
Chapter 14

HSF1 Activation by Small Chemical

Compounds for the Treatment of

Neurodegenerative Diseases

Nobuhiro Fujikake, Toshihide Takeuchi, and Yoshitaka Nagai

Abstract Heat shock transcription factor 1 (HSF1) is a transcription factor that is

activated upon the exposure of cells to various types of proteotoxic stress, such as

heat shock stress and oxidative stress, which induces the expression of various

molecular chaperones. HSF1-induced molecular chaperones, including heat shock

protein 40 (Hsp40) and Hsp70, suppress protein misfolding through binding to

structurally unstable proteins and thereby protect cells from proteotoxic stress.

Therefore, activation of HSF1 is considered as a therapeutic approach against a

group of neurodegenerative diseases that are caused by protein misfolding, includ-

ing Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and the

polyglutamine diseases. In fact, many compounds that activate HSF1 have been

tested for their potential as therapeutic agents against neurodegenerative diseases.

In this chapter, we introduce various HSF1-activating compounds, their mecha-

nisms of activation of HSF1, and their therapeutic effects against neurodegenera-

tive diseases.
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14.1 Introduction

Heat shock transcription factor 1 (HSF1) is a transcription factor that protects cells

from various types of proteotoxic stress, including heat shock stress and oxidative

stress, by inducing the expression of various types of molecular chaperones. Under

unstressed conditions, HSF1 is inactivated by its interaction with molecular chap-

erones, including heat shock protein 40 (Hsp40), Hsp70, and TCP-1 ring complex

(TRiC)/chaperonin in the cytoplasm (Zou et al. 1998; Neef et al. 2014; Shi et al.

1998). Upon exposure to stress, HSF1 is quickly released from the chaperone

complex, translocates into the nucleus, and binds to the heat shock element

(HSE) in the promoter region of various molecular chaperone genes to induce

their expression (Sarge et al. 1993; Baler et al. 1993). During this activation

process, HSF1 forms a homotrimer and is posttranslationally modified, such as by

phosphorylation and sumoylation (Chu et al. 1996; Hietakangas et al. 2003). After

acute transcriptional activation, HSF1 is acetylated by the histone acetyltransferase

p300/CBP, which attenuates the binding of HSF1 to HSEs, leading to a reduction in

its transcriptional activity (Westerheide et al. 2009) (Fig. 14.1). HSF1-induced
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Fig. 14.1 Mechanisms of HSF1 activation by small compounds. Upon exposure to stress, HSF1 is

quickly released from the chaperone complex, translocates into the nucleus, forms a homotrimer,

and binds to the heat shock element (HSE) in the promoter region of various molecular chaperone

genes. After its acute transcriptional activation, HSF1 is acetylated to attenuate its transcriptional

activity. Various HSF1-activating compounds targeting various steps of HSF1 activation are

shown in red boxes. Although paeoniflorin was reported to activate HSF1, the mechanisms remain

unknown
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molecular chaperones, such as Hsp40, Hsp70, Hsp90, Hsp110, TRiC, and small

Hsps, suppress protein misfolding through binding to structurally unstable proteins

and assist the refolding of misfolded proteins.

Protein misfolding has been considered to be involved in the pathogenesis of

various neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s
disease, amyotrophic lateral sclerosis (ALS), and the polyglutamine (polyQ) dis-

eases. The aggregates of misfolded proteins that accumulate as inclusions in the

central nervous system are a common pathological hallmark of various neurode-

generative diseases, whereas the main component protein of the inclusions is

different in each disease (amyloid-β and tau in Alzheimer’s disease, α-synuclein
in Parkinson’s disease, TAR DNA-binding protein 43 (TDP-43) or superoxide

dismutase 1 (SOD1) in ALS, and polyQ-containing proteins in the polyQ diseases).

