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Neutrophils
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Abstract Neutrophils are essential components of the innate immune system.

They participate in a variety of tissue reactions, including antimicrobial responses

and damage repair. Neutrophils are exquisitely sensitive to migratory stimuli,

which enables them to rapidly home into injured tissues, including the skin,

where they exert their effector functions. The latter include the release of preformed

mediators from granules, production of reactive oxygen species, and release of

DNA traps into the extracellular space. Based on these activities, neutrophils play a

crucial role in cutaneous immune responses, and patients with neutrophil defects

are prone to bacterial and fungal skin infections. Nevertheless, neutrophils may also

directly cause tissue damage, and are the driving force behind the pathology of a

number of inflammatory skin conditions. This chapter describes the molecular

mechanisms underlying neutrophil function in the skin, and reviews our current

understanding of the role of neutrophils in cutaneous biology and disease.
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9.1 Introduction

The skin, with its sentinel immune cells, forms the first line of defence against

invading pathogens and noxious insults. The presence of specialized immune cell

subsets resident in the epidermis, for example, Langerhans cells, coupled with a

vast array of antimicrobial peptides secreted by epithelial cells, deters the growth of

pathogenic microbes [43, 53, 58]. Although the epidermis and its constituents act as
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an efficient barrier against microbes and environmental factors, occasionally these

mechanisms fail due to either pathogen-mediated neutralisation of host defence or

due to physical barrier breach. The detection of these microbes (commensal or

pathogenic) and/or tissue damage results in the activation of a pro-inflammatory

cascade leading to the rapid recruitment of leukocytes from the bloodstream.

Neutrophils are the prime responders to such stimuli due to their high numbers in

the circulation and their exquisite sensitivity for chemoattractants. These cells are

replete with an array of cytotoxic granules containing preformed mediators that can

be rapidly unleashed within tissues. As such, neutrophils are essential for the

clearance of bacterial and parasitic pathogens as well as tissue debris. Nevertheless,

in cases where the influx of neutrophils persists over prolonged periods of time or

where negative regulatory mechanisms fail neutrophils may also contribute to

tissue damage. In this chapter we outline the role of neutrophils in cutaneous

immune responses and discuss conditions associated with impaired neutrophil

functions and their consequences on skin physiology and pathology.

9.2 Neutrophil Residence in BoneMarrow and Release into

Circulation

Neutrophils are short-lived bone marrow-derived cells whose development and

release are intimately linked to signals originating at inflammatory sites. Neutro-

phils are produced in the haematopoietic cords in the bone marrow and their

production is tightly regulated by cytokines and a large number of transcription

factors [12]. Normal adult human and murine bone marrow produces 1011 and 107

neutrophils per day, respectively [13, 31], with only 1–2% of these cells being

present in the circulation. Their production is tightly regulated by the IL-23/IL-

17A/G-CSF cytokine axis [70, 108, 130]. IL-23 produced by macrophages in the

periphery stimulates γδ T cells and a subset of NKT cells to produce IL-17A, which

in turn stimulates production of G-CSF from bone marrow stromal cells leading to

granulocytopoiesis [70, 119]. Neutrophil release from the bone marrow is mediated

by differential signalling via the CXCR4 and CXCR2 chemokine receptors.

CXCL12 expression in osteoblasts results in CXCR4-mediated signalling that pro-

motes retention of neutrophils in the bone marrow, whereas CXCL1/2 expression in

endothelial cells facilitates CXCR2-mediated neutrophil egress [35, 76, 106, 109,

120, 122, 133]. During inflammation, G-CSF produced by immune cells in the

periphery skews the chemotactic response towards CXCR2 by increasing the

expression of CXCL2 on endothelial cells in the bone marrow while reducing

both CXCL12 producing osteoblasts [26, 35, 133] resulting in rapid mobilisation

of neutrophils into systemic circulation. While in the blood stream, neutrophils

have a short half-life (<12 h in adult mice). In addition to their central antimicrobial

role (discussed below), during their short circulatory life neutrophils can also

perform housekeeping functions such as intraluminal removal of damaged endo-

thelial cells in coordination with Nr4a1-dependent patrolling monocytes
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[18]. Apoptotic and senescent neutrophils are cleared from the circulation by

resident macrophages in the liver, spleen, and bone marrow; a study using

radiolabelled neutrophils revealed that all three organs contribute equally in clear-

ing neutrophils [41, 102]. Although terminal trafficking of neutrophils into the

intestinal lumen has also been reported [66], its physiological relevance in neutro-

phil clearance is unknown.

