover, musculoskeletal model is developed to represent human body
and muscles of lower body and trunk to clarify that human standing-up motion can
be achieved by four muscle synergies.

2 Methods

2.1 Synergy Model

This paper has employed the muscle synergy model to represent muscle activation of
human movement. It assumes that muscle activation during human movement can be
decomposed into spatial structure and temporal structure. Spatial structure is defined
as muscle synergy, and it determines relative excitation level of muscles. On the other
hand, temporal structure is defined as weighting coefficient which determines time-
varying amplitudes of muscle synergies. This muscle synergy model is expressed by

M ∼= WC, (1)

where M ∈ R
n×Tmax is a muscle activation matrix expressed as in

M =

⎛

⎜⎜⎜⎝

m1(t)
m2(t)

...

mn(t)

⎞

⎟⎟⎟⎠ =
⎛

⎜⎝
m1(1) · · · m1(Tmax)

...
. . .

...

mn(1) · · · mn(Tmax)

⎞

⎟⎠ . (2)

Muscle Synergy Analysis of Human Standing-up Motion … 461

Matrix M consists of muscle activation vector mi(i=1,...,n) to indicate discrete time-
varying muscle activation for different n muscles. Its element mi (t) indicates muscle
activation level of i th muscle at time t (1 ≤ t ≤ Tmax). W ∈ R

n×N and C ∈ R
N×Tmax

represent muscle synergy and weighting coefficient matrices respectively by

W = (w1 · · · wN) =
⎛

⎜⎝
w11 · · · w1N
...

. . .
...

wn1 · · · wnN

⎞

⎟⎠ , (3)

C =

⎛

⎜⎜⎜⎝

c1(t)
c2(t)

...

cN (t)

⎞

⎟⎟⎟⎠ =
⎛

⎜⎝
c1(1) · · · c1(Tmax)

...
. . .

...

cN (1) · · · cN (Tmax)

⎞

⎟⎠ . (4)

Muscle synergy matrix W consists of muscle synergy vector w j to represent
j th muscle synergy (j = 1, . . . , N). Elements of the muscle vector w j is wi j to
indicate activation level of i th muscle in j th muscle synergy. Time-varying weighting
coefficient matrix C consists of the vector c j , and its component c j (t) indicates
weighting coefficient of j th synergy at time t .

Figure 1 shows a schematic design of the muscle synergy model. In the figure,
three muscle synergies represent muscle activation. Figure 1a indicates three muscle
synergies (w1,2,3) and the bars in each square show excitation level of n muscles
involved in j th muscle synergy. On the other hand, Fig. 1b shows the corresponding
weighting coefficients (c1,2,3(t)). In Fig. 1c, n muscle activations are expressed by
linear summation of three muscle synergies and their weighting coefficients. In order
to decide muscle synergy matrix W and its time-varying weighting coefficients C,
non-negative matrix factorization (NNMF) [5] is used.

Time [s]Time [s]

Time [s]

Time [s]

(a) (b) (c)

W
ei
gh

t

E
xc

ita
tio

n
L

ev
el

E
xc

ita
tio

n
L

ev
el

E
xc

ita
tio

n
L

ev
el

W
ei
gh

t
W

ei
gh

t

Fig. 1 Muscle Synergy Model. a Muscle synergy determines relative excitation level of each
muscle. b shows time-varying weighting coefficients corresponding to synergies. c shows muscle
activations. Red solid lines, blue dashed lines, and green solid lines with circle markers show
muscle activation generated from each muscle synergy and corresponding time-varying weighting
coefficients. It indicates that three muscle synergies and their weighting coefficients generate n
muscle activations in this example. a Spatial structure. b Temporal structure. c Muscle activation

462 Q. An et al.

It is necessary to decide the best number of muscle synergies to represent human
standing-up motion. Coefficient of determination R2 is used to evaluate how much
variance of observed muscle activations can be explained from muscle synergies.
The number of muscle synergies is decided from two criteria. The first criterion is
that muscle synergies can account for a large amount (>95 %) of total variance of
muscle activation [6]. The other criterion is how the additional synergy affects the
performance of muscle synergy to explain the variance of muscle activation. One-
factor analysis of variance (ANOVA) is used to assess the effect of the number of
muscle synergies on the accuracy of the model. If there is a statistical significance,
the post-hoc test (Tukey-Kramer test) is used to evaluate the effect of increase of the
number of muscle synergies. Statistical significance level p is set to 0.05.

2.2 Musculoskeletal Model

This study focuses on sagittal movement of standing-up motion, and the human
body is modelled by four segments of shank, thigh, pelvis, and HAT (head, arm and
trunk). Figure 2a illustrates the developed skeletal model. Joint angles θk(k=1,2,3,4)

are defined as the angle from the distal segment. Segment length, position of center
of mass, mass, moment of inertia are defined as Lk , LG

k , Mk , and Ik . Given these
parameters, equation of motion is expressed by

I(�, �̇)�̈ + h(�, �̇) + g(�) = TJNT + �(�, �̇), (5)

TJNT = TMUS + TPOS, (6)

Shank

Thigh

Pelvis

HAT

Chair

TA

GAS

SOL

RF
SAR

VAS
BFS

BFL

RA

ES
LD

GMA IL

CE

PE

(a) (b) (c)