In addition, many genetic mutations that are responsible for the inherited forms of

neurodegenerative diseases confer a propensity for misfolding on the disease-

causing proteins, resulting in aggregation of these proteins. These facts strongly

indicate that protein misfolding is a common pathogenesis of various neurodegen-

erative diseases (Taylor et al. 2002). Therefore, the suppression of protein

misfolding by molecular chaperones is considered to be a common therapeutic

approach for the currently untreatable neurodegenerative diseases (Fig. 14.2).
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Fig. 14.2 Protein misfolding in the pathomechanisms of neurodegenerative diseases and its

suppression by molecular chaperones. Protein misfolding has been considered as a common

pathogenesis of various neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s
disease, amyotrophic lateral sclerosis, and the polyglutamine diseases. Molecular chaperones

assist the refolding of misfolded proteins, and hence the suppression of protein misfolding by

molecular chaperones is considered to be a common therapeutic approach for the currently

untreatable neurodegenerative diseases
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In fact, the overexpression of molecular chaperones has been demonstrated to

lead to therapeutic effects in cell culture and animal models of various neurode-

generative diseases (Auluck et al. 2002; Bruening et al. 1999; Cummings et al.

1998, 2001; Klucken et al. 2004; Shimura et al. 2004). Importantly, the simulta-

neous expression of several molecular chaperones was shown to result in stronger

therapeutic effects than the expression of a single type of chaperone, in various

models of neurodegenerative diseases (Chan et al. 2000; Ishihara et al. 2003),

indicating that additional and synergistic therapeutic effects are expected through

the induction of multiple molecular chaperones. Therefore, the expression of

multiple molecular chaperones by HSF1 activation is expected to result in the

greatest benefits against neurodegenerative diseases. The first trial to investigate

the effects of HSF1 activation against neurodegenerative diseases was reported in

2001. Zimarino and colleagues showed that the genetic overexpression of a con-

stitutively active HSF1 mutant reduces polyQ aggregation through the induction of

Hsp70 in a cell culture model (Rimoldi et al. 2001). A constitutively active HSF1

mutant was also shown to ameliorate the disease phenotypes of polyQ disease

model mice through the induction of multiple molecular chaperones (Fujimoto et

al. 2005). These facts suggest that the genetic overexpression of exogenous HSF1

would ameliorate the symptoms of patients with neurodegenerative diseases,

through the induction of multiple molecular chaperones, although the expression

of exogenous genes in the human brain is currently very limited owing to safety

concerns and the lack of efficient methods for gene delivery.

On the other hand, it had remained unclear as to whether endogenous HSF1 is

activated in the brains of patients with protein misfolding neurodegenerative

diseases. Interestingly, Bates and colleagues found that the expression levels of

molecular chaperones unexpectedly decreased with disease progression in polyQ

disease model mice (Hay et al. 2004), suggesting that endogenous HSF1 is gradu-

ally inactivated in the brains of these mice. Subsequently, Nukina and colleagues

revealed that endogenous HSF1 is inactivated in the brains of polyQ disease model

mice (Yamanaka et al. 2008), consistent with the inactivation of HSF1 under

chronic heat shock stress (Kline and Morimoto 1997). These facts strongly suggest

that endogenous HSF1 is inactivated in the brains of patients with protein

misfolding diseases, which are under chronic proteotoxic stress, and hence the

activation of endogenous HSF1 is expected to exert therapeutic effects for patients

with neurodegenerative diseases.

In this chapter, we focus on small compounds that activate endogenous HSF1

and lead to the induction of molecular chaperones (Fig. 14.1), which are promising

candidates as a common therapy against neurodegenerative diseases.
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14.2 HSF1 Activation by Hsp90 Inhibitors

The molecular chaperone Hsp90 binds to many proteins, including steroid hormone

receptors, protein kinases, and transcription factors, to stabilize them under

unstressed conditions. Hsp90 also binds to the regulatory domain of HSF1 to

keep HSF1 as an inactive monomer in the cytoplasm, and hence the pharmacolog-

ical inhibition of Hsp90 is able to activate HSF1.

