
Chapter 16
Equilibrium to Nonequilibrium Condensation
in Driven-Dissipative Semiconductor Systems

Makoto Yamaguchi and Tetsuo Ogawa

16.1 Introduction

In a semiconductor system, it is known that electron-hole (e-h) bound pairs can
be formed by their Coulomb attraction when the conduction and valence band
effectively reach an equilibrium state after the carriers are generated e.g. by laser
excitation (Fig. 16.1). An exciton polariton is a quasi-bosonic particle composed
of such a Coulomb-bound e-h pair (exciton) and a photon [1, 2], the behaviors of
which have attracted much attention due to their potential apprications through the
Bose-Einstein condensation (BEC) [3–5], i.e. a macroscopic occupation of a single
exciton-polariton state by a thermodynamic phase transition.

A typical exciton-polariton system is shown in Fig. 16.2. The system basically
consists of semiconductor quantum wells (QWs) and a microcavity, the same
structure as a vertical cavity surface emitting laser (VCSEL). In this context, a
conventional lasing phase1 is involved in this system as well as the exciton-polariton
BEC [9]. At high densities, moreover, the Bardeen-Cooper-Schrieffer (BCS) – like

1In this contribution, the terms ‘lasing’ and ‘laser’ are used only when the condensation is
inherently governed by non-equilibrium kinetics, according to [6, 7]. In other words, thermo-
dynamic variables of the system, such as temperatures, cannot be defined for lasing phases.
However, we note that these terms are occasionally used even for a condensation dominated by the
thermodynamics of the electron-hole-photon system [8] if the interest is in fabricating a device.
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Fig. 16.1 Excitation and
thermalization process in a
semiconductor. Electrons and
holes generated by laser
excitation subsequently
undergo immediate intraband
relaxations and redistributions
in the conduction band (C.B.)
and valence band (V.B.) to
effectively reach an
equilibrium state.
Coulomb-bound e-h pairs
(excitons) are formd when the
equilibrium state is at
sufficiently low temperature
and low carrier density

Fig. 16.2 Schematic
illustration of a typical
exciton-polariton system.
Exciton-polaritons are formed
by the electrons and holes in
the QWs and the photons
confined between the two
mirrors (microcavity)

Fig. 16.3 Schematic illustration of several ordered phases involved in the exciton-polariton system

ordered phase can potentially be caused where electrons and holes form the “Cooper
pairs” [10, 11], as is discussed in the BCS-BEC crossover in cold atom systems
with Feshbach resonances [12, 13]. These ordered phases are schematically shown
in Fig. 16.3.

However, the BEC and BCS phases are in equilibrium, the situation of which
is quite different from the semiconducotor laser in nonequilibrium. As a result,
approaches for describing the BEC and BCS phases based on equilibrium statistical
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mechanics, e.g. the BCS theory [14, 15], are not applicable to the semiconductor
laser because any nonequilibrium effects cannot be taken into account, such as
pumping and loss. Conversely, past theories for describing the lasing operation,
e.g. the Maxwell-Semiconductor-Bloch equations (MSBEs) [16, 17], cannot recover
such equilibrium statistical approaches.2 The difficulty shown here has been one of
problems to understand the underlying physics in exciton-polariton systems.

In such a situation, we have recently proposed a framework which can treat the
phases of the BEC, BCS and laser in a unified way [19, 20]. This framework is an
extention of a nonequilibrium Green’s function approach developed in Refs. [21–
23] in which excitons are simply modeled by localized noninteracting two-level
systems without internal e-h structures. Our formalism results in the BCS theory
when the system can be regarded as in equilibrium, while it recovers the MSBE
when nonequilibrium features become important. The internal e-h structures as well
as the Coulomb interactions can also be taken into account within the mean-field
approximation. In this contribution, we would like to give an introduction to such a
“BEC-BCS-LASER crossover theory”.

16.2 BCS Theory and MSBE for Exciton-Polariton Systems

In exciton-polariton systems, the equilibrium phases (the BEC and BCS phases) can
be described by the BCS theory while the nonequilibrium phase (the lasing phase)
can be described by the MSBE. In this section, we give an overview of the BCS
theory and the MSBE to highlight their similarities and differences. For simplicity,
we set „ D kB D 1 in the followings.

16.2.1 Model

We first describe the Hamiltonian for the exciton-polariton system where electrons
and holes in the QWs and photons in the microcavity are taken into account. The
system Hamiltonian OHS is then given by OHS D OH0 C OHCoul C OHdip. Here, OH0 is the
Hamiltonian for free particles without interactions and written as

OH0 D
X

k

�
�e;k Oe�

k Oek C �h;k Oh�
k
Ohk C �ph;k Oa�

k Oak

�
; (16.1)

2We note that theories for describing dynamics of equilibrium phases, e.g. the Gross-Pitaevskii
equation, can asymptotically be derived from Maxwell-Bloch equations [18] even though these
theories still do not recover equilibrium statistical approaches.
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where Oek, Ohk, and Oak are annihilation operators for electrons, holes, and photons
with in-plane wave number k, respectively. �e.h/;k D k2=2me.h/ C Eg=2 is the
energy dispersion of electrons (holes) with an effective mass me.h/, while �ph;k D
k2=2mcav C Ecav is that of photons with an effective mass mcav. Eg is the bandgap
and Ecav is the energy of the cavity mode for k D 0 [24].