Fig. 2 Developed Musculoskeletal Model. a Shows four segment model of human body: shank,
thigh, pelvis, and HAT. b Shows the floor model which applies horizontal and vertical forces on
the hip joint with viscous and elastic elements. c Shows considered 13 muscles. Hill type model is
used to represent muscles. a Skeletal model. b Floor model. c Muscle model

Muscle Synergy Analysis of Human Standing-up Motion … 463

Table 1 Parameters for skeletal model below shows segment parameters of shank, thigh, pelvis,
and HAT segments

L K (m) MK (m) LG
K (m) IK (m)

Shank 0.5 4.8 0.15 0.04

Thigh 0.4 9.6 0.16 0.13

Pelvis 0.1 17.6 0.01 0.05

HAT 0.7 48.0 0.14 3.55

where I(�, �̇) ∈ R
4×4, h(�, �̇) ∈ R

4×1, g(�) ∈ R
4×1 indicate an inertia matrix,

a non-linear term, and a gravitational force term. They are obtained from Lagrange
equation. Vector � ∈ R

4×1 represents joint angles. Component of � is each joint
angle θk . Vector �(�, �̇) ∈ R

4×1 indicates horizontal and vertical reaction force
generated from elastic and viscous elements as shown in Fig. 2b. Reaction force is
applied to the hip joint when the hip position is lower than the chair height H . Vector
TJNT ∈ R

4×1 indicates joint torque, and it consists of muscular torque (TMUS ∈ R
4×1)

and posture stabilization torque (TPOS ∈ R
4×1) as in Eq. (6). Vector TMUS is muscular

joint torque calculated from the muscle model as explained below. Vector TPOS is the
joint torque to stabilize posture, and it is determined from PD control to follow the
desired trajectories. Table 1 shows detailed parameters for body segments. Segment
parameters are decided from measured data and anatomical data of a human body
[7]. Also, coefficient of elastic elements of reaction force was 10,000 N/m for the
vertical direction. Coefficients of viscous elements were set to be 300 and 400 Ns/m
for horizontal and vertical directions. The chair height H was set to be 0.555 m.

Thirteen muscles in lower body and trunk which either flex or extend the body
segments are considered including mono and bi articular muscles (Fig. 2c): tibialis
anterior (TA), gastrocenomius (GAS), soleus (SOL), rectus femoris (RF), vastus
lateralis (VAS), biceps femoris long head (BFL), biceps femoris short head (BFS),
gluteus maximus (GMA), sartorius (SAR), rectus abdominis (RA), elector spine
(ES), latissimus dorsi (LD), and iliopsoas (IL).

Vector TMUS is generated from individual muscles and it is calculated from
moment arm of muscles and muscular tension by

TMUS = AF(li , l̇i , mi), (7)

A =
⎛

⎜⎝
r11 · · · r1n
...

. . .
...

r41 · · · r4n

⎞

⎟⎠ . (8)

where A ∈ R
4×n is a moment arm matrix that indicates the moment arm length of

muscles to joints. Its component rki indicates the moment arm length of i th muscle
on the joint k. Moment arm length rki is zero if the muscle i does not attach to the

464 Q. An et al.

joint k, and otherwise it is either positive or negative depending on either the muscle
extends or flexes the ankle, knee, hip, and pelvis joints. In this study, moment arm is
supposed to be constant regardless of body posture �.

Vector F ∈ R
n×1 indicates muscular tension. Muscle is represented by the Hill type

model [8] (Fig. 2c). Using the model, muscular force of i th muscle Fi is generated
from two components: contractile element (CE) and parallel elastic element (PE).
Fi is given by

Fi (li , l̇i , mi) = FCE
i + FPE

i , (9)

FCE
i = Fmax

i ffl(̃li) ffv(̃vi)mi , (10)

FPE
i = Fmax

i fpe (̃li), (11)

l̃i = (lo
i +

4∑

k=1

(rki (θk − θo))/ lo
i , (12)

ṽi = 1

10lo
i

dli

dt
. (13)

where FCE
i is the force generated by CE that is calculated from maximum isometric

force (Fmax
i), muscle activation (mi), and muscle dynamics (ffl and ffv). When nor-

malized muscle length l̃i and normalized muscular velocity ṽi are given, force-length
relationship ffl(̃li) and force-velocity relationship ffv(̃vi) are considered as muscle
dynamics [9, 10]. On the other hand, PE generates force when the muscle length li

is longer than its optimal length as in Eq. (11). The force of PE F P E
i is calculated

according to the normalized muscle length l̃i [11]. The normalized muscle length l̃i

is decided from moment arm and changes of the current joint angle from the opti-
mal joint angle θo (Eq. (12)) [12]. The optimal joint angles is equal to the posture
when humans stand vertically. The normalized muscular velocity ṽi is obtained from
Eq. (13). The parameters for muscle models were determined from previous studies
[12–14].

Vector TPOS is generated from PD control to follow the target kinematics and is
given by

TPos(t) =
{

0 when t < λdelay

Kq
PΔq(t − λ) + Kq

DdΔq(t − λ) + Kq̇
DdΔq̇(t − λ) when t ≥ λdelay,

(14)

Δq(t) = q̂(t) − q(t), (15)
Δq̇(t) = ˆ̇q(t) − q̇(t), (16)

where q(t) and q̇(t) indicate the model’s joint angle and angular velocity from
the horizontal direction. On the other hand, q̂(t) and ˆ̇q(t) are targeted kinematics.
Additionally, nervous transmission delay λ is considered in this study to calculate
TPOS. Gains for proportional and derivative control are manually determined as shown
in Table 2. Nervous transmission delay λ was set to be 100 ms.

