
Chapter 7
Perceptual Illusion and Development
of a Sense-Centered Human Interface

Yasuharu Koike

Abstract Tele-existence is the replication of physically plausible information
through the provision of real sensation of presence. Here, we sought to elucidate
the mechanisms of perceptual illusion within the context of brain function. Improv-
ing our understanding of perceptual illusion will contribute to the realization of new
and more efficient human interfaces.

Keywords Musculo-skeletal model · Stiffness · Equilibrium position · Pseudo-
Haptics · Electromyogram

7.1 Introduction

Our bodies contain numerous and various sensors. Those sensors send signals to
the cerebral cortex, and sensations are then perceived. Most sensations are identified
with a specific type of stimulus. Furthermore, perception is not directly related to
sensor activity. Most sensors receive signals passively. Muscles act as actuators to
create the force for body motion, but the sensors also detect force and positioning of
the body. Our hands have many tactile sensors and can be controlled voluntarily. So
ours hands are active sensor for touch.

Computer input devices, such as mice and trackpads, measure hand position and
translate it to cursor position on a screen. Recently, Apple® developed the Force
Touch trackpad, adding a new dimension to touch interfaces. New multi-touch ges-
tures with force are being developed and adopted in computer interaction. However,
we control force in touching unconsciously, so gestures have to be developed with
consideration to behavior in daily life. Muscle activity reflects changes in force and
can be measured as electromyography (EMG) signals. Proposed here is a new inter-
face which measures muscle activity and estimates not only position, but also force
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and stiffness simultaneously. To develop intuitive manipulation, muscle control for
manipulation was also studied.

When we manipulate an object, its weight is important information in the produc-
tion of joint torque, because the dynamics of the object are non-linear and complex.
Also, the perception of heaviness is still an open problem, and the size-weight illu-
sion, where small objects feel heavier than large objects of the same weight, is a well
known phenomenon.

In this chapter, a sensor which detects weight is discussed, and a new illusion in
perception is explained. The musculoskeletal model plays a crucial role in under-
standing the phenomenon. A new human interface based on the musculoskeletal
model is also introduced.

7.2 Haptics and Force

Sensory systems measure various stimuli and perceive information from the envi-
ronment. Table7.1 shows the different types of sensory systems and their associ-
ated modalities of information [1]. Our sensory systems use four types of sensory
receptors, mechanoreceptors, chemoreceptors, photoreceptors, and thermoreceptors.
Chemoreceptors are related to olfaction, gustation, itch, and visceral sensations.
Visual sensors detect light, with different visual sensors reacting to different wave-
lengths. The brain integrates the signals from receptors and extracts information,
such as smell, color, or temperature.

As shown in Table7.1, there is no sensor to directly measure weight. Somatosen-
sory information is received at the hand by pressure, as well as at the arm by hand
displacement, and captured by cutaneous mechanoreceptors (touch) or muscle and
joint receptors (proprioception). Muscles have three kinds of mechanoreceptors,
which respond to muscle length, contraction velocity, and muscle force.

Table 7.1 Sensory systems

Stimulus source Sensory system Modality Receptor cell types

Exteroception Visual Vision Rods, cones

Exteroception Auditory Hearing Hair cells (cochlea)

Exteroception Vestibular Balance Hair cells (vestibular labyrinth)

Somatosensory Somatic senses Dorsal root ganglion neurons

Exteroception Touch Cutaneous mechanoreceptors

Proprioception Tension, Motion Muscle and joint receptors

Exteroception Temperature sense Cold and warm receptors

Exteroception Gustatory Taste Taste buds

Exteroception Olfactory Smell Olfactory sensory neurons

Modified from [1]
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Proprioception refers to the sensingof information frommuscle and joint receptors
on the body’s own motion. The sensing of one’s own motion is called kinaesthesia,
and the main receptor involved in kinaesthesia is the muscle spindle. Motor com-
mands from the central nervous system (CNS) related to the perception of heaviness
are sent to the muscles. The receptors also send afferent feedback signals back to
the CNS. The CNS can estimate the result of the motor command using an efference
copy and compare the estimate with the afferent feedback.

Exteroception refers to information from outside of the body, such as light, sound,
and smell. Vision plays an important role in recognizing the world. When we grasp
an object, its size, color, material, position, and other properties are recognized.
For example, the relationship between size, material, and weight are trained by the
experience of manipulation.

7.3 The System of Sense

Auditory sensors capture vibrations of the air. Visual sensors detect light. Molecules
are detected by sensory cells in the nose and mouth, allowing us to smell and taste.
Temperature, pain, and pressure are sensed on the skin by receptors such as Pacinian
corpuscles, Ruffini’s corpuscles, andMeissner’s corpuscles. Sources of sensed sound
and light can be distant, but smell comes from nearby. Arm length dictates distance
for touch sensation, and the hand is an articulating sensor for capturing shape and
hardness. Furthermore, there are other sensors that receive information passively.

When vibrations of the eardrum are passed on through the middle ear to the
cochlea, sound is perceived. However, physical vibrations do not necessarily match
the perception of the sound. The brain can pick out information from sensor signals
(Fig. 7.1). For example, we can focus on a particular conversation in a noisy room.
This phenomenon is explained by selective attention. This means that when we

Fig. 7.1 The brain receives information from the sensors, but each sensor has a different delay, and
different regions of the brain received their signals, so the brain has to integrate the information.
Perception differs from real sensory information, because the brain compensates for the lack of
information



172 Y. Koike

receive a sensation, not only bottom-up sensory signals, but also top-down signals
affect perception. The “McGurk Effect” [2] is a good example. When subjects hear
the syllables /ba-ba/ while viewing the lip motion /ga-ga/, most subjects report that
the sound is /da-da/. This example also demonstrates that perception is not directly
connected to sensor signals.

