
Chapter 28
Molecular Spin Qubits: Molecular Optimization
of Synthetic Spin Qubits, Molecular Spin AQC
and Ensemble Spin Manipulation Technology

Shigeaki Nakazawa, Shinsuke Nishida, Kazunobu Sato, Kazuo Toyota,
Daisuke Shiomi, Yasushi Morita, Kenji Sugisaki, Elham Hosseini,
Koji Maruyama, Satoru Yamamoto, Masahiro Kitagawa, and Takeji Takui

28.1 Introduction

Molecular spin qubits based on extremely stable open shell compounds [1, 2] are
the latest arrival among physically realized matter qubits [2, 3]. Such molecular spin
qubits – composed of unpaired spins and nuclei with non-zero nuclear spin quantum
numbers in the electronic spin network of molecular frames – are intrinsically
synthetic matter spins [4], because the need for molecular optimization to make
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functioning matter spin qubits requires testing with actual, open shell chemical enti-
ties. We emphasize that the molecular optimization has to fulfill all of DiVincenzo’s
five criteria [5] and additionally to provide material uniformity and stability under
strong microwave and RF irradiation. An additional requirement is to establish
appropriate crystal engineering for quantum computing and quantum information
processing (QC/QIP) [2, 3]. This is important for controlling decoherence of the
spin qubits in ensemble, which is partly governed by intermolecular spin-spin
interactions and symmetry of the crystal lattice.

Molecular optimization by synthetic chemistry is advantageous to generate
scalable spin qubits such as electron spin versions of a Lloyd model system [6,
7], in which three non-equivalent g-tensors, A, B, and C are arranged in a 1D
periodic (ABC)n backbone. A synthetic approach to the Lloyd model has been a
materials challenge, but now molecular units for a prototypical Lloyd model have
been isolated and chemically identified by X-ray structural analysis and electron
magnetic resonance spectroscopy, as described below. Alternative approaches to
Lloyd model systems are also briefly described. Molecular spins as qubits resources
are composed of both electron spins as bus qubits and nuclear spins as client qubits.
This is due to the intrinsic nature of unpaired electron spins, whose molecular
wavefunctions are extended and delocalized in such a manner that the electronic
structures are governed by both group-theoretical and topological symmetry of the
electron network [1, 4]. Thus, gate operations with electron spin qubits only can
be achieved by utilizing anisotropic electron spin dipolar interactions between the
spin qubits, as shown below. The electron spin qubits connect the client spin qubits
via hyperfine (A) interactions, and we emphasize that molecular information about
the principal axes of hyperfine qubit A-tensors is important to implement quantum
computing in anisotropic media such as solid-state materials, as shown in a later
section herein.

28.2 Synthetic Approaches to Lloyd Model Electron Spin
Scalable Qubit Systems

We have extended the original Lloyd model – in which qubits resources are
nuclear spin-1/2 systems, later extended to high spin systems with nuclear-nuclear
interactions assumed to be usable for gate operations – to the corresponding
electron spin versions. Our idea has been underlain by the feasibility of molecular
optimization in terms of synthetic strategy for scalability and facile initialization
processes compared with the nuclear spin qubit based versions. A remarkable
advantage relevant to the Lloyd model is that one needs to prepare only three
kinds of addressable spin qubits, say A, B and C, as a one-dimensional array in an
(ABC)n periodic manner. The periodic boundary conditions are strict and relevant
to the materials uniformity required for the accuracy of any gate operations in the
frequency domain during QC/QIP processes. Materials control of periodicity with
uniformity is important in crystal engineering for ensemble solid-state QC/QIP.
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The issues can be met by molecular optimization with specific chemical bonding
schemes like a DNA-based approach described below.

In an electron spin version of the Lloyd model, the g-tensors of molecular spins
play an essential role in building up the (ABC)n periodic spin chain, in which A,
B and C have different g-tensors that are addressable in the frequency domain
of current microwave technology. We emphasize that for an electron spin Lloyd
model system in isotropic media, the use of significantly non-equivalent isotropic
g-values (termed genuine g-tensor approach-2) or a pseudo g-tensor (hyperfine
A-tensor) approach is essential to differentiate between the three molecular spin
qubits. The genuine g-tensor approach-2 requires particular molecular optimization
in which the g-tensor of each molecular spin is tuned by introducing hetero-atoms
at a radical site. This is termed electronic tuning of the g-tensor. In molecular spin
based solid-state QC/QIP, the spatial orientation of each g-tensor provides non-
equivalence of the resonance frequency with respect to an applied static magnetic
field, with differentiation of the three molecular spins if the molecular optimization
is properly achieved, as described below (genuine g-tensor approach-1). The pseudo
g-tensor (hyperfine A-tensor) approach utilizes nuclear spins with sizable hyperfine
couplings to a particular electron spin site (e.g., a radical moiety). The hyperfine
coupling gives rise to significant additional splitting of the resonance line, which
differentiates between two g-tensors having the same principal values and axes.
Such A-tensor engineering is a workable method to lift inversion symmetry induced
degeneracy of two g-tensors. Isotopic labeling at one radical site in biradical systems
having inversion symmetry is one of the applications of this method.

The electronic tuning approach above is also applicable to solid-state QC/QIP.
A promising application of this approach is to utilize DNA-like double-stranded
structures capable of incorporating non-equivalent open-shell metal ligands at
complementary hydrogen bonding sites. This is termed DNA based supramolecular
crystal engineering. In the electron spin version of the Lloyd model, anisotropic
electron dipolar interactions between neighboring molecular spins are utilized to
execute quantum gate operations. This contrasts with the use of small exchange
interactions in the case of nuclear spin Lloyd model qubits with closed shell
molecular frames, for two main reasons: (1) precise control of exchange interactions
to order of MHz is a still-intractable problem in open shell chemical entities
[1, 2]; (2) experimental limitations of current microwave spin technology mean
that presently available excitation bandwidth cannot cope with sizable exchange
couplings. The latter will be sorted out by emerging microwave technology, if the
corresponding frequency is not very high (less than 100 GHz).

