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1 Introduction

Let M be a complex manifold of dimension n. Let H be the Hilbert space of
holomorphic n−forms f on M satisfying

∣
∣
∣
∣

∫

M
f ∧ f̄

∣
∣
∣
∣
< ∞.

Let h1, h2, . . . be a complete orthonormal basis forH . We may define the Bergman
kernel (form) KM of M as

KM (z, w) =
∑

j

h j (z) ∧ h j (w).

Let (z1, z2, . . . , zn) be a local coordinate system in M . Let

KM (z) := KM (z, z) = K ∗(z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

where K ∗(z) is a locally defined function. If K ∗ is positive, then we may define the
Bergman metric ds2M of M as
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ds2M =
∑

α,β

∂2 log K ∗

∂zα∂ z̄β

dzαdz̄β.

We say that M possesses the Bergman metric if ds2M is a Kähler metric on M . The
Bergman distance dB is the distance with respect to ds2M . A complex manifold is
said to be Bergman complete if dB is complete.

In contrast with compact complex manifolds, the quantitative complex analysis
on open complex manifolds is far from well-developed, even in the case of Riemann
surfaces! As the Bergman kernel and metric depend only on the complex structure,
and they are invariant under biholomorphic transformations, thus they should occupy
a central place in the study of open complex manifolds. This is essentially the theme
of Kobayashi’s ground-breaking paper [Kobayashi59], although it is titled geometry
of bounded domains.

It is not difficult to see that M possesses the Bergman metric if and only if the
holomorphic mapping

τ : M → P(H ), z �→ [h1(z) : h2(z) : · · · ]

is an immersion, where P(H ) stands for the complex projective space of H .
Kobayashi’s decisive observation is

ds2M = τ ∗(ds2F S)

where ds2F S is the Fubini-Studymetric of P(H ). It follows that for any given distinct
points z, w ∈ M , the Bergman distance dB and the Fubini-Study distance dF S satisfy

dB(z, w) ≥ dF S(τ (z), τ (w)).

Since

dF S(τ (z), τ (w)) = arccos
| ∑ j h∗

j (z)h
∗
j (w)|

√∑

j |h∗
j (z)|

√∑

j |h∗
j (w)|

where h∗
j is a local representation of h j , we have

dB(z, w) ≥ arccos
|h∗

1(z)|
√

∑

j |h∗
j (z)|2

≥
√

1 − |h∗
1(z)|2

∑

j |h∗
j (z)|2

=
√

1 − |h∗
1(z)|2

K ∗(z)
(1.1)

provided that we choose {h j } such that h j (w) = 0 for all j ≥ 2. From this Kobayashi
reached the following
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Kobayashi’s criterion (cf. [Kobayashi59, Kobayashi61]). Suppose there is a dense
subset S of H such that for every f ∈ S and for any infinite sequence {pk} of points
in M which has no adherent point in M , there is a subsequence {pk j } such that

f (pk j ) ∧ f (pk j )

KM (pk j )
→ 0 as j → ∞. (1.2)

Then M is Bergman complete.
Let us give a short proof of Kobayashi’s criterion. Suppose M is not Bergman

complete, i.e. there is a dB−Cauchy sequence {pk} which has no adherent point in
M . Let k0 ∈ Z

+ satisfy

dB(pk, pl) < 1/2 ∀ k, l ≥ k0.

Since S is dense inH , wemay construct by using the Gram-Schmidt procedure on S
a complete orthonormal basis {h̃ j } ofH such that every h̃ j enjoys the same property
as f ∈ S. Put w = pk0 in (1.1). We may write h1 = ∑

j a j h̃ j with
∑

j |a j |2 = 1.

Choose j0 ∈ Z
+ (depending only on pk0 ), such that

∑

j> j0 |a j |2 ≤ 1/4. Put h1, j0 =
∑ j0

j=1 a j h̃ j . By the Cauchy-Schwarz inequality, we have

(h1 − h1, j0) ∧ (h1 − h1, j0) ≤
∑

j> j0

|a j |2
∑

j> j0

h̃ j ∧ h̃ j ≤ 1

4
KM ,

so that
h1 ∧ h1

KM
≤ 2h1, j0 ∧ h1, j0

KM
+ 1

2
.

