
Chapter 9
Smart Posterboard: Multi-modal Sensing
and Analysis of Poster Conversations

Tatsuya Kawahara

Abstract Conversations in poster sessions in academic events, referred to as poster
conversations, pose interesting and challenging topics on multi-modal multi-party
interactions. This article gives an overview of our CREST project on the smart
posterboard for multi-modal conversation analysis. The smart posterboard has mul-
tiple sensing devices to record poster conversations, so we can review who came to
the poster and what kind of questions or comments he/she made. The conversation
analysis combines speech and image processing such as face and eye-gaze tracking,
speech enhancement and speaker diarization. It is shown that eye-gaze information is
useful for predicting turn-taking and also improving speaker diarization. Moreover,
high-level indexing of interest and comprehension level of the audience is explored
based on the multi-modal behaviors during the conversation. This is realized by
predicting the audience’s speech acts such as questions and reactive tokens.
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9.1 Introduction

Speech and image processing technologies have been improved so much that their
target now includes natural human-human behaviors, which are made without being
aware of interface devices. Examples of this kind of direction includemeeting captur-
ing [1] and conversation analysis [2]. We have conducted the CREST project, which
focused on conversations in poster sessions, hereafter referred to as poster conver-
sations [3, 4]. Poster sessions have become a norm in many academic conventions
and open laboratories because of the flexible and interactive characteristics. In most
cases, however, paper posters are still used even in the ICT areas. In some cases,
digital devices such as LCD and PC projectors are used, but they do not have sensing
devices. Currently, many lectures in academic events are recorded and distributed
via Internet, but recording of poster sessions is never done or even tried.
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Poster conversations have a mixture characteristics of lectures and meetings; typ-
ically a presenter explains his/her work to a small audience using a poster, and
the audience gives feedbacks in real time by nodding and verbal backchannels,
and occasionally makes questions and comments. Conversations are interactive and
also multi-modal because participants are standing and moving unlike in meetings.
Another good point of poster conversations is that we can easily make a setting
for data collection which is controlled in terms of familiarity with topics and other
participants and yet is “natural and real”.

The goal of the project is signal-level sensing and high-level analysis of human
interactions. Specific tasks include face detection, eye-gaze detection, speech sepa-
ration, and speaker diarization. These will realize a new indexing scheme of poster
session archives. For example, after a long session of poster presentation, we often
want to get a short review of the question-answers and feedbacks from the audience.

As opposed to the conventional “content-based” indexing approachwhich focuses
on the presenter’s speech by conducting speech recognition and natural language
analysis,we adopt an “interaction-oriented” approachwhich looks into the audience’s
reaction. Specifically we focus on non-linguistic behaviors such as backchannel,
nodding and eye-gaze information, because the audience better understands the key
points of the presentation than the current machines. An overview of the proposed
scheme is depicted in Fig. 9.1.

We have designed and implemented a research platform for multi-modal sensing
and analysis of poster conversations. From the audio channel, utterances as well as
laughter and backchannels are detected. Eye-gaze and nodding are also detected by
using video and motion sensing devices. Special devices such as a motion-capturing
system and eye-tracking recorders are used to make ground-truth annotation, but
only video cameras and distant microphones are used in the practical system.

We also investigate high-level indexing of which segment was attractive and/or
difficult for the audience to follow. This will be useful in speech archives because
people would be interested in listening to the points other people liked. However,
estimation of the interest and comprehension level is apparently difficult and largely
subjective. Therefore, we turn to speech acts which are observable and presumably
related with these mental states. One is prominent reactive tokens signaled by the

Fig. 9.1 Overview of multi-modal interaction analysis
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Fig. 9.2 Proposed scheme
of multi-modal sensing and
analysis

audience and the other is questions raised by them. Prediction of these speech acts
frommulti-modal behaviors is expected to approximate the estimation of the interest
and comprehension level. The scheme is depicted in Fig. 9.2.

9.2 Overview of System and Corpus

9.2.1 Smart Posterboard System

We have designed and implemented a smart posterboard, which can record a poster
session and sense human behaviors. Since it is not practical to ask every participant
to wear special devices such as a head-set microphone and an eye-tracking recorder
and also to set up any devices attached to a room, all sensing devices are attached
to the posterboard, which is actually a 65-in. LCD screen. Specifically, the digital
posterboard is equipped with a 19-channel microphone array on the top, and attached
with six cameras and two Kinect sensors. An outlook of the smart posterboard is
given in Fig. 9.3. A more lightweight and portable system is realized by only using
the Kinect sensors, which captures audio and video signals.

9.2.2 Multi-modal Corpus of Poster Conversations

We have recorded a number of poster conversations for multi-modal interaction
analysis [3, 5]. In each session, one presenter (labeled as “A”) prepared a poster on
his/her own academic research, and there was an audience of two persons (labeled as
“B” and “C”), standing in front of the poster and listening to the presentation. Each
poster was designed to introduce research topics of the presenter to researchers or
students in other fields. The audience subjectswere not familiarwith the presenter and
had not heard the presentation before. The duration of each session was 20–30min.
Some presenters made a presentation in two sessions, but to a different audience.
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Fig. 9.3 Outlook of smart posterboard

All speech data were segmented into IPUs (Inter-Pausal Unit) and sentence units
with time and speaker labels, and transcribed according to the guideline of the Corpus
of Spontaneous Japanese (CSJ) [6]. Fillers, laughter and verbal backchannels were
alsomanually annotated.While fillers are usually followed by utterances by the same
speaker, backchannels are uttered by themselves.

For the ground-truth annotation, special multi-modal sensing devices such as a
motion capturing system were used while every participant wore a wireless head-
set microphone and an eye-tracking recorder or a magnetometric sensor. In the early
phase of the project, eye-gaze informationwas derived from the eye-tracking recorder
and the motion capturing system by matching the gaze vector against the position
of the other participants and the poster. But their calibration and post-processing are
very time-consuming. In the latter phase of the project, the magnetometric sensor
were adopted to estimate head orientations instead of precise eye-gaze.

9.2.3 Detection of Participants’ Eye-Gaze and Speech

Detection of participants and their multi-modal feedback behaviors such as eye-gaze
and speech using the smart posterboard (green lines in Fig. 9.2) is explained. It is
realized with multi-modal information processing, as shown in Fig. 9.4, and briefly
explained in the following subsections.
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Fig. 9.4 Process flow of
multi-modal sensing

9.2.3.1 Face and Eye-Gaze Detection

Kinect sensors are used to detect the participants’ face and their eye-gaze.As it is diffi-
cult to detect the eye-ball with the Kinect’s resolution, the eye-gaze is approximated
with the head orientation. A preliminary analysis using the eye-tracking recorder
showed that the difference between the actual eye-gaze and the head orientation is
10◦ on average, but it is much smaller when the participants look at the poster. The
process of the face and the head orientation detection is as follows [7]:

1. Face detection
Haar-like features are extracted from the color and ToF (Time-of-Flight) images
to detect the face of the participants. Multiple persons can be detected simulta-
neously even if they move around.

2. Head model estimation
For each detected participant, a three-dimensional shape and colors of the head
are extracted from the ToF image and the color image, respectively. Then, a head
model is defined with the polygon and texture information.