Another example is pseudo-haptics [3], which is a technique for simulating hap-
tic sensation using visual feedback. This phenomenon is caused by the difference
between the user’s displacement of the input device and the visual displacement of
the object on the screen. This difference is known as the control/display (C/D) ratio
(Eq.7.1) in the human interface field.

C/D ratio = xhand

xdisplay
(7.1)

One of the most popular human interfaces is the computer mouse. When we use
a mouse, hand motion on the desk and cursor motion on the screen are not the same
(Fig. 7.2). Forward and backward handmotions are translated respectively to upward
and downward motions on the screen. We do not typically notice this translation.

Fig. 7.2 A computer mouse measures hand motion on the desk. Leftward and rightward motion is
reflected on the screen directly, but forward and backward motion is reflected indirectly as upward
and downward motion. Still, we do not usually perceive this translation
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Fig. 7.3 Input and Output signals of computer mouse

However, if the motion is slower or faster than expected, it becomes bothersome. So
we can adjust the speed of the cursor through the computer’s settings. In Fig. 7.3, k is
a parameter for position change. This is the same as the C/D ratio. Even though this
ratio is not adjusted manually, we learn the relationship between our hand’s motion
and the cursor’s motion. After learning or adjusting the C/D ratio, we cease to be
aware of the transformation. Yet if this ratio is changed unexpectedly, we feel force.
This phenomenon is the basis of pseudo-haptics.

Pseudo-haptic feedback of isometric input devices was also tested using virtual
springs [4]. Spring force (F) is defined by the spring constant (K ) and displacement
(x) as:

F = K x

xcursor = Fhand/Kvir tual (7.2)

When cursor motion (xcursor ) is controlled by force (Fhand ), the spring constant
(Kvir tual ) is a parameter to adjust the motion.

Kvir tual = Fhand/xcursor (7.3)

The displacement (x) is inversely proportional to the spring constant (K ), and
Kvir tual is similar to the C/D ratio in Eq.7.1.

The hand is pulled by the equilibrium position xeq with spring K and damper B
(Fig. 7.4).

Fig. 7.4 Musculoskeletal system
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Parameters K and B can also be defined as stiffness and viscosity, respectively.
Along with equilibrium position, they are controlled by muscle contraction. The
implications of these parameters are explained in later sections, but different com-
binations of these parameters can result in the same hand position. Conversely, C/D
ratio is one parameter without redundancy. In this chapter, new human interface
concept is proposed using these parameters.

7.4 Musculoskeletal Model

Hand force is produced by muscle tension. Skeletal muscle generates force in the
pulling direction. For this reason, each joint has one or more pairs of muscles. The
musculoskeletal model calculates joint torque from each muscle activation pattern.

7.4.1 Muscle Tension

The force that a muscle exerts depends on the muscle length and contractile velocity.
Muscles have spring-like properties,withmuscle force increasing as length increases.
But when the length exceeds a threshold, force gradually decreases. Still, in daily
life, muscle length does not typically go beyond this threshold, and also muscle ten-
dons help to prevent this. Conversely, muscle force decreases as contractile velocity
increases. But when muscle length increases, force is not affected by the velocity.

Each muscle is connected at a joint, and muscle length changes with the joint
angle. For example, as the angle of the elbow joint increases, the length of the flexor
muscle shortens while the opposing extensor muscle lengthens. This equates to a
decrease in flexor tension and an increase in extensor tension.

7.4.2 Joint Torque

Net joint torque is calculated from the difference in flexor and extensor muscle
tensions. This also means that each muscle tension is not directly related to joint
torque.

Consider two examples, one where flexor muscle tension is 10 (arbitrary units)
and extensor muscle tension is 7, resulting in a joint torque of 3, and another example
where flexor muscle tension is 4, and extensor muscle tension is 1, again resulting
in a joint torque of 3. What is the difference between these examples?

InFig. 7.5, two conditions formuscle tension are plotted.Whenflexor and extensor
muscle tensions are equal, joint torque becomes zero, and the arm is stable at some
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Fig. 7.5 Co-contraction

Fig. 7.6 Force generation

position (command set 1). At another strong contraction level, the same posture
(command set 2) can also be obtained. We call this position equilibrium posture.
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Fig. 7.7 Stiffness

7.4.3 Joint Stiffness

When joint position moves with the same contraction level, restoring force is gener-
ated (Fig. 7.6).

The magnitude of this force depends on each muscle’s contraction level. At the
same posture, stiffness depends on muscle activation level (Fig. 7.7). The ratio of this
restoring force and displacement is called joint stiffness.

Jointsti f f ness = restoring f orce

displacement
(7.4)

In Fig. 7.5, restoring force is equal, but displacement is different. In Fig. 7.7,
displacement is equal, but restoring force is different. For both cases, joint stiffness
of command set 1 is greater than that of command set 2.

7.4.4 Equilibrium Position Change

Toproduce a trajectory, it has been hypothesized that theCNS sends only final posture
information, and muscle activities are generated such that the joint is stabilized at
the equilibrium position [5] (Fig. 7.8).

