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of Potassium Supply on the Reduction

of Radiocesium Content in Rice Grain
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Abstract To achieve the reduction of the radiocesium content in rice grain, the

application of potassium (K) fertilizer to the paddy field is currently recommended.

However, physiological basis of the effect of the K addition on the radiocesium

accumulation in rice has not been enough provided. Here, the uptake and the

distribution of cesium (Cs) in rice plant grown in either K-deficient or

K-sufficient hydroponic medium containing 137Cs are presented aiming to describe

the exact impact of K fertilization on the Cs behavior within the plant. In the

K-deficient plant, the amount of 137Cs accumulated in the rice grain was 10 times as

much as the K-sufficient rice. The determination of 137Cs content as well as other

cationic ions in each part of the rice showed the intensive transport of 137Cs to the

ear part composed of brown rice, husk and culm, in which K was also accumulated.

It could supposed that Cs transport is regulated basically similarly to the K transport

within the plant body. Then, K fertilization is suggested to reduce the Cs content in

rice grain efficiently through the reduction of Cs uptake in the roots and Cs

accumulation to the ear part.
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Transport

5.1 Introduction

Among agricultural products, rice contaminated with radiocesium has received

particular attention because it is the staple food of Japan and the main agriproduct

in Fukushima. After 2011, an extensive survey on rice was conducted and the result

showed a clear inverse relationship between soil potassium (K) and radiocesium

concentrations (http://www.maff.go.jp/j/kanbo/joho/saigai/pdf/kome.pdf). In addi-

tion, when the K fertilizer was applied to paddy fields where rice containing
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relatively high amounts of radiocesium was produced, the brown rice produced the

following year had much lower radiocesium concentrations. Actually, many previ-

ous physiological experiments have indicated that high K concentration in the

rhizosphere could reduce Cs absorption by the roots in several plant species (Zhi

et al. 2002; Robison et al. 2009). This reduction was thought to be due to the similar

chemical properties of K and Cs. Because they are both alkali metals, Cs is assumed

to enter the root cells through the K transport apparatus, which is where the

competition between these elements is thought to occur.

The competition between K uptake and Cs uptake in rice roots is recently

described (Kobayashi et al. 2015). The kinetics of K uptake was directly analyzed

using 42K, and simultaneously, the uptake rate of Cs was calculated using 137Cs. As

the K concentration in the uptake medium increased, the K uptake rate increased

and the Cs uptake rate decreased (Kobayashi et al. 2015). In Arabidopsis plants, the
molecule mediating K and Cs uptake has been identified (Qi et al. 2008).

In addition to the relationship between soil K concentration and radiocesium

contamination of rice, an intriguing observation about radiocesium distribution in

rice plants was found in 2011. In some paddy fields in Fukushima, brown rice

containing over 500 Bq/kg of radiocesium was produced. We analyzed radiocesium

distribution in rice seedlings harvested in those paddy fields (Paddy-field A) and

found that younger organs, such as the ear and the first and second internodes,

accumulated more radiocesium (Fig. 5.1). The leaf with the highest radiocesium

concentration was the uppermost leaf (Fig. 5.1). In contrast, the older leaves

contained larger amounts of radiocesium for rice plants harvested in the paddy

field (Paddy field B) where brown rice without radiocesium contamination (<4 Bq/

kg) was produced (Fig. 5.1). Given that the soil K concentration in Paddy-field A

was low, radiocesium accumulation in the younger parts could be considered to be

triggered by K deficiency. There is frequent K movement between plant parts.

When the plant encounters K shortage, K can be translocated from the older tissues

to the younger tissues to maintain growth. These K movements inside the plant

could be assumed to be mimicked by Cs; thus, Cs as well as K might accumulate in

younger tissues in response to K deficiency. To produce rice with the least

radiocesium content in paddy fields, it is important to understand the radiocesium

distribution in rice plants and to distinguish the influencing factors. Therefore, apart

from environmental factors, we investigated the physiological effect of K supply on

Cs uptake and transport in rice plants using 137Cs.

5.2 Effect of K Concentration in Nutrient Solution on Cs

Distribution in Rice Plants

To analyze the effect of K supply on 137Cs behavior, we compared 137Cs distribu-

tion in rice plants grown with or without K. Rice seedlings (Oryza sativa
L. Nipponbare) were grown in half-strength Kimura B nutrient solution for
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Fig. 5.1 Radiocesium distribution in rice plants harvested in Fukushima in 2011. The upper
picture shows the rice plant harvested in paddy-field A where the highly contaminated rice grain

(approximately 500 Bq/kg) was produced. The rice plant was separated into organs and placed

with clods of paddy-soil and some reference samples (surrounded with frames). Radioactivity was

detected using an imaging plate (BAS IP MS, FujiFilm) and was described with a false color.