Muscle Synergy Analysis of Human Standing-up Motion … 465

Table 2 Parameters for postural control

Kq
P Kq

D Kq̇
D

Foot 250 33,500 1,500

Knee 350 43,500 1,000

Hip 80 1,570 70

Lumbar 400 41,000 2,500

Below shows parameters of skeletal model and for PD controller of the foot, knee, hip and lumbar
joints

2.3 Forward Dynamics Simulation

Forward dynamic simulation is conducted to generate movement with the developed
musculoskeletal model. Before the simulation, body kinematics, reaction force, and
muscle activation are averaged for all data in a measurement experiment explained
in the next section. In order to generate the standing-up motion, firstly joint torque
TJNT is calculated using inverse dynamics from the average body kinematics and
reaction force. Then the joint torque TJNT is decomposed to the muscle activation
mi which can necessarily generate the joint torque for the standing-up motion. Since
our musculoskeletal model has bi-articular muscles, the muscle activation cannot be
determined uniquely from the given joint torque. Therefore in this study, the muscle
activation mi is decided through optimization methodology to minimize squared
error between muscle activation mi and mean of measured muscle activation m̂i .

Muscle synergy w j and time-varying weighting coefficient c j are calculated from
muscle activation m to generate the standing-up motion. In particular, time-varying
weighting coefficient is expressed in a trapezoid wave. During the simulation TJNT

consists of muscular torque TMUS and posture stabilization torque TPOS. Muscular
torque is generated from w j and c j and from body posture � and �̇. Posture stabi-
lization torque (TPOS) is decided to follow the average body kinematics. The average
joint angles and angular velocities at the start of the data are used for initial posture
of the simulation. For numerical calculation, fourth order Runge-Kutta method is
used with time step of 1 ms.

2.4 Empirical Experiment with Humans

The measurement experiment was conducted to use in the inverse dynamics of
the musculoskeletal model and to evaluate the results of forward dynamic simu-
lation. One young healthy male participated in the experiment (age: 27 years, height:
1.76 m, weight: 77 kg). Muscle activation was measured in 1,000 Hz by DL-720
(S&ME Corp.). In the experiment, 17 body positions were measured according to
Helen Hayes marker set, and they were obtained in 200 Hz using an optical motion
capture system MAC3D (MotionAnalysis Corp.). Reaction force from participant’s

466 Q. An et al.

hip was measured in 64 Hz using force sensors (Nitta Corp.). Consent was obtained
before starting the experiment, and this study was conducted with approval by the
Institute Review Board (IRB) of the University of Tokyo.

Muscle activation data was filtered with 10 Hz high pass and 200 Hz low pass
second order butterworth filter. Also muscle activation data was rectified and normal-
ized based on maximum voluntary contraction (MVC). Body position and reaction
force data were filtered with low-pass second order butterworth filter with cut-off
frequency 10 Hz and 20 Hz respectively. Joint angles θ1,2,3,4 were calculated using
SIMM (MusculoGraphics Corp.).

Our experiment consisted of two trials. Each trial continued for 150 s and the
participant was asked to repeat the sit-to-stand and stand-to-sit motion during the
trial. We used measured data only during the sit-to-stand motion. The chair height was
adjusted to the length of his shank segment. During the experiment, the participant
was asked to cross their arms in front of their chest in order to avoid the use of their
hands and arms. The ankle joint angle was set vertically to the ground at the start of
the motion, and the participant was told not to move their feet during measurement.
Moreover, the subject was asked to perform the standing-up motion in a comfortable
speed.

2.5 Analysis of Standing-up Motion

In order to investigate the relationship between muscle synergies and body kine-
matics, four kinematic important phases are focused. It is known that there are four
characteristic events (phases 1–4) in human standing-up motion [15]. Figure 3 illus-
trates movement during four phases in standing-up motion and they are described as
follows.

1. Phase 1: Bending trunk forward to generate momentum.
2. Phase 2: Rising hip to move the center of mass forward.
3. Phase 3: Extending body to move the center of mass upward.
4. Phase 4: Stabilizing posture.

The start point of each phase is determined from measured body kinematics and
reaction force data. The start of phase 1 is decided when humans bend their trunk
forward. Therefore it is decided as the horizontal shoulder velocity exceeds the
threshold p1. Phase 2 begins when humans rise their hip, and the start time is obtained
from the time when reaction force of hip is below the threshold p2. Phase 3 starts
when extension of body starts after the forward movement of the center of mass. The
start time of phase 3 is obtained when the horizontal knee position reaches the most
front point. At last, the start point of phase 4 is obtained when humans complete the
standing-up motion. It is calculated from the time when vertical shoulder velocity
is below the threshold p4. Measured data 1.0 s before and 1.0 s after the time of hip
rising is used for analysis.

Muscle Synergy Analysis of Human Standing-up Motion … 467

Phase 1 Phase 2 Phase 4Phase 3Initial Posture

Fig. 3 Four Kinematic Phases in Standing-up Motion. In phase 1, humans start bending. In phase 2,
humans move their center of mass forward. In phase 3, humans extend their body to move upward.
In phase 4, humans decelerate the movement of the center of mass

3 Results

3.1 Results of Measured Standing-up Motion

From the measurement experiment, 28 trials of standing-up motion were obtained.
Thresholds to decide the phase start were set to 0.2 m/s, 5 N, and 0.0 m/s respectively
for p1, p2, and p4. In all obtained trials, average and standard deviation of start
times of four phases were 0.29 ± 0.07 s, 1.00 s, 1.42 ± 0.10 s, and 1.70 ± 0.25 s
respectively for phases 1–4.

