
Chapter 3

Regulation of HSF Activation and Repression

Eiichi Takaki and Akira Nakai

Abstract Heat shock response (HSR) is characterized by robust induction of heat

shock proteins (HSPs) during heat shock and is regulated mainly at the level of

transcription by heat shock factor (HSF). Preexisting inert HSF monomers undergo

conformational change to form trimers that bind to DNA and to acquire transcrip-

tional activity during heat shock and other stimuli. These two steps are separated

processes and are induced by release from feedback repression by HSPs, direct

effects of stimuli, posttranslational modifications, and others. Basal activity of HSF

is also regulated in unstressed conditions. In this chapter, we review molecular

mechanisms of activation and repression of HSF and describe stimuli that activate

HSF by controlling these mechanisms.

Keywords Conformational change • Feedback repression • Posttranslational

modification • Small compound • Transcriptional activity • Trimerization

3.1 Introduction

Eukaryotic cells respond to elevated temperatures by a rapid increase in the

synthesis of heat shock proteins (HSPs) that facilitate protein folding and

non-HSP proteins with diverse functions including protein degradation (Lindquist

1986; Richter et al. 2010). This adaptive response called as the heat shock response

(HSR) is regulated mainly at the transcriptional level by heat shock factor (HSF),

which is conserved in all eukaryotic species (Wu 1995; Morimoto 1998). HSF

preexists mostly as an inert state in unstressed cells and is converted quickly to an

active state to induce the heat shock genes including HSP genes during heat shock.

HSF is also activated at different levels by a variety of environmental and patho-

physiological stresses. Thus, regulation of HSF activity plays a pivotal role in

controlling proteostasis capacity in a cell (Balch et al. 2008; Morimoto 2011;

Wolff et al. 2014; Hipp et al. 2014).
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A single HSF exists in yeast, fly, and worm, while vertebrate cells possess four

HSFs (HSF1 to HSF4). Among them, HSF1 is a master regulator of the HSP

expression during heat shock in mammalian cells (Akerfelt et al. 2010; Fujimoto

and Nakai 2010). In this chapter, we principally describe molecular mechanisms of

activation and repression of orthologs of mammalian HSF1 and summarize stimuli

that activate them.

3.2 Trimer Formation and the Acquisition

of Transcriptional Activity

HSF in budding yeasts constitutively forms a trimer that binds to the HSE (Sorger

et al. 1987). Heat shock induces extensive phosphorylation of HSF, which is

correlated with the transcriptional activation of HSP genes (Sorger and Pelham

1988). It turned out that this hyperphosphorylation serves as a regulatory mecha-

nism to deactivate HSF, rather than being involved in its activation (Høj and

Jakobsen 1994). However, these observations indicate that the trimerized HSF

should be modified to acquire potent transcriptional activity during heat shock.

Mammalian HSF1 and HSF in fission yeast Schizosaccharomyces pombe and

Drosophila stay mostly as an inactive monomer and are converted to a

DNA-binding trimer upon heat shock (Gallo et al. 1991; Clos et al. 1990; Sarge

et al. 1991, 1993; Baler et al. 1993). However, the acquisition of the DNA-binding

activity is not sufficient for HSF1 to activate HSP70 gene in some cell lines such as

murine erythroleukemia (MEL) and human Y79 retinoblastoma cells (Hensold

et al. 1990; Mathur et al. 1994). Furthermore, treatment of human cells with sodium

salicylate, an anti-inflammatory agent, induces the DNA-binding activity of HSF1

and its occupancy on HSP70 promoter in vivo. Nevertheless, sodium salicylate does

not induce the transcription of HSP70 gene (Jurivich et al. 1992, 1995). It also

induces the DNA binding of Drosophila HSF and puff formation in the polytene

chromosomes, but does not induce the transcription of HSP70 gene (Winegarden

et al. 1996). These observations indicate that the trimer formation of HSF1 and its

acquisition of transcriptional activity are separated processes (Fig. 3.1).

Mammalian HSF1, like yeast HSF, is hyperphosphorylated upon heat shock.