In this section, we describe the g-tensor-orientation approach to the electron spin
version of the Lloyd model, from the viewpoint of materials challenges (genuine g-
tensor approach-1) [8], focusing on molecular optimization for a prototypical Lloyd
model of the electron spin version. Figure 28.1 shows a prototypical spin chain of
electron spin version Lloyd model, in which supramolecular ligands play dual roles
in building up 1D spin chains of the proposed periodicity. One is that the ligands are
able to incorporate either open or closed shell transition metal cations, and the other
is that the ligands can yield triple-stranded 1D structures of metal-ligation to give



608 S. Nakazawa et al.

g-Tensor Orientation Approach-1

Metal cation with
an open shell con-
figuration

Supramolecular ligands 
capable of building a tri-
ple-stranded structure and
incorporating metal cati-
ons with an open shell 
configuration

Fig. 28.1 A prototypical model of the electron spin version of the Lloyd model (supramolecular
approach). Molecular optimization is based on the g-tensor orientation approach-1. The strength of
ligand-metal self-association should be strong enough to keep the triple-stranded helical structure
unfolded even in solution at ambient temperature [8]. The supramolecular ligands bind transition
metal cations in a pseudo octahedral symmetry with a robust global structure to suppress deco-
herency of ensemble electron spin qubits when incorporated into crystal lattices with diamagnetic
host molecules. Use of various metal cations also allows preparation of magnetically-diluted,
mixed single crystals with desired concentration ratios of guest/host molecules. Supramolecular
functionality also allows triple-stranded structures, in which the orientations of electron spin qubit
g-tensors and other magnetic tensors are governed by the global molecular symmetry

triple-stranded helical symmetry (see the caption of Fig. 28.1 for the dual roles).
The metals are located in a pseudo-octahedral symmetry of the local structures. The
departure from octahedral symmetry matters in terms of establishing the g-tensor
orientation approach. This is because octahedral symmetry cannot generate a non-
equivalency of magnetic tensors in the triple-stranded helical environment, so the
three molecular spins units would not be distinguishable. One of the crucial points
in the supramolecular approach, where the ligands play dual roles, is how to control
the magnitude of the deviation from strict octahedral symmetry and to increase
the axial nature of the relevant magnetic tensors at the transition metal cation
sites. Another crucial, practical point is the synthetic feasibility of length extension
of the periodicity while strictly keeping the other structural boundary conditions.
The present supramolecular approach is subject to two apparent weaknesses that
should be improved from the viewpoint of molecular optimization. One is the
fact that the method is not applicable for materials syntheses using the genuine
g-tensor approach-2 with electronic tuning of the g-tensors in a straight forward
manner. To our knowledge, current supramolecular chemistry cannot afford subtle
synthetic differentiation between metal cations having non-equivalence of their g-
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tensors. In this context, a novel molecular optimization strategy requires functioning
modification of ligands combined with control of their metal binding selectivity in
terms of theoretical considerations of the contribution to their g-tensors from spin-
orbit interactions. The other is the broadened linewidth of electron spin resonance
(ESR) transitions compared with those from organic-only open-shell spin qubits.
This arises from nuclear electric quadrupolar interactions of transition metal ions.
This issue is not intrinsic but relevant to the excitation strength of pulsed microwave
irradiation at resonance.

In this context, g-tensor engineering approaches based on the DNA double-
stranded (ABC)n architecture have the advantage of utilizing electronic tuning of
the g-tensor, in which the complementary hydrogen bonding scheme can afford
1D periodic chains of non-equivalent g-tensors for molecular spin qubits [9]. The
DNA-based approach to g-tensor engineering was tested by introducing molecular
spins at mismatched sites of the complementary hydrogen bonds in the DNA
oligonucleotides. Both the global and local molecular structures were probed by Q-
band pulsed ELectron-electron-DOuble-Resonance (pulsed ELDOR) spectroscopy
and by computational molecular mechanics modeling. In DNA-based g-tensor
engineering, the molecular rigidity of molecular spin qubits introduced at desired
sites of the hydrogen bonding is crucial, and this approach utilizing organic
molecular spins is not subject to the two weaknesses for the metal cation approach
described above.

28.3 Controlled-NOT Gate Operations by Molecular Spin
Qubits

Molecular spins for qubits usage are composed of both electron spins as bus qubits
and nuclear spins as client qubits. The client qubits are useful in many aspects
of qubits usage (particularly as quantum spin memory), but nuclear spin qubits
giving cross-talk in g-tensor engineered molecular spin qubits are an obstacle in
executing gate operations composed of electron spin qubits, because they give so
many unwanted nuclear sublevels. Toward avoiding this problem, the biradical 1
depicted in Fig. 28.2a is the first synthetic electron spin qubit system which allows
Controlled-NOT (CNOT) gate operations by the use of molecular electron spins
[10].

In the biradical 1, orientation g-tensor engineering is achieved using the two
radical sites with non-equivalent g-tensors denoted by molecular fragments in blue
and red in Fig. 28.2. The two radical sites are not related by inversion symmetry, so
hyperfine A-tensor engineering is not necessary in the molecular optimization. The
two nitrogen nuclei and thirty-four hydrogen atoms in the fragments are 15 N- and
fully deuterium-labeled, respectively. The isotope labeling enormously enhances the
spectral resolution. Particularly, the nitrogen labeling is crucial to identify the mag-
netic field orientation suitable for QC/QIP experiments. The biradical 1 is diluted
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Fig. 28.2 Biradical 1 as a spin qubit that makes Controlled-NOT gate operations implemented in
molecular systems. (a) Molecular structure: The two nitrogen nuclei are 15N-labeled and all the
protons of the two radical fragments deuterium-labeled. There is no inversion symmetry between
the two radical sites, so orientation g-tensor engineering is achieved. (b) The exchange interaction
between the radical sites is <0.2 MHz owing to molecular optimization, in which the two central
benzene rings bridging the two radicals govern the relative orientation of the g-tensors. The
Controlled-NOT gate operations by electron spin qubits in molecular systems were implemented
by utilizing anisotropic spin-dipolar interactions (�9.5 MHz for the zero-field splitting parameter)
[10]