9.3 Neutrophil Entry into the Skin and Interstitial Dermal

Migration

Following an insult in peripheral organs, such as the skin, neutrophils are rapidly

recruited into the damaged interstitium. The inflammatory cascade underlying this

recruitment has traditionally been viewed as being initiated by skin-resident cells.

These cells include dendritic cells, macrophages, and mast cells, as well as

epithelial cells and stromal cells, all of which are capable of sensing the presence

of tissue damage or pathogens via germline encoded pattern recognition receptors

(PRRs) that bind to damage-associated molecular patterns (DAMPs) or pathogen-

associated molecular patterns (PAMPs). In addition, low numbers of neutrophils

themselves have been found to scan the noninflamed dermis actively, where they

likely serve as first-line responders to tissue damage [71, 90]. Signalling via PRRs

in skin-resident cells leads to the release of pro-inflammatory mediators, including

the cytokines TNFα, IL-1β, IL-17 family members, histamine, and/or lipid medi-

ators (Fig. 9.1a). This is followed by the activation of blood vessel endothelium and

recruitment of neutrophils into the interstitium via the ‘leukocyte adhesion

cascade’.
Neutrophil recruitment into the dermis, as in other organs, occurs through

postcapillary venules in a process that closely follows the steps of the classical

‘leukocyte adhesion cascade’ [64, 69, 96]. Under inflammatory conditions endo-

thelial cells increase their expression of E- and P-selectins. This allows circulating

neutrophils, which express P-selectin glycoprotein ligand-1, to interact with endo-

thelial selectins, and results in neutrophil tethering and rolling along the blood

vessel wall (Fig. 9.1b). Neutrophils are then able to interact with chemokines that

are presented on the surface of endothelial cells. This triggers conformational

changes in integrins, such as LFA-1 and Mac-1, on neutrophils resulting in high

affinity binding of integrins to ICAM1/2 on endothelial cells and, consequently,

firm arrest (Fig. 9.1b). Additionally, under some experimental conditions, VLA-4 is

also induced on neutrophils and this can interact with VCAM-1 expressed on the

endothelium [60]. Thereafter, neutrophils crawl along the luminal surface of the

venules in an integrin-dependent manner and search for a preferred point of

transmigration. Focal deposits of chemokines along the blood vessel wall are

thought to play a role in directed movement, although the precise mechanisms

underlying this process are incompletely understood. Firmly adherent neutrophils
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then traverse the blood vessel wall and enter the dermal interstitial space. This

involves negotiating multiple barriers. Initially, the penetration of the endothelial

barrier requires neutrophils to either pass through the body of endothelial cells

(transcellular pathway), or through the tight junctions between them (paracellular

pathway). Upon reaching the subendothelial space, neutrophils migrate along

pericyte processes in an integrin-dependent manner before exiting through gaps

between pericytes [100]. These gaps become enlarged in response to cytokine

stimulation via remodelling of basement membrane proteins [128, 131] and are

associated with increased expression of integrin ligands and neutrophil-attracting

chemokines on the pericyte [100].

Upon entering the dermis, neutrophils show strong directional migration towards

gradients of chemotactic molecules emanating from the site of injury [79, 118]. Cap-

illary and arteriolar pericytes have also been implicated in guiding neutrophils to

the site of injury by upregulating ICAM-1 on the pericyte cell surface and releasing

macrophage migration-inhibitory factor (MIF) [118]. Depending on the type of
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Fig. 9.1 Neutrophils in the skin. Schematic representation of molecular and cellular processes

initiated during neutrophil antibacterial response in the dermis. The antibacterial response is

initiated by sensing of DAMPs and PAMPs by resident cells in the interstitium (a) resulting in