Human HSF1 isolated from heat-shocked cells is more extensively phosphorylated

than HSF1 activated in vitro, suggesting that the hyperphosphorylation is associated

with transcriptional activity of HSF1 (Larson et al. 1988). However, it is dispens-

able for the acquisition of the transcriptional activity (Newton et al. 1996;

Budzyński et al. 2015). Rather, specific residues in HSF1 are covalently modified

by thiol oxidation, sumoylation, and acetylation as well as phosphorylation (Bj€ork
and Sistonen 2010). Therefore, HSF1 activation including the acquisition of tran-

scriptional activity should be regulated multistep modifications as described below

(see Sect. 3.5).
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3.3 Release from Feedback Repression by HSPs

HSR or the accumulation of HSPs is quantitatively related to the degree of heat

stress such as heating temperature and duration. How do cells sense these changes

in the severity of temperature upshift? The concept that the free pool of HSP70 and

other chaperones serves as a cellular sensor or a thermometer that regulates the

HSR has been proposed for a long time (Craig and Gross 1991). Lindquist group

originally showed that HSP70 expression was proportional to the degree of stress in

Drosophila cells, and the elevated expression of HSP70 continued when the

accumulation of functional HSP70 is blocked (DiDomenico et al. 1982). The

bacterium E. coli harboring DnaK (HSP70 homolog) mutation failed to turn off

the HSR (Tilly et al. 1983). Furthermore, yeast S. cerevisiae expressed a high level

of HSP90 or activity of the heat shock element (HSE)-driven reporter at normal

growth temperature when two HSP70 genes were mutated (Craig and Jacobsen

1984; Boorstein and Craig 1990). These observations suggest that HSP70 acts as a

negative regulator of the HSR.

In E. coli, HSP genes are under the control of the σ32 transcription factor, whose
level and activity increase during heat shock (Straus et al. 1989; Tilly et al. 1989).

DnaK functions as molecular chaperone in cooperation with DnaJ (HSP40 homo-

log) and GrpE (HSP110 homolog, a nucleotide exchange factor). As was expected,

strains carrying mutations in DnaJ and GrpE as well as DnaK enhanced the

synthesis of HSPs at normal growth temperature and failed to shut off the HSR,

in part by increased synthesis and stabilization of σ32 (Straus et al. 1990). Further-
more, the overexpression of DnaK and DnaJ reduced not only the level of σ32 but

HSP complex
HSF1

Inac�ve
monomer

DNA binding
trimer

Transcrip�onally
ac�ve

chemical
modifica�ons

HSP complex

Fig. 3.1 HSF1 activation involves two distinct steps. Metazoan HSF1 stays as an inactive

monomer by binding to chaperone machineries (HSP complex). It is converted to a

DNA-binding trimer upon heat shock and then acquires transcriptional activity by unmasking

the activation domain. DNA-binding domain (orange circle) and hydrophobic heptad repeats,

HR-A/B (green box) and HR-C (yellow box), are shown (see Chap. 2). Chemical modifications are

indicated by flags (red)
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also its activity in response to heat shock (Tomoyasu et al. 1998). Thus, the amount

of functional DnaK (HSP70) chaperone machinery provides tight control of the

level and activity of the σ32 transcription factor. The GroEL/S chaperonin also

controls the σ32 and HSR (Guisbert et al. 2004, 2008).

In mammalian cells, the activity of HSF1 and transcription level of HSP70 gene
are linked to the accumulation of proteins denatured by heat shock. When human

HeLa cells grown at 37 �C were exposed to continued heat shocked at 42 �C, HSF1
was modestly activated and attenuated soon. In contrast, the high level of HSF1

activation continued when cells were heat shocked at 43 �C (Abravaya et al. 1991).

Furthermore, the threshold temperature for HSF1 activation was decreased when

cells were treated with an inhibitor of the synthesis of nascent polypeptides, which

consist of major nonfolded proteins present in cells (Baler et al. 1992). Taken

together with the fact that HSF1 interacted with HSP70, a product of its target gene,

it was suggested that HSP70 acts as an autoregulatory factor of the HSR (Abravaya

et al. 1992; Baler et al. 1992).

To understand molecular mechanisms of the autoregulation by HSP70, profiles

of HSF1 activation and deactivation were monitored in cells overexpressing

HSP70. The acquisition of the DNA-binding activity of HSF1 during heat shock

was reduced in human T-cell leukemia cell line by the overexpression of HSP70

(Mosser et al. 1993), whereas it was not affected in rat fibroblasts at all (Rabindran

et al. 1994; Kim et al. 1995). Rather, the shutdown of the DNA-binding activity

during recovery period was accelerated in common in these cells. Morimoto group

analyzed the mechanism in more detail and revealed that HSP70 and HSP40

(HDJ1) interact with the C-terminal activation domain of HSF1 and negatively

regulate its transcriptional activity in vivo during attenuation of the HSR (Shi

et al. 1998). HSP90 also interacts with HSF1 (Nadeau et al. 1993; Nair

et al. 1996), suggesting its inhibitory role in the HSR. Using in vitro HSF1

activation system, Voellmy group found that the treatment of cells with

geldanamycin, an inhibitor of HSP90, induced the DNA-binding activity of HSF1

in vitro and demonstrated that HSP90 inhibited the acquisition of the DNA-binding

activity in vitro, but HSP70 did not (Zou et al. 1998a). It is proposed later that the

