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Abstract In this paper, we survey recent results in [HMA12] about the asymptotic
expansion of Bergman kernel and we give a Bergman kernel proof of the Kodaira
embedding theorem.
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1 Introduction and Set up

Let L be a holomorphic line bundle over a complexmanifold M and let Lk be the k-th
tensor power of L . The Bergman projection Pk is the orthogonal projection onto the
space of L2-integrable holomorphic sections of Lk . The study of the large k behaviour
of Pk is an active research subject in complex geometry and is closely related to topics
like the structure of algebraic manifolds, the existence of canonical Kähler metrics,
Toeplitz quantization, equidistribution of zeros of holomorphic sections, quantum
chaos and mathematical physics. We refer the reader to the book [MM07] for a
comprehensive study of the Bergman kernel and its applications and also to the
survey [Ma10].

When M is compact and L is positive, Catlin [Cat97] and Zelditch [Zel98] estab-
lished the asymptotic expansion of the Bergman kernel (see Theorem 4.2) by using a
fundamental result by Boutet de Monvel-Sjöstrand [BouSj76] about the asymptotics
of the Szegö kernel on a strictly pseudoconvex boundary.Dai et al. [DLM06] obtained
the full off-diagonal asymptotic expansion andAgmon estimates of the Bergman ker-
nel for a high power of positive line bundle on a compact complex manifold by using
the heat kernel method. Ma and Marinescu [MM07, MM08a] proved the asymptotic
expansion for yet another generalization of the Kodaira Laplacian, namely the renor-
malized Bochner-Laplacian on a symplectic manifold and also showed the existence
of the estimate on a large class of non-compact manifolds. Another proof based on
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microlocal analysis of the existence of the full asymptotic expansion for the Bergman
kernel for a high power of a positive line bundle on a compact complex manifold
was obtained by Berndtsson, Berman and Sjöstrand [BBS04].

In [HMA12], we impose a very mild semiclassical local condition on ∂k , namely
the O(k−N ) small spectral gap on an open set D � M (see Definition 3.1), where ∂k

denotes the Cauchy-Riemann operator with values in Lk . We prove that the Bergman
kernel admits an asymptotic expansion on D if ∂k has O(k−N ) small spectral gap on
D, cf. Theorem 3.1. Our approach is based on the microlocal Hodge decomposition
for Kohn Laplacian established in [Hsiao08]. The distinctive feature of these asymp-
totics is that they work under minimal hypotheses. This allows us to apply them in
situations which were up to now out of reach. We illustrate this in the study of the
Bergman kernels of positive but singular Hermitian line bundles (see Theorem 3.3).

1.1 Set up

In this paper, we let M be a not necessary compact complex manifold of dimension
n with a smooth positive (1, 1) form Θ . The form Θ induces Hermitian metrics
on the complexified tangent bundle CT M and T ∗0,q M bundle of (0, q) forms on
M , q = 0, 1, . . . , n. We shall denote all these Hermitian metrics by 〈 · | · 〉. Let
(L , hL) → M be a holomorpic line bundle over M , where hL denotes the Hermitian
fiber metric of L . Let RL be the canonical curvature two form induced by hL . Given
a local trivializing section s of L on an open subset D ⊂ M we define the associated
local weight of hL by

|s(x)|2hL = e−2φ(x), φ ∈ C∞(D,R). (1.1)

Then RL |D = 2∂∂φ. Let (Lk, hLk
) be the k-th tensor power of the line bundle L .