3.2 Results of Muscle Synergy from Measured Data

Figure 4 shows the average and standard deviation of the coefficient of determina-
tion R2 for different numbers of muscle synergies. Muscle synergies w j and time-
varying weighting coefficient c j were calculated from m. Coefficients of determi-
nation exceed 95 % of the variance when the number of muscle synergies was four.
Moreover, ANOVA revealed a statistical significance on the coefficient of determi-
nation according to the number of muscle synergies. Therefore a post-hoc test was
applied to the neighbouring number of synergies to investigate whether additional
synergies could increase the coefficient of determination. Results showed a statistical
significance between the number of muscle synergies one and two, two and three,
and three and four. Therefore, the number of muscle synergies was set to be four.

Figure 5a, c, e, g illustrate muscle activation level included in extracted muscle
synergies 1–4. Figure 5b, d, f, h illustrate time-varying weighting coefficients corre-
sponded to four different synergies. In the figures, vertical lines respectively show
start time of phases 1–4.

468 Q. An et al.

0.4

0.6

0.8

1.0

1 2 3 4 5 6 7 8 9 10 11

Number of Muscle Synergy

* * *

Fig. 4 Results of coefficient of determination. Results of statistical analysis shows that there was
statistical significance between the number of muscle synergies one and two, two and three, and
three and four. Moreover, four muscle synergies could explain more than 95 % of muscle activation

0.0

0.5

1.0

T
A

G
A

S

SO
L

R
F

V
A

S

B
FL

B
FS

G
M

A

SA
R

R
A E
S

L
D ILA
ct

iv
at

io
nL

ev
el

1 2 3 4

0.0

1.0

2.0

0.0 0.5 1.0 1.5 2.0

Time [s]

0.0 0.5 1.0 1.5 2.0

Time [s]

0.0 0.5 1.0 1.5 2.0

Time [s]

0.0 0.5 1.0 1.5 2.0

Time [s]

0.0

0.5

1.0

T
A

G
A

S

SO
L

R
F

V
A

S

B
FL

B
FS

G
M

A

SA
R

R
A E
S

L
D ILA
ct

iv
at

io
n

L
ev

el

0.0

1.0

2.0 1 2 3 4

0.0

0.5

1.0

T
A

G
A

S

SO
L

R
F

V
A

S

B
FL

B
FS

G
M

A

SA
R

R
A E
S

L
D ILA
ct

iv
at

io
n

L
ev

el

0.0

1.0

2.0 1 2 3 4

0.0

0.5

1.0

T
A

G
A

S

SO
L

R
F

V
A

S

B
FL

B
FS

G
M

A

SA
R

R
A E
S

L
D ILA
ct

iv
at

on
 L

ev
el

0.0

1.0

2.0

W
ei
gh

tin
g

C
oe

ff
ic

ie
nt

W
ei
gh

tin
g

C
oe

ff
ic

ie
nt

W
ei
gh

tin
g

C
oe

ff
ic

ie
nt

W
ei
gh

tin
g

C
oe

ff
ic

ie
nt

1 2 3 4

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 5 Muscle synergy of forward dynamics simulation. a, c, e, and g show relative excitation
muscle activation included in each synergy. b, d, f, and h show time-varying weighting coefficients
of muscle synergies. The vertical lines show start time of four different phases. a Muscle synergy 1.
b Muscle synergy 1. c Muscle synergy 2. d Muscle synergy 2. e Muscle synergy 3.
f Muscle synergy 3. g Muscle synergy 4. h Muscle synergy 4

Muscle Synergy Analysis of Human Standing-up Motion … 469

1.0
1.2
1.4
1.6

0.0 0.5 1.0 1.5 2.0A
ng

le
 [

ra
d]

Time [s]

Simulation

Measurement
0.0
0.5
1.0
1.5
2.0

0.0 0.5 1.0 1.5 2.0A
ng

le
 [

ra
d]

Time [s]

-2.0
-1.5
-1.0
-0.5
0.0

0.0 0.5 1.0 1.5 2.0A
ng

le
 [

ra
d]

Time [s]

-1.2
-0.8
-0.4
0.0

0.0 0.5 1.0 1.5 2.0A
ng

le
 [

ra
d]

Time [s]

-250

-150

-50

50

0.0 0.5 1.0 1.5 2.0

Fo
rc

e
[N

]

Time [s]

Simulation

Measurement
0

200
400
600
800

0.0 0.5 1.0 1.5 2.0

Fo
rc

e
[N

]

Time [s]

0.0 0.5 1.0 1.5 2.0

Time [s]

Simulation

Measurement

(a) (b)

(d)(c)

(e) (f)

(g)

Fig. 6 Forward dynamics simulation results. a–d show comparison of joint angles (θ1–θ4) between
simulated ones (solid lines) and measured ones (dashed lines). e–f show comparison of horizontal
and vertical reaction force between simulated ones (solid lines) and measured ones (dashed lines).
g shows stick pictures of simulated standing-up motion. a Ankle joint angle θ1. b Knee joint angle θ2.
c Hip joint angle θ3. d Lumbar joint angle θ4. e Horizontal reaction force. f Vertical reaction force.
g Stick pictures of simulated standing-up motion

3.3 Results of Forward Dynamics Simulation

Figure 6a–d show comparison between simulated joint angles and measured angles
of the ankle, knee, hip, and lumbar joints respectively. Figure 6e–f shows comparison
between simulated and measured reaction force in horizontal and vertical directions.
Figure 6g shows the simulated movement of the musculoskeletal model performing
standing-up motion.