HSP90 chaperone machinery including p23 and FKBP52 binds to the regulatory

domain of HSF1 and negatively regulates both the monomer-to-trimer transition of

HSF1 and its transcriptional activity (Ali et al. 1998; Duina et al. 1998; Bharadwaj

et al. 1999; Guo et al. 2001). Analysis in Drosophila cells further shows that the

synergistic interaction of HSP70 and HSP90 chaperone machineries modulates

HSF activity by feedback repression (Marchler and Wu 2001) (Fig. 3.2). Moreover,

TRiC/CCT chaperonin complex also interacts and represses the activity of HSF1

(Neef et al. 2014). Taken together, HSF1 is activated by the release from feedback

repression by chaperone machineries during heat shock, and the activated HSF1 is

subsequently repressed by the increased free pool of chaperones during recovery

period.
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3.4 HSF Directly Senses Heat and Stimuli

After the development of a cell-free system that exhibits heat-induced activation of

human HSF1 in vitro (Larson et al. 1988), signaling pathways that induce the

DNA-binding activity have been extensively studied. The DNA-binding activity

of human HSF1 in unstressed HeLa cytoplasmic extract was induced in vitro not

only by heat shock but also by low pH (pH 6.0), Nonidet P-40, and urea, which

affected protein conformation (Mosser et al. 1990). The in vitro HSF1 activation by

these reagents was inhibited by glycerol, which stabilized protein structure. Fur-

thermore, the treatment of Drosophila SL2 cytoplasmic extract with polyclonal

antiserum against Drosophila HSF also induced the HSF DNA-binding activity

in vitro (Zimarino et al. 1990). These observations suggest that HSF1 or HSF can be

activated directly by undergoing a conformational change, without a covalent

modification of protein.

Does purified HSF undergo a conformational change in response to heat?

Kingston group purified in vitro heat-activated human HSF1 in the HeLa cytoplas-

mic extract by using an HSE oligonucleotide affinity column and deactivated it by

denaturation using guanidine and subsequent renaturation (Larson et al. 1995).

They showed that the DNA-binding activity of purified HSF1 was induced by

heat shock, and the acquisition of its DNA-binding activity is accompanied with

a monomer-to-trimer transition of oligomeric structure, like that in heat-shocked

HeLa cells. Mouse HSF1 synthesized in E. coli was purified, and its DNA-binding

activity was also induced in vitro by heat shock (Goodson and Sarge 1995; Farkas

et al. 1998). These observations demonstrate that HSF1 can directly sense temper-

ature upshift. Wu group carefully analyzed kinetics of the dissociation of

HSP90 complex

HSP40

HSP70

N
C

TRiC/CCT

HSF1

A

N
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HSF1

Fig. 3.2 HSF1 is maintained as an inactivate state by chaperone machineries. (a) HSP90

chaperone machinery including p23 and FKBP52 binds to the regulatory domain of HSF1,

while HSP70 chaperone machinery containing HSP40 interacts with the C-terminal activation

domain. These chaperone machineries may cooperatively inhibit the trimerization of HSF1 and

suppress its transcriptional activity. (b) Chaperonin TRiC/CCT also binds to HSF1 and represses

its activity
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Drosophila HSF trimer (Zhong et al. 1998). They infected a baculovirus

overexpressing Drosophila HSF into insect Sf9 cells and purified it (bac-HSF). A

high concentration of bac-HSF solution contained predominantly trimers, which

dissociated to monomers when the solution was diluted. The population of trimers

reversed upon reconcentration. Furthermore, the dissociation of bac-HSF trimers

was inhibited by heat, H2O2, and low pH, but not by 2,4-dinitrophenol, ethanol,

arsenite, indomethacin, and salicylate, which induce HSF trimerization in intact

cells (Zhong et al. 1998, 1999). Thus, some inducers of the HSR act directly to HSF,

while others do indirectly.

3.5 Posttranslational Modifications

3.5.1 Phosphorylation

When cells are heat shocked, an apparent molecular weight of mammalian HSF1 on

SDS-polyacrylamide gel dramatically increases due to multisite phosphorylation,

which is called as hyperphosphorylation (Sorger et al. 1987; Larson et al. 1988;

Sarge et al. 1993; Baler et al. 1993). HSF1 becomes hyperphosphorylated by heat

shock, heavy metals, and amino acid analogs, but not by anti-inflammatory drugs

that induce trimerization but not transcriptional activity (Cotto et al. 1996). Thus,

the acquisition of transcriptional activity of HSF1 is generally correlated with its

hyperphosphorylation. However, mutation analyses of multi-phosphorylation sites

in HSF1 show that the hyperphosphorylation is not necessary for HSF1 to acquire

full transcriptional activity during heat shock (Newton et al. 1996; Budzyński

et al. 2015). It would be possible that the hyperphosphorylation facilitates dissoci-

ation of active HSF1 trimers during recovery period (Xia and Voellmy 1997).

