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Immunotherapeutic Approaches Against

Amyloid-β in Drug Discovery for Alzheimer’s
Disease

Seung-Hoon Yang, Jiyoon Kim, and YoungSoo Kim

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disorder

and the most common type of dementia. The major pathological hallmark and

culprit of AD is aggregation of the amyloid-β (Aβ) peptide. Since the Aβ abnor-

mality begins in the asymptomatic stage of AD, immunotherapeutic approaches

clearing Aβ aggregates are investigated as the most promising treatment in clinical

trials. Both active and passive immunization against Aβ showed significant reduc-

tion of Aβ levels in the brain and enhancement of learning and memory. Albeit

pathologically effective, these immunotherapeutic vaccines need to overcome side

effects such as vasogenic edema and microhemorrhages. In this chapter, we intro-

duce the basic concept of immunotherapy for clearance of Aβ, compare putative

immunotherapeutic vaccine candidates, and discuss their benefits, disadvantages,

and challenges.

Keywords Alzheimer’s disease • Amyloid-β • Active immunotherapy • Passive

immunotherapy • Vaccination

22.1 Introduction

Alzheimer’s disease (AD) is the most common phenomenon of dementia, charac-

terized by the extensive loss of neurons and synapses and the progressive decline of

memories (Alzheimer’s 2012; Brookmeyer et al. 2007). AD is a polysynthetic

disease involving aggregation and deposition of amyloid-β (Aβ) and
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hyperphosphorylated tau, accompanied by oxidative stress, glial activation and

neuronal cell death (Wyss-Coray 2006). Aβ is a short peptide of 39–43 amino

acids and generated throughout the serial proteolysis of amyloid precursor protein

(APP) (De Strooper et al. 2010; Selkoe 2001; Wolfe 2006). In normal neurogenesis,

called the non-amyloidogenic pathway, the extracellular domain of APP is cleaved

by α-secretase, leading to release the soluble extracellular fragment known as

sAPP-α (Edwards et al. 2008; Pietri et al. 2013). Then, γ-secretase cleaves the

truncated APP in the plasma membrane into the APP intracellular C-terminal

domain (Shoji et al. 1992; Golde et al. 2013; Chang and Suh 2010). In the

amyloidogenic pathway, however, the sequential cleavage by β-secretase and

γ-secretase generates the Aβ peptide (Zhang et al. 2012; O’Brien and Wong

2011). In the monomeric state, Aβ is a soluble and non-toxic α-helical peptide
(Takano et al. 2006; Lansbury 1997; Kirkitadze et al. 2001). However, at high

concentration, the peptide undergoes a conformational change to form amyloid

oligomers and fibrils. Then, these fibrils aggregate into the insoluble cluster called

“plaques” in the brains of AD patients (Fig. 22.1) (Jellinger 2006; Walsh

et al. 2002; Shankar et al. 2007).

Aggregation of Aβ in the brain plays a pivotal role in AD as a pathological

culprit (Duran-Aniotz et al. 2013; Jin et al. 2011). Deposition of Aβ aggregates is

observed in the early stage during the development of AD (Leuner et al. 2012;

Gowing et al. 1994; Pigino et al. 2009). Thus, overproduction and aggregation of

Aβ have been the major target of AD drug candidates (Barten et al. 2006; Pohanka

2011; Doraiswamy and Xiong 2006; Lleo et al. 2006; Michaelis 2003). However,

disappointing clinical trials of amyloid inhibitors, targeting APP proteolysis or Aβ
aggregation, have raised concerns for alternative therapeutic approaches. As abnor-

mal Aβ deposition precedes cognitive decline, the newly suggested mode of action

is the immunotherapy to remove toxic Aβ oligomers and plaques from the brain of

AD patients. While numerous clinical trials have been investigated to reduce

cerebral Aβ deposits and facilitate Aβ clearance, the strongest approach to date is

immunotherapy, which can be mainly divided into active or passive (Lobello

et al. 2012). Active immunization utilizes administration of synthetic Aβ peptide

fragments conjugated with carrier proteins, and passive immunization uses human-

ized monoclonal antibodies against Aβ peptides.