In contrast, OHCoul and OHdip denote the Coulomb interaction and the light-matter
interaction within the dipole approximation, respectively written as

OHCoul D 1

2

X

k;k0;q

U0
q

�
Oe�

kCq Oe�

k0�q Oek0 Oek C .Oe $ Oh/ � 2Oe�
kCq

Oh�

k0�q
Ohk0 Oek

�
; (16.2)

OHdip D �
X

k;q

�
gOa�

q
Oh�k OekCq C g� Oaq Oe�

kCq
Oh�

�k

�
; (16.3)

where U0
q D U0�q and U0

qD0 � 0. Note that Œ OHS; ONS� D 0 is satisfied when an

excitation number of the system ONS is defined as ONS � P
kŒOe�

k Oek=2C Oh�
k
Ohk=2C Oa�

k Oak�.
For later convenience, therefore, we redefine OHS � � ONS as OHS. This means that
a grand canonical ensemble is assumed with a chemical potential � if we are
interested in equilibrium phases. In contrast, for time-dependent problems, this
means that dynamics of physical quantities is captured on a rotating frame with
the frequency �. Thus, � is a given parameter identical to the chemical potential for
the BEC and BCS phases (Sect. 16.2.3), whereas it becomes a unknown variable
equivalent to the lasing frequency for the semiconductor laser in a steady state
(Sect. 16.2.4).

16.2.2 Mean-Field Approximation

The Hamiltonians shown in Sect. 16.2.1 give a starting point for theories of the
exciton-polariton system. However, in practice, it is difficult to exactly treat OHCoul

and OHdip because these Hamiltonians cause many-body problems. In this subsection,
therefore, we discuss the mean-field (MF) approximation in order to reduce the
problems to single-particle problems.

In general, the MF approximation is performed by writing a specific operator
OO as OO D h OOi C ı OO and by neglecting quadratic terms with respect to ı OO in the
Hamiltonians.3 Here, h OOi � TrŒ OO O�� denotes the expectation value for the density
operator O� and the operator ı OO corresponds to a fluctuation around the expectation
value. In our case, the interaction Hamiltonians of OHCoul and OHdip can easily be

reduced to a single-particle problem by employing OO 2 fOak; Oh�k Oek0 ; Oe�
k Oek0 ; Oh�

k
Ohk0g. As

3We note, however, that physical guesses are required for the determination of what operator(s)
should be chosen as OO, e.g. from experiments.
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a result, with definitions of the photon field hOaki � ık;0a0, the polarization function
hOh�k Oek0i � ık;k0pk, and the distribution functions of electrons hOe�

k Oek0i � ık;k0ne;k and

holes hOh�
k
Ohk0i � ık;k0nh;k, the mean-field Hamiltonian OHMF

S is obtained as

OHMF
S D

X

k

� Q�e;k Oe�
k Oek C Q�h;k Oh�

k
Ohk � Œ�k Oe�

k
Oh�

�k C H:c:�
�

C
X

k

�
�ph;k Oa�

k Oak � Œgpk Oa�
0 C g�p�

k Oa0�
�

: (16.4)

Here, constants are ignored because the following discussion is not affected. Q�e.h/;k

and �ph;k are respectively defined as Q�e.h/;k � Q�e.h/;k��=2 and �ph;k � �ph;k��, where
Q�e.h/;k � �e.h/;k �Pk0 U0

k�k0ne.h/;k0 denotes the energy dispersion of electrons (holes)
renormalized by the repulsive electron-electron (hole-hole) Coulomb interaction,
the first (second) term in Eq. (16.2). The well-known bandgap renormalization
(BGR) in semiconductor physics is included in Q�e.h/;k. In contrast, �k � g�a0 CP

k0 U0
k�k0pk0 results from the attractive electron-hole Coulomb interaction, the third

term in Eq. (16.2), and is called the generalized Rabi frequency [25]. �k has a role
in forming e-h pairs as can be seen in Eq. (16.4).

The mean-field Hamiltonian is thus obtained. However, note that the expectation
values of h OOi (i.e. a0, pk, ne;k, and nh;k) are included in OHMF

S . For self-consistensy,
therefore, the following relation should be satisfied :

h OOi D TrŒ OO O�MF.h OOi/�: (16.5)

Here, O�MF is the density operator determiend by using OHMF
S . The BCS theory and

the MSBE shown below are obtained from this self-consistent equation.

16.2.3 BCS Theory for Exciton-Polariton Condensation

First, we assume that the exciton-polariton system is in equilibrium. According to
the equilibrium statistical mechanics, the density operator O�MF at temperature T can
be described as

O�MF D O�MF
eq � 1

Z
exp.�ˇ OHMF

S /; (16.6)

where Z � TrŒexp.�ˇ OHMF
S /� and ˇ � 1=T . In this case, � is a given parameter

equivalent to the chemical potential, as mentioned above. With �e;k D �h;k for
simplicity, the self-consistent equations obtained from Eq. (16.4) to (16.6) are

a0 D
X

k0

g

�ph;0

pk0 ; pk D �k

2Ek
tanh

�
ˇEk

2

�
; (16.7)
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ne;k D nh;k D 1

2

(
1 �

Q�C
eh;k

Ek
tanh

�
ˇEk

2

�)
; (16.8)

where Q�ėh;k � . Q�e;k ˙ Q�h;k/=2 and Ek � Œ. Q�C
eh;k/

2 C j�kj2�1=2. In the derivation,

Bogoliubov transformations of Oek and Ohk can be applied to the first line in Eq. (16.4)
for diagonalization, while a displacement of Oa0 to the second line, because the
Hilbert space of the first (second) line of Eq. (16.4) is spanned only by the electron
and hole (photon) degrees of freedom.