to a desired concentration in a diamagnetic host lattice of the related bisketone
molecule whose molecular structure is approximately the same as that of 1. The
central benzene rings play an important role to allow a large angle between the
two radical fragments, allowing effective orientation g-tensor engineering. After the
measurements of angular dependence of fine-structure hypefine-split ESR spectra
with respect to crystal coordinate or molecular principal axis orientation, we can
identify orientations of the static magnetic field with respect to the crystal and fully
determine the magnetic tensors in the spin Hamiltonian. This identification provides
conditions for QC/QIP experiments such as initialization, CNOT gate operation, or
quantum teleportation between molecular spin qubits, so long as appropriate rf and
microwave frequency pulse energies and sequences can be achieved. Obviously, two
microwave frequencies with their phases controlled in currently available coherent-
dual pulsed ELDOR [3b] are not enough, so Nuclear Magnetic Resonance (NMR)
paradigm, pulsed-ESR spin technology using conventional microwave frequencies
has been implemented in our laboratory (Osaka City University). This emerging spin
technology can afford realistic QC/QIP experiments in which both electron spin bus
and nuclear client qubits can be manipulated/controlled in the Bloch sphere in an
equal manner. This new spin technology is not subject to limitations of the number
of irradiation pulses, their relative phase and amplitudes. This was demonstrated
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by first CNOT gate operation in the molecular spin qubits of 1, which were been
implemented in the magnetic field direction in which the eigenstates of the nuclear
spins are not affected during the electron spin transitions on resonance. Thus, only
the four electron spin sublevels are involved in the QC experiments, and the gate
operations are achieved by utilizing anisotropic electron spin dipolar interactions
(�9.5 MHz for the zero-field splitting parameter). In biradical 1, the molecular
structure optimization gave effective suppression of the exchange interaction (less
than 0.2 MHz). The molecular optimization for shortening the distance between
two molecular spin qubits also gives faster gate operations than those for the longer
distance, as expected.

28.4 Adiabatic Quantum Computation on a Molecular
Spin QC

A molecular spin quantum computer utilizes electron spins as bus qubits which are
manipulated by electron spin resonance (ESR) based magnetic resonance techniques
in open shell molecules, in which nuclear spins topologically connected play the role
of client qubits. In this section, we focus on adiabatic quantum (AQ) computation
[11] by utilizing both electron spin bus qubits and nuclear client qubits in as fully
controlled a manner as possible using current levels of spin resonance technology.
The molecular spin AQ computation is underlain by the recent implementation of
NMR-paradigm pulsed ESR technology from the experimental side. A factorization
of 21 was chosen for the adiabatic algorithm in order to illustrate the essence
of the approach, for comparison with NMR molecular systems. We present for
the first time pulse sequences required for ESR QC experiments using molecular
spin systems, and possible problems to be encountered in molecular spin AQ
computation are pointed out for further development.

Since Shor’s algorithm appeared, attempts at realistic QC/QIP have been made
from the experimental side [12, 13], with the first experiment performed by
utilizing pulsed NMR techniques [14] without invoking quantum entanglement.
An experiment proposed by Peng and coworkers factorizes 21 by an Adiabatic
Quantum Computer (AQC) with rather small numbers of qubit resources such as
three qubits. They performed this QC experiment using solution NMR conditions
in which C, H and F nuclear spin states in a dimethylfluoromalonate molecule
were manipulated [15]. AQC is one of the computation models of QCs, which
processes information in the ground states of a quantum system with variation of
the corresponding Hamiltonian [11]. Although AQC has been defined as different
from standard QC, it is important that: (1) AQC has the same computational ability
as standard QC [16]; (2) AQC can allow performance of error correction [17].

From the viewpoint of spin resonance, it is interesting to identify the difference
between NMR and ESR qubit systems in terms of AQC. As already described in
the preceding section, in the ESR system molecular spins with open shell electronic
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structures are utilized in QC/QIP, and electron spins play the role of bus qubits while
nuclear spins are client qubits. Particular magnetic interactions involving electron
spins are utilized for computational operations, and thus generally shorter overall
computational time is anticipated [18]. Here, we describe the theoretical study of an
adiabatic factorization problem, illustrating how a molecular spin AQC works when
AQC is implemented in real molecular spin qubits. This gives a foundation to build
the implementation of molecular spin based AQC.

AQC requires definition of an adiabatic Hamiltonian path in an algorithm. The
initial Hamiltonian, Ĥi and the final Hamiltonian, Ĥf are adopted as Eqs. (28.1) and
(28.2) in this study, respectively.

bHi D a
n

X

iD1

� i
x (28.1)

bHf D .N � xy/2 (28.2)

where, a D 30, N D 21, n D 3, x D �
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in the factorization of 21 [15]. In this algorithm, there are unsolvable problems
when the solution of (x, y) has the same bit size because the two ground states have
the same energy. Nevertheless, there are two advantages to this algorithm: (1) the
algorithm easily compares ESR systems (i.e., molecular spins) to NMR systems;
(2) this approach requires only a small number of qubits for execution. Applied
to molecular spins using pulsed ESR techniques, the time evolution operator of
the adiabatic process is approximated in finite time steps and defines the needed,
adiabatic path as Eq. (28.3).
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The time evolution operator U is a non-commutative operator in Eq. (28.3).
Therefore, U was transformed by the Trotter expansion to commutable operators
in the pulse sequences of calculations (see Appendices at the end of this chapter):
the theoretical fidelity of this approach is 0.91 [15].