Let {pk j } be a subsequence of {pk} such that (1.2) is verified for h1, j0 . Then
h1∧h1

KM
(pk j ) < 3/4 provided j sufficiently large. On the other hand, it follows from

(1.1) that
h1(pk j ) ∧ h1(pk j )

KM (pk j )
>

3

4
,

and we get a contradiction.
The goal of this article is to survey some results concerning Bergman complete-

ness, built on Kobayashi’s criterion. Due to my personal taste, I am not able to
cover all interesting results in this direction. I must apologize to those authors whose
papers are not mentioned here. One may consult the nice books of Jarnicki and Pflug
[JarnickiPflug, JarnickiPflug2] for more references.

Nevertheless, Bergman completeness is only the first step to understand the geom-
etry of the Bergman metric, much more works need to be done in future.
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2 Bergman Completeness for Domains in C
n

The first result concerning Bergman completeness was given by Bremermann:

Theorem 2.1 (cf. [Bremermann]) Every bounded Bergman complete domain in C
n

is pseudoconvex.

Obviously, the converse is not true (e.g., the punctured disc). Thus it is natural to
ask

Problem 2.1 (cf. [Kobayashi59]) Which bounded pseudoconvex domain in C
n is

Bergman complete?

By using his criterion, Kobayashi showed that every bounded analytic polyhedron
is Bergman complete. A useful consequence of Kobayashi’s criterion is that

H∞(Ω) lies dense in H and lim
z→∂Ω

KΩ(z) = ∞ (2.1)

implies Bergman completeness, where H∞(Ω) stands for the set of bounded holo-
morphic functions on Ω . For the sake of simplicity, we say that a bounded domain
Ω is Bergman exhaustive if limz→∂Ω KΩ(z) = ∞.

The first general result toward Problem 2.1 is due to Ohsawa:

Theorem 2.2 (cf. [Ohsawa81]) Every bounded pseudoconvex domain in C
n with a

C1 boundary is Bergman complete.

The Bergman exhaustiveness follows from the following result of Pflug:

Theorem 2.3 (cf. [Pflug75]) Let Ω be a bounded pseudoconvex domain in C
n and

p ∈ ∂Ω . Suppose there exist a sequence {zν} ⊂ C
n\Ω , and positive numbers β ≥ 1,

r ≤ 1 such that zν → p and

B(zν, r |zν − p|β) ∩ Ω = ∅.

Then Ω is Bergman exhaustive.

It is difficult to verify that H∞(Ω) lies dense in H , yet it is easy to verify this
property locally. Thus the following localization principle of the Bergman metric
becomes important:

Proposition 2.1 (cf. [Ohsawa84]) Let Ω be a bounded pseudoconvex domain inCn.
Let p ∈ ∂Ω and let V ⊂⊂ U be two bounded neighborhoods of p. Then there are
constants C1, C2 > 0 such that

C1ds2Ω(z) ≤ ds2Ω∩U (z) ≤ C2ds2Ω(z), ∀ z ∈ Ω ∩ V .
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This propositionmay be proved by a standard application of Hörmander’s L2 esti-
mates for the ∂̄−operator (cf. [HormanderBook]).Without any regularity assumption
on the boundary, Jarnicki and Pflug [JarnickiPflug89] proved that every bounded bal-
anced domain is Bergman complete.

It follows from the work of Kerzman and Rosay [KerzmanRosay] that every
bounded pseudoconvex domain with a C1 boundary is hyperconvex, i.e., there
exists a continuous plurisubharmonic (psh) function ρ : Ω → [−1, 0) such that
{ρ < −c} ⊂⊂ Ω for all c > 0. Another important class of hyperconvex domains
are Teichmüller spaces of compact Riemann surfaces of genus ≥ 2 (cf. [Krushkal]).
Blocki and Pflug [BlockiPflug] and Herbort [HerbortHyperconvex] proved inde-
pendently the following result which has been a longstanding conjecture due to
Kobayashi (see e.g., [KobayashiBook98]):

Theorem 2.4 Every bounded hyperconvex domain in C
n is Bergman complete.

Earlier,Ohsawa [OhsawaHyperconvex] has proved that everyhyperconvexdomain
is Bergman exhaustive, which also initiates a program of studying asymptotic behav-
ior of L2 holomorphic objects through investigating the Green function (see also
[Ohsawa95]).