rapid recruitment of neutrophils from circulation via leukocyte adhesion cascade (b). These

recruited neutrophils initiate multiple antibacterial responses (c) and activate endothelial cells

for recruitment of monocytes and other immune cells (d). In addition to these functions, neutro-

phils can also transport microbial pathogens to draining lymph nodes via afferent lymphatics
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noxious insult, a vast array of chemotactic molecules may be present in the

interstitium; although activation of endothelial cells and macrophages induces

production of various chemokines, a large number of DAMPs and PAMPs emanate

from damaged cells or pathogens at the site of injury. It is important to note that

recent studies have shown the existence of positive feedback loops which augment

the attraction of neutrophils towards the site of injury. For example, neutrophil

sensing of nicotinamide dinucleotide (NAD+), which is released from dying cells

and acts as a DAMP, has been shown to amplify the accumulation of neutrophils

following sterile injury in the dermis [90]. Furthermore, neutrophil-derived leuko-

triene-B4 (LTB4) acts in a feedforward manner to increase the radius of attraction

of the neutrophil population [67, 92]. The multiple chemoattracting cues provided

to neutrophils in the interstitial space are integrated, and their migratory behavior is

determined by a hierarchical arrangement of signalling patterns [79, 96]. For

instance, signalling via formyl peptide receptor-1 supersedes signalling induced

via chemokine receptor CXCR2 [79, 96]. Such a hierarchical organisation of

signalling patterns assists in the guidance of neutrophils to the precise region of

insult.

9.4 Neutrophil Functions at the Site of Tissue Injury

Neutrophils arriving from circulation need to neutralize invading microorganisms

rapidly and clear tissue debris. This is achieved via particle uptake (phagocytosis),

release of prestored granule contents, generation of reactive oxygen species (ROS),

and the deployment of neutrophil extracellular traps (NETs; Fig. 9.1c). Circulating

neutrophils are transcriptionally inactive but their interaction with pathogens

reactivates transcription and triggers the secretion of chemotactic factors that are

crucial for recruitment of other immune cells [107]. The amount of chemokines or

inflammatory mediators secreted per neutrophil is relatively small compared to

other resident immune cells, but their significantly higher numbers at the site of

injury compensate for this low expression [88].

9.4.1 Phagocytosis

During inflammation, neutrophils take up particulates such as microorganisms into

membrane-bound vesicles (phagosomes) in a process termed phagocytosis, and

particles are then destroyed inside these organelles. The initial process of uptake is

strongly enhanced by soluble factors such as antibody or activated complement that

mark (‘opsonise’) particulates for phagocytosis. Neutrophils express a range of Fc
receptors, in particular FcγIIA and FcγIIIB [42], and aggregation of these receptors

by antibodies that are presented in multimeric arrays, such as on microbial cell

surfaces, causes neutrophil activation [84, 103]. Additionally, binding of
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complement-opsonized particles to CR3 (αMβ2-integrin/CD11b/Mac-1) leads to

integrin ‘outside-in’ signalling and induction of phagocytosis [72]. Furthermore,

phagocytosis can also be initiated nonopsonically through receptors that bind

directly to microbial components, the details of which depend on the specific

microorganism and the surface products that it expresses. In particular, recognition

of microbial carbohydrate structures by neutrophil membrane receptors that contain

lectin domains, such as dectin-1, Clec-2, or CR3 can mediate phagocytosis of a

range of microorganisms [47, 63, 104]. Once internalised, the antimicrobial arsenal

of the neutrophil is focused on the particulates by fusion of the phagosome with

neutrophil granules.

9.4.2 Granule Composition and Release

The direct antimicrobial activity of neutrophils is largely due to the coordinated

release of their granule cargo either into the extracellular milieu or the nascent

phagosome. In both cases, high concentrations of antimicrobial proteins, as well as

reactive oxygen species, are unleashed [2]. The formation of granules and synthesis

of their contents occurs in the bone marrow and is tightly regulated during the

development and maturation of neutrophils. A list of granules and their antimicro-

bial contents as well as the mechanism of action are detailed in Table 9.1. The

release of these granules is a tightly regulated process that ensures safe delivery of

their content only in close vicinity of pathogens, thereby limiting collateral damage

to host cells. The mechanism regulating differential mobilization is incompletely

understood though the role of intracellular calcium levels has been implicated in the

process [110]. Another type of vesicle is secretory vesicles, which are not strictly

granules, but are formed by endocytosis of plasma membrane during neutrophil

maturation and contain proteins crucial for homing and sensing pathogens [2].

