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1 Introduction

The aim of this paper is to introduce (1) theWong-Rosay theorem, a characterization
of the unit ball by its holomorphic automorphism group, (2) Schoen’s theorem, a
characterization of the unit sphere and the Heisenberg group by their CR automor-
phism groups, and (3) their generalizations to the almost complex and CRmanifolds,
respectively.

1.1 The Characterization of the Unit Ball

The Riemann mapping theorem says that a simply connected proper domain in the
complex plane C is biholomorphic to the unit disc Δ. Hence in Complex Analysis
of one variable, it is important to understand the nature of the unit disc. But in
multi-dimensional complex Euclidean spaces, the Riemann mapping theorem fails
as H. Poincaré showed that the unit ball B2 = {

z ∈ C
2 : ‖z‖ < 1

}
and the bidisc

Δ2 = Δ×Δ are biholomorphically distinct. Moreover as showed in [BU78, GE82],
the biholomorphic equivalence classes of simply connected domains in C

n (n ≥ 2)
forms indeed an infinite dimensional space. Therefore it has been a fundamental
problem in Several Complex Variables to classify bounded domains which can play
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the same rôle ofmodel objects as the unit disc. A precondition for the rôle in Complex
Analysis and Complex Geometry is to admit a noncompact automorphism group.
While it is not possible to classify simply connected domains inCn , the classification
of domains with noncompact automorphism groups seems to be possible since a
generic bounded domain has no automorphism except the identity (see [GE82]). A
typical classification is B. Wong’s characterization of the unit ball Bn = {z ∈ C

n :
‖z‖ < 1}.
Theorem 1.1 ([WO77]) A bounded strongly pseudoconvex domain in C

n with non-
compact automorphism group is biholomorphic to the unit ball Bn.

For a bounded domain Ω , the noncompactness of the automorphism group of Ω ,
denoted by Aut(Ω), is equivalent to the existence of an automorphism orbit {ϕk(p)}
for some ϕk ∈ Aut(Ω) and p ∈ Ω which is accumulating at a bounded point. In his
paper [RO79], J. P. Rosay strengthened Wong’s theorem as following:

Theorem 1.2 ([RO79, EF95, GA02])A domain in a complex manifold which admits
an automorphism orbit accumulating at a strongly pseudoconvex boundary point is
biholomorphic to the unit ball.

Theorems 1.1 and 1.2 are usually called the Wong-Rosay theorem.

1.2 The Characterization of the Unit Sphere

In the confomal geometry, the Euclidean space Rn and the Euclidean sphere Sn =
{x ∈ R

n+1 : ‖x‖ = 1} are characterized as global homogeneous models as showed
in [AL72, SC95, FE96]:

Theorem 1.3 The conformal group of the Riemannian manifold (Mn, g) is essential
if and only if M is conformally equivalent to either Rn or Sn.

Here essential means that the conformal group can not be reduced to an isometry
group of a metric in the conformal class. As in [AL72], if the conformal group of M
is essential, then it acts improperly on M (A topological group G acts improperly on
M if there is a compact subset K of M such that G K = {ϕ ∈ G : ϕ(K ) ∩ K �= ∅}
is noncompact). The main proof of Theorem 1.3 is to confirm D. V. Alekseevskiı̆’s
assertion: if the conformal group acts improperly on M , then M is conformally
equivalent to R

n or Sn .
A strongly pseudoconvex real hypersurface in a complex manifold, especially

a boundary of a strongly pseudoconvex domain, has a similar geometric structure
to the conformal geometry, usually called the pseudo-conformal structure. A real
hypersurface M in a complex manifold X admits a CR structure inherited by the
complex structure of X . If M is strongly pseudoconvex, then its CR structure is
determined by the conformal structure of its pseudo-hermitian metric. R. Schoen
also gave the CR version of Theorem 1.3 in case of strongly pseudoconvex CR
manifolds:
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Theorem 1.4 ([SC95])Suppose that M2n+1 is a strongly pseudoconvex CR manifold
whose CR automorphism group acts on M improperly. Then M is CR equivalent to
either the unit sphere S2n+1 = {z ∈ C

n+1 : ‖z‖ = 1} if M is compact or the
Heisenberg group if M is noncompact.