Geldanamycin, a benzoquinone ansamycin antitumor antibiotic, has been shown

to specifically bind to the N-terminal ATP-binding pocket of Hsp90 and inhibit its

activity, resulting in the activation of HSF1, leading to the induction of molecular

chaperones (Dehner et al. 2003; Whitesell et al. 1994; Zou et al. 1998; Roe et al.

1999). In 2001, Wanker and colleagues reported for the first time the therapeutic

effect of the pharmacological induction of molecular chaperones in a neurodegen-

erative disease model (Sittler et al. 2001). They showed that treatment with

geldanamycin suppresses aggregation of the polyQ protein through the induction

of multiple molecular chaperones in a cell culture model. A decrease in the number

of polyQ aggregates by geldanamycin treatment was also subsequently reported in

brain slice cultures derived from polyQ disease model mice (Hay et al. 2004). We

also demonstrated that the oral administration of geldanamycin and 17-

(allylamino)-17-demethoxygeldanamycin (17-AAG), a less toxic derivative of

geldanamycin, suppresses not only the aggregation of polyQ proteins but also

neurodegeneration in polyQ disease model flies, through HSF1-mediated induction

of multiple molecular chaperones (Fujikake et al. 2008), indicating that

geldanamycin and its derivative are effective in vivo. In addition, Bonini and

colleagues showed the therapeutic effects of geldanamycin on the progressive

loss of dopaminergic neurons in Parkinson’s disease model flies (Auluck and

Bonini 2002). Furthermore, the cytotoxicity of mutant SOD1 in a cell culture

model of ALS was shown to be reduced by geldanamycin treatment (Batulan et

al. 2006). These facts suggest that geldanamycin and its derivatives have the

potential to be developed as common therapeutic agents against various neurode-

generative diseases.

Radicicol, an antifungal macrolactone antibiotic, was also shown to activate

HSF1 similarly to geldanamycin by inhibiting Hsp90 through its direct binding to

the N-terminal domain of Hsp90 (Schulte et al. 1998; Roe et al. 1999; Bagatell et al.

2000). Radicicol was shown to decrease the number of polyQ aggregates in brain

slice cultures derived from polyQ disease model mice (Hay et al. 2004). We also

demonstrated that radicicol suppresses neurodegeneration as well as the aggrega-

tion of polyQ proteins in flies (Fujikake et al. 2008). Therefore, the potential of

radicicol to be developed as a therapeutic agent is similar to that of geldanamycin.

HSP990 is a compound that was developed by Novartis as an inhibitor of the

ATPase activity of Hsp90, by binding to the N-terminal ATP-binding pocket of

Hsp90 (Machajewski et al. 2007). Bates and colleagues demonstrated that oral

administration of HSP990 transiently improves the motor performance and reduces
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the aggregates of polyQ disease model mice at early stages of disease, through the

induction of molecular chaperones via the activation of HSF1 (Labbadia et al.

2011). However, the induction of molecular chaperones as well as the therapeutic

effects of HSP990 gradually diminished with disease progression, although HSF1

was dissociated from Hsp90, phosphorylated, and localized in the nucleus of

neurons. They demonstrated that the binding of HSF1 to HSE is significantly

decreased in the brains of polyQ disease model mice and that the chromatin

structure and acetylation of histones are altered with disease progression,

suggesting that the accessibility of HSF1 to the HSE sequence on the genome is

decreased by chronic proteotoxic stress in neurodegenerative diseases. These data

suggest that oral administration of HSP990 is effective against neurodegenerative

diseases at least early stages of the diseases.