Generally the spin Hamiltonian in a molecular spin QC with the static magnetic
field along the z-direction can be written by Eq. (28.4) in the Schrödinger picture.
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The first and second terms are Zeeman interactions for electron and nuclear spins,
and gi is a second rank tensor which is related to the Larmor frequency ! i

0 of
an ith spin (! i

0 D gi
zzˇ

iBz=¯ where Bz is the static magnetic field in the ESR
system). The interactions between spins are written by second rank tensors of J, D
and A which correspond to electron exchange interaction, anisotropic fine-structure
(mainly spin-dipolar interaction in organic molecular high spins) and hyperfine
interaction, respectively.

The effective Hamiltonian in the time evolution operator is calculated by
transforming to an interaction picture of the spin Hamiltonian. Following the
common procedure, the unperturbed Hamiltonian is selected for Zeeman terms by
assuming the secular approximation with small anisotropy in the g-tensor. This
approach is equivalent to adopting the rotational frame in quantum mechanics. Since
most experiments of a molecular spin QC have been carried out in single crystal
systems incorporating open shell molecules such as radicals or multi-radicals, in this
study for designing pulse sequences, either a three-electron system (3e system) or
one-electron plus two-nuclear system (1e C 2n system) is adopted, as exemplified
in Fig. 28.3. In transforming to the interaction picture, the principal axes of the
hyperfine tensors are assumed to be parallel to the static magnetic field, to simplify
by eliminating effects from anisotropic terms. We have known that this assumption
is special for most of real molecular spin qubits, and that non-linearity of the
quantization axes is crucial to acquire better fidelity to the model. Overall, Eqs.
(28.5) and (28.6) are obtained as perturbation Hamiltonians in the time evolution
operator of the 3e system and 1e C 2n system, respectively,

bH
3e
int D S1

z .J C D/12S2
z C S2

z .J C D/23S3
z C S3

z .J C D/31S1
z (28.5)

bH
1eC2n
int D S1

z A12I2
z C I2

z .J C D/23I3
z C I3

z A31S1
z (28.6)

Fig. 28.3 Molecular structures of a phthalocyanine system (four electron (4e) system, left) and an
isotope-labeled diphenylnitroxide (DPNO) (one-electron and two nuclear-spin (1e C 2n) system
without counting 15N nucleus, right). In the calculation described in the text, only three electron
qubits of the phalocyanine system are treated, so one of the four radical sites should be closed shell.
Any nuclear effects mainly arising from the nitrogen nuclei are neglected in the present treatment,
for simplicity
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where (J C D)ij and Aij are the zz-components of the corresponding tensor. In
solution, only the D tensor will vanish on the basis of its traceless character.

Pulse sequences were calculated using two pulse operations (arbitrary angle
operations of the x- and y-directions) for each qubit with time evolution (arbitrary
time). A phthalocyanine derivative for the 3e system and a diphenyl nitroxide
(DPNO) for the 1e C 2n system were adopted as real molecular examples of these
(see Fig. 28.3 for the molecules). There are four electron spins in the phtalocyanine
system, so we assumed a three-qubit system in which one radical site is chemically
reduced. These systems have strong enough isotropic interactions that are needed for
establishing constant time in any orientation, and they are workable molecular spin
QCs from the previous study [19, 20]. Considering the experimental restrictions, e.g.
selecting the axis for the g-tensor while keeping co-linearity of the hyperfine tensors,
the average time for an adiabatic calculation can approximately equal the isotropic
coupling case (J12 D J23 D �22.8 MHz, J31 D �40.8 MHz, A12 D �5.56 MHz and
A31 D �37.9 MHz) [19, 20]. By this assumption, the obtained pulse sequences are
the same as those in the solution state of these systems. The 3-qubit interaction
on the adiabatic time evolution is replaced by reducing 2-qubit interactions [21].
In the case of the 1e C 2n system, the interactions between nuclei are too weak to
manipulate, therefore the interactions are replaced by 3-qubits interactions and the
other 2-qubits interactions. We replaced the pulses only when we need to connect
two pulses. The pulse sequences were lined up in the 3-qubit interaction, 2-qubit
interactions and 1-qubit operations as shown in Fig. 28.4.

The estimated, calculated time and the total operation angles for each spin are
shown in Table 28.1. For comparison to a three-nuclear system, we have calculated
the time for the NMR system to be approximately 50 ms and for the ESR system to
be about 0.23 �s. Thus, using a three-electron (3e) system can be about 105 faster.
This is because the nuclear spin system has exchange couplings of the magnitude
of 50–200 Hz. On the other hand, in the 3e system couplings are on the order of
20–40 MHz. As expected, an important result is that the calculation speed is not
simply proportional to the gyromagnetic ratio between the two systems, but to the
interaction strength. From the experimental point of view, if one tries to perform
the same adiabatic algorithms in molecular electron spin systems as for the NMR
systems, the short time operations (e.g., 0.2 ns) for 2-qubit interactions could be a
problem. Even under this condition, we can perform the adiabatic calculation by
scaling up the problem Hamiltonian, but the required time proportionally increases
for the Hamiltonian. Alternatively, one can treat the electron spin systems using
accurate and short time operations (below 0.2 ns), which is a technical issue for
current microwave technology. We emphasize that this problem appears only in
AQC not in a standard QC.