3. Head tracking
Head tracking is realized by fitting the video image into the headmodel. A particle
filter is adopted to track the three-dimensional position of the head and its three-
dimensional orientation.

4. Identification of eye-gaze object
From the six-dimensional parameters, an eye-gaze vector is computed in the
three-dimensional space. The object of the eye-gaze is determined by this vector
and the position of the objects. In this study, the eye-gaze object is limited to the
poster and other participants.

The entire process mentioned above can be run in real time by using a GPU for
tracking each person.
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9.2.3.2 Detection of Nodding

Nodding can be detected as a movement of the head, whose position is estimated in
the above process. However, discrimination against noisy or unconsciousmovements
is still difficult. Therefore, nodding is not used in most of this study.

9.2.3.3 Speech Separation and Speaker Diarization

Speech separation and enhancement are realized with the blind spatial subtraction
array (BSSA), which consists of the delay-and-sum (DS) beamformer and a noise
estimator based on independent component analysis (ICA) [8]. Here, the position
information of the participants estimated by the image processing is used for beam-
forming and initialization of the ICA filter estimation. This is one of the advantages
of multi-modal signal processing. While the participants move around, the filter
estimation is updated online.

When the 19-channel microphone array is used, speech separation and enhance-
ment can be performedwith a high SNR, but not in real time. Using the Kinect sensor
realizes real-time processing, but degrades the quality of speech.

By this process, the audio input is separated to the presenter and the audience.
Although discrimination among the audience is not done, DoA (Direction of Arrival)
estimation can be used for identifying the speaker among the audience. In a base-
line system, simple voice activity detection (VAD) is conducted on each of the two
channels by using power and spectrum information in order to make speaker diariza-
tion. We can use highly-enhanced but distorted speech for VAD, but still keeps
moderately-enhanced and intelligible speech for re-playing.

In Sect. 9.4, a more elaborate speaker diarization method is addressed by combin-
ing multi-channel audio input and eye-gaze information of the participants.

9.3 Prediction of Turn-Taking from Multi-modal Behaviors

Turn-taking in conversations is a natural behavior in human activities. Studies on
turn-taking have been conventionally focused on dyadic conversations between two
persons. While there are a number of studies conducting analysis on the turn-taking
patterns [9–12], some studies investigated a prediction mechanism for a dialogue
system to take or yield turns based on machine learning [13–16]. Some studies even
attempt to evaluate the synchrony of dialogue [17, 18].

Recently, conversational analysis andmodeling have been extended tomulti-party
interactions such as meetings and free conversations by more than two persons.
Turn-taking in multi-party interactions is more complicated than that in the dyadic
dialogue case, in which a long pause suggests yielding turns to the (only one) partner.
Predicting whom the turn is yielded to or who will take the turn is significant for
an intelligent conversational agent handling multiple partners [19, 20] as well as an
automated system to beamform microphones or zoom in cameras on the speakers.
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Studies on computationalmodeling on turn-taking inmulti-party interactions are very
limited so far. Laskowski et al. [21] presented a stochastic turn-takingmodel based on
N-gram for the ICSI meeting corpus. Jokinen et al. [22] investigated the use of eye-
gaze information for predicting turn-holding or giving in three-party conversations.

This section deals with turn-taking behaviors in poster sessions. Conversations in
poster sessions are different from those in meetings and free conversations addressed
in the previous works, in that presenters hold most of turns and thus the amount of
utterances is very unbalanced. However, the segments of audiences’ questions and
comments are more informative and should not be missed, and thus prediction of
such events is important in online applications such as automated recording control
and a conversational agent. Therefore, the goal of this work is to predict turn-taking
by the audience in poster conversations, and, if that happens, which person in the
audience will take the turn to speak.

We approach this problem by combining multi-modal information sources.While
most of the aforementioned previous studies focused on prosodic features of the
current speakers, it is widely-known that eye-gaze information plays a significant role
in turn-taking [23], and the works by Jokinen [22] and by Bohus [19] exploited that
information in their modeling. The existence of posters, however, requires different
modeling in poster conversations as the eye-gaze of the participants are focused
on the poster in most of the time. This is true to other kinds of interactions using
some materials such as maps and computers. Several kinds of parameterization of
eye-gaze patterns including the poster object are investigated for effective features
related with turn-taking. Moreover, backchannel information such as nodding and
verbal reactions by the audience is also incorporated

In this study, four poster sessions are used. In majority of utterances (IPUs) of the
presenter (“A”), the turn was held by himself/herself. The ratio of turn-taking by the
audience (either “B” or “C”) is only 11.9%. In this work, therefore, prediction of
turn-taking is formulated as a detection problem rather than a classification problem.
The evaluationmeasure should be recall and precision of turn-taking by the audience,
not the classification accuracy of turn-holding and yielding by the presenter. This is
consistent with the goal of the study.

9.3.1 Analysis on Eye-Gaze and Backchannel Features
in Turn-Taking

First, statistics of eye-gaze and backchannel events are investigated on their relation-
ship with turn-taking by the audience.

9.3.1.1 Distribution of Eye-Gaze

The object of the eye-gaze of all participants is identified at the end of the presen-
ter’s utterances. The target object can be either the poster or other participants. The
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Fig. 9.5 Statistics of
eye-gaze and its relationship
with turn-taking (ratio)

Table 9.1 Duration of eye-gaze and its relationship with turn-taking (s)

Turn held by presenter Turn taken by audience

A B C

A gazed at B 0.220 0.589 0.299

A gazed at C 0.387 0.391 0.791

B gazed at A 0.161 0.205 0.078

C gazed at A 0.308 0.215 0.355

statistics are shown in Fig. 9.5 in relation with the turn-taking events. It is observed
that the presenter is more likely to gaze at the person in the audience right before
yielding the turn to him/her. We can also see that the person who takes the turn is
more likely to gaze at the presenter, but the ratio of the turn-yielding by the presenter
is not higher than the average over the entire data set.

The duration of the eye-gaze is also measured. It is measured within the segment
of 2.5 s before the end of the presenter’s utterances because the majority of the IPUs
are less than 2.5 s. It is listed in Table9.1 in relation with the turn-taking events. We
can see the presenter gazed at the person right before yielding the turn to him/her
significantly longer than other cases. However, there is no significant difference in
the duration of the eye-gaze by the audience according to the turn-taking events.