The gap equation, which is formally equivalent to the BCS theory for supercon-
ductors, can then be obtained by substituting Eq. (16.7) into the definition of �k:

�k D
X

k0

Ueff
k0;k

�k0

2Ek0

tanh

�
ˇEk0

2

�
: (16.9)

In this context, �k is an order parameter in the exciton-polariton system as well as
in the superconducting system. Ueff

k0;k � jgj2=�ph;0 C U0
k0�k represents an effective

attractive e-h interaction, from which one can find that photon-mediated process
also contributes the attractive interaction. Notice that Eqs. (16.8) and (16.9) are
simultaneous equations with the unknown variables ne;k.D nh;k/ and �k. Especially
for T D 0, this treatment is known to cover the equilibrium phases from the BEC to
the BCS states [14, 15, 26].

16.2.4 MSBE for Semiconductor Lasers

Next, a treatment based on the MSBE is explained for the discussion of the
semiconductor laser, which is characterized by nonequilibrium. In contrast to the
BCS theory, therefore, the effects of environments (Fig. 16.4) cannot be neglected
for lasing; the excitation and thermalization of the e-h system and the loss of photons
from the microcavity. For this reason, the dynamics of the total density operator O�MF

is discussed by writing the total mean-field Hamiltonian OHMF � OHMF
S C OE with the

couplings to the environments OE. Since i@t O�MF D Œ OHMF; O�MF� in the Schrödinger
picture, a time drivative of Eq. (16.5) yields

i@th OOi D TrŒŒ OO; OHMF
S � O�MF� C TrŒŒ OO; OE� O�MF�; (16.10)

where TrŒ OA OB� D TrŒ OB OA� is used. The MSBE is then obtained when the first term
is derived from Eq. (16.4) and the second term is replaced by phenomenological
relaxation terms:
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Fig. 16.4 A schematic
picture of the model
including environments. The
e-h system is excited and
thermalized by the pumping
baths by exchanging carriers.
Photons in the system are lost
into the vacuum

@ta0 D �i�ph;0a0 C ig
P

kpk � 	a0; (16.11)

@tpk D �2i Q�C
eh;kpk � i�kNk � 2
.pk � p0

k/; (16.12)

@tne.h/;k D �2ImŒ�kp�
k � � 2
.ne.h/;k � n0

e.h/;k/; (16.13)

where the last term in each equation is the relaxation term and Nk � ne;k C nh;k � 1

denotes the degree of the population inversion.4 p0
k and n0

e.h/;k are defined as

p0
k � 0; n0

e.h/;k � fe.h/;k (16.14)

where fe.h/;k � Œ1 C expfˇ.Q�e.h/;k � �B
e.h//g��1 is the Fermi distribution with the

chemical potential �B
e.h/ of the electron (hole) pumping bath. The phenomenological

approximation shown here is called the relaxation approximation [27]. Each relax-
ation term suggests that the photon field a0 decays with a rate of 	, the distribution
function ne.h/;k is driven to approach the Fermi distribution fe.h/;k (Fig. 16.5), i.e.
thermalization (Fig. 16.1), and pk decays due to thermalization-induced dephasing.

Solutions for the laser action can then be obtained by determining the unknown
variables a0, pk, ne;k, nh;k, and � in Eqs. (16.11), (16.12) and (16.13) under a steady-
state condition @th OOi D 0. Again, we emphasize that � is a unknown variable
corresponding to the laser frequency in the steady-state MSBE, in contrast to the
BCS theory. This is equivalent to find an appropriate frequency with which the
lasing oscillation of a0 and pk seems to remain stationary on the rotating frame.

4Here, �1 � Nk � C1 because 0 � ne.h/;k � 1. Population inversion is formed in k-resions with
Nk > 0.
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Fig. 16.5 Energy dispersions
of electrons and holes. The
distribution functions ne;k and
nh;k are driven to approach the
Fermi distributions by the
respective pumping baths

16.3 BEC-BCS-LASER Crossover Theory

In the exciton-polariton system, as shown in Sect. 16.2, the BCS theory and the
MSBE are theoretical frameworks starting from the common Hamiltonians with the
same mean-field approximation. However, the difference is the way of deriving the
self-consistent equations. In the case of the BCS theory, O�MF is directly described
by OHMF

S (Eq. (16.6)). In contrast, in the case of the MSBE, Eq. (16.10) is used
to introduce the phenomenological relaxation terms. We note, however, that any
assumption is not used for O�MF in Eq. (16.10), which indicates that the MSBE may
incorporate the BCS theory at least in principle.

