Chapter 1
Quantum Information Theory for Quantum
Communication

Masato Koashi

1.1 Basic Rules of Quantum Mechanics

We begin by listing a basic set of rules from which all statements in this section
should be derived. The choice of this set is by no means unique, and the selection
of the properties of quantum mechanics that are used as basic rules, leaving the rest
as derived rules, is actually a matter of preference. Our choice here comprises five
rules describing states, transformations, measurements, compositions, and causality.

The first of these rules covers the description of the states of a physical system.
We call a state pure when it is impossible to regard that state as a probabilistic
mixture of two or more different! states.

Rule 1 A physical system is associated with a Hilbert space .. Every pure state
of this system is represented by a normalized vector |¢) € 7. For any
normalized vector |{) € 2, it is possible to prepare the system in the
state represented by |y/).

To avoid complications, we assume in this section that the dimension d =
dim # of the Hilbert space is finite.> A physical system with a Hilbert space of
dimension d is often called a d-level system. Rule 1 dictates that any appropriate

I'The operational meaning of two states being different is that a measurement exists on the physical
system that can show the difference statistically.

Rule 1 also implies that we exclude any cases where a physical law such as the superselection
rule imposes an additional restriction on the preparable states.
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instruction for preparation of the physical system leads to either a pure state
represented by a single vector |¢) or a mixed state represented by an ensemble
{(p;, |¢;))}, which designates the situation where the system is prepared in state |¢;)
with probability p;. In either case, the representation is not unique: |¢) and € |¢)
represent the same pure physical state. The different descriptions {(p;, |¢;))} and
{(gi, |¥;))} may both refer to the same mixed state. We will introduce an alternative
representation of the states, which is unique, in Sect. 1.2.

The next two rules cover the input-output relations of feasible operations on a
physical system prepared in state |¢;,). A state transformation refers to the case
where the output is the quantum state |¢oy) of the system after the operation. Rule 2
dictates the feasibility of unitary transformations, which are, in a sense, a basic set
of transformations.

Rule 2  For any unitary operator U on #, it is possible to implement a state
transformation where every input state |¢i,) € JZ evolves into state

|¢out) = U|¢in>~
When the output is a classical variable, we are then referring to a measurement. Rule
3 covers a basic set of measurements called (complete) orthogonal measurements.

Rule 3 For any orthonormal basis {|u;) };=1,.4 of S, it is possible to implement a
measurement that produces the outcome j = 1, ... d with probability p; =
|(uj|¢in) |* when the system is in state |¢i,) € # before the measurement
is performed.

In this rule, we are not interested in the state of the measured system after the
measurement is performed. The two rules above only refer to the feasibility of the
limited sets of transformations and measurements. In general, a much wider variety
of operations should be available on a physical system, and we will see the whole
landscape of these operations in Sect. 1.4.

The next rule is a very special rule that allows us to weave the threads of Rules
1, 2 and 3 into a texture of quantum information with dazzling patterns and colors.
This rule tells us how to apply the three rules above when dealing with multiple
physical systems. Consider two physical systems, A and B, which are independently
accessible. For example, the two systems are well separated in space, meaning that
one can freely operate on system A without affecting system B at all. We may call
this type of operation local. In this case, we can treat the whole of systems A and B
together as a single physical system (a composite system AB), or can focus on one
of the two systems (a subsystem) with no interest in the other. Rule 4 provides the
connection between these different viewpoints.

Rule 4  Suppose that the subsystems A and B are associated with the Hilbert spaces
¢, and 73, respectively. The composite system AB is then associated
with a tensor-product space %4 = 4 ® 3. Local operations (e.g.,
state preparations, state transformations, measurements) are represented
by the appropriate tensor products.

Specifically, preparation of system A in state |¢)4 € 7 and system B in state
|¥)p € ¢ is equivalent to the preparation of a composite system AB in state
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|pYa ® |Y)p € F#4ip. The state that can be written in this form is called a
product state, and is often abbreviated as |@)a|¥)p or even |¢py)ap. The unitary
transformations Uy on system A and V5 on B result in the unitary transformation
Uy ® Vg on the composite system AB. Performing an orthogonal measurement with
basis {|u;)a}i=1,. 4 on system A and another with basis {|v;)p};=1,..4 on system B
can be regarded as the performance of a single orthogonal measurement, where the
outcome is represented by two numbers (i, ), carried out on the composite system
AB with the orthonormal basis {|u;)4 ® |vj)B} :::::d, of J#,p.

According to Rule 1, we should be able to prepare a state represented by any
vector |W)sp € F#4p, possibly by the tailoring of suitable interaction between
systems A and B. These vectors include, for example, (|u;)4|v1) 5+ |u2)4]v2)5)/ V2,
which can never be written in the form |§)4 ® |y)p. This type of state is called
entangled. Similarly, a unitary operator Ung acting on .%;p is not necessarily a
product Uy ® Vg, and the corresponding global unitary transformation should be
feasible. There are also global orthogonal measurements, for which the orthonormal
basis is composed of entangled state vectors.

Since the state of a composite system is not necessarily written as a product form,
the definition of ‘the state of a subsystem’ is something of a moot point. Here, we
adopt a definition with a clear operational meaning, called the marginal state of a
subsystem, which is simply the state that the subsystem would be in if we discard
all the other constituent subsystems. With regard to the marginal states, we assume
the following.

Rule 5 The marginal state of a subsystem is not changed by operating on other
subsystems, as long as no information on the outcome of the operation is
referred.

This rule is expected to hold because there would otherwise be a test on system A
alone that would give clues on what operations were performed on a remote system
B without any communication between them. The rule sets a limitation on the
physically allowed state transformations and measurements, which complements
the fact that Rules 2 and 3 merely dictate what we can at least do.

1.2 Density Operators

In classical mechanics, a mixed state is simply regarded as a way to formulate
an observer’s lack of knowledge of the true state of a system. In principle, it is
always possible to assume that there is an omnipotent observer who knows the
exact state (the pure state) of every system. In quantum mechanics, however, this
simple picture does not hold. When a composite system is in a pure state |¥)ap,
we cannot associate the state of the subsystem A with a single vector |¢)a € 4
unless |¥)p is a product state. Therefore, it is not always possible to assume that
every system is in a pure state at the same time. In this subsection, we determine
how we can represent the state of a subsystem when it is a part of a composite



6 M. Koashi

system in a pure state |¥),p. We will see that the intuitive representation using
an ensemble {(p;, |¢;))} is redundant in the sense that different descriptions may
refer to the same physical state. This motivates us to introduce a density operator to
offer a better representation in this respect. By using a helpful property of bipartite
pure states called Schmidt decomposition, we will show that there is a one-to-one
correspondence between the density operators and the physical states.

1.2.1 Measurement on a Subsystem

Suppose that the composite system AB is initially prepared in a pure state |¥)3,
and an orthogonal measurement with a basis {|v;)p}j=1,. « is then conducted on
subsystem B, producing an outcome j with a probability p;. Let us derive a rule to
calculate p; and identify the state of the subsystem A that is conditioned on the value
of j.

Our strategy is to observe what happens if we perform a measurement with
arbitrary basis {|u;)a}i=1...4 on system A. Regardless of the temporal order of the
measurements on A and B, Rules 3 and 4 dictate that the joint probability of the
two outcomes (i, ) is given by p;; = |(a(ui| ® 5(vj|)|¥)as|?. Let us introduce the
unnormalized vector |¢;)4 1= p(vj||¥)ap € 4. We then have p;; = |a(ui|¢;)al?
and p; = Z?zlp,j = Z?:l la(uild)al® = 1a(¢jl@;)al?. Using a normalized vector
|$j)a := |¢;)a/ \/Pj» We obtain an expression for the conditional probability, p;; :=
Pij/Pi = |a{uil$;)a|*. Because the choice of the basis {|u;)4}i=1, .4 Was arbitrary,
comparison of this relationship to Rule 3 shows that the state of the subsystem A
conditioned on the outcome j must be a pure state, which is represented by the
vector |¢;) 4. Noting that the measurement on A can be performed immediately after
the preparation of |W¥),p, we arrive at the following theorem.