9.3.1.2 Joint Eye-Gaze Events

Next, joint eye-gaze events by the presenter and the audience are defined as shown
in Table9.2. In this table, notation of “audience” is used, but actually these events
are defined for each person in the audience. Thus, “Ii” means the mutual gaze by the
presenter and a particular person in the audience, and “Pp” means the joint attention
to the poster object.
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Table 9.2 Definition of joint eye-gaze events by presenter and audience

Who Presenter

Gazes at Audience (I) Poster (P)

Audience Presenter (i) Ii Pi
Poster (p) Ip Pp

Table 9.3 Statistics of joint eye-gaze events by presenter and audience in relation with turn-taking
(ratio of occurrence frequency)

#Turn held by #Turn taken by audience Total (%)

presenter A (%) (Self) (%) (Other) (%)

Ii 3.1 0.4 0.1 3.6

Ip 7.9 1.8 0.6 10.3

Pi 4.7 0.3 0.2 5.2

Pp 73.7 3.6 3.6 80.9

Statistics of these events at the end of the presenter’s utterances are summarized
in Table9.3. Here, the counts of the events are summed over the two persons in the
audience. They are classified according to the turn-taking events, and turn-taking
by the audience is classified into two cases: the person involved in the eye-gaze
event actually took the turn (self), and the other person took the turn (other). It is
confirmed that the joint gaze at the poster is most dominant (around 80%) in the
poster conversations. The mutual gaze (“Ii”) is expected to be related with turn-
taking, but its frequency is not so high. The frequency of “Pi” is not high, either.
The most potentially useful event is “Ip”, in which the presenter gazes at the person
in the audience before giving the turn. This is consistent with the observation in the
previous subsection.

9.3.1.3 Dynamics of Eye-Gaze

In the analysis of the previous subsections, gazing information by the audience is
not so clearly related with turn-taking. The audience might have sent a signal to the
presenter by gazing that he would like to take a turn, but turn-taking actually happens
when the presenter looks back to him/her. To confirm this, the dynamic patterns of
the eye-gaze events are investigated by a window of 2.5 s over 10 s before the end of
the presenter’s utterances. As a result, we observe a tendency that the frequency and
duration of “Ii” and “Ip” are increasing toward the end of the utterances, while “Pi”
appeared relatively longer in the segment of 5 s before the end of the utterances. This
indicates that “Pi” is followed by “Ii” or “Ip”. This suggests that bigram information
of the eye-gaze events may be useful when we have a larger amount of data.
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Fig. 9.6 Statistics of backchannels and their relationship with turn-taking (occurrence frequency)

9.3.1.4 Backchannels

Verbal backchannels, typically “hai” in Japanese and “yeah” or “okay” in English,
indicate that the listener is understanding what is being said. Nodding is regarded as
a non-verbal backchannel, and it is more frequently observed in poster conversations
than in simple spoken dialogue.

The occurrence frequencies of these events are countedwithin the segment of 2.5 s
before the end of the presenter’s utterances. They are shown in Fig. 9.6 according to
the joint eye-gaze events. It is observed that the person in the audience who takes the
turn (=turn-taker) made more backchannels both in verbal and non-verbal manners,
and the tendency is more apparent in the particular eye-gaze events of “Ii” and “Ip”
which are closely related with the turn-taking events.

9.3.2 Prediction of Turn-Taking by Audience

Based on the analysis in the previous subsection, features for predicting turn-taking
by the audience are parameterized. The prediction task is divided into two sub-tasks:
detection of speaker change and identification of the next speaker. In the first sub-
task, we predict whether the turn is yielded from the presenter to (someone in) the
audience, and if that happens, then we predict who in the audience takes the turn in
the second sub-task. Note that these predictions are done at every end-point of the
presenter’s utterance (IPU) using the information prior to the speaker change or the
utterance by the new speaker.
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Prediction experiments were conducted based on machine learning using the data
set in a cross-validation manner; one session is tested using the classifier trained with
the other sessions, and this process is repeated by changing the training and testing
set.

9.3.2.1 Prediction of Speaker Change

For thefirst sub-task, prosodic features are adopted as a baseline based on the previous
works (e.g. [16, 22]). Specifically, F0 (mean, max, min, and range) and power (mean
and max) of the presenter’s utterance is computed prior to the prediction point. Each
feature is normalized by the speaker by taking the z-score; it is subtracted by the
mean and then divided by the variance for the corresponding speaker.

Backchannel features are defined by taking occurrence counts prior to the predic-
tion point for each type (verbal backchannel and non-verbal nodding).

Eye-gaze features are defined as below:

1. Eye-gaze object
For the presenter, (P) poster or (I) audience;
For (anybody in) the audience, (p) poster, (i) presenter, or (o) other person in the
audience.

2. Joint eye-gaze event: “Ii”, “Ip”, “Pi”, “Pp”
These can happen simultaneously for multiple persons in the audience, but only
one is chosen by the priority order listed above.

3. Duration of the above 1. ((I) and (i))
A maximum is taken over persons in the audience.

4. Duration of the above 2. (except “Pp”)

Note that these parameters can be extended to any number of the persons in the
audience, although only two persons were present in this data set.

Support vector machines (SVM) and logistic regression (MaxEnt) model are used
for machine learning, but they show comparable performance. The result with SVM
is listed in Table9.4. Here, recall, precision and F-measure are computed for speaker
change, or turn-taking by the audience. This case accounts for only 11.9% and its
prediction is a very challenging task, while we can easily get an accuracy of over
90% for prediction of turn-holding by the presenter. We are particularly concerned
on the recall of speaker change, considering the nature of the task and application
scenarios.

Among the individual features, as shown in Table9.4, the prosodic features obtain
the best recall while the eye-gaze features achieve the best precision and F-measure.
In the table, combination of all four kinds of the eye-gaze parameterization listed
above is adopted, however, using one of them is sufficient and there is not a significant
difference in performance among them. Combination of the prosodic features and
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Table 9.4 Prediction result of speaker change

Feature Recall Precision F-measure

Prosody 0.667 0.178 0.280

Backchannel (BC) 0.459 0.113 0.179

Eye-gaze (gaze) 0.461 0.216 0.290

Prosody+BC 0.668 0.165 0.263

Prosody+gaze 0.706 0.209 0.319

Prosody+BC+gaze 0.678 0.189 0.294

Table 9.5 Prediction result
of the next speaker

Feature Accuracy (%)

1. Eye-gaze object 53.8

2. Joint eye-gaze event 53.8

1.+2. 55.8

3. 1.+2. + duration 66.4

BC Backchannel 52.6

Combination of above all (3.+BC) 69.7

eye-gaze features is effective in improving both recall and precision. On the other
hand, the backchannel features get the lowest performance, and its combination with
the other features is not effective, resulting in degradation of the performance.

9.3.2.2 Prediction of Next Speaker

Predicting the next speaker in a multi-party conversation (before he/she actually
speaks) is also a challenging task, and has not been addressed in the previous work.
For this sub-task, the prosodic features of the current speaker are not usable because
it does not have information suggesting who the turn will be yielded to. Therefore,
the backchannel features and eye-gaze features described in the previous subsection
are adopted, but they are computed for individual persons in the audience, instead of
taking the maximum or selecting among them.

In this experiment, SVM performs slightly better than logistic regression model,
thus the prediction accuracy obtained with SVM is listed in Table9.5. As there are
only two persons in the audience, random selection would give an accuracy of 50%.