470 Q. An et al.

4 Discussion

Four muscle synergies were obtained from the measured muscle activities during
standing-up motion. Muscle excitation level of muscle synergies and time-varying
weighting coefficients showed that each synergy had different contribution to human
standing-up motion and it corresponded to characteristic four phases of standing-up
motion reported previously [15].

Muscle synergy 1 involved muscle activation of RA and it was mainly activated
during phase 1. This implied that humans activated RA to flex their trunk for forward
bending (generating momentum). Similarly, muscle synergy 2 was activated the
most at the start time of phase 2. Muscle synergy 2 was mainly contributed by TA.
It corresponded to the movement during phase 2 to move the center of mass forward
by dorsiflexion of the ankle by TA. On the other hand, VAS and ES were activated
in muscle synergy 3 to extend their knee and trunk. This muscle synergy was mainly
activated during phase 3 to extend whole body and lift up the center of mass upward.
At last, activation of muscle synergy 4 was mainly seen in phase 4. In the synergy
4, SOL was activated to extend ankle joint to decelerate the horizontal movement of
center of mass.

Different from our previous study [4], four muscle synergies have been extracted
from human standing-up motion instead of three muscle synergies. Since our previous
study only considered lower body muscles, it could not fully express the movement
of trunk. However, this study has included additional muscles in trunk, and therefore
the muscle synergy 1 was newly obtained. Although most of the studies to analyze
standing-up motion considered only three joint angles of ankle, knee and hip, this
study developed musculoskeletal model of four rigid body segments according to
the anatomical contribution of each muscle on body joints. Our forward dynamics
simulation results showed that four muscle synergies could achieve a dynamically
plausible standing-up motion.

5 Conclusions and Future Works

Four essential muscle synergies were extracted from measured muscle activation
of lower body and trunk during the human standing-up motion. Muscles activation
level involved in each muscle synergy and its time-varying weighting coefficients
correspond to characteristic body movement of standing-up motion. Moreover the
musculoskeletal model was developed considering dynamics and anatomical charac-
teristics of human body. Our forward dynamics simulation showed that four muscle
synergies could successfully achieve the human standing-up motion instead of con-
trolling individual muscles.

One of our future direction will be study of how the obtained muscle synergies
are robust for environmental changes. For example, it is necessary to investigate
whether four muscle synergies can realize the motion from different chair seat heights

Muscle Synergy Analysis of Human Standing-up Motion … 471

or different feet positions. Another interesting direction is to analyze structure of
muscle synergies. In the current study, four muscle synergies are obtained, but it is
unclear whether each synergy works independently or one synergy is dependent on
another synergy. Using the developed musculoskeletal model, relationship between
each muscle synergy will be studied.

Acknowledgments This work was in part supported by JSPS KAKENHI Grant Number 26120005
and 26120006, the MEXT KAKENHI, Gtant-in-Aid for Scientific Research (B) 24300198, JST
RISTEX Service Science, Solutions and Foundation Integrated Research Program, and Grant-in-
Aid for JSPS Fellows 24·8702.

References

1. Bernstein, N.: The Co-ordination and Regulation of Movement. Pergamon, Oxford (1967)
2. Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Five basic muscle activation patterns account for

muscle activity during human locomotion. J. Physiol. 556, 267–282 (2004)
3. d’Avella, A., Bizzi, E.: Shared and specific muscle synergies in natural motor behavior. Proc.

Natl. Acad. Sci. 102, 3076–3081 (2005)
4. An Q, Ishikawa Y, Funato T, Aoi S, Oka H, Yamakawa H, Yamashita A, Asama H: Generation of

human standing-up motion with muscle synergies using forward dynamic simulation. In: Pro-
ceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA2014),
pp. 730–735. Hong Kong (China), June 2014

5. Lee, D.D., Seun, H.S.: Learning the parts of objects by non-negative matrix factorization.
Nature 401, 788–791 (1999)

6. Ting, L.H., Macpherson, J.M.: A limited set of muscle synergies for force control during a
postural task. J. Neurophysiol. 93, 609–613 (2005)

7. Clauser, C.E., McConville, J.T., Young, J.W.: Weight, Volume, and Center of Mass of Segments
of Human Body, pp. 69–70. Wright-Patterson Air Force Basem Ohion, AMRL Technical Report
(1969)

8. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics
and motor control. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

9. Hatze, H.: Myocybernetic control models of skeletal muscles. Biol. Cybern. 25, 103–119 (1977)
10. Ogihara, N., Yamazaki, N.: Generation of human bipedal locomotion by a bio-mimetic neuro-

musculo-skeletal model. Biol. Cybern. 84, 1–11 (2001)
11. Kuo, P., Deshpahde A.D.: Contribution of passive properties of muscle-tendon units to

the metacarpophalangeal joint torque of the index finger. In: Proceedings of the 2010
IEEE RAS&EMBS International Conference on Biomedical Robotics and Biomechatronics
(BioRob2010), pp. 288–294 (2010)