In the 1e C 2n system the required time when ignoring the pulse manipulation
time is about 1.57 �s, therefore this system also is faster than for NMR system
methodology. In this molecular spin system, the same problem for the short
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Fig. 28.4 The pulse sequences for the factorization problem of 21. (a) The sequence of the 3e-
system. The time, ti and the green character indicate the pulse time interval and the operation of
the adiabatic Hamiltonian, respectively. The pulse in blue including the number is for an arbitrary
operation of the x- or y-direction. In the adiabatic process, the pulse sequences need to loop five
times (n D 1 to 5). (b) The sequences of the 1e C 2n system. In this case, the pulse sequence
basically similar to (a) but replace A-block of (a) to nuclear cases for (b). (c) Denotes the types
of pulse for easier identifications. Black and red blocks indicate the x- and y-direction, and narrow
and wide blocks indicate  /2 and   pulses, respectively. The numbered pulses are the x- or y-
operations in a certain angle. The details of the operation time and angle are calculated

Table 28.1 Operation angles and required times in the 3e system and 1e C 2n system are shown

3e system 1e C 2n system
e1 e2 e3 e1 n2 n3

Operation angle/radian 28  38  27  38  68  52 

Required time/�s 0.229 1.57

operation time occurs. Another problem with the 1e C 2n system is the manipulation
of nuclear spins. Because of the absolute value of the g factor, the Rabi operation
for nuclei (e.g.,   pulse) in the molecular spin system takes much more time than
for electrons (about few �s for nuclear spins) [20], so the time required for this
algorithm would depend on the operation time of the nuclear spins. In this case, the
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hyperfine interactions which are larger than or as the same order of magnitude as
the Rabi frequency need to be taken into account in the pulse formulation.

In terms of operation angles, our pulse sequence requires a larger number of
pulses than in the NMR method [15]. The operation angles in the 1e C 2n system
need approximately twice the number of pulse operations than the 3e system, due to
the replacements of the 2-qubit operation. This difficulty of this adiabatic algorithm
mostly arises from the three qubit interaction (Fig. 28.4).

In this section, we have illustrated the factorization problem of 21 treated by
AQC by utilizing molecular spin qubits and presented the difference between the
NMR and ESR systems. In the 3e system, increased speed depending on the
interaction strength has been proven and shorter time operations in the molecular
spin systems are suggested. Also, the 1e C 2n system has the possibility for
increased speed, although appropriate treatment of the nuclear spin operations is
needed. The difficulties in applying the present adiabatic algorithm to molecular
spin qubits are identified, and mostly arise from three-qubit interactions. Overall,
we have introduced experiments for AQC that utilize molecular spin qubits in which
appropriate molecular optimization has been made to solve the problems for correct
adiabatic operations in ESR systems.

28.5 Multi-Spin Quantum Control Through Single Spin
Manipulation

28.5.1 Theoretical Background

Toward the realization of quantum computing, it suffices if we could fully control a
given many-body quantum system. By full control, we mean the implementation of
any unitary operation on the system, maintaining its quantum coherence throughout
the operation. The system that is the subject of our control typically comprises a
number of qubits, and high-fidelity applications of single- and two-qubit operations
to arbitrary qubits have been a much-coveted goal for physicists.

Aiming at the implementation of a small number of elementary qubit operations
appears to be convenient, since any unitary transformations on many-qubit systems
can be decomposed into a sequence of simple operations, or quantum logic gates.
Yet, performing a multi-qubit operation usually requires control of inter-qubit
interactions. In order to switch interactions between qubits, we would need an
extra control probe for every qubit pair; it may be a physical electrode to control
voltage, or additional electromagnetic waves to induce interactions between degrees
of freedom, or even a measurement on auxiliary qubits to cause an effective state
change.

Here we primarily focus on the systems of spin-1/2 particles, as they are a
naturally very good two-state system, i.e., qubit, and, in many cases they have
advantages in terms of scalability and longer coherence times. Although spin-spin
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interactions, such as the Heisenberg-type exchange interactions, are capable of
realizing useful two-qubit operations, it is hard to switch such inter-spin interactions
at will, as described in the earlier sections.

Luckily, the difficulty in performing two-qubit operations in the presence of
constant coupling between qubits is not a crucial problem for quantum computing,
since the decomposition of a unitary transformation into elementary gates is just
for descriptive convenience. All we need to do is to seek the right modulation of
external field parameters, where time evolution becomes equal to the desired unitary
transformation. We employ this approach here to find a feasible field modulation
(pulse sequence) for nontrivial quantum operations using multi-spin systems.

The most generic form of the system Hamiltonian is described as

H.t/ D H0 C
X

m

fm.t/Hm; (28.7)

where H0 represents an unmodulable interaction and Hm represents external fields
that can be controlled experimentally by a modulation function fm(t). For example,
if the system is a one-dimensional chain of spins-1/2: H0 describes the inter-
spin couplings, such as H0 D P

nJn¢n � ¢nC1; Hm represents the Zeeman interaction
between the m-th spin and the local magnetic field bm, i.e., Hm D bm ¢m; and fm(t)
denotes the field intensity at time t. Here, bm is the unit vector in the direction of
the field at the m-th site. As we want to control the entire system by modulating a
small number of parameters, we would consider that the number m of controllable
Hamiltonians Hm is small, e.g., two or three.

The Schrödinger equation for the time evolution operator under the Hamiltonian
Eq. (28.8) is

i d
dt U.t/ D H Œf.t/� U.t/; U.0/ D I; (28.8)

where f(t) stands for the set ffm(t)g. This equation can formally be integrated as

U.t/ D T exp

�

�i
Z t

0

H Œf .�/� d�

�

; (28.9)

where T is the time-ordering operator.
We are interested in the set fU(t)g with a finite t, each element of which is

obtainable by varying the pulse sequence f(t). Let us define the reachable set R
to be the unitaries that can be arbitrarily close to the unitary transform U(T) in Eq.
(28.9) with a finite T and a right pulse sequence f(t)(t " [0,T]). That is,

8ƒ 2 R; 8" 2 0; 9f.t/ 2; 9T < 0; such that jj V � U.t/ jj < ": (28.10)

If R is equal to U(2N) or SU(2N) for an N spin system, then any unitary operation
for this system can be realized within a finite time by designing the pulse sequence
appropriately, and hence is fully controllable.
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Then, how can we characterize R, given a set of Hamiltonians fHmg(m "

f0,1, : : : ,Mg). A famous theorem of quantum control gives a concise answer to this
question [22].