To test this hypothesis, Bizzi and colleagues performed an experiment using a
deafferent monkey [6]. If the hypothesis were correct, the hand position would move
to the end point just before the motion. The hand would be there because the brain (in
this hypothesis) sends commands to stabilize the hand at the end position. However,
when they did the experiment, they obtained different results. The hand moved to
the middle position and then to the end point. They concluded that the brain sends
commands to gradually shift the hand to the end point. So it came to be thought that
the brain plans trajectory. However, if the brain can estimate the sensor signals using
the feedforward model of our arm, in which the efference copy is an input signal, the
experimental result can be explained using a simple end-point control hypothesis.
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Fig. 7.8 Equilibrium control

7.4.5 Uniform Control Hypothesis

As mentioned in the previous section, we can change equilibrium position and
stiffness independently. This means that we have a redundant control system. For
example, in order to hold an object of weight m in hand, where the distance between
the wrist joint and object position is d, and force F equals mg, the wrist must pro-
duce a torque of mgd cos θ to compensate for the weight of the object. The brain
changes the equilibrium position and stiffness to produce torque τ = K (θeq − θ).
If the object’s weight is known, it is easy to set the equilibrium position and stiff-
ness. For familiar objects, stiffness is set to an appropriately low value, and the brain
changes the equilibrium position depending on the object’s weight. If the weight of
the object is unknown, stiffness is controlled to the high value, and the difference
between the equilibrium position and current position is small. High stiffness allows
the hand to be stabilized even if the weight estimation is not completely accurate
(Fig. 7.9).

7.4.6 Pseudo-haptic in 3D

The characteristics of pseudo-haptics have been tested for 2D motion on a frontal
parallel screen. For virtual reality, binocular disparity is utilized by three dimen-
sional displays. To determine the applicability of pseudo-haptics in virtual reality,
the performance of pseudo-haptics in 3D space needed to be tested [7] (Fig. 7.10).
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Fig. 7.9 Uniform control for motion and force

Fig. 7.10 Experimental setup

Results showed that the magnitude of pseudo-haptic sensation was reduced in the
depth direction, compared to planar directions; i.e., discrimination of motion in the
depth direction was decreased. This indicated that motion detection is important in
perceiving pseudo-haptic sensation.
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7.5 Pseudo-haptics by Stiffness

In Eq.7.2, the spring constant is the ratio between force of hand and displacement
on the screen, and it is similar to the C/D ratio. The stiffness of the musculoskele-
tal model can be estimated from EMG signals in real time and used to change
weight perception. Co-contraction level can be modulated voluntarily, but it can also
be non-voluntarily altered by environmental conditions. When we catch an object,
stiffness level is dependent on the weight of the object [8]. Stiffness is low before
contact, and increases just before contact onset. The maximum value of the stiffness
is proportional to the weight of the object. If stiffness is related to weight percep-
tion, weight judgment would be different just before or after contact. To verify this
hypothesis, we investigated the effect of temporal factors on weight perception [9].
We conducted ball-catching experiments in a virtual environment where the timing
of load force exertion was shifted away from the visual contact timing (Fig. 7.11).

The perception of an object’s heaviness is not only dependent on its weight. It
is well known that spatial information of an object, such as size, can easily deceive
our perception of its heaviness. To further understand neural mechanism underlying
weight perception, we investigated effects of temporal information on the weight
perception.We conducted experiments in which a falling ball is displayed on a screen
and load force of the ball is exerted on the hand by a haptic device. By shifting the
timing of load force exertion away from visual contact timing (i.e., timewhen the ball
hit the hand in the display), we found that the ball was perceived heavier/lighter when
force was applied earlier/later than visual contact. We also found that the illusion
in perceived heaviness induced by the time offset between visual and haptic contact
timing became smaller after participants had been conditioned to the time offset.
These results suggest that the illusion found in our experiments was not caused by
the physical time offset between force exertion and visual contact but by the perceived
time offset between them and/or estimation error in force exertion timing.

7.5.1 Experimental Protocol

Six right-handed male adults (age: 21–39) took part in three experiments 1, 2, and
3, conducted on separate days. Experiment 1 was conducted to investigate how
the time offset between load force exertion and visual contact affects perceived
weight of the ball. In Experiments 2 and 3, we investigated how weight perception
changes after participants were persistently exposed to constant time offsets. All
participants performed Experiment 1 first. The order of Experiments 2 and 3 was
randomized among all participants, with half performing Experiment 2 before 3 and
the other half performing Experiment 2 after 3. Each experiment was organized into
three sessions: “Conditioning”, “Simultaneity Test”, and “Weight Perception Test”
sessions, presented in this order. Rest breaks of several minutes were taken between
sessions.
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Fig. 7.11 Experiment system. A virtual red ball (radius = 2cm) and a black square cursor (width
= 10cm, height = 2cm) projecting the hand position in the vertical direction were displayed on a
plasma display. Subjects held a ball-shaped plastic grip attached to a SPIDAR haptic device, which
consisted of eight motors and strings. Load force was applied through tension in the strings by the
motors. The grip position was calculated from angle encoders attached to the motors. Subjects wore
a pair of noise-canceling headphones to reduce the sound generated by the motors of the haptic
device

7.5.2 Conditioning Session

Participants performed 80 ball-catching trials in the Conditioning session. The inter-
trial interval was 2 s. The sequence of events in a single trial is shown in Fig. 7.12. At
the beginning of the trial, the ball appeared at 80cm above the blue bar, accompanied
with a beep sound, and started falling after a random delay. The ball load force was
then applied with or without time offset from visual contact.