Theorem 1. Suppose that a composite system AB is initially prepared in a pure

performed on subsystem B. The outcome j then occurs with probability p; and,
conditioned on j, the subsystem A behaves as if it was initially prepared in the pure
state |;)a, where

VPiloia = B(vi||¥)as (1.1)

holds.

1.2.2 Marginal State of a Subsystem

The argument in the previous subsection immediately provides a description of the
marginal state of the subsystem A when the composite system AB is prepared in the
pure state |W)4p. If the value of the outcome j of the measurement on subsystem B
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is unavailable, then the state of system A after the measurement can be described
by the ensemble {(p;, |$;)a)}j=1...«/» where the probabilities {p;} and the vectors
{|$;)a} are calculated from Eq. (1.1). From Rule 5, we see that the marginal state of
subsystem A before the measurement was performed is also {(p;, |$;)4)}j=1....a-

On the one hand, this description is helpful because it is sufficient to allow
calculation of the statistics of the outcomes of further operations on system A
alone. On the other hand, the argument above also shows that the description of
a mixed state by the ensemble is by no means unique. If we change the basis
{lvj)}j=1,..a of the measurement to another basis, then the description of the state
{®j, |¢j)a)}j=1...a also changes through Eq. (1.1). This new ensemble should also
be a valid representation of the same state.

the same mlxed state lf a blparme pure state |'J/)AB and orthonormal bases
{v))slj=1...r and {|vj)p}j=1. .« exist that satisfy

JEIG)a = sl [W)as and \Jpa = 5 (0]]1¥)an (1.2)

1.2.3 Density Operators

Consider a physical system that is associated with a Hilbert space .7#°, and let us
call an operator p : J# — S a density operator when it is positive (p > 0) and
of unit trace (Tr p = 1). We associate a mixed state of a system represented by the
ensemble {(q;, |i))}i=1...» with a density operator given by

b= aqilvi) (Wil (1.3)

One immediate benefit of this representation by the density operator is that the
marginal state that was discussed in Sect. 1.2.2 is represented by a unique density
operator, i.e.,

/ d/
pa =D _pil¢aaidl = Y pild)aa(d]| = Tra|¥)apas(¥| (1.4)

Jj=1 Jj=1

that holds under Eq. (1.2). This operator is called the marginal density operator of
system A for the whole state |¥)4p.

Because any positive operator p with a unit trace can be written in a diagonal
form p = ), Ailu;)(u;| using nonnegative eigenvalues {A;} with > A, = 1
and orthonormal eigenvectors {|u;)}, 0 is the density operator for an ensemble
{(A;, |u;))}i. Therefore, any density operator is associated with at least one physical
state.
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When an orthogonal measurement with a basis {|u;)}; is performed on a mixed
state {(g;, |¥i))}i, the probability of the outcome j is calculated using Rule 3 to be
pi = >, qil{(ui|¥i)|* = (u;|plu;). This shows that the statistics of the measurement
outcome depend only on the density operator. This also shows that each physical
state is associated with a single density operator. Consider two mixed states with
different density operators p and p'(# p). Because |u) € 2 exists with (u|(p —
P)|u) # 0, a measurement leading to different statistics between the two states
also exists. The two states are therefore distinct. This fact implies that the density
operator can be determined using a map from the set of physical states. As shown
earlier, this map is surjective.

The remaining question is whether this map is bijective. At this point, it might
not be injective, i.e., different mixed states could be associated with the same density
operator. We will provide the answer to this question in Sect. 1.2.5, after we discuss
the important properties of bipartite pure states in Sect. 1.2.4.

1.2.4 Properties of Bipartite Pure States

First, we consider how a general bipartite pure state |¥)4p can be written in terms
of the orthonormal bases {|u;)4}; and {|v;)p}; for the subsystems A and B. Because
{lui)alvj)p}ij is a basis of J#p, it is always possible to decompose |¥)4p as
|¥)ag = _;;cijluidalvj)p. The special aspect of bipartite states is that a much
simpler form of decomposition, |[¥)ag = D, ¢i|u;)a|vi)p, is available if we select
{lui)a}i and {|v;)p}; appropriately for the given vector |¥)4p. This decomposition
is called Schmidt decomposition, and it will be convenient to describe Schmidt
decomposition in the form of the following theorem.

Theorem 2. Let |W)ap € Hip = H4 ® Hp be a normalized vector that represents
a pure state of a bipartite system AB. Let py = Trg|¥)apap(¥| be the marginal
density operator of system A, and let s be the rank of pa. For any orthonormal set

pi > 00 = 1,...,s), there is an orthonormal set of vectors {|v;)p}i=1..s C 3,
such that
[W)ap = D /pilui)alvids. (1.5)
i=1
Proof. Define the unnormalized vectors [U;)p =  a{ui||¥)ap. We then
have |"I/>AB = Z?:l |M,‘)A|ﬁi)3. We see that B(6i|ﬁj)8 = TI‘|5J'>BB<73['| =

Al | Trp (W) apas(WDNuida = a(ujlpalui)a = pidij, where &;; = 1if i = j, and
otherwise §;; = 0. Thus, if we define |v;) := |0;)g/ /Pi> {|Vi) B}i is an orthonormal
set that satisfies Eq. (1.5). O
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The number s is often called the Schmidt number of the state |¥)ap. If s is
smaller than dim 7%, or dim ¢35, we can always augment the orthonormal sets to
form orthonormal bases.

Next, we introduce a concept that is opposite to the concept of the marginal
density operator for a bipartite pure state. For a given density operator p4 of
subsystem A, a purification of the density operator is defined to be a pure state |®)p
of the composite system AB that satisfies Trz|®)apap(®| = pa. In contrast to the
marginal density operator, which is unique to a given state |¥)4p, the purification
of a given density operator 0, is not unique and there are many bipartite pure states
that can be regarded as purifications of p4. However, they are connected by a simple
relation [1, 2] that is given as follows.

Theorem 3. For any two purifications |®)ap, |9 Vap € Hap = H4 Q H#3 of the
same density operator pa, there is a unitary operator Vg . Ay — 3 such that

|®")ap = (14 ® V5)|®)az. (1.6)

Proof. When we write down a diagonal form g4 = > ;_, p,~|{4,-) aa{u;|, Theorem 2
ensures that the purifications are decomposed as |@)ap = Y i, /Pilui)alvi)p and
|®Vap = > i, ‘A/pi|u,-)A|v{)B. Because {|vi)£;}i and {|v/)p}; are orthonormal sets, a
unitary operator Vj exists such that [v)) 5 = Vp|v;)p for all i. |

This theorem is quite simple but has deeper consequences. Suppose that Alice
holds system A and Bob holds system B, and assume that only Bob knows whether
the system AB is in state |@)4p or in state |®’) 45. There are then only two possible
situations: (i) The marginal density operators of subsystem A are different for |@)4p
and |®’)p, and thus Alice can locally distinguish state |@)ap from state |@')4p
to some extent. (ii) The marginal density operators of subsystem A are the same
and according to Theorem 3, Bob can switch locally between state |®@)sp and
state |@')4p. As a result, we see that there is no situation whatsoever in which
Alice is unable to distinguish between the two states locally and Bob is unable
to switch between the states locally. This property has led to the no-go theorem for
unconditionally secure bit commitment [3, 4].

1.2.5 Physical States and Density Operators

We are now in a position to prove that there is a one-to-one correspondence between
the physical states and the density operators. Consider two states represented by the
..a» which are associated with the
same density operator p4. We will show that these two states are in fact the same
state [1, 2].

Without loss of generality, we may assume thatd < d’.If d < d’, we can augment
the ensemble {(p;, |¢;j)a)}j=1,.4 in an equivalent manner to {(p;, |¢;)a)}j=1... @
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by adding dummy states |¢;)4 with p; = 0. Consider another system B with a
Hilbert space ¢ with dimension d’, and take an orthonormal basis {|v;)s}j=1,..a-

We then define the bipartite states |¥)ap := Z]‘il VPilPi)alv)p and [¥')ap 1=
Z]d;l \/;]’ |¢>j’ )alvj)s, which both have p4 as their marginal density operator. From

Theorem 3, there is a unitary operator f/B with |¥/)ap = (i AR \73) |@&)ap. We define
another orthonormal basis {[v))}j=1,..a using [vj) := ‘A/;h)j). It is then simple to
confirm that the requisite of Lemma 1, Eq. (1.2), holds, and thus the two states are
the same state. When combined with the previous observation in Sect. 1.2.3, we can
conclude that:

There is a one-to-one correspondence between the set of physical states and the
set of density operators.