Theorem 28.1 The reachable set R is the connected Lie group associated with
the Lie algebra L that is generated by taking commutators of elements in fHmg
repeatedly, i.e.,

R D eL: (28.11)

In the Lie algebra U(n) (or SU(n)), each element in the algebra is skew-
Hermitian. Thus, precisely speaking, L contains fiHmg and their repeated commuta-
tors.

The algebra L is often called dynamical Lie algebra, and its elements take
the form [A1,[A2,[ : : : ,[Ak � 1, Ak] : : : ]]], where A1,A2, : : : ,Ak " fHmg. The linearly
independent ones form the basis of the dynamical Lie algebra. Because we
are considering a finite dimensional system, this process of taking commutators
eventually stops generating a new basis that is linearly independent with respect to
those generated before. The maximum number of the independent bases, i.e., the
rank, is n2 or n2 � 1, when Hm are n � n matrices in U(n) or SU(n), respectively.

Therefore, in the context of quantum control, where we disregard the effect of
the global phase, if the rank of the dynamical Lie algebra L is equal to n2 � 1, R is
equal to SU(n), and hence the system is fully controllable through fHmg. Even if R
does not coincide with SU(n), any unitary in R can be implemented, thus partially
controllable. The simplest case of this theorem is the control of a single spin-1/2.
If the magnetic field can be controlled in two (orthogonal) directions, say x and y,
the modulable Hamiltonians are � x and � y (through the Zeeman interaction). The
commutator of these, [� x,� y], gives � z (apart from the i factor). This means that we
can effectively control � z as well, so the rank of L is three. Since SU(2) is three
dimensional, the single spin is fully controllable by field control in two directions.
This particular simplistic case corresponds to the Euler decomposition of arbitrary
rotations, such that any rotation in three dimensions can be expressed as a product
of rotations around the two fixed directions.

While Theorem 28.1 is very powerful in judging the controllability of the system,
it does not tell anything about how we should design the control pulse sequences,
let alone the necessary time duration for a pulse sequence to implement a specific
unitary operation. Although some partial results have been obtained to reduce the
complexity of this problem [23], finding optimal control pulses is a computationally
hard task in general. Thus we still need to rely on some algorithms of numerical
calculations that have been developed for these purposes, such as the one developed
by Macnes and coworkers [24].

Knowing that all parameters (including the inter-qubit interactions) do not
necessarily have to be controlled, one can implement some nontrivial quantum
operations on a real system in the lab. Molecular spins in molecules, which are the
subject of our study, are a good basis for which Theorem 28.1 can be applied nicely;
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they are constantly interacting with each other, and in electron-spin-only mediated
systems each spin typically has a different g-factor from others if appropriate
molecular optimization is made as described in the previous sections, and thus
it is not very hard to control a few electron spins or nuclear ones selectively. In
the following section, we describe attempts to achieve indirect quantum control
practically, using a three-spin system consisting of one electron spin and two nuclear
spins, which is termed a bus spin qubit system. Here the electron spin and nuclear
spins act as a bus qubit and client qubits, respectively, in the molecular frame.

28.5.2 Indirect Application of a Quantum Gate
on a Three-Spin System

Typically, in a hybrid molecular system of an electron spin plus nuclear spins, a
single electron spin has been used for state preparation, readout and control while
the nuclear spins act as qubits for storing and processing information. It has been
shown that in such systems, the nuclear spins can be indirectly fully controllable
through an electron spin as a spin actuator via hyperfine interactions [25, 26]. In
this study, we designed a control pulse sequence numerically to implement a high
fidelity gate operating on nuclear spins. Using the pulse sequence, we are currently
attempting to implement multi-qubit operations with systems of three and more
spins, and we will verify the result of quantum operations (under limited access)
using well-established electron nuclear multiple resonance methods. We emphasize
that pulse techniques composed of only microwave frequencies to manipulate
nuclear spins under certain conditions are novel spin technology that is still under
development. This spin technology enables us to rotate nuclear spins faster than
pulsed ENDOR based techniques.

We consider a three-spin system composed of an electron spin and two nuclear
ones in the presence of an external static magnetic field. For simplicity, the spin
Hamiltonian of the system in frequency units is given by Eq. (28.12),

H0 D gzzˇeB0

h
Sz � �n1

2	
B0I1

z � �n2

2	
B0I2

z

C A1
zxSzI

1
x C A1

zySzI
1
y C A1

zzSzI
1
z C A2

zxSzI
2
x C A2

zySzI
2
y C A2

zzSzI
2
z ;

(28.12)

where ˇe is the Bohr magneton, ”ni/2  D 42.576 MHz /T as the gyromagnetic
ratio of a hydrogen atom, and B0 is the external static magnetic field which is
applied along the z-direction of the g-tensor, respectively. Azz is the zz component of
the hyperfine coupling tensor, while Azx and Azy denote the anisotropic hyperfine
coupling coefficients. S and I are the electron spin and nuclear spin operators,
respectively. The nuclear spin-dipolar interactions between two nuclear spins is
neglected since its strength is almost 1000 times smaller than the hyperfine
interactions between electron and nucleus.
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If all transitions between the eight states of a 1e C 2n system are accessible,
universal control in the system is possible. For different values of the hyperfine
coupling coefficients, the probabilities of transitions between all the states can be
varied, depending on the direction of the static magnetic field with respect to the
molecular principal-axis system in the solid state. In order to control the system
efficiently and to realize high fidelity quantum gate behavior, the hyperfine coeffi-
cients must carefully be designed to ensure that all the transitions can be accessed
with significant transition probabilities. We emphasize that in terms of conventional
electron magnetic resonance spectroscopy complex experimental conditions are
required in addition to appropriate molecular optimization for molecular spins.
Microwave irradiation on the single electron makes it work as an actuator to perform
an entangling gate between the two nuclear spins. The Hamiltonian of control can
then simply be described by Eq. (28.13), as

Hcontrol D gzzˇeBe.t/

h
Sx (28.13)

where Be is the amplitude of the oscillating microwave magnetic field which is
applied on the electron on the x-direction. Thus gzzˇ"B"(t)/h corresponds to the
strength of the microwave magnetic field.

