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Abstract An amoeba of an analytic set is the real part of its image in a logarithmic
scale. Among all hypersurfaces A-discriminantal sets have themost simple amoebas.
We prove that any singular cuspidal stratum of the classical discriminant can be
transformed by a monomial change of variables into an A-discriminantal set and
compute the contours of the amoebas of these strata.
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The notion of the amoeba of an algebraic hypersurface was introduced in 1994 in
the book [GKZ94]. The study of the structure of amoebas began with the papers
[FPT00, Mik00], and by now there are many interesting results related both to the
description of amoebas [MR01, BT12], and to their applications in the study of
dimer configurations [KOS06], extensions of non-Archimedean fields [EKL06], to
mention but a few. The interest in amoebas is partly stimulated by the connections
to real algebraic geometry [Mik00] and tropical arithmetic [EKL06, Stu02]. The
extension of the notion of amoeba to non-algebraic complex analytic sets allows to
use this language in thermodynamics and statistical physics in general, for example
in problems with several Hamiltonians for a given physical system [PPT13, PT09].
In statistical physics amoebas appear when using asymptotical methods for studying
integrals with integration over cycles on analytic sets [LPT08, BKT14].
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Logz = (log |z1|, . . . , log |zn|).

The amoeba of an algebraic set V ⊂ T
n is its image LogV ⊂ R

n . The amoeba
of the set V will be denoted by AV , while its complement Rn \AV will be denoted
by cAV . Since the map Log is proper, the complement of the amoeba is open. For
a hypersurface V , i.e. for a set of codimension 1, the complement cAV consists
of a finite number of connected components, each is open and convex. Indeed, if a
hypersurface V is the zero set of a polynomial P , then for every connected component
E of cAV the set Log−1E is a domain of convergence for some Laurent series for
1/P centered at the origin:

1

P(z)
=

∑

α∈Zn

aαzα,

and such domains are logarithmically convex.
In the case of arbitrary codimension k = codimC V the complement cAV has the

property of being (k − 1)-convex (the 0-convexity is the usual convexity) [BT12,
Hen04].

In comparison to the case of hypersurfaces, amoebas of surfaces of codimension
k > 1 are studied to a less extent. One of the reasons behind that is the absence of a
simple analog of the Jensen-Ronkin function [PR04]. This paper deals with amoe-
bas of singular strata of cuspidal type for the classical discriminant. An important
role in this study is played by the Horn-Kapranov parametrization for the discrim-
inant set (see Sect. 2). The implicit function theorem yields that singularities of an
algebraic function, given by a polynomial equation, appear only in those points
where the discriminant of the polynomial vanishes. It turns out that a general alge-
braic function, i.e. given by a polynomial with independent variable coefficients, is a
hypergeometric function in the sense of Horn [Hor89]. The hallmark of this property
is that one can explicitly parametrize the boundary of the domain of convergence of
a hypergeometric series, i.e. parametrize the set of conjugate radii of convergence.
This parametrization was obtained by J.Horn in 1889, and a hundred years later
M. Kapranov noticed a miraculous fact: if in Horn’s parametrization we omit the
absolute value signs and let the parameters be complex it becomes the parametriza-
tion of the singular set of a hypergeometric function [Kap91]. The ideas of Horn and
Kapranov were further developed in [AT12] to parametrize discriminantal sets for
polynomial transformations of Cn .

We proceed as follows. In Sect. 1 we define the contour of an amoeba and the
logarithmic Gauss map and formulate a theorem that establishes a relationship
between them (Theorem 1). In Sect. 2 we consider cuspidal strata for the classi-
cal discriminant and find their place in the hierarchy of all A-discriminantal sets
(Theorem 2). Theorems 3 and 4 are necessary steps to justify the fact that amoebas
of cuspidal strata have non-empty contours, which admit explicit parameterizations
(Theorem 5).
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1 The Contour of Amoeba and the Logarithmic Gauss Map

Definition 1 The contour of the amoeba AV is the set CV of critical values of the
logarithmic mapping Log restricted to V , i.e. of the mapping Log : V → R

n .

