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Abstract In this survey we collect the main results known up to now (July 2015)
regarding possible generalizations to several complex variables of the classical Leau-
Fatou flower theorem about holomorphic parabolic dynamics.
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1 The Original Leau-Fatou Flower Theorem

In this survey we shall present the known generalizations of the classical Leau-Fatou
theorem describing the local holomorphic dynamics about a parabolic point. But let
us start with a number of standard definitions.

Definition 1.1 A local n-dimensional discrete holomorphic dynamical system (in
short, a local dynamical system) is a holomorphic germ f of self-map of a complex
n-dimensional manifold M at a point p ∈ M such that f (p) = p; we shall denote
by End(M, p) the set of such germs.

If f , g belongs to End(M, p) their composition g ◦ f is defined as germ in
End(M, p); in particular,we can consider the sequence { f k} ⊂ End(M, p)of iterates
of f ∈ End(M, p), inductively defined by f 0 = idM and f k = f ◦ f k−1 for k ≥ 1.
The aimof local discrete dynamics is exactly the study of the behavior of the sequence
of iterates.

Remark 1.1 In practice, we shall workwith representatives, that is with holomorphic
maps f : U → M , where U ⊆ M is an open neighborhood of p ∈ U , such that
f (p) = p. The fact we are working with germs will be reflected in the freedom
we have in taking U as small as needed. We shall also mostly (but not always) take
M = C

n and p = O; indeed a choice of local coordinates ϕ for M centered at p
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2 M. Abate

yields an isomorphism ϕ∗ : End(M, p) → End(Cn, O) preserving the composition
by setting ϕ∗( f ) = ϕ ◦ f ◦ ϕ−1.

Definition 1.2 Let f : U → M be a representative of a germ in End(M, p). The
stable set K f ⊆ U of f is the set of points z ∈ U such that f k(z) is defined for all
k ∈ N; clearly, p ∈ K f . If z ∈ K f , the set { f k(z)} is the orbit of z; if z ∈ U \ K f

we shall say that z escapes. The stable set depends on the chosen representative, but
its germ at p does not; so we shall freely talk about the stable set of an element of
End(M, p). An f -invariant set is a subset P ⊆ U such that f (P) ⊆ P; clearly, the
stable set is f -invariant.

Definition 1.3 A local dynamical system f ∈ End(M, p) is parabolic (and some-
times we shall say that p is a parabolic fixed point of f ) if d f p is diagonalizable and
all its eigenvalues are roots of unity; is tangent to the identity if d f p = id. We shall
denote by End1(M, p) the set of local dynamical systems tangent to the identity in p.

Remark 1.2 If f ∈ End(M, p) is parabolic then a suitable iterate f q is tangent to the
identity; for this reason we shall mostly concentrate on germs tangent to the identity.
Furthermore, if f ∈ End(M, p) is tangent to the identity then f −1 is a well-defined
germ in End(M, p) still tangent to the identity.

Definition 1.4 The order ordp( f ) of a holomorphic function f : M → C at p ∈ M
is the order of vanishing at p, that is the degree of the first non-vanishing term in the
Taylor expansion of f at p (computed in any set of local coordinates centered at p).
The order ordp(F) of a holomorphic map F : M → C

n at p ∈ M is the minimum
order of its components.

A germ f ∈ End(Cn, O) can be represented by a n-tuple of convergent power
series in n variables; collecting terms of the same degree we obtain the homogeneous
expansion.

Definition 1.5 A homogeneous map of degree d ≥ 1 is a map P : C
n → C

n

where P is a n-tuple of homogeneous polynomials of degree d in n variables. The
homogeneous expansion of a germ tangent to the identity f ∈ End1(Cn, O), f 	≡
idCn , is the (unique) series expansion

f (z) = z + Pν+1(z) + Pν+2(z) + · · · (1.1)

where Pk is a homogeneous map of degree k, and Pν+1 	≡ O . The number ν ≥ 1 is
the order (or, sometimes, multiplicity) ν( f ) of f at O , and Pν+1 is the leading term
of f . It is easy to check that the order is invariant under change of coordinates, and
thus it can be defined for any germ tangent to the identity f ∈ End1(M, p); we shall
denote by Endν(M, p) the set of germs tangent to the identity with order at least ν.

In the rest of this section we shall discuss the 1-dimensional case, where the
homogeneous expansion reduces to the usual Taylor expansion
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f (z) = z + aν+1zν+1 + O(zν+2) (1.2)

with aν+1 	= 0.

Definition 1.6 Let f ∈ End1(C, 0) be tangent to the identity given by (1.2). A unit
vector v ∈ S1 is an attracting (respectively, repelling) direction for f at 0 if aν+1vν is
real and negative (respectively, positive). Clearly, there are ν equally spaced attracting
directions, separated by ν equally spaced repelling directions.

Example 1.1 To understand this definition, let us consider the particular case f (z) =
z+azν+1. If v ∈ S1 is such that avν > 0 then for every z ∈ R

+vwe have f (z) ∈ R
+v

and | f (z)| > |z|; in other words, the half-line R
+ is f -invariant and repelled from

the origin. Conversely, if v ∈ S1 is such that avν < 0 then R
+v is again f -invariant

but now | f (z)| < |z| if z ∈ R
+v is small enough; so there is a segment of R

+v
attracted by the origin.

Remark 1.3 If f ∈ End1(C, 0) is given by (1.2) then

f −1(z) = z − aν+1zν+1 + O(zν+2).

In particular, if v ∈ S1 is attracting (respectively, repelling) for f then it is repelling
(respectively, attracting) for f −1, and conversely.

To describe the dynamics of a tangent to the identity germ two more definitions
are needed.

Definition 1.7 Let v ∈ S1 be an attracting direction for a f ∈ End1(C, 0) tangent
to the identity. The basin centered at v is the set of points z ∈ K f \ {0} such that
f k(z) → 0 and f k(z)/| f k(z)| → v (notice that, up to shrinking the domain of f ,
we can assume that f (z) 	= 0 for all z ∈ K f \ {0}). If z belongs to the basin centered
at v, we shall say that the orbit of z tends to 0 tangent to v.