22.2 Active Immunotherapy

The active immunotherapy aims specific activation of cellular and humoral immune

systems such as inducing antigen producing cells, T cells, and B cells. Once APCs

are initially activated by stimulation of compromised antigens, Aβ peptides, com-

bined with an immune adjuvant to get the high immune response, transfer their

immune signals to T cells. Activated T cells progressively stimulate B cells to

produce specific antibodies against Aβ. These antibodies bind to the Aβ peptides,

then target for clearance (Fig. 22.2) (Lemere and Masliah 2010).
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In 1999, Schenk and his colleagues first reported that the active immunotherapy

using synthetic Aβ peptides, with complete Freund adjuvant and incomplete Freund

adjuvant, could prevent the development of Aβ deposition in the brain of PDAPP

transgenic mice model with Aβ plaque pathology (Schenk et al. 1999). The

therapeutic approaches were, then, extended to diverse animal models and demon-

strated that active Aβ immunotherapeutic treatment can prevent the accumulation

of Aβ in the brain and rescue the abnormal cognitive behaviors (Lemere et al. 2000;

Weiner et al. 2000; Das et al. 2001; Sigurdsson et al. 2001; Maier et al. 2006).

Although the active immunotherapy is a powerful method due to its ability to

induce long-term antibody production, low-cost efficiency, and easy handling, it has

Fig. 22.1 A diagram of amyloid precursor protein (APP) processing. The transmembrane

protein APP can be cleaved by two pathways. In the non-amyloidogenic pathway, α-secretase
cleaves the extracellular domain of APP to release soluble extracellular fragments (sAPP-α). This
truncated APP is then cleaved by γ-secretase to release the APP intracellular C-terminal domain

(AICD) and p3 fragment. In the amyloidogenic pathway, β-secretase cleaves the extracellular

domain of APP to release soluble extracellular fragments (sAPP-β). Then, γ-secretase cleaves the
truncated APP of transmembrane part to generate Aβ monomers. At low concentration, Aβ, in
monomer state, is less toxic and plays several physiological roles. At higher concentration level,

the peptide undergoes the aggregation to form amyloid plaques and found in AD brains
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the risk of detrimental immune response. For example, if T cells recognize the

antigen as a self-protein, they do not induce the proper immune system. Also,

activated T cells induce a release diverse in pro-inflammatory cytokines to affect

the whole body defense mechanism. Moreover, since an active immunization leads

to polyclonal antibodies production that recognize multiple epitopes of Aβ peptides,
the antibodies may have low specificity or avidity against Aβ peptides, eventually

lead to less effective immune responses (Delrieu et al. 2012a; Lannfelt et al. 2014b).

22.2.1 AN-1792

In the late 1990s, Elan Pharmaceuticals and Wyeth Corporation introduced an

active immunotherapy (AN-1792) with synthetic pre-aggregated human Aβ 1–42

Fig. 22.2 Active immunotherapeutic vaccination approaches. Active immunization induces

the humoral immune system to generate Aβ-specific antibodies. Aβ peptides conjugated with

foreign T cell epitope carriers can be administrated as antigens and activate the antigen presenting

cells (APC), which engulf and process the antigen. Then, a signal can be transmitted via activating

naı̈ve T lymphocytes to produce several kinds of pro-inflammatory mediators. Another signal with

co-stimulatory molecules induces the enhancement of T lymphocytes, which leads to generate the

antibodies against Aβ from B lymphocytes
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in animal studies. Administration of AN-1792 blocked the formation of Aβ plaques
in the brain of AD transgenic mice and dramatically reduced preformed plaques in

aged mice (Schenk et al. 1999). AN-1792, in addition, induced improvement of

mice performance in behavior tests related to learning and memory (Bayer

et al. 2005; Ferrer et al. 2004; Masliah et al. 2005; Nicoll et al. 2003). Following

