
Chapter 1

Skeletal Adaptation to Mechanical Strain:

A Key Role in Osteoporosis

Toshihiro Sugiyama, Yoon Taek Kim, and Hiromi Oda

Abstract Wolff’s law indicates that mechanical loading plays a central role in

controlling skeletal strength, as evidenced by marked bone gain in the dominant

arms of professional tennis players or rapid bone loss in the weight-bearing sites of

astronauts during space flight. Among various experimental methods of mechanical

stimulation, the noninvasive axial loading model of the mouse tibia/fibula is useful

to assess both cortical and trabecular compartments in vivo. The bone normally

responds to local mechanical environment at each skeletal site to maintain resultant

“elastic” deformation (strain), and this mechanical strain-related feedback control,

known as the mechanostat, acts continuously throughout the physiologic range as

recently shown in humans as well as animals. The response of the bone to mechan-

ical loads would be impaired with aging but can be enhanced by intermittent

treatment with parathyroid hormone. Increased bone strength by an osteoporosis

drug results in decreased bone strain, suggesting that the effect of osteoporosis

therapy is limited by skeletal adaptation to mechanical strain, which confirms the

attractive efficacy of alternative drugs of mechanical strain-related stimulus such as

anti-sclerostin antibodies. In contrast, although lower bone quality is linked to

weaker bone strength, the mechanostat could compensate mineral-related, but not

collagen-related, impairment of bone quality. Bone mechanobiology is important

toward a cure for osteoporosis.

Keywords Wolff’s law • Mechanical loading • Mechanostat • Mechanical strain •

Bone quality

1.1 Introduction

German orthopedic surgeon, Julius Wolff, essentially established the concept of

skeletal adaptation to mechanical environment, known as Wolff’s law, in the

nineteenth century [1–3]. Harold Frost developed this law in the 1960s and
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suggested that the skeleton adapts to mechanical stimulation through control of

bone strength by resultant “elastic” deformation (strain) of the tissue, and the

mechanical strain-related feedback control has been called the mechanostat

[4]. Quantifying mechanical strain on bone surfaces during locomotion by gauges

was introduced by Lance Lanyon, also in the 1960s; their experiments in various

living animals, including humans, demonstrated the uniformity in peak strain

magnitudes and maximum strain rates experienced [5]. Consequently, mechanical

strain plays a central role in controlling skeletal strength; for example, increased

bone strain in the dominant arms of professional tennis players can induce marked

bone gain, while decreased bone strain at the weight-bearing sites of astronauts

during space flight would cause rapid bone loss.

Lanyon and colleagues mostly established the fundamental rules about how

mechanical strain stimulates the bone [5]. For example, (1) bone formation induced

by mechanical loading positively correlates with the peak strain magnitude [6, 7];

(2) the rate of change of strain magnitude is another critical determinant [8, 9] and

the bone responds to dynamic, but not static, mechanical loading [10, 11]; (3) the

number of cycles of mechanical loading required to maximally stimulate bone

formation is surprisingly small [12, 13]; (4) novel, unusual direction of mechanical

loading results in higher mechanical strain-related stimulus [7, 12]; and (5) mechan-

ical loading stimulates bone formation independently of bone resorption [14, 15]. In

addition, rest interruption between mechanical loading cycles restores the

mechanosensitivity of the bone [16, 17].

Osteoporosis is associated with fragility fractures, especially in older women,

which could result in significant morbidity and mortality, and its major causes

include menopause and aging. It has been generally reported that aging would

impair skeletal response to mechanical strain [18–20]. In addition, although the

mechanosensitivity of the bone might not be diminished early after ovariectomy-

induced estrogen deficiency [21–23], accumulating evidence has consistently

shown the involvement of the receptors of estrogen [23–25]. Here we introduce

the noninvasive axial loading model of the mouse tibia/fibula to assess both cortical

and trabecular compartments in vivo and discuss the mechanostat from a clinical

point of view.