12. Riener, R., Fuhr, T.: Patient-driven control of FES-supported standing up, a simulation study.
IEEE Trans. Rehabil. Eng. 6, 113–124 (1998)

13. Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower limb for analysis of
human movement. Ann. Biomed. Eng. 38, 269–279 (2010)

14. Jorgensen, M.J., Marras, W.S., Granata, K.P., Wian, J.W.: MRI-derived moment-arms of the
female and male spine loading muscles. Clin. Biomech. 16, 182–193 (2001)

15. Schenkman, M., Berger, R.A., Patrick, O.R., Mann, R.W., Hodge, W.A.: Whole-body move-
ments during rising to standing from sitting. Phys. Ther. 70, 638–651 (1990)

	Series Foreword
	Preface
	Distributed Systems for Urban Mobility
	Multi-robot Collision Avoidance and Applications
	Design and Navigation of Robots that Roll, Run, and Fly
	A Synchronization Control Approach to Networked Robotic Systems
	Program Committee

	Contents
	Part I
Collaborative Exploration, Localization,and Mapping
	Distributed Online Patrolling with Multi-agent Teams of Sentinels and Searchers
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Theoretical Analysis
	5 Simulations
	6 Conclusions
	References

	Human-Robot Collaborative Topological Exploration for Search and Rescue Applications
	1 Introduction
	2 Background
	2.1 Homotopy Class of Trajectories
	2.2 h-augmented Graph
	2.3 Hausdorff Distance as a Metric on Space of Trajectories

	3 Algorithm Design
	3.1 Human Path Prediction Algorithm
	3.2 Robot Assignment Algorithm
	3.3 Human's Path History Truncation for Robustness to Unpredictable Actions

	4 Results
	5 Conclusion
	References

	A Repartitioning Algorithm to Guarantee Complete, Non-overlapping Planar Coverage with Multiple Robots
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Definitions and Notations

	4 Distributed Spatial Partitioning
	4.1 Analytical Results

	5 Experimental Results
	6 Conclusions and Future Work
	References

	On Combining Multi-robot Coverage and Reciprocal Collision Avoidance
	1 Introduction
	2 A Taxonomy of Collision Scenarios in Multi-robot Coverage
	2.1 Categorization of Collision Scenarios
	2.2 The Collision Scenarios in Voronoi Coverage

	3 Combining Voronoi Coverage and RVO
	3.1 CVT-based Voronoi Coverage
	3.2 Reciprocal Collision Avoidance Using RVO and ORCA
	3.3 Properties of the Combined Method

	4 Simulation of Robotic Use Cases
	4.1 Recharging Use Case
	4.2 Push-Through Use Case
	4.3 Sweeping Use Case
	4.4 Perturbation Use Case

	5 Conclusions and Future Work
	References

	Distributed Safe Deployment of Networked Robots
	1 Introduction
	2 Related Work
	3 Background
	3.1 Generalized Voronoi Diagram
	3.2 Locational Optimization Based Deployment

	4 Safe Deployment Modeling
	5 Proposed Solution
	5.1 Discrete Approximation
	5.2 Distributed Algorithm

	6 Results
	7 Conclusion
	References

	MarSim, a Simulation of the MarsuBots Fleet Using NetLogo
	1 Introduction
	1.1 The Simulator and the Fleet Behind It

	2 Simulation
	2.1 NetLogo
	2.2 Scenario

	3 Results
	4 Future Work
	References

	Scalable Cooperative Localization with Minimal Sensor Configuration
	1 Introduction
	2 Sensor Configurations
	2.1 Probabilistic Graphical Models
	2.2 Uncertainty Modeling
	2.3 Scalability Analysis

	3 Cooperative Localization
	3.1 Sensor Characteristics
	3.2 Temporal Model
	3.3 Tracking and Localization

	4 Experimental Results
	4.1 Experiment Setup
	4.2 Evaluation and Analysis
	4.3 Error Correlation

	5 Conclusion
	References

	Towards Cooperative Localization in Robotic Swarms
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Theoretical Formalization
	3.2 Cooperative Swarm Localization
	3.3 Swarm Motion Strategy
	3.4 Complexity Analysis

	4 Experiments
	5 Coclusion and Future Work
	References

	MOARSLAM: Multiple Operator Augmented RSLAM
	1 Introduction
	2 Related Work
	3 Scalable Mapping
	3.1 Map Structure
	3.2 Multi-device Mapping
	3.3 Map Metadata

	4 Client Processing
	4.1 Client Front-End
	4.2 Client Loop Closure

	5 Server
	5.1 API

	6 Experimental Evaluation
	6.1 Quantitative Results
	6.2 Qualitative Results

	7 Discussion
	8 Conclusion
	References

	Part II
Cooperative Manipulationand Task Allocation
	Multi-robot Manipulation Without Communication
	1 Introduction
	1.1 Related Work

	2 Modeling and Problem Formulation
	2.1 Translational Dynamics
	2.2 Rotational Dynamics
	2.3 Problem Formulation

	3 Control Strategy and Analysis
	3.1 Force Coordination with Consensus
	3.2 Reduced State Representation
	3.3 Controller Design and Trajectory Following