Although neutrophils possess a striking range of granule proteins, their biolog-

ical activities can be summarised largely based on their mechanism of antimicrobial

action [2]. The first group includes cationic proteins that bind directly to bacterial

membranes and mediate lysis; these include α-defensins [44], LL37 [125], and

bactericidal/permeability-increasing protein (BPI) [68]. In contrast, a number of

proteins with enzymatic activity, such as lysozyme [44], neutrophil elastase (NE)

[8, 124], and cathepsin G [124] exert antimicrobial activity through enzymatic

degradation of microbial products. The products targeted by these enzymes may be

essential components of the cell itself (e.g. lysozyme M activity against the

Micrococcus luteus peptidoglycan cell wall [45]; neutrophil elastase-mediated

degradation of the Escherichia coli outer membrane protein OmpA [8]), or may

represent extracellular virulence factors (e.g. neutrophil elastase-mediated degra-

dation of S. flexerni secreted proteins/toxins [132]). Lastly, antimicrobial activity

may also be mediated by sequestration of essential nutrients; a key illustration of

this is the multiple approaches used by neutrophils to limit iron availability.

Lactoferrin, a component of secondary granules, has direct iron-binding activity,
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which limits free iron available to growing microorganisms [78, 91]. Alternatively,

lipocalin (NGAL) is able to bind to a range of bacterial siderophores and inhibits

bacterial iron uptake [39]. These multiple proteins act in concert with reactive

oxygen species, which are also generated during degranulation, and exert potent

microbicidal activity [89].

The second major antimicrobial component of the degranulation response is the

production of reactive oxygen species (reviewed in [7, 32, 134]). The assembly of

functional NADPH oxidase (phagocytic oxidase/phox) enzyme from individual

components is the initiating step in ROS formation. Under resting conditions,

Gp91phox and p22phox reside within secondary granules and the other key compo-

nents of the enzyme, including p47phox, p67phox, and p40phox and the small GTPase

Table 9.1 Neutrophil granules and their antimicrobial content (Adapted from [2])

Granules Antimicrobial agents Mechanism of actions

Primary/

azurophilic

Lysozyme Degrades bacterial cell walls

Myeloperoxidase Generation of reactive oxygen species

Defensin Disruption of membrane bilayers.

Inhibition of DNA, RNA, protein and

cell wall synthesis

Neutrophil elastase and cathepsin G Cleaves virulence factors as well as

membrane proteins

Bactericidal/permeability-increasing

protein (BPI)

Increases bacterial permeability and

hydrolysis bacterial phospholipids

Other proteins are azurocidin, silaidase,

β- glucuronidase
Secondary/

specific

Lysozyme Degrades bacterial cell walls

Lactoferrin Binds to iron rendering it unavailable

for bacterial absorption and utilization.

Increases membrane permeability by

binding to LPS

Other proteins are Gp91phox/p22phox,

hCAP 18, CD11b, collagenase, NGAL,

B12BP, SLPI, haptoglobin, pentraxin 3,

oroscomucoid, heparanase, β2
microglobulin, CRISP3

Tertiary/

gelatinase

Gelatinase Metalloprotease and can degrade

extracellular matrix to increase neu-

trophil migration
Other proteins are Gp91phox/p22phox,

CD11b, MMP25, arginase-1, β2
microglobulin, CRISP3

Secretory

vesicles

Complement receptor 1 Phagocytosis of complement

opsonized microbes

FcγRIII (CD16) Phagocytosis of immunoglobulin

opsonized microbes

Other proteins are Gp91phox/p22phox,

CD11b, MMP25, C1q-R, FPR, alkaline

phosphatase, CD10, CD13, CD14,

plasma proteins
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rac2, are present within the cytoplasm. Upon neutrophil activation, the cytoplasmic