1.2 The Axial Loading Model of the Mouse Tibia/Fibula

There are a number of experimental models to study the adaptation of the bone to

mechanical loading in vivo [5]. Early experiments in animals such as rabbits [10],

sheep [8], turkeys [11], and rats [7, 26, 27] have been followed by those in mice

[28–36]. Among these, the noninvasive axial loading model of the mouse tibia/

fibula that enables to assess both cortical and trabecular compartments [32, 33, 36]

is especially useful. Skeletally mature female C57BL/6 mice can be generally

selected for experiments relating to osteoporosis [20, 22, 36–44], because this

mouse strain has been extensively used as the background of genetically modified
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animals in the field of bone research and also shows a good response to mechanical

loading [45]. It is important to note that there were several modifications of the

original loading regimen [32, 37, 38, 41]; for example, a lower strain rate and a

higher static preload could be associated with a loss of trabecular bone in the

proximal tibia. Although one possible disadvantage to use rodents such as the rat

and mouse in osteoporosis research is that intracortical bone remodeling only

occurs at very low levels, this point would have less influence because mechanical

loading stimulates bone modeling independently of bone resorption [14, 15].

In vitro experimental approaches are also essential to elucidate the mechanisms

by which the bone responds to mechanical stimuli; fluid flow are generally used in

osteocytic cells as this would be a natural stimulus within a canalicular network,

while mechanical strain can be directly applied in osteoblastic cells because these

cells are located on bone surfaces [46–48]. Regardless of the methods, however, it

is not easy to replicate the situation of skeletal loading, and findings in vitro should

be always investigated in vivo; for example, the inconsistency has been reported in

association with cyclooxygenase-2 [43, 49], focal adhesion kinase [50], and

connexin 43 [51].

1.2.1 Examples of Experimental Findings

1.2.1.1 Continuous Response

It has been generally believed that the mechanostat includes an adapted state called

lazy zone where the strength of the bone remains constant over a wide range of peak

strain magnitudes [4]. An experiment was performed to test this hypothesis [41]. In

brief, skeletally mature female C57BL/6 mice were right sciatic neurectomized to

minimize natural loading in their right tibiae, and these tibiae were subjected to

external axial loading (40 10-s rest-interrupted cycles) on alternate days for 2 weeks

from the fifth day, with a peak dynamic load magnitude ranging from 0 to 14 N

(peak strain magnitude: 0–5000 με) and a constant loading rate of 500 N/s (max-

imum strain rate: 75,000 με/s) (Fig. 1.1). High-resolution micro-computed tomog-

raphy (μCT) was used to quantify variables of three-dimensional cortical and

trabecular bone structure at precisely comparable sites of the loaded and contralat-

eral control limbs. As a result, multilevel regression analysis showed the continu-

ously positive relationship between mechanical loading/strain and bone mass/

strength without the lazy zone (Fig. 1.2).

Notably, the above continuous response in the mechanostat is consistent with the

results in humans [52] as well as other experimental models [6, 53, 54]. This is

entirely compatible with studies in which bones under normal physical activity are

additionally subjected to mechanical loading [20, 55, 56] showing osteogenic

responses only above certain levels of peak strain magnitude, because artificial

(external) loading would stimulate the bone only when this stimulus exceeds that

already derived from natural (internal) loading.
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1.2.1.2 Local Control

Most in vivo experiments of external mechanical loading use animals in which

artificial loads are applied to the bones on one side, and the osteogenic responses in

the loaded bones have been generally compared with those in the non-loaded

contralateral pair. For this approach to be valid, it is essential that the adaptive

response of the loaded bones is confined to those bones and does not influence their

contralateral controls. However, this assumption has been challenged by recent

reports showing the systemic effects of mechanical loading [57–59].

This possibility was investigated [38]. In brief, skeletally mature female C57BL/

6 mice were randomly assigned to one of the following three groups; all groups

were treated with isoflurane anesthesia three times a week for 2 weeks (approxi-

mately 7 min/day). During each anesthetic period, the right tibiae/fibulae in the

DYNAMIC+ STATIC group were subjected to dynamic loading superimposed

upon a static preload to hold the bones. The right tibiae/fibulae in the STATIC

group received the static preload alone, while the NOLOAD group received no

artificial loading. Bilateral tibiae, fibulae, femora, ulnae, and radii were analyzed by

high-resolution μCT and histomorphometry. As a result, the adaptive response in

both cortical and trabecular regions of the bones subjected to dynamic loading, even

Fig. 1.1 The mouse noninvasive tibia axial loading model. (a) Overview of the experimental

design. (b) Loading-related osteogenesis labeled by calcein green on the first day of loading and

alizarin red on the last day of loading and loading-induced strain distribution by finite element

analysis. (c) Relationship between peak dynamic load and strain on the center of the lateral surface

in the right proximal/middle tibiae, where predominant osteogenesis can be induced, in 17-week-

old mice with right sciatic neurectomy. (d) Representative strain recording, induced by a peak

dynamic load of 12 N, on the center of the lateral surface in the right proximal/middle tibiae of

17-week-old mice with right sciatic neurectomy (Adapted from Sugiyama et al. [41])
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when this response was sufficiently vigorous to stimulate woven bone formation,

was confined to the loaded bones and did not involve changes in other bones that are

adjacent, contralateral, or remote to them (Figs. 1.3 and 1.4).