A slightly more specialized (but more useful) object is the following:

Definition 1.8 Let f ∈ End1(C, 0) be tangent to the identity. An attracting petal
with attracting central direction v ∈ S1 for f is an open simply connected f -invariant
set P ⊆ K f \ {0} with 0 ∈ ∂ P such that a point z ∈ K f \ {0} belongs to the basin
centered at v if and only if its orbit intersects P . In other words, the orbit of a point
tends to 0 tangent to v if and only if it is eventually contained in P . A repelling petal
(with repelling central direction) is an attracting petal for the inverse of f .

We can now state the original Leau-Fatouflower theorem, describing the dynamics
of a one-dimensional tangent to the identity germ in a full neighborhood of the origin
(see, e.g., [M] for a modern proof):

Theorem 1.1 ([Le, F1, F2, F3]) Let f ∈ End1(C, 0) be tangent to the identity of
order ν ≥ 1. Let v+

1 , . . . , v+
ν ∈ S1 be the ν attracting directions of f at the origin,

and v−
1 , . . . , v−

r ∈ S1 the ν repelling directions. Then:
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(i) for each attracting (repelling) direction v+
j (v−

j ) we can find an attracting

(repelling) petal P+
j (P−

j ) such that the union of these 2ν petals together with
the origin forms a neighborhood of the origin. Furthermore, the 2ν petals are
arranged cyclically so that two petals intersect if and only if the angle between
their central directions is π/ν.

(ii) K f \ {0} is the (disjoint) union of the basins centered at the ν attracting direc-
tions.

(iii) If B is a basin centered at one of the attracting directions, then there is a function
χ : B → C such that χ ◦ f (z) = χ(z) + 1 for all z ∈ B. Furthermore, if P is
the corresponding petal constructed in part (i), then χ |P is a biholomorphism
with an open subset of the complex plane containing a right half-plane — and
so f |P is holomorphically conjugated to the translation z �→ z + 1.

Definition 1.9 The function χ : B → C constructed in Theorem 1.1. (iii) is a Fatou
coordinate on the basin B.

Remark 1.4 Up to a linear change of variable, we can assume that aν+1 = −1 in
(1.2), so that the attracting directions are the ν-th roots of unity. Given δ > 0, the set

Dν,δ = {z ∈ C | |zν − δ| < δ} (1.3)

has exactly ν connected components (each one symmetric with respect to a different
ν-th root of unity), and it turns out that when δ > 0 is small enough these components
can be taken as attracting petals for f —even though to cover a neighborhood of the
origin one needs slightly larger petals. The components of Dν,δ are distributed as
petals in a flower; this is the reason why Theorem 1.1 is called “flower theorem".

So the union of attracting and repelling petals gives a pointed neighborhood of
the origin, and the dynamics of f on each petal is conjugated to a translation via a
Fatou coordinate. The relationships between different Fatou coordinates is the key
to Écalle-Voronin holomorphic classification of parabolic germs (see, e.g., [A4] and
references therein for a concise introduction to Écalle-Voronin invariants), which is
however outside of the scope of this survey. We end this section with the statement
of the Leau-Fatou flower theorem for general parabolic germs:

Theorem 1.2 ([Le, F1, F2, F3]) Let f ∈ End1(C, 0) be of the form f (z) = λz +
O(z2), where λ ∈ S1 is a primitive root of the unity of order q. Assume that f q 	≡ id.
Then there exists μ ≥ 1 such that f q has order qμ, and f acts on the attracting
(respectively, repelling) petals of f q as a permutation composed by μ disjoint cycles.
Finally, K f = K f q .

In the subsequent sections we shall discuss known generalizations of Theorem 1.1
to several variables.
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2 Écalle-Hakim Theory

From now on we shall work in dimension n ≥ 2. So let f ∈ End1(Cn, O) be tangent
to the identity; we would like to find a multidimensional version of the petals of
Theorem 1.1.

If f had a non-trivial one-dimensional f -invariant curve passing through the
origin, that is an injective holomorphic map ψ : Δ → C

n , where Δ ⊂ C is a
neighborhood of the origin, such thatψ(0) = O ,ψ ′(0) 	= O and f

(
ψ(Δ)

) ⊆ ψ(Δ)

with f |ψ(Δ) 	≡ id, we could apply Leau-Fatou flower theorem to f |ψ(Δ) obtaining a
one-dimensional Fatou flower for f inside the invariant curve. In particular, if zo ∈
ψ(Δ) belongs to an attractive petal, we would have f k(zo) → O and [ f k(zo)] →
[ψ ′(0)], where [·] : C

n \ {O} → P
n−1(C) is the canonical projection. The first

observation we can make is that then [ψ ′(0)] cannot be any direction in P
n−1(C).

Indeed:

Proposition 2.1 ([H2]) Let f (z) = z + Pν+1(z) + · · · ∈ End1(Cn, O) be tangent
to the identity of order ν ≥ 1. Assume there is zo ∈ K f such that f k(zo) → O and
[ f k(zo)] → [v] ∈ P

n−1(C). Then Pν+1(v) = λv for some λ ∈ C.

Definition 2.1 Let P : C
n → C

n be a homogeneous map. A direction [v] ∈
P

n−1(C) is characteristic for P if P(v) = λv for some λ ∈ C. Furthermore, we
shall say that [v] is degenerate if P(v) = O , and non-degenerate otherwise.

Remark 2.1 From now on, given f ∈ End1(Cn, O) tangent to the identity of
order ν ≥ 1, every notion/object/concept introduced for its leading term Pν+1 will
be introduced also for f ; for instance, a (degenerate/non-degenerate) characteristic
direction for Pν+1 will also be a (degenerate/non-degenerate) characteristic direction
for f .