Fig. 7.12 The sequence of events in a single ball-catching trial during the Conditioning session.
The load force is applied at the same time (Experiment 1), 60ms before (Experiment 2), or 60ms
after (Experiment 3) the ball contacts the hand cursor in the display
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In Experiment 1, the load force was synchronized with visual contact. In Experi-
ment 2, the force was applied 60 ms before visual contact, and in Experiment 3, 60
ms after visual contact. The magnitude of load force was 3.92N for all Conditioning
sessions. This value was selected to simulate the feeling of catching a ball weighing
400 g. In accordance with the time offsets used in the three experiments, we denoted
the Conditioning sessions as “sync” (Experiment1), “lead” (Experiment2), and “lag”
(Experiment3).

7.5.3 Simultaneity Test Session

Each participant underwent 99 ball-catching trials in the Simultaneity Test session.
The sequence of the events in a single trial was the same as that shown in Fig. 7.12,
except for the time offset values. The offset for each trial was selected randomly
from the list. The magnitude and the duration of load force in each trial were 3.92N
and 1s. Just as in the Conditioning session, we asked the participants to counteract
the load force to catch the virtual ball. The participants were instructed to make
judgments about the temporal order of visual contact and force exertion. We asked
them to report which event occurred first by pressing the left or right button of a
computer mouse held in their left hands.

We instructed participants to counteract the load force so as to keep the black
cursor within the blue bar as consistently as possible.

7.5.4 Weight Perception Test Session

In each of the three experiments, the Weight Perception Test session was organized
into five sets. A single set was composed of 99 trials in Experiment 1, and 76 trials
in Experiment 2 and 3. Rest breaks of several minutes were taken between sets. In

Fig. 7.13 The sequence of events in a single weight judgment trial during the Weight Percep-
tion Test session. After applying the constant magnitude reference force, participants performed
ball-catching. The timing of load force exertion was chosen randomly from three candidates cor-
responding to the times simultaneous to (0ms offset trials), 60ms before (−60ms offset trials), or
60ms after (+60ms offset trials) visual contact of the ball
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Table 7.2 Load force values and frequencies in the Weight Perception Test session

Force magnitude [N] (appearance frequency for each time offset within a single set)

2.94 (1) 3.185 (3) 3.43 (3) 3.675 (3) 3.92 (3) 4.165 (3) 4.41 (3) 4.655 (3) 4.9 (1)

each set, participants first performed 30 ball-catching trials without any perceptual
judgment. The time offsets for the first 30 ball-catching trials were the same as those
in the Conditioning session in each experiment. The rest of the trials were weight
judgment trials in which participants were asked to compare the heaviness of the ball
and a reference force. Figure7.13 shows the time sequence of the events in a single
weight judgment trial. At the beginning of the trial, the black cursor disappeared from
the display, accompanied with a beep sound. After a random delay, a reference force
with magnitude 3.92 N was applied for 1 s. After the 1 s time interval, the ball and
the black cursor appeared with a second beep sound. Participants then performed the
ball-catching task after a random delay ranging from 0.75 to 1.25 s. Time offset was
again imposed between visual contact and load force exertion. Its value was selected
randomly from one of the following values: −60, 0, or +60 ms in Experiment 1,
−60 or 0 ms in Experiment 2, and 0 or +60 ms in Experiment 3. Here, negative
or positive offset signs indicate that load force preceded or followed visual contact,
respectively. Each offset appeared 23 times in every set. Magnitude of load force
was also selected randomly. The magnitude values are listed in Table7.2 with their
appearance frequency for each time offset within a single set.

Participants were asked not to overcorrect for the reference force. The instructions
for the ballcatching task were the same as those for the Conditioning session. After
catching the ball, participants were required to judge the heaviness of the load force
compared to the reference force. Participants reported which force they perceived as
heavier by pressing the left or right button of a computer mouse.

After performing ball-catching trials with 60ms advanced or delayed load force
exertion, participants’ subjective judgment on the simultaneity of visual contact and
force exertion changed, reflecting a shift in perception of time offset. In addition,
timing of catching motion initiation relative to visual contact changed, reflecting a
shift in estimation of force timing. We also found that participants began to perceive
the ball as lighter after conditioning to 60ms advanced offset and heavier after the
60ms delayed offset. These results suggest that perceived heaviness depends not on
the actual time offset between force exertion and visual contact but on the subjectively
perceived time offset between them and/or estimation error in force timing.

7.5.5 Perceptual Judgment Analysis

For the Simultaneity Test session, the judgment of participants was modeled to a
psychometric curve. The probability of judging “load force preceding visual contact”
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was fitted with a sigmoid function,

prob( f orce f irst) = 1

1+ exp(θ0 + θ1Δt)
(7.5)

whereΔt is time offset, and θ0 and θ1 are the regression coefficients. A psychometric
curve was made for each participant using their individual judgments. A group psy-
chometric curve was also made from the judgments across all participants. The point
of subjective simultaneity (PSS), where Δt gives prob = 0.5, can be calculated as
PSS = −θ0/θ1.