The above local control in the mechanostat has been confirmed by recent studies

[60, 61]. In contrast, the systemic effects of mechanical loading [57–59] might be

associated with the loading regimen [38]. Nevertheless, the protocol of mechanical

loading should be designed to produce a realistic physiological stimulus capable of

stimulating a measurable osteogenic response while avoiding collateral stimulation

associated with trauma and interference with blood supply both within the bone and

around the loading cups. It is therefore important to note that any loading protocol

using the contralateral non-loaded bone as a control can be accepted only after

validation of the local control.

Fig. 1.2 Relationship

between peak dynamic load

and the change ([right–left]/
left) in polar moment of

inertia (J ), a parameter of

structural bone strength, in

the tibiae of 20-week-old

mice that received right

sciatic neurectomy and

axial loading in the right

tibia. (a) Proximal/middle

site. (b) Distal site. Best-fit

and SE values of slope and

best-fit values of x-intercept

are shown. ●¼mice with

no apparent woven bone

formation, X¼mice

without external dynamic

loading, ~¼mice with

apparent woven bone

formation. Note that

X (n¼ 6) and ~ (n¼ 3)

were excluded for the

multilevel regression

analyses (Adapted from

Sugiyama et al. [41])
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1.2.1.3 Osteoporosis Drugs

Parathyroid Hormone

Several in vivo experiments of external loading in rats have shown that intermittent

treatment with parathyroid hormone (iPTH) and high-magnitude loading synergis-

tically increase bone formation [62–65]. Although high-impact exercise to increase

bone strength would be difficult for older patients with skeletal fragility, iPTH

could reduce the loading level necessary to stimulate a loading-related anabolic

effect.

An experiment was performed to investigate this concept [37]. In brief, female

C57BL/6 mice from 13 to 19 weeks of age were given daily injections of vehicle or

iPTH (1–34) at low (20 μg/kg/day), medium (40 μg/kg/day), or high (80 μg/kg/day)
dose. For three alternate days per week during the last 2 weeks of this treatment, the

tibiae and ulnae on one side were subjected to dynamic axial loading. Two levels of

peak load magnitude, one sufficient to engender an osteogenic response and the

other insufficient to do so, were applied. The whole tibiae and ulnae were analyzed

by high-resolution μCT and histomorphometry. As a result, in the tibia, loading at a

level sufficient by itself to stimulate osteogenesis produced an osteogenic response

in the low-dose iPTH (1–34)-treated trabecular bone and in the proximal and

middle cortical bone treated with all doses of iPTH (1–34). In the ulna, loading at

a level that did not by itself stimulate osteogenesis was osteogenic at the distal site

when combined with high-dose iPTH (1–34). At both levels of loading, there were

synergistic effects in cortical bone volume of the proximal tibia and distal ulna

between loading and high-dose iPTH (1–34) (Fig. 1.5). Images of fluorescently

labeled bones confirmed that such synergism resulted from increases in both

endosteal and periosteal bone formation. No woven bone was induced by iPTH

(1–34) or either level of loading alone, whereas the combination of iPTH (1–34)

and the sufficient level of loading stimulated woven bone formation on endosteal

and periosteal surfaces of the proximal cortex in the tibiae. Consistent with these

experimental data, daily treatment with teriparatide could synergistically produce

bone gain with physiological levels of mechanical loading in humans [66].