components are translocated to the phagosome that has formed by the fusion of the

plasma membrane and granules (or to the plasma membrane), thereby bringing all

components of the enzyme together [7, 134]. On becoming functional, NADPH

oxidase catalyzes the key initial step in the generation of ROS, which is the

conversion of molecular oxygen (O2) to superoxide (2O2
�). Once formed, super-

oxide rapidly dismutates to hydrogen peroxide (H2O2) and this is acted upon by

myeloperoxidase (MPO), which is also released into the phagosome during degran-

ulation, to form hypochlorous acid (HOCl�). In addition, a range of oxidant species
including chloramine, hydroxyl radicals (OH•), singlet oxygen (1O2), and ozone

(O3) is formed [127]. Although all of the different ROS produced have varying

degrees of antimicrobial activity, hypochlorous acid is particularly potent at caus-

ing oxidative damage to most biological molecules. It is generally believed that this

powerful oxidation is one of the key mediators of neutrophil antimicrobial

activity [32].

9.4.3 Neutrophil Extracellular Traps (NETs)

Neutrophils can also ‘ensnare’ pathogens by releasing DNA-based molecular traps

(referred to as neutrophil extracellular traps or NETs). These released DNA NETs

are associated with histones, myeloperoxidase, neutrophil elastase, lactoferrin,

pentraxin-related protein 3 (PTX3), matrix-metalloproteases (MMPs), and other

granule proteins all of which can orchestrate antimicrobial functions [15, 16,

137]. DNA NETs can act as molecular scaffolds that entrap pathogens and enhance

their interaction with microbicidal proteins. Although neutrophils mostly expel

genomic DNA for NET formation [15], mitochondrial DNA can also be used for

this process [139]. The process of NET formation is generally considered to be

‘suicidal’ and is also referred to as ‘NETosis’, similar to other cell death mecha-

nisms such as apoptosis, necrosis, and pyroptosis [16, 137].

The molecular processes required for NET formation are incompletely under-

stood. It has been shown that activation of NADPH oxidase and subsequent

generation of ROS is crucial for NET formation [15, 40, 80]. Upon ROS generation,

the granule enzymes NE and MPO translocate to the nucleus and degrade histones

[93]. Uncondensed nuclear material is then released by perforation of the cell

membrane leading to cell lysis [15, 16, 137]. Furthermore, there is increasing

evidence for a second type of NETosis that does not require cell membrane

perforation and lysis but instead uses vesicular exportation of DNA for release,

referred to as ‘vital NETosis’ [137]. The released ‘anuclear’ neutrophil cytoplast
retains pathogen-sensing, chemotactic migration, and phagocytosing capabilities

[138]. These differences between ‘suicidal’ and ‘vital’ forms of NETosis could be

due to differences in the activating signal or in the ‘maturity’ of neutrophils.

Nonetheless, both forms of NETosis are important for mediating neutrophil

antibacterial responses [137].
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9.5 Neutrophil Recirculation and Transport of Antigen

Increasing evidence suggests that neutrophils may enter peripheral tissues, includ-

ing the skin, even under noninflammatory conditions, and that they may traffic into

lymphatic vessels to draining lymph nodes both during steady state and inflamma-

tion. During their classic lymphatic cannulation studies in sheep, Morris and

colleagues observed neutrophils in lymph fluid, in both the lymphatics draining

the hind limb [52] and in the efferent lymph of the popliteal lymph node [50]. It

was, however, not until the advent of multiphoton microscopy that such ‘scouting’
neutrophils were directly observed within the skin during steady state [90]. Labeled

neutrophils intravenously injected into sheep could be recovered from the lym-

phatics within 3–4 h of intravenous injection, indicating that neutrophil

recirculation from the blood into the lymph occurs rapidly, in contrast to the

delayed kinetics (6–20 h) of lymphocytes [90]. Although it remains uncertain

what proportion of neutrophils recirculates under physiological conditions, a clear

consequence of this phenomenon is that, in addition to their role as rapid

responders, neutrophils may also serve as a primary sensor population for damage

and infection [90].