	4 Simulations
	5 Conclusion
	References

	Distributed Path Planning for Collective Transport Using Homogeneous Multi-robot Systems
	1 Introduction
	2 Model and Assumptions
	3 Distributed Path Planning
	3.1 Configuration Space
	3.2 Distributed Bellman-Ford Algorithm
	3.3 Transporting the Object

	4 Experimental Results
	5 Scope and Limitations
	6 Conclusion and Future Work
	References

	Collective Construction of Dynamic Equilibrium Structure Through Interaction of Simple Robots with Semi-active Blocks
	1 Introduction
	1.1 Related Work
	1.2 Contribution of This Paper

	2 Model
	2.1 Algorithm for a Robot
	2.2 Dynamics of a Block
	2.3 Dynamic Equilibrium Structure

	3 Results and Analysis
	4 Extension for Adaptive Behavior
	5 Discussion
	6 Conclusion
	References

	Cooperative Mobile Robot Control Architecture for Lifting and Transportation of Any Shape Payload
	1 Introduction
	2 Paradigm and Problem Statement
	3 Cooperative Mobile Robot Manipulation and Transport
	3.1 Cooperative m-bots Positioning and Co-manipulation
	3.2 Multi-robot Transport

	4 Conclusions and Future Work
	References

	A Response Threshold Sigmoid Function Model for Swarm Robot Collaboration
	1 Introduction
	1.1 Related Work

	2 Response Threshold-Based Task Allocation
	3 Macroscopic Analysis
	3.1 A General Model of Probabilistic Task Allocation
	3.2 From Individual Choices to Team-Level Collaboration

	4 Microscopic Model
	5 Results
	6 Discussion
	7 Conclusion
	References

	Potential Game-Theoretic Analysis of a Market-Based Decentralized Task Allocation Algorithm
	1 Introduction
	1.1 Multi-assignment Task Allocation
	1.2 Objectives

	2 Background
	2.1 Distributed Welfare Game
	2.2 Consensus-Based Bundle Algorithm (CBBA)

	3 Multi-assignment Task Allocation as Distributed Welfare Game
	3.1 Resource Allocation Formulation
	3.2 Interpretation as Distributed Welfare Game

	4 CBBA as Dynamic Ordered Protocol
	4.1 Sequential Greedy Solution Equivalence
	4.2 Properties

	5 Conclusions
	References

	The Hybrid Information and Plan Consensus Algorithm with Imperfect Situational Awareness
	1 Introduction
	2 Problem Statement
	3 HIPC Overview
	3.1 HIPC Notation
	3.2 HIPC Algorithmic Description
	3.3 Convergence and Performance Insights

	4 Experimental Results
	5 Conclusion
	References

	Part III
Formation Control and Path Planning
	Adaptive Leader-Follower Formation in Cluttered Environment Using Dynamic Target Reconfiguration
	1 Introduction
	2 Control Architecture
	2.1 Vehicle and Target Set-Point Modeling
	2.2 Elementary Controllers

	3 Navigation in Formation
	3.1 Leader-Follower Approach
	3.2 Proposed Strategy for Formation Reconfiguration

	4 Simulations
	5 Conclusions and Prospects
	References

	A Graph-Based Formation Algorithm for Odor Plume Tracing
	1 Introduction
	2 Controller Design
	2.1 Sensing
	2.2 Laplacian Feedback
	2.3 Dynamic Spacing
	2.4 Upwind Movement and Centering
	2.5 Behavior Aggregation

	3 Evaluation
	3.1 Setup
	3.2 Results

	4 Conclusions
	References

	Multi-agent Visibility-Based Target Tracking Game
	1 Introduction
	2 Problem Description
	3 Cell Decomposition Around a Corner
	4 Extension to General Environments
	4.1 Case 1: N p = Ne = 1
	4.2 Case 2: Np > 1, Ne > 1

	5 Simulation
	6 Conclusion
	References

	Glider CT: Analysis and Experimental Validation
	1 Introduction
	2 Background: Underwater Glider Navigation
	3 Preliminary Work: Problem Formulation of Glider CT
	4 Analysis of Glider CT
	5 The Convergence of the Glider CT Algorithm
	6 Experimental Results
	7 Conclusion
	References

	Path Planning for Multi-agent Jellyfish Removal Robot System JEROS and Experimental Tests
	1 Introduction
	2 Formation Control and Path Planning of JEROS
	2.1 Design of JEROS
	2.2 Formation Control
	2.3 Path Planning and Following

	3 Experiments
	3.1 Formation Control Tests
	3.2 Jellyfish Removal Tests

	4 Conclusions
	References

	Motion Planning of Multiple Mobile Robots Based on Artificial Potential for Human Behavior and Robot Congestion
	1 Introduction
	2 Artificial Potential Method
	2.1 Potential Field
	2.2 Approaches to Problems of Previous Repulsive Potential

	3 Behavior Potential for Moving Obstacles
	3.1 Related Works on Moving Obstacles
	3.2 Mathematical Formulation of Behavior Potential

	4 Congestion Potential for Robots
	4.1 Related Works on Congestion
	4.2 Mathematical Formulation of Congestion Potential

	5 Simulation Experiments
	5.1 Experimental Conditions
	5.2 Experimental Results and Effectiveness of Motion Planning

	6 Human Sensing System
	6.1 Behavior Potential Based on Measurement
	6.2 Potential Generated from Actual Human Behavior

	7 Conclusions
	References

	DisCoF: Cooperative Pathfinding in Distributed Systems with Limited Sensing and Communication Range
	1 Introduction
	2 Related Work
	3 DisCoF
	3.1 Problem Formulation
	3.2 Local Window
	3.3 Coupling in OC
	3.4 Computing mathcalQ