Bisphosphonate

The combination effects of bisphosphonates and mechanical loading were studied

in a variety of external loading models in rodents. As mentioned earlier, mechanical

loading can stimulate bone formation independently of bone resorption [14], and

pamidronate did not change osteogenesis caused by loading in the rat tail [15]. Sim-

ilarly, alendronate, risedronate, and zoledronic acid at clinical doses did not influ-

ence periosteal expansion induced by loading in the rat ulna [67]. In contrast, the

response of the cortical bone to loading was impaired by zoledronic acid in the
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Fig. 1.3 Relative values, analyzed by μCT and histomorphometry, of the left and right bones in
the NOLOAD, STATIC, and DYNAMIC+STATIC groups compared to the left bones in the

NOLOAD group. L left, R right. (a) Cortical bone volume analyzed by μCT at the proximal (25 %

of the bone’s length from its proximal end), proximal/middle (37 %), middle (50 %), and distal

(75 %) sites of the tibia. (b) Periosteal labels and inter-label bone area, analyzed by histomor-

phometry, normalized by total cortical bone area at the proximal, proximal/middle, middle, and

distal sites of the tibia. (c) Endosteal labels and inter-label bone area, analyzed by histomor-

phometry, normalized by total cortical bone area at the proximal, proximal/middle, middle, and

distal sites of the tibia. (d) Trabecular percent bone volume analyzed by μCT at two sites 0.01–

1 Skeletal Adaptation to Mechanical Strain: A Key Role in Osteoporosis 9



Fig. 1.3 (continued) 0.25 mm (containing primary spongiosa) and 0.25–1.25 mm (secondary

spongiosa) distal to the growth plate in the proximal tibia. (e) Cortical bone volume analyzed by

μCT at the middle (50 %) site of the fibula, femur, ulna, and radius. Data are the mean� SE (n¼ 6–

7). *P< 0.05 versus all other five values by one-way ANOVA followed by a post hoc Bonferroni

or Dunnett’s T3 test (Adapted from Sugiyama et al. [38])

⁄�

Fig. 1.4 Representative transverse fluorochrome-labeled images. (a) Cortical bone at the proxi-

mal (25 % of the bone’s length from its proximal end), proximal/middle (37 %), middle (50 %),

and distal (75 %) sites of the tibia. (b) Trabecular bone at the site 0.25 mm distal to the growth

plate in the proximal tibia. (c) Cortical bone at the middle (50 %) site of the fibula. Green: calcein
label injected on the first day of loading (day 1). Red: alizarin label injected on the last day of

loading (day 12) (Adapted from Sugiyama et al. [38])
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mouse tibia [68] and minodronate at higher doses but not the optimal dose for

osteoporosis treatment in the rat tibia [69].

An experiment was performed to assess the separate and combined effects of

risedronate and mechanical loading on the trabecular and cortical bone [39]. In

brief, 17-week-old female C57BL/6 mice were given daily subcutaneous injections

of vehicle or risedronate at a dose of 0.15, 1.5, 15, or 150 μg/kg/day for 17 days.

From the fourth day of treatment, the right tibiae were subjected to mechanical

loading for three alternate days per week for 2 weeks. Trabecular and cortical sites

in the tibiae were analyzed by high-resolution μCT and histomorphometry. As a

result, in the non-loaded tibiae, treatment with the higher doses of risedronate at

15 or 150 μg/kg/day resulted in higher trabecular bone volume and trabecular

number than in vehicle-treated controls, whereas such treatment was associated

with no differences in cortical bone volume at any dose. In the loaded tibiae,

loading induced increases in trabecular and cortical bone volume compared with

contralateral controls primarily through increased trabecular thickness and perios-

teal expansion, respectively, independently of risedronate treatment. In conclusion,

the response to mechanical loading in both trabecular and cortical bone in mice was

not impaired by risedronate, even over a 1000-fold dose range (Fig. 1.6). This is

consistent with mechanical loading-related bone modeling [14]; formation and

resorption occur on different surfaces during bone modeling, and thus, modeling-

based bone formation and resorption are not coupled. In considering the optimiza-

tion of clinical treatments for osteoporosis, it is reassuring that antiresorptive

therapy and mechanical loading can exert independent beneficial effects.

Fig. 1.5 Relative effect of 6 weeks of high-dose iPTH (1–34) and 2 weeks of mechanical loading

alone or in combination on cortical bone volume at the proximal (37 %) tibia and distal ulna in

19-week-old female C57BL/6 mice. Levels of peak load: sufficient to engender an osteogenic

response in the tibia and insufficient to do so in the ulna. Mean� SE (n¼ 5–8). Interaction

between high-dose iPTH (1–34) and mechanical loading by two-way ANOVA (Adapted from

Sugiyama et al. [37])
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1.3 The Mechanostat-Based Clinical Perspectives

In addition to other chronic diseases such as hypertension, hypercholesterolemia,

and diabetes, a treat-to-target strategy was recently applied in rheumatoid arthritis

and has now been discussed in osteoporosis. An important goal of osteoporosis

therapy is to achieve normal risk of hip fracture associated with significant mor-

bidity and mortality, but the anti-fracture efficacies of currently approved osteopo-

rosis drugs are limited [70–72]. Here, it is important to note that the human skeleton

normally adapts to mechanical environment [52, 73–76].