This is a CR counterpart of the Wong-Rosay theorem. In case of a bounded strongly
pseudoconvex domainΩ , Fefferman’s extension theorem ([FE74]) implies that each
automorphism of Ω extends to a CR automorphism of the boundary ∂Ω which is a
compact strongly pseudoconvex CR manifold. Thus the noncompactness of Aut(Ω)

implies that the CR automorphism group of ∂Ω is also noncompact, equivalently, it
acts improperly (for a compact manifold, the improper action by a topological group
G is the same as the noncompactness ofG). In case of an unbounded domain, consider
the Siegel half plane, Hn+1 = {(z0, z1, . . . , zn) ∈ C

n+1 : Re z0 + ∑n
α=1 |zα|2 < 0}

which is biholomorphic to the unit ball Bn+1 by the Cayley transform. The group
of affine automorphisms of Hn+1 coincides with the CR automorphism group of
the Heisenberg group ∂Hn+1. Since Ds in (2.1) belongs to the isotropy subgroup at
the origin, the CR automorphism group of ∂Hn+1 is noncompact and moreover acts
improperly.

1.3 Generalizations

Gaussier and Sukhov ([GA03]) showed that the Wong-Rosay theorem is also valid
in almost complex manifolds of complex dimension 2. But in higher dimensional
case, there is an exotic model (called a pseudo-Siegel domain) which admits an
automorphism orbit accumulating at a strongly pseudoconvex boundary point and
whose almost complex structure is non-integrable, so which is not biholomorphic
to the unit ball with the standard complex structure. Thus the local version (The-
orem 1.2) fails in almost complex manifolds. Gaussier and Sukhov [GA06] and
the author [LK06] characterized the pseudo-Siegel domains: a domain in almost
complex manifold which admits an automorphism orbit accumulating at a strongly
pseudoconvex boundary point is biholomorphic to a pseudo-Siegel domain (Theo-
rem 2.1). However as in [BY09], the global version (Theorem 1.1) is also valid in
any dimension: a relatively compact, strongly pseudoconvex domain in an almost
complex manifold with a noncompact automorphism group is biholomorphic to the
unit ball with the standard complex structure (Theorem 2.2).

As in Sect. 2, a pseudo-Siegel domain is the Siegel half plane with a certain almost
complex structure, so its boundary is noncompact. And its automorphism group is
the same as the CR automorphism group of the boundary which acts improperly.
Therefore the relationship between the Wong-Rosay theorem and Schoen’s theorem
makes us to expect:

Conjecture 1.1 A strongly pseudoconvex almost CR manifold M whose CR auto-
morphism group action is improper is CR equivalent to either the standard sphere if
M is compact or a boundary of a pseudo-Siegel domain if M is noncompact.
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In this paper, we introduce the basic technique to get the Wong-Rosay theorem
in almost complex structure as in [GA06, LK06] and a partial confirmation of the
conjecture by the collaboration work with Joo [JO15].

Convention:Throughout this paper,Greek indices indicating coefficients of complex
tensor run from 1 to n and Latin indices for real tensors run from 1 to 2n. For Greek
indices, the summation convention is always assumed. We will take the bar on Greek
indices to denote the complex conjugation of the corresponding tensor coefficients:

Zα = Zᾱ , ω̄α = ωᾱ , R
α

β λμ̄ = R ᾱ

β̄ λ̄μ
.

2 The Wong-Rosay Theorem in the Almost Complex
Manifold

Let X be an almost complex manifold with an almost complex structure J . By an
(holomorphic) automorphism of (X, J ), we mean a biholomorphism of X onto itself
with respect to J . The automorphism group Aut(X, J ) of (X, J ) is the topological
group of automorphisms of (X, J ) with the composition law and the compact-open
topology.