	4 Push and Pull
	4.1 Overview
	4.2 Assigning Priorities
	4.3 Maintaining and Expanding ω
	4.4 Analysis

	5 Conclusions
	References

	Decentralized Multi-agent Path Selection Using Minimal Information
	1 Introduction
	2 Problem Setup
	3 Methods
	4 Simulations
	5 Discussion
	References

	Scalable Formation Control of Multi-robot Chain Networks Using a PDE Abstraction
	1 Introduction
	2 Problem Formulation
	3 Limitations on Controllability
	4 Trajectory Planning
	4.1 Unforced Wave Equation Component
	4.2 Forced Wave Equation Component

	5 Simulation Results
	6 Conclusions and Future Work
	References

	Decoupled Formal Synthesis for Almost Separable Systems with Temporal Logic Specifications
	1 Introduction
	2 Preliminaries
	3 Problem Formulation
	4 Solution Approach
	5 Algorithms
	5.1 Comments on Algorithm 1
	5.2 Comments on Algorithm 2
	5.3 Comments on Algorithm 3

	6 Analysis
	7 Experiments
	7.1 Quantifying Coupling
	7.2 Simulation Trials

	References

	Part IV
Multi-Robot Communicationand Control Architecture
	Knowledge Co-creation Framework: Novel Transfer Learning Method in Heterogeneous Multi-agent Systems
	1 Introduction
	2 Learning Mechanisms and Transfer Method of Knowledge
	2.1 Reinforcement Learning
	2.2 Transfer Learning in Reinforcement Learning
	2.3 Transfer Learning in Multi-agent Domains

	3 Hierarchical Transfer Learning
	3.1 Ontology-Based ITMs
	3.2 Transfer of Knowledge

	4 Task Description
	4.1 Pursuit Game
	4.2 Difference in Tasks
	4.3 Heterogeneity of Agents
	4.4 Experimental Conditions

	5 Experimental Results and Discussion
	5.1 Self-transfer Results
	5.2 HTL Results

	6 Conclusion
	References

	Distributed Communication and Localization Algorithms for Homogeneous Robotic Swarm
	1 Introduction
	2 Wireless Network for Communication and Localization
	2.1 Hybrid Wireless Network Strategy Using IR and RF
	2.2 Self-synchronization via IR-Based Communication
	2.3 RF-Based Distance Measurement Using Bi-directional RSSI
	2.4 Algorithm Evaluation

	3 Distributed Algorithms for Global Shape Formation
	3.1 Dynamic Model of the Robotic Swarm
	3.2 Dispersion and Paired Line-Formation Algorithms
	3.3 Simulation Results

	4 Conclusion and Discussion
	References

	Distributed Co-optimisation of Throughput for Mobile Sensor Networks
	1 Introduction
	1.1 Literature Review
	1.2 Motivation
	1.3 Contributions of This Paper
	1.4 Paper Outline

	2 Graph-Based Network Model---A Short Tutorial
	3 Preliminaries and Problem Statement
	3.1 Relative Localisation and Communication Capacity
	3.2 Shortcomings of the Max-Flow Min-Cut Theorem in Distributed Schemes

	4 Distributed Co-optimisation
	5 Monte-Carlo Simulations and Discussions
	5.1 Experiment Setup and Performance Metrics:
	5.2 Results and Discussions

	6 Conclusions and Future Directions
	References

	Detection and Notification of Failures in Distributed Component-Based Robot Applications Using Blackboard Architecture
	1 Introduction
	2 Blackboard Architecture
	3 Failure/Recovery Monitor
	3.1 Failure/Recovery Functions
	3.2 Aspect-Oriented Detection of Failures
	3.3 Cause Analysis of Failures

	4 Failure/Recovery Notifier
	5 Blackboard Architecture for MSRDS
	5.1 Implementation of Blackboard Architecture with MSRDS
	5.2 Unmanned Ground Vehicle (UGV) Application with MSRDS
	5.3 Analysis of Blackboard Architecture

	6 Related Work
	7 Conclusion
	References

	Coordination of Modular Robots by Means of Topology Discovery and Leader Election: Improvement of the Locomotion Case
	1 Introduction
	2 ModRED System
	3 Topology Discovery
	3.1 Mapping Local Neighbors
	3.2 Broadcasting My Neighbors' List Among the Modules
	3.3 Topology Generation Process

	4 Leader Election
	4.1 Bully Algorithm

	5 Experimental Results
	5.1 Simulation Results
	5.2 Implementation in the Hardware of ModRED

	6 Conclusions and Future Work
	References

	Muscle Synergy Analysis of Human Standing-up Motion Using Forward Dynamic Simulation with Four Body Segment Model
	1 Introduction
	2 Methods
	2.1 Synergy Model
	2.2 Musculoskeletal Model
	2.3 Forward Dynamics Simulation
	2.4 Empirical Experiment with Humans
	2.5 Analysis of Standing-up Motion

	3 Results
	3.1 Results of Measured Standing-up Motion
	3.2 Results of Muscle Synergy from Measured Data
	3.3 Results of Forward Dynamics Simulation

	4 Discussion
	5 Conclusions and Future Works
	References