Recall that the pluricomplex Green function gΩ(z, w) of Ω is defined as

gΩ(z, w) = sup {u(z) : u < 0, u ∈ P SH(Ω), u(z) ≤ log |z − w| + O(1) near w}

where P SH(Ω) stands for the set of psh functions on Ω .
The following result was discovered independently by Herbort and myself, and

suggests that pluripotential theory would be essential for the study of Bergman com-
pleteness:

Proposition 2.2 (cf. [Chen99, HerbortHyperconvex]) Let Ω be a bounded pseudo-
convex domain in C

n. Suppose there is a constant c > 0 such that

lim
w→∂Ω

|{gΩ(·, w) < −c}| = 0 (2.2)

where | · | stands for the (Euclidean) volume. Then Ω is Bergman complete.

Let me explain briefly the idea of proving the proposition. It suffices to verify
Kobayashi’s criterion. Given f ∈ H and w ∈ Ω , we look for a new function
f̃ ∈ H (which actually depends on w) such that f̃ (w) = f (w) and ‖ f̃ ‖L2 tends to
zero as w → ∂Ω . Since KΩ(w) ≥ | f̃ (w)|2/‖ f̃ ‖2

L2 , it follows that

| f (w)|2
KΩ(w)

≤ ‖ f̃ ‖2L2 → 0 as w → ∂Ω.

The desired function f̃ is given by

f̃ = χ(log(−gΩ(·, w))) f − u
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where χ is a standard cut-off function such that

suppχ(log(−gΩ(·, w))) ⊂ {gΩ(·, w) < −c}.

Note that ∂̄ f̃ = 0 if and only if

∂̄u = f ∂̄χ(log(−gΩ(·, w))).

Thanks to the L2−estimates of Donnelly and Fefferman [DonnellyFefferman], we
may find a solution u satisfying

∫

Ω

|u|2e−2ngΩ(·,w)

≤ const.
∫

Ω

| f |2|χ ′(·)|2|∂̄ log(−gΩ(·, w))|2
i∂∂̄ log(−gΩ(·,w)+1)

e−2ngΩ(·,w)

≤ const.
∫

{gΩ(·,w)<−c}
| f |2.

Since u is holomorphic in a neighborhood of w, we see that u(w) = 0. Thus f̃ (w) =
f (w) and

‖ f̃ ‖2L2 ≤ 2
∫

{gΩ(·,w)<−c}
| f |2 + 2

∫

Ω

|u|2

≤ const.
∫

{gΩ(·,w)<−c}
| f |2 → 0 as w → ∂Ω.

Thus we are done. To make the argument rigorous, we need to smooth gΩ(·, w) by
a standard approximating procedure.

ToproveTheorem2.5, it suffices to verify (2.2) for boundedhyperconvexdomains.
Blocki and Pflug used the following results due to Blocki:

Proposition 2.3 (cf. [Blocki93]) Let Ω be a bounded domain in C
n. Assume that

u, v are non-positive psh functions such that u = 0 on ∂Ω . Then

∫

Ω

|u|n(ddcv)n ≤ n!‖v‖n−1∞
∫

Ω

|v|(ddcu)n . (2.3)

Theorem 2.5 (cf. [Blocki96]) Let Ω be a bounded hyperconvex domain inCn. Then
there exists a solution φ of the following Monge-Ampere equation

det

(
∂2φ

∂zα∂ z̄β

)

= 1, φ ∈ C(Ω) and φ|∂Ω = 0.

Put u = gΩ(·, w) and v = φ in (2.3), one gets
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|{gΩ(·, w) < −1}| ≤
∫

Ω

|gΩ(·, w)|n(ddcφ)n

≤ n!‖φ‖n−1∞
∫

Ω

|φ|(ddcgΩ(·, w))n

≤ const.|φ(w)| → 0

as w → ∂Ω , for (ddcgΩ(·, w))n = δw (cf. Demailly [Demailly82]).

Remark 2.1 Recently, the property of the function λ(t) := |{gΩ(·, w) < −t}| defi-
ned on (0,∞), in particular, the asymptotic behavior of λ(t) as t → ∞, has attracted
much attention (see e.g., [BlockiSuita, BlockiBourgain, BerndtssonLempert]).

On the other side, there are many non-hyperconvex, Bergman complete domains
(cf. [Chen99, HerbortHyperconvex, PflugZwonek03, PflugZwonek05]). For
instance, one has the following

Proposition 2.4 (cf. [ChenEssay]) Let D be a bounded pseudoconvex domain in C
n

and let ϕ > 0 be a continuous psh function on D satisfying

lim inf
z→∂ D

ϕ(z)

log 1/δD(z)
= ∞.