For the Weight Perception Test session, the participants’ judgments were again
modeled to a psychometric curve. The probability of judging that “the ball was
heavier than the reference force” was fitted with a sigmoid function,

prob(ball heavier) = 1

1+ exp(φ0 + φ1ΔF)
(7.6)

where ΔF is the percent difference in load force magnitude compared to that of
the reference force and takes a negative value when the load force is comparatively
smaller. Both individual and group psychometric curveswere computed for each time
offset used in each of the experiments. The point of subjective equality (PSE), where
ΔF gives prob = 0.5, can be calculated as PSE= −Φ0/Φ1. The PSE indicates the
magnitude of load force perceived to be the same as that of the reference force.

7.5.6 Result of Simultaneity

For the Simultaneity Test sessions, we analyzed how perception of the temporal
order of the visual contact and load force events changed after three different types

Fig. 7.14 Group-average
psychometric curves after
the three types of time offset
conditioning. Circles,
squares, and triangles
represent the group-average
probability for the “sync,”
“lead,” and “lag”
conditioning, respectively
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of conditioning. Psychometric curves for each participant and each conditioning type
are shown in Fig. 7.14. The subjective simultaneity of the two events was evaluated
by the PSS of the psychometric curves (see Eq.7.6). The average PSS across par-
ticipants were −44.7 (SD: 14.0) ms, −4.5 (SD: 4.0) ms, and 36.5 (SD: 13.1) ms
after the “lead”, “sync”, and “lag” conditionings, respectively. The group-average
psychometric curves are also shown in Fig. 7.14. The curves for “lead” and “lag”
conditioning were clearly shifted leftward and rightward, respectively, in compari-
son to “sync” conditioning. The PSS shifts for “lead” conditioning with respect to
“sync” conditioning were −40.1 (SD: 15.2) ms averaged across participants. This
was significantly less than zero according to a one-sided t-test. On the other hand,
the PSS shifts for “lag” conditioning with respect to “sync” conditioning were 40.8
(SD: 15.4) ms averaged across participants. This was significantly greater than zero.
Therefore, PSS shifted toward the direction of persistently exposed time offset during
the Conditioning session.

Fig. 7.15 Weight judgment.
a Psychometric curves for
each participants after
“sync” conditioning. Line
color represents time offsets
in weight judgment trials.
b Group-average
psychometric curves after
“sync” (solid lines), “lead”
(dash-dotted lines), and
“lag” (dotted lines)
conditionings
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7.5.7 Result of Weight Perception

After “sync” conditioning.

Figure7.15a shows each participant’s psychometric curves of weight perception
after “sync” conditioning. Although psychometric curves differed from participant to
participant, they moved toward the right as offset increased from −60 ms to +60
ms. This tendency can be clearly seen in the plot of group-average psychometric
curves (see solid lines in Fig. 7.15b). The psychometric curve shifts indicate that
the same magnitude of load force was perceived differently as time offset changed.
For example, when the load force magnitude was the same as that of the reference
force (ΔF = 0%), the probability that participants perceived the ball heavier became
larger as the offset became negative (i.e., the load force preceded).

The difference in perceived heaviness can also be evaluated by the difference in
PSE of the psychometric curves (see Eq.7.6). The average PSE across participants
were −6.9(SD : 7.2)%, 3.9(SD : 7.4)%, and 14.3(SD : 4.5)% for −60, 0, +60
ms offset trials, respectively. Note that the smaller the PSE, the heavier the load
force perceived. The average PSE shifts from 0 ms to −60 ms offset trials was
−10.7(SD : 3.5)%andwas significantly less than zero. The average PSE shifts from
0ms to+60ms offset trials was 10.4(SD : 9.7)%.This shift was significantly greater
than zero. Therefore, load force exerted earlier than visual contact was perceived as
heavier than that exerted at the same time as visual contact, and when the load force
was exerted later than visual contact, it was perceived as lighter.

After “lead” and “lag” conditioning

Figure7.15b shows group-average psychometric curves for the weight judgments in
the three experiments. After “lead” conditioning, psychometric curves for both of
−60ms and 0 time offsets shifted toward the right compared for “sync” conditioning.
The rightward shifts indicate that the participants perceived the ball’s weight to be
lighter. On the contrary, after “lad” conditioning, the curves for both of 0 ms and
+60 ms time offsets shifted toward the left compared for “sync” conditioning. The
leftward shifts indicate that the participants perceived the ball’s weight to be heavier.
Change in perceivedweightwas evaluated byPSE shifts averaged across participants.
The average PSE shifts from “sync” to “lead” conditionings were 6.2(SD : 5.3)%
and 4.1(SD : 9.4)% for −60 ms offset trials and 0 ms offset trials, respectively.
The PSE shift for −60ms offset trials was significantly greater than zero (t (5) =
2.84; P = 0.018). Although the PSE shift for 0ms offset trials was not significantly
greater than zero, it tended to shift rightward. The average PSE shifts from “sync”
to “lag” conditionings were −6.2(SD : 3.0)% and −5.2(SD : 3.9)%, for 0 ms and
+60 ms offset trials, respectively. Those shifts were significantly less than zero.
These results indicate that the participants’ ball weight perception was changed by
being conditioned to time offset between load force exertion and visual contact. The
participants began to perceive the ball’s weight as lighter after “lead” conditioning
and heavier after “lag” conditioning.
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Fig. 7.16 Weight judgment results

We found that subjectsweight perception changed after conditioning to time offset
(Fig. 7.16). The weight was perceived lighter after conditioning to the −60 ms time
offset, and perceived heavier after conditioning to the−60 ms time offset. Therefore,
time offset itself was not the causal factor for the weight illusion.