Remark 2.2 If f ∈ End1(Cn, O) is given by (1.1), then f −1 ∈ End1(Cn, O) is
given by

f −1(z) = z − Pν+1(z) + · · · .

In particular, f and f −1 have the same (degenerate/non-degenerate) characteristic
directions.

Remark 2.3 If ψ : Δ → C
n is a one-dimensional curve with ψ(0) = O and

ψ ′(0) 	= O such that f |ψ(Δ) ≡ id, it is easy to see that [ψ ′(0)] must be a degenerate
characteristic direction for f .

So if we have an f -invariant one-dimensional curve ψ through the origin then
[ψ ′(0)] must be a characteristic direction. However, in general the converse is false:
there are non-degenerate characteristic directions which are not tangent to any f -
invariant curve passing through the origin.

Example 2.1 ([H2]) Let f ∈ End(C2, O) be given by
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f (z, w) =
(

z

1 + z
, w + z2

)
,

so that f is tangent to the identity of order 1, and P2(z, w) = (−z2, z2). In particular,
f has a degenerate characteristic direction [0 : 1] and a non-degenerate characteristic
direction [v] = [1 : −1]. The degenerate characteristic direction is tangent to the
curve {z = 0}, which is pointwise fixed by f , in accord with Remark 2.3. We claim
that no f -invariant curve can be tangent to [v].

Assume, by contradiction, that we have an f -invariant curve ψ : Δ → C
2 with

ψ(0) = O and [ψ ′(0)] = [v]. Without loss of generality, we can assume that
ψ(ζ ) = (

ζ, u(ζ )
)
with u ∈ End(C, 0). Then the condition of f -invariance becomes

f2
(
ζ, u(ζ )

)= u
(

f1(ζ, u(ζ )
))
, that is

u(ζ ) + ζ 2 = u

(
ζ

1 + ζ

)
. (2.1)

Put g(ζ ) = ζ/(1 + ζ ), so that gk(ζ ) = ζ/(1 + kζ ); in particular, gk(ζ ) → 0 for
all ζ ∈ C \ {− 1

n | n ∈ N
∗}. This means that by using (2.1) we can extend u to

C \ {− 1
n | n ∈ N

∗} by setting

u(ζ ) = u
(
gk(ζ )

) −
k−1∑

j=0

[g j (ζ )]2

where k ∈ N is chosen so that gk(ζ ) ∈ Δ. Analogously, (2.1) implies that for |ζ |
small enough one has

u
(
g−1(ζ )

) + (
g−1(ζ )

)2 = u(ζ );

so we can use this relation to extend u to all of C, and then to P
1(C), because

g−1(∞) = −1. So u is a holomorphic function defined on P
1(C), that is a constant;

but no constant can satisfy (2.1), contradiction.

Remark 2.4 Ribón [R] has given examples of germshavingnoholomorphic invariant
curves at all. For instance, this is the case for germs of the form f (z, w) = (z +
w2, w + z2 + λz5) for all λ ∈ C outside a polar Borel set.

The first important theoremwewould like to quote is due to Écalle [E] and Hakim
[H2], and it says that we do always have a Fatou flower tangent to a non-degenerate
characteristic direction, even when there are no invariant complex curves containing
the origin in their relative interior. To state it, we need to define what is the correct
multidimensional notion of petal.

Definition 2.2 A parabolic curve for f ∈ End1(Cn, O) tangent to the identity is an
injective holomorphic map ϕ : D → C

n \ {O} satisfying the following properties:
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(a) D is a simply connected domain in C with 0 ∈ ∂ D;
(b) ϕ is continuous at the origin, and ϕ(0) = O;
(c) ϕ(D) is f -invariant, and ( f |ϕ(D))

k → O uniformly on compact subsets as
k → +∞.

Furthermore, if [ϕ(ζ )] → [v] in P
n−1(C) as ζ → 0 in D, we shall say that the

parabolic curve ϕ is tangent to the direction [v] ∈ P
n−1(C). Finally, a Fatou flower

with ν petals tangent to a direction [v] is a holomorphic map Φ : Dν,δ → C, where
Dν,δ is given by (1.3), such that  restricted to any connected component of Dν,δ

is a parabolic curve tangent to [v], a petal of the Fatou flower. If ν is the order of f
then we shall talk of a Fatou flower for f without mentioning the number of petals.

Then Écalle, using his resurgence theory (see, e.g., [S] for an introduction to
Écalle’s resurgence theory in one dimension), andHakim, usingmore classical meth-
ods, have proved the following result (see also [W]):

Theorem 2.2 ([E, H2, H3]) Let f ∈ End1(Cn, O) be tangent to the identity, and
[v] ∈ P

n−1(C) a non-degenerate characteristic direction for f . Then there exists (at
least) one Fatou flower tangent to [v]. Furthermore, for every petal ϕ : Δ → C

n of
the Fatou flower there exists a injective holomorphic map χ : ϕ(Δ) → C such that
χ

(
f (z)

) = χ(z) + 1 for all z ∈ ϕ(Δ).

Definition 2.3 The functionχ constructed in the previous theorem is aHakim-Fatou
coordinate.

Remark 2.5 A characteristic direction is a complex direction, not a real one; so it
should not be confused with the attracting/repelling directions of Theorem 1.1. All
petals of a Fatou flower are tangent to the same characteristic direction, but each petal
is tangent to a different real direction inside the same complex (characteristic) direc-
tion. In particular, Fatou flowers of f and f −1 are tangent to the same characteristic
directions (see Remark 2.2) but the corresponding petals are tangent to different real
directions, as in Theorem 1.1.

In particular there exist parabolic curves tangent to [1 : −1] for the system of
Example 2.1 even though there are no invariant curves passing through the origin
tangent to that direction.

Parabolic curves are one-dimensional objects in an n-dimensional space; it is
natural to wonder about the existence of higher dimensional invariant subsets. A
sufficient condition for their existence has been given by Hakim; to state it we need
to introduce another definition.