The simple eye-gaze features focused on the prediction point (1 and 2) obtains an
accuracy slightly better than the chance rate, but incorporating duration information
(3) significantly improves the accuracy. In this experiment, the backchannel features
have some effect; the person who made more backchannels is more likely to take the
turn. By combining all features, the accuracy reaches almost 70%.
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9.4 Speaker Diarization with Backchannel Detection
Using Eye-Gaze Information

In the previous section, it is shown that eye-gaze information is useful for predicting
turn-taking. Based on this finding, we investigate a new scheme of speaker diariza-
tion. Speaker diarization is a process to identify “who spoke when” in multi-party
conversations. A number of diarization methods [24, 25] have been investigated
based on acoustic information. In real multi-party conversations, the diarization per-
formance is degraded by adversary acoustic conditions such as background noise and
distant talking. To solve the problem, some studies tried to incorporate multi-modal
information such as motion and gesture [12, 25].

Although it is known that eye-gaze information can be used to predict partici-
pants’ utterances, it has not been integrated in speaker diarization tasks. This section
addresses a multi-modal diarization method which integrates eye-gaze information
with acoustic information. The proposed method extracts acoustic and eye-gaze fea-
tures, which are integrated in a stochastic manner to detect utterances.

Furthermore, the diarization results are enhanced by detecting audience’s
backchannels. Backchannels are frequently observed in poster conversations and
involve different eye-gaze behaviors since they indicate that the listener does not
take a turn. Detection of backchannels is also realized by using the samemulti-modal
scheme but training a different model. By eliminating the detected backchannels and
noise from the diarization result, we can easily access to meaningful utterances such
as questions and comments, while backchannels show interaction level of the con-
versation.

In this study, eight poster sessions are used. Since utterances by the audience
are not frequent, it is difficult to detect these utterances accurately. Moreover, the
audience’s backchannels account for about 40% of their utterance duration.

9.4.1 Multi-modal Speaker Diarization

9.4.1.1 MUSIC Method Using Microphone Array

Conventional speaker diarizationmethods have usedMel-FrequencyCepstral Coeffi-
cients (MFCCs) and Directions Of Arrival (DOA) of sound sources [24]. An acoustic
baseline method in this study is based on sound source localization using DOAs
derived from the microphone array.

To estimate aDOA,we adopt theMUltiple SIgnal Classification (MUSIC)method
[26], which can detect multiple DOAs simultaneously. The MUSIC spectrum Mt (θ)

is calculated based on the orthogonal property between an input acoustic signal and a
noise subspace. Note that θ is an angle between the microphone array and the target
of estimation, and t represents a time frame. The MUSIC spectrum represents DOA
likelihoods, and the large spectrum suggests that the participant makes an utterance
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from that angle. To calculate the spectrum, it is needed to determine the number of
sound sources. In this study, the number of sound sources is predicted with SVM
using the eigenvalue distribution of a spatial correlation matrix [27].

The proposed method incorporates eye-gaze information to speaker diarization.
The method first extracts acoustic and eye-gaze features to compute a probability of
speech activity respectively, then it combines the two probabilities for the frame-wise
decision. The process is conducted independently on every time frame t and for each
participant i .

The acoustic features are calculated based on the MUSIC spectrum. We can use
the i th participant’s head location θi,t tracked by the Kinect sensors. The possible
location of the participant is constrained within a certain range (±θB) from the
detected location θi,t . The acoustic features of the i th participant in the time frame t
consist of the MUSIC spectrum in the range:

ai,t = [
Mt

(
θi,t − θB

)
, ···, Mt

(
θi,t

)
, ···, Mt

(
θi,t + θB

)]T

.
(9.1)

9.4.1.2 Eye-Gaze Features

The eye-gaze features for the i th participantgi,t are sameas those used inSect. 9.3.2.1,
except that unigram and bigram of the eye-gaze objects and the joint eye-gaze events
are added.

9.4.1.3 Integration of Acoustic and Eye-Gaze Information

The acoustic features ai,t are integrated with the eye-gaze features gi,t to detect
the i th participant’s speech activity vi,t in the time frame t . Note that the speech
activity vi,t is binary: speaking (vi,t = 1) or not-speaking (vi,t = 0). Here, a linear
interpolation is adopted to combine probabilities independently computed by the two
feature sets [25]:

fi,t (ai,t , gi,t ) = α p(vi,t = 1|ai,t ) + (1 − α) p(vi,t = 1|gi,t ) . (9.2)

Here α ∈ [0, 1] is a weight coefficient. Each probability is computed by a logistic
regression model. It is also possible to combine the two feature sets in the feature
domain and directly compute a posterior probability p(vi,t |ai,t , gi,t ). Compared with
this joint model, the linear interpolation model has a merit that training data does not
have to be aligned between the acoustic and eye-gaze features because of indepen-
dency of the two discriminative models. Furthermore, the weight coefficient α can
be appropriately determined based on the acoustic environments such as Signal-to-
Noise Ratio (SNR). Here, it is estimated using an entropy h of the acoustic posterior
probability p(vi,t |ai,t ) [28] as
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α = αc · 1 − h

1 − hc ,
(9.3)

where hc and αc are an entropy and an ideal weight coefficient in a clean acoustic
environment, respectively.When the estimatedweight coefficient is larger than one or
less than zero, the coefficient is set to one or zero, respectively. For online processing,
the coefficient is updated periodically.

9.4.1.4 Speaker Diarization Experiment

Logistic regression models were trained separately for the presenter and the audi-
ence by cross-validation of the eight sessions. In order to evaluate performance under
ambient noise, audio data was prepared by superimposing a diffusive noise recorded
in a crowded place. SNRs were set to 20, 15, 10, 5 and 0 dB. In real poster conver-
sations carried out in academic conventions, the SNRs are expected to be around 0
to 5 dB.

The multi-modal method is compared with other methods listed below:

1. baseline MUSIC [29]
This method conducts peak tracking of the MUSIC spectrum and GMM-based
clustering in the angle domain. Each cluster corresponds to each participant. This
method does not use any cue from visual information.

2. baseline + location constraint [30]
This method also performs peak tracking of the MUSIC spectrum, and compares
the detected peak with the estimated head location within the ±θB range. If this
constraint is not met, the hypothesis is discarded.

3. acoustic-only model
This method fixes the weight coefficient α to 1 in Eq. (9.2), and uses only the
acoustic information.

For an evaluationmeasure,DiarizationError Rate (DER) [31] is used in this exper-
iment. DER consists of False Acceptance (FA), False Rejection (FR), and Speaker
Error (SE) as below:

DE R = #F A + #F R + #SE

#S ,
(9.4)

where #S is the number of speech frames in the reference data.
Table9.6 lists DERs for each SNR. The two baseline methods (baseline MUSIC

and baseline + location constraint) showed lower accuracy because they are rule-
based and not robust against dynamic changes of the MUSIC spectrum and partici-
pants’ locations. Compared with the acoustic-only model, the proposed multi-modal
model achieves higher performance under noisy environments (SNR = 5, 0 dB).
Thus, we can see the effect of the eye-gaze information under noisy environments
expected in real poster sessions.
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Table 9.6 Evaluation of speaker diarization (DER [%])

Method SNR (dB)

∞ 20 15 10 5 0 Average

Baseline
MUSIC

[29] 16.94 23.14 31.66 47.92 67.03 88.80 45.92

Baseline
+
location
con-
straint

[30] 8.34 14.45 22.31 36.09 55.80 78.05 35.84

Acoustic-
only
model

Eq. (9.2)
w/o gi,t

6.16 7.28 9.36 14.20 22.94 35.89 15.97

Multi-
modal
model

Eq. (9.2) 6.27 7.81 9.96 13.69 18.18 21.61 12.92

The weight coefficient α in Eq. (9.2) was also manually tuned where the stepping
sizewas 0.1. In the clean environment (SNR=∞ dB), the optimalweight was 1.0. On
the other hand, in the noisy environments (SNR = 5 and 0 dB), the optimal weights
were 0.6 or 0.5. These results suggest that the weight of eye-gaze features is appro-
priately increased in noisy environments. The average DER by the manual tuning is
11.78%, which is slightly better than the result (12.92%) by the automatic weight
estimation (Eq. 9.3). Therefore, the automatic weight estimation works reasonably
according to the acoustic environment.