In this context, an approach to derive the BCS theory from the MSBE should be
discussed briefly. We first consider a situation where the effects of the environments
are completely neglected, which is equivalent to set 	 D 
 D 0 in the MSBE.
However, in this case, the BCS theory cannnot be derived because there is no
term to drive the system into equilibrium in the MSBE.5 A natural condition to
consider is physically a limit of 
 ! 0C after 	 ! 0 because the system should be
thermalized even though the effects of environments are decreased. Unfortunately,
however, the MSBE does not recover the BCS theory even by taking this limit. The
relationship between the BCS theory and the MSBE is thus discontinuous in spite of

5For 	 D 
 D 0, the steady state of the MSBE becomes identical to the BCS theory if the solution
of the BCS theory is chosen as an initial condition in the MSBE because Œ O�MF

eq ; OHMF
S � D 0. However,

this is a special case.
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the similarities of the two frameworks. Obviously, the phenomenological relaxation
approximation causes such a problem.

In regard to this problem, we have recently constructed a unified framework [19]
by using a nonequilibrium Green’s function approach [21–23]. The framework, at
first, takes an integral form of simultaneous equations and seems quite different
from the MSBE (see also Appendix 2). However, by rearranging the equations with
particular attention to the problem mentioned above, all of important changes can
successfully be incorporated in the relaxation terms in the MSBE [20]. The result
simply replaces Eq. (16.14) by

p0
k � i

Z
d�

2�

�
GR

12;k.�/f1 � f B
h .��/g � GR�

21;k.�/f B
e .�/

�
;

n0
e.h/;k �

Z
d�

2�
f B
e.h/.�/A11.22/.˙�I k/; (16.140)

where f B
e.h/.�/ � Œexpfˇ.� � �B

e.h/ C �=2/g C 1��1 is the Fermi distribution of the

electron (hole) pumping bath. GR
’’0;k.�/ is called the retarded Green’s function and

described by elements of a matrix

GR
k .�/ D

�
� � Q�e;k C i
 �k

��
k � C Q�h;k C i


��1

: (16.15)

On the other hand, A11.22/.�I k/ is called the single-particle spectral function and
defined as

A˛˛0.�I k/ � i.GR
˛˛0;k.�/ � GR�

˛0˛;k.�//: (16.16)

Here, A11.22/.�I k/ means the density of states for electron-like (hole-like) quasi-
particles with the energy � and wave number k.

Some readers might feel difficult to understand the formalism because the above
definitions are unique to the Green’s function approach. However, all we have to
do is the replacement of Eq. (16.14) by Eq. (16.140). The unknown variables are
still a0, pk, ne;k, nh;k, and �, that is, the same as the MSBE. In this sense, the
obtained equations are quite simple, which is one of strong points of this formalism.
From the viewpoint of the Green’s funciton, it is relatively easy to understand
the physical meaning of Eq. (16.140) due to the clear form; the energy integral of
(distribution)�(density of states).6 We refer to such a formalism as the BEC-BCS-
LASER crossover theory.

Now, this formalism enables us to cleary understand the standpoint of the BCS
theory. For this purpose, let us discuss the limit of equilibrium, based on the idea
described above. In the followings, however, �e;k D �h;k and a charge neutrality

6The retarded Green’s funcition is also seen as a kind of density of states.
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�B
e D �B

h are assumed for simplicity. First, in the limit of 	 ! 0, one can prove
� D �B.� �B

e C �B
h /. This is the same as treating � as a given parameter, and

physically, means that the system reaches in chemical equilibrium with the pumping
baths because there is no photon loss. The BCS theory is then derived after taking the
limit of 
 ! 0C, where the integrals in Eq. (16.140) can be performed analytically.
In this derivation, 
 ¤ 0 is required to be canceled down even though 
 does not
appear in the final expression. This means that thermalization is essential to recover
the equilibrium theory.

Thus, the BCS theory can be derived from the presented theory in the equilibrium
limit. However, in some sense, this situation is physically trivial; the situation is
not limited to such a trivial one for the system to be in equilibrium. Even under a
condition where photons are continuously lost, it may be still possible to identify
the system as being in equilibrium (quasi-equilibrium) as long as the e-h system
is excited and thermalized. A true advantage of the above-presented framework
becomes obvious in such a situation rather than in the trivial one. In this case,
� is still equivalent to the chemical potential but �B > � because the system
is influenced by the photon loss. As a result, � becomes a unknown variable
again. Furthermore, such a quasi-equilibrium condition can easily be obtained from
Eqs. (16.140) to (16.16) as7

.I/ minŒ2Ek� & �B � � C 2
 C 2T:

Here, minŒ2Ek� is the minimum energy required for breaking e-h bound pairs and
�B � � > 0 suggests that there is continuous particle flow from the pumping baths
into the system.8 We can then interpret the condition (I); this is a condition that the
particle flux, thermalization-induced dephasing (= 2
 ), and temperature effect (=
2T), do not contribute to the dissociations of the e-h pairs.

However, the system can no longer be in quasi-equilibrium when nonequilibrium
effect becomes significant. Let us therefore consider a situation where the MSBE,
i.e. the physics of the semiconductor laser, becomes important. Such a condition can
be found from Eqs. (16.140) to (16.16) as

.II/ �B � � & minŒ2Ek� C 2
 C 2T;

because f B
e.h/.˙�/ ' f B

e.h/.
Q�C
eh;k/ turns out to be a good approximation in Eq. (16.140)

for k-resions satisfying

.II0/ �B � � & 2Ek C 2
 C 2T:

7 Under the condition (I), f B
e.h/.�/ in Eq. (16.140) can be approximated by the values at � D ˙Ek

because A˛˛0 .�I k/ and GR
˛˛0 ;k.�/ have peaks around � D ˙Ek, as seen in Eqs. (16.17) and (16.33).