14.3 HSF1 Activation by an Hsp70 Inhibitor

The molecular chaperone Hsp70 has a major role in assisting the proper folding of

newly synthesized polypeptides and in preventing the misfolding of mature proteins

(Hendrick and Hartl 1995). Upon exposure to stress, Hsp70 expression is quickly

induced by activated HSF1, resulting in the binding of Hsp70 to structurally

unstable proteins, to prevent the misfolding of these proteins. Hsp70 also binds to

the transactivation domain of HSF1 to disassemble the active HSF1 trimer into

inactive monomers and to stabilize the monomers (Abravaya et al. 1992; Mosser et

al. 1993; Shi et al. 1998).

In 1996, geranylgeranylacetone (GGA), an antiulcer drug, was demonstrated to

induce molecular chaperones via the activation of HSF1 (Hirakawa et al. 1996).

About 10 years later, GGA was shown to bind to and inhibit Hsp70, leading to the

dissociation of HSF1 from Hsp70, resulting in the activation of HSF1 (Otaka et al.

2007). Sobue and colleagues showed that the oral administration of GGA induces

the expression of multiple molecular chaperones in the spinal cord of polyQ disease

model mice, which suppresses the accumulation of polyQ proteins, resulting in the

improvement of motor performance (Katsuno et al. 2005). GGA is considered as a

strong candidate agent for patients with neurodegenerative diseases, since it has

already been used as an antiulcer drug for humans.

14.4 HSF1 Activation by a TRiC Inhibitor

TRiC is a eukaryotic chaperonin composed of eight paralogous subunits (Tcp1 and

Cct2-8) (Lopez et al. 2015). Although TRiC was considered to specifically assist

the folding of cytoskeletal proteins, such as α-tubulin and actin, it was later

estimated to interact with 6–7 % of cytosolic proteins, probably to assist their
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folding (Yam et al. 2008). TRiC directly binds to HSF1 and suppresses its activa-

tion, similarly to Hsp90 and Hsp70.

HSF1A, a benzyl pyrazole derivative, was recently identified as an HSF1-

activating compound by a humanized yeast screen and was confirmed to also

activate HSF1 in human cells (Neef et al. 2010, 2011). HSF1A has been shown to

interact with at least four TRiC subunits (Tcp1, Cct2, Cct5, and Cct8) and to mildly

inhibit its chaperone activity, leading to the activation of HSF1 (Neef et al. 2014).

Treatment with HSF1A was shown to reduce the aggregates and cytotoxicity of

polyQ proteins in a cell culture model and to attenuate a disease phenotype in polyQ

diseases model flies (Neef et al. 2010). These facts indicate that TRiC is a new

target to develop HSF1-mediated therapies against neurodegenerative diseases.

14.5 Prolongation of HSF1 Activity

Silent information regulator 2 (Sir2), an NAD-dependent protein deacetylase in

budding yeast, was found to be a determinant of their lifespan (Kaeberlein et al.

1999). The overexpression of Sir2 slowed the aging process in yeast, whereas Sir2

mutants had a shortened lifespan. Subsequently, an increase in lifespan by the

overexpression of Sir2 orthologs has been demonstrated in worms and flies (Rogina

and Helfand 2004; Tissenbaum and Guarente 2001). Furthermore, the

overexpression of sirtuin 1 (Sirt1), a mammalian ortholog of Sir2, results in healthy

aging in mice, such as a reduction in DNA damage and fewer spontaneous carci-

nomas and sarcomas (Herranz et al. 2010). Morimoto and colleagues demonstrated

that the DNA-binding domain of HSF1 is acetylated after its acute transcriptional

activation, to reduce its transcriptional activity (Westerheide et al. 2009). Impor-

tantly, they further showed that Sirt1 deacetylates the acetylated HSF1, leading to

its prolonged transcriptional activity, which may be involved in the mechanisms of

longevity and healthy aging by Sirt1.

By screening small compound libraries for modulators of Sirt1 activity, resver-

atrol, a polyphenol found in red wine, was identified as an activator of Sirt1 (Howitz

et al. 2003). Resveratrol treatment extended the lifespan of budding yeast in a Sirt1-

dependent manner and conferred resistance to ionizing radiation in human cultured

cells, accompanied with the deacetylation of p53, which is a known target of Sirt1.