Having established that the density operators are conceptually an ideal descrip-
tion of the physical states, it is natural to expect that the basic and derived rules
will be equally well stated when using the density operators in place of vectors to
represent the physical states. In fact, by carefully following the definition, we obtain
the following list of formulas.

Unitary transformation |Pout) = U |Pin) Dout = U Oin Ut
Orthogonal measurement pi = [{(uj|¢in) | P = (U] Pinlu;)
Local preparation [Pp)a ® |¥)p 0a ® Pp
Measurement on subsystem  /pj|#;)a = B(v;||¥)an pjﬁX) = 5(vj|Paglvj)s
Preparation by mixing p= Y aild) (@ p= Y aip?
Marginal state pa = Trp|¥)apas (¥ pa = Trppap

Distinction is made between the pure and mixed states based simply on the rank
of the density operator. The state is pure if and only if the rank of its density operator
0 is 1, in which case it can be written as o = |¢){¢| using the normalized vector
|¢). The opposite extreme may be the case of the operators with maximal rank,
which is equal to the dimension d of the Hilbert space. Among these operators,
the state where p = 1 /d has the unique property of invariance under all unitary
transformations, and is called the maximally mixed state.

Classification of the density operator can be related to the classification of
the bipartite pure states through purification. The Schmidt number of a specific
purification is equal to the rank of the density operator. The purification of a rank-
one density operator, ps = |u)aa (|, is a product state in the form of |u)4|v)p, while
the purification of a nonpure density operator is an entangled state. The purification
of a maximally mixed state is called a maximally entangled state. Under Schmidt
decomposition of Eq. (1.5), a maximally entangled state |®)p is written as

1 d
|®)ap = 7 ; |ui)alvi) B, (1.7)

where d is the dimension of J%;.
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1.3 Qubits

The simplest of the physical systems is a two-level system that is associated with a
Hilbert space of dimension 2, and is called a qubit. For a qubit, the general states,
the orthogonal measurements, and the unitary transformations can be conveniently
visualized using a three-dimensional image called the Bloch representation.

1.3.1 Pauli Operators

Consider a qubit and choose an orthonormal basis {|0), |1)} of its Hilbert space .77
as the standard basis. We define a set of three operators, called Pauli operators,
as 0, = 01 := |0)(1] + |1)(0], 6, = &> := —i|0)(1]| + i{|1)(0|, and 6, = 03 =
|0) (0] —|1)(1]. In the matrix representation under the standard basis, they are written

as
. . 01 N N 0—i\ . N 10
0X=01=(10),0y=02=(iO),0z=03=(0_1). (1.8)
They satisfy the following commutation and anti-commutation relations:
[6,~,6j] = 21'6,:,'](6']( and {6},&,‘} = 28,'J‘i, (19)

where [12\, l§’] = AB — BA, {;\, 1§} = AB + BA. The Levi-Civita symbol € is zero,

except for €123 = €231 = €310 = | and €331 = €13 = €213 = —1, and the Einstein
notation is used to omit the summation.
Together with 6 := 1, we have four self-adjoint and unitary operators. These

satisfy the orthogonality relations,
Tr(6,.6,) = 28,0 (1.10)

for p,v =0,1,2,3. Every linear operator A acting on 7 is uniquely decomposed
as A = (Pol + P.6, + P,6, + P,6;)/2, where the four complex parameters
(Po, Py, Py, P;) can be determined using Py = Tr(A), P, = TI'(UXA), P, = Tr(cryA),
and P, = Tr(&zﬁ). Itis convenient to regard P := (P,, Py, P;) as a three-dimensional

vector, and to define 6 := (6, 6,,6;) as well. We denote the inner product
between these vectors as P - 6 := P.0, + P,6, + P.6;, and the squared norm

as |P|* := P + P} + P2. Using the vector notation, we have
= (Pol+P-6)/2 (1.11)

with Py = Tr(A) and P = Tr(6A).
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Because AT = (Pol +P-6) / 2,Ais self-adjoint if and only if both Py and P are
real. For a self-adjoint operator A, it is simple to show that det(A) (P2 —|P|»)/4,
and that the two eigenvalues of A are (Py = |P|)/2. Therefore, A is positive if and
only if P is real and Py > |P)|.

1.3.2 General States of a Qubit

Because a density operator p is positive and has a unit trace, application of the
decomposition of Eq. (1.11) leads to

~

p=0+P-6)/2 (1.12)

where the real vector P = Tr(6p) satisfies |P|] < 1. We see that the density
operators, and thus the general states of a qubit, are uniquely represented by three-
dimensional real vectors P = (P, Py, P;) with lengths no greater than unity. These
vectors are called the Bloch vectors, and representation of the qubit states using
these Bloch vectors is called Bloch representation. As shown in Fig. 1.1a, a Bloch
vector is visualized in an xyz-Cartesian coordinate system as an arrow stemming
from the origin and reaching a point (P,, Py, P;) on or inside of a sphere of unit
radius, which is called a Bloch sphere.

As shown in Sect. 1.2.5, the rank of p is 1 when it is a pure state, and for a qubit
this implies that the smaller of the eigenvalues of p, (1—|P|)/2, is zero. A pure state
is thus represented by a Bloch vector of length |P| = 1, with the vector tip reaching
the Bloch sphere. For a mixed (and nonpure) state, the length of the Bloch vector is
shorter (|P| < 1). The maximally mixed state with p = 1/2 is represented by the
zero vector P = 0.

~-) | ~~
.- / - _’U 0 ’Ef
e g |1+> . - ] -"|f }
- """-._‘_H
|ie) |+)\ . 7

/
V

Fig. 1.1 (a) Bloch sphere and a Bloch vector. The six pure states on one of the three axes, where
|£) 1= (|0) £ |1))/+/2 and |i£) := (|0} £ i|1))/+/2, are also shown. (b) A pair of pure states
|¢) and |}, with [{¢|v}| = cos(6/2)
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Bloch vectors should not be confused with the vectors of the Hilbert space. Bloch
vectors belong to a three-dimensional real vector space, while the Hilbert space
of a qubit is a complex two-dimensional vector space. Consider two pure states,
Py = |¢){(¢| and py = |¥){¥|, with Bloch vectors P4 and Py, respectively. When
P, - Py = cos 0, then the angle between the two Bloch vectors is & (see Fig. 1.1b).
In contrast, based on Eq. (1.10), we have [(¢|¥)|* = Tr(pppy) = (14+Py-Py)/2 =
cos?(6/2), which implies that the angle between the two vectors of the Hilbert space
is 6/2. For two orthogonal pure states, /2 = /2 implies that the corresponding
pair of Bloch vectors point in opposite directions.

1.3.3 Orthogonal Measurement on a Qubit

Let us interpret an orthogonal measurement using the basis {|ug), |u#;)} in terms of
Bloch representation. We define the Bloch vectors Py and P, for the basis states
using p; = |u) (| = a+ P; - 6)/2. Because the orthogonality (uolu;) = 0
implies that P; = —Py, the orthogonal measurement is completely characterized by
the unit vector Py, which is a direction in the three-dimensional space.