8This means that the system is chemically non-equilibrium with the pumping baths even if the
system is in quasi-equilibrium.
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Note that there are such k-resions whenever the condition (II) is fulfilled. As a result,
we can obtain p0

k Š 0 and n0
e.h/;k Š fe.h/;k which recovers the MSBE. However, we

stress that the condition (II0) depends on the wave number k; there remain k-regions
still described by the BCS theory. The MSBE and the BCS theory are, thus, coupled
with each other in a strict sense. In this context, the lasing can be referred to as
the BCS-coupled lasing when this viewpoint is emphasized. At the same time, the
physical meaning of � changes into the oscillating frequency of the laser action.

16.4 Second Thresholds, Band Renormalization, and Gain
Spectra

Figure 16.6 shows the number of coherent photons in the cavity ja0j2 and the
frequancy � as a function of �B calculated by our formalism.9 Plots are colour
coded by red (blue) when the quasi-equilibrium condition (I) (the lasing condition
(II)) is satisfied, while by green when neither of the conditions is satisfied. In
Fig. 16.6a, ja0j2 arises with increasing �B, the point of which is called the first
threshold. In this situation, the system is in quasi-equilibrium regime (red) and �

is around the lower polariton level10 ELP in Fig. 16.6b. The first threshold therefore
means that the exciton-polariton BEC is caused because the chemical potential of
the system reaches the lowest energy of the exciton polariton, ELP.

With further increase of �B, the system changes from the quasi-equilibrium
regime (red) into the lasing regime (blue) through a crossover regime (green).
Around the crossover regime in Fig. 16.6a, a second threshold can be seen where the
number of coherent photons grows rapidly again. � is then blue-shifted from ELP

into the bare cavity level Ecav. Furthermore, the kinetic hole burning can be seen in
the distribution function of electrons ne;k (the blue arrow in the inset to Fig. 16.6a).
These resuls demonstrate that the exciton-polariton BEC has smoothly changed into
the semiconductor laser with the second threshold.

In experiments [28–34], the second threshold and the blue shift has been reported
since more than 10 years ago, the mechanism of which has been attributed to a

9 In the numerical calculations, the k-dependence of �k is eliminated by using a contact potential
U0

q¤0
D U D 2:66 � 10�10 eV with cut-off wave number kc D 1:36 � 109 m�1. The other

parameters are me D mh D 0:068m0 (m0 is the free electron mass), �B
e D �B

h , T D 10 K,
g D 6:29 � 10�7 eV, 
 D 4 meV, and 	 D 100eV. In this context, our calculations are not
quantitative but qualitative even though the parameters are taken as realistic as possible. In this
situation, the exciton level (� Eex) is formed at 10 meV below Eg (Eex D Eg � 10 meV) and the
lower polariton level ELP is created at 20 meV below Eg (ELP D Eg � 20 meV) under the resonant
condition Ecav D Eex [20].
10For ELP and Eex, see also Appendix 1. Excitonic effects are discussed in the low density limit.
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Fig. 16.6 Numerical results of (a) the coherent photon number in the cavity ja0j2 and (b) the
frequency � as a function of �B. Plots are colour coded by red and blue when satisfying the quasi-
equilibrium condition (I) and the lasing condition (II), respectively. Green colours are used when
neither of them are satisfied. � represents the chemical potential in the quasi-equilibrium regime
(red) but the laser frequency in the lasing regime (blue). Inset: the distribution function of electrons
ne;k (black) and the polarization pk (red). In the lasing regime (B), a characteristic dip can be seen
in the distribution (the bule arrow), which is known as one of the signatures of lasing and called
the kinetic hole burning

shift into the weak coupling regime due to dissociations of Coulomb-bound e-h
pairs (excitons); the lasing phase is then achieved as a result. However, there is no
convincing discussion why such dissociations lead to nonequilibration essential for
lasing.

According to our formalism, this empirical picture can be investigated and shown
to be incorrect. This is because, even in the lasing regime, there are gaps around
˙�=2 in the renormalized band structure as shown in the left of Fig. 16.7. An
analytical form of A11.22/.�I k/, obtained by Eqs. (16.15) and (16.16), enables us
to conveniently study the renormalized band:

A11.22/.�I k/ D 2jukj2 


.� � Q��
eh;k � Ek/2 C 
2

C 2jvkj2 


.� � Q��
eh;k ˙ Ek/2 C 
2

:

(16.17)
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Fig. 16.7 Left; A renormalized band structure in a lasing phase (the point B in Fig. 16.6). The
gaps are opened around ˙�=2 with the magnitude of minŒ2Ek�. Right; Optical gain spectra for the
exciton-polariton BEC (A) and for the lasing phase (B). Panels (A) and (B) correspond to the point
A and B in Fig. 16.6, respectively. Aqua (pink) represents the gain (absorption) (Panels (A) and (B)
are reproduced with permission from [20])