If s is a local trivializing section of L , |s|2
hL = e−2φ , then sk is a local trivializing

section of Lk and
∣
∣sk

∣
∣
2
hLk = e−2kφ . We take dvM = dvM (x) as the volume form

on M induced by Θ . For every q = 0, 1, 2, . . . , n, let ( · | · ) and ( · | · )
hLk be the

standard L2 inner products on Ω
0,q
0 (M) := C∞

0 (M, T ∗0,q M) and Ω
0,q
0 (M, Lk) :=

C∞
0 (M, T ∗0,q M ⊗ Lk) respectively induced by dvM , 〈 · | · 〉 and hLk

and we write
‖·‖ and ‖·‖

hLk to denote the corresponding norms. Let L2
(0,q)(M) and L2

(0,q)(M, Lk)

be the completions of Ω
0,q
0 (M) and Ω

0,q
0 (M, Lk) with respect to ‖·‖ and ‖·‖

hLk

respectively.
Let ∂k : C∞(M, Lk) → Ω0,1(M, Lk) be the Cauchy-Riemann operator with

values in Lk . We extend ∂k to L2(M, Lk) := L2
(0,0)(M, Lk) by ∂k : Dom ∂k ⊂

L2(M, Lk) → L2
(0,1)(M, Lk), where Dom ∂k := {u ∈ L2(M, Lk); ∂ku ∈

L2
(0,1)(M, Lk)}. Let

Pk : L2(M, Lk) → Ker ∂k
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be the Bergman projection, i.e. Pk is the orthogonal projection onto Ker ∂k with
respect to ( · | · )

hLk and let Pk(x, y) ∈ C∞(M × M,L (Lk
y, Lk

x )) be the distribution
kernel of Pk .

2 Terminology in Semi-classical Analysis

In this section, we collect some definitions and notations in semi-classical analysis.
Let Bk : L2(M, Lk) → L2(M, Lk) be a continuous operator with smooth kernel

Bk(x, y). Let s, s1 be local trivializing sections of L on D0 � M , D1 � M respec-
tively, |s|2

hL = e−2φ , |s1|2hL = e−2φ1 . The localized operator (with respect to the
trivializing sections s and s1) of Bk is given by

Bk,s,s1 : L2
comp (D1) → L2(D),

u → e−kφs−k Bk(s
k
1ekφ1u). (2.1)

and let Bk,s,s1(x, y) ∈ C∞(D × D1) be the distribution kernel of Bk,s,s1 , where

L2
comp (D1) :=

{

v ∈ L2(D1); Supp v � D1

}

.

Let D be a local coordinate patch of M and let Ak : C∞
0 (D) → C∞(D) be a

k-dependent continuous operator with smooth kernel Ak(x, y). We write Ak ≡ 0
mod O(k−∞) (on D) or Ak(x, y) ≡ 0 mod O(k−∞) (on D) if Ak(x, y) satisfies∣
∣
∣∂α

x ∂
β
y Ak(x, y)

∣
∣
∣ = O(k−N ) uniformly on every compact set in D × D, for all multi-

indices α, β ∈ N
2n and all N > 0. Let Bk : L2(M, Lk) → L2(M, Lk) be a k-

dependent continuous operator with smooth kernel.Wewrite Bk ≡ 0 mod O(k−∞)

if Bk,s,s1 ≡ 0 mod O(k−∞) for every local trivializing sections s and s1.

Definition 2.1 Let D be a local coordinate patch of M . Let S(1; D) = S(1) be
the set of all a ∈ C∞(D) such that for every α ∈ N

2n , there exists Cα > 0,
such that

∣
∣∂α

x a(x)
∣
∣ ≤ Cα on D. If a = a(x, k) depends on k ∈]1,∞[, we say

that a(x, k) ∈ Sloc (1; D) = Sloc (1) if χ(x)a(x, k) uniformly bounded in S(1)
when k varies in ]1,∞[, for any χ ∈ C∞

0 (D). For m ∈ R, we put Sm
loc(1; D) =

Sm
loc(1) = km Sloc (1). If a j ∈ S

m j
loc (1), m j ↘ −∞, we say that a ∼

∞∑
j=0

a j (in

Sm0
loc (1)) if a −

N0∑

j=0
a j ∈ S

m N0+1

loc (1) for every N0. For a given sequence a j as above,

we can always find such an asymptotic sum a and a is unique up to an element in
S−∞
loc (1) = S−∞

loc (1; D) := ⋂

m Sm
loc (1).
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3 Asymptotic Expansion of Bergman Kernel