9.4.2 Detection of Backchannels

The diarization result includes backchannels and also falsely accepted noise espe-
cially for audience’s utterances. A post-processing model is introduced to detect and
eliminate them and highlight questions and comments by the audience, which are
important for efficient review of poster conversations. There have been few works
on detection of backchannels while many studies have been conducted to predict
appropriate timing of backchannels [32–35].

Backchannels suggest that the current speaker can hold the turn, and the listener
does not take a turn. In that sense, the eye-gaze behaviors are different from those of
turn-taking. Thus, a different model is trained using the eye-gaze behaviors to predict
backchannels. Here, the multi-modal scheme formalized in the previous subsection
is modified. The eye-gaze features and the multi-modal integration model are same,
but here the acoustic features are re-designed. Multi-channel acoustic signals are
enhanced for each participant by delay-and-sum beamforming. The enhanced signal
is used to calculate the acoustic features as follows:
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1. the number of time frames of the utterance segment calculated from the diarization
result

2. MFCC parameters (12-MFCCs and 12-ΔMFCCs)
3. Power (and ΔPower)
4. Regression coefficients of fundamental frequency (F0) and power at the end of

the preceding utterance [34]

Logistic regression models are trained to predict three events: backchannels, utter-
ances other than backchannels, and noise. For each utterance segment as a result of
speaker diarization, cumulative likelihoods are calculated by the three models, and
they are normalized so that the sum of the three is one. The eliminated utterance
segments are determined by the thresholding operation with a sum of the posterior
probabilities on backchannels and noise.

The diarization result is post-processed by another model for elimination of
backchannels and noise. The reference labels in this experiment regard backchannels
as non-speech events.

The following methods are compared. They were applied after the multi-modal
speaker diarization (last row of Table9.6).

1. thresholding with utterance duration
A threshold in this method is the duration of each utterance section since the
duration of backchannels is usually shorter than others. This corresponds to using
only the first feature listed above.

2. acoustic-only model
This method uses the acoustic features listed above.

3. multi-modal model
This method also uses the eye-gaze features in addition to the acoustic features.

Here, we focus on substantial utterances by the audience for efficient access to the
recordings. Since there are rarely overlapping utterances other than backchannels,
we measured Equal Error Rate (EER) where False Acceptance Rate (FAR) equals to
False Rejection Rate (FRR). FAR and FRR are defined as:

F AR = #F A

#N S ,
F R R = #F R

#S ,
(9.5)

where #N S is the number of non-speech frames in the reference. EER is calculated
by varying the threshold in speaker diarization.

Table9.7 lists EERs for each SNR. Compared to the case without post-processing
(no post-processing), the proposed multi-modal model significantly reduces EERs.
This shows the effectiveness of elimination of backchannels and noise after speaker
diarization. The simple thresholding method (thresholding with utterance duration)
reduces EERs in noisy conditions, but degrades in clean conditions. It is difficult
to detect backchannels only with the utterance duration. The effect of the eye-gaze
features is also confirmed under noisy environments (SNR = 5.0 dB).
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Table 9.7 Evaluation of audience’s speech detection (EER [%])

Method SNR (dB)

∞ 20 15 10 5 0 Average

No post-
processing

13.37 15.80 17.86 20.86 25.77 31.80 20.91

Thresholding
with
utterance
duration

15.95 17.60 18.64 20.38 24.74 30.81 21.35

Acoustic-
only
model

Eq. (9.2) w/o
gi,t

12.14 13.98 15.47 18.19 23.34 30.20 18.89

Multi-modal
model

Eq. (9.2) 12.23 14.11 15.42 18.29 23.07 29.72 18.80

9.5 Detection of Hot Spots via Prominent Reactive
Tokens of Audience

This section addresses high-level indexing of poster conversations based on the inter-
active characteristics. As opposed to the conventional content-based approach which
focuses on the presenter’s speech,we focus on the audience’s reaction, specifically the
audience’s reactive tokens and laughter. By reactive tokens (Aizuchi in Japanese),
we mean the listener’s verbal short response, which expresses his/her state of the
mind during the conversation. We particularly focus on prominent non-lexical reac-
tive tokens, such as “hu:n”, “he:” in Japanese and “wow”, “gosh” in English, which
are not used for simple acknowledgment and presumably related with the state of
the mind of the listener. These can be articulated with a variety of prosodic patterns;
they can be prolonged to an arbitrary length.

It is assumed that the audience signals their interest level with this kinds of non-
lexical reactive tokens, and that detection of the audience’s interest level is useful
for indexing the speech archives, because people would be interested in listening
to the points other people were interested in. It is also presumed that people would
be interested in the funny spots where laughter was made. In this work, those spots
which induced (or elicited) laughter and non-lexical reactive tokens are defined as
hot spots, and their automatic detection is investigated.

In this study, eight poster sessions are used.

9.5.1 Detection of Laughter and Reactive Tokens

Detection of laughter has been addressed by several studies [36–38]. Typically, a
dedicated classifier such as GMM and SVM is prepared for discriminating laughter
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against speech. On the other hand, studies on detecting reactive tokens is limited.
Ward [39] investigated prosodic patterns of reactive tokens, but did not conduct auto-
matic detection. Other works [40, 41] focused on distinction of affirmative answers
“yes” and tokens used in backchannels. In Japanese, there are a variety of syllabic
patterns in reactive tokens, including both lexical and non-lexical tokens.

A framework for acoustic event detection in audio recordings of conversations
is designed based on a combination of BIC-based segmentation and GMM-based
classification [42]. For each segment, classification based onGMMis applied.GMMs
are prepared for five classes of male speech, female speech, noise, laughter and
reactive tokens. Laughter is detected with this GMM-based classification.

Reactive tokens are more difficult to detect, because they are much similar to nor-
mal speech in terms of acoustic characteristics. Thus, we incorporate two additional
processes to verify the candidates of reactive tokens hypothesized by GMM-based
classification. One is the filled pause detector which considers monotonousness of
spectral and pitch patterns [43]. The other is a speech recognition system, which is
used to filter out filled pauses included in its lexicon. In summary, reactive tokens
are detected only when supported by the following three classifiers.

• dedicated GMM
• filled pause detector (to reject normal speech)
• speech recognizer (to reject fillers)

Detection accuracy of laughter and reactive tokens is shown in Table9.8 with
evaluation measures of recall, precision and F-measure. Here, F-measure is defined
with a double weight on precision, because there are a number of indistinct laughter
and reactive tokens, which are hard to recall and not useful for indexing.