The actual spin system employed here is a diphenylaminoxyl (DPNO D diphenyl-
nitroxide) derivative, whose molecular structure is given in Fig. 28.5. We emphasize
that spin manipulation technology should be based on pulsed electron-nuclear
multiple resonance technique with controlled phase of each spin by coherence
microwave frequency.

Fig. 28.5 Experimental qubit spin system, diphenylaminoxyl (DPNO). The nitrogen labeling
simplifies hyperfine ESR spectra with significantly enhanced spectral resolution. Red, blue, gray
and white balls denote oxygen, nitrogen-15, carbon, and proton and deutron atoms, respectively.
The principle-axis alignments are shown with corresponding arrows in the figure. The molecular
structure is assumed if it is incorporated in a diamagnetic host lattice having a similar molecular
structure to diphenylaminoxyl
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The hyperfine and g-tensors of DPNO are given by Yoshino [27]. The principal
values of the proton hyperfine tensors and g-factor in their principal-axis coordinate
system of Fig. 28.5, are summarized in Eqs. (28.14) to (28.15) as follows:

g D
0

@

2:0097 0 0

0 2:0053 0

0 0 2:0024

1

A (28.14)

e�1H W
0

@

�8:63 0 0

0 �5:56 0

0 0 �2:22

1

A e�2H W
0

@

�8:82 0 0

0 �5:76 0

0 0 �2:34

1

A (28.15)

The hyperfine couplings can be adjusted by varying the orientation of the static
magnetic field with respect to a single crystal doped with DPNO. Transforming the
tensors from the principal-axis system to the laboratory-axis reference, the orienta-
tion that can differentiate between transitions with suitable transition probabilities
between all the states can be chosen for QC experiments. Any rotation of the frame
can generally be described by Eq. (28.16) and (28.17), where

Tlab D RTdiagRt (28.16)

with

R D
0

@

cos 
ax cos 
ay cos 
az

cos 
bx cos 
by cos 
bz

cos 
cx cos 
cy cos 
cz

1

A (28.17)

where (x,y,z) and (a,b,c) denote the laboratory-axis and principal-axis references,
respectively. The g-factor terms of the electron spin and the hyperfine couplings of
the hydrogen atoms for the chosen orientation are typically as given below in Eq.
(28.18):

gzz D 2:00253I
A1

zx D �0:12158 MHzI A1
zy D 1:15564 MHzI A1

zz D �8:37156 MHzI
A2

zx D �0:91001 MHzI A2
zy D 1:33327 MHzI A2

zz D �7:25018 MHz:

(28.18)

We have designed numerically a pulse sequence which can performs a C-NOT gate
on two nuclei with 1H’ being the control qubit and 2H being the target qubit of
the gate. Choosing the values B D 0.35 T and gzzˇeBe/h D 10 MHz for the intensity
of the static magnetic field and the energy of the microwave to be employed, the
gate can be performed in 5 �s with fidelity 0.81. Since in our experimental setup,
the excitation bandwidth is on the order of 100 MHz, we fixed 4t D 0.005 ns in
our numerical calculation, which yields the excitation bandwidth D 200 MHz. In
order to get higher fidelity, we need a longer time duration: in the present molecular
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Fig. 28.6 Pulse sequences which perform a C-NOT gate with fidelity 0.99 as a function of time. In
the left/right panels, the magnetic field is chosen as B D0.35 T/B D0.1 T. The former corresponds
to QC experiments at X-band and the latter at L-band

spin t D11 �s leads to a fidelity of 0.99. However, we emphasize that shorter pulse
durations are better from the viewpoint of quantum information processing, so QC
experiments may be better performed at L-band frequencies. By setting B0 D 0.1 T,
the fidelity can be as high as 0.94 for t D 5 �s, and 0.99 for t D 6 �s. The numerically
computed pulse sequences are shown in Fig. 28.6. One can extend this method to
any number of nuclear spins that have resolvable anisotropic hyperfine interactions.

28.6 Conclusions

In order to manipulate or control both bus and client qubits in an equivalent manner,
the implementation of sophisticated microwave pulse technology is essential. Novel
microwave pulse technology that enables full control of both the amplitudes and
phases of multiple microwave frequencies has already been emerging, indicat-
ing that new spin technology based on arbitrary wave generators (AWGs) can
be powerful in manipulating ensemble molecular spin systems. The problems
described in Sect. 28.5 are relevant to enable appropriate molecular optimizations
of spin behavior. We also emphasize that the three-electron spin system under study
imposes limitations in terms of its molecular optimization but sophisticated quantum
chemical calculations of D tensors are available, which will enable us to design
more appropriate three- or multi-electron spin molecular systems. In this quest
of achieving practical molecular spin QCs or QIP systems, pulse-based advanced
microwave spin technology combined with molecular optimization is essential.
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Appendices

Appendix 28.1

The details of the rotation angle are shown in (a) where an and b are (n/5)2 and
0.028, respectively. The operation times are shown in (b).

(a) Rotation angles

Direction Angle

1 x- 30(1 � an)b/2
2 y- 84anb

3 y- 88anb

4 y- 44anb

5 x- 30(1 � an)b/2 C  /2

(b) Operation times

3e system 1e C 2n system

t1 �	 /j31 �	 /A31

t2 �64sn� /j12 �64sn� /A12

t3 �80sn� /j12 �80sn� /A12

t4 �40sn� /j31 �40sn� /A31

t5 �80sn� /j23 –
t6 – � /A12

Appendix 28.2

The Trotter’s formula of the Eq. (28.3) where b is 0.028.