the promising animal studies, AN-1792 was tested in the clinical trial Phase I to

assess its therapeutic effects, safety, and tolerability in AD patients and was found

with no adverse side effect (Bayer et al. 2005). However, in Phase II-A trials, the

clinical investigation was suspended, when several participants developed severe

inflammation in the brain and the spinal cord. AN-1792 was eventually withdrawn

from the clinical trials in 2002, after 18 recipients with vaccination (about 6 % of

recipients) developed the brain inflammation such as meningoencephalitis (Gilman

et al. 2005; Orgogozo et al. 2003; Robinson et al. 2004).

22.2.2 ACC-001

Despite the suspension of AN-1792 in the clinical trial Phase II-A for safety

reasons, active Aβ vaccine is still an attractive therapeutic mode of action to treat

AD and several second-generation vaccines are currently tested in clinical trials.

Janssen Alzheimer Immunotherapy, a subsidiary of Johnson & Johnson, launched

Vanutide cridificar (ACC-001) vaccine, as a modified version of AN-1792.

ACC-001 was developed as a N-terminal short fragment of Aβ (Aβ 1–7) conjugated
with a carrier protein, a non-toxic variant of diphtheria toxin, using the saponin

adjuvant QS-21. ACC-001 induced a humoral immune response including antibody

generation with no sign of intolerable side effects in the clinical trial Phase I (Ryan

and Grundman 2009). However, this vaccine was briefly suspended in 2008,

because one of the patients, in Phase II, developed skin vasculitis, indicating

malfunction of immune or hypersensitive allergic responses. Although the patient

recovered and the clinical trials resumed within 6 weeks, no results have been

published in journals (Lemere and Masliah 2010; Okura and Matsumoto 2009). In

August 2013, this immunotherapy was been discontinued from clinical

development.

22.2.3 CAD106

Novartis Pharmaceuticals and Cytos Biotechnology developed an active Aβ vac-

cine, CAD106, composed of multiple copies of the Aβ 1–6 fragment coupled with a

virus-like carrier particle (Qβ). This vaccine is designed to block activation of the

autoimmune Th1-cell response and to induce the Th2-cell mediated humoral

response (Winblad et al. 2012). CAD106 was confirmed in animals to inhibit the

formation of Aβ plaques in the brain (Wiessner et al. 2011) and advanced to clinical
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trials with mild-to-moderate AD patients. In the Phase I, CAD106 induced a

significant humoral antibody response when high dose of antibody was adminis-

trated. The Phase II clinical investigations of CAD106 have been reported the

favorable safety, tolerability, and humoral antibody response (Kingwell 2012).

Besides, chill and fever, under the permissible level, were observed in the Phase

II (Winblad et al. 2012, 2014). However, numbers of concerns were raised regard-

ing reactivity and safety during the clinical trials. First of all, the six-amino-acid

synthetic Aβ fragment might not be long enough to specifically activate Th2-cells

and induce humoral immune responses. Furthermore, the design of the clinical trial

was re-evaluated by concerning the size and selection of patients; (1) the study was

tested in the small group of subjects, (2) the duration of the vaccine administration

was short to record clinical effects including safety and tolerability. In addition,

intracerebral hemorrhage was found in one patient from the CAD106 administra-

tion group, who had cerebral amyloid angiopathy (Winblad et al. 2014).

22.2.4 Affitope AD02

Affitope AD02, by AFFiRiS AG, is a KLH vaccine with the six N-terminal amino

acids of Aβ. By introducing the non-endogenous Aβ mimic, this vaccine was

designed to exhibit a favorable safety profile and to prevent development of

tolerance. The composition of Affitope AD02 enabled to prevent the autoimmune

T cells activation with cross-reactivity with APP by specific recognition of Aβ
(Schneeberger et al. 2009). In AD animal models, Affitope AD02 reduced levels of

Aβ plaques. In the clinical trial Phase I, a favorable safety profile was observed in

24 AD patients after four-time vaccination (Brody and Holtzman 2008; Madeo and

Frieri 2013; Winblad et al. 2014; Mangialasche et al. 2010). No meningoenceph-

alitis was found during the investigation. 332 AD patients were subjected to the

Phase 2 trial and limited data has been reported so far. The clinical investigation is

still on-going by enrolling patients.