Treatment of ALS model mice with resveratrol by chronic intraperitoneal injection

was reported to successfully extend their lifespan, decrease motor neuron death,

and delay the onset of muscle weakness (Han et al. 2012). Although the effect of

resveratrol on protein aggregation was not investigated, the authors demonstrated a

decrease in acetylated HSF1 accompanied by the induction of Hsp27 and Hsp70 in

the spinal cord of the resveratrol-treated ALS model mice, suggesting that the

therapeutic effects of resveratrol are mediated by prolonged HSF1 activity.
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14.6 Enhancement of HSF1 Activity

Bimoclomol, a derivative of hydroxylamine, has been reported to enhance the

induction of molecular chaperones in cultured cells upon heat shock stress, whereas

it does not induce molecular chaperones under unstressed conditions (Vigh et al.

1997). Although the specific mechanisms by which bimoclomol enhances the

induction of molecular chaperones are not fully understood, Csermely and col-

leagues reported that bimoclomol directly binds to HSF1, resulting in significant

prolongation of the binding of HSF1 to HSE (Hargitai et al. 2003). On the other

hand, Vigh and colleagues reported that bimoclomol interacts with acidic lipids and

modifies the fluidity of the plasma membrane, similarly to the effect of heat shock

stress on the membrane, leading to an enhancement of HSF1 activity (Torok et al.

2003).

Arimoclomol, an orally active derivative of bimoclomol, has been shown to

induce molecular chaperones in the pancreas of rats with pancreatitis, upon its

intragastric administration (Rakonczay et al. 2002). Arimoclomol has also been

shown to induce multiple molecular chaperones via the activation of HSF1 in the

spinal cord upon intraperitoneal injection, resulting in the alleviation of disease

symptoms of ALS model mice (Kieran et al. 2004). Furthermore, the lifespan of

ALS model mice was extended by arimoclomol treatment, when treatment was

started at the time of symptom onset (Kieran et al. 2004), indicating that this

compound is expected to exert therapeutic effects in the early stages of ALS. In a

phase II clinical trial, arimoclomol was shown to be safe and well tolerated in

patients with ALS and confirmed to be delivered to the cerebrospinal fluid upon oral

administration (Cudkowicz et al. 2008). Currently, a phase II/III clinical trial of

arimoclomol to ALS patients is ongoing (ClinicalTrials.gov Identifier:

NCT00706147).

14.7 Inhibition of HSF1 Degradation

Riluzole, a compound that acts against glutamate toxicity, is the clinically approved

agent for the treatment of ALS. Although the therapeutic effects of riluzole were

believed to be from its protective effects against glutamate toxicity (Bensimon et al.

1994), the effect of riluzole on HSF1 has recently been clarified. Treatment of

cultured cells with riluzole was reported to accelerate the induction of Hsp70 upon

heat shock stress by increasing the amount of HSF1, whereas riluzole treatment

under unstressed conditions only increased the amount of steady-state HSF1 and

did not induce the activation of HSF1 (Yang et al. 2008; Liu et al. 2011). Since the

expression of HSF1 mRNA was not altered, riluzole is thought to inhibit degrada-

tion of the HSF1 protein. These results suggest that the increase in the amount of

HSF1 may be involved in the therapeutic effects of riluzole against ALS.
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14.8 Medicinal Plants

Root extracts from the Celastraceae family are used for the treatment of fever,

chills, joint pain, inflammation, edema, rheumatoid arthritis, and bacterial infection.