Then (2.2) holds for the Hartogs domain Ω := {(z, w) ∈ D × C : |w| < e−ϕ(z)}, in
particular, it is Bergman complete.

This result suggests that condition (2.2) is almost optimal for Bergman com-
pleteness, e.g., let D be a punctured disc and ϕ(z) be psh on D satisfying ϕ(z) ∼
N log 1/|z| as z → 0, where N is a positive integer, then Ω would not be Bergman
complete.

It is important to obtain quantitative lower estimates on the Bergman distance
which implies completeness. Diederich and Ohsawa proved the following

Theorem 2.6 (cf. [DiederichOhsawa]) Let Ω ⊂ C
n be a bounded pseudoconvex

domain with a C2 boundary and let z0 ∈ Ω . Then the Bergman distance dB satisfies

dB(z0, z) ≥ const. log | log δΩ(z)|

for all z ∈ Ω sufficiently close to ∂Ω . Here δΩ stands for the (Euclidean) boundary
distance.

The key idea of [DiederichOhsawa] is to use the following strengthening of
Kobayashi’ observation:

Proposition 2.5 (cf. [DiederichOhsawa]) Let p1, p2 be distinct points in a bounded
domain Ω ⊂ C

n. Suppose there exists a constant C > 0 such that for any f ∈ H
with ‖ f ‖L2 = 1 there is another f̃ ∈ H satisfying f̃ (p1) = 0, f̃ (p2) = f (p2),
and ‖ f̃ ‖L2 ≤ C, then dB(p1, p2) ≥ C ′ where C ′ is a positive constant depending
only on C.
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Proof Recall from (1.1) that

dB(p1, p2) ≥
√

1 − |h1(p2)|2
KΩ(p2)

where {h j } is a complete orthonormal basis of H satisfying h j (p1) = 0 for all
j ≥ 2. If |h1(p2)|2 ≤ 1

2 KΩ(p2), then we have dB(p1, p2) ≥ 1/
√
2; otherwise, we

may choose h2 satisfying |h2(p2)| ≥ |h1(p2)|/C , so that

dB(p1, p2) ≥
√

1 − |h1(p2)|2
KΩ(p2)

=
√

∑∞
j=2 |h j (p2)|2
KΩ(p2)

≥ |h2(p2)|√
KΩ(p2)

≥ |h1(p2)|
C

√
KΩ(p2)

≥ 1√
2C

.

�

Built on the previous proposition, we may prove the following result through a
similar argument as the proof of Proposition 2.6:

Proposition 2.6 (cf. [BlockiGreen], see also [ChenZhang]) Let Ω be a bounded
pseudoconvex domain in C

n. Suppose that p1, p2 are distinct points in Ω satisfying

{gΩ(·, p1) < −1} ∩ {gΩ(·, p2) < −1} = ∅,

then dB(p1, p2) ≥ constn.

Blocki improved substantially the result of Diederich-Ohsawa as follows

Theorem 2.7 (cf. [BlockiGreen]) One has

dB(z0, z) ≥ const.| log δΩ(z)|/ log | log δΩ(z)|

for all z ∈ Ω sufficiently close to ∂Ω .

The proof of Theorem 2.7 relies on Proposition 2.6 and the following quantitative
estimate of gΩ , which is also useful for other purposes (see e.g., [ChenFu11]):

Proposition 2.7 (cf. [BlockiGreen], see also [HerbortGreen] for a weaker result)
Let Ω ⊂⊂ C

n be a pseudoconvex domain. Suppose there is a negative psh function
ρ on Ω satisfying

C1δ
a
Ω(z) ≤ −ρ(z) ≤ C2δ

b
Ω(z), z ∈ Ω

where C1, C2 > 0 and a ≥ b ≥ 0 are constants. Then there are positive numbers
δ0, C such that

{gΩ(·, w) < −1} ⊂ {C−1δΩ(w)
a
b | log δΩ(w)|− 1

b ≤ δΩ ≤ CδΩ(w)
b
a | log δΩ(w)| n

a }
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holds for any w ∈ Ω with δΩ(w) ≤ δ0.

For planar domains, I showed the following

Theorem 2.8 (cf. [Chen00]) Let Ω be a bounded domain in C. If Ω is Bergman
exhaustive, then it is Bergman complete.