Suppose that the measured qubit is initially in the state given by p = (1+P-6) /2.
The probabilities of outcome j = 0, 1 are then calculated to be p; = (uj|plu;) =
Tr(p;p) = (1 + P; - P)/2, leading to

po=(1+Py-P)/2 and p; = (1 — P, -P)/2. (1.13)

This shows that the probabilities are essentially determined by projection of
the measured Bloch vector P along the direction P, that was specified by the
measurement, with appropriate scaling (see Fig. 1.2a).

b ,CT

e ij’ 2?}1 s ?{;
Ve /4 ];’U

—

N e o V.
/ | - |
|H[>

Fig. 1.2 (a) Orthogonal measurement with a basis {|u;)}j—o,1. The Bloch vector P of the input
state determines the probability p; of the outcome j. (b) The Bloch vector rotates in a unitary

transformation with U (n, )



14 M. Koashi
1.3.4 Upnitary Transformation on a Qubit

We now discuss how the Bloch vector of a physical state changes under a unitary
transformation. We limit ourselves to the unitary operators U that belong to a
set called SU(2), and are characterized by the condition detU = 1. This does
not lose generality because U(f) := €20 for real § transforms the state p to
U0)pU(0)" = UpUT, which is independent of 6. All U(6) physically represent
the same transformation, and we are thus allowed to choose one that satisfies
det U(0) = ¢ det U = 1 and thus U(0) € SU(2). Note that the correspondence is
not one-to-one but in fact two-to-one, because —U/ ) = U (60 + 2m) also belongs
to SU(2).

The elements of SU(2) are conveniently parametrized as follows. Any U e
SU(2) can be written in the diagonal form U = ¢™/2|ug) (uo| + €*/2|uy) (u;| with
(uo|u) = 0. We may then write U = exp(—ipS/2) with 8 := |uo) (uo| — |u1) (1],
which is self-adjoint, traceless, and has eigenvalues of £1. Using the decomposition
of Eq. (1.11), we find that S is written as S = P- /2 with |P| = 2. By introducing a
unit vector n := P/2, we conclude that the elements of SU(2) can be parametrized
as

Un, ¢) := exp[—i(p/2)n - &]. (1.14)

We are interested in how the Bloch vector evolves when the density operator
evolves under a unitary transformation. Noting that U(n, 9 +¢') = U(n, ¢')U(n, ¢)
holds in general, we see that it is sufficient to focus on the transformations given
by U(n,8¢), where 8¢ is infinitesimally small. A general transformation U(n, ¢)
is then understood as a result of sequential application of these infinitesimal
transformations.

Under the transformation U (n, 8¢), aBloch vector P := Tr(o ,o) evolves into P+
§P = Tr(6p') with §' := U(n,8¢)pU(n, 8¢)t. Using U(n, 8¢) = 1— i(p/2)n -6
and collecting the terms up to the first order in §¢, we find that 6P = Tr(60’) —
Tr(66) = —i(6¢/2)Tr([6.n - 6]p). From Eq. (1.9), we obtain [6;, n;6;] = 2i€;xn;0x
under the Einstein notation, which implies that [6,n - 6] = 2in X 6. Therefore,
U(n, 8¢) induces an infinitesimal change in the Bloch vector, which is given by

8P = §¢gn x P. (1.15)

This is equal to the infinitesimal change in rotation around axis n by the angle §¢.
We thus conclude that the Bloch vectors rotate around axis n by angle ¢ under the
general unitary transformation U (n, ) (see Fig. 1.2b). Notable examples include
the Z gate with U((0,0,1), +7) = Fi6,, the X gate with U((1,0,0), +7) = Fiby,
and the Hadamard gate with U((271/2,0,271/2), £7) = F271/2i(6. + 6,).
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1.4 Generalized Measurements and Quantum Operations

The basic set of rules that we adopted in Sect. 1.1 dictated that we can carry out
unitary transformations and orthogonal measurements on a physical system (Rules
2 and 3). Here, we extend the repertoire of what we can do to a physical system
by using an auxiliary system as a workspace. We also clarify how far this extension
goes, and draw a clear line between what we can and cannot do.

1.4.1 Use of Auxiliary Systems

Suppose that we want to operate on a physical system A. Let p;, be the density
operator for the initial state of the system A. We first prepare an auxiliary system E,
which has a Hilbert space 7% of dimension s, in a fixed pure state |¢i,;)g. We then
let the systems A and E interact with each other such that the unitary transformation
described by the unitary operator UAE D I Q@ Ay — 4 ® HE occurs. Finally,
we perform an orthogonal measurement on system £ with an orthonormal basis
{l)E}j=1.....s of . The output of the operation is the classical variable j and the final
quantum state ﬁgu)t of system A, which may depend on the value of j. This can thus
be regarded as conducting a state transformation and performing a measurement at
the same time. Using the rules that were summarized in Sect. 1.2.5, we can easily
show how the final state ,6((,’3[ and the probability p; of obtaining j are related to the
initial state:

P = £ Uae(Bin ® |ini) £ (dini D UL 1) - (1.16)

We sometimes encounter a situation where the input and the output are different
physical systems. For example, in the photoelectric effect, light is incident on a
metal but an electron comes out of the metal. In such a case, we would regard
the light field as the input system A, and the metal, including the electron that is
eventually emitted, as the auxiliary system E. The whole system is the composite
of A and E. The output system, i.e., the electron, is a subsystem of the composite
system AE, and we call it system A’. The rest of system AE is then called system E’'.
In short, we have introduced two different ways to decompose the entire system into
two subsystems, AE and A’E’. Mathematically, this corresponds to an equivalence
relation 4 Q 5 = Hy Q Hzr.

We can now generalize the strategy for use of an auxiliary system to include
cases where the output system is not necessarily the same as the input system, as
shown in Fig. 1.3. It is convenient to regard the unitary operator Uyg as a linear map
U: 4 Q # — Hy Q H, where we dropped the subscript AE. Let s’ be the
dimension of ./ . The orthogonal measurement is performed on system E’ with an
orthonormal basis {|j) g }j=1...v. Equation (1.16) is then generalized as
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Bini) = =

)(

_/

Fig. 1.3 Use of an auxiliary system in operation on the physical system A. An auxiliary system E
is prepared in a fixed pure state |¢y,;)£, and the unitary transformation Uis applied to systems A
and E. System A’, which is part of the whole system AE, is released as an output. The remaining
system, E’, is measured to produce the outcome j

P = (1 U(Bin @ |ini) £ (bini ) U 1) - (1.17)

It is convenient to introduce the operators Mo 4 — 4y, which are defined
by

MY = (]| Ui - (1.18)
Using the relation Z;/:l ) ez (jl = 1g, we see that the operators satisfy the
normalization condition
S/
> MM =1, (1.19)
j=1

The set of operators (MY = 7, — A} that satisfies the above relationship are
often called Kraus operators. Using these operators, Eq. (1.17) can be simplified as

i = M9 50T, (1.20)

where the input-output relationship is stated without any reference to the auxiliary
systems E and E'.

In the above argument, we started with a given operator U that represented a
unitary transformation of the composite system to determine the Kraus operators for
the simplified relationship of Eq. (1.20). As we will see, this process can be reversed,
i.e., for any given set of Kraus operators {M (1 that satisfies Eq. (1.19), there is’ a
unitary operator U that satisfies Eq. (1.18). Let {|u;)4}i=1...q be an orthonormal

3Given §’, we may choose the dimensions of .#% and . such that they satisfy dim % > s’ and
dim 77 dim % = dim 27y dim 7% .
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Fy ® Hz that connects the two orthonormal sets as |v;) = U |ti)a ® |¢ini) £, Which
leads to Eq. (1.18). We thus conclude that any input-output relationship dictated
by the Kraus operators as shown in Eq. (1.20) can be physically implemented by
attaching an auxiliary system E, applying a suitable unitary transformation over the
composite system, and then measuring the subsystem E’.

1.4.2 Physically Allowed Operations

In Sect. 1.4.1, we extended our ability to operate on physical systems through the
rather heuristic use of an auxiliary system. It is natural to expect that the introduction
of more complex schemes using two or more auxiliary systems may allow us to
further extend the variety of possible operations. Additionally, if we look back on
the basic rules in Sect. 1.1, we see that none of the rules require a physical operation
to be built up from unitary transformations and orthogonal measurements alone.
Nonetheless, we will show here that the input-output relations written in the form
of Eq. (1.20) are essentially the only relations that are allowed physically.