Arrows indicate the internodes. The bottom graph shows the concentration of 137Cs in the leaves of
the rice plants harvested from Paddy-field A and B [Modified from the report by Tanoi

et al. (2013)]
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3 weeks and then transplanted either to 3 mM K or K-free nutrient solution

containing 137Cs (9 kBq/L). The K-sufficient and K-deficient rice plants were

grown for another 8 weeks until maturity. For cultivation, a plant growth chamber

was set at 30 �Cwith a daily 12 h light and 12 h dark cycle. After harvesting, the rice

plants were separated into several parts and the radioactivity of 137Cs in each part

was measured to determine the 137Cs distribution. The K-deficient rice contained

nearly 3-times the amount of 137Cs compared with the K-sufficient rice. As

presented in Fig. 5.2, it was clear that the K-sufficient rice accumulated 137Cs in

the older leaves, whereas the K-deficient rice contained a large amount of 137Cs in

the ear and the culm, followed by the upper leaves. Therefore, the distribution of
137Cs in the K-deficient rice (Fig. 5.2) was similar to the radiocesium distribution

found in the rice grown in Paddy-field A (Fig. 5.1). In K-deficient rice, the 137Cs

accumulated in the ear accounted for more than 25 % of 137Cs found in the shoots,

whereas it was less than 10 % in the K-sufficient rice (Fig. 5.2). As a result, K

concentration in the culture solution was shown to impact significantly on Cs

distribution within a rice plant.

5.3 Cation Concentration in K-Sufficient and K-Deficient

Rice Plants

Does K concentration in solution alter the Cs distribution specifically? This ques-

tion is important for considering the mechanism regulating Cs transport inside rice

plants. Therefore, we investigated the distribution of sodium (Na), magnesium

(Mg), calcium (Ca), as well as K and 137Cs in K-sufficient and K-deficient rice

plants (Fig. 5.3). The concentration of K in the leaves was higher than in the brown

rice when K was sufficient, which was the reversed response to K-starvation.

Interestingly, this alteration was also observed for 137Cs concentrations. K concen-

tration in the sink organs, such as brown rice, husk, and culm, was not altered by K

deficiency and the order of concentration was brown rice < husk < culm in both

K-sufficient and K-deficient rice plants (Fig. 5.3). K was found to be actively

transported from the leaves to the reproductive organs to maintain their K concen-

tration, even if K was not supplied. The concentration of 137Cs was in the order of

brown rice < husk < culm in both K-sufficient and K-deficient rice plants, which

was very similar to the order of K concentration, and the 137Cs concentration in

these reproductive organs co-increased in response to K shortage (Fig. 5.3). Less

drastically, K-starvation was shown to cause an increase in Mg concentration and a

decrease in Ca concentration, although the distribution of Mg and Ca among organs

was not largely modified (Fig. 5.3). On the other hand, Na accumulation in the

leaves was promoted drastically under K deficiency. Previous reports suggested that

the additional Na accumulated in the K deficient leaves could compensate for some

function of K, and this could be one reason why Na absorption was activated under

K deficiency (Rodriguez-Navarro 2000). However, unlike K and 137Cs, Na
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Fig. 5.2 The distribution of 137Cs radioactivity among tissues at harvest. Rice seedlings hydro-

ponically grown with K (3 mM, K-sufficient) or without K (0 mM, K-deficient) were harvested and

separated into tissues to determine the 137Cs content using an imaging plate. 137Cs of 9 kBq/L was

supplied from 3 weeks after germination until harvest. In the top images, 137Cs radioactivity in

each tissue was presented in the gray-scale. In K-deficient rice, upper leaves accumulated larger

amounts of 137Cs compared to the lower leaves. The bottom graph presents the distribution of
137Cs between the ear and the straw [Modified from Kobayashi and Nobori (2014)]
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concentration in the brown rice and husk remained lower than that in the leaves.

These observations indicate that the mechanism regulating Cs allocation in rice

plants is closely related to the K transport mechanism.

5.4 The Period for Cs Uptake

Given the effect of K supply on the reduction of Cs uptake into the root and Cs

transport in brown rice plants, the application of K fertilizer in paddy fields is

suggested as an effective measure to reduce the radiocesium content in rice.