Is there a specific phosphorylation site that promotes HSF1 transcriptional

activity? Sistonen group identified that Ser230 was constitutively and stress-

inducibly phosphorylated by calcium/calmodulin-dependent protein kinase II

(CaMKII) (Holmberg et al. 2001) (Fig. 3.3). Phosphorylation of Ser230 and

CaMKII enhanced HSF1 transcriptional activity in response heat shock. Voellmy

group carried out an alanine scan of all serines, threonines, and tyrosines in human

HSF1 using a reporter assay and also identified phosphorylation sites of exoge-

nously expressed HSF1 in HeLa cells (Guettouche et al. 2005). They found that

phosphorylation of only Ser326 contributed to HSF1 activation during heat shock.

Phosphorylation on Ser326 increased rapidly during heat shock. It promoted the

transcriptional activity of HSF1, but did not affect the DNA-binding activity. It

turned out that Ser326 is phosphorylated by ERK1/2, and its phosphorylation

promotes carcinogenesis (Dai et al. 2007, 2012). HSF1 activity may also be

enhanced by polo-like kinase 1 (PLK1) and protein kinase A (PKA) during heat

shock through phosphorylation of Ser216/419 and Ser320, respectively (Kim

et al. 2005; Lee et al. 2008; Murshid et al. 2010).
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In unstressed condition, the regulatory domain represses activity of the

C-terminal transcriptional activation domain of human HSF1 (a.a. 221–310)

(Green et al. 1995). Ser303 and Ser307 in the regulatory domain of human HSF1

are constitutively phosphorylated, and phosphorylation of these sites is required for

aa394524693302031321911

aa925644514302031021611 384 409

hHSF4

hHSF1

536aa22419329191121181 360 385

hHSF2

hHSF1 294:LVRVKEEPPSPPQSP 308

mHSF1 294:LVRVKQEPPSPPHSP 308

cHSF1 296:VVRIKEEPPSPSRSP 310

hHSF4 290:LALLKEEPASPGGDG 304

mHSF4 289:LALLKEEPASPGGDG 303

cHSF4 288:LMLIKEEPASPGVKA 302

ψKxExxSP

B

A

DBD HR-A/B DHR

DBD HR-A/B DHRHR-C

DBD HR-A/B DHRHR-C

Fig. 3.3 Posttranslational modification of HSF family members. (a) Major phosphorylation sites

that activate HSF1 are shown in red, and those repress it are in blue. Protein kinases that

phosphorylate each amino acid are indicated in parentheses. Acetylation sites (orange) and

sumoylation sites (green) are also shown. (b) Phosphorylation-dependent sumoylation motif

(PDSM) in HSF1 and HSF4. Amino acid sequences containing the PDSM motif (yellow box) in
human, mouse, and chicken HSF1 and HSF4 are aligned, and a consensus sequence is indicated (ψ
is acceptable for all hydrophobic amino acids). Numbers indicate position of amino acids

3 Regulation of HSF Activation and Repression 57



the repression of HSF1 transcriptional activity at control temperature (Knauf

et al. 1996; Chu et al. 1996; Kline and Morimoto 1997). Ser307 is first phosphor-

ylated by ERK1/2, and this modification is required for phosphorylation of Ser303

by glycogen synthase kinase 3 (GSK3) (Knauf et al. 1996; Chu et al. 1996). Ser303/

307 not only regulates the transcriptional activity but also stability of HSF1.

Phosphorylated Ser303/307 is recognized by an FBXW7α ubiquitin ligase, which

results in degradation of HSF1 (Kourtis et al. 2015). Regulation of Ser303/307

phosphorylation could modulate HSF1 activity in response to growth control

signals.

Effects of protein kinases on HSF1 activity in unstressed condition are complex.

GSK3 represses not only transcriptional activity of HSF1 but also the trimer

formation by unknown mechanisms (Xavier et al. 2000). ERK1/2 represses the

activity of HSF1 through phosphorylation of Ser307, but activates it through that of

Ser326 as described above. Protein kinase C (PKC) and c-Jun N-terminal kinase

(JNK) repress HSF1 activity through Ser363 phosphorylation (Chu et al. 1998; Dai

et al. 2000), and AMP-activated protein kinase (AMPK) does so through Ser121

phosphorylation (Dai et al. 2015) (Fig. 3.4).

3.5.2 Sumoylation

Sarge group first found that HSF2, another member of the HSF family, interacted

with the SUMO-conjugating (E2) enzyme Ubc9 (Goodson et al. 2001). They

showed that HSF2 was constitutively modified by SUMO-1 at Lys82 in the

DNA-binding domain, whereas HSF1 underwent heat shock-inducible SUMO-1

modification at Lys298 in the regulatory domain (Hong et al. 2001) (Fig. 3.3).