Consider a black box that accepts a physical system A as an input, and produces
a classical outcome j = 1,2,...,s, while leaving the system A’ as an output. Let d
be the dimension of ;. We want to know the way in which the output state ﬁggt
and the probability p; of the outcome are related to a general pure input state |¢)4.
For that purpose, it is convenient to introduce a reference system B with a Hilbert
space /3 of the same dimension d. We take the orthonormal bases {|i)4}i=1....,
{li)p}i=1....a for 74, and .73, respectively, and suppose that the system AB is initially
prepared in a maximally entangled state, |®)45 = d~"/2 3" [i)4i)5.

We now explain a frequently used technique called the relative states. For any
given state |¢)4, we define the relative state of system B, with reference to the
maximally entangled state |®)4p, as

d
)5 = ) 104 (i)a- (1.21)
i=1
It is then easy to see that
d"'21p)a = p(¢*(|P)as (1.22)
holds. The definition of the relative state is mutual, i.e., |¢p**)4 = |P)a, because

d='2|¢*)p = 4(¢||D)ap also holds.
In light of Theorem 1, this relation has the following meaning. If we conduct an
orthogonal measurement on system B with a basis that includes state |¢*)p, then the
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|B) 4n

Fig. 1.4 (a) Characterization of a physical operation (the black box) by feeding in half of a

maximally entangled state. Learning the statistics of the outcome j and the states pf"/ 5 then allows
us to fully specify the input-output relationship. (b) Looking inside the box. Any physical process
is implemented in an equivalent manner with an auxiliary system, a unitary transformation, and an
orthogonal measurement

corresponding outcome appears with probability 1/d, and system A then behaves as
if it were initially prepared in state |¢)4. While this is probabilistic, it offers a type
of ex post facto method to prepare system A in the arbitrary state |¢) 4.

We now proceed to the analysis of the black box (see Fig. 1.4a). After preparation
of |@) g, suppose that system A is fed to the black box, while system B is left alone.
After the black box has produced the outcome j, the state of the comp051te system

A’B should be represented by a density operator, which we denote by p A, 5 Let g
be the probability of producing the outcome j. Now suppose that we perform an
orthogonal measurement with basis {|v;)z} on system B, where |v;)p = |¢*)p. The
outcome i = 1 should then appear with probability 7 and this leaves system A’ in
state ,615{,) , where

80 = (@* 1504105 (1.23)

However, according to Theorem 1, an event with outcomes j and i = 1 must be
interpreted as follows. With probability d~!, system A is initially prepared in |¢),
and is then fed to the black box. This produces outcome j with probability p;, leaving

system A’ in state pOut Comparison of the two interpretations leads to qu(f) =d 'p;
and p ,oA, = ,00ut Using Eq. (1.23), we then have
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Pibon = dgip(®*17),197)s. (124)
Consider a decomposition of the density operator,

s = Z 19V wsas(F1, (1.25)
k=1

where |lf/kU) )asg is unnormalized. Noting that (¢*| = /dag(®||p)a, we see that,
for fixed values of j and k, the correspondence |¢p)4 — dqu(¢*||‘I/k(1))Ar3 is a
linear map. Thus, an operator MUY : 5%, — 7, exists such that

Vg (@19 ) ap = 1150 p),. (1.26)
Equation (1.24) is now written as

[(j)
Pipo = ZMU O1¢)an | BPT (1.27)

for the input state |¢)4. Then, for the general input state p;, of system A, the input-
output relationship of the black box is written as

0

Pl =3 MR IR, (1.28)
k=1

Taking the trace of Eq. (1.27) and performing a sum over index j, we have
Zj,kA(¢|AA/I("'k)TAA4(’7k)|¢)A = 1 for arbitrary |$),. Therefore, 3, MRG0 = 1,
and {M U9} is a set of Kraus operators.

Equation (1.28) is the most general form of what we can do to a physical
system. This equation is merely a trivial extension of Eq. (1.20) in Sect. 1.4.1.
Consider a scheme that produces the outcome (j, k) and leaves system A’ in state
pYP | with an input-output relation given by p; it = MUY i 1UHT. As shown?
in Sect. 1.4.1, this scheme can be implemented by simply attaching an auxiliary
system FE, applying a unitary transformation, and then performing an orthogonal
measurement on system E’. The original black box is then faithfully simulated using
this scheme as shown in Fig. 1.4b, by simply discarding the index k and yielding
only the index j as the final outcome.

“4Regard (j, k) as a single index with the values 1,...,s’, where s’ = Zj 19,
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1.4.3 Generalized Measurements

By discarding the output quantum state in system A’ in the black box that was
considered in Sect. 1.4.2, we can obtain the most general form of a physically
allowed measurement process, which is called a generalized measurement. By
taking the trace of Eq. (1.28), we have

pj = Te(F9 piy), (1.29)

where FOO = Y MUNTHU s positive and satisfies > FO = 1, Any
measurement must be written in this form.

A set of positive operators (F0y acting on %, and satisfying Zj FO =14 is
called the POVM (positive-operator-valued measure). For any given POVM {f’ Y,
we may define M := (F?)!/2 and use the argument of Sect.1.4.1 to construct
a generalized measurement that satisfies Eq. (1.29) through the use of an auxiliary
system as shown in Fig. 1.3, except that system A’ is discarded in this case.

An orthogonal measurement with basis {|u;)4} is now regarded as a special case
of the generalized measurements, when the POVM is chosen to be FO) = |u4;) aa (4]
Note that orthogonal measurements are not necessarily the ideal measurement,
and some tasks favor other kinds of generalized measurement. We will provide an
example below.

Unambiguous state discrimination. Consider a nonorthogonal pair of qubit
states, {|¢o)a, |P1)a}, with ¢ := |{¢o|¢1)| > 0. Suppose that qubit A has been
secretly prepared in |po)a or in |@;)4 with an equal probability of ¢ := 1/2.
Consider the strategy used to distinguish between the two states as follows.

Choose [¢;")a (j = 0,1) such that a(gjl¢")a = 0 and a(d5|pi)a = c.
Consider a set {I:“U)}jzo,l.z defined by F© := (1 + ) i) aa (o], FO =
(1 + o) Y )aa(dy|, and F@ .= 1, — FO — FO_ Because |ps-)a £ |pit)a is
an eigenvector of F© + FO with eigenvalue (1 + ¢)"'(1 £ ¢) < 1, we have
FO 4+ F < 1, Therefore, {F W}i—0.12 is a POVM, and the corresponding
generalized measurement is feasible.

When the outcome of this measurement was j = 0, we were certain that the
prepared state must be state |Po)4, because Tr(F©@|¢)4a(p1]) = 0. Similarly, if
the outcome was j = 1, the prepared state must be state |¢;)4. The overall success
probability, i.e., the probability of obtaining j = 0,1 is calculated to be pyc =
> =01 4Tr(FQ @) aa(djl) = 1 — ¢ [5].

If we are to construct a strategy with a similar lack of ambiguity using orthogonal
measurements, we must choose either {|@o)4, |¢Ol)A} or {|¢1)a,|pi)a} as the
basis. Regardless of how the two orthogonal measurements are mixed, the success
probability is p. := qla(@i|d1)al® = qla(pilo)al> = (1 — ?)/2. Thus we see
that pgye > pi;,c forO0 <c < 1.
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1.4.4 Quantum Operations

If we discard the outcome j from the black box that was considered in Sect. 1.4.2,
then the output density operator of system A’ becomes pou = ) pj,ﬁgzt
Zj.k MUb ﬁinM UKt Without loss of generality, we may replace the indices (j, k)
with a single index j, which results in the general form of the state transformation,

poue = M9 prab (1.30)
J

with > MOTH® = 1,. Any physical process that takes system A as an input
and leaves the same system or another system A’ as an output must be written in
this form. This type of process is often called a quantum operation or a quantum
channel. Mathematically, the map x : pin = Pour that is written as per Eq. (1.30) is
called a CPTP (completely-positive trace-preserving) map.

The argument in Sect. 1.4.1 ensures that the right-hand side of Eq. (1.30) can be
rewritten as that of Eq. (1.17) summed over j, i.e.,

Pout = Tter[U(Bin ® |ini) 25 (Pini) U] (1.31)

Operationally, this simply means that the measurement on system E’ shown in
Fig. 1.3 is unnecessary. Thus, any quantum channel can be equivalently simulated
using a simple three-step process, which consists of preparing the auxiliary system
(E) in a fixed pure state, applying the unitary transformation, and discarding the
subsystem (E”). This property is very helpful when it is necessary to prove that some
tasks are physically impossible. This type of argument is vital for establishment
of an operationally-defined measure of quantum properties, as indicated in the
following example.