The converse does not hold. Zwonek [ZwonekExample] has constructed a
Bergman complete Zalcman type domain, which is not Bergman exhaustive. By
a Zalcman type domain we mean a planar domain defined by

Δ\
⎛

⎝
⋃

j

Δ j ∪ {0}
⎞

⎠

where {Δ j } is a sequence of disjoint discs in the unit disc Δ. Zwonek’s example
also disproved an old conjecture due to Kobayashi [Kobayashi59] that Bergman
completeness implies

lim
z→∂Ω

| f (z)|2/KΩ(z) = 0

for all f ∈ H . It is still unclear whether the converse of Kobayashi’s criterion fails.
A characterization in terms of logarithmic capacity for Bergman exhaustive planar

domains was given by Zownek:

Theorem 2.9 (cf. [ZwonekWiener]) Let Ω be a bounded domain in C and p ∈ ∂Ω .
Then

lim
z→p

KΩ(z) = ∞

if and only if

γΩ(z) :=
∫ 1/2

δΩ(z)

dt

t3| log(cap(Δt (z)\D))| → ∞ as z → p.

Here Δt (z) stands for the disc with center z and radius t .

Similar results on the Bergman metric were obtained in Pflug and Zwonek
[PflugZwonek03]. By using these results, Wang [XuWang] was able to show
that Bergman completeness is not a quasiconformal invariant for bounded planar
domains. It is a classical result that (Green) hyperbolicity is a quasiconformal invari-
ant for open Riemann surfaces.

It is well-known that every hyperbolic planar domain admits a canonical complete
conformally invariant metric: the Poincaré metric of constant curvature −1. The
following question is of classical interest:

Problem 2.2 What are relationships between the Bergman metric and the Poincaré
metric?
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I have not learnt any example that the Bergman metric is not dominated by the
Poincaré metric. On the positive side, one has the following

Theorem 2.10 (cf. [ChenEssay]) The Bergman metric and the Poincaré metric are
equivalent on uniformly perfect domains. Both distances grow like | log δΩ | near
∂Ω .

A hyperbolic domain Ω ⊂ C is said to be uniformly perfect if there exists a
constant c > 0 such that for any boundary point p ∈ ∂Ω and 0 < r < diam∂Ω

there is a point q ∈ ∂Ω such that cr ≤ |q − p| ≤ r . For instance, the complement of
the 1

3−Cantor set in Δ is uniformly perfect. There are many equivalent definitions
of uniform perfectness, as well as various interesting examples, among them of
particular interest is the complement in P

1 of the Julia set of a rational function of
degree at least two (cf. [SugawaPerfect]).

We refer to [Wolpert, NikolovPflugZwonek] for various interesting results con-
cerning the comparison of the Bergman metric with other invariant metrics on higher
dimensional domains (usually with a highly complicated boundary).

The Bergman kernel and metric are deeply studied for some unbounded domains,
e.g., Siegel domains of the second kind. Another interesting class of unbounded
domains are model domains defined by

Ωψ := {(z′, zn) ∈ C
n : Im zn > ψ(z′)}

where ψ is a psh function in Cn−1.

Problem 2.3 When is Ωψ Bergman complete?

The answer is positive when ψ satisfies ψ > 0 and

lim
|z′|→+∞

ψ(z′) = +∞

(cf. [ChenKamimotoOhsawa], see also [PflugZwonek05] for related results). The
case when ψ has singularities is more complicated and interesting. For instance, we
have KΩψ = 0 if ψ(z′) = log |z′|, whereas Kψ > 0 if

ψ(z′) ∼ log |z′| as z′ → 0 and ψ(z′) ∼ |z| as |z′| → +∞.

Recently, Ahn-Gaussier-Kim obtained a closely related result:

Theorem 2.11 (cf. [AhnKim]) Let ΩKN be the Kohn-Nirenberg domain defined by

ΩKN = {(z1, z2) ∈ C
2 : Im z2 > P2k(z1)}

where P2k is a real-valued polynomial in z1 and z̄1 satisfying (1) P2k(t z) = t2k P2k(z)
for any t ∈ R and z ∈ C. (2) ∂2P2k/∂z∂ z̄ > 0 on C

∗ = C − {0}. Then ΩKN is
complete with respect to the Carathéodory and Bergman metrics.
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3 Bergman Completeness for Open Complex Manifolds

For complex manifolds, one has to deal at first with the existence problem of the
Bergman kernel or metric. The following is a classical one:

Theorem 3.1 (cf. [AhlforsSario]) Every non-planar Riemann surface admits a
nonzero square integrable holomorphic 1−form, i.e., the Bergman kernel does not
vanish.