Sistonen group further studied roles of sumoylation in HSF1 function and showed

that phosphorylation of Ser303 was prerequisite for the sumoylation of Lys298

(Hietakangas et al. 2003). Phosphorylation of Ser303 in HSF1 is markedly induced

during heat shock, which allows Lys298 to be inducibly modified by sumoylation.

A motif combining a SUMO consensus site to an adjacent proline-directed

ERK1/2
(Ser303/307/326) AMPK

(Ser121)
JNK

(Ser363)

GSK3b
(Ser303)

CAMKII
(Ser230)

PKC
(Ser303/326)

PLK1
(Ser216/419)

Fig. 3.4 HSF1 is

phosphorylated by various

kinases. Protein kinases that

phosphorylate HSF1 and

phosphorylation sites of

each kinase are indicated

(see text)
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phosphorylation site is generally conserved in other factors including HSF4,

GATA1, and MEF2 (Hietakangas et al. 2006) (Fig. 3.3). Sumoylation of Lys298

of HSF1 and Lys294 of HSF4 represses the transcriptional activity of these factors.

Effects of sumoylation on the DNA-binding activity are unclear (Goodson

et al. 2001; Hong et al. 2001; Anckar et al. 2006), but structural analysis at least

demonstrates that SUMO attachment at Lys82 of HSF2 negatively modulates the

formation of protein-DNA complex (Tateishi et al. 2009).

3.5.3 Acetylation

Stress resistance and metabolic regulation are coupled to protein homeostasis, and

key regulatory factors for these mechanisms including HSF1 and a NADþ-depen-
dent lysine deacetylase SIRT1 are involved in lifespan extension in C. elegans (Hsu
et al. 2003; Morley and Morimoto 2004). Therefore, Morimoto group examined the

regulation of HSF1 by SIRT1 and found that HSF1 was inducible acetylated at

Lys80 by p300 during heat shock, whereas it was deacetylated by SIRT1

(Westerheide et al. 2009) (Fig. 3.3). The HSF1-DNA complex dissociates by the

acetylation of Lys80. Thus, SIRT1 inhibits the attenuation of the HSR, and p300

promotes it (Fig. 3.5). SIRT1 modulators also regulate HSF1 activity (Raynes

p300

NAD+ NAM Ac -ADP-ribose

OFF

SIRT1

+

CoA -CoAAc

ATF1

p300
Ac

HSF1

ON

SIRT1

HSF1

Fig. 3.5 Acetylation and deacetylation of HSF1. HSF1 is largely deacetylated by SIRT1 in

unstressed condition. SIRT1 cleaves NADþ and produces nicotinamide (NAM). Simultaneously,

the acetyl group is transferred from HSF1 to the ADP-ribose moiety of NADþ to generate O-

acetyl-ADP ribose. In response to heat shock, HSF1 binds to the DNA and recruits p300 in a

manner that is dependent on ATF1. p300 acetylates HSF1 by transferring an acetyl group from

acetyl CoA. Acetylated HSF1 dissociates from the DNA
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et al. 2013). In some condition, acetylation by p300 may also control stability of

HSF1 through proteasomal degradation (Raychaudhuri et al. 2014).

In general, chromatin-modifying enzymes such as lysine acetyltransferases are

enriched in active genes and are correlated with gene expression in the whole

genome (Wang et al. 2009). Previous studies suggested that p300, one of histone

acetyltransferases, might promote heat-inducible HSP70 expression in Xenopus
oocytes and mammalian cells (Li et al. 1998; Xu et al. 2008). Does p300 enhance

heat shock-inducible expression of HSP70 or inhibit it by deactivating HSF1?

Nakai group found that the HSF1-ATF1 complex promoted the recruitment of

p300 to the HSP70 promoter during heat shock (Takii et al. 2015). Inhibition of

p300 accumulation by disconnecting the interaction delayed the shutdown of HSF1

DNA-binding activity during recovery period, but did not affect histone acetylation

on HSP70 promoter in MEF cells. Depletion of a Drosophila ortholog of p300 also
inhibited only the shutdown of the HSR during recovery period (Ghosh et al. 2011).

These observations indicate that p300 negatively regulates the HSR by inhibiting

HSF1 activity through acetylation.