22.2.5 ACI-24

AC Immune SA’s ACI-24 is an active tetra-palmitoylated Aβ 1–15 peptide vaccine,
embedded within a liposome to eventually induce the generation of β-sheet
conformation-specific antibody against Aβ (Muhs et al. 2007). In cynomolgus

monkeys and APP/PS1 transgenic mice, the antibodies generated by ACI-24 had

high titer level to induce the humoral immune response. In addition, ACI-24

significantly reduced concentration of soluble and insoluble Aβ and restored

behavioral performances of learning and memory (Muhs et al. 2007; Winblad

et al. 2014). ACI-24 is currently in the clinical trial Phase I/II for AD (Lemere

2013), so far little is known for more detail data in this stage.
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22.2.6 V950

Merck’s V950 is a multivalent vaccine that links N-terminal fragments of Aβ to an

adjuvant ISCO-MATRIX. V950 was reported to induce production of antibodies

against N-terminal of Aβ in the serum and CSF (Savage et al. 2010). The clinical

trial Phase I was performed with 86 AD patients in 51 sites for safety and

tolerability. The investigation was completed recently (October 2014) (Lemere

and Masliah 2010; Winblad et al. 2014) (Table 22.1).

22.3 Passive Immunotherapy

Passive immunotherapy refers to direct injection of monoclonal antibodies without

sensitizing the humoral immune system for generation of antibody responses

(Brody and Holtzman 2008; Bacskai et al. 2001). Mechanisms of the anti-Aβ

Table 22.1 Active amyloid-β immunotherapeutic vaccines in clinical trials

Vaccine (company)

Epitope

Phase

status Completion

Key behaviors observed

AN-1792 (Elan/Wyeth) Aβ 1–42 Phase II-A March, 2002

Blockage of plaque formation

Inflammation during Phase II-A (meningoencephalitis)

ACC-001 (Janssen) Aβ 1–7 with non-toxic diphtheria

toxin

Phase II August,

2013

High titers of antibody without intolerance in Phase I

Skin vasculitis in Phase II

CAD106 (Novartis/Cytos) Aβ 1–6 with Qβ carrier Phase II December,

2012

Prevention of the autoimmune Th1-cell activation

Blockage of plaque formation

Side effects such as chill or fever (permissible event in Phase II)

AFFITOPE AD02

(AFFiRiS AG)

Six-amino acid peptide that mimics

N-terminus of Aβ
Phase II Ongoing

Prevention of the autoimmune T cell activation

Reduction of Aβ plaques

Favorable safety in Phase I trials

ACI-24 (AC Immune SA) Tetra-palmitoylated Aβ 1–15 Phase I/II Ongoing

Generation of β-sheet conformation specific antibodies

Reduction of Aβ plaque deposition

Recovery of learning and memory in animal studies

V950 (Merck) N-terminal fragments of Aβ Phase I Ongoing

Production of antibodies against N-terminal of Aβ in the serum and

CSF
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passive immunotherapy can be categorized into microglial-mediated phagocytosis,

catalytic disaggregation of Aβ deposition, and peripheral sink (Fig. 22.3) (Alves

et al. 2014; Menendez-Gonzalez et al. 2011). In the microglial-mediated phagocy-

tosis, antibodies directly bind to amyloid plaques and trigger microglial activation

via their Fc receptors. Then, activated microglial cells rapidly facilitate the

elimination of Aβ through phagocytosis. Meanwhile, they may induce

neuroinflammatory events including secretion of various inflammatory mediators

such as IL-1, IL-6, TNF, free radical, and chemokines (Wilcock et al. 2004; Cai

et al. 2014; Kakimura et al. 2002). In catalytic disaggregation of Aβ deposition,

administered antibodies bind to Aβ aggregates and catalyze the conformational

change of Aβ peptides. Such actions eventually lead to disaggregation of Aβ
aggregates and reduction of amyloid-induced neurotoxicity (Solomon et al. 1996,