The structure of the contour of an amoeba can be described in terms of the logarith-
micGaussmap.Thismapping, introducedbyKapranov in [Kap91] for hypersurfaces,
extends naturally to the case of surfaces V of any codimension k.

Definition 2 Let Gr(n, k) be the Grassmanian of k-dimensional complex subspaces
inCn . The logarithmic Gauss map γ : V → Gr(n, k) sends a smooth point z ∈ regV
to the normal subspace γ (z) to LogCV at LogC(z), where LogC is the complex
logarithm LogC : (z1, . . . , zn) → (log z1, . . . , log zn).

If V is a hypersurface

V = {z ∈ T
n : P(z) = 0}

(i.e. if k = 1 and Gr(n, 1) = CPn−1) the logarithmic Gauss map γ : V → CPn−1
has the following analytic expression

(z1, . . . , zn) →
(

z1
∂ P

∂z1
: . . . : zn

∂ P

∂zn

)
.

In this case it is known [Mik00, The02] that a point z ∈ regV is critical for the
map Log|V if and only if its image γ (z) under the logarithmic Gauss map lies in the
real projective subspace RPn−1 ⊂ CPn−1. So the contour CV of the amoeba AV of
a hypersurface is the set Log(γ −1(RPn−1)).

Consider now an algebraic surface V ⊂ T
n , n > 1. Assume that V is of pure

complex dimension d, i.e. all irreducible components of V have the same dimension
d. Denote by k = n − d the codimension of V .

In a neighborhood of any its smooth point z0 the set V is given by the system
P1(z)=. . .=Pk(z) = 0 with the Jacobian matrix of rank k. Then the logarithmic
Gauss map at this point is defined by the matrix

γ (z) =

⎛

⎜⎜⎜⎜⎝

z1
∂ P1

∂z1
· · · zn

∂ P1

∂zn
...

...

z1
∂ Pk

∂z1
· · · zn

∂ Pk

∂zn

⎞

⎟⎟⎟⎟⎠
.

The rows of this matrix form a basis for the normal space to the image LogCV at
LogC(z0).
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Theorem 1 ([BT12]) A point z ∈ regV is critical for the mapping Log if and only
if the image γ (z) of the logarithmic Gauss map contains

• at least n − 2d + 1 linearly independent real vectors if 2d ≤ n,
• at least one real vector if 2d ≥ n.

In particular, if V is a hypersurface or a curve, i.e. d = n − 1 or d = 1, a point z is
critical if and only if γ (z) is real.

Let us say some words on the essence of this statement. The mapping Log|V :
V → R

n is the composition of the complex logarithm

LogC(z) = Log(z) + iArg(z) : V → R
n ⊕ iRn

and the projection onto the real part Rn :

Log|V = πRn ◦ LogC
∣∣
V .

The complex logarithm does not have critical point on regV (it is locally biholomor-
phic in Tn), therefore the critical points of Log|V appear only as critical point of the
projection

πRn : LogCV → R
n .

But the critical point of this projection are defined by the properties of its tangent
map

d(πRn )|LogCV : Tw(LogCV ) → TRe(w)(R
n), w = LogC(z).

As a matter of fact, the criterion for Log|V to be critical at z can be formulated as
follows

• if 2d ≤ n, the tangent map of the projection πRn is not injective,
• if 2d ≥ n, the tangent map of the projection πRn is not surjective.

The conditions of being non-injective or non-surjective are related to whether the
normal space to LogCV is real or not (in some sense Fig. 1 clarifies that: in critical
points of the projectionπRn the normal subspace γ (z) becomes ‘horizontal’ and does
not have a real part, i.e. γ (z) is real).