In addition to this physiological recirculation, numerous studies have reported

the trafficking of pathogen-bearing neutrophils from the site of infection to draining

lymph nodes, including from the skin to cutaneous lymph nodes [1, 11, 73, 121,

136], and that such migration facilitates antigen delivery for ongoing adaptive

immune responses [1, 6, 121]. Only a relatively small proportion of recruited

neutrophils appears to traffic into draining lymphatics [121], and it remains unclear

what differentiates this population from the majority that remain and die within the

infected tissue. Similarly, the cellular and molecular pathways that regulate neu-

trophil entry into the lymphatics remain largely unknown. Although it has been

reported that neutrophil migration to the lymph node is CCR7-dependent [5], the

potential role for other chemokine receptors has yet to be investigated. CXCR2 and

CXCR4 are of particular interest, given their well-documented role in coordinating

neutrophil trafficking from the bone marrow [35, 76]. Moreover, CXCR2 has

already been implicated in neutrophil trafficking directly into the lymph node

from the blood during inflammation [14], whereas CXCR4 is upregulated on the

surface of neutrophils following their extravasation into inflammatory tissue [135].

9.6 Neutrophil Apoptosis and Resolution of Inflammation

Neutrophils are generally regarded as pro-inflammatory cells but a large body of

evidence indicates that they also have a crucial role in resolving inflammation.

During the resolution phase, due to their phagocytic activity, neutrophils remove

cellular debris from the site of injury, paving the way for tissue repair [64]. MMP-9

released by neutrophils can degrade various intracellular cytoskeletal components
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released from damaged cells, thereby clearing DAMPs [64], and can also promote

vascularisation of tissue by activating vascular endothelial growth factor (VEGF)

[9, 25]. Neutrophils also initiate recruitment of monocytes via activating endothe-

lial cells to produce CCL2 or by releasing azurocidin, LL37 and cathepsin G that

can activate monocyte formyl peptide receptors (FPRs) (Fig. 9.1d) [114, 116,

117]. These monocytes then phagocytose apoptotic neutrophils during tissue

resolution.

Although neutrophils are short-lived cells, factors released at the site of injury

can enhance their viability. For example, the presence of LPS or GM-CSF increases

the expression of antiapoptotic proteins Mcl-1 and A1, thereby leading to an

extended neutrophil lifespan (detailed in [2, 62]). In contrast, the neutralisation of

noxious insults and microbes leads to decreased signalling from these pathways and

results in increased neutrophil apoptosis. At the initial stages of apoptosis neutro-

phils secrete ‘find me’ signals to guide monocytes and macrophages to the site of

apoptosis and later display ‘eat me’ signals for rapid phagocytic uptake

[115]. Phagocytosis of apoptotic neutrophils by tissue-resident macrophages results

in decreased production and release of IL-23 leading to decreased IL-17A levels.

The reduced IL-17A results in less secretion of G-CSF by bone marrow stromal

cells, decreased granulocytopoiesis, and increased retention of mature neutrophils

in the bone marrow [119].

Soluble lipid mediators are important both in neutrophil recruitment and in

termination of the acute inflammatory response. At early stages of inflammation,

prostaglandins (prostaglandin I2) and leukotrienes (LTB4) are produced, resulting

in rapid recruitment of neutrophils, but as inflammation progresses, a molecular

switch in lipid metabolism results in production of lipoxins, resolvins, and

protectins [2, 64, 111]. These mediators assist in monocyte influx and suppress

neutrophil recruitment and antimicrobial functions. In addition, lipid mediators

result in nonphlogistic uptake of apoptotic cells by monocytes and macrophages

resulting in IL-10 and TGF-β production. Together, these processes promote the

resolution of inflammation and tissue restitution.