One of the most interesting class of open complex manifolds are universal cov-
erings of a compact complex manifold with an infinite fundamental group. Suppose
M̃ is a complex manifold and Γ is a free, properly discontinuous subgroup of the
automorphism groupAut(M̃) of M̃ such that M := M̃/Γ is compact. The first Chern
number c1 of M is negative provided that M̃ possesses the Bergman metric. From
the opposite direction, one may propose the following

Problem 3.1 Let M be a compact complex n−manifold with an infinite fundamen-
tal group and c1 < 0. Is the Bergman kernel of the universal covering M̃ of M
nonvanishing?

The answer is positive when n ≤ 2. The case n = 1 is trivial. The proof for
n = 2 is due to Claudon [Claudon]. It follows from Atiyah’s L2 index theorem and
Miyaoka-Yau’s inequality c2 ≥ c21/3:

h2,0
(2) (M̃) − h1,0

(2) (M̃) + h0,0
(2) (M̃) = χ(2)(OM̃ ) = χ(OM ) = c21 + c2

12
≥ c21

9
> 0.

Every L2 holomorphic function f on M̃ has to be constant in view of a L p−Liouville
theorem of Yau [Yau76]. Since M̃ is of infinite volume, f has to be zero, i.e.,
h0,0

(2) (M̃) = 0, so that h2,0
(2) (M̃) > 0, i.e., there exists a nonzero holomorphic 2−form

on M̃ .
Conversely, I would like to ask

Problem 3.2 Let Ω be a bounded pseudoconvex domain in C
n with n ≥ 2 (e.g.

a bounded symmetric domain) and Γ a free, properly discontinuous subgroup of
the automorphism group Aut(Ω) of Ω . When does Ω/Γ possess a nonzero square
integrable holomorphic n−form?

Kobayashi proposed the following criterion for the existence of the Bergman
metric:

Proposition 3.1 (cf. [Kobayashi59]) A complex manifold M possesses the Bergman
metric provided the following two conditions are verified:
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(1) For every w ∈ M, there exists a n−form f ∈ H such that f (w) �= 0;
(2) For every w ∈ M, there are n−forms f1, . . . , fn in H satisfying fα(w) = 0,

∂ f ∗
α

∂zβ
(w) = δαβ (Kronecker delta) for 1 ≤ α, β ≤ n. Here f ∗

α , 1 ≤ α ≤ n, are
local representations of f .

The concept of the pluricomplex Green function may be extended to complex
manifolds, which depends only on the complex structure of the manifold. A criterion
in terms of the pluricomplex Green function can be given as follows:

Proposition 3.2 (cf. [ChenZhang]) Let M be a Stein manifold. Suppose for any
w ∈ M there is a positive number c > 0 such that {gM (·, w) < −c} is relatively
compact in M. Then M possesses the Bergman metric.

From this we immediately know that every hyperbolic Riemann surface possesses
the Bergman metric. Combining with a theorem of Carleson on removable singu-
larities of L2 holomorphic functions (see e.g., [Conway95]), we know that for any
Ω ⊂ C

KΩ > 0 at one point ⇐⇒ KΩ > 0 everywhere

⇐⇒ ds2Ω exists ⇐⇒ Ω is hyperbolic.

The situation is completely different for higher dimensional domains. Rosay and
Rudin [RosayRudin] constructed a domain Ω ⊂ C

2 with finite volume, whereas
there exists a surjective, locally biholomorphic map F : C2 → Ω . It follows that
KΩ(z) ≥ 1/|Ω| > 0, i.e., ∂∂̄ log KΩ is well-defined, whereas

gΩ(z, w) ≤ inf
{

gC2(ζ, η) : ζ ∈ F−1(z), η ∈ F−1(w)
}

= −∞

for all z, w ∈ Ω . It is unclear whether Ω can be made to be Bergman complete.
Let D be a parabolic domain and U ⊂⊂ D a small disc. The domain Ω = D\U

is hyperbolic so that it possesses the Bergman metric, which is not complete in view
of Carleson’s theorem. It is reasonable to ask

Problem 3.3 1 Let M be a parabolic Riemann surface and U ⊂⊂ M a local coordi-
nate disc. Is M ′ := M\U always Bergman incomplete?