Definition 2.4 Let [v] ∈ P
n−1(C) be a non-degenerate characteristic direction for

a homogeneous map P : C
n → C

n of degree ν + 1 ≥ 2; in particular, [v] is a fixed
point for the meromorphic self-map [P] of P

n−1(C) induced by P . The directors
of P in [v] are the eigenvalues α1, . . . , αn−1 ∈ C of the linear operator

1

ν

(
d[P][v] − id

) : T[v]Pn−1(C) → T[v]Pn−1(C).
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As usual, if f ∈ End1(Cn, O) is of the form (1.2), then the directors of f in a
non-degenerate characteristic direction [v] are the directors of Pν+1 in [v].
Remark 2.6 Definition 2.4 is equivalent to the original definition used by Hakim
(see, e.g., [ArR]). Furthermore, in dimension 2 if [v] = [1 : 0] is a non-degenerate
characteristic direction of P = (P1, P2) we have P1(1, 0) 	= 0, P2(1, 0) = 0 and
the director is given by

1

ν

d

dζ

P2(1, ζ ) − ζ P1(1, ζ )

P1(1, ζ )

∣∣
∣∣
ζ=0

= 1

ν

[
∂ P2
∂z2

(1, 0)

P1(1, 0)
− 1

]

.

Remark 2.7 Recalling Remark 2.2 one sees that a germ f ∈ End1(Cn, O) tangent
to the identity and its inverse f −1 have the same directors at their non-degenerate
characteristic directions.

Remark 2.8 The proof of Theorem 2.2 becomes simpler when no director is of the
form k

ν
with k ∈ N

∗; furthermore, in this case the parabolic curves enjoy additional
properties (in the terminology of [AT1] they are robust; see also [Ro3]).

Definition 2.5 A parabolic manifold for a germ f ∈ End1(Cn, O) tangent to the
identity is an f -invariant complex submanifold M ⊂ C

n \ {O} with O ∈ ∂ M such
that f k(z) → O for all z ∈ M . A parabolic domain is a parabolic manifold of
dimension n. We shall say that M is attached to the characteristic direction [v] ∈
P

n−1(C) if furthermore [ f k(z)] → [v] for all z ∈ M .

Then Hakim has proved (see also [ArR] for the details of the proof) the following
theorem:

Theorem 2.3 ([H3]) Let f ∈ End1(Cn, O) be tangent to the identity of order ν ≥ 1.
Let [v] ∈ P

n−1(C) be a non-degenerate characteristic direction, with direc-
tors α1, . . . , αn−1 ∈ C. Furthermore, assume that Reα1, . . .,Reαd > 0 and
Reαd+1, . . .,Reαn−1 ≤ 0 for a suitable d ≥ 0. Then:

(i) There exist (at least) ν parabolic (d +1)-manifolds M1, . . . , Mν of C
n attached

to [v];
(ii) f |M j is holomorphically conjugated to the translation τ(w0, w1, . . . , wd) =

(w0 + 1, w1, . . . , wd) defined on a suitable right half-space in C
d+1.

Remark 2.9 In particular, if all the directors of [v] have positive real part, there is
at least one parabolic domain. However, the condition given by Theorem 2.3 is not
necessary for the existence of parabolic domains; see [Ri1, Us, AT3] for examples,
and [Ro8] for conditions ensuring the existence of a parabolic domain when some
directors have positive real part and all the others are equal to zero. Moreover, Lapan
[L1] has proved that if n = 2 and f has a unique characteristic direction [v] which
is non degenerate then there exists a parabolic domain attached to [v] even though
the director is necessarily 0.
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Two natural questions now are: how many characteristic directions are there?
Does there always exist a non-degenerate characteristic direction? To answer the first
question, we need to introduce the notion of multiplicity of a characteristic direction.
To do so, notice that [v] = [v1 : · · · : vn] ∈ P

n−1(C) is a characteristic direction
for the homogeneous map P = (P1, . . . , Pn) if and only if vh Pk(v) − vk Ph(v) = 0
for all h, k = 1, . . . , n. In particular, the set of characteristic directions of P is an
algebraic subvariety of P

n−1(C).

Definition 2.6 If the maximal dimension of the irreducible components of the sub-
variety of characteristic directions of a homogeneous map P : C

n → C
n is k, we

shall say that P is k-dicritical; if k = n we shall say that P is dicritical; if k = 0 we
shall say that P is non-dicritical.

Remark 2.10 Ahomogeneousmap P : C
n → C

n of degree d is dicritical if and only
if P(z) = p(z)z for some homogenous polynomial p : C

n → C of degree d − 1. In
particular, the degenerate characteristic directions are the zeroes of the polynomial p.

In the non-dicritical case we can count the number of characteristic directions,
using a suitable multiplicity.

Definition 2.7 Let [v] = [v1 : · · · : vn] ∈ P
n−1(C) be a characteristic direction

of a homogeneous map P = (P1, . . . , Pn) : C
n → C

n . Choose 1 ≤ j0 ≤ n so
that v j0 	= 0. The multiplicity μP ([v]) of [v] is the local intersection multiplicity
at [v] in P

n−1(C) of the polynomials z j0 Pj − z j Pj0 with j 	= j0 if [v] is an isolated
characteristic direction; it is +∞ if [v] is not isolated.
Remark 2.11 The local intersection multiplicity I (p1, . . . , pk; zo) of a set {p1, . . . ,
pk} of holomorphic functions at a point zo ∈ C

n can be defined (see, e.g., [GH]) as

I (p1, . . . , pk; zo) = dimOn,zo/(p1, . . . , pk),

whereOn,zo is the local ring of germs of holomorphic functions at zo, and the dimen-
sion is as vector space. It is easy to check that the definition of multiplicity of a
characteristic direction does not depend on the index j0 chosen. Furthermore, since
the local intersection multiplicity is invariant under change of coordinates, we can
use local charts to compute the local intersection multiplicity on complex manifolds.