As shown in Table9.8, overall recall is not high, but we can detect most of the
distinct events such as loud laughter and long reactive tokens. These distinct events
are more related with the hot spots than subtle events. The frame-wise classification
accuracy among five GMM classes is 82.3%.

9.5.2 Subjective Evaluation of Detected Hot Spots

Basedon the detected laughter and reactive tokens, hot spots are defined to correspond
to these two kinds of events. Specifically, hot spots are labeled for utterances which
induce (or elicit) the events. The segments are defined by utterance units, i.e. made
of a couple of utterances, with a maximum duration determined by a threshold.

Table 9.8 Detection accuracy of laughter and reactive tokens

Recall Precision F-measure

Laughter 0.419 0.750 0.648

Reactive token 0.439 0.707 0.630
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Table 9.9 Ratio of appropriate hot spots among detected spots (“precision”)

Precision (oracle)

Spots accompanying laughter 74.7% (89.2%)

Spots accompanying reactive token 86.5% (95.2%)

Subjective evaluations were conducted on the hot spots indexed in this manner.
Four subjects, who had not attended the presentation nor listened to the recorded
audio content, were asked to listen to each of the segmented hot spots in the original
time sequence, and to make evaluations on the questionnaire, as below.

Q1: Do you understand the reason why the reactive token/laughter occurred?
Q2: Do you find this segment interesting/funny?
Q3: Do you think this segment is necessary or useful for listening to the content?

The result of Question 1 (percentage of “yes”), summarized in Table9.9, suggests the
ratio of appropriate hot spots or “precision” among the detected hot spots, because
the third person verified the spots were naturally inducing laughter or reactive tokens.
The figures labeled “(oracle)” in Table9.9 show the result when limited to the seg-
ments where laughter or reactive tokens were correctly detected. It is confirmed that
a large majority of the detected spots are appropriate. There are more “false” detec-
tions for the segments accompanying laughter; laughter is socially made to relax the
participants in the poster conversations.

The answers to Questions 2 and 3 are more subjective, but suggest the usefulness
of the hot spots. Only a half of the spots associated with laughter are funny for the
subjects (Q2), and they found 35% of the spots not funny. The result suggests that
feeling funny largely depends on the person. And we should note that there are not
many funny parts in the poster sessions by nature.

On the other hand, more than 90% of the spots associated with reactive tokens are
interesting (Q2), and useful or necessary (Q3) for the subjects. The result supports
the effectiveness of the hot spots extracted based on the reaction of the audience.

9.5.3 Prosodic Analysis of Reactive Tokens

In the system described above, all non-lexical reactive tokens are detected without
considering their syllabic and prosodic patterns. In this subsection, syllabic and
prosodic patterns of reactive tokens related with the interest level are investigated
Generally, prosodic features play an important role in conveying para-linguistic and
non-verbal information. In previous works [40, 41], it was reported that prosodic
features are useful in identifying reactive tokens. Ward [39] made an analysis of
pragmatic functions conveyed by the prosodic features in English non-lexical tokens.

An experiment was designed to identify the syllabic and prosodic patterns closely
related with the interest level for detection of hot spots. For this investigation, three
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Table 9.10 Significant combinations of syllabic and prosodic patterns of reactive tokens

Interest Surprise

hu:N Duration * *

F0 max

F0 range

Power

he: Duration * *

F0 max * *

F0 range *

Power * *

a: Duration

F0 max *

F0 range

Power *

syllabic patterns of “hu:N”, “he:” and “a:” were selected. They are presumably
related with the interest level and also most frequently observed in the corpus, except
lexical tokens.

Duration, F0 (maximum and range) and power (maximum) are computed for
each reactive token, and they are normalized for every person; for each feature, we
compute the mean, and this mean is subtracted from the feature values.

For each syllabic kind of reactive token and for each prosodic feature, top-ten and
bottom-ten samples, i.e. samples that have largest/smallest values of the prosodic
feature, were selected. For each of them, an audio segment was extracted to cover
the reactive token and its preceding utterances. This process is similar to the hot spot
detection described in the previous subsection, but was done manually according to
the criteria.

Then, five subjects listened to the audio segments and evaluated the audience’s
state of the mind. Twelve items were evaluated in a scale of four (“strongly feel”
to “do not feel”). Among them two items are related to the interest level and other
two items are related to the surprise level.1 Table9.10 lists the results (marked by
“*”) that have a statistically significant (p < 0.05) difference between top-ten and
bottom-ten samples. It is observed that prolonged “hu:N” means interest and surprise
while “a:” with higher pitch or larger power means interest. On the other hand, “he:”
can be emphasized in all prosodic features to express interest and surprise.

Using this prosodic information will enhance the precision of the hot spot detec-
tion. The tokens with larger power and/or a longer duration is apparently easier to
detect than indistinct tokens, and they are more related with the hot spot. This simple
principle is consistent with the proposed scheme.

1We used different Japanese wording for interest and for surprise to enhance the reliability of the
evaluation; we adopt the result if the two matches.
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9.6 Prediction of Interest and Comprehension Level via
Audience’s Questions from Multi-modal Behaviors

Feedback behaviors of an audience are important cues in analyzing presentation-style
conversations. We can guess whether the audience is attracted to the presentation by
observing their feedback behaviors. This characteristic is more prominent when the
audience is smaller; the audience can make not only non-verbal feedbacks such
as nodding, but also verbal backchannels. Eye-gaze behaviors also becomes more
observable. In poster conversations, moreover, the audience can ask questions even
during the presentation. By observing their reactions, particularly the quantity and
quality of their questions and comments, we can guess whether the presentation is
understood or liked by the audience.

In the previous section, it is shown that non-lexical reactive tokens are a good
indicator of the audience’s interest level. The relationship between the audience’s
turn-taking and feedback behaviors including backchannels and eye-gaze patterns is
also confirmed.

This section addresses estimation of the interest and comprehension level of the
audience based on the multi-modal behaviors. As annotation of the interest and
comprehension level is apparently difficult and largely subjective, we turn to speech
acts which are observable and presumably related with these mental states. One is
prominent reactive tokens signaled by the audience and the other is questions raised
by them.Moreover, questions are classified into confirming questions and substantive
questions. Prediction of these speech acts from themulti-modal behaviors is expected
to approximate the estimation of the interest and comprehension level.

In this study, ten poster sessions are used. Each poster was designed to introduce
research topics of the presenter to researchers or students in other fields. It consists
of four or eight components (hereafter called “slide topics”) of rather independent
topics. This design is a bit different from typical posters presented in academic
conferences, but makes it straightforward to assess the interest and comprehension
level of the audience for each slide topic. Usually, a poster conversation proceeds
with an explanation of slide topics one by one, and is followed by an overall QA
and discussion phase. In the QA/discussion phase, it is difficult to annotate which
topic they refer. Therefore, the conversation segments of the explanation on the slide
topics are used.