Here, uk and vk are the Bogoliubov coefficients defined as

uk �
s

1

2
C

Q�C
eh;k

2Ek
; vk � ei�k

s
1

2
�

Q�C
eh;k

2Ek
; (16.18)

with �k � arg.�k/. These equations have remarkable similarities to the BCS theory
in superconductors [20, 35]. Therefore, it is clear that the gaps are opened around
˙�=2 with the magnitude of minŒ2Ek� when Q��

eh;k D 0 i.e. �e;k D �h;k with �B
e D �B

h .
Note, however, that the unknown variables contained in Eqs. (16.17) and (16.18) are
determined by the BEC-BCS-LASER crossover theory (Eqs. (16.11), (16.12) and
(16.13) with Eqs. (16.140), (16.15) and (16.16)) rather than the BCS theory. In the
BCS phase, the existence of the gap around ˙�=2 means the formation of Cooper
pairs around the Fermi level because ˙�=2 is equivalent to the Fermi level. In
contrast, in the lasing phase, ˙�=2 corresponds to the laser frequency.11 Thus, the
gap indicates the formation of bound e-h pairs by mediating photons around the
laser frequency. The semiconductor laser in Fig. 16.3 is drawn along this picture,
where the e-h pairs are explicitly depicted.

Such a “lasing gap” is, at least in principle, measureable in the optical gain
spectrum G.!/ by irradiating probe light with frequency ! because G.!/ is

11The origin of the gap is analogous to the Rabi splitting in resonance fluorescence [20, 27, 36, 37].
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strongly affected by the renormalized band structure in general. As a result, in the
gain spectrum of the lasing phase (Fig. 16.7B), there appears a transparent region
originating from the gap. The optical gain spectrum is thus one of important ways
for the verification of the lasing gap.

In addition, we note that behaviors of the gain spectra vary drastically when the
exciton-polariton BEC is changed to the laser phase. By comparing Fig. 16.7A, B,
for example, one can find only absorption but no gain in Fig. 16.7A. This is mainly
because there is no k-region with inverted population Nk > 0 ., nh;k D ne;k > 0:5/

in Fig. 16.6A. In contrast, optical gain is caused in Fig. 16.7B because there are k-
regions with Nk > 0 in Fig. 16.6B. Thus, the existence of the gain after the second
threshold gives us important information to identify the phases in the system.12

16.5 Conclusions and Perspectives

In this contribution, we have presented a brief explanation of the BCS theory
and the MSBE in the exciton-polariton system, to highlight their similarities and
differences. We have then shown a framework of describing the BCS theory (the
BEC and BCS phases) and the MSBE (the semiconductor laser) in a unified way.
As a result, the existence of bound e-h pairs in the lasing phase as well as the lasing
gap have been pointed out. The results presented here are the physics elucidated
for the first time by considering the BEC, BCS, and Laser phases in a unified way.
However, for example, effects of spontaneous emission [36] and pure dephasing [38]
are still unclear. In this respect, further studies are needed for a full understanding of
this system. Experimantal studies are also important, in particular, in a high density
regime [28–34, 39].

Although we have focused on the exciton-polariton system in this contribution,
we finally would like to emphasize that this system has a close relationship
with superconductors and the Feshbach resonance in cold atom systems because
interacting Fermi and Bose particles play important roles in the formation of ordered
phases. In this sense, it would be interesting to study the lasing gap by terahertz
pulses in a manner similar to superconductors [40, 41]. Inclusions of the e-h center-
of-mass fluctuations with mass imbalance are also important, as discussed in the
cold atom systems [42], because these effects cannot be taken into account within
the mean-field approximation. We further note that fundamental problems of the
nonequilibrium statistical physics are also included in this system in the sense of
providing a bridge between the equilibrium and the nonequilibrium phases. We hope
that our approach also stimulates new studies in a wide range of such fields.

12In fact, the second threshold and the blue-shift can also be caused by a different mechanism even
if the system remains in quasi-equilibrium. In this situation, however, the gain spectrum shows
only absorption [19].
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Appendix 1: Excitonic Effects in the Low Density Limit

In semiconductor exciton-polariton systems, the excitonic effects play quite impor-
tant roles in the formation of Coulomb-bound e-h pairs (excitons) and exciton-
polaritons. In this Appendix, we, therefore, confirm the excitonic effects in our
formalism.13

For this purpose, we now assume that the density of electrons and holes are
sufficiently low (ne;k; nh;k � 1 or Nk Š �1) with no pumping and loss (
 D 0

and 	 D 0). Under this condition, 2 Q�C
eh;k in Eq. (16.12) can be written as

2 Q�C
eh;k D �e;k C �h;k � � D k2

2mr
C Eg � �; (16.19)

where 1=mr D 1=me C 1=mh. Then, Eqs. (16.11) and (16.12) can be described as

0 D �.�ph;0 � �/a0 C g
X

k

pk; (16.20)

0 D �
�

k2

2mr
C Eg � �

�
pk C g�a0 C

X

k0

U0
k0�kpk0 ; (16.21)

where the definition of �k � g�a0 CP
k0 U0

k�k0pk0 is used. Especially, for g D 0 in
Eq. (16.21), we obtain

k2

2mr
pk �

X

k0

U0
k0�kpk0 D �.Eg � �/pk; (16.22)

which is nothing but the SchrRodinger equation in k-space for the single exciton
bound state [19, 25, 26]. This means that the Coulomb-bound e-h pairs (excitons)
can be formed in the low density limit in the presented formalism. In such a case,
pk can be described by the bound state e-h pair wave-function �k (pk D ��k withP

k j�kj2 D 1) with � D Eex, where Eex is the energy level of the exciton and
the binding energy corresponds to Eg � Eex. The formation of the exciton is, thus,
includeed in the theory.