Remark 2.12 When n = 2, the multiplicity of [v] = [1 : v2] as characteristic
direction of P = (P1, P2) is the order of vanishing at t = v2 of P2(1, t) − t P1(1, t);
analogously, the multiplicity of [0 : 1] is the order of vanishing at t = 0 of P1(t, 1)−
t P2(t, 1).

Then we have the following result (see, e.g., [AT1]):

Proposition 2.4 Let P : C
n → C

n be a non-dicritical homogeneous map of
degree ν + 1 ≥ 2. Then P has exactly
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1

ν

(
(ν + 1)n − 1

) =
n−1∑

j=0

(
n

j + 1

)
ν j

characteristic directions, counted according to their multiplicity.

In particular, when n = 2 then a homogeneous map of degree ν + 1 either is
dicritical (and all directions are characteristic) or has exactly ν + 2 characteristic
directions. But all of them can be degenerate; an example is the following (but it is
easy to build infinitely many others).

Example 2.2 Let P(z, w) = (z2w + zw2, zw2). Then the characteristic directions
of P are [1 : 0] and [0 : 1], both degenerate. Using Remark 2.12, we see that
μP ([1 : 0]) = 3 and μP ([0 : 1]) = 1.

So we cannot apply Theorem 2.2 to any germ of the form f (z) = z + P(z)+ · · ·
when P is given by Example 2.2. However, as soon as the higher order terms are
chosen so that the origin is an isolated fixed point then f does have parabolic curves:

Theorem 2.5 ([A2]) Let f ∈ End1(C2, O) be tangent to the identity such that O
is an isolated fixed point. Then f admits at least one Fatou flower tangent to some
characteristic direction.

In the next section we shall explain why this theorem holds, we shall give more
general statements, and we shall give an example (Example 3.1) showing the neces-
sity of the hypothesis that the origin is an isolated fixed point.

3 Blow-Ups, Indices and Fatou Flowers

In the previous section we saw that for studying the dynamics of a germ tangent to
the identity it is useful to consider the tangent directions at the fixed point. A useful
way for dealing with tangent directions consists, roughly speaking, in replacing the
fixed point by the projective space of the tangent directions, in such a way that the
new space is still a complex manifolds, where the tangent directions at the original
fixed point are now points. We refer to, e.g., [GH] or [A1] for a precise description
of this construction; here we shall limit ourselves to explain how to work with it.

Definition 3.1 Let M be a complex n-dimensional manifold, and p ∈ M . The
blow-up of M of center p is a complex n-dimensional manifold M̃ equipped with a
surjective holomorphic map π : M̃ → M such that

(i) E = π−1(p) is a compact submanifold of M̃ , the exceptional divisor of the
blow-up, biholomorphic to P(Tp M);

(ii) π |M̃\E : M̃ \ E → M \ {p} is a biholomorphism.

Let us describe the construction for (M, p) = (Cn, O); using local charts one
can repeat the construction for any manifold. As a set, C̃n is the disjoint union of
C

n \ {O} and E = P
n−1(C); we shall define a manifold structure using charts. For
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j = 1, . . . , n let U ′
j = {[v1 : · · · : vn] ∈ P

n−1(C) | v j 	= 0}, U ′′
j = {w ∈ C

n | w j 	=
0} and Ũ j = U ′

j ∪ U ′′
j ⊂ C̃n . Define χ j : Ũ j → C

n by setting

χ j (q) =
⎧
⎨

⎩

(
v1
v j

, . . . ,
v j−1

v j
, 0,

v j+1
v j

, . . . , vn
v j

)
if q = [v1 : · · · : vn] ∈ U ′

j ,(
w1
w j

, . . . ,
w j−1

w j
, w j ,

w j+1
w j

, . . . , wn
w j

)
if q = (w1, . . . , wn) ∈ U ′′

j .

We have

χ−1
j (w) =

{
[w1 : · · · : w j−1 : 1 : w j+1 : · · · : wn] ifw j = 0,

(w j w, . . . , w j w j−1, w j , w j w j+1, . . . , w j wn) ifw j 	= 0,

and it is easy to check that {(Ũ1, χ1), . . . , (Ũn, χn)} is an atlas for C̃n , with χ j ([0 :
· · · : 1 : · · · : 0]) = O and χ j

(
Ũ j ∩ P

n−1(C)
) = {w j = 0} ⊂ C

n . We can then
define the projection π : C̃n → C

n in coordinates by setting

π ◦ χ−1
j (w) = (w1w j , . . . , w j−1w j , w j , w j+1w j , . . . , wnw j );

it is easy to check that π is well-defined, that π−1(O) = P
n−1(C) and that π

induces a biholomorphism between C̃n \P
n−1(C) and C

n \ {O}. Notice furthermore
that C̃n has a canonical structure of line bundle over P

n−1(C) given by the projection
π̃ : C̃n → P

n−1(C) defined by

π̃(q) =
{

[v] if q = [v] ∈ P
n−1(C),

[w1 : · · · : wn] if q = w ∈ C
n \ {O} ;

the fiber over [v] ∈ P
n−1(C) is given by the line Cv ⊂ C

n .
Two more definitions we shall need later on:

Definition 3.2 Let π : M̃ → M be the blow-up of a complexmanifold M at p ∈ M .
Given a subset S ⊂ M , the full (or total) transform of S is π−1(S), whereas the strict
transform of S is the closure in M̃ of π−1(S \ {O}).

Clearly, the full and the strict transform coincide if p /∈ S; if p ∈ S then the full
transform is the union of the strict transformand the exceptional divisor. Furthermore,
if S is a submanifold at p then its strict transform is (S \ {p}) ∪ P(Tp S).

Definition 3.3 Let f ∈ End(M, p) be a germ such that d f p is invertible. Choose
a representative (U, f ) of the germ such that f is injective in U . Then the blow-up
of f is the map f̃ : π−1(U ) → M̃ defined by

f̃ (q) =
{

[d f p(v)] if q = [v] ∈ E = P(Tp M),

f (w) if q = w ∈ U \ {p}.