7.5.8 Relationship Between PSE and PSS

The results of the weight judgment trials in Experiment 1 revealed that the weight of
the falling ball was perceived differently by introducing time offsets between load
force exertion and visual contact (Fig. 7.15). InExperiment 2 and 3,we also found that
the weight of the ball was perceived differently after “lead” and “lag” conditioning,
even though the time offsets were the same as those used in the weight judgment
trials in Experiment 1 (Fig. 7.15). Therefore, the perceived weight illusion observed
in Experiment 1 seems not to be related to actual physical time offset between
visual contact and load force exertion. Rather, the illusion in weight perception
seems to be connected to the participants’ subjective perception of time offset. This
subjective time offset is thought to bemodified by shifts in PSS after “lead” and “lag”
conditioning. To show how perceived weight is related to physical or subjective time
offset, the PSEs of group-average psychometric curves shown in Fig. 7.15 are plotted
with respect to their corresponding physical or subjective offsets (Fig. 7.17). Here
the subjective time offsets were calculated by subtracting the PSS of the group-
average psychometric curve in each experiment from the physical time offsets used
in the Weight Perception Test session in each experiment. We can see that the same
physical offset yielded different PSE values (black open marks). On the other hand,
PSE values plotted with respect to subjective offset (gray filled marks) increased
approximately linearly with subjective offset value. The correlation coefficient of
PSS and subjective time lag was 0.98.
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Fig. 7.17 PSEs of group-average psychometric curves for weight judgments in all experiments
are plotted with respect to actual (physical) time offsets as black unfilled marks. PSEs are also
plotted as gray filled marks with respect to subjective time offsets (physical offset minus PSS of
group-average psychometric curves for temporal simultaneity). Shapes of the marks represent the
Conditioning sessions. The gray solid line is a linear regression of the gray marks

7.5.9 Relationship Between PSE and Estimation of Error
in Force Exertion Timing

In addition to the subjective perception of time offset, the estimation of force exer-
tion timing in sensorimotor system also seems to be modified after “lead” and “lag”
conditioning. Here we analyze the relationship between perceived weight and esti-
mation error in force exertion timing. Although we cannot directly measure the
estimation of force exertion timing, we can infer it from the motion initiation timing
relative to visual contact. Let us assume that ball-catching motions are initiated some
fixed second in advance of the estimated timing of force exertion. This assumption is
supported by other experiments in which the timings of muscle activity and catching
motion were found to be consistently initiated a few hundred millisecond before
the ball contacts the hand [10–14]. We also assume that the margin between the
motion initiation timing and the estimated timing varied among participants, but did
not change within a single participant in the three experiments. According to these
assumptions, we inferred changes in the estimation of force timing by analyzing
changes in the motion initiation timing relative to visual contact. Figure7.18 plots
the PSEs of group-average psychometric curves shown in Fig. 7.15 against the esti-
mation error in load force exertion timing. Note that we assumed that there was no
estimation error in 0 ms offset trials after “sync” conditioning (Experiment 1). The
estimation error was then calculated by subtracting group-average motion initiation
timing in each experiment from the sum of time offset and group-average motion
initiation timing in Experiment 1. For example, the estimation error in +60 ms off-
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Fig. 7.18 PSEs of group-average psychometric curves for weight judgments in all experiments are
plotted with respect to the estimation error in load force exertion timing. The estimation error for
α ms offset trials in Experiment β was calculated by subtracting group-average motion initiation
timing in Experiment β from the sum of α ms offset and group-average motion initiation timing in
Experiment1

set trials in Experiment 3 was 20.1 (= 60+ (−75.3) − (−35.9)), where the values
of −75.3 and −35.9 ms correspond to group-average motion initiation timings in
Experiment 1 and 3, respectively (values of group-averagemotion initiation timing in
each experiment is described in Sect. 7.2). We can see that the PSE values increased
almost linearly with the estimation error. The correlation coefficient of PSE and the
estimation error was 0.99.

7.6 Representation of Motion in the Brain

Stiffness is closely related to weight perception (described in Sect. 7.5.9). But where
is stiffness information represented in the brain?Muscle activations are represented in
the primarymotor cortex. But stiffness of the hand is related to either joint coordinates
or environmental coordinates. Understanding the coordinate systems employed by
the brain is crucial to uncovering the mechanisms of weight perception.

The brain allows skillful manipulation of the body to interact with the exter-
nal environment. This sophisticated and flexible operation involves transformations
between coordinate systems of the internal body and external environment, possi-
bly computed in distributed brain regions. The internal coordinate system is body-
and/or joint-centered, and may thus be represented intrinsically, whereas the external
coordinate system refers to points outside the body.

The representation of intrinsic (i.e., joint) and extrinsic (i.e., movement) coordi-
nate frames were analyzed using functional magnetic resonance imaging (fMRI).
During fMRI acquisition, healthy human participants performed isometric flexion
and extension tasks (Fig. 7.19) in different forearm postures. In a pronated posture
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Fig. 7.19 a Schematic of participant postures and relation between movement directions and tasks
according to visual instructions in three different wrist postures. b Block design for the fMRI
experiment

(Pro), an upward force exertion was equivalent to an extension task and cued with an
up arrow (Up/Ext), whereas a downward force exertion was equivalent to a flexion
task and cued with a down arrow (Down/Flex) (Fig. 7.19a, left panel). In a supinated
posture (Sup), an upward force exertion was equivalent to a flexion task and cued
with an up arrow (Up/Flex), whereas a downward force exertion was equivalent to
an extension task and cued with a down arrow (Down/Ext (Fig. 7.19a, center panel).