Fig. 1.6 Relative values of trabecular and cortical μCT parameters of the left control and right

loaded tibiae in mice treated with vehicle or risedronate at a dose of 0.15, 1.5, 15, or 150 μg/kg/day
compared to the left control tibiae in vehicle-treated mice. Values were obtained from mixed

model analysis including body weight and are presented as mean� SE (n¼ 20 in vehicle treatment

and n¼ 10 in risedronate treatments). #P< 0.05 versus left control tibiae in vehicle-treated mice

and *p< 0.05 versus left control tibiae in each treatment with vehicle or risedronate by mixed

model analysis followed by Bonferroni adjustment (Adapted from Sugiyama et al. [39])
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1.3.1 Limitation of Osteoporosis Therapy

The adult skeleton in humans would continuously respond to change in mechanical

environment to maintain resultant strain of the bone [52, 76], while increased bone

strength by an osteoporosis drug results in decreased bone strain regardless of

suppressing bone resorption or promoting bone formation. This suggests that the

effect of osteoporosis therapy is limited by skeletal adaptation to mechanical strain,

i.e., the natural homeostatic system in the skeleton (Fig. 1.7) [77, 78], which is

consistent with the fact that there exists a powerful effect that returns bone mass to

its pretreatment level after the withdrawal of treatment with osteoporosis agents. In

addition, this theory can provide a new significant insight into the mechanisms by

which vitamin D or warfarin affects the skeleton [79–81].

A strategy to reduce the limitation of osteoporosis therapy is pharmacologically

enhancing skeletal response to mechanical stimulation. Advantages of this strategy

include increasing bone strength safely in a structural appropriate manner,

depending on local mechanical environment at each skeletal site. Among drugs

currently approved for the treatment of osteoporosis, only intermittent treatment

with parathyroid hormone would have such a possibility; although high-impact

exercise to increase bone strength is not easy for older patients with skeletal

fragility, teriparatide has been suggested to have a synergistic effect with even

low, physiological levels of mechanical loading in animals [37] and humans [66].

Fig. 1.7 Mechanical strain-related feedback control of bone strength: natural homeostatic system

in the skeleton. A long arrow indicates the effect of osteoporosis therapy that increases bone

strength and thus decreases bone strain from physical activity, regardless of suppressing bone

resorption or promoting bone formation or increasing bone quantity or quality. Short arrows
indicate the negative feedback control of bone strength that returns bone strain to its pretreatment

level (Adapted from Sugiyama et al. [77])

1 Skeletal Adaptation to Mechanical Strain: A Key Role in Osteoporosis 13



There is, however, a disadvantage of the strategy to enhance skeletal response to

mechanical stimulation. The skeleton is adapted to the mechanical environment

resulting from habitual physical activity, but not to the unusual direction of

mechanical force by falls. As a result, the enhancement of bone response to daily

physical activity might not efficiently reduce the risk of fall-related hip or

non-vertebral fractures. One approach to overcome this disadvantage is to find an

agent that has the effect of mechanical strain. For example, it has been shown in

animals that the production of sclerostin secreted by osteocytes is increased by

skeletal disuse and decreased by skeletal loading [36, 42, 82–84].

1.3.2 Alternative Drugs of Mechanical Strain-Related
Stimulus

Consequently, anti-sclerostin antibodies such as romosozumab and blosozumab can

be considered as the alternative drugs of mechanical strain-related stimulus

[85]. The latest findings include marked modeling-based bone formation by

romosozumab in monkeys [86] and rapidly increased bone formation as well as

decreased bone resorption by romosozumab [87, 88] and blosozumab [89, 90] in

postmenopausal women. In contrast to bone remodeling, modeling-based bone

formation and resorption are not coupled, and mechanical stimulation is a natural

uncoupling factor that stimulates bone formation and inhibits bone resorption.