12 M. Abate

In this way we get a germ about the exceptional divisor of a holomorphic self-map of
the blow-up, given by the differential of f along the exceptional divisor and by f itself
elsewhere, satisfyingπ◦ f̃ = f ◦π . In particular, K f̃ = π−1(K f ) = (

K f \{O})∪E ,

and to study the dynamics of f̃ in a neighborhood of the exceptional divisor is
equivalent to studying the dynamics of f in a neighborhood of p.

If f ∈ End1(Cn, O) is tangent to the identity, its blow-up f̃ in the chart (U1, χ1)
is given by

χ1 ◦ f̃ ◦ χ−1
1 (w) =

{
w ifw1 = 0,(

f1(w1, w1w2, . . . , w1wn),
f2(w1,w1w2,...,w1wn )
f1(w1,w1w2,...,w1wn )

, . . . ,
fn (w1,w1w2,...,w1wn )
f1(w1,w1w2,...,w1wn )

)
ifw1 	= 0;

similar formulas hold in the other charts. In particular, writing w = (w1, w′), and
χ1 ◦ f̃ ◦ χ−1

1 = ( f̃1, . . . , f̃n), if f is tangent to the identity of order ν ≥ 1 and
leading term Pν+1 = (Pν+1,1, . . . , Pν+1,n), we get

{
f̃1(w) = w1 + wν+1

1 Pν+1,1(1, w′) + O(wν+2
1 ),

f̃ j (w) = w j + wν
1

(
Pν+1, j (1.w′) − w j Pν+1,1(1, w′)

) + O(wν+1
1 ) if j 	= 1.

(3.1)
It follows immediately that:

– if ν ≥ 2 then f̃ is tangent to the identity in all points of the exceptional divisor;
– if ν = 1 then f̃ is tangent to the identity in all characteristic directions of f ; in
other points of the exceptional divisor the eigenvalues of the differential of f̃ are
all equal to 1 but the differential is not diagonalizable.

This means that we can always repeat the previous construction blowing-up f̃ at a
characteristic direction of f ; this will be important in the sequel.

As a first application of the blow-up construction, let us use it for describing the
dynamics of dicritical maps. If f ∈ End1(Cn, O) is dicritical, Theorem 2.2 yields a
parabolic curve tangent to all directions outside a hypersurface of P

n−1(C) (notice
that all directors are zero), and the same holds for f −1. One can then summarize the
situation as follows:

Proposition 3.1 ([Br1, Br2]) Let f ∈ End1(Cn, O) be a dicritical germ tangent to
the identity of order ν ≥ 1. Write Pν+1(z) = p(z)z, and let D = {[v] ∈ P

n−1(C) |
p(v) = 0}. Then there are two open sets U+, U− ⊂ C

n \ {O} such that:

(i) U+ ∪ U− is a neighborhood of P
n−1(C) \ D in the blow-up C̃n of O;

(ii) the orbit of any z ∈ U+ converges to the origin tangent to a direction [v] ∈
P

n−1(C) \ D;
(iii) the inverse orbit (that is, the orbit under f −1) of any z ∈ U− converges to the

origin tangent to a direction [v] ∈ P
n−1(C) \ D.
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Coming back to the general situation, when f ∈ End1(Cn, O) is tangent to the
identity its blow-up f̃ fixes pointwise the exceptional divisor; more precisely, the
fixed point set of f̃ is the full transform of the fixed point set of f , and in particular
f̃ has a at least a hypersurface of fixed points. This is a situation important enough
to deserve a special notation.

Definition 3.4 Let E be a connected (possibly singular) hypersurface in a complex
manifold M .We shall denote by End(M, E) the set of germs about E of holomorphic
self-maps of M fixing pointwise E .

If E is a hypersurface in a complex manifold M , we shall denote byOM the sheaf
of holomorphic functions on M , and by IE the subsheaf of functions vanishing
on E . Given f ∈ End(M, E), f 	≡ idM , take p ∈ E . For every h ∈ OM,p, the germ
h ◦ f is well-defined, and h ◦ f − h ∈ IE,p. Following [ABT1] (see also [ABT2,
ABT3]), we can then introduce a couple of important notions.

Definition 3.5 Let E be a connected hypersurface in a complex manifold M . Given
f ∈ End(M, E), p ∈ E and h ∈ OM,p, let ν f (h) = max{μ ∈ N | h◦ f −h ∈ I μ

E,p}.
Then the order of contact ν f of f with the identity along E is

ν f = min{ν f (h) | h ∈ OM,p};

it can be shown ([ABT1]) that ν f does not depend on p ∈ E . Furthermore, we say
that f is tangential if min{ν f (h) | h ∈ IE,p} > ν f for some (and hence any; see
again [ABT1]) p ∈ E .

Let (z1, . . . , zn) be local coordinates in M centered at p ∈ E , and � ∈ IE,p

a reduced equation of E at p (that is, a generator of IE,p). If ( f1, . . . , fn) is the
expression of f in local coordinates, it turns out [ABT1] that we can write

f j (z) = z j + �(z)ν f go
j (z) (3.2)

for j = 1, . . . , n, where there is a j0 such that � does not divide go
j0
; furthermore, f

is tangential if and only if ν f (�) > ν f .