U D
5

Y

mD1

exp
n

�i
�

1 � .m=5/2
�

bHi .b=2/
o

� exp
n

�i.m=5/2
bHf b

o

� exp
n

�i
�

1 � .m=5/2
�

bHi .b=2/
o

(28.19)



624 S. Nakazawa et al.

References

1. (a) K. Itoh, M. Kinoshita (ed.), Molecular Magnetism. (Kodansha, and Gorden and Breach
Scientific Publisher, Tokyo, 2000), pp. 1–347. (b) K. Itoh, T. Takui, Proc. Acad. Soc. Jpn. 41,
1 (2003)

2. E. Coronado, A.J. Epstein, J. Mater. Chem. 19, 1670–1770 (2009)
3. (a) M. Mehring, J. Mende, Phys. Rev. A 73, 052303 (2006). (b) K. Sato, S. Najazawa, Y.

Morita, et al, J. Mater. Chem. 19, 3739–3754 (2009)
4. Y. Morita, S. Suzuki, K. Sato, T. Takui, Nat. Chem. 3, 197–204 (2011)
5. D.P. DiVincenzo, in Mesoscopic Electron Transport, ed. by I. Kowenhoven, G. Shen, I. Shon.

NATO ASI Series F (Kluwer, Dordrecht, 1997), p. 657. cond-mat/9612126
6. S. Lloyd, Sci. Am. 73, 140–145 (1995)
7. Y. Kawano, S. Yamashita, M. Kitagawa, Phys. Rev. A 72, 20301 (2005)
8. Y. Morita, Y. Yakiyama, S. Nakazawa, T. Murata, T. Ise, D. Hashizume, D. Shiomi, K. Sato,

M. Kitagawa, K. Nakasuji, T. Takui, J. Am. Chem. Soc. 132, 6944–6946 (2010)
9. H. Atsumi, K. Maekawa, S. Nakazawa, D. Shiomi, K. Sato, M. Kitagawa, T. Takui, K.

Nakatani, Chem. Eur. J. 18, 173–183 (2012)
10. S. Nakazawa, S. Nishida, T. Ise, T. Yoshino, N. Mori, R.D. Rahimi, K. Sato, Y. Morita, K.

Toyota, D. Shiomi, M. Kitagawa, H. Hara, P. Carl, P. Hoefer, T. Takui, Angew. Chem. Int. Ed.
51, 9860–9864 (2012)

11. E. Farhi, J. Goldstone, S. Gutman, M. Sipser. arXiv:quant-ph/0001106
12. P.W. Shor, J. SIAM, Sci. Stat. Comput. 26, 1484–1509 (1997)
13. C-Y. Lu, D.E. Browne, T. Yang, J-W. Pan, Phys. Rev. Lett. 99, 250504 (2007); B.P. Lanyon,

T.J. Weinhold, N.K. Langford, M. Barbieri, D.F.V. James, A. Gilchrist, A.G. White, Phys. Rev.
Lett. 99, 250505 (2007); A. Politi, J.C.F. Matthews, J.L. O’Brien, Science 325, 1221 (2009);
E.L.A. Martine-Lopez, T. Lawson, X.Q. Zhou, J.L. O’Brien, Nat. Photon 6, 773–776 (2012);
E. Lucero, Nat. Phys. 8, 719–723 (2012).

14. L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chung, Nature
414, 883–887 (2001)

15. X.-H. Peng, Z. Liao, N. Xu, G. Qin, X. Zhou, D. Suter, J. Du, Phys. Rev. Lett. 101, 220405
(2008)

16. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, O. Regev, SIAM J. Comput. 37,
166–194 (2007)

17. S.P. Jordan, E. Farhi, P.W. Shor, Phys. Rev. A 74, 052322 (2006)
18. J. Twamley, Phys. Rev. A 67, 052318 (2003); Blank, A., arXiv:1302.1653
19. A.G.M. Barrett, G.R. Hanson, A.J.P. White, D.J. Williams, A.S. Micallef, Tetrahedron 63,

5244–5250 (2007)
20. T. Yoshino, S. Nishida, K. Sato, S. Nakazawa, R.D. Rahimi, K. Toyota, D. Shiomi, Y. Morita,

M. Kitagawa, T. Takui, J. Phys. Chem. Lett. 2, 449–453 (2011)
21. C.H. Tseng, S. Somaroo, Y. Sharf, E. Knill, R. Laflamme, T.F. Havel, D.G. Cory, Phys. Rev. A

61, 012302 (1993)
22. D. D’Alessandro, Introduction to Quantum Control and Dynamics (Taylor and Francis, Boca

Raton, 2008)
23. D. Burgarth,K. Maruyama, M. Murphy, S. Montangero, T. Calarco, F. Nori, M.B. Plenio, Phys.

Rev. A 81, 040303(R) (2010)
24. S. Machnes, U. Sander, S.L. Glaser, P. de Fouquières, A. Gruslys, S. Schirmer, T. Schulte-

Herbrüggen, Phys. Rev. A 84, 022305 (2011)
25. J.S. Hodges, J.C. Yang, C. Ramanathan, D.G. Cory, Phys. Rev. A 78, 010303 (2008)
26. Y. Zhang, C.A. Ryan, R. Laflamme, J. Baugh, Phys. Rev. Lett. 78, 010303 (2008)
27. T. Yoshino, Quantum-State Manipulation of Molecular Spin-Bus Qubits by Pulsed Electron-

Nuclear Multiple Resonance Technique. Ph.D. Thesis, Osaka City University, 2011


	28 Molecular Spin Qubits: Molecular Optimization of Synthetic Spin Qubits, Molecular Spin AQC and Ensemble Spin Manipulation Technology
	28.1 Introduction
	28.2 Synthetic Approaches to Lloyd Model Electron Spin Scalable Qubit Systems
	28.3 Controlled-NOT Gate Operations by Molecular Spin Qubits
	28.4 Adiabatic Quantum Computation on a Molecular Spin QC
	28.5 Multi-Spin Quantum Control Through Single Spin Manipulation
	28.5.1 Theoretical Background
	28.5.2 Indirect Application of a Quantum Gate on a Three-Spin System

	28.6 Conclusions
	Appendices
	Appendix 28.1
	Appendix 28.2

	References