In a midway posture between Pro and Sup (Mid), a leftward force exertion
was equivalent to a flexion task and cued with a left arrow (Left/Flex), whereas a
rightward force exertion was equivalent to an extension task and cued with a right
arrow (Right/Ext) (Fig. 7.19a, right panel).

Figure7.19b shows the block design for the fMRI experiment. Execution tasks
(Flex and Ext) were instructed with up and down arrows (in Pro and Sup) or left and
right arrows (in Mid) inside a gray box, and a no-force task (Still) was instructed
with a vertical bar (in Pro and Sup) or a horizontal bar (in Mid).

Figure7.20a shows an accuracies for Flex versus Ext classification and Up versus
Down classification using Pro and Sup data. Gray bars represent mean accuracies
of 10 participants (Participant 1–10) calculated using 6-fold cross validation and
black bars represent grand mean accuracies averaged across participants. Error bars
denote standard deviation. There was no significant difference between the grand
mean accuracies of the two classifications. The obtained classifiers were consid-
ered direction-specific (left group; Up vs. Down classification) and join-specific
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Fig. 7.20 a Accuracy for Flex versus Ext classification and up versus down classification using
Pro and Sup data. b Classification accuracy using Mid data

(right group; Flex vs. Ext classification) classifiers. Figure7.20b shows the clas-
sification accuracies using Mid data. Gray bars are accuracies of 10 participants
(Participant 1–10) and black bars are grand mean accuracies averaged across partic-
ipants. The trained classifier did not specifically discriminate joint action (Flex vs.
Ext) or movement direction (Left vs. Right), but discriminatedmixed joint action and
movement direction features (Left/Flex vs. Right/Ext) since only Mid data was used
for classifier training. Results using direction-specific (Up vs. Down) classifiers for
each participant (gray bars) and grand mean accuracy averaged across participants
(a black bar). The direction-specific classifier for each participant was the mean of 6
classifiers obtained from 6-fold cross validation using Pro and Sup data (Fig. 7.20a,
left group). Results using joint-specific (Flex vs. Ext) classifiers for each participant
(gray bars) and grand mean accuracy averaged across participants (a black bar). The
joint-specific classifier for each participant was the mean of 6 classifiers obtained
from 6-fold cross validation using Pro and Sup data (Fig. 7.20a, right group).

Mean contribution ratios of intrinsic and extrinsic coordination in four ROIs,
primarymotor cortex hand knob (M1), ventral premotor area (PMv), dorsal premotor
area (PMd), and supplementary motor area (SMA), were calculated and averaged
across participants.

The motor-related cortical regions identified in the current study match those of
prior studies in this field. More specifically, our results revealed that intrinsic coor-
dination was mainly associated with M1, while extrinsic coordination was mainly
associated with PMv, PMd, and SMA. This is reasonable, considering the layered
organization of the cerebral cortex and signal pathways to M1, PM and SMA. Since
M1 transmits output signals to the muscles through a number of layers, the selection
of flexion and extension tasks, which is associated with only internal body control,
may be represented in M1. At the same time, the other layers of M1 receive input
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Fig. 7.21 Anatomical mapping of statistical group analysis results

from PM, SMA, and cingulate motor area, which may be the reason why direction
of movement is encoded not only in PM regions but also in M1 [15, 16]. This in turn
would explain why, in our analysis, 39% ofM1 voxels showed contribution to extrin-
sic coordination in Fig. 7.21. Prior studies have shown that PMv represents direction
of action [15–17], but others suggest that premotor areas operate at a hierarchical
level comparable to M1 since they appear to have direct connections with spinal
motoneurons, particularly those innervating hand muscles [1, 18]. In this respect,
our results replicated these findings, and we can explain why statistically significant
clusterswere not found in the PMv-ROIwhile a relatively high amount of PMvvoxels
(i.e., 42%) contributed to intrinsic coordination (Fig. 7.21). PMv is considered to be
involved in visuomotor transformations [19, 20], and we believe our results support
this view. Tasks in our experiment were cued with graphical arrows. Thus, visuo-
motor transformations from direction information in the external world to action
information in the internal body would be necessary. In addition, a path of visuo-
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motor transformations required for grasping connects the dorsal extrastriate cortex
and PMv via the anterior intraparietal area [21]. Although our experimental tasks
were not finger movements, similar information may be processed for wrist flexion
and extension. PMv then outputs visuomotor transformed information to M1, which
may also explain the 42% contribution by PMv to intrinsic coordination. Rizzolatti
and colleagues also showed that a path of visuomotor transformations required for
reaching connects the parieto-occipital extrastriate area and PMd separately from
the path required for grasping [21]. Since, in the current study, PMd showed a 70%
contribution to extrinsic coordination, reaching and wrist flexion and extension may
also share similar information.Other studies have also revealed that PMd is associated
with motor planning and initiation [22, 23] and action prediction [24]. Considering
the experimental design of the current study, participants performed tasks according
to periodic visual stimuli and had tomemorize the relationship between each task and
respective cue. Therefore, participants might have naturally predicted and prepared
for the next task, which would attribute to PMd activation. Therefore, these brain
activities might be necessary for both joint action and movement direction.