Fidelity. In an experimental demonstration, the quality of the final result is often
evaluated in terms of the fidelity F' = (¢ideat| Pexp|Pidear ) Where |Pigear) is the desired
state and pep 1S the state that was actually obtained in the experiment. The fidelity
F between two general states p; and p, of system A is defined® as the maximum
overlap between the purifications of these states in a composite system composed
of A and an arbitrary system R, i.e.,

F(p1. p2) := max{|ar(¥1|¥2)ar)” : Trr(1¥)) arar(¥]) = pr.j = 1.2}, (1.32)

To justify the use of such a quantity in the evaluation of an experiment, we must
show that the fidelity F(p1, 02) is a good measure of the closeness between the two

>There is an equivalent method to define the fidelity as F(p;, p2) = (Tr\/[)}/zﬁzf)f/z 216,7]. In
some of the literature, the quantity /F(p1, ) is referred to as the fidelity.
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states p; and p,. To enable F to quantify the difficulty in distinguishing between
the two states in principle, F should not be reduced (and thus the distinguishability
should not improve) through the application of any quantum channel y, i.e.,

F(x(p1), x(p2)) = F(p1, p2) (1.33)

should hold for any CPTP map yx. This can be proved as follows.

Let |@;)ar be the purifications that achieve the maximum of Eq. (1.32), i.e.,
F(p1.p2) = |ar{®@1|P2)ar|>. We consider three different cases separately, corre-
sponding to the three steps that are implied in Eq. (1.31).

() 1(3) = p ® |$)an(@l. In this case, [¥)aae == |&)az|®)s is a purification
of x(fy). Therefore, F(x(p1), x(52)) = lasr(¥11¥2)asr|* = |ar(®1|P2)ar|* =
F(pr.p2). A A

i) x(p) = UAﬁle. In this case, |¥j)ar = (Us @ 1r)|®j)ar is a purification
of x(p)). Therefore, F(x(p1), x(52)) = |ar{¥11¥2)arl” = lar(®1|®2)arl* =
F(ﬁl 5 162) -

(iil) x(p;) = Trz(p;), where A is a constituent subsystem of system A. In this case,
| D)) ar is also regarded as a purification of y(6;). Therefore, F(x(p1)., x(62)) =
lar (D1 D2) arl* = F(p1. p2)-

For a general quantum channel y, we may decompose the process into the three
steps, and the above results demonstrate that F is nondecreasing in each of the three
steps. Therefore, Eq. (1.33) holds.

No-cloning theorem. An immediate consequence of the nondecreasing property
of the fidelity is the no-cloning theorem. Consider a cloning machine that would
transform an arbitrary input pure state pin g 1= |¢)aa{¢| into a duplicated pure state
Poutp 1= |P)an(P| @ |@)arar(¢]. For 0 < |a(¢|¥)al® < 1, we would have

F(Poutgs Pouty) = F(Pings iny)* < F(Pingp» Piny)s (1.34)

which violates Eq. (1.33). Therefore, this cloning machine could never exist.

1.5 Communication Resources

The task of sending quantum information is essentially different from that of
sending classical information, and is achieved using a dedicated quantum channel.
Interestingly, transmission of quantum information can also be achieved by supple-
menting a classical channel with another resource: entanglement. In this subsection,
we will see how the three communication resources are related to each other, while
focusing our discussion on the ideal cases.
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1.5.1 Quantum Channels and Classical Channels

An ideal classical channel will transmit a symbol chosen from a fixed set
{1,2,...,d} without any error from a sender to a receiver. The number of symbols
d stands for the usefulness of the channel as a resource. A channel with d = 2 is
normally regarded to have a unit of usefulness, called a bir. General ideal channels
with d symbols have log, d bits. This makes sense because the combined use of
a (log, d)-bit channel and a (log, d’)-bit channel amounts to the single use of a
(log, d + log, d’')-bit channel.

In a similar vein, we consider an ideal quantum channel, which faithfully
transmits the arbitrary quantum states of a d-level physical system that is associated
with a Hilbert space of dimension d. Because we have already called the two-level
system a qubit, let us define the usefulness of such a channel as (log, d) qubits.
Because dim(57 ® ') = (dims#)(dim.#"), this measure is additive for the
combined use of ideal channels.

We now consider how the two types of channels differ. First, a quantum channel
can never be simulated using any amount of classical channels. This is because of
the no-cloning theorem, as described in Sect. 1.4.4. Because the output of a classical
channel can be freely copied, if the receiver were able to reconstruct any input state
|¢), then they could repeat the same procedure to create another copy of state |¢),
which is forbidden by the no-cloning theorem.

In contrast, a (log, d)-qubit quantum channel can be used to simulate a classical
channel. To simulate a (log, d')-bit channel, the sender can encode a symbol
i € {1,2,...,d'} on a quantum state, i.e., the sender transmits the quantum state
0; via the quantum channel, according to the symbol i that is to be transmitted. The
receiver can then perform a measurement of the transmitted state to decode the index
i. Encoding on mutually orthogonal states certainly works if ' = d, but the user
may want to exploit the fact that there are an infinite number of different quantum
states to transmit larger numbers of symbols. To deny any such possibility, we recall
that any measurement strategy must be described as in Eq. (1.29), using a POVM
{I:"j}. To simulate an ideal channel, Tr(I:"i/Si) = 1 should hold for i = 1,...,d".

Because {I:”j} are positive and Z?/:lﬁi < 1, we have d = Z?;lTr(ﬁiﬁi) <
Zj’;l Tr(F;) < Trl = d, thus proving the following.

Theorem 4. Without use of another communication resource, a (log, d)-qubit ideal
quantum channel can never simulate a (log, d')-bit ideal classical channel ifd’ > d.

1.5.2 Entanglement as a Communication Resource

We have seen that a quantum channel is qualitatively different from a classical
channel. We may then ask what exactly is the difference between the channels, or
ask what kind of communication resources may be used to complement a classical
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channel to enable it to simulate a quantum channel. It turns out that the entanglement
is the answer to these questions.

As an ideal resource of entanglement, let us consider a maximally entangled state
with a Schmidt number of d,

=
|Do,0)aB = Ja ; i) ali)s (1.35)

where {|j)4} and {|j)p} are the orthonormal bases of %} and .3, respectively.
When each subsystem is held by the sender and by the receiver, we can quantify
the usefulness of this state as (log, d) ebits, which is additive when two or more
maximally entangled states are available. Any state that is written as (UA ®
\A/B)|450.0) 4p 1s also a maximally entangled state and is regarded as a resource of
the same number of ebits.

If a (log, d)-qubit quantum channel is available, then the sender can create state
|Do.0)ap locally and transmit system B to the receiver, which produces (log, d) ebits
of entanglement resource.

Theorem 5 (Entanglement sharing). A (log, d)-qubit ideal quantum channel can
be converted into (log, d) ebits of ideal entanglement.

Next, let us compare entanglement with classical channels. First, entanglement
does not help in augmentation of a classical channel.

Theorem 6. Without use of another communication resource, no amount of entan-
glement can convert a (log, d)-bit ideal classical channel into a (log, d')-bit ideal
classical channel with d' > d.

Proof. Suppose that the sender chooses a symbol i € {1,2,...,d’} at random.
Assume that it is possible to transmit i faithfully by using a (log, d)-bit ideal
classical channel and shared entanglement. Because the output of the channel can
be guessed correctly with a probability of 1/d by random guessing, the receiver can
form a strategy, which, without communication, allows the symbol i to be guessed
with a success probability of 1/d. Therefore, 1/d < 1/d’ must hold. O

Entanglement is a static resource in the sense that it is simply a correlation and it
does not refer to any transfer of information. A classical channel is dynamic with
regard to its ability to move information around. In this respect, the theorem above
may be regarded as a natural example where a static resource cannot be converted
into a dynamic resource. However, there is a subtlety here that will be manifest when
we see the protocol for quantum dense coding in Sect. 1.5.4.