3.5.4 Thiol Oxidation

Human and mouse HSF1 possesses five cysteine residues, and redox-dependent

regulation of HSF1 activity through these residues has been analyzed. Liu group

first showed that trimerization of human HSF1 in the cytoplasmic extracts from

HeLa cells during in vitro heat shock was inhibited by diamide, a reagent that

promotes disulfide bond formation (Manalo and Liu 2001). Mutation of Cys36 and

Cys103 in the DNA-binding domain did not affect sensitivity to diamide, while

HSF1 having mutated Cys153 in the HR-A/B domain or Cys373/378 just upstream

of the HR-C domain was insensitive to diamide (Manalo et al. 2002). They

proposed from these in vitro studies that disulfide bond formation between

Cys153 and Cys373 or Cys378 in HSF1 inhibited the trimerization during in vitro

heat shock. Thiele group showed another mechanism of redox regulation. They

showed that a purified mouse HSF1 underwent a monomer-to-trimer transition by

heat and hydrogen peroxide (Ahn and Thiele 2003), like Drosophila HSF (Zhong

et al. 1998). Mutation of Cys35 and Cys105 (Cys36 and Cys103 in human HSF1,

respectively) in the DNA-binding domain inhibited the trimerization and acquisi-

tion of DNA-binding activity in vitro by heat shock and hydrogen peroxide.

Furthermore, these HSF1 mutants were defective in heat-inducible trimerization

and activation of HSP genes in vivo in cells (Ahn and Thiele 2003). The heat-

induced bonding between Cys36 and Cys103 in human HSF1 may form an

intermolecular disulfide bond and is required for trimerization (Lu et al. 2008).
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3.6 Other Regulations

Many studies have been conducted to identify proteins interacting HSF1 and

regulate its activity. Many of these proteins are involved in regulation of chromatin

and HSF1 transcription complexes (see Chap. 4) and in feedback repression and

chemical modifications as described above (see Sects. 3.3 and 3.5). We here explain

roles of some other factors that regulate the trimerization and DNA-binding activity

of HSF1.

CHIP (C-terminus of HSP70-interacting protein) is one of the co-chaperones for

HSP70 chaperone machinery and also has ubiquitin ligase activity (Murata

et al. 2003). It turned out that overexpression of CHIP, but not other

co-chaperones, uniquely induced the HSF1 DNA-binding activity and expression

of HSP70 (Dai et al. 2003). Furthermore, CHIP was required for maximal HSP70

induction in cells and tissues. CHIP seems to affect complex formation of HSF1

with chaperone machineries.

HSF1 activity is repressed by DAF-2 or an insulin/IGF-1-like signaling (ILS),

which is one of the major regulatory pathways for longevity in C. elegans (Hsu

et al. 2003; Morley and Morimoto 2004). DDL-1 and DDL-2 are also involved in

longevity pathways and form a complex that interacts with and stabilizes HSF1

monomers (Chiang et al. 2012). Increased ILS signaling promotes the formation of

this complex, whereas reduction of this signaling results in disruption of the

complex and increase in the trimerization of HSF1.

Remarkably, it is proposed that a noncoding RNA regulates the trimerization

and DNA-binding activity of HSF1. Nudler group identified a translation elonga-

tion factor eEF1A as one of HSF1-interacting proteins (Shamovsky et al. 2006).

eEF1A induced the HSF1 DNA-binding activity by recruiting noncoding RNA

consisting of ~600 nucleotides, termed as heat shock RNA-1 (HSR1). Both eEF1A

and HSR1 were required for induction of the HSF1 DNA-binding activity in vitro

and in vivo and for the expression of HSP70. eEF1A also promoted the HSR in part

by enhancing the transcriptional activity of HSF1 and by binding to and stabilizing

HSP70 mRNA (Vera et al. 2014).

3.7 HSF Activation by Diverse Stresses

3.7.1 Environmental Stimuli

HSR was originally detected as heat-induced puffs in Drosophila, and an identical

set of puffs could be induced by other agents (Ritossa 1962). Inducers of the heat-

induced puffs are inhibitors of oxidative phosphorylation and electron transport

(azide, dinitrophenol, rotenone, valinomycin); an inducer of reactive oxygen spe-

cies (ROS) (menadione), anoxia, and a thiol-reactive reagent (arsenite); and an

inhibitor of the synthesis of inflammatory mediators (salicylate) (Ashburner and
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Bonner 1979). However, the synthesis of HSPs is not always induced in Drosophila
and other species by these induces including oxidants and inhibitors of respiration.

In mammalian and avian cells, the synthesis of HSPs is strongly induced by

environmental stimuli such as heat shock, transition metals (copper, cadmium,

zinc, and mercury), arsenite, and ethanol (Levinson et al. 1980; Johnston

et al. 1980; Li 1983), which activate HSF1 (Fig. 3.6).

3.7.2 Physiological Stimuli

Activity of HSF1 is regulated during development. InDrosophila, the expression of
HSPs is induced during development (Zimmerman et al. 1983) and is tightly

correlated with the nuclear localization of HSF (Wang and Lindquist 1998).

