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Strategies to Enhance Biological

Tendon-Bone Healing in Anterior

Cruciate Ligament Reconstruction

Tomoyuki Matsumoto and Ryosuke Kuroda

Abstract Tissue engineering techniques to enhance tendon-bone healing in ante-

rior cruciate ligament (ACL) reconstruction, including stem cells and growth

factors/cytokines, are gaining wide acceptance, and their clinical feasibility has

also been recognized. Among them, vascular stem cells at the site of ruptured ACL,

which have high proliferation and multi-differentiation potential, accelerate

tendon-bone healing by enhancing angiogenesis and osteogenesis in human-rat

xenotransplantation and canine autologous transplantation model of ACL recon-

struction. A pilot clinical study, which used ruptured tissue for ACL reconstruction,

indicated reduction of tunnel enlargement despite no improvement in clinical

scores. However, for effective clinical application in future, detailed analysis is

required regarding enrolled patient demographic parameters, such as age, sex,

surgical timing, and type of ACL injury. This chapter highlights effectiveness of

vascular stem cells application for early tendon-bone healing in ACL reconstruc-

tion, providing an insight for future strategies.

Keywords Tendon-bone healing • Stem cells • Ruptured tissue • Angiogenesis •

Osteogenesis

42.1 Introduction

When an anterior cruciate ligament (ACL) is ruptured, the healing potential is

considered to be extremely poor [1, 2]. Therefore, ACL reconstruction has become

fairly standardized, with clinical success rates of 70–95% [3–5]. Anatomical

double-bundle (DB) reconstruction procedures using hamstring grafts have recently

become widespread with promising results [6–9]. Whereas most surgical proce-

dures in this area require healing and maturation of tendon grafts in a surgically

T. Matsumoto, M.D. (*) • R. Kuroda

Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, 7-5-2

Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan

e-mail: matsun@m4.dion.ne.jp

© Springer Japan 2016

M. Ochi et al. (eds.), ACL Injury and Its Treatment,
DOI 10.1007/978-4-431-55858-3_42

537

mailto:matsun@m4.dion.ne.jp


created bone tunnel, the attachment between the tendon and the bone is the weakest

region in the early posttransplantation period [10, 11]. In fact, mechanical proper-

ties of the healing ligament did not return to normal 1 year after injury in both rabbit

and canine models [12, 13]. Therefore, secure fixation of the tendon graft to the

bone is a significant factor in allowing earlier and more aggressive rehabilitation

and earlier return to sports and work.

Current treatment with hamstring grafts has achieved satisfactory

anteroposterior and rotational stability but can cause significant tunnel enlargement

[14, 15]. Tunnel widening is believed to be multifactorial in origin. Some mechan-

ical causes are graft motion [15] and stress deviation inside the tunnel and inap-

propriate location of the graft and tunnel [16]. From a biological aspect, poor

healing potential at the tendon-bone interface also results in tunnel enlargement.

Large tunnels often require revision ACL surgery and necessitate staged procedures

[17]. Therefore, enhancing tendon-bone healing and preventing bone tunnel

enlargement are closely related and, therefore, vital in ACL reconstruction.

Tissue engineering techniques with stem cells or growth factors/cytokines have

been explored to achieve early healing and better tendon-bone integration [18]. Sev-

eral animal studies focused on enhancement of tendon-bone healing in ACL

reconstruction used periosteum [19, 20], bone marrow stromal cells [21], bone

marrow mesenchymal stem cells (MSCs) [20, 22], injectable tricalcium phosphate

[23], and other growth factors [24–28]. Although these biological engineering

strategies are currently experimental, they are expected to be used in clinical setting

in the near future.

42.2 Blood Vessels as a Potential Target for Tendon-Bone

Healing in ACL Reconstruction

Over the last decade, there have been considerable controversies regarding the

ACL’s intrinsic healing potential. Some surgeons are of the view that the ACL does

not heal without reconstruction due to the lack of blood clot formation, insufficient

vascular supply, deficits in intrinsic cell migration, impaired growth factor ability,

and effects of synovial fluid on cell morphology [29, 30]. On the other hand, others

have reported that the ACL spontaneously heals without surgery [31–33], or only

with primary sutures [34–37]. In fact, during acute and subacute arthroscopic

procedures for ACL reconstruction, a tibial stump is often visualized that can

have connecting fibers to the femur and the tibia or between the posterior cruciate

ligament and tibia, suggesting healing potential in ACL fibers. However, there is no

scientific evidence till now.

Stem cells’ qualities of high expansion, self-renewal, and multi-differentiation

present a reasonable explanation for the healing potential of the ACL. Although

some findings show the existence of MSC-like cells in human ACL tissues [38, 39],

their origin and characteristics still remain unclear. Recently, blood vessels have
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been reported to be a richer supply of stem/progenitor cells with expression of

CD34 and CD146 surface cell marker [40–43].