As an example, let us examine whether an amoeba of a complex line has a contour.
Let the complex line V in Cn be given by

⎧
⎪⎨

⎪⎩

z2 = a2z1 + b2,

. . .

zn = anz1 + bn,

(1)

where all a j , b j 	= 0. The logarithmic projection of V has the form

Log(z)|V = (log |z1|, log |a2z1 + b2|, . . . , log |anz1 + bn|).
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Fig. 1 An illustration to Theorem 1

Its Jacobian matrix equals

∂(Log)

∂(z, z)
= 1

2

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

1

z1

1

z1
a2
z1

a2

z1
. . .
an

z1

an

z1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Denote

z1 = x + iy,
b j

a j
= c j + id j ,

then the condition for z1 = x + iy to be critical for the mapping Log|V (i.e. when
the rank of the Jacobian matrix is not maximal) can be written as

∣∣∣∣
x y
c j d j

∣∣∣∣ = 0, j = 2, . . . , n,

∣∣∣∣
ck dk

x y

∣∣∣∣ +
∣∣∣∣
x y
cl dl

∣∣∣∣ +
∣∣∣∣
ck dk

cl dl

∣∣∣∣ = 0, k, l = 2, . . . , n.

This system is consistent if and only if ckdl = cldk for all k, l = 2, . . . , n, but this
condition is equivalent to

akbl

albk
∈ R, k, l = 2, . . . , n. (2)
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Thus, we arrive at

Proposition For n ≥ 3 the contour of the amoeba of a complex line (1) is not empty
if and only if the conditions (2) hold. In such case the contour of the amoeba is the
image of the real line d2x = c2y under the mapping Log.

Consider two examples of lines in T
3.

Example 1 For the complex line given by

{
z2 = z1 + 1,

z3 = z1 + 1 + i,

the conditions (2) do not hold, therefore the contour of its amoeba is empty. The
logarithmic projection of this line does not have critical points, and the line is dif-
feomorphic to its amoeba (see Fig. 2, left). In this case we say that the amoeba is not
degenerate. At each point of the line the value γ (z) of the logarithmic Gauss map
has only one real vector (see Fig. 2, right).

Example 2 For the complex line

{
z2 = z1 + 1,

z3 = z1 + 2

the condition (2) holds:
a2b3
a3b2

= 2 ∈ R. The amoeba is a surface with a corner in

R
3, each its interior point has two preimages on the line. Namely, for every non-real

z1 = x + iy the images of

Log(z1, z1 + 1, z1 + 2) and Log(z1, z1 + 1, z1 + 2)

Fig. 2 The amoeba of the complex line of Example 1
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Fig. 3 The amoeba of the complex line of Example 2

coincide. The real line z1 = x1 ismapped to the contour of the amoeba (its topological
boundary), and the amoeba itself is the result of collapsing of a non-degenerate
amoeba (see Fig. 3, left). At the points of the contour the logarithmic Gauss map
γ (z) contains a plane of real normal vectors (see Fig. 3, right).

2 Cuspidal Strata for Classical Discriminant

By a general algebraic equation we understand the equation

f (y) := a0 + a1y + . . . + an−1yn−1 + an yn = 0 (3)

with variable complex coefficients a = (a0, a1, . . . , an).
The classical discriminant is the polynomial D(a) that vanishes if and only if the

Eq. (3) has multiple roots. The zero set of the discriminant D(a)we denote by∇ and
call the discriminantal set of the Eq. (3) or of the polynomial f .

Define subsets M j ⊂ ∇ that comprise all a ∈ C
n+1 for which the Eq. (3) has

roots of multiplicity ≥ j . They form a sequence of nested subsets

∇ = M 2 ⊃ M 3 ⊃ . . . ⊃ M n .

EachM j+1 is a subset of singular points sngM j , and the stratum S j = M j \M j+1

consists of points where either M j is smooth or self intersects with its smooth
components.Therefore we call M j the cuspidal strata. Note that certain properties
of these strata were studied in [Kat03].

Our recent result from the forthcoming paper [MT] states the following.

Theorem 2 There exist monomial transformations that turn the strata M 2,

M 3, . . . , M n into some A-discriminantal sets ∇A2 , ∇A3 , . . . ,∇An .