Let us define the pseudo-Siegel domain as in [LK08]:

Definition 2.1 Consider the complex Eulidean spaceCn+1 with the standard coordi-
nates (z0, z1, . . . , zn). Let P = (Pαβ)α,β=1,...,n be a n ×n skew-symmetric complex
matrix. The model structure JP is the almost complex structure of Cn+1 defined by
the following (1, 0)-vector fields:

Z0 = ∂

∂z0
, Zα = ∂

∂zα
− i Pαβ zβ ∂

∂z0̄
(α = 1, . . . , n) .

The pair (Hn+1, JP ) is called a pseudo-Siegel domain for the Siegel half planeHn+1

and the model structure JP .

2.1 Automorphisms of the Pseudo-Siegel Domain

As mentioned, the Siegel-half planeH = H
n+1 with the standard complex structure

Jst (the case of P = 0) is biholomorphic to the unit ball (Bn+1, Jst); thus the pseudo-
Siegel domains can be considered as a deformation of the unit ball. The matrix P
represents the torsion for the integrability of the structure, in the sense of [Zα, Zβ ] =
−2i Pαβ∂/∂z0̄ so that JP is always non-integrable except P = 0. For any choice of
P , the boundary of H is always strongly pseudoconvex and H has the non-isotropic
dilation

Ds : (z0, z1, . . . , zn) �→ (es z0, es/2z1, . . . , es/2zn) (s ∈ R) (2.1)
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as its automorphism. This means that Theorem 1.2 fails in almost complex setting.
Moreover any pseudo-Siegel domain is homogeneous since it has the Heisenberg

group as its holomorphic transformation group. The Heisenberg group is the group
HP = (∂H, ∗P ) whose binary operation ∗P is defined by

ζ ∗P ξ =
(
ζ 0 + ξ0 − 2δαβ̄ξαζ β̄ + i Pαβξαζ β + i Pᾱβ̄ ξ ᾱζ β̄ , ζ ′ + ξ ′) , (2.2)

for ζ = (ζ 0, ζ ′), ξ = (ξ0, ξ ′) ∈ ∂H. Each element ζ ∈ HP generates an
automorphism by z �→ ζ ∗P z; hence HP can be considered as a subgroup of
Aut(H, JP ). Then one can easily see that the transformation group generated byHP

and {Ds : s ∈ R} acts on H transitively.
In [LK08], the automorphism groups and the bihomorphic equivalence of pseudo-

Siegel domains are completely described.

2.2 The Scaling Method in Almost Complex Manifold

Here, we introduce the scaling method to the almost complex manifold due to
Gaussier and Sukhov [GA03, GA06].

Let Ω be a domain in an almost complex manifold (X, J ) of complex dimension
n + 1. Suppose that there are ϕk ∈ Aut(Ω, J ) and p ∈ Ω such that

ϕk(p) → q ∈ ∂Ω as k → ∞ ,

where ∂Ω is smooth near q and strongly J -pseudoconvex at q.

Step 1 (a local coordinate system): Choosing a local coordinate system Φ : U ⊂
C

n+1 → M about q with Φ(0) = q, we can identity q = 0, Φ(U ) = U and
dΦ−1 ◦ J ◦ dΦ = J . For a suitable Φ, we may assume that

1. J (0) = Jst where Jst is the standard complex structure of Cn+1,
2. U ∩ Ω = {z : ρ(z) < 0} where ρ(z) = Re z0 + ∑n

α=1 |zα|2 + o(‖z‖2).
Step 2 (centering): We shall only consider sufficiently large k with ϕk(p) ∈ U . For
each k, take p∗

k ∈ U ∩ ∂Ω that realizes the Euclidean distant τk from pk = ϕk(p)

to U ∩ ∂Ω . Then we consider a rigid motion Lk of Cn+1 with Lk(p∗
k ) = 0 and

Lk(pk) = (−τk, 0, . . . , 0).

Step 3 (dilating): Now we let

Λk(z) =
(

z0

τk
,

z1√
τk

, . . . ,
zn

√
τk

)
.