Finally, we consider the reverse question of how entanglement can be manip-
ulated with unlimited use of classical channels. Suppose that Alice and Bob can
freely use classical channels between them in both directions, and they can locally
perform any physically allowed measurement or state transformation. This type of
framework is called LOCC (local operations and classical communication).
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Suppose that Alice and Bob initially share a pure bipartite state |¥)4p, and try
to transform this state into other states under the LOCC framework. Without loss of
generality, we may assume that only one party is conducting a local operation at any
one time. This means that Alice first conducts a local operation, reveals an outcome
to Bob through a classical communication, and Bob then conducts a local operation
in turn, and so on. For Alice’s turn, her operation is generally written as in Eq. (1.28),
with M09 acting on Alice’s system alone. Although the general description includes
the index k, which is discarded, for the purposes of state transformation, Alice may
as well record this index. Therefore, we omit k£ and conclude that, after Alice’s first
turn, Alice and Bob share state |¥) 45 with probability p;, where

PilY ) aparg(W?| = (MX) ® iB)|W)ABAB<'p|(M,gj) ® 1p)f (1.36)

and M/Y) D My — Ky satisfies MX)TM/Y) = 14. Let fp and ﬁg) be the marginal
density operators of system B for |¥) 4z and |¥?) 45, respectively. Taking a partial
trace and summation over j in Eq. (1.36), we have

> piby = ps. (1.37)
J

This equation shows that the rank of ﬁg) never exceeds that of pg. The Schmidt num-
ber of state |¥()) 1 therefore never exceeds that of the initial state |¥)45. A similar
argument is applicable to Bob’s turns, and we thus see that the Schmidt number
never increases under the LOCC framework, even probabilistically. Specifically, no
entanglement is generated under the LOCC framework when starting from a product
state with a Schmidt number of unity. This is often adopted as a defining property
of entanglement when discussing more general cases of mixed-state entanglement.

In view of the relationships between the communication resources, the above
argument means that the classical channels do not help to increase entanglement,
and this is summarized as follows.

Theorem 7. Without use of another communication resource, no amount of com-
munication over classical channels can convert a (log, d)-ebit ideal entanglement
into a (log, d')-ebit ideal entanglement with d' > d.

This theorem implies that entanglement has a nonclassical aspect that cannot be
replaced by classical channels. If we combine the two resources, we will obtain
a resource that is both dynamic and nonclassical, and we may perhaps simulate a
quantum channel. This is indeed true, and will be explained in Sect. 1.5.4 after we
summarize the properties of the maximally entangled states in Sect. 1.5.3.
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1.5.3 Properties of Maximally Entangled States

Let 5%, and 773 be Hilbert spaces of dimension d for the systems A and B. Here, we
summarize the relevant properties of the maximally entangled states of system AB.

(E1)  All maximally entangled states have a common marginal state d~ 1, for
subsystem A, and a common marginal state d~' 15 for subsystem B.

(E2) For any pair of maximally entangled states |®)4p and |®’)ap, unitary
operators U, and Vj exist such that | D Vap = (UA ® 13)|<15)A3 = (1A ®
V)| D) as-

(E3) A maximally entangled state |®)4p specifies a one-to-one correspondence
|p)a <> |¢p*)p between the pure states of subsystem A and those of sub-
system B, as characterized by d~/2|¢)s = p(¢*||®)up and d~"/?|¢p*)p =
4(B[|P) as-

(E4) A maximally entangled state |®)4p specifies a one-to-one correspondence
My < ]\A/IIE between the operators that act on %, and those acting on /3, as
characterized by

(MA ® iB)|¢>AB = (iA ®M£)|¢>AB~ (1.38)

Specifically, if M, is unitary then MT is also unitary, and vice versa.

(E5) There is an orthonormal basis {|®;) 4}/, ? """""" ' of 2, ® A3 where every
basis state is a maximally entangled state. ThlS type of basis is called a Bell
basis.

(E1) is the definition given in Sect.1.2.5. (E2) is a combination of (El) and
Theorem 3. (E3) refers to the relative states explained in Sect. 1.4.2.

For (ES), a Bell basis that includes state |@go)ap of Eq. (1.35) is constructed as
follows. For each subsystem, we define unitary operators

X: —Z[]—i-l(modd)) and Z: —Zﬁ’ (1.39)

with B := exp(2mi/d). Using these operators, we define |®;,,)ap = (}A(]

2’")|<1§0 o)ap. Using the relation ZX = BXZ, it is simple to show that |<sz)AB
is a 31mu1taneous eigenvector of the commuting unitary operators X, ® Xp and
Zi ® Z with eigenvalues of B~ and B!, respectively. Therefore, the d” states
{1 D) as =y ""(;,d_ll are all orthogonal. For d = 2, the Bell basis consists of the

.....

following states.
|®+) = [@00) = 27"2(10)410)5 + [1)al1)5) (1.40)
|®_) = |®o,1) =27"72(|0)4]0)5 — [1)a]1)5) (1.41)
W1) = [@10) = 27"2(11)410)5 + 0)4]1)5) (1.42)
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|W_) = |®11) = 272(|1)4]0)5 — 0)a]1)5) (1.43)

(E4) is confirmed as follows. Suppose that |®@),p is decomposed as shown in
Eq. (1.7). By applying 4 (u;|z(vj| to Eq. (1.38), we see that Eq. (1.38) is equivalent
to

A(I/li|MA|l/lj)A = B(Uj|M£|U,‘>B (144)
for i,j = 1,...,d. This means that the matrix representation of M;,F in the basis

{|vi) g} is the transpose of the matrix representation of M, in the basis {|uida}.
As an example of Property (E4), the following relations are worth mentioning:

(X1 ® 1p)[Poo)as = (14 ® X5")|Po0)an (1.45)
(Za ® 18)|Po0)as = (14 ® Zs)|Po.0) s (1.46)

and can easily be confirmed.

1.5.4 Quantum Dense Coding and Quantum Teleportation

In this subsection, we explain two types of scheme in which shared entanglement
helps with the conversion between the quantum and classical channels. Every
subsystem X that appears in this subsection is a d-level system with Hilbert space
of dimension d, and with a standard orthonormal basis denoted by {|j)x}. The Bell
basis is defined for each pair of subsystems according to the standard bases.

In Theorem 4, we have seen that a one-qubit quantum channel alone can
only send one bit of classical information. If the sender and the receiver share
entanglement beforehand, then the quantum channel can send more via a protocol
called quantum dense coding [8].

Theorem 8 (Quantum dense coding). A (log, d)-qubit ideal quantum channel
and a (log, d)-ebit ideal entanglement can be converted into a (21og, d)-bit ideal
classical channel.

A protocol for quantum dense coding can be constructed simply by using the Bell
basis {|®; ) ap} of the two d-level subsystems, i.e., Property (E5) in Sect. 1.5.3. We
show that Alice can send Bob a symbol (I, m) that was chosen from d” candidates
initially. P}gperty (E2) ensures that Alice can locally transform® the state |®Py )
into the state |®;,,) that is specified by the chosen symbol (/,m). She then sends

% An explicit form of Alice’s transformation is |®;,,)ap = ()A(AZ’{“ ® iB) | @0 0)ap, which is obtained
from Eq. (1.46).
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subsystem A, which has a Hilbert space with dimension d, to Bob using the (log, d)-
qubit quantum channel. Bob, who now holds both subsystems A and B, conducts an
orthogonal measurement with the Bell basis {|®;,,)ap} to determine Alice’s choice
(I,m).

This protocol is remarkable in the sense that the static resource of entanglement
enhances an ideal channel’s ability to achieve the dynamic task of information
transmission. This is in stark contrast with what we saw in Theorem 6, i.e., that the
static resource of entanglement cannot augment the dynamic resources of classical
channels.

Next, we explain the protocol of guantum teleportation [9], which combines
the nonclassical resource of entanglement and the dynamic resource of a classical
channel to achieve faithful transmission of quantum states.

Theorem 9 (Quantum teleportation). A (2log, d)-bit ideal classical channel and
a (log, d)-ebit ideal entanglement can be converted into a (log, d)-qubit ideal
quantum channel.