Recall the definition of an A-discriminantal set (see [GKZ94], Chap. 9). Instead of
Eq. (3) in one unknown y we consider an equation in k unknowns y = (y1, . . . , yk):
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f (y1, . . . , yk) :=
∑

α=(α1,...,αk )∈A

aα y1
α1 . . . yk

αk = 0, (4)

where A ⊂ Z
k is a fixed set of exponents that generate the lattice Zk as an additive

group, and the coefficients aα are variables. The set of coefficients (same as the set
of Eq. (4) and the set of Laurent polynomials f with exponents α ∈ A) isCA, whose
dimension is equal to the cardinality of A.

Definition 3 Let ∇◦ be the set of all (aα) ∈ C
A for which the Eq. (4) has critical

roots y ∈ (C \ 0)k , i.e. the roots where the gradient of f vanishes. The closure ∇◦

of this set is called an A-discriminantal set and is denoted by ∇A.

In the case k = 1, A = {0, 1, 2 . . . , n} ⊂ Z the set ∇A is the classical discrimi-
nantal set ∇ of the Eq. (3). In Theorem 2 each ∇A j is an A j -discriminantal set of an
equation in j − 1 unknowns. Moreover, the cardinality of A j is n + 1 and ∇A2 = ∇.

For the proof of Theorem 2, the crucial thing is the Horn-Kapranov parametriza-
tion (see [PT04]) for the discriminantal set of a reduced equation

f (y) = 1 + x1y + . . . + xn−1yn−1 + yn = 0. (5)

This parametrization x = Ψ (s) : CP
n−2
s → C

n−1
x is given by the formula

xk = − nsk

〈α, s〉
( 〈α, s〉

〈β, s〉
) k

n

, k = 1, . . . , n − 1, (6)

where α, β are vectors of integers

α = (n − 1, . . . , 2, 1), β = (1, 2, . . . , n − 1).

Notice that the Eq. (3) can be reduced differently, fixing coefficients of any pair of
monomials y p and yq . The parametrization of the corresponding reduced discrimi-
nantal set ∇pq will differ from formula (6) (i.e. the parametrization of ∇0n), it will
depend on different vectors α and β, and the root in the formula will be of degree
p − q instead of n [PT04].

Define the sequence of critical strata C jof the parametrization (6). The first stra-
tumC 1 is defined as the set of critical values of the parametrizationΨ . It turns out that
the critical points of Ψ constitute a hyperplane L1 ⊂ CP

n−2, consequently, the first
critical stratum C 1 is parametrized by the restriction of Ψ to L1. Analogously, we
define the stratum C 2 of critical values of that restriction and proceed by induction.
To formulate the result, introduce the following hyperplanes in CPn−2:

L j =
{

s :
n−1∑

i= j

i(i − 1) · · · (i − ( j − 1))(n − i)si = 0
}
,
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where s = (s1 : . . . : sn−1) is the homogeneous coordinates. The following theorem
is proved by the direct computations.

Theorem 3 The strata C j are parametrized by the restrictions Ψ

∣∣∣
L j

on the planes

L j = L1 ∩ . . . ∩ L j .

The next theorem shows the relationship between the critical strata of Ψ with
the reduced singular strata M j

0n obtained from M j by intersecting with the plane
a0 = an = 1.

Theorem 4 The reduced singular strata M
j+2
0n ⊂ ∇0n coincide with the critical

strata C j of the parametrization Ψ .

The proof of Theorem 4 goes as follows. First, we notice that the expression

t (s) =
( 〈β, s〉

〈α, s〉
) 1

n

involved in (6) is a root of the Eq. (5) of multiplicity ≥ 2 for x = Ψ (s).
Let t be a root of the Eq. (5) of multiplicity ≥ μ, i.e.

f (y) = (y − t)μ fn−μ(y), (7)

where

fn−μ(y) :=
n−μ∑

k=0

x (n−μ)
k yk

is the result of division of f by (y − t)μ. Computing the coefficients x (n−μ)
k in terms

of the root t and the coefficients of xk of the initial polynomial f , we prove that

fn−μ(t (s)) = 0 ⇐⇒ s ∈ Lμ−1.