9.7 Neutrophil Deficiencies

Deficiencies in either the absolute number of circulating neutrophils or their correct

functioning typically lead to enhanced susceptibility to infection, particularly

within the skin. This is highlighted in acquired neutropenia, such as in patients

undergoing chemotherapy, where the severity of neutrophil deficiency is an impor-

tant determinant of susceptibility to infection with many bacterial and fungal

pathogens [10, 74]. A number of molecular deficits that affect neutrophil develop-

ment or release from the bone marrow can lead to primary neutropenia or functional

defects (reviewed in [34]). Such genetic deficiencies include: chronic granuloma-

tous disease (CGD) or MPO deficiency in which ROS generation is affected

[54, 127], compromised granule formation/function (e.g. Chédiak–Higashi

156 R. Jain et al.



syndrome) [4], or leukocyte adhesion deficiency syndromes, which result in

decreased neutrophil recruitment [51]. Furthermore, defects in cytokine pathways

that contribute to the recruitment of neutrophils also manifest as increased suscep-

tibility to cutaneous infection. For example, mutations that lead to either diminished

IL-17 production or IL-17 signalling, including in IL17RA, TYK2, STAT3, or

STAT1, predispose to chronic mucocutaneous candidiasis [83, 101, 126]. Taken

together, the increased susceptibility to infection, particularly to a subset of micro-

organisms that includes Staphylococcus aureus, Pseudomonas aeruginosa, Can-
dida albicans, and Aspergillus spp, highlights the critical importance of neutrophils

in protection from these pathogens.

9.8 Neutrophilic Dermatoses

Although neutrophils are central to the acute inflammatory response that is initiated

following tissue damage or pathogen entry, in some individuals inappropriate

recruitment and activation of these cells may occur. This can then contribute to

pathology in the absence of an identifiable cause. In some diseases, for example,

psoriasis, neutrophils are found in large numbers, but it is unclear whether this

represents an epiphenomenon or a true pathogenic event [95, 123]. Alternatively,

autoimmune conditions such as lupus erythematosus, cutaneous vasculitides, and

neutrophilic dermatoses are prominent examples of conditions where neutrophils

appear to contribute to pathology. In vasculitides, the skin can either be the primary

organ of involvement, for example, in small vessel leukocytoclastic vasculitis, or

part of systemic syndromes, such as in Wegener’s granulomatosis where autoanti-

bodies are directed against neutrophils [19, 59]. These conditions have diverse

aetiology and their detailed discussion is beyond the scope of this chapter.

Neutrophilic dermatoses are a set of clinical entities that share the common

feature of neutrophil influx within the skin in the absence of infection. Several

conditions are recognised, but those most commonly described are Sweet’s syn-

drome (SS), pyoderma gangrenosum (PG), and subcorneal pustular dermatosis

(SCD; reviewed in [28]). In SS and PG, neutrophil influx occurs predominantly

within the dermis, although in PG it may extend to subcutaneous tissues. Variable

influx of other inflammatory cell populations, including eosinophils, lymphocytes,

and giant cells may also occur depending on the subclassification. In contrast, in

SCD neutrophils are confined primarily to the subcorneum [27, 28, 105].

The underlying aetiology of neutrophilic dermatoses is unclear; however, there

are a number of striking disease correlations. These include, depending on the

classification: prior infections, drug treatment, inflammatory bowel disease, auto-

immune conditions, and malignancies [27, 28]. A number of lines of evidence

implicate Th1 and/or Th17 inflammatory cytokines in mediating disease, at least in

SS and PG. Observations supporting Th1 involvement include increased serum

IL-2 and IFNγ [46], whereas elevated levels of IL-1, IL-3, IL-6, and IL-8 have also
been noted [27, 77]. A clear pro-pathogenic role for TNF, in particular, has been
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reported, and a number of studies have shown the benefit of anti-TNF therapy

[17, 28]. More recently the expression of IL-17 and/or IL-23 in SS and PG has been

reported, suggesting potential involvement of this cytokine axis in pathology

[38, 49, 77]. Consistent with this, case studies that report the successful use of

anti-IL-12/23 therapy for the treatment of PG have begun to emerge

[37, 49]. Whether this cytokine–disease link holds true in larger studies remains

to be seen.

9.9 Neutrophils During Cutaneous Infection: S. aureus
as a Model Pathogen

The distinct subset of pathogens that cause disease in individuals with neutrophil

deficiencies suggests that there are shared protective pathways involved in the

responses to these species. In the following section we use the major human

pathogen S. aureus as an example to illustrate the role of neutrophils in cutaneous

immunity.