The protocol proceeds as follows. Suppose that Alice and Bob initially share the
entangled states |@go)ap of two d-level systems. Alice also holds another d-level
subsystem A’, and she is supposed to transmit the state of this subsystem to Bob.
Alice first performs an orthogonal measurement with the Bell basis {|®;,,)44/} on
subsystems A and A’, and transmits the outcome (I, m) to Bob through the (2 log, d)-
bit classical channel. Based on the received indices (I, m), Bob then applies a unitary
S (D)
transformation U™ to subsystem B.

We now consider how we can choose U™ such that the final state of system
B is always identical to the initial state of system A’ (see also Fig. 1.5). Consider
another d-level system R, and suppose that the system A’R is initially prepared

Bob B
[ [0)
A
< |P0.0) :
(; A Alice ;
~\ s > [Po,0) l
/ > lm l
oH—" ' ;
[B00)™ :
Do,0) ‘\____________________________) _______ :

Fig. 1.5 Entanglement swapping and quantum teleportation
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in state |@go)a’r. Later, at the end of this argument, we will use Property (E3) to
discuss the case where A’ is initially prepared in the general state |¢) 4.

We begin with the following relation, which can be easily confirmed from the
definition of Eq. (1.35):

d ' Do0)sr = an (Poo||Do.0)as|Poo)ark- (1.47)

According to Theorem 1, this shows that if the outcome is (I, m) = (0, 0), then the
state of the system BR is |y )pr- We want to generalize this relationship to the
case where a4’ (@ | is replaced by a7 (P;,,|. From Eq. (1.46), we have | ,,)aa =
(X420 @ 14)|@oo)an and thus aa (Prw| = an(Pool(Z;"Xy! ® 14). From
Egs. (1.45) and (1.46), we have (Z;"X;' ® 15)|Po0)as = (14 ® X4Z5"™)|Po.0) as.
We therefore obtain

d™ N (XLZ5™ @ 12)[Po0)sr = an (Prm||Po0)as| Poo)arks (1.48)

which identifies the state of the system BR after the Bell measurement in the
protocol. By setting U™ = ZmX=", the protocol should leave the system BR in
the same state, | Dy o) gr, regardless of the value of the outcome (I, m). In summary,
if we begin with state |@g o) ’r, the protocol then transforms it into state |Dg o) gr, in
which the system with which R is entangled changes from A’, possessed by Alice,
to B, which is held by Bob. This procedure is often called entanglement swapping
[10].

The case where system A’ is initially prepared in the arbitrary state |¢)a =
> i Ci |/)a’ can be analyzed using Property (E3) on the relative states, as in Sect. 1.4.2.
After entanglement swapping, the state of the system BR is |@0)gr. Suppose that
we perform an orthogonal measurement on system R with a basis that includes a
state |¢p™)r = Zj ¢jlj)r- If the corresponding outcome is obtained, then the state
of system B becomes its relative state, |¢)p = Zj ¢jlj) 5. Because the entanglement
swapping protocol starts with state |@go)a’g and does not operate on system R,
Theorem 1 then dictates that such an event must be consistent with the case where
system A’ was initially prepared in |¢p)s = Zj cjlj)ar. We thus conclude that if we
carry out the protocol with initial state |[p)y = Zj ¢jlj)a, the final state of system
Bis |p)p = Zj ¢jlj) s, which is regarded as a faithful transmission of the quantum
state.

The existence of this quantum teleportation protocol has profound consequences.
Because classical channels are much easier to implement in practice, let us assume
that these channels can be used freely in both directions between Alice and Bob.
The quantum teleportation protocol and the entanglement sharing of Theorem 5
then imply that one qubit of dynamic resource and one ebit of static resource are
freely interconvertible. Because the static resource of entanglement can be stored
in quantum memories, this effectively allows dynamic resource storage. If the
quantum channels are not ideal but noisy, we may convert these channels into noisy
entanglement, which is then distilled into close-to-ideal entanglement and can be
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used for faithful quantum transmission. When we wish to concatenate the quantum
channels, which will only work probabilistically, as in the case of transmission
of photons over an optical fiber, the combination of entanglement sharing and
entanglement swapping dramatically improves the process efficiency, as described
in Chap. 4. It should also be noted that entanglement has no preferred direction. We
can convert a quantum channel from Alice to Bob into a channel from Bob to Alice,
through the protocol of entanglement sharing followed by quantum teleportation
with backward classical communication.

1.5.5 Conversion Among the Resources

In the preceding subsections, we have described three protocols, entanglement
sharing, quantum dense coding, and quantum teleportation, that provide conversion
among the three types of communication resources: ebits, bits, and qubits. Because
these protocols were introduced in a rather heuristic way, we might expect that there
are many other protocols that can be used for resource conversion. Here, we argue
that this is not the case. The three protocols in a sense exhaust all possibilities as far
as conversion among the three ideal resource types is concerned.

Imagine that Alice and Bob have a right to use E ebits of a shared ideal
entanglement, C bits of an ideal classical channel, and Q qubits of an ideal quantum
channel, which we denote by the portfolio (E, C, Q). According to Theorems 5, 8,
and 9, the three protocols change the portfolio in the following way.

Entanglement sharing (ES) (E,.C,Q)— (E+1,C,0-1)
Quantum dense coding (DC) (E,C,Q) - (E—1,C+2,0-1)
Quantum teleportation (QT) (E,C,Q)—> (E-1,C—-2,0+1)

Let us assume that we start from (Ey, Cy, Qo). By repeating these protocols Ngg,
Npc, and Ngr times,

(Eo, Co, Qo) + Ngs(1,0,—1) + Npc(—1,2,—1) + Nor(—1,-2,1)  (1.49)

is attainable. Therefore, if we ignore the fact that only a discrete set of points is
attainable, we may say that it is possible to reach anywhere within a triangular
pyramid with apex (Ey, Cy, Qo) and with edges defined by the vectors (1,0, —1),
(—1,2,—-1),and (—1,—2,1) (see Fig. 1.6).

We are now interested in whether we can reach a point outside this pyramid. We
have already derived various restrictions on resource conversion in Theorems 4, 6,
and 7, which are summarized as follows.

Theorem 4 (0,0, Q) — (0,C’,0) only if C’ < Q.

Theorem 6 (E,C,0) — (E’,C’,0) onlyif C' < C
Theorem 7 (E,C,0) — (E',C’,0) onlyif E' < E
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Fig. 1.6 Permitted resource )
conversion region. ES: Q
entanglement sharing; DC:

quantum dense coding; QT

quantum teleportation

Using these theorems, we derive a restriction on a general protocol & that performs
the conversion from (Ey, Cy, Qy) — (E, C, Q). This is done by combining &
with the three protocols, such that the theorems above are applicable to the entire
conversion process. For example, we have

(0,0, Qo+Q+2C0+E0+E) (Q—i—CO—l—Eo,O Q0+C0+E)

(Q+ Ey,2Cy, Q0 + E) — (Q+E Co+ C, Q+E)—>
(0,20 + Cy + C + 2E, 0),

which, from Theorem 4, requires that
(E—Ep) + (C—Co) + (@ — Qo) =0. (1.50)
Similarly, from
(Qo + O + Eo, Co + 209, 0) ~> (0 + Eo, Co, Qp) —> (0 + E.C. Q)
=5 (E,C +20,0),
we use Theorem 6 to obtain
(C—=Co) +2(Q—0Q0) <0. (1.51)

Finally, by applying Theorem 7 to

(Qo + Eo, Co + 2Q0,0) (Eo» Co. Qo) 2, (E,C, Q) (Q +E, C,0),
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we have

(E—Ey) +(Q—0Qp) <0. (1.52)

It is simple to confirm that Eqgs. (1.50), (1.51), and (1.52) correspond to the three
faces of the pyramid in Fig. 1.6. It is thus impossible to reach any point outside the
pyramid. We see that the three protocols of entanglement sharing, quantum dense
coding, and quantum teleportation correspond to the three edges of the achievable
region, and form a unique triad that governs the conversions that are allowed among
the resources of quantum channels, classical channels, and entanglement.
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