So, if x = Ψ (s) then y = t (s) is a root of multiplicity ≥ μ−2 if and only if s ∈ Lμ.
From there, it is easy to finish the proof of Theorem 4.

To explain the proof of Theorem 2, recall the Horn-Kapranov parametrization for
a reduced A-discriminantal set. In order to do that, with the set of exponents α j ∈ A
of (5) we associate the matrix

A =

⎛

⎜⎜⎜⎝

1 1 · · · 1
α11 α21 · · · αN1
...

...
. . .

...

α1k α2k · · · αNk

⎞

⎟⎟⎟⎠

(we denote this matrix by A too). For the Eq. (3) we have
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A =
(
1 1 · · · 1 1
0 1 · · · n − 1 n

)

Let B be an integer right annulator of A of rank m = N − k. There are many
such annulators and the choice of B gives a reduction of the Eq. (4) (see [GKZ94]
or [Kap91]). Write this annulator in the form

B =
⎛

⎜⎝
b11 · · · b1m
...

. . .
...

bN1 · · · bNm

⎞

⎟⎠ .

The matrix B defines the mapping

ΨB : CP
m−1 → (C∗)m, s → z = (Bs)B, (8)

where s = (s1 : . . . : sm) is the homogeneous coordinates in CP
m−1. Coordinate-

wise the mapping ΨB has the form

zk =
N∏

j=1

〈b j , s〉b jk , k = 1, . . . , m,

where b j = (b j1, . . . , b jm) are the rows of the matrix B. Since the first row of A
is orthogonal to each column of B, the degree of homogeneity of these expressions
in s is zero, therefore (Bs)B are correctly defined on CP

m−1. The mapping ΨB(s)
defined by (8) is called the Horn-Kapranov parametrization. The importance of this
mapping follows from Kapranov’s theorem [Kap91] stating that

• The mapping ΨB(s) is a parametrization of the reduced A-discriminantal set ∇̃A.
• If ∇̃A is a hypersurface then ΨB(s) is a birational isomorphism that coincide with
the inversion of the logarithmic Gauss map for ∇̃A.

Example 3 Let us sketch the idea of the proof of Theorem 2 by the example of the
stratum M 3

01 for the equation of degree 4. Consider a reduced equation of fourth
degree

1 + y + z2y2 + z3y3 + z4y4 = 0.

According to Kapranov’s theorem the reduced discriminantal set∇01 is parametrized
by the mapping Ψ : CP

2 → C
3 by

z2 = s2(s2 + 2s3 + 3s4)1(−2s2 − 3s3 − 4s4)−2

z3 = s3(s2 + 2s3 + 3s4)2(−2s2 − 3s3 − 4s4)−3

z4 = s4(s2 + 2s3 + 3s4)3(−2s2 − 3s3 − 4s4)−4.

The line L1 ⊂ CP
2 of its critical points has the equation s2 + 3s3 + 6s4 = 0. There-

fore, the reduced stratum M 3
01 defined by the restriction Ψ

∣∣
L1 , in the homogeneous

coordinates s′ = (s3 :s4) of this line is given by the formulas
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z2 = (−3s3 − 6s4)(−s3 − 3s4)1(3s3 + 8s4)−2

z3 = s3(−s3 − 3s4)2(3s3 + 8s4)−3

z4 = s4(−s3 − 3s4)3(3s3 + 8s4)−4.

The coefficients of five linear functions involved here define the matrix

B =

⎛

⎜⎜⎜⎜⎝

−1 −3
3 8

−3 −6
1 0
0 1

⎞

⎟⎟⎟⎟⎠
.