Data from clinical, rodent, and in vitro studies show remarkable agreement in

support of the essential role of neutrophils in protection from S. aureus. As

described in Sect. 9.7 above, a range of defects in either neutrophil number or

function is associated with increased susceptibility to cutaneous S. aureus infection.
Note that this is mirrored in rodents, as mice deficient in NADPH-oxidase compo-

nents develop spontaneous cutaneous lesions, or fail to control experimental infec-

tion [36, 57, 99]. Moreover, depletion of circulating neutrophils prevents control of

cutaneous S. aureus infection [85]. In vitro, phagocytosis of S. aureus by neutro-

phils is enhanced by serum opsonins [3, 61, 94], and their subsequent killing is

mediated by the NADPH-oxidase dependent production of ROS [36, 75]. A number

of granule proteins have direct anti-Staphylococcal activity in vitro. These include

the α-defensins HNP1-3, as well as LL-37, PG-1, S100A8/9, and lactoferrin [21, 29,
125], whereas others, including azurocidin and lysozyme are ineffective

[21]. Lastly, extracellular DNA NETs are released by neutrophils in response to

S. aureus. The NETs are capable of trapping bacteria, and the NET-associated

histones and granule proteins then mediate killing [15, 40, 98].

Rodent models have been particularly informative in identifying the pathways

that lead to neutrophil recruitment. Initial recognition of S. aureus infection by

resident immune sentinel cells occurs via TLR2, NOD2, and the NLRP3

inflammasome [55, 82, 112], resulting in the induction of pro-inflammatory cyto-

kines. Dominant amongst the initial cytokines produced are IL-1β [81, 82] and

IL-17A/F [23], both of which have been shown to drive neutrophil accumulation

and activation in a range of disease models [65, 113]. Both humans [97, 129] and

mice [22, 24, 81] with deficits in the TLR/IL-1β signalling pathway control

S. aureus infection poorly. The initial source of IL-1β in the skin is unclear: whereas
inflammasome-dependent IL-1β release in response to S. aureus in vitro is typically
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associated with monocyte/macrophages [30, 86, 112], in vivo much of the IL-1β
produced appears to be derived from recruited neutrophils, at least during later

stages [22]. As with IL-1β, deficiencies in IL-17 signalling (mutations in STAT3 and
TYK2) also predispose to S. aureus infection [23, 33, 48, 56, 83, 87]. This IL-17A

and IL-17F is produced by skin resident γδ-T cells in an IL-23–dependent manner,

and during S. aureus infection γδ-T-cell–deficient mice show decreased neutrophil

recruitment [23]. Ultimately, the combination of IL-1β and IL-17A/F stimulates

local production of CXCL1 and CXCL2 from resident cells. These chemokines

specifically recruit neutrophils to the infection site, and under normal circumstances

this results in bacterial clearance [22, 23, 81, 82].

9.10 Concluding Remarks

The essential role of neutrophils as a key player in the innate immune response to

injury/infection within the skin is well recognised, however, it is becoming clear

that this is only one aspect in their short life span. Neutrophils under homeostasis

perform myriad functions ranging from removing damaged endothelial cells [18] to

regulating the stem cell pool in the bone marrow [20]. In particular, the identifica-

tion of ‘scouting’ neutrophils that are capable of sensing the presence of tissue

damage [90], and the finding that they can recirculate [50, 52, 90] and influence the

development of immune responses is furthering our understanding of skin immu-

nity. Although these findings suggest that neutrophils may have previously

unrecognised functions in the initiation of both innate and adaptive immune

responses, the fate of these neutrophils in the lymph nodes is not completely

understood. Moreover the presence of these ‘scouting’ neutrophils in uninflamed

dermis challenges our current understanding about neutrophil recruitment in the

skin. Taken together, the increasingly apparent complexity of neutrophil biology

argues that continued investigation into this often underestimated cell is likely to

lead to improved strategies for treatment of a broad range of cutaneous diseases.
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