Let s, s1 be local trivializing sections of L on D0 � M , D1 � M respectively,
|s|2

hL = e−2φ , |s1|2hL = e−2φ1 . Let Pk,s,s1 be the localized operator of Pk given
by (2.1) and let Pk,s,s1(x, y) ∈ C∞(D × D1) be the distribution kernel of Pk,s,s1 .
When s = s1, D = D1, we write Pk,s := Pk,s,s1 , Pk,s(x, y) := Pk,s,s1(x, y). When
x = y, Pk,s(x, x) is independent of s. We write Pk(x) := Pk,s(x, x) and we call
Pk(x) Bergman kernel function. Let f1 ∈ C∞(M, Lk), . . . , fdk ∈ C∞(M, Lk) be
orthonormal frame for Ker ∂k , dk ∈ {0} ⋃

N
⋃ {∞}. On D0 and D1, we write

f j = skekφ f̃ j , f̃ j ∈ C∞(D), j = 1, 2, . . . , dk,

f j = sk
1ekφ1 f̂ j , f̂ j ∈ C∞(D1), j = 1, 2, . . . , dk .

We can check that

Pk,s,s1(x, y) =
dk∑

j=1

f̃ j (x) f̂ j (y),

Pk(x) =
dk∑

j=1

∣
∣ f j (x)

∣
∣2
hLk . (3.1)

We recall O(k−N ) small spectral gap property introduced in [HMA12]

Definition 3.1 Let D ⊂ M . We say that ∂k has O(k−N ) small spectral gap on D
if there exist constants CD > 0, N ∈ N, k0 ∈ N, such that for all k ≥ k0 and
u ∈ C∞

0 (D, Lk), we have

‖(I − Pk)u‖
hLk ≤ CD k N

∥
∥∂ku

∥
∥

hLk .

It should be mentioned that in [HMA12], we actually introduced O(k−N ) small
spectral gap for Kodaira Laplacian. Note that O(k−N ) small spectral gap for ∂k

implies O(k−N ) small spectral gap for Kodaira Laplacian.
One of the main results in [HMA12] is the following

Theorem 3.1 With the notations and assumptions used before, let s be a local trivi-
alizing section of L on an open set D ⊂ M, |s|2

hL = e−2φ , and assume that RL is pos-

itive on D. Suppose that ∂k has O(k−N ) small spectral gap on D. Then, χ1Pkχ ≡ 0
mod O(k−∞) for every χ1 ∈ C∞

0 (M), χ ∈ C∞
0 (D) with Suppχ1

⋂
Suppχ = ∅

and

Pk,s(x, y) ≡ eikΨ (x,y)b(x, y, k) mod O(k−∞) on D,
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where b(x, y, k) ∼
∞∑
j=0

b j (x, y)kn− j in the sense of Definition 2.1, b j (x, y) ∈
C∞(D × D), j = 0, 1, . . ., b0(x, x) = (2π)−n

∣
∣ det RL(x)

∣
∣ and

Ψ (x, y) ∈ C∞(D × D), Ψ (x, y) = −Ψ (y, x) , (3.2)

∃ c > 0 : ImΨ ≥ c |x − y|2 , Ψ (x, y) = 0 ⇔ x = y ,

for any p ∈ D, take local holomorphic coordinates z = (z1, . . . , zn) vanishing at
p, then near (p, p),

Ψ (z, w) =i(φ(z) + φ(w))

− 2i
∑

α,β∈({0}⋃
N)n ,

|α|+|β|≤N

∂ |α|+|β|φ
∂zα∂zβ

(0)
zαwβ

α!β! + O(|(z, w)|N+1), ∀N ∈ N,

(3.3)

where det RL(x) = λ1(x) · · · λn(x), λ j (x), j = 1, . . . , n, are the eigenvalues of RL

with respect to 〈 · | · 〉.
In particular, Pk(x) ∼

∞∑
j=0

b j (x, x)kn− j in the sense of Definition 2.1.