For Ak = Λk ◦ Lk , the sequence Ak(U ∩Ω) of domains converges to the Siegel half
plane Hn+1 = {Re z0 + ∥

∥z′∥∥2 < 0} in the sense of the Hausdorff set convergence.
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Simultaneously, the sequence d Ak ◦ J ◦ d A−1
k of induced almost complex structures

on Ak(U ∩ Ω) converges to an almost complex structure J ′ of H for which (H, J ′)
is biholomorphic to a pseudo-Siegel domain (H, JP ).

Finally one can get that Ak ◦ϕk : ϕ−1
k (U ∩Ω) ⊂ Ω → C

n+1 has a subsequential
limit F defined on the whole of Ω which is biholomorphism (Ω, J ) to (H, J ′).

Theorem 2.1 ([GA06, LK06]) Let Ω be a domain in an almost complex man-
ifold (X, J ). If Ω admits an automorphism orbit accumulating at a strongly J -
pseudoconvex boundary point, then (Ω, J ) is biholomorphic to a pseudo-Siegel
domains.

2.3 Bounded Realization of the Pseudo-Siegel Domain

For any non-integrable model structure, the induced structure by the Cayley trans-
form on the unit ball has a singularity at the boundary point corresponding to the
point at infinity. Thus it is natural to ask whether there is biholomorphism from the
non-integrable pseudo-Siegel domain to a relatively compact domain in an almost
complex manifold.

LetΩ be a relatively compact, strongly pseudconvex domain in an almost complex
manifold (X, J ). If Aut(Ω, J ) is noncompact, then byTheorem2.1, there is a biholo-
morphism F : (Ω, J ) → (H, JP ). Consider the point −1 = (−1, 0, . . . , 0) ∈ H

and the automorphism Dk as in (2.1) for k = 1, 2, . . .. Since the automorphism
orbit {Dk(−1) : k = 1, 2, . . .} is noncompact in H, there is a subsequential limit
q ∈ ∂Ω of the sequence F−1(Dk(−1)). Applying the scaling method again to the
automorphism orbit {F−1(Dk(−1))} with certain local coordinates about q, we can
obtain a biholomorphism G : (Ω, J ) → (H, JP ) with G(q) = 0 in the limit sense.
Then F−1 ◦ G is the automorphism of (H, JP ) with (F−1 ◦ G)(0) = ∞. But every
automorphism of (H, JP ) is affine if P �= 0 ([LK08]); thus P = 0 so JP is integrable.

Theorem 2.2 (Byun et al. [BY09]) A relative compact and strongly pseudoconvex
domain in an almost complex manifold with a noncompact automorphism group is
biholomorphic to the unit ball with the standard complex structure.

3 Schoen’s Theorem in Almost CR Manifolds

The scalingmethod in theWong-Rosay theorem allows to rescale a given domain and
its complex structure to a biholomorphically equivalent model. But in order to get
the CR equivalence to a model, the local equivalence problem of CR structures must
be considered since the CR structure is a local structure. For the CR equivalence in
Theorem 1.4, R. Schoen used the pseudo-hermitian equivalence of Webster [WE78]
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via the CR Yamabe problem. In this section, we introduce the pseudo-hermitian
equivalence problem, the Yamabe type problem and generalization of Theorem 1.4
in strongly pseudoconvex almost CR manifolds as studied in Joo and Lee [JO15].

3.1 Pseudo-hermitian Structure Equations

Let us consider an almost CR manifold M of real dimension 2n + 1 with a CR
structure (H, J ), that is, H = ⋃

p∈M Hp ⊂ T M is a hyperplane bundle with a
smooth field of bundle isomorphisms J : H → H such that J ◦ J = −I . By
a CR automorphism of M , we mean a diffeomorphism ϕ of M onto itself with
dϕ(H) = H and J ◦ dϕ = dϕ ◦ J . The CR automorphism group of M , simply
denoted by AutCR(M), is the topological group of CR automorphisms of M with the
composition law and the compact-open topology.