In phase 2 studies of postmenopausal women with low areal bone mineral

density (BMD), romosozumab and blosozumab markedly increased areal BMD at

the lumbar spine and hip dose-dependently, but areal BMD at the one-third radius

was not changed even by the highest dose of romosozumab [88] or blosozumab

[90]. Experimental evidence that the production of sclerostin secreted by osteocytes

is increased by skeletal disuse and decreased by skeletal loading [36, 42, 82–84]

implies that even the highest doses of romosozumab and blosozumab were not

enough for the radius because the levels of sclerostin expression in non-weight-

bearing bones such as the radius could be higher than those in weight-bearing bones

such as the lumbar spine and hip. Several lines of evidence to support this hypoth-

esis include (1) patients with sclerosteosis due to deficiency of sclerostin have

higher areal BMD at the radius as well as the lumbar spine and hip [91] and

(2) appropriate doses of anti-sclerostin antibodies effectively increase bone mass

in animals with skeletal disuse or unloading [92, 93]. If correct, the highest doses of

romosozumab and blosozumab are unlikely to cause unwanted bony overgrowth at

non-weight-bearing sites such as the face and skull in postmenopausal women with

osteoporosis, while further higher doses of these drugs would be required to

improve skeletal fragility in patients with reduced physical activity.

The existence of other mechanotransduction pathways independent of sclerostin

[94], however, indicates that treatment with an anti-sclerostin antibody cannot

escape from the mechanostat-related limitation of osteoporosis therapy (Fig. 1.7)
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[77]. In fact, both romosozumab and blosozumab treatments in postmenopausal

women with low areal BMD showed that marked changes in circulating bone

formation and resorption markers returned to the pretreatment levels within a

year despite the continued treatments [88, 90]. This theory is also compatible

with the relation between circulating sclerostin and bone mass; sclerostin-related

high bone mass in patients with sclerosteosis or van Buchem disease and hetero-

zygous carriers of these diseases is linked to lower levels of circulating sclerostin

[95, 96], while circulating sclerostin and bone mass in normal women and men have

a positive correlation [97, 98]. The discrepancy suggests that higher bone mass

associated with other mechanotransduction pathways independent of sclerostin

would cause lower mechanical strain in the skeleton and thus could result in

compensatory higher sclerostin production according to the mechanostat.

1.3.3 Bone Quality Associated with Mineral Versus Collagen

Fall-related fracture occurs if the energy from the fall is higher than that the bone

can absorb. Force-displacement curve obtained from a biomechanical test shows

that energy absorption, the area under the curve, represents bone fragility and an

ideal strategy for the improvement of bone fragility is to increase both of the force

and displacement at failure [99] (Fig. 1.8a).

From a material point of view, stiffness and toughness of bone tissue generally

depend on mineral and collagen, respectively [100]. There is a yield force at which

a bone begins to deform plastically, and mechanical strain from normal physical

activity would be linked to the pre-yield “elastic” deformation associated with

mineral, but not to the post-yield “plastic” deformation associated with collagen

(Fig. 1.8b). Consequently, mechanical strain-related feedback control could com-

pensate mineral-related, but not collagen-related, impairment of bone quality to

maintain “elastic” deformation [78]. Indeed, this theory is compatible with clinical

data relating to bone quality. Examples of the mechanostat-based compensation for

mineral-related impairment of bone quality would include rickets/osteomalacia and

use of warfarin [77, 79–81], while the impairment of bone quality associated with

collagen cross-links significantly contributes to skeletal fragility in diabetes [101–

103].

Finally, it is possible to speculate that daily treatment with teriparatide improves

bone fragility at the hip through the mechanostat-based “modeling-related direct”

and “remodeling-related compensatory” mechanisms (Fig. 1.8c). The enhancement

of skeletal response to mechanical loading [37, 62–66] would result in the former

effect. In contrast, a decrease in the degree of mineralization after the treatment

[104] might act to improve bone fragility if compensated efficiently, because

compensatory bone gain by the mechanostat to maintain the pre-yield “elastic”

deformation could increase the yield force at which a bone begins to deform

plastically and thus the energy that the bone can absorb. This possibility is

supported by histomorphometric data showing that 1 or 2 years of the treatment
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results in increases in modeling- and remodeling-based bone formation [105],

because the mechanostat suggests that the former “modeling-related direct” effect

does not continue for a long time [77].
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