3.1 Big Line Bundles and Shiffman Conjecture

As an application of Theorem 3.1, we will establish Bergman kernel asymptotic
expansion for a big line bundle and this yields yet another proof of the Shiffman
conjecture. Until further notice, we assume that M is compact. We recall

Conjecture 3.1 (Shiffman, 1990). If hL is a singular Hermitian metric, smooth out-
side a proper analytic set Σ , RL > 0 in the sense of current, then L is big.

A line bundle L is said to be big if dim H0(M, Lk) ≈ kn , where

H0(M, Lk) =
{

u ∈ C∞(M, Lk); ∂ku = 0
}

.

Ji and Shiffman [JS93] solved this conjecture.
Now, we assume that hL is a singular Hermitian metric, smooth outside a proper

analytic set Σ , RL > 0 in the sense of current. Consider the non-compact complex
manifold M \Σ . We also write ∂k to denote the Cauchy-Riemann operator on M \Σ

with values in Lk . Let Pk,M\Σ be the associated Bergman projection on M \ Σ and
let Pk,M\Σ(x) be the associated Bergman kernel function. In [HMA12], we showed
that

Theorem 3.2 ∂k has O(k−N ) small spectral gap on every D � M \ Σ .
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From Theorem 3.2 and Theorem 3.1, we deduce that

Theorem 3.3 Pk,M\Σ(x) ∼ (2π)−n
∣
∣ det RL(x)

∣
∣kn +b1(x)kn−1+b2(x)kn−2+· · ·

locally uniformly on M \ Σ , where b j (x) ∈ C∞(M \ Σ), j = 1, 2, . . ..

Let
{

g1, g2, . . . , gmk

}

be an orthonormal frame for H0(M, Lk)
⋂

L2(M\Σ, Lk).
The multiplier Bergman kernel function is defined by

Pk,I (x) :=
mk∑

j=1

∣
∣g j (x)

∣
∣
2
hLk , x ∈ M \ Σ.

The following result is essentially due to Skoda (see Lemma 7.3 of Ch. VIII in
Demailly [Desps11]).

Theorem 3.4 Pk,M\Σ(x) = Pk,I (x), ∀x ∈ M \ Σ .

Proof (Proof of Shiffman conjecture) FromTheorem 3.4 and Theorem 3.3, we estab-
lish Bergman kernel asymptotic expansion for big line bundle:

Pk,I (x) ∼ (2π)−n
∣
∣ det RL(x)

∣
∣kn + b1(x)kn−1 + b2(x)kn−2

+ · · · locally uniformly onM \ Σ, (3.4)

where b j (x) ∈ C∞(M \ Σ), j = 1, 2, . . .. Let K � M \ Σ . Note that
dim H0(M, Lk) ≥ ∫

K Pk,I (x)dvM (x). From this observation and (3.4), we reprove
Shiffman conjecture. �

4 A Bergman Kernel Proof of the Kodaira Embedding
Theorem

For a holomorphic line bundle E → M , we say that E is positive if there is a
Hermitian metric hE of E such that the associated curvature RE is positive definite
on M . Let us recall the Kodaira embedding theorem first.

Theorem 4.1 Let M be a compact complex manifold. If there is a positive holomor-
phic line bundle E over M, then M can be holomorphic embedded into CP

N , for
some N ∈ N.

We return to our situation and we will use the same notations as before. By using
Hörmander’s L2 estimates [Hor90], it is easy to see that if M is compact and RL is
positive on M then ∂k has O(k−N ) small spectral gap on M . From this observation
and Theorem 3.1, we deduce

Theorem 4.2 Assume that M is compact and RL is positive on M. Then,

χ1Pkχ ≡ 0 mod O(k−∞) (4.1)
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for every χ1 ∈ C∞(M), χ ∈ C∞(M) with Suppχ1
⋂

Suppχ = ∅. Let s be a local
trivializing section of L on an open set D ⊂ M, |s|2

hL = e−2φ , then

Pk,s(x, y) ≡ eikΨ (x,y)b(x, y, k) mod O(k−∞) on D, (4.2)

where b(x, y, k) and Ψ (x, y) are as in Theorem 3.1.
In particular,

Pk(x) ∼ (2π)−n
∣
∣ det RL(x)

∣
∣kn + b1(x)kn−1 + b2(x)kn−2 + · · · uniformly on M .