Fig. 5.3 Concentration of K, 137Cs, Mg, Ca, and Na in each tissue of K-sufficient (white bar) and
K-deficient (black bar) rice plants at harvest. To measure K, Mg, Ca, and Na, the tissues were

digested with nitric acid and analyzed using ICP-OES (Optima 7300, PerkinElmer). The concen-

tration of 137Cs was determined using gamma counting [Modified from Kobayashi and Nobori

(2014)]
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Subsequently, to develop a practical K fertilization scheme, it is important to

determine the developmental period when rice plants absorb Cs and transport it

toward the grain. Therefore, we compared the 137Cs amount in the ear of rice plants

supplied with 137Cs after the third week until harvest with that of rice plants to

which 137Cs was supplied only after heading. The disparity between them could

correspond to the 137Cs amount absorbed before heading. The results showed that

over 90 % of 137Cs accumulated in the ear at harvest was absorbed before heading

(Fig. 5.4). This means that most of the 137Cs found in the ear was once stored in

other parts, such as the leaves, and then relocated to the ear after heading. Further-

more, the amount of 137Cs relocated to the ear after heading was increased nearly

tenfold in response to K deficiency. Considering that the relocation of Cs from the

leaves to the ear can accompany K movement, which could be modified depending

on the level of K supply, it is possible that K supplement after heading can reduce

Cs transport toward the ear. Thus, we tested this idea by transplanting K-deficient

rice seedlings to the 3 mM K medium without 137Cs at heading.

5.5 Evaluation of the Effect of Additional K Fertilization

on Cs Movement

At harvest, the proportion of 137Cs content in the ear to the total 137Cs absorbed

before heading (the ear fraction) in the K-sufficient rice and K-deficient rice was

17.3 % and 27.8 %, respectively (Table 5.1). Then, the ear fraction in rice plants to

which K was supplied after heading was 25.0 % (Table 5.1). These results imply

that K fertilization after heading has only a minor effect on Cs relocation. Mean-

while, transition to the K-rich condition after heading is assumed to be effective for

reducing Cs uptake in roots. However, such a reduction is expected to have a

limited impact on Cs content in brown rice because the amount of Cs absorbed

Fig. 5.4 The 137Cs content

in ears of K-sufficient and

K-deficient rice at harvest

and the period of 137Cs

absorption. K-deficient rice

accumulated 10-times more
137Cs in the ear as

K-sufficient rice. Over 90 %

of the 137Cs in the ear at

harvest, was absorbed

before heading, and was

probably relocated from the

leaves to the ear as the ear

matured, regardless of the K

condition [Modified from

Kobayashi and Nobori

(2014)]
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after heading accounts for less than 10 % of the Cs content in the ear part at harvest

(Fig. 5.4). Therefore, in consideration of plant physiology, the importance of a

base-fertilizer, rather than additional fertilization, was demonstrated to reduce

radiocesium contamination in rice.

5.6 Conclusion and Future Perspectives

The supply of K to rice plants decreased the Cs content in brown rice as a

consequence of reduction of both Cs uptake by the root and Cs transport toward

the edible part. Application of K fertilizer to some paddy fields in Fukushima

apparently reduced the radiocesium concentration in brown rice, and the ear

fraction of radiocesium content was decreased by half (unpublished data). Finally,

in the autumn of 2014, all the brown rice commercially produced passed the test for

sale. To keep the radiocesium contamination low, it could be important to maintain

an appropriate K condition in rice plants. Regarding the determination of the K

condition in plants, analyzing the radiocesium distribution among tissues, as well as

the K concentration in the soil, is thought to improve the accuracy. If radiocesium

concentration is lower in younger tissues than older tissues, the plant is considered

to have enough K and thus additional K fertilization would have only minor benefits

through the absorption competition as previously reported (Kobayashi et al. 2015).

In these cases, some other factors influencing radiocesium behavior should be

evaluated to reduce the radiocesium contamination.

In this study, we focused on the similarity of behavior between Kþ and Csþ.
However, their behavior is close but not the same. The ratio of K uptake rate to Cs

uptake rate was found to be 7–11 times higher than the ratio of K concentration to

Cs concentration in the culture medium, indicating that the root absorbs K selec-

tively over Cs (Kobayashi et al. 2015). In addition, K was shown to be selectively

relocated to the rice grain over Cs (Nobori et al. 2014). Characterization of the

molecular machinery regulating the movement of K and Cs can further assist our

Table 5.1 Influence of K supply on 137Cs transport to the ear after heading

K- condition

Distribution to the ear (%)Before heading After heading

Sufficient Sufficient 17.3

Deficient Deficient 27.8

Deficient Sufficient 25.0
137Cs was added to the solution medium only before heading, and its distribution at harvest was

determined. Rice plants grown under K sufficient conditions both before and after heading

accumulated 17.3 % of 137Cs in the ear. The percentage increased to 27.8 % in rice plants

grown under K deficient conditions. Then, rice plants grown under K-deficient conditions until

heading and then transplanted into K-sufficient solution relocated 25.0 % of 137Cs to the ear

[Modified from Kobayashi and Nobori (2014)]
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understanding of Cs behavior in plants and assist breeding of low-Cs cultivars,

which can assure the stable production of agricultural products in the future.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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