1997; Legleiter et al. 2004; Frenkel et al. 2000; Bacskai et al. 2001). The peripheral

sink hypothesis was first reported when the m266 anti-Aβ monoclonal antibody

directly targeted and completely sequestered Aβ in the plasma (DeMattos

et al. 2001). Peripheral administration of m266 to PDAPP transgenic mice induced

a rapid elevation of plasma Aβ levels due to the change in Aβ distribution between

Fig. 22.3 Passive immunotherapeutic approaches and proposed mechanisms. The mice

immunized with Aβ peptide to produce hybridoma cells. Then hybridoma cells are selected for

proper antibodies against Aβ. The antibodies are then purified and administrated to patients with

AD. The antibodies may clear Aβ through three kinds of proposed mechanisms: (1) microglial-

mediated phagocytosis, (2) catalytic disaggregation of Aβ deposition, and (3) peripheral sink

hypothesis in the bloodstream
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central nervous and peripheral circulatory systems. The altered equilibrium of Aβ
leaded to facilitate the peripheral clearance of Aβ in the plasma instead of Aβ
deposition in the brain (Deane et al. 2003, 2005; Dodart et al. 2002).

Compared to the active immunotherapy, antibody drugs shall be beneficial to

patients as the dosage of antibodies in each subject is known before administration.

The amount and concentration of antibodies can be easily controlled. Moreover, the

administration can be immediately stopped and the antibody will be rapidly

removed if there are any signs for side effects. Besides, unnecessary cellular

responses can be avoided in passive immunotherapy (Mangialasche et al. 2010;

Guan et al. 2012; Lemere 2013). However, high-cost humanized monoclonal

antibodies and repeated drug injection for long-term treatment is a considerable

disadvantage of the passive immunotherapy (McElhaney and Effros 2009). In

addition, antibody drugs may act as antigens and induce immune responses,

which may lead to side effects such as glomerulonephritis and vasculitis (Lemere

2013).

22.3.1 Bapineuzumab (AAB-001) and PF-05236812
(AAB-003)

Bapineuzumab (AAB-001) is a humanized therapeutic monoclonal antibody

against N-terminus of Aβ (3D6 clone, IgG1 isotype) developed by Elan, Wyeth,

Johnson & Johnson (Janssen), and Pfizer (Brody and Holtzman 2008; Blennow

et al. 2012; Panza et al. 2010). AAB-001 was reported to pass blood-brain barriers,

to bind fibrillar and soluble Aβ, and to induce microglial-mediated phagocytosis the

plaques in AD transgenic mice (Bard et al. 2000, 2003; Racke et al. 2005). How-

ever, in two large Phase II/III trials, no clinical benefit but serious side effects were

reported including cerebral vasogenic edema, retinal vascular disorder, and

microhemorrhages (Okura and Matsumoto 2009; Pfeifer et al. 2002; Racke

et al. 2005). MRI scans revealed that vascogenic edema was found in AD patients

with the high dose group (Khorassani and Hilas 2013; Sperling et al. 2012). These

results led the clinical investigation of AAB-001 to the termination in 2012. One of

the possibilities raised for the lack of clinical efficacy was that the administration of

this vaccine was too late in the disease process to reverse the neurodegenerative

changes.