The tensor field J decomposes the complexified bundle CH = C ⊗R H by
CH = H1,0 ⊕ H0,1 where H1,0 = {v − i Jv : v ∈ H} and H0,1 = H1,0. The CR
manifold is strongly peudoconvex if for an 1-form θ annihilating H , the Levi form Lθ

defined by Lθ (Z , W ) = 2idθ(Z , W ) for Z , W ∈ H1,0 is positively or negatively
definite. This is independent of the choice of θ . Let (Zα) = (Z1, . . . , Zn) be a
(1, 0)-frame, a local frame filed to H1,0. Then there is an admissible (1, 0)-coframe
(ωα) = (ω1, . . . , ωn), a Cn-valued 1-form which is dual to (Zα) and satisfies

dθ = 2igαβ̄ωα ∧ ωβ̄ + pαβωα ∧ ωβ + pᾱβ̄ωᾱ ∧ ωβ̄ . (3.1)

Here (gαβ̄) stands for the Levi form and (pαβ) is uniquely determined by pαβ =
−pβα . We will use the Levi form (gαβ̄) and its inverse (gβ̄α) to lower and raise

indices (e.g. ω γ
β gγ ᾱ = ωβᾱ). Then we can define the pseudo-hermitian connection

form (ω
α

β ), uniquely determined by dgαβ̄ − ωαβ̄ − ωβ̄α = 0 and

dωα = ωβ ∧ω
α

β +T α
β γ ωβ ∧ωγ +N α

β̄ γ̄
ωβ̄ ∧ωγ̄ + Aα

β̄
θ∧ωβ̄ +Bα

βθ∧ωβ . (3.2)

The functions T α
β γ , N α

β̄ γ̄
, Aα

β̄
, Bα

β are also fixed by T α
β γ = −T α

γ β , N α

β̄ γ̄
=

−N α

γ̄ β̄
, Bβᾱ = Bᾱβ . The J -linear connection defined by ∇Zα = ω

β
α ⊗ Zβ is the

pseudo-hermitian connection. Then we have the pseudo-hermitian curvature tensor
(R α

β λμ̄) defined by

Ω
α

β ≡ R α
β λμ̄ωλ ∧ ωμ̄ mod {θ, ωλ ∧ ωμ,ωλ̄ ∧ ωμ̄}

for the curvature form Ω
α

β = dω
α

β − ω
γ

β ∧ ω
α

γ .
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3.2 Pseudo-hermitian Equivalence Problem

Now we characterize a pseudo-hermitian structure of the boundary of the Siegel
domain. First, we introduce an intrinsic form of the boundary.

Let (t, z) = (t, z1, . . . , zn) be the standard coordinates ofR×C
n . A n × n skew-

symmetric complex matrix P = (Pαβ) gives the Lie group structure ∗P to R × C
n

by
(t, z) ∗P (s, w) = (t + s + 2Im 〈z, w〉 − 2Re P(z, w), z + w)

where 〈z, w〉 = δαβ̄ zαwβ̄ and P(z, w) = Pαβ zαwβ . This is the induced operation

from (2.2) under the natural projection π : ∂Hn+1 → R × C
n . We call HP =

(R×C
n, ∗P ) a Heisenberg group associated to P . In fact all Heisenberg groups are

Lie group isomorphic to each others (see [BY09]).
Each Heisenberg group has the contact distribution HP annihilated by

θP = dt + iδαβ̄ zαdzβ̄ − iδαβ̄ zβ̄dzα + Pαβ zαdzβ + Pᾱβ̄ zᾱdzβ̄ (3.3)

and the strongly pseudoconvex CR structure JP on HP whose the global (1, 0)-frame
(Z1, . . . , Zn) is defined by

Zα = ∂

∂zα
+

(
iδαβ̄ zβ̄ + Pαβ zβ

) ∂

∂t
, α = 1, . . . , n.