Matsumoto et al. demonstrated the presence in subacutely ruptured ACL tissues

of CD34-expressing vascular cells with potential for multi-lineage differentiation

that can be recruited to the ACL rupture site to support healing [44]. They con-

firmed the rich vascularity in the ruptured site and septum region when compared

with mid-substance using H&E and immunohistochemical vascular staining. In

addition, using immunohistochemistry and flow cytometry analysis, they confirmed

recruitment of CD34+ and CD146+ cells with multi-lineage differentiation poten-

tial to the ruptured site when compared with the gathered cells as the mid-substance

(Fig. 42.1a). These cells demonstrated multi-lineage differentiation potential

including osteogenesis, adipogenesis, chondrogenesis, and endotheliogenesis

(Fig. 42.1b). Covas et al. recently discovered that MSCs and pericytes are similar

cells located in the vasculature wall, and they function as cell sources for repair and

tissue maintenance [40, 45]. Findings reveal that CD34+ cells are committed not

only to endothelial cells but also mural perivascular cells (i.e., pericytes and smooth

muscle cells) [46, 47]. Similarly, vascular pericytes with CD146 expression may

arise from CD34+ cells [41]. Furthermore, Zengin et al. reported the existence of

endothelial progenitor cells and stem cells in a distinct zone between the smooth

muscle and the adventitial layer of human adult vascular wall that are capable to

differentiate among mature endothelial cells and hematopoietic and local immune

cells, such as macrophages [43]. Based on these findings, CD34+ cells with high

expansion and multi-differentiation potential in the ACL ruptured site, which were

converted into cell population positive for CD146, CD44, CD90, and CD73 expres-

sion [44], may have similar characteristics of MSCs described over the last decade

[48] and have a possibility to provide an attractive cell source for tissue repair and

regeneration.

Among multi-lineage differentiation potentials, osteogenic and endothelial dif-

ferentiations are especially important for ligament or tendon-bone healing. There

are some reports concerning osteogenesis and angiogenesis/vasculogenesis for

ligament or tendon-bone healing. To accelerate osteogenesis and/or angiogenesis

for tendon-bone healing, vascular endothelial growth factor (VEGF), granulocyte

colony-stimulating factor (G-CSF), transforming growth factor-β (TGF-β), bone
morphogenetic protein 2 (BMP2), and BMP7 have recently received attention for

their therapeutic potential [27, 28, 49–51]. However, Tei et al. reported that human

G-CSF-mobilized peripheral blood CD34+ cells contribute to ligament healing via

their endothelial differentiation (vasculogenesis) and enhanced intrinsic angiogen-

esis by VEGF secretion in a immunodeficient rat model [52]. In addition,

Matsumoto et al. showed that peripheral blood CD34+ cells could be differentiated

into osteoblasts and endothelial cells in a fracture model [53, 54]. Ratio of CD34+

cells is only 1% in the peripheral blood cells [53] compared to 44% [44] in ACL

ruptured tissue cells, suggesting that isolation of CD34+ cells from the ACL tissue

is less important than that from peripheral blood.
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Fig. 42.1 In vitro experiments showing vascular stem cells in the ACL ruptured tissue

(a) Tissues showing more positive staining for CD34 in the ruptured site than in the mid-substance

(b) CD34-positive cells from ACL ruptured tissue showing multi-lineage differentiation potential

including osteogenesis, adipogenesis, chondrogenesis, and endotheliogenesis
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42.3 Therapeutic Potential of ACL-Derived Vascular Stem

Cells or Ruptured Tissue for Tendon-Bone Healing

in ACL Reconstruction

Based on the report showing the existence of CD34+ vascular stem cells in ACL

ruptured tissue [44], Mifune Y et al. demonstrated that intracapsular transplantation

of human ACL-derived CD34+ cells from the ruptured site contributed to tendon-

bone healing via angiogenesis/vasculogenesis and osteogenesis in an immunodefi-

cient rat model of ACL reconstruction [55]. Using a molecular approach, they

confirmed enhanced intrinsic angiogenesis/osteogenesis and human-derived

vasculogenesis/osteogenesis by intracapsular transplantation of human

ACL-derived cells. Histological, radiological (CT), and biomechanical assessment

exhibited early tendon-bone healing by cell transplantation. Nonselected as well as

CD34+ cells contributed to tendon-bone healing and reduction of tunnel enlarge-

ment in a rat model of ACL reconstruction.

During cell therapy for ACL reconstruction, second-step arthroscopic surgery is

unavoidable due to the necessity of cell isolation, cell culture, and cell expansion,

thus affecting the clinical feasibility of CD34+ cell transplantation. Based on the

rich supply of CD34+ cells in the ACL ruptured site [44] and effectiveness of

nonselected cells in a rat ACL reconstruction model [55], Matsumoto et al. explored

the effect of ACL ruptured tissue on tendon-bone healing in ACL reconstruction.