PF-05236812 (AAB-003) was then developed as a derivative of bapineuzumab

with a modified Fc domain to reduce effector functions on microglial activation. It

was specifically designed to avoid amyloid-related imaging abnormalities (ARIA),

a complication of bapineuzumab administration. The clinical trial Phase I was

performed with 88 AD patients to evaluate the safety and tolerability of

PF-05236812 and trial was completed in August 2014 (Moreth et al. 2013).
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22.3.2 Solanezumab (LY2062430)

Eli Lilly & Co.’s Solanezumab (LY2062430) is a humanized IgG1 version of the

aforementioned m266 monoclonal antibody. Unlike Bapineuzumab, Solanezumab

targets the mid-domain of the Aβ peptide (Aβ 13–28) and binds selectively to

soluble Aβ species (Mangialasche et al. 2010; Moreth et al. 2013; Spencer and

Masliah 2014). Cognitive recovery of AD transgenic mice by m266 supports the

view that soluble oligomeric Aβ is highly related to neuronal and synaptic dys-

function in AD brains. During the clinical trials, the significant increase of Aβ
levels were observed in both the blood and CSF by the peripheral sink mechanism

(Farlow et al. 2012; Siemers et al. 2010). Currently, solanezumab is investigated in

two large clinical trial Phase III studies with a total of 2,052 subjects from

16 countries (Doody et al. 2014a, b). According to interim reports by Eli Lilly &

Co., cardiac disorders and even 24 deaths were observed in Solanezumab-treated

patients (Doody et al. 2014b). However, no clear relation was found between the

death and Solanezumab. Although Solanezumab is considered as the first clinical

evidence that anti-amyloid approach helps AD patients, it needs to consider for

further development of this vaccine and the skepticism still exists on the ability of

this drug to slow the rate of deterioration in patients with later-stage of diseases.

22.3.3 Gantenerumab (RO4909832, RG1450)

Gantenerumab (RO4909832, RG1450), by Roche, is a fully human IgG1 monoclo-

nal antibody against Aβ that has a high affinity to specifically bind to cerebral

amyloid plaques (Delrieu et al. 2012b). Gantenerumab appears to preferentially

bind the fibrillar form of Aβ by recognizing both N-terminus (Aβ 3–12) and

mid-domain (Aβ 18–27). Gantenerumab induces microglial-mediated phagocytosis

by binding to small Aβ plaques (Bohrmann et al. 2012). Thus, unlike Solanezumab,

Gantenerumab decreased Aβ deposition in the brain without increasing plasma Aβ
levels. In 360 mild-to-moderate AD patients administrated with Gantenerumab of

Phase II, it reduced brain amyloid load around 30 % by PET imaging analysis.

However, 2 patients with ARIA were observed in the high dose group (Ostrowitzki

et al. 2012). Recently, the Phase III was started with 1000 mild-AD patients via

subcutaneous injection (Novakovic et al. 2013). A separate clinical trial is also

under investigation in Phase III with prodromal AD patients through Dominantly

Inherited Alzheimer Network (DIAN).

22.3.4 Gammagard (Intravenous Immunoglobulin, IVIg)

Baxter Healthcare’s passive immunotherapeutic approach, Gammagard, is distinct

from aforementioned monoclonal antibodies. Gammagard is an intravenous
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immunoglobulin (IVIg), a pooled mixture of natural human polyclonal immuno-

globulin that extracted from the plasma of over one thousand blood donors. As a

result, Gammagard recognizes Aβ monomers, oligomers, and fibrils (Dodel

et al. 2002, 2004). IVIg is widely used for the treatment of various pathological

disorders as a replacement therapy for various immunodeficiency syndromes. Since

IVIg is the product from non-selective antibody collection from various normal

patients, it was doubtful for the potential clinical effect on AD. In 2002, Dodel

et al reported the effects of commercially available IVIg significantly reduced the

level of Aβ in the CSF and blood of AD patients after 6-month administration

(Dodel et al. 2002). Notably, administered anti- Aβ antibodies detected in the CSF

of patients as a indication that IVIg might transfer the blood-brain barrier and

directly decreased the Aβ level in the brain (Fillit et al. 2009; Relkin et al. 2009).