(4.3)

By using Theorem 3.1, we are going to give a Bergman kernel proof of theKodaira
embedding theorem. From now on, we assume that RL is positive on M . As before,
put

H0(M, Lk) :=
{

u ∈ C∞(M, Lk); ∂ku = 0
}

and let
{

f1, . . . , fdk

}

be an orthonormal basis for H0(M, Lk) with respect to
( · | · )

hLk . The Kodaira map is given by

Φk : x ∈ X → [ f1(x), f2(x), . . . , fdk (x)] ∈ CP
dk−1. (4.4)

From (4.3), we see that there is a k0 > 0 such that for every k ≥ k0,
dk∑

j=1

∣
∣ f j (x)

∣
∣
2
hLk ≥

ckn on M , where c > 0 is a constant independent of k. Hence, fix any k ≥ k0, for
every x ∈ X , there is a f j , j ∈ {1, 2, . . . , dk}, such that

∣
∣ f j (x)

∣
∣2
hLk > 0.We conclude

that Φk is a well-defined as a smooth map from X to CPdk−1. We will prove

Theorem 4.3 For k large, Φk is a holomorphic embedding.

It is clearly that the Kodaira embedding theorem follows from Theorem 4.3. We
recall that for a smoothmapΦ : X → CP

N is an embedding if dΦx : T X → TCP
N

is injective at each point x ∈ X and Φ : X → CP
N is globally injective.

Let s be a local trivializing section of L on an open set D ⊂ M . Fix p ∈ D and let
z = (z1, . . . , zn) = x = (x1, . . . , x2n), z j = x2 j−1 + i x2 j , j = 1, . . . , n, be local
holomorphic coordinates of X defined in some small neighbourhood of p such that

φ(z) =
n

∑

j=1

λ j
∣
∣z j

∣
∣2 + O(|z|3), (4.5)

where 2λ1, . . . , 2λn are the eigenvalues of RL(p) with respect to 〈 · | ·〉. We may
assume that the local coordinates z defined on D. We also write y = (y1, . . . , y2n).
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Until further notice, we work on D. Take χ ∈ C∞
0 (R, [0, 1]) with χ(x) = 1 on

[− 1
2 ,

1
2 ], χ(x) = 0 on ] − ∞,−1]⋃[1,∞[ and χ(t) = χ(−t), for every t ∈ R. Let

uk := Pk

(

skekφχ(
√

ky1) · · · χ(
√

ky2n)
)

∈ H0(M, Lk). (4.6)

On D, we write uk = skekφ ũk , ũk ∈ C∞(D). Then, |uk(x)|2
hLk = |̃uk(x)|2, ∀x ∈ D.

We need

Lemma 4.1 With the notations used above, there is a k0 > 0 independent of k and
the point p such that for all k ≥ k0,

|uk(p)|2
hLk ≥ c0, (4.7)

|uk(x)|2
hLk ≤ 1

c0k
, ∀x /∈ D (4.8)

and
∣
∣
∣
∣

1√
k

∂ ũk

∂xs
(p)

∣
∣
∣
∣
≤ 1

c0k
, s = 1, 2, . . . , 2n, (4.9)

where c0 > 0 is a constant independent of k and the point p.