The monomial change of variables M : (z1, z2, z3) → (w3, w4) given by

w3 = z3z−3
2 , w4 = z4z−6

2 ,

transforms the parametrization of M 3
01 into

w3 = s13s04 (−3s3 − 6s4)−3(−s3 − 3s4)−1(3s3 + 8s4)3

w4 = s03s14(−3s3 − 6s4)−6(−s3 − 3s4)−3(3s3 + 8s4)8,

which has the form w = (Bs′)B . By Kapranov’s theorem such a mapping parame-
trizes some reduced A-discriminantal set. In order to determine the set A it is enough
to find a left integer annulator of B of the size 3×5 such that all elements of its first
row are 1 and its columns generate Z3. In this case we can take

A =
⎛

⎝
1 1 1 1 1
1 0 0 1 3
0 0 1 3 6

⎞

⎠ .

Therefore, w = (Bs′)B parametrizes a reduced A-discriminantal set of the equa-
tion

a10y1 + a01y2 + a00 + a31y31 y2 + a63y61 y32 = 0,

whose exponents are columnsof thematrix Awithout thefirst row.The corresponding
reduction of the equation is obtained if we fix a10 = a01 = a00 = 1 and denote
a31 =: w3, a63 =: w4.

Notice that the chosen annulator A of B has all its elements non-negative. Fol-
lowing the general scheme (see Lemma below), we would have chosen the matrix

⎛

⎝
1 1 1 1 1
1 0 0 1 3
0 1 0 −3 −8

⎞

⎠ ,

which is obtained from A by multiplication by a unimodular (3 × 3)-matrix.
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The following lemma is a generalization of the observations of this example, it is an
essential ingredient of the proof of Theorem 2. Here p, q, i0, . . . , i j−1 is an arbitrary
sequence of pair-wise distinct integers from {0, 1, . . . , n}, and 1 ≤ j ≤ n − 2.

Lemma Consider two sets of variables

z = (zi ), i 	= p, q,

w = (wk), k 	= p, q, i0, . . . , i j−1.

The map M : (C∗)n−1
z → (C∗)n−1− j

w defined by

wk = zk

j−1∏

ν=0

z
− (k−p)(k−q)

(iν−p)(iν−q)

∏
m 	=ν

k−im
iν−im

iν
, k 	= p, q, i0, . . . , i j−1, (9)

transforms the parametrization of the stratum M
j+2

pq to the form w = (Bs′)B, where
B is a rational (n + 1) × (n − 1 − j)-matrix of rank (n − 1 − j) such that the sum
of elements in a row is zero, and s′ = (sk), k 	= p, q, i0, . . . , i j−1.

For the proof of Theorem 2 it is convenient to take as p, q, i0, . . . , i j−1 the
sequence 0, 1, 2, . . . , j + 1.

3 Amoebas of Reduced Cuspidal Strata for Classical
Discriminant

Let us turn back to the reduced Eq. (5) and let n = 4. Consider the reduced discrim-
inantal set ∇04 for this equation. According to Theorems 2 and 3, its stratumM 3

04 is
parametrized by the restriction of

Ψ : CP
2 → ∇04 ⊂ C

3

to the complex line of its critical points

L1 = L1 = {(s1 :s2 :s3) : 1 · 3 · s1 + 2 · 2 · s2 + 3 · 1 · s3 = 0},

where Ψ is defined by formula (6) for n = 4. Choosing s1 as an affine coordinate in
L1, we see that the restriction Ψ

∣∣
L1 is

x1 = − 8s1
3s1−1

(
3s1−1
−s1+3

) 1
4

x2 = 23s1+3
3s1−1

(
3s1−1
−s1+3

) 1
2

x3 = − 8
3s1−1

(
3s1−1
−s1+3

) 3
4
.
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Fig. 4 The amoeba for the reduced stratumM 3
04 (left) and its contour from a different angle (right)

The amoeba and its contour for the stratum M 3, which admits this parametriza-
tion, is depicted on Fig. 4. One can see that the tentacles of the amoeba correspond
to the values

s1 = −∞, −1, 0,
1

3
, 3.