Currently, Baxter Healthcare and Alzheimer’s Disease Consortium Study (ADCS)

are investigating this vaccine in Phase III. A derivative of IVIg (Octagam) is

currently investigated by Octapharma in Phase II (Lobello et al. 2012; Moreth

et al. 2013). However, IVIg has potential side effects for AD patients; (1) IVIg can

lead to thromboemboli because it increases serum viscosity, (2) renal dysfunction

or failure can be induced because IVIg products use sucrose as a stabilizing agent

(Loeffler 2013), and (3) IVIg can also lead severe allergic difficulties such as

breathing or skin rashes, severe headache or fever, and dark colored urine (Levy

and Pusey 2000).

22.3.5 Ponezumab

Ponezumab, by Pfizer, is a humanized IgG2a monoclonal antibody, which recog-

nizes the C-terminus of the Aβ 40 peptide (Aβ 33–40). Ponezumab was reported to

reduce autoimmune T cell responses (Madeo and Frieri 2013). The clinical trial

Phase I for safety and tolerability was completed without microhemorrhage, ARIA,

or encephalitis. Ponezumab is currently in the Phase II with 234 AD patients

(Freeman et al. 2012; Landen et al. 2013).

22.3.6 Crenezumab

Crenezumab, by Genentech, is a fully humanized IgG4 monoclonal antibody

targeting both Aβ monomers and oligomers. The antibody was designed to reduce

the Fc receptor-mediated microglial activation and the risk of the immune cell

stimulation (Poduslo et al. 2010; van der Zee et al. 1986; Bruhns et al. 2009).

Crenezumab is currently in the clinical trial Phase II with 361 AD patients

(Adolfsson et al. 2012; Lemere 2013).
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22.3.7 BAN2401 (mAb158)

Conformation-dependent antibodies to selectively recognize pathogenic structures

have been attractive drug candidates and BioArctic developed the monoclonal

antibody 158 (mAb158) against Aβ protofibrils (Englund et al. 2007; Sehlin

et al. 2012). mAb158 reduced the level of Aβ protofibrils in the brain of both

young and old AD transgenic mice and eventually led the reduction of Aβ plaque

formation (Lord et al. 2009). Eisai acquired the antibody and developed BAN2401,

an immunotherapeutic IgG1 monoclonal antibody, by further optimization.

BAN2401 is currently in clinical trial Phase II with 800 AD patients (Tucker

et al. 2015; Lannfelt et al. 2014a; Araki 2010).

22.3.8 Aducanumab (BIIB037)

Biogen Ided’s Aducanumab is a fully human IgG1 monoclonal antibody that

strongly binds to aggregated forms of Aβ. Aducanumab was reported to reduce

the size of plaques in the brain of APP transgenic mice models (Lemere 2013;

Moreth et al. 2013; Prins and Scheltens 2013). However, in the high dose, the

antibody induced microhemorrhages. The clinical trial Phase I is currently under

investigation with 160 mild-AD patients (Table 22.2).

22.4 Conclusion and Further Discussion

In this review, we investigated current active and passive anti-Aβ antibody drugs in
AD drug discovery. Albeit promising, results from clinical trials suggest further

optimization of these immunotherapeutics for better efficacy and lower side effects.

The First issue is the selection of target epitope with high efficiency and safety

(Aisen and Vellas 2013). Newer immunotherapeutic vaccines need to avoid the

autoimmune response upon the anti-Aβ antibody treatment. Several strategies to

overcome this issue aim to develop a combination therapy of present adjuvants or to

use foreign T cell epitopes. Another issue is the need to monitor therapeutic

progression, as the clearance of Aβ cannot completely reverse clinical symptoms

such as neuroinflammation, which lead to neuronal cell death and cognitive impair-

ment. Therefore, selection for proper biomarkers is important to detect pre-clinical

disease with mild cognitive impairment and predict which patients may benefit

from immunotherapy. Several biomarkers are currently under investigation, but

more researches are required before they can clinically be useful (Mayeux and

Schupf 2011). Lastly, these antibodies have to cross the blood-brain barrier (BBB)

efficiently and safely. The BBB controls the passage of most proteins and small

molecules from the blood into the central nervous system. Thus, the transport of
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Table 22.2 Passive amyloid-β immunotherapeutic vaccines in clinical trials