Proof From (4.2), we can check that

ũk(x)

≡
∫

eikΨ (x,y)b(x, y, k)χ(
√

ky1) · · · χ(
√

ky2n)dvM (y) mod O(k−∞)

≡
∫

e
ikΨ (x,

y√
k
)
k−nb(x,

y√
k
, k)χ(y1) · · · χ(y2n)dvM (y) mod O(k−∞). (4.10)

From (3.3), Theorem 4.2 and note that Ψ (0, 0) = 0, we can check that

lim
k→∞ ũk(p) = 1

2
π−n

∣
∣
∣det RL

p

∣
∣
∣

∫

χ(y1) · · · χ(y2n)dvM (y).

Similarly, it is straightforward to check that limk→∞ 1√
k

∂ ũk
∂xs

(p) = 0, s = 1, 2,

. . . , 2n. Hence, there is a constant k̃0 > 0 such that for every k ≥ k̃0, (4.7) and (4.9)
hold. Since X is compact, k̃0 can be taken to be independent of the point p.

Now, we prove (4.8). Since x /∈ D, from (4.1), we see that |uk(x)|2
hLk ≡ 0

mod O(k−∞) outside D. Thus, there is a constant k̂0 > 0 such that for every k ≥ k̂0,
(4.8) holds. Since X is compact, k̂0 can be taken to be independent of the point p.
The lemma follows. �
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For every j = 1, 2, . . . , n, let

u j
k := Pk

(

skekφ
√

k(y2 j−1 + iy2 j )χ(
√

ky1) · · · χ(
√

ky2n)
)

∈ H0(M, Lk). (4.11)

On D, we write u j
k = skekφ ũ j

k , ũ j
k ∈ C∞(D), j = 1, 2, . . . , n. The following

follows from some straightforward computation and essentially the same as the proof
of Lemma 4.1. We omit the details.

Lemma 4.2 With the notations used above, there is a k1 > 0 independent of k and
the point p such that for all k ≥ k1,

∣
∣
∣̃u

j
k (p)

∣
∣
∣ ≤ 1

c1k
, j = 1, 2, . . . , n,

∣
∣
∣
∣
∣

1√
k

∂ ũ j
k

∂zs
(p)

∣
∣
∣
∣
∣
≤ 1

c1k
, j, s = 1, 2, . . . , n,

∣
∣
∣
∣
∣

1√
k

∂ ũ j
k

∂zs
(p)

∣
∣
∣
∣
∣
≤ 1

c1k
, j, s = 1, 2, . . . , n − 1, j �= s,

∣
∣
∣
∣
∣

1√
k

∂ ũ j
k

∂z j
(p)

∣
∣
∣
∣
∣
≥ c1, j = 1, 2, . . . , n, (4.12)

where c1 > 0 is a constant independent of k and the point p.

From now on, we take k be a large constant so that k � 2(k0 + k1), where k0 > 0
and k1 > 0 are constants as in Lemma 4.1 and Lemma 4.2. We can prove

Theorem 4.4 dΦk(x) : Tx X → TxCP
dk−1 is injective at every x ∈ X.

Proof Fix p ∈ X and let s be a local trivializing section of L on an open
set D ⊂ M , p ∈ D. Let uk ∈ H0(M, Lk) and u j

k ∈ H0(M, Lk), j =
1, 2, . . . , n, be as in Lemma 4.1 and Lemma 4.2. From Lemma 4.1 and Lemma 4.2,
it is not difficult to check that uk, u1

k, u2
k . . . , un

k are linearly independent. Take
{

uk, u1
k, u2

k, . . . , un
k , g1, . . . , gmk

}

be a basis (not orthogonal) for H0(M, Lk), mk =
dk − n − 1. From Lemma 4.1 and Lemma 4.2, it is easy to see that

the differential of the map x → (
u1k
uk

, . . . ,
un

k
uk

,
g1
uk

, . . . ,
gmk
uk

) is injective at p.

(4.13)
From (4.13) and some elementary linear algebra, it is not difficult to check that
dΦk(p) : Tp X → TpCP

dk−1 is injective. We omit the detail. �

Now, we can prove

Theorem 4.5 For k large, Φk : X → CP
dk−1 is globally injective.