Celastrol, which is isolated from the root extract of the Celastraceae family, was

identified as an inducer of molecular chaperones through HSF1 activation

(Westerheide et al. 2004). Although the mechanisms by which celastrol activates

HSF1 are not fully understood, celastrol is thought to inhibit the binding of Hsp90

to ATP without affecting the N-terminal ATP-binding pocket of Hsp90 (Zhang et

al. 2009; Hieronymus et al. 2006). Treatment of a cell culture model of the polyQ

diseases with celastrol was reported to induce Hsp70 in an HSF1-dependent manner

and to suppress polyQ aggregation, leading to a reduction in cell death (Zhang and

Sarge 2007). However, since celastrol was reported to have multiple targets, such as

Cdc37, IKKβ, and the proteasome, and, furthermore, since it directly suppresses the

aggregation of purified polyQ proteins in vitro, other mechanisms may also con-

tribute to its therapeutic effects (Yang et al. 2006; Lee et al. 2006; Sreeramulu et al.

2009; Zhang and Sarge 2007; Wang et al. 2005).

Paeonia lactiflora is a medicinal plant used for nourishing blood, alleviating

pain, reducing irritability, and treating liver disease and cancer. Paeoniflorin, one of

the main compounds extracted from Paeonia lactiflora, was reported to induce

multiple molecular chaperones via the activation of HSF1, although the mecha-

nisms remain unknown (Yan et al. 2004). Furthermore, treatment with paeoniflorin

was reported to induce molecular chaperones in a polyQ disease cell culture model,

resulting in the suppression of polyQ protein aggregation (Chang et al. 2013). In

addition, intraperitoneal injection of paeoniflorin to polyQ disease model mice was

shown to induce the expression of not only molecular chaperones but also nuclear

factor-YA (NF-YA), a transcriptional factor (Tohnai et al. 2014). NF-YA increases

the expression levels of transcription factor EB (TFEB) and carboxyl-terminus of

Hsc70-interacting proteins (CHIP), which are proteins involved in the lysosome

and proteasome protein degradation system, respectively (Sardiello et al. 2009;

Stankiewicz et al. 2010), leading to the degradation of polyQ proteins, resulting in

the amelioration of motor performance and extension of lifespan of polyQ disease

model mice. These results suggest that paeoniflorin targets not only HSF1 but also

other molecules, demonstrating its additional therapeutic effects against neurode-

generative diseases.

14.9 Dexamethasone

Dexamethasone, a synthetic corticosteroid used as an antiinflammatory agent, was

shown to induce Hsp70 but not Hsp27 and Hsp60 via the activation of HSF1 in rat

cardiac myocytes (Sun et al. 2000). Jana and colleagues found that the expression

levels of HSF1 mRNA and protein are decreased in the eyes and brains of polyQ
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disease model flies and mice, respectively (Maheshwari et al. 2014). They tested the

effects of dexamethasone on these models and found that dexamethasone treatment

increases the expression level of HSF1 to a similar level to that in wild-type mice.

Furthermore, dexamethasone not only increased the expression levels of HSF1 but

also induced HSF1 activation in the brains of a mouse model of the polyQ diseases,

leading to a decrease in the number of aggregates and an improvement in motor

performance through the induction of Hsp70. Although the mechanisms by which

dexamethasone increases the expression level of HSF1 and induces its activation

are unclear, they showed that dexamethasone reduces the expression level of

Hsp90, which probably contributes to the activation of HSF1.

14.10 Inhibition of Histone Deacetylase

Heat shock stress induces not only the activation of HSF1 but also the acetylation of

histones, which alters the chromatin structure in the promoter region of molecular

chaperone genes. The acetylation of core histones weakens the interaction of

histones with DNA, leading to the open chromatin structure that confers high

accessibility for transcription factors to the target sequence on the genome. In

fact, hyperacetylation of histones by treatment with histone deacetylase (HDAC)

inhibitors has been reported to increase the accessibility of HSF1 to the HSE

sequence and to induce the expression of molecular chaperones (Chen et al.

2002; Zhao et al. 2005; Marinova et al. 2011; Ovakim and Heikkila 2003).