Regulation of HSF activity is complex in mammals because members of HSF

family are involved in development (Abane and Mezger 2010) (see Chaps. 6, 7

and 8). Correlation between HSF1 activation and the induction of HSP expression

during organogenesis have been shown. DNA-binding activity of HSF1 and the

expression of HSPs were markedly induced in the pubertal olfactory epithelium,

and HSF1 deficiency resulted in decreased expression of HSPs and impaired

olfactory neurogenesis (Takaki et al. 2006). In response to the immunization of

mice with sheep red blood cells, B cells proliferate in germinal center in the spleen.

Simultaneously, HSF1 was activated and elevated the expression of HSPs (Inouye

Heat shock
Transi�on metal
Alcohol
Oxidant

Environment s�muli Physiological s�muli
Cell prolifera�on
Development
Circadian rhythm
Restraint stress

Pathological s�muli
Ischemia
Inflamma�on
Cancer

Small compound
HSP inhibitor
Protease Inhibitor
An�-cancer drug
An�-inflamma�on drug

Fig. 3.6 HSF1 can be activated by diverse stimuli. Activity of HSF1 can be induced by environ-

mental, physiological, and pathological stimuli or by the treatment with small compounds, which

results in enhanced synthesis of HSPs
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et al. 2004). HSF1 deficiency impaired the proliferation of B cells in the germinal

center. Mechanisms of HSF1 activation during early development and organogen-

esis are not known.

HSF1 is one of circadian transcription factors. Activated HSF1 induces the

expression of HSPs at the onset of dark phase in mice, when they start to be

behaviorally active (Reinke et al. 2008) (see Chap. 10). HSF1 is also activated

in vivo by neurohormonal stimuli. Restraint stress or immobilization stress induced

the HSP70 expression in the rat adrenal by activating HSF1 (Blake et al. 1991;

Fawcett et al. 1994). Hypophysectomy prevented HSF1 activation, and administra-

tion of adrenocorticotropic hormone (ACTH) to hypophysectomized rats induced

it. Thus, activity of HSF1 is under hormonal control in vivo.

3.7.3 Pathological Stimuli

The expression of HSPs in a tissue is markedly elevated under pathological

conditions such as ischemia, trauma, and inflammation. It was shown that HSF1

in the cerebral neocortex was activated in vivo by focal cerebral ischemia, which

was produced by occluding the middle cerebral and common carotid arteries in rats

(Higashi et al. 1995). A high DNA-binding activity of HSF1 appeared soon after the

ischemic treatment and then gradually decreased. HSF1 activation by ischemia and

reperfusion was further monitored in isolated rat hearts (Nishizawa et al. 1996). Rat

hearts were isolated and perfused with a buffer by the Langendorff method. In the

ischemia/reperfusion experiments, isolated hearts were subjected to global ische-

mia by clamping the aortic cannula and then reperfused. HSF1 was slightly

activated at 10 min and quickly attenuated, and reperfusion activated HSF1

again. Furthermore, repetitive ischemia/reperfusion induced a robust activation of

HSF1, while its effect was inhibited in the presence of scavengers of reactive

oxygen species (ROSs) (Nishizawa et al. 1999). Thus, ROSs may play an important

role in the activation of HSF1 in organs by the ischemia/reperfusion injury.

Inflammation is caused by physical, chemical, infectious, and some immuno-

logical agents and is associated with increased production of various kinds of

mediators (Polla et al. 1998) (see Chap. 9). Among them, proinflammatory cyto-

kines including TNF-α, IL-1α, and IL-6 activated HSF1 in synovial fibroblast-like

cells (Schett et al. 1998). HSF1 activation by TNF-α may be in part due to the

TNF-α-mediated induction of ROSs (Goossens et al. 1995). HSF1 is also activated

by cyclopentenone prostaglandins (PGs) including PGA1, PGA2, and PGJ2, which

possess anti-inflammatory, antitumor, and antiviral activities (Holbrook et al. 1992;

Amici et al. 1992). These PGs exert biological effects in part through its reaction

with cysteine residues of many cellular proteins (Straus and Glass 2001), which

could then activate HSF1 (Santagata et al. 2012). Furthermore, a prostaglandin

precursor, arachidonic acid, also activates HSF1 and induces the expression of

HSPs (Jurivich et al. 1994).
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HSF1 facilitates malignant transformation and cancer cell survival (Dai

et al. 2007; Min et al. 2007). Protein level of HSF1 is elevated in some cancer

cells (Hoang et al. 2000), and high levels of HSF1 is associated with poor prognosis

in various cancers originating from the breast, colon, lung, prostate, and pancreas

(Santagata et al. 2011; Mendillo et al. 2012). The upregulation of HSF1 in cancer

cells is in part due to activation of mitogen-activated protein kinase (MAPK)

signaling, which phosphorylates HSF1-Ser326 (Dai et al. 2012; Chuma

et al. 2014) (see Chap. 13).