In the ten sessions used in this study, there are 58 slide topics in total. Since two
persons participated as an audience in each session, there are 116 slots (hereafter
called “topic segments”) for which the interest and comprehension level should be
estimated.
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9.6.1 Definition of Interest and Comprehension Level

In order to get a gold-standard annotation, it would be a natural way to ask every
participant of the poster conversations on the interest and comprehension level on
each slide topic after the session. However, this is not possible in a large scale and
also for the previously recorded sessions. The questionnaire results may also be
subjective and difficult to assess the reliability.

Therefore, we focus on observable speech acts which are closely related with the
interest and comprehension level. In the previous section, we identified particular
syllabic and prosodic patterns of reactive tokens (“he:”, “a:”, “fu:N” in Japanese,
corresponding to “wow” in English) signal interest of the audience [44]. We refer to
them as prominent reactive tokens.

We also empirically know that questions raised by the audience signal their inter-
est; the audience ask more questions to know more and better when they are more
attracted to the presentation. Furthermore, we can judge the comprehension level
by examining the kind of questions; when the audience asks something already
explained, they must have a difficulty in understanding it.

9.6.1.1 Annotation of Question Type

Questions are classified into two types: confirming questions and substantive ques-
tions. The confirming questions are asked to make sure of the understanding of the
current explanation, thus they can be answered simply by “Yes” or “No”. 2 The sub-
stantive questions, on the other hand, are asking about what was not explained by
the presenter, thus they cannot be answered by “Yes” or “No” only; an additional
explanation is needed. Substantial questions are occasionally comments even in a
question form.

9.6.1.2 Relationship Between Question Type and Interest
and Comprehension Level

In four sessions, audience subjects were asked to answer their interest and compre-
hension level on each slide topic after the session. These are used for analysis on the
relationship between these gold-standard annotations and observed questions.

Figure9.7 shows distributions of the interest and comprehension level for each
question type. The interest level is quantized into five levels from 1 (not interested) to
5 (very interested), and the comprehension level ismarked from1 (didnot understand)
to 5 (fully understood). In the graph, a majority of confirming questions (86%)
indicate a low comprehension level (level 1 and 2). We also see a general tendency
that occurrence of questions of either types is correlated with a higher interest level
(level 4&5).

2This does not mean the presenter actually answered simply by “Yes” or “No”.
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Fig. 9.7 Distribution of interest and comprehension level according to question type

From these observations and the previous finding, the following annotation
scheme is adopted.

• high interest level ← questions of any types and/or prominent reactive tokens.
• low comprehension level ← confirming questions.

Detection of these states would be particularly useful in reviewing the poster
sessions or improving the presentations.

9.6.2 Relationship Between Multi-modal Behaviors
and Questions

Next, statistics of backchannel and eye-gaze behaviors of the audience are investi-
gated on their relationship with questions asked by them.

9.6.2.1 Backchannels

It is assumed that the listener tends to make backchannels more frequently when they
are attracted. In this analysis, non-lexical reactive tokens (e.g. “wow”) are excluded
since the prominent part of them are used for the annotation, though their occurrence
frequency is much smaller (less than 20% of all) than that of the lexical tokens (e.g.
“yeah” and “okay”).

Nodding is regarded as a non-verbal backchannel, and it is more frequently
observed in poster conversations than in daily conversations. Our preliminary analy-
sis showed, however, that there is not a distinct tendency in the occurrence frequency
of non-verbal noddings, thus they are not used.

The occurrence frequency of the verbal backchannels normalized by the presen-
ter’s utterance (sentence unit) is counted within the topic segments. The statistics
are listed according to the question type in Table9.11. In the table, “entire” means
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Table 9.11 Relationship of audience’s backchannel (count/utterance) and questions (by type)

Confirming Substantive Entire

Backchannel 0.42 0.52 0.34

Table 9.12 Relationship of audience’s eye-gaze at the presenter (count/utterance and duration
ratio) and questions (by type)

Confirming Substantive Entire

Gaze occurrence 0.38 1.02 0.64

Gaze duration 0.05 0.15 0.07

the overall average computed for the entire topic segments of the data set. Since no
questions were made in more than a half topic segments, the entire average is lower
than the values in the other two columns. It is observed that the audience make more
backchannels when asking questions, especially substantive questions.

9.6.2.2 Eye-Gaze at Presenter

The object and the duration of the eye-gaze of all participants during the topic seg-
ments are identified prior to the audiences’ questions. The target object can be either
the poster or other participants. In poster conversations, unlike daily conversations,
participants look at the poster in most of the time. Therefore, eye-gaze at other par-
ticipants has a reason and effect. The analysis in Sect. 9.3 showed that eye-gaze
information is related with turn-taking events; specifically, the eye-gaze by the pre-
senter mostly controls the turn-taking.

In this work, the eye-gaze by the audience is investigated on its relationship with
the questions they ask. In particular, the eye-gaze of each person of the audience at the
presenter is counted. The average occurrence count (per presenter’s utterance) and the
total duration (normalized per second) within the topic segments are measured. Their
statistics are listed in Table9.12.We can see a significant decrease and increase when
asking confirming questions and substantive questions, respectively. It is reasoned
that the audience ismore focused on the poster trying to understand the content before
asking confirming questions, while they want to attract the presenter’s attention
before asking substantive questions.

In a more detailed analysis done sentence by sentence, a gradual increase of the
eye-gaze at the presenter is observed prior to substantive questions, while there is no
such dynamic changes in the case of confirming questions.

The results suggest that eye-gaze information is potentially useful for identifying
the question type and also estimating the interest and comprehension level.
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9.6.3 Prediction of Interest and Comprehension Level

Based on the analysis in the previous subsection, we have implemented and evaluated
classifiers to predict the interest and comprehension level of the audience in each
topic segment.

First, eachof audiencebehaviors needs to beparameterized.The features described
in the previous subsection are used. An average count of backchannels per the pre-
senter’s utterance is computed. Eye-gaze at the presenter is parameterized into an
occurrence count per the presenter’s utterance and the duration ratio within the topic
segment.

Then, regarding the machine learning method for classification, a naive Bayes
classifier is adopted, as the data size is not so large to estimate extra parameters such
as weights of the features. For a given feature vector F = { f1, . . . , fd}, a naive Bayes
classification is done by

p(c|F) = p(c) ∗
∏

i

p( fi |c)

where c is a considered class (“high interest level or not” and “low comprehension
level or not”). For computation of p( fi |c), we adopt a simple histogram quantization,
in which feature values are classified into one of bins, instead of assuming a proba-
bilistic density function. This also circumvents estimation of any model parameters.
The feature bins are defined by simply splitting a histogram into 3 or 4. Then, the
relative occurrence frequency in each bin is transformed into the probability form.

Experimental evaluations were done by cross-validation.

9.6.3.1 Prediction of Questions and Reactive Tokens
for Interest Level Estimation

First, an experiment of estimating the interest level of the audience was conducted.
This problem is formulated by predicting the topic segment in which questions
and/or prominent reactive tokens are made by the audience. These topic segments
are regarded as “interesting” to the person who made such speech acts.

The results with different sets of features are listed in Table9.13. F-measure is a
harmonic mean of recall and precision of “interesting” segments, though recall and
precision are almost same in this experiment. Accuracy is a ratio of correct output
among all 116 topic segments. The chance-rate baseline when we count all segments
as “interesting” is 49.1%.