Vaccine (company)

Epitope/target Isotype Phase status Completion

Key behaviors observed

Bapineuzumab

(AAB-001)

PF-05236812

(AAB-003) (Elan/Wyeth/

Janssen/Pfizer)

Aβ 1–5/soluble

and aggregated Aβ
IgG1 Phase III

(AAB-001)

August,

2012

Phase I

(AAB-003)

August,

2014

Aβ subjected to microglial-mediated phagocytosis

Patients found with vasogenic edema and microhemorrhages in

Phase II/III

Solanezumab

(LY2062430) (Eli Lilly)

Aβ 13–28/soluble

Aβ
IgG1 Phase III Ongoing

Aβ subjected to peripheral sink hypothesis

Significant increase of Aβ levels in the plasma

Patient found with cardiac arrhythmia and cardiac ischemia in Phase

III

Gantenerumab

(RO4909832, RG1450)

(Roche)

Aβ 3–12/aggre-

gated Aβ
IgG1 Phase III Ongoing

Preferentially binding to fibril form of Aβ
Leading to microglial-mediated phagocytosis

ARIA observed at the high-dose treatment during Phase II

IVIg (Gammagard/

Octagam) (Baxer

healthcare/Octapharma)

Central and

C-terminus of Aβ/
Aβ monomer,

oligomer, fibrils

Pooled mix-

ture of human

polyclonal

antibody

Phase III

(Gammagard)

Phase II

(Octagam)

Ongoing

Alternative therapy for various immunodeficiency syndromes

Aβ level reduced in the CSF

Patients found with thromboemboli, renal dysfunction, and allergic

reactions

Ponezumab (Pfizer) Aβ 33–40/soluble

and aggregated Aβ
IgG2a Phase II Ongoing

Targeting C-terminus of Aβ
Autoimmune T-cell response reduced

Crenezumab (Genentech) Aβ 12–23/soluble

oligomeric

IgG4 Phase II Ongoing

Fc receptor-mediated microglial activation reduced

BAN2401 (Eisai) N-terminus of Aβ/
soluble Aβ
protofibrils

IgG1 Phase II Ongoing

Targeting the oligomeric form of Aβ
Aβ plaque formation reduced

Aducanumab (BIIB037)

(Biogen Idec)

Conformational

Aβ/fibrillar Aβ
IgG1 Phase I Ongoing

Strong binding to aggregated form of Aβ
Plaques reduced

Animal models found with microhemorrhages

22 Immunotherapeutic Approaches Against Amyloid-β in Drug Discovery for. . . 407



monoclonal antibodies between BBB has been believed extremely difficult (Spen-

cer and Masliah 2014). Previous studies reported that only the small portion of

administered antibody crossed the BBB while the majority was metabolized in the

liver or excreted through the kidney (Banks et al. 2002). As the biological drugs

commonly cost higher than chemicals, increasing the BBB penetration rate will not

only contribute to the therapeutic efficacy but also the medical costs for patients.

Receptor-mediated BBB penetration of monoclonal antibodies into central nervous

system is currently under investigation (Boado et al. 2013).

More than 100 years has been passed since the initial observation of AD. Aβ was
identified as a critical pathogen of AD (Backman et al. 2004; Hardy and Higgins

1992; Okura and Matsumoto 2009; Jia et al. 2014). Among the numerous drug

mechanisms regulating amyloidogenesis, the immunotherapy using the Aβ peptides
or antibody against Aβ is the leading therapeutic strategy due to the clearance action
(Fig. 22.4).
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