13Discussion in Appendix 1 is reproduced from the supplemental material in Ref. [20].
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Although pk is changed from the exciton wave-function �k by the photon-
mediated attraction in the case of g ¤ 0, it is instructive to consider the case where
such an effect is not so large. In this limit, by substituting pk Š ��k into Eqs. (16.20)
and (16.21), we obtain

0 D .� � Ecav/a0 C gex�; (16.23)

0 D .� � Eex/� C g�
exa0; (16.24)

where gex � g
P

k �k D g�ex.r D 0/ is the coupling constant renormalized by
the exciton wave-function. Then, � is given by one of the eigenvalues of these two
coupled equations, which are the eigen-energies of the upper and lower polaritons:

EUP=LP D Ecav C Eex ˙p
.Ecav � Eex/2 C 4jgexj2

2
: (16.25)

Here, EUP and ELP in Eq. (16.25) are the well-known expressions obtained when
the excitons are treated as simple bosons [25]. This means that the formation of
exciton-polaritons are also included in the theory. The excitonic effects are, thus,
taken into account in our formalism within the mean-field approximation. We note
that the procedure shown here is basically the same as Section 2.1.2 in Ref. [19].

Appendix 2: Proof of Equivalence

In the main text, we have mentioned that the formalism in Ref. [19] seems quite
different from the MSBE. This formalism can be described by the follwoing
simultaneous equations with the unknown variables of �k, ne;k, nh;k, and �:

�k D
X

k0

Ueff;	
k0;k �k0

Z 1

�1
d�

2�
Lk0.�/

�
n
.FB

e .�/ C FB
h .�//.� � Q��

eh;k0/ C .FB
e .�/ � FB

h .�//. Q�C
eh;k0 C i
/

o
; (16.26)

ne.h/;k D 1

2
�
Z 1

�1
d�

2�
Lk.�/

n
FB

e.h/.�/Œ.� ˙ Q�h.e/;k/
2 C 
2� C FB

h.e/.�/j�kj2
o

;

(16.27)
where Ueff;	

k0;k � jgj2=.�ph;0 � i	/ C U0
k0�k and

Lk.�/ � 


Œ.� � Q��
eh;k � Ek/2 C 
2�Œ.� � Q��

eh;k C Ek/2 C 
2�
: (16.28)



16 Equilibrium to Nonequilibrium Condensation in Driven-Dissipative Systems 357

FB
e .�/ and FB

h .�/ are respectively defined as

FB
e .�/ � tanh

�
ˇŒ� � �B

e C �=2�

2

�
D 1 � 2f B

e .�/; (16.29)

FB
h .�/ � tanh

�
ˇŒ� C �B

h � �=2�

2

�
D 2f B

h .��/ � 1: (16.30)

In this Appendix 2, therefore, we prove that Eqs. (16.26), (16.27), (16.28), (16.29)
and (16.30) are equivalent to Eqs. (16.11), (16.12) and (16.13) with Eqs. (16.140),
(16.15) and (16.16) under the steady-state condition @th OOi D 0.

For this purpose, we here note that the following sum rule is satisfied for the
single-partice spectral function:

Z 1

�1
d�

2�
A˛˛0.�I k/ D ı˛;˛0 : (16.31)

This relation can be confirmed by the direct integration of A˛˛0.�I k/ described by
elements of a matrix

A.�I k/ D �2

jDk.�/j2
�

ImŒD�
k .�/.� C Q�h;k C i
/� ImŒDk.�/��k

ImŒDk.�/���
k ImŒD�

k .�/.� � Q�e;k C i
/�

�

D �2


jDk.�/j2
 

�Œ.� C Q�h;k/
2 C 
2 C j�kj2� 2�k.� � Q��

eh;k/

2��
k .� � Q��

eh;k/ �Œ.� � Q�e;k/
2 C 
2 C j�kj2�

!
;

(16.32)

which is obtained from the definition of Eq. (16.16) with Eq. (16.15):

GR
k .�/ D 1

jDk.�/j2
�

D�
k .�/.� C Q�h;k C i
/ �D�

k .�/�k

�D�
k .�/��

k D�
k .�/.� � Q�e;k C i
/

�
; (16.33)

where

Dk.�/ � .� � Q��
eh;k C Ek C i
/.� � Q��

eh;k � Ek C i
/: (16.34)

The diagonal element A11.22/.�I k/ can then be described as Eq. (16.17). In the
following, by using thse expressions, Eqs. (16.26) and (16.27) are derived from
Eqs. (16.11), (16.12) and (16.13) with Eqs. (16.140), (16.15) and (16.16).