Remark 3.1 If E is smooth at p, we can choose local coordinates so that locally E
is given by {z1 = 0}, that is � = z1. Then we can write

f j (z) = z j + z
ν f
1 go

j (z)

with z1 not dividing some go
j ; and f is tangential if z1 divides go

1 , that is if f1(z) =
z1 + z

ν f +1
1 ho

1(z). More generally, if E has a normal crossing at p with 1 ≤ r ≤ n
smooth branches, then we can choose local coordinates so that � = z1 · · · zr , so that
f j (z) = z j + (z1 · · · zr )

ν f go
j (z) with some go

j0
not divisible by z1 · · · zr ; in this case

f is tangential if and only if z j divides go
j for j = 1, . . . , r . In particular, in the

terminology of [A2] f is tangential if and only if it is nondegenerate and b f = 1.
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Definition 3.6 We say that p ∈ E is a singular point for f ∈ End(M, E) (with
respect to E) if go

1(p) = · · · = go
n(p) in (3.2); it turns out [ABT1] that this defi-

nition is independent of the local coordinates. Furthermore, the pure order (or pure
multiplicity) νo( f, E) of f along E at p is

νo( f, E) = min{ordO(go
1), . . . , ordO(go

n)} .

It is easy to see that the pure order does not depend on the local coordinates; in
particular, p is singular for f with respect to E if and only if νo( f, E) ≥ 1. If E is
the fixed point set of f at p then we shall talk of the pure order νo( f ) of f at p.

Remark 3.2 When f is the blow-up of a germ fo ∈ End1(Cn, O) tangent to the
identity of order ν ≥ 1, then (3.1) implies that:

– f is tangential if and only if fo is not dicritical; in particular, in this case being
tangential is a generic condition;

– ν f = ν if fo is not dicritical, and ν f = ν + 1 if fo is dicritical;
– if fo is non dicritical, then [v] ∈ P

n−1(C) is singular for f if and only if it is a
characteristic direction of fo.

Using the notion of singular points we can generalize Proposition 2.1 as follows:

Proposition 3.2 ([ABT1]) Let E ⊂ M be a hypersurface in a complex manifold M,
and f ∈ End(M, E), f 	≡ idM , tangential to E. Let p ∈ E be a smooth point of E
which is non-singular for f . Then no infinite orbit of f can stay arbitrarily close to
p, that is, there exists a neighborhood U of p such that for all q ∈ U either the orbit
of q lands on E or f n0(q) /∈ U for some n0 ∈ N. In particular, no infinite orbit is
converging to p.

More generally, we have:

Proposition 3.3 ([AT1]) Let f ∈ End(Cn, O) be of the form

f j (z) =
{

z j + z j
(∏r

h=1 zνh
h

)
g j (z) for 1 ≤ j ≤ r,

z j + (∏r
h=1 zνh

h

)
g j (z) for r + 1 ≤ j ≤ n,

(3.3)

for suitable 1 ≤ r < n, with ν1, . . . , νr ≥ 1 and g1, . . . , gn ∈ OCn ,O. Assume that
g j0(O) 	= 0 for some r + 1 ≤ j0 ≤ n. Then no infinite orbit can stay arbitrarily
close to O.

A very easy example of this phenomenon, promised at the end of the previous
section, is the following:

Example 3.1 Let f (z, w) = (z, w + z2). Then f is tangent to the identity at the
origin; the fixed point set is {z = 0}, and thus O is not an isolated fixed point. We
have f k(z, w) = (z, w + kz2); therefore all orbits outside the fixed point set escape
to infinity, and in particular no orbit converges to the origin. Notice that this germ
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has only one characteristic direction, which is degenerate (and tangent to the fixed
point set). Moreover, f is tangential with order of contact 2 to its fixed point set, but
the origin is not singular.

After these generalities, in the rest of this section we specialize to the case n = 2
and to tangential maps (because of Remark 3.2; see anyway [ABT1] for information
on the dynamics of non-tangential maps). Take f ∈ End(M, E), where M is a
complex surface and E ⊂ M is a 1-dimensional curve smooth at p ∈ E , and assume
that f is tangential to E with order of contact ν f ≥ 1. Then we can choose local
coordinates centered at p so that we can write

{
f1(z) = z1 + z

ν f +1
1 ho

1(z),

f2(z) = z2 + z
ν f
1 go

2(z),
(3.4)

where z1 does not divide go
2; notice that ho

1(0, ·) = ∂go
1

∂z1
(0, ·), where go

1 = z1ho
1. In

particular, O is singular if and only if go
2(O) = 0. We then introduce the following

definitions:

Definition 3.7 Let f ∈ End(M, E) be written in the form (3.4). Then:

– themultiplicityμp of f along E at p isμp = ord0
(
go
2(0, ·)

)
, so that p is a singular

point if and only if μp ≥ 1;
– the transversal multiplicity τp of f along E at p is τp = ord0

(
ho
1(0, ·)

)
;

– p is an apparent singularity if 1 ≤ μp ≤ τp;
– p is a Fuchsian singularity if μp = τp + 1;
– p is an irregular singularity if μp > τp + 1;
– p is a non-degenerate singularity if μp ≥ 1 but τp = 0;
– p is a degenerate singularity if μp, τp ≥ 1;
– the index ιp( f, E) of f at p along E is

ιp( f, E) = ν f Res0
ho
1(0, ·)

go
2(0, ·)

;

– the induced residue Res0p( f ) of f along E at p is

Res0p( f ) = −ιp( f, E) − μp .

It is possible to prove (see [A2, ABT1, AT3]; notice that our index is ν f times the
residual index introduced in [A2]) that these definitions are independent of the local
coordinates.

Remark 3.3 Recalling (3.1), we see that if f is obtained as the blow-up of a non-
dicritical map fo, and E is the exceptional divisor of the blow-up, then:

– the multiplicity of [v] as characteristic direction of fo is equal to the multiplicity
of f along E at [v];
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– [v] is a degenerate/non-degenerate characteristic direction of fo if and only if it is
a degenerate/non-degenerate singularity of f .

Furthermore, if we write Pν+1,1(1, w) = ∑ν+1
k=0 akwk and Pν+1,2(1, w)

= ∑ν+1
k=0 bkwk then [1 : 0] is a characteristic direction if and only if b0 = 0,

non-degenerate if and only if moreover a0 	= 0, and (setting bν+2 = 0)

ho
1(0, ζ )

go
2(0, ζ )

= 1

ζ

a0 + ∑ν+1
k=1 akζ

k

(b1 − a0) + ∑ν+1
k=1(bk+1 − ak)ζ k

.