To explore the feasibility of the use of ruptured tissue in the clinical setting, the

study was designed as an autologous transplantation model with a large animal

canine [56]. ACL ruptured tissue was harvested 2 days after ACL resection and was

sutured to the grafts in the tibial tunnel in ACL reconstruction (Fig. 42.2a). The

results in histological, CT, and biomechanical testing showed early tendon-bone

healing and reduction of tunnel enlargement compared to control group (no tissue

suture) (Fig. 42.2b). These findings may lead to the effectiveness of ruptured tissue

in ACL reconstruction in the clinical application.

42.4 Clinical Application of ACL Ruptured Tissue in ACL

Reconstruction

Based on previous findings, Matsumoto and Kuroda et al. compare 2-year clinical

outcomes and tunnel enlargement of DB ACL reconstruction with and without

suturing of the autologous ruptured tissue to the grafts in patients with subacute

ACL injury (Fig. 42.3) [57]. In this study, 10 patients with subacute (within 3 months

after injury) ACL rupture were randomly allocated to undergo DB ACL reconstruc-

tion with suturing of the ruptured tissue to hamstring grafts or conventional DB ACL

reconstruction in two equal control groups (n¼ 5 each). The results showed signif-

icant reduction in tunnel enlargement as assessed with 3D-MDCT in the tissue group,

especially at the femoral side. However, the postoperative Lysholm score, anterior

42 Strategies to Enhance Biological Tendon-Bone Healing in Anterior Cruciate. . . 541



Fig. 42.2 Preclinical study using canine ACL reconstruction model

(a) ACL reconstruction was performed using tendon graft with ruptured tissue

(b) Autologous tissue transplantation exhibited early tendon-bone healing and bone tunnel reduc-

tion via enhanced angiogenesis and osteogenesis
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stability of the knee measured with the KT-1000 arthrometer, and rate of negative

manual pivot shift test did not differ significantly between the two groups. In several

animal studies, the use of periosteum [19, 20], bone marrow mesenchymal stem cells

[20, 22], injectable tricalcium phosphate [23], and growth factor [26–28] was

reported to enhance tendon-bone healing in ACL reconstruction. Among those,

application for human ACL reconstruction was only limited to periosteum with

promising results [58–60]. Chen CH et al. reported after their 2–7-year clinical

follow-up in 312 patients that satisfactory results could be achieved with the

periosteum-enveloping hamstring tendon graft in single-bundle ACL reconstruction

with minimal tunnel widening (more than 1 mm tunnel widening: 5.4% of femoral

and 6.1% of tibial side). Considering this comparison, concept for the treatment is

similar and successful tunnel reduction was found on radiographs [58]. If the strategy

using ruptured tissue has advantages over previous strategies for enhancement of

tendon-bone healing, the ruptured ACL tissue can be used with easy clinical settings

without any additional incision, procedure, and cell isolation and expansion.

Preservation of the remnant ACL reconstruction has recently received attention

focused on the existence of mechanoreceptors in the ACL remnant that contribute

to the proprioceptive function of the ACL [61–65]. However, the intrinsic healing

potential of ACL remnants after ACL reconstruction has not been fully investi-

gated. In the pilot study based on a previous series [44, 55, 56], the rupture site of

the ACL remnant was harvested and transplanted to the grafts to augment healing,

especially at the tendon-bone integration site. This technique is reliable, simple,

surgeon-friendly, and inexpensive, and thus clinically feasible.

To predict outcomes of ACL reconstruction surgery, the characteristics of

patients should be considered. Uefuji et al. recently reported that ruptured ACL

Fig. 42.3 A pilot clinical study using ruptured tissue in ACL reconstruction surgery

ACL reconstruction was performed with the use of ruptured tissues which were sutured to the

grafts located in the tunnels
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remnants have a healing potential with multi-lineage differentiation, including

osteogenesis and endotheliogenesis; however, this potential is age dependent and

decreases with age, as CD34+ cells were more prevalent in the ACL remnants in

younger patients [66]. ACL remnants in younger patients exhibited high prolifer-

ation and great multi-lineage differentiation potential, especially in osteogenic and

endothelial differentiation. Furthermore, with the use of in vivo rat ACL recon-

struction model, Nakano et al. reported that the healing potential of human

ACL-derived cells on the maturation of tendon-bone healing is dependent on the

patient’s age [67]. Considering these evidences, patient age can be one of the

factors that influence postoperative outcomes in healing potential for

ACL-derived cells or remnant. In the near future, other demographic factors such

as interval between injury and surgery, sex, type of injury, and patient activity level

should be assessed to explore other factors that impact ACL remnant-derived cells

in the healing potential of reconstructed ACL.
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