In their famous book [GreeneWuBook], Greene and Wu suggested to study the
Bergman metric through Riemannian geometry. They proved the following

Theorem 3.2 (cf. [GreeneWuBook]) Let (M, g) be a Kählerian Cartan-Hadamard
manifold, let o be a fixed point in M and let r be the distance from o. Then

1Recently, I got a counterexample.
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(1) If the inequality

sectional curvature ≤ −A

r2(log r)1−ε

holds outside a compact subset of M, where ε and A are positive constants, then
M possesses the Bergman metric.

(2) Suppose

− B

r2
≤ sectional curvature ≤ − A

r2

holds outside a compact subset of M for some positive constants A and B, then
the Bergman metric ds2M satisfies ds2M ≥ const.(1 + r2)−1g. In particular, M
is Bergman complete.

(3) Suppose
−B ≤ sectional curvature ≤ −A

for some positive constants A and B, then ds2M ≥ const.g. In particular, M is
Bergman complete.

Recall that a Cartan-Hadamard manifold is a complete, simply-connected Rie-
mannian manifold of nonpositive sectional curvature. Greene-Wu conjectured that
the hypothesized lower bound in (2) or (3) is unnecessary for the lower estimate of
the Bergman metric, they even conjectured that M is Bergman complete under the
assumptions in part (1).

In attempt to solve these conjectures, Zhang and I proved the following

Theorem 3.3 (cf. [ChenZhang])Let M be a Kählerian Cartan-Hadamard manifold,
let o be a fixed point in M and let r be the distance from o. Then

(1) Suppose

sectional curvature ≤ − A

r2

outside a compact subset of M for suitable positive constant A, then the Bergman
distance dB satisfies

dB(o, x) ≥ const. log r(x).

(2) Suppose
sectional curvature ≤ −A

for some positive constant A, then

dB(o, x) ≥ const.r(x).

Greene and Wu [GreeneWuBook] also showed that under the following weaker
assumption
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sectional curvature ≤ −(1 + ε)

r2 log r

outside a compact set, M has to be a hyperconvex manifold, i.e., there is a smooth
strictly psh function ρ : M → [−1, 0) such that {ρ < −c} ⊂⊂ M for all c > 0.
Thus it is worthwhile to extend Theorem 2.5 as follows:

Theorem 3.4 (cf. [ChenHyperconvex]) Every hyperconvex manifold is Bergman
complete.

Below we list some examples of hyperconvex manifolds beyond hyperconvex
domains:

(a) Closed complex submanifolds of a hyperconvex domainΩ; these manifolds can
be highly complicated even when Ω is the unit ball!

(b) Boundedpseudoconvexdomains inPn with aC2 boundary (cf. [OhsawaSibony]).
(c) Sufficiently small neighborhoods of a totally real C1 submanifold in a complex

manifold (cf. [HarveyWells]).
(d) Regular coverings of a hyperconvex manifold (cf. [Vajaitu]).

Although the proof of the previous theorem is not basically different from
[BlockiPflug], it still requires a few additional observations. Indeed, the following
modified criterion for Bergman completeness was implicitly used:

Proposition 3.3 (cf. [ChenEssay]) Let M be a Stein manifold which possesses the
Bergman metric. Suppose that for any infinite sequence of points {pk} in M which
has no adherent point in M, there are a subsequence {pk j }, a number c > 0 and a
continuous volume form dV on M such that for any compact subset K of M, the
related volume

|K ∩ {gM (·, pk j ) < −c}|

tends to zero as j → ∞, then M is Bergman complete.

Even for bounded hyperconvex domains, this criterion has the advantage of avoid-
ing any use of the solution of the Monge-Ampere equation. Furthermore, it was used
in [ChenEssay] to show that every Stein subvariety in a complex manifold admits a
fundamental family of Bergman complete Stein neighborhoods, which improves a
famous result of Siu [SiuNeighborhood].

As is well-known, every Stein manifold can be embedded holomorphically as a
closed complex submanifold of some Cn . It is natural to ask

Problem 3.4 Which closed complex submanifold of Cn is Bergman complete?

For instance, the preimage π−1(S) ⊂ C
n of a smooth ample divisor S in an

Abelian variety A is Bergman complete, where π : Cn → A is the covering map
(see e.g., [ChenEssay]). When n > 2, there is no nonconstant bounded holomor-
phic functions on π−1(S); I guess that the related pluricomplex Green function
equals −∞.
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Even for a smooth analytic hypersurface M defined by f = 0 where f is an entire
function inCn , it is still of great interest to find a criterion for Bergman completeness
of M in terms of the function f .