Therefore, HDAC inhibitors can be regarded as activators of HSF1-mediated

induction of molecular chaperones in trans. Treatment with HDAC inhibitors,

such as trichostatin A and sodium phenylbutyrate, has indeed been shown to

exert therapeutic effects against various models of neurodegenerative diseases,

including Alzheimer’s disease, Parkinson’s diseases, ALS, and the polyQ diseases

(Ricobaraza et al. 2009; Kontopoulos et al. 2006; Ryu et al. 2005; Steffan et al.

2001; Minamiyama et al. 2004), although the contribution of HSF1 to these effects

was not investigated. These facts suggest that induction of molecular chaperones

via HSF1 may contribute to the therapeutic effects of HDAC inhibitors against

neurodegenerative disease models.

14.11 Future Perspectives

Here we introduced various studies investigating the therapeutic effects of various

small compounds that induce the activation of HSF1, for the treatment of various

neurodegenerative diseases involving protein misfolding. To date, several HSF1-

activating compounds were demonstrated as potential therapeutic agents using

mouse models of various neurodegenerative diseases. However, we note here that

in almost all studies showing the therapeutic effects of HSF1 activators in mouse
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models, treatments were started before disease onset. Bates and colleagues dem-

onstrated an important issue, namely, that the induction of molecular chaperones is

gradually diminished with disease progression in the brains of neurodegenerative

disease model mice, through alterations in chromatin structure, which decreases the

accessibility of activated HSF1 to the HSE sequence (Labbadia et al. 2011).

Considering that the majority of patients with neurodegenerative diseases are

diagnosed after disease onset, the chromatin structure of the HSE sequence in

patients’ brains may already be altered, which would interfere with activated

HSF1 accessing the HSE, and hence this issue should be solved toward developing

a therapy for human patients.

One plausible strategy is the rearrangement of the altered chromatin structure,

allowing it to be accessed by HSF1. Huang and colleagues clearly showed that

HDAC inhibitor treatment rearranges the chromatin structure, increasing the acces-

sibility of HSF1 to the HSE sequence (Chen et al. 2002). Hence, a combination of

HSF1-activating compounds and HDAC inhibitors is expected to show synergistic

effects against the neurodegenerative diseases. In fact, Marsh and colleagues

showed that combinatorial treatment with an Hsp90 inhibitor (geldanamycin) and

an HDAC inhibitor (suberoylanilide hydroxamic acid) results in much greater

suppression of neurodegeneration than treatment with each compound alone in

polyQ disease model flies, although the induction of molecular chaperones was not

examined (Agrawal et al. 2005). This robust suppression may be caused by the

efficient induction of molecular chaperones via the activation of HSF1 both in cis
and in trans.

Another strategy is based on the novel concept of exosome-mediated

intercellular chaperone transmission, which contributes to the maintenance of

protein homeostasis at the organismal level. We recently reported that molecular

chaperones, including Hsp40 and Hsp70, are secreted from cells via exosomes,

transmitted to other cells, and suppress polyQ aggregation in other cultured cells

(Takeuchi et al. 2015). Furthermore, the overexpression of molecular chaperones in

nonneuronal tissues, such as the muscle and fat body non-cell, autonomously

suppresses neurodegeneration in the eyes of polyQ disease model flies, probably

through intercellular chaperone transmission. Therefore, our study indicates that

even if molecular chaperones cannot be induced in the brain through the activation

of HSF1, their induction in peripheral tissues or supplying chaperone-containing

exosomes from the periphery is expected to suppress protein misfolding in patients’
brains in a non-cell autonomous manner.

In summary, the pharmacological activation of HSF1 is a promising therapeutic

approach against various protein misfolding neurodegenerative diseases. Toward

developing HSF1-mediated therapies against neurodegenerative diseases, addi-

tional studies toward understanding the mechanisms of activation of HSF1 under

chronic proteotoxic stress should be performed in the future.
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