Incorporation of the backchannel and eye-gaze features significantly improves the
accuracy, and the combination of both features results in the best accuracy of over
70%. It turned out that the two kinds of parameterization of the eye-gaze feature
(occurrence count and duration ratio) are redundant because dropping one of them
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Table 9.13 Prediction result of topic segments involving questions and/or reactive tokens

F-measure Accuracy (%)

Baseline (chance rate) 0.49 49.1

(1) Backchannel 0.59 55.2

(2) Gaze occurrence 0.63 61.2

(3) Gaze duration 0.65 57.8

Combination of (1)–(3) 0.70 70.7

Table 9.14 Identification result of confirming or substantive questions

Accuracy (%)

Baseline (chance rate) 51.3

(1) Backchannel 56.8

(2) Gaze occurrence 75.7

(3) Gaze duration 67.6

Combination of (1)–(3) 75.7

does not degrade the performance. However, we confirm the multi-modal synergetic
effect of the backchannel and eye-gaze information.

9.6.3.2 Identification of Question Type for Comprehension Level
Estimation

Next, an experiment of estimating the comprehension level of the audience was con-
ducted. This problem is formulated by identifying the confirming question given
a question, which signals that the person does not understand the topic segment.
Namely, these topic segments are regarded as “low comprehension (difficult to under-
stand)” for the person who made the confirming questions.

The classification results of confirming questions versus substantive questions are
listed in Table9.14. In this task, the chance-rate baseline based on the prior statistic
p(c) is 51.3%.

All features have some effects in improving the accuracy, but the eye-gaze occur-
rence count alone achieves the best performance and combining it with other features
does not give an additional gain. This is explained by a large difference in its value
among the question types as shown in Table9.12.

As the simple occurrence frequency of backchannels is not useful for this task,
the syllabic or prosodic patterns of the backchannels [45] should be investigated in
the future.
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9.7 Poster Session Browser

Based on the result and findings of this study, a poster session browser is designed
and developed, as shown in Fig. 9.8. The browser visualizes activities during the
poster session including speech utterances and eye-gaze at other participants for
each person. It also plays the recorded audio and video based on the indices.

Along the timeline, utterance segments of each participant are marked as a result
of speaker diarization and backchannel detection. We can easily access to substantial
utterances from the audience such as questions and comments. Moreover, eye-gaze
events are also visualized so we can estimate the interaction level of the conversation.
For each person in the audience, themarked segments represent when the person gave
his/her eye-gaze to the presenter.

Under the timeline, a scale-downed timeline overview is shown to allow users
to outlook the entire session. By clicking a segment on the timeline overview, users
can directly move to the area and see the conversation segment in the area. Poster
sessions generally last very long and presenters need to explain the same content
repeatedly while substantial utterances such as questions and comments by an audi-
ence is occasional but important. The above functions allow the users to efficiently
access to the substantial utterances without watching the entire video.

Thebrowserwill be helpful for the presenter to review the session afterwards, since
the presenter can hardly memorize the audience’s questions and comments during
the long session. The browser will also be useful for the colleagues or supervisor of
the presenter to see how many people came to the poster and if they were interested
in the presentation. It is also possible to quickly viewwhat the audience said and how
the presenter responded to them. In the future, the browser may be used in public, so
viewers see the other participants’ comments. But this needs to obtain a permission
from the participants as well as the session organizer.

Fig. 9.8 Poster conversation browser
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Table 9.15 Browsing time to complete quizzes; “reduction ratio” is measured against the session
duration

Subject Time Reduction ratio (%)

A 9m 50s 33.3

B 8m 11s 27.7

C 8m 13s 27.8

D 6m 58s 23.6

Average 8m 18s 28.1

Since the system is independent of conversational content (e.g. audio, video,
utterance segment), users can easily customize this tool to other conversational forms
such as meetings and discussions. Detailed information of the visualized data is
described in a configuration csv file. Various types of time-series multi-modal data
can be displayed on the timeline by editing the csv file. The csv file also describes
the display format of the browser: colors of segments on the timeline and display
positions of the visualized data. The system is designed as a Web application where
the backend is implemented in Java, and the interface is implemented in HTML,
CSS, and Javascript. Playing videos and audios is realized by HTML5. The browser
is lightweight and OS-independent.

A simple evaluation of the browser interface was conducted by measuring the
time needed for reviewing substantial exchanges in a poster session. One session
was chosen from our corpus and four subjects were engaged in this experiment.
They were asked to answer twelve quizzes by browsing the recorded session. The
quizzes were chosen from the questions uttered by the audience and the two possible
answers were prepared. The subjects were asked to select one of them which was
actually given by the presenter. The questions were sorted in a time-wise random
manner.

Table9.15 shows the time the subjects expended to complete all quizzes. All
subjectswere able to correctly answer all quizzes in less than tenminutes,whereas the
session actually lasted 29min.On average, reviewing time is approximately 28.1%of
the duration of the session. The browser with the speaker diarization result provides
an effective interface to efficiently search substantial utterances in the session.

9.8 Conclusions

We have conducted multi-modal conversation analysis focused on poster sessions.
Poster conversations are interactive, but often long and redundant. Therefore, simple
recording of the session is not so useful.

The primary goal of the study was robust signal-level sensing of participants,
i.e. who came to the poster, and their verbal feedbacks, i.e. what they said. This is
still challenging given distant and low-resolution sensing devices. Combination of
multi-modal information sources was investigated to enhance the performance.
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First, multi-modal behaviors prior to turn-taking events were investigated. For
prediction of speaker change or turn-taking by the audience, both prosodic features
of the presenter and eye-gaze features of all participants are useful. Themost relevant
among the eye-gaze information is the presenter’s gazing at the speaker to whom the
turn is to be yielded.

Based on this finding, a multi-modal speaker diarization method was realized by
integrating eye-gaze information with acoustic information. Moreover, the diariza-
tion result was enhanced by eliminating backchannels and falsely accepted noise.
The stochastic multi-modal scheme improved the performance of speaker diarization
and the effect of eye-gaze information was confirmed under noisy environments.

The next step was high-level indexing of interest and comprehension level of the
audience. The problem was formulated via relevant speech acts using non-verbal
feedback behaviors of the audience. Two approaches were presented in this work.

One is indexing of hot spots based on the reaction of the audience, specifically,
laughter and non-lexical reactive tokens. Detection of laughter is relatively easier, but
the detected spots are not necessarily funny or useful, because the evaluation is largely
affected by subjects. On the other hand, the spots associated with reactive tokens are
consistently interesting and meaningful. Furthermore, the specific prosodic patterns
closely related with the interest level were identified.

The other approach is estimation of interest and comprehension level based on
the audience’s feedback behaviors and speech acts such as questions and prominent
reactive tokens. Specifically, estimation of the interest level was reduced to predic-
tion of occurrence of questions and prominent reactive tokens, and estimation of
comprehension level was realized by classification of the question type.

To visualize these detected events and indices, a poster session browser has been
developed. The browser will be useful for assessing the effect of the processes and
further improving them.
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