7.7 Applications of a Sense-Centered Human Interface

7.7.1 TCieX

Wedeveloped a sense-centered human interface named theTouch-Centric Interaction
Embodiment Exploratorium (TCieX) [25]. This system uses visual interaction to
communicate weight, stiffness, or viscosity by exploiting pseudo-haptics in human-
computer interaction. TCieX is a collection of simple interaction test suites that
allow experience of different combinations of multimodal interactions. This system
measures the hand motion and pressure on a display and biological signals (e.g.
EMG signals) simultaneously to control cursor position, velocity, and acceleration
(Fig. 7.22).

An illusory sense of haptics also occurs with the combination of these signals.

Fig. 7.22 TCieX by iPad®
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Fig. 7.23 Schematic of external force estimation by biological signals

7.7.2 Surgery Robot

The daVinci Surgical System® (Intuitive Surgical, Sunnyvale, CA) is one of themost
well-known robot surgery systems. A 3D high definition vision system provides a
clear and magnified view for the surgeon. The surgeon manipulates a master robot
to intuitively control a slave robot. The master-slave robot system translates hand
motion into smaller, more precisemotionwithout haptic information. It is technically
feasible to add haptic sensation to the slave robot arm, but difficult to add force-torque
sensors because the tip of the slave robot is disposable to maintain sterility. Force
feedback is useful to prevent user fatigue. For this reason, force feedback without
force sensors has been developed [26, 27].

Figure7.23 shows a schematic for estimation of external force. The operator can
see the motion of the slave arm, and the stiffness of the slave is constant (Kslave).

Fhand = δxslave × Kslave (7.7)

This allows the operator to estimate the force of the slave robot. Our sense-centered
human interface provides an alternative means of acquiring force sensation [28].

7.7.3 Power-Assist Robot

The conventional power-assist robot is controlled by torque, which is estimated
from EMG signals. The power is proportional to the contraction level. However, this
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Fig. 7.24 Power-assist robot
using equilibrium-based
control

Fig. 7.25 Equilibrium-based
control is more stable than
the conventional
torque-based control

kind system is liable to become unstable particularly during posture control. Our
new control method based on equilibrium position (described in Sect. 7.4.3) offers
greater stability than conventional methods.

When holding an object, hand position is kept at the same position. The co-
contraction level can also change while keeping the same posture. This means that
the command scheme has redundancy, and another parameter exists for control.
Our arm can be modeled as a mass-spring-damper system using muscle spring-
like properties. Hand force can be defined as Force = Kspringconstant × (x0 − x) −
Bviscosi t y ẋ , where x0 is the estimated position from EMG activity and represent
equilibrium position. Values x and ẋ are current position and velocity measured by
the position sensor of themotor. Figure7.24 shows a power-assist robot with position
and impedance controlled by EMG of the forearm.

The conventionalmethodof control uses joint torque estimated fromEMG.During
posture control, stabilization of posture is achieved by exerting joint torque. Power-
assist systems enhance this exertion, and this causes positional errors, which can
be observed as oscillatory motion. In our system, joint torque is exerted toward the
equilibrium position [14] (Fig. 7.25).

7.8 Conclusion

Sense-centered human interfaces have the potential to influence perception by
exploiting the intricacies of the brain’s sensory systems. Yet further development
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Fig. 7.26 Matrix map of virtual reality from the standpoint of force feedback

of body and brain models, sensor devices, and signal processing techniques, as well
as more quantitative evaluations of the perception is needed.

The techniques described here offer a framework for new human-interfaces as
well as new humanoid robots capable of detecting sensation as humans do, allowing
them to work in environments meant for humans.

Figrue7.26 shows a matrix map of virtual reality techniques from the standpoint
of force feedback. The horizontal axis indicates visual information, real or virtual.
The vertical axis indicates force feedback. Virtual reality (VR) replicates the real
world by providing sensory and visual feedback using computer-simulated devices.

Tele-operation is a prime example of aVR system.Visual information from a cam-
era is real, but we cannot touch what is displayed. So haptic devices reproduce force
feedback, which is measured by a force-torque sensor. VR allows for the replication
of a broad range of real-world sensations in a virtual world.

Pseudo-haptics is a technique for simulating haptic sensation using visual feed-
back without a haptic device. Our sense-centered human interface also provides
haptic sensation without haptic device, but the difference between them is the type
of input information. Pseudo-haptics uses input information which corresponds to
the output signal. C/D ratio is a ratio of output to input. Our system also uses sen-
sor signals, but the equilibrium position or stiffness does not directly correspond
to the output information. Also these types of information are typically controlled
unconsciously.

When we push a button, the force used depends on the person. The number of
possible input key combinations of a 4-digit passcode is 104. If two different levels
of force are added to the system, the number of possible combinations increases
to 204 [29]. Applied force for pushing buttons is usually controlled unconsciously,
is consistent over time, and differs between people, making it potentially useful



196 Y. Koike

in security applications. Force sensors are effective in measuring force for human
interface applications. But EMG signals reflect not only force information, but also
stiffness and equilibrium position. Sense-centered human interfaces based on EMG
can be used to estimate subjective perception and enhance sensation.
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