HSF1 inhibits progression of aging and age-related protein misfolding disease

models (Hsu et al. 2003; Morley and Morimoto 2004; Fujimoto et al. 2005;

Hayashida et al. 2010) (see Chap. 11). However, it is still unclear whether HSF1

is activated by the accumulation of misfolded proteins in the brain of protein

misfolding diseases including polyglutamine diseases. HSF1 was not activated by

aggregation-prone, polyglutamine-expanded fragments even in cells selected for

the highest expression levels (Bersuker et al. 2013).

3.7.4 Small Compounds

HSF1 is activated by a variety of small compounds. Because HSF1 is usually

repressed by chaperone machineries, compounds that inhibit chaperone activity

may release HSF1 from the feedback repression. In fact, HSF1 is robustly activated

when cells are treated with geldanamycin, a benzoquinone ansamycin antibiotic,

that inhibits HSP90 function by binding to its ADP/ATP-binding pocket (Zou

et al. 1998a, b). Geldanamycin and its derivatives including 17-allylamino-17-

demethoxygeldanamycin (17-AAG) could be candidates of therapeutic drug for

neurodegenerative disease and cancer (see Chap. 14). Geranylgeranylacetone

(GGA), an acyclic polyisoprenoid, is known as an antiulcer drug and also induces

the HSR (Hirakawa et al. 1996), in part by binding to HSP70 and disrupting the

HSF1-HSP70 interaction (Otaka et al. 2007). Furthermore, HSF1 is activated by

proteasome inhibitors including lactacystin and MG132 and amino acid analogs,

azetidine, and canavanine (proline and arginine analogs, respectively), by inducing

the accumulation of misfolded proteins in cells (Kelley and Schlesinger 1978;

Kawazoe et al. 1998; Mathew et al. 1998; Pirkkala et al. 2000). Moreover, a lot

of thiol-reactive compounds including natural product celastrol, a quinone methide

triterpene, also activate HSF1 probably through modification of cysteines in cellu-

lar target proteins (Westerheide et al. 2004; Trott et al. 2008; Santagata et al. 2012).

Bimoclomol, a nontoxic hydroxylamine derivative, is a co-inducer of HSPs

that elevates levels of HSPs under stress conditions (Vı́gh et al. 1997;

Kieran et al. 2004), in part by binding to HSF1 complex directly (Hargitai

et al. 2003). Furthermore, HSF1 is activated by anticancer drugs including

1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) (an alkylating drug), vincristine

(a microtubule-damaging drug), and bleomycin (a DNA-damaging drug) by

unknown mechanisms (Kroes et al. 1991; Kim et al. 1999). BCNU strongly induces
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the HSR, while the latter two drugs induce only the expression of mitochondrial

HSPs. Moreover, anti-inflammatory drugs, sodium salicylate and indomethacin,

induce the HSF1 DNA-binding activity without upregulation of the HSP expression

(Jurivich et al. 1992; Lee et al. 1995).

3.8 Future Perspectives

In response to proteotoxic stresses including heat shock and proteasome inhibition,

the activation of HSF1 is triggered by the rapid elevation of misfolded proteins

within cells, which leads the release from feedback repression of HSF1 by HSPs.

Heat shock also promotes the monomer-to-trimer transition of HSF1 directly.

Furthermore, the activation and shutdown of HSF1 activity are associated with

posttranslational modifications including phosphorylation and acetylation. Because

these posttranslational modifications are complex, impact of each modification on

the regulation of HSF1 activity in response to a specific proteotoxic stress is not

well understood. Furthermore, it is still unclear whether is there any other factor

than HSPs that directly regulates HSF1 activation during proteotoxic stress.

It is proposed that each cell possesses a unique proteostasis capacity or a

buffering capacity against protein misfolding, which is determined by the balance

of protein synthesis, folding, and degradation (Gidalevitz et al. 2010). Not only the

status of protein folding and degradation but also that of protein synthesis regulates

HSF1 activity (Santagata et al. 2013), indicating a tight link between the

proteostasis capacity and HSF1 activity even in unstressed conditions. The basal

HSF1 activity is required for maintenance of the proteostasis capacity in unstressed

conditions and delays physiological aging and the progression of a model of

misfolding diseases (Hsu et al. 2003; Morley and Morimoto 2004; Hayashida

et al. 2010). Thus, regulation of the basal HSF1 activity may modulate aging and

age-related protein misfolding diseases. It should be clarified how HSF1 activity is

strictly regulated by metabolic signaling pathways under physiological conditions

in future.
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