Proof We assume that the claim of the theorem is not true.We can find xk j , yk j ∈ M ,
xk j �= yk j , 0 < k1 < k2 < · · · , lim j→∞ k j = ∞, such that Φk j (xk j ) = Φk j (yk j ),
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for each j . We may suppose that there are xk, yk ∈ M , xk �= yk , such that Φk(xk) =
Φk(yk), for each k. Thus, [ f1(xk), · · · , fdk (xk)] = [ f1(yk), · · · , fdk (yk)], for each
k. We conclude that for every gk ∈ H0(M, Lk), there is a λk ∈ C such that

gk(xk) = λk gk(yk). (4.14)

We may assume that |λk | ≥ 1. Hence, for every gk ∈ H0(M, Lk),

|gk(xk)|2hLk ≥ |gk(yk)|2hLk . (4.15)

Since M is compact, wemay assume that xk → p ∈ M , yk → q ∈ M , as k → ∞.
Suppose that p �= q. In view of Lemma 4.1, we see that there is a vk ∈ H0(M, Lk)

with |vk(yk)|2
hLk ≥ c0 and |vk(xk)|2

hLk ≤ 1
c0k , where c0 > 0 is a constant independent

of k. Thus, for k large, |vk(xk)|2
hLk < |vk(yk)|2

hLk . From this and (4.15), we get a
contradiction. Thus, we must have p = q.

Let s be a local trivializing section of L on an open subset D ⊂ X of p, |s|2
hL =

e−2φ . Now, we assume that xk → p ∈ M , yk → p ∈ M , as k → ∞. Let
z = (z1, . . . , zn) = x = (x1, . . . , x2n), z j = x2 j−1 + i x2 j , j = 1, . . . , n, be local
holomorphic coordinates of X defined in some small neighbourhood of p such that
(4.5) hold. We may assume that xk, yk ∈ D for each k and the local coordinates x
defined on D. We shall use the same notations as before.

Case I : lim supk→∞
√

k |xk − yk | = M > 0 (M can be ∞).
For simplicity, we may assume that

lim
k→∞

√
k |xk − yk | = M, M ∈]0,∞]. (4.16)

On D, we write f j = skekφ f̃ j , f̃ j ∈ C∞(D), j = 1, . . . , dk . Put

vk(x) :=
dk∑

j=1

f j (x) f̃ j (yk) ∈ H0(M, Lk). (4.17)

We can check that

|vk(xk)|2hLk =
∣
∣
∣
∣
∣
∣

dk∑

j=1

f̃ j (xk) f̃ j (yk)

∣
∣
∣
∣
∣
∣

2

= ∣
∣Pk,s(xk, yk)

∣
∣2 =

∣
∣
∣eikΨ (xk ,yk )b(xk, yk, k)

∣
∣
∣

2

≤ e−2kImΨ (xk ,yk ) |b(xk, yk, k)|2 (4.18)

and

|vk(yk)|2hLk = ∣
∣Pk,s(yk, yk)

∣
∣2 =

∣
∣
∣eikΨ (yk ,yk )b(yk, yk, k)

∣
∣
∣

2 = |b(yk, yk, k)|2 .

(4.19)
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From the fact that ImΨ (x, y) ≥ c |x − y|2, where c > 0 is a constant, (4.16), (4.18)
and (4.19), we can check that

lim
k→∞ k−2n |vk(xk)|2

hLk ≤ e−2cM2 |b0(p, p)|2 < |b0(p, p)|2 = lim
k→∞ k−2n |vk(yk)|2

hLk ,

(4.20)
where b0 is the leading term of b(x, y, k). Note that b0(p, p) = (2π)−n

∣
∣ det RL(p)

∣
∣

> 0 (see Theorem 3.1). From (4.20) and (4.15), we get a contradiction.
Case II : lim supk→∞

√
k |xk − yk | = 0.