�-integral forms of Nk and pk: First, we discuss �-integral forms of the population
inversion Nk � ne;k C nh;k � 1 and the polarization function pk because Eqs. (16.26)
and (16.27) are described by the integration with respect to �. From Eqs. (16.13)
and (16.140) with @tne.h/;k D 0, we obtain
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Nk D � 2



ImŒ�kp�

k � C
Z 1

�1
d�

2�

˚
f B
e .�/A11.�I k/ � .1 � f B

h .��//A22.�I k/
�

:

(16.35)
where Eq. (16.31) is used. In a similar manner, from Eqs. (16.12) and (16.140) with
@tpk D 0,

pk D � �k

2. Q�C
eh;k � i
/

Nk

C 


Q�C
eh;k � i


Z 1

�1
d�

2�

˚
Œ1 � f B

h .��/�GR
12.�I k/ � f B

e .�/GR�
21 .�I k/

�
: (16.36)

Therefore, with Eqs. (16.32) and (16.33), substitution of Eq. (16.36) into Eq. (16.35)
yields

Nk D
Z 1

�1
d�

2�

2


jDk.�/j2
n
f B
e .�/Œ.� C Q�h;k/

2 � j�kj2 C 
2�

CŒf B
h .��/ � 1�Œ.� � Q�e;k/

2 � j�kj2 C 
2�
o

: (16.37)

By substituting Eq. (16.37) into Eq. (16.36), we also find

pk D �k

Z 1

�1
d�

2�

2


jDk.�/j2
n
Œf B

h .��/ � 1�.� � Q�e;k � i
/ � f B
e .�/.� C Q�h;k C i
/

o
:

(16.38)
Although the derivation of Eqs. (16.37) and (16.38) is straightforward, the following
equations would be useful in the derivation:

˙j�kj2 ImŒDk.�/. Q�C
eh;k � i
/�C.Œ Q�C

eh;k�
2 C 
2/ ImŒD�

k .�/.� � Q�e.h/;k C i
/�

D �
.E2
k C 
2/..� � Q�e.h/;k/

2 � j�kj2 C 
2/;

(16.39)

.� C Q�h/2 � j�kj2 C 
2 � Dk.�/ D 2. Q�C
eh;k � i
/.� C Q�h C i
/; (16.40)

.� � Q�e/
2 � j�kj2 C 
2 � D�

k .�/ D �2. Q�C
eh;k � i
/.� � Q�e � i
/: (16.41)

The �-integral forms of Nk and pk are thus obtained as Eqs. (16.37) and (16.38),
respectively. These expressions are helpful to find the �-integral forms of �k, ne;k,
and nh;k, which turn out to be the same as Eqs. (16.26), (16.27), (16.28), (16.29),
and (16.30), as shown below.

Derivation of �k: From the definition of �k � g�a0 C P
k0 U0

k�k0pk0 and
Eq. (16.11) with @ta0 D 0, �k can be described as
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�k D
X

k0

	 jgj2
�ph;0 � i	

C U0
k0�k



pk0 D

X

k0

Ueff;	
k0;k pk0 : (16.42)

Therefore, after the substitution of Eq. (16.38) into Eq. (16.42), we obtain

�k D
X

k0

Ueff;	
k0;k �k0

Z 1

�1
d�

2�
Lk0.�/

n
ŒFB

h .�/ � 1�Œ� � Q�e;k0 � i
�

CŒFB
e .�/ � 1�Œ� C Q�h;k0 C i
�

o
; (16.43)

where the definitions of Eqs. (16.28), (16.29) and (16.30) are used with Lk.�/ D

=jDk.�/j2. This equation can be rewritten as

�k D
X

k0

Ueff;	
k0;k �k0

Z 1

�1
d�

2�
Lk0.�/

n
.FB

e .�/ C FB
h .�/ � 2/.� � Q��

eh;k0/

C .FB
e .�/ � FB

h .�//. Q�C
eh;k0 C i
/

o
: (16.44)

By noting
R

d�
2�

Lk0.�/.� � Q��
eh;k0/ D 0, we thus find that Eq. (16.44) is equivalent to

Eq. (16.26).

Derivation of ne;k and nh;k: Our remaining task is now to derive the �-integral
forms of ne;k and nh;k. By multiplying �k by the complex conjugate of Eq. (16.38),

1



ImŒ�kp�

k � D j�kj2
Z 1

�1
d�

2�

2


jDk.�/j2 ff B
e .�/ C f B

h .��/ � 1g; (16.45)

can be obtained. The substitution of Eq. (16.45) into Eq. (16.13) with @tne.h/;k D 0,
then, yields

ne.h/;k D
Z 1

�1
d�

2�

2


jDk.�/j2
n
Œ.� ˙ Q�h.e/;k/

2 C 
2�f B
e.h/.˙�/

�j�kj2Œf B
h.e/.��/ � 1�

o
; (16.46)

which can be rewritten as

ne.h/;k D
Z 1

�1
d�

2�
Lk.�/

n
Œ.� ˙ Q�h.e/;k/

2 C 
2 C j�kj2�

�Œ.� ˙ Q�h.e/;k/
2 C 
2�FB

e.h/.�/ � j�kj2FB
h.e/.�/

o
: (16.47)
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We then find that Eq. (16.47) is identical to Eq. (16.27) because, from Eqs. (16.31)
and (16.32),

Z 1

�1
d�

2�
Lk.�/Œ.� ˙ Q�h.e/;k/

2 C 
2 C j�kj2� D 1

2
: (16.48)

Thus, we have shown that Eqs. (16.26) and (16.27) are derived from Eqs. (16.11),
(16.12) and (16.13) with Eqs. (16.14), (16.140), (16.15) and (16.16). This means
that the formalism in Ref. [19] is equivalent to Eqs. (16.11), (16.12) and (16.13)
with Eqs. (16.140), (16.15) and (16.16).
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