Then the Heisenberg group HP acts transitively on itself as a CR transformation
group of (HP , JP ). We call the CRmanifoldR×C

n with the CR structure (HP , JP )

a Heisenberg group, simply denoted by HP .
Since [Zα, Zβ ] = −2Pαβ∂/∂t , the CR structure of HP is non-integrable except

P = 0. Each Heisenberg groupHP is CR equivalent to (∂Hn+1, JP ) and admits the
CR dilation,

Ds : (t, z1, . . . , zn) �→ (est, es/2z1, . . . , es/2zn) (s ∈ R) (3.4)

as its CR automorphism. Therefore the CR automorphism group ofHP acts improp-
erly, so Theorem 1.4 is not valid in the almost CR setting.

Let us consider the pseudo-hermitian structure equations of HP . For the contact
form θP , we have dθP = 2iδαβ̄dzα ∧ dzβ̄ + Pαβdzα ∧ dzβ + Pᾱβ̄dzᾱ ∧ dzβ̄ , so

that gαβ̄ ≡ δαβ̄ , pαβ ≡ Pαβ for (3.1), and (dz1, . . . , dzn) is the admissible coframe

for θP . Since dzα is closed, one can see that the connection form (ω
α

β ) of (dzα)

vanishes identically. So all torsion tensors except pαβ ≡ Pαβ and curvature tensors
are vanishing identically. This characterizes the Heisenberg model with θP :

Proposition 3.1 Let (M, θ) be a pseudo-hermitian manifold. Suppose that there is
an admissible coframe (ω1, . . . , ωn) with the following vanishing tensors:



Characterizations of Strongly Pseudoconvex Models … 229

pαβ;γ ≡ T α
β γ ≡ N α

β̄ γ̄
≡ Aα

β̄
≡ R α

β λμ̄ ≡ 0 . (3.5)

Then (M, θ) is locally pseudo-hermitian equivalent to a Heisenberg group model
(HP , θP ).

Here pαβ;γ stands for the coefficient of the covariant derivative of the tensor (pαβ)

by Zγ ’s: pαβ;γ = Zγ pαβ − pαλω
λ

β (Zγ ) − ω λ
α (Zγ )pλβ .

3.3 Sub-Riemannian Yamabe Problem

In order to use the pseudo-hermitian equivalence (Theorem 3.1), we need to find
a contact form for which (3.5) holds. In his paper [SC95], R. Schoen uses the CR
Yamabe problem for the Webstar scalar curvature, R = Rαβ̄λμ̄gαβ̄gλμ̄. Unlike the
integrable case, the transformation formula of the Webster scalar curvature is much
more complicated. It is not possible to be simplified as the CR Yamabe equation in
the integrable pseudo-hermitian geometry. Thus in [JO15] we studied an auxiliary
contact sub-Riemannian structure and its Yamabe problem to find a desired contact
form.

Let (M2n+1, H) be a contact manifold and θ be a contact form (H = ker θ ). A
positive quadratic form g on the contact distribution H is called a sub-Riemannian
metric and the pair (θ, g) is called a contact sub-Riemannian structure of M .

For an orthonormal frame (X1, . . . , X2n) to H with respect to g, we have a 2n×2n
skew-symmetric matrix (hi j ) defined by

hi j = dθ(Xi , X j ) .

Let X0 be the characteristic vector field of the contact form θ , that is, the vector
field uniquely determined by θ(X0) = 1 and X0 � dθ = 0. For the dual coframe
(θ, θ1, . . . , θ2n) of (X0, X1, . . . , X2n), we have dθ = hi jθ

i ∧θ j . Thenwe can define
the contact sub-Rimannian connection form (θ i

j ) for (θ, g) (see [FV93, FV07])which
is uniquely determined by

dθ i = θ j ∧ θ i
j + θ ∧ τ i , θ i

j = −θ
j

i ,
∑

i

τ i ∧ θ i = 0 .

Moreover the curvature form (Θ i
j ) and the curvature tensor (Ri

jkl) for (θ, g) are
defined by

Θ i
j = dθ i

j − θk
j ∧ θ i

k ≡ Ri
jklθ

k ∧ θ l mod θ.