Finally, let us look at Riemann surfaces from a different viewpoint. Consider at
first an orientable surface M , i.e., a two-dimensional differentiable manifold. Let

ds2 = E(x, y)dx2 + 2F(x, y)dxdy + G(x, y)dy2

where EG − F2 > 0, E > 0, be a (smooth) Riemannian metric defined in local
coordinates (x, y) of M . It is easy to see that every (paracompact) surface carries
a (complete) Riemannian metric by means of patching up together local metrics
through a partition of unity. By isothermal parameters we mean local coordinates
(ξ, ζ ) with ξ = ξ(x, y), ζ = ζ(x, y), such that

ds2 = λ(ξ, ζ )(dξ2 + dζ 2), λ(ξ, ζ ) > 0.

Such isothermal parameters are known to exist by the famous Korn-Lichtenstein
theorem, which goes back to Gauss. Thus M carries local complex coordinates
z = ξ + ζ i so that it becomes a Riemann surface in classical sense. This observation
is significant since the complex structure of a surface is often unknown, whereas the
Riemannianmetric can be analyzed through general theory of Riemannian geometry.
From this viewpoint, assumptions relying on the complex structure are unnatural.

Now I formulate a basic problem:

Problem 3.5 Let M be an open Riemann surface with a complex structure induced
by some complete Riemannian metric ds2. Under which condition on ds2 is the
surface M Bergman complete?

As is well-known, popular conditions in Riemannian geometry are curvature,
volume, etc. These are not strong enough for giving a criterion for Bergman com-
pleteness. Certain global condition is needed.

A nice global property of Riemannian manifolds is isoperimetric inequalities.
Suppose M is a complete Riemannian n−manifold. LetF denote the set of precom-
pact domains Ω ⊂ M with a smooth boundary. For 0 < ν ≤ ∞, the ν−dimensional
isoperimetric constant Iν(M) of M is defined by

Iν(M) = inf
Ω∈F

|∂Ω|/|Ω|1−1/ν.

Recently, I obtained the following

Theorem 3.5 (cf. [ChenRiemann]) Let M be a complete Riemannian surface with
the Gauss curvature bounded below by a constant. Let o be a point in M and r be
the distance from o. Suppose either of the following conditions is verified:
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(1) Iν(M) > 0, for some 2 < ν < ∞;
(2) I∞(M) > 0 and infx∈M |B1(x)| > 0, where Ba(x) stands for the geodesic ball

with center x and radius a.

Then the Bergman distance dB satisfies

dB(o, x) ≥ const. r(x).

Remark 3.1 (1) For the flat complex plane, one has I2(C) > 0, whereas C does not
possess the Bergman metric. (2) For the punctured discΔ∗ with the Poincaré metric,
one has I∞(Δ∗) > 0, whereas the Bergman metric is not complete.

How to realize these assumptions?With respect the Poincaré metric, every unifor-
mly perfect domainΩ has bounded geometry and I∞(Ω) > 0 (cf. [SugawaPerfect]).
Recall that a complete Riemannian manifold M has bounded geometry if the Ricci
curvature is bounded below by a constant, and the injectivity radius is positive. Thus
Ω satisfies the assumption in part (2). The point is that one may construct from Ω

many open Riemannian surfaces verifying this assumption, based on the following
beautiful discovery of Kanai:

Theorem 3.6 (cf. [KanaiRough]) Let M1, M2 be complete Riemannian manifolds
with bounded geometries such that they are roughly isometric to each other. Let ν ≥
max{dim M1, dim M2}. Then Iν(M1) > 0 if and only if Iν(M2) > 0.

Recall that a map F : M1 → M2 between two Riemannian manifolds M1 and M2 is
called a rough isometry if there are constants a ≥ 1 and b ≥ 0 such that

a−1d1(x, y) − b ≤ d2(F(x), F(y)) ≤ ad1(x, y) + b

for all x, y ∈ M1, and F is ε−full for some number ε > 0, i.e.,

⋃

x∈M1

Bε(F(x)) = M2.

For instance,we learn fromKanai’s theorem that every 2−dimensional jungle gym
in R

n with n > 2 has a positive n−dimensional isoperimetric constant; similarly,
every 2−dimensional jungle gym in a Cartan-Hadamard n−manifold (n ≥ 2) with
sectional curvature ≤ −A (A > 0) has a positive infinite-dimensional isoperimetric
constant.

Problem 3.6 Let M be an open real surface. Does there always exist a complex
structure on M such that the related Bergman metric is complete?
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