Put fk(t) =
|vk (t xk+(1−t)yk)|2

hLk

Pk (t xk+(1−t)yk)Pk(yk )
, where vk is as in (4.17). We can check that

fk(t) =

∣
∣
∣
∣
∣

dk∑

j=1
f̃ j (t xk + (1 − t)yk) f̃ j (yk)

∣
∣
∣
∣
∣

2

dk∑

j=1

∣
∣ f̃ j (t xk + (1 − t)yk)

∣
∣
2 dk∑

j=1

∣
∣ f̃ j (yk)

∣
∣
2

=
∣
∣Pk,s(t xk + (1 − t)yk, yk)

∣
∣2

Pk(t xk + (1 − t)yk)Pk(yk)
.

(4.21)
From (4.14) and (4.21), it is easy to see that 0 ≤ fk(t) ≤ 1, ∀t ∈ [0, 1] and
fk(0) = fk(1) = 1. Thus, for each k, there is a tk ∈ [0, 1] such that f ′′

k (tk) ≥ 0.
Hence,

lim inf
k→∞

f ′′
k (tk)

|xk − yk |2 k
≥ 0. (4.22)

From (4.2), we see that

∣
∣Pk,s(t xk + (1 − t)yk , yk)

∣
∣2 = e−2kImΨ (t xk+(1−t)yk ,yk ) |b(t xk + (1 − t)yk , yk , k)|2 ,

Pk(t xk + (1 − t)yk)

= b(t xk + (1 − t)yk , t xk + (1 − t)yk , k) ∼
∞
∑

j=0

kn− j b j (t xk + (1 − t)yk , t xk + (1 − t)yk).

(4.23)

From (4.23), it is straightforward to calculate that

∂
∣
∣Pk,s(t xk + (1 − t)yk , yk)

∣
∣

∂t

= e−2kImΨ (t xk+(1−t)yk ,yk )

(

〈 −2kImΨ ′
x (t xk + (1 − t)yk , yk) , xk − yk 〉 |b(t xk + (1 − t)yk , yk , k)|2

+ 〈 O(k2n) , xk − yk 〉
)

,

∂2
∣
∣Pk,s(t xk + (1 − t)yk , yk)

∣
∣

∂t2

= e−2kImΨ (t xk+(1−t)yk ,yk )
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((〈 −2kImΨ ′
x (t xk + (1 − t)yk , yk) , xk − yk 〉)2 |b(t xk + (1 − t)yk , yk , k)|2

+ 〈 −2kImΨ ′′
x (t xk + (1 − t)yk , yk)(xk − yk) , xk − yk 〉 |b(t xk + (1 − t)yk , yk , k)|2

+ 〈 −2kImΨ ′
x (t xk + (1 − t)yk , yk) , xk − yk 〉〈 O(k2n) , xk − yk 〉

+ 〈 O(k2n)(xk − yk) , xk − yk 〉
)

,

∂ Pk(t xk + (1 − t)yk , yk)

∂t
= 〈 O(k2n) , xk − yk 〉,

∂2Pk(t xk + (1 − t)yk , yk)

∂t2
= 〈 O(k2n)(xk − yk) , xk − yk 〉, (4.24)

where ImΨ ′
x (x, y) and ImΨ ′′

x (x, y) denote the derivative and the Hessian of
ImΨ (x, y) with respect to x respectively. Note that

∣
∣〈−2kImΨ ′

x (t xk + (1 − t)yk, yk) , xk − yk 〉∣∣ ≤ 1
c0

k |xk − yk |2 → 0 as k → ∞

and

〈−2kImΨ ′′
x (t xk + (1 − t)yk, yk)(xk − yk) , xk − yk 〉 < −c0k |xk − yk |2 ,

where c0 > 0 is a constant independent of k. From this observation, (4.21) and (4.24),

it is straightforward to see that lim infk→∞
f ′′
k (tk )

|xk−yk |2k
< 0. From this and (4.22), we

get a contradiction.
The theorem follows. �

From Theorem 4.4 and Theorem 4.5, we obtain Theorem 4.3 and the Kodaira
embedding theorem follows then.
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