We call R = ∑
i, j Ri

ji j a sub-Riemannian scalar curvature of (θ, g). When we let

Rh = ∑
i, j,k,l Ri

jklh
ikh jl for the inverse (h ji ) of (hi j ), we call the amount
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S = (2n + 1)R − Rh

a twisted scalar curvature for (θ, g).
Assume that the contact sub-Riemannian structure (θ, g) is orthogonal, that is,

h = (hi j ) is the orthogonal matrix. Then we get the Yamabe type transformation
formula for the twisted scalar curvature:

Theorem 3.1 ([JO15])Let (M2n+1, θ, g) be an orthogonal contact sub-Riemannian
manifold. For a subconformal change (θ ′, g′) = (u2/nθ, u2/ng), let S and S′ be the
twisted scalar curvatures for (θ, g) and (θ ′, g′), respectively. Then u satisfies

S′u
2
n +1 = Lu , (3.6)

where L = 4(n + 1)Δb + S and Δb is the sub-laplacian operator defined by Δbu =
−∑

i Xi (Xi u) + ∑
i, j (X j u)θ

j
i (Xi ).

For p = 2 + 2/n and the volume form dV = (1/n!)θ ∧ dθn , the sub-conformal
Yamabe invariant Q(M) is defined by

Q(M) = inf

{∫

M
u Lu dV :

∫

M
u pdV = 1, u ∈ C∞

c (M) and u ≥ 0

}

which is independent from the subconformal change of the contact sub-Riemannian
structure. Then we can solve the subconformal Yamabe problem.

Theorem 3.2 ([JO15]) Let (M, θ, g) be an orthogonal contact sub-Riemannian
manifold.

(1) If M is compact and Q(M) < Q(S2n+1), then there is a sub-conformal change
(θ ′, g′) = (u2/nθ, u2/ng) whose twisted scalar curvature S′ of (M, θ ′, g′) is
the constant Q(M).

(2) If M is noncompact and Q(M) ≥ 0 or Q(M) < 0, then there exists a sub-
conformal change whose twisted scalar curvature is the constant 0 or −1,
respectively.

This is a generalization of the CR Yamabe problem for the Webster scalar curvature
as in Jerison and Lee [JE87], Schoen [SC95].

3.4 A Generalization of Schoen’s Theorem

Let M be a strongly pseudoconvex almost CR manifold with a CR structure (H, J ).
Suppose that there is a contact sub-Riemannian structure (θ, g) on (M, H) which
is associated to the almost CR structure of M , that is, every CR automorphism of
(M, J ) is a subconformal transformation of (M, θ, g). Note that if (θ, g) is associated
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to (M, H, J ), then a sub-conformal change (u2/nθ, u2/ng) for positive u is also
associated to the almost CR structure.

Suppose that M is noncompact. Then by (2) of Theorem 3.2, we may assume that
S ≡ −1 or S ≡ 0 for (θ, g).

Case 1 (S ≡ −1): For each CR automorphism ϕ of M , let uϕ be the positive function

with (ϕ∗θ, ϕ∗g) = (u2/n
ϕ θ, u2/n

ϕ g) satisfies (4(n + 1)Δb − 1)uϕ = −u2/n+1
ϕ from

(3.6) since ϕ is the isometry from (ϕ∗θ, ϕ∗g) to (θ, g). Using the self-adjoint prop-
erty of Δb to non-negative test functions, we get that

∫
u(n+2)/n

ϕ is locally bounded
uniformly for ϕ ∈ AutCR(M). Using the mean value inequality for sub-elliptic oper-
ator 4(n + 1)Δb − 1, one can conclude that uϕ is locally bounded uniformly for
ϕ ∈ AutCR(M); so the CR automorphism group of M acts properly by the Arzela-
Ascoli theorem.