The value s1 = 1 corresponds to the zero-dimensional stratum M 4
04; this is a crit-

ical point of the parametrization. Thus, the contour of the amoeba for the zero-
dimensional stratum M 4

04 is a cuspidal point for the contour of the amoeba for the
one-dimensional stratumM 3

04 attached to it.
One has to be subtlewhen studying the attachement of the contours of the amoebas

for the strata M 2
04 = ∇04 and M 3

04. In the affine coordinates s1, s2 of CP2 the
parametrization Ψ for M 2 = ∇̃ looks like

x1 = −4s1
3s1+2s2+1

(
3s1+2s2+1
s1+2s2+3

) 1
4

x2 = −4s2
3s1+2s2+1

(
3s1+2s2+1
s1+2s2+3

) 1
2

x3 = −4
3s1+2s2+1

(
3s1+2s2+1
s1+2s2+3

) 3
4
.

To draw the contour of the amoeba we need to compute the image of R2 ⊂ RP
2

under the map Log ◦ Ψ . This map has four polar singularities on four lines (the fifth
line s3 = 0 lies at infinity of the chosen affine space):

s1 = 0, s2 = 0, 3s1 + 2s2 + 1 = 0, s1 + 2s2 + 3 = 0.

The contour of the amoeba for the stratumM 3
04 is a curve of cuspidal points for the

contour of the amoeba for the whole∇04, as shown on Fig. 5 (left). In a neighborhood
of the edge of the contour of the amoeba for M 3

04, which corresponds to s1 = 1,
the attachment of the contours forms ‘the swallowtail’. It should be noticed that the
contour of the amoeba of the discriminantal set contains the logarithmic image of the
real part of the discriminantal set, which is the object of study in singularity theory.
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Fig. 5 Attachment of the contour of the amoeba for ∇04 to the contour of the amoeba for M 3
04

The contour of the amoeba, however, is significantly larger, and its stratification is
more complex.

Let us make now some observations based on studying the equation of degree 4.
The contours of the amoebas for strataM 3

04 andM
2
04 = ∇04 are parametrized by the

restrictions of parameterizations Ψ

∣∣∣
L1

and Ψ

∣∣∣
L0

= Ψ (here L0 = CP
2) on the real

parts of the planes L1 and L0. ThemappingΨ behaves continuously as the parameter
s ∈ L0 approach L1 \ L2 (where L2 is the zero-dimensional subspace corresponding
to the stratumM 4

04). Note a sharp contrast of such a ‘nice’ behavior with the fact that
the inverse Ψ −1 : ∇04 → CP

2, which coincides with the logarithmic Gauss map, is
not defined at singular points M 3

04 ⊂ ∇04. In general, similar arguments prove the
following theorem.

Theorem 5 The contours of the amoebas of all strata M 2
0n ⊃ M 3

0n ⊃ · · · ⊃ M n
0n

are not empty and their preimages under the Log-projection are parametrized by
the restrictions of the parametrization (6) to the real parts of the complex planes
L0 ⊃ L1 ⊃ · · · ⊃ Ln−2.

In conclusion, we would like to raise a question about the distribution of values
of the classical Gauss map for amoebas of complex curves V ∈ T

3. In its smooth
points the curve V admits a holomorphic parametrization z = z(t), therefore the
mapping Logz(t), which parametrizes the amoeba AV , is given by a triple of har-
monic functions. If t = u + iv were an isothermal coordinate for AV , the amoeba
would be a minimal surface. According to the result of Fujimoto [Fuj97], the Gauss
map for a minimal surface can not omit more than 4 points. In the case of amoebas
the situation is quite different.

The line from Example 2 is parametrized by t = z1 and the Gauss map is given
by the formula

t �→
(−|t |2, 2|t + 1|2, −|t + 2|2)
√|t |4 + 4|t + 1|4 + |t + 2|4 .
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Fig. 6 An oval on the
sphere is the image of the
boundary of the amoeba

The image of the boundary of the amoebaAV under this map is shown on Fig. 6.
It is a smooth curve on the sphere, and the rest of the amoeba is mapped into the
smaller spherical cap bounded by this curve. The Gauss map omits here a dense set
of points of S2.
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