Case 2 (S ≡ 0): Let θ be a contact form with S ≡ 0. If AutCR(M) acts improperly,
then there are a compact subset K of M and a sequence ϕk ∈ AutCR(M) such that
ϕk(K ) ∩ K �= ∅ and supK uk → ∞ where ϕ∗

k θ = u2/n
k θ . Equiation (3.6) to each

uk is
Δbuk = 0 . (3.7)

Using the normal coordinates for the orthogonal contact sub-Rimannian structure
(θ, g) about a point pk ∈ K with ϕk(pk) ∈ K , we take a small open neighborhood
Vk of pk such that infVk uk → ∞ by the sub-elliptic Harnack Principle to (3.7), so
ϕk(Vk) increasingly exhausts M by passing a subsequence.

Now consider T = (T α
β γ ), the torsion tensors in (3.2) for θ and let Tk = ϕ∗

k T
be the corresponding one for ϕ∗

k θ . Since ϕk is the pseudo-hermitian isometry from

ϕ∗
k θ to θ , we have

∥
∥
∥Tk ◦ ϕ−1

k

∥
∥
∥

ϕ∗
k θ

= ‖T ‖θ , where ‖ · ‖θ and ‖ · ‖ϕ∗
k θ stand for tensor

norms with respect to the pseudo-hermitian metrices of θ and ϕ∗
k θ , respectively.

Take any point q ∈ M .We shall consider sufficiently large k such that q ∈ ϕk(Vk).
For qk = ϕ−1

k (q) ∈ Vk , we have ‖Tk(qk)‖ϕ∗
k θ = ‖T (q)‖θ . The transformation

formula for T under the pseudo-conformal change ϕ∗
k θ = u2/n

k θ (Proposition 4.12
in [JO15]) gives

‖Tk(qk)‖2ϕ∗
k θ ≤ Cuk(qk)

−2/n
(

‖T (qk)‖2θ + 1

(nuk)2
‖dbu(qk)‖2θ

)

where ‖dbuk‖θ is the holomorphic gradient norm of uk with respect to θ . By the sub-
elliptic Schauder estimates for (3.7), we have a uniform bound of ‖dbuk‖θ /nuk on
the relatively compact subset ∪k Vk of M . Since uk(qk)

−2/n ≤ (infVk uk)
−2/n → 0,

we have that ‖T (qk)‖ϕ∗
k θ → 0, so ‖T (q)‖θ = 0. This means that T α

β γ = 0 at q.
Following the same manner, we have Condition (3.5) for θ , so get a local pseudo-
hermitian equivalence toHP by Theorem 3.1. Taking a local CR diffeomorphism Fk

from Vk toHP and a CR dilation Λk(t, z) = (τk t,
√

τk z) ofHP for some τk → ∞,
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we have a global CR diffeomorphism F : M → HP as a subsequential limit of
Λk ◦ Fk ◦ ϕ−1

k .

Theorem 3.3 ([JO15]) Let M be a noncompact, strongly pseudoconvex, almost CR
manifold with an associated orthogonal contact sub-Riemannian structure. If the
CR automorphism group of M acts on M improperly, then M is CR equivalent to a
Heisenberg group HP .

If M is compact and AutCR(M) acts improperly, then by the same way of
Schoen [SC95], we have a point p ∈ M such that there is a CR diffeomorphism
F : M \{p} → HP . Then we show that the CR automorphismDs of M \{p} � HP

as in (3.4) extends to the CR automorphism of the whole M . Since F−1(0) is a fixed
point of each Ds , {Ds : s ∈ R} acts improperly on M \ {F−1(0)} which contains
p. Form Therorem 3.3 and the homogeneity of HP , there is a CR diffeomorphism
G : M \ {F−1(0)} → HP with G(p) = 0. Thus the CR automorphism G ◦ F−1 of
HP \ {0} which can not extend on HP . This contacts to Proposition 3.3 in [JO15]
if P �= 0.

Theorem 3.4 ([JO15]) Let M2n+1 be a compact, strongly pseudoconvex, almost CR
manifold with an associated orthogonal contact sub-Riemannian structure. If the CR
automorphism group of M is noncompact, then M is CR equivalent to the standard
sphere S2n+1.

If dim M = 5 or 7, M always admits an associated orthogonal contact sub-
Riemannian structure. Thus we can partially confirm Conjecture 1.1.
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