So if b1 	= a0 we have

μO = 1, ι[1:0]( f, E) = νa0
b1 − a0

, Res0[1:0]( f ) = (ν − 1)a0 + b1
a0 − b1

;

moreover, if a0 	= 0 then [1 : 0] is a non-degenerate characteristic direction with
director α = (b1 − a0)/νa0. More generally, we have τ[1:0] = ord0

(
Pν+1,1(1, w)

)
,

μ[1:0] = ord0
(
Pν+1,2(1, w) − wPν+1,1(1, w)

)
and

ι[1:0] = νaμ−1

bμ − aμ−1
, Res0[1:0] = (ν − μ)aμ−1 + μbμ

aμ−1 − bμ

,

where μ = μ[1:0]. In particular we obtain:

– if [v] is non-degenerate characteristic direction of fo with director α 	= 0 then

ι[v]( f, E) = 1

α
;

– [v] is a non-degenerate characteristic direction with non-zero director for fo if and
only if it is a Fuchsian singularity of multiplicity 1 for f .

Residues and indices are important for two reasons. First of all, we have the
following index theorem:

Theorem 3.4 ([A2, ABT1]) Let E ⊂ M be a smooth compact Riemann surface in
a complex surface M. Let f ∈ End(M, E), f 	≡ idM , be tangential with order of
contact ν; denote by Sing( f ) ⊂ E the finite set of singular points of f in E. Then

∑

p∈Sing( f )

ιp( f ) = νc1(NE ),
∑

p∈Sing( f )

Res0p( f ) = −χ(E),

where c1(NE ) is the first Chern class of the normal bundle NE of E in M, and χ(E) is
the Euler characteristic of E. In particular, when f is the blow-up of a nondicritical
germ tangent to the identity and E = P

1(C) is the exceptional divisor we have
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∑

p∈Sing( f )

ιp( f ) = −ν,
∑

p∈Sing( f )

Res0p( f ) = −2 .

Remark 3.4 Bracci and Tovena [BT] have defined a notion of index at non-smooth
points of E allowing the generalization of Theorem 3.4 to non necessarily smooth
compact Riemann surfaces, where in the statement c1(NE ) is replaced by the self-
intersection E · E .

The second reason is that the index can be used to detect the presence of parabolic
curves. To state this precisely, we need a definition.

Definition 3.8 Let f ∈ End1(C2, O) be tangent to the identity. We say that O is a
corner if the germ of the fixed point set at the origin is locally reducible, that is has
more than one irreducible component.

Then

Theorem 3.5 ([A2]) Let E ⊂ M be a smooth Riemann surface in a complex sur-
face M, and take f ∈ End(M, E) tangential. Let p ∈ E be a singular point, not a
corner, such that ιp( f ) /∈ Q

+ ∪ {0}. Then there exists a Fatou flower with ν f petals
for f at p.

Corollary 3.6 ([A2]) Let f ∈ End1(C2, O) be tangent to the identity, and assume
that O is a nondicritical singular point. Let [v] ∈ P

1(C) be a characteristic direction,
and f̃ the blow-up of f . If [v] is not a corner for f̃ and ι[v]( f̃ ) /∈ Q

+ ∪ {0} then
there exists a Fatou flower for f tangent to [v].

Theorem 2.5 is then a consequence of Theorem 3.4 andCorollary 3.6. Indeed, take
f ∈ End1(C2, O) tangent to the identity with an isolated fixed point at the origin. If
O is dicritical, we can directly apply Theorem2.2. Assume then O non-dicritical, and
let f̃ ∈ End(C̃2, E) be the blow-up of f . Since O is non-dicritical, f̃ is tangential;
Theorem 3.4 then implies that at least one characteristic direction [v] has negative
index. Since O is an isolated fixed point, the fixed point set of f̃ coincides with the
exceptional divisor; therefore [v] is not a corner, and Corollary 3.6 yields the Fatou
flower we were looking for.

Remark 3.5 Bracci and Degli Innocenti (see [B, D]), using the definition of index
introduced in [BT], have shown that Theorem 3.5 still holds when E is not smooth
at p. Bracci and Suwa [BS] have also obtained a version of Theorem 3.5 when M
has a (sufficiently tame) singularity at p.

Example 3.2 Let f (z, w) = (z + z2w+ zw2 +w4, w+ zw2 + z4). Then f is tangent
to the identity at the origin of order 2, and the origin is an isolated fixed point. Further-
more, f is non-dicritical and it has (see Example 2.2) two characteristic directions,
[v1] = [1 : 0] and [v2] = [0; 1], both degenerate. Working as in Remark 3.4 it is easy
to see that [v1] is an irregular singularity of multiplicity 3 with index−2 and induced
residue−1, and that [v2] is an apparent singularity of multiplicity 1, vanishing index,
and induced residue −1. In particular, f admits a Fatou flower with 2 petals tangent
to [v1].
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Example 3.3 Let f (z, w) = (z + w2, w + z3). Then f is tangent to the identity at
the origin of order 1, and the origin is an isolated fixed point. Furthermore, f is non-
dicritical with only one characteristic direction [v] = [1 : 0], which is degenerate of
multiplicity 3, Fuchsian, with index−1 and induced residue−2. Therefore f admits
a Fatou flower with one petal tangent to [v]; compare with Example 3.4.

There are still instances where Theorem 3.5 cannot be applied:

Example 3.4 Let f (z, w) = (z + zw + w3, w + 2w2 + bz3) with b 	= 0. This map is
tangent to the identity,with order 1, and the origin is an isolated fixed point.Moreover,
it has two characteristic directions: [1 : 0], degenerate Fuchsian with multiplicity 2,
index 1 and induced residue −3; and [0 : 1], non-degenerate Fuchsian with multi-
plicity 1, index −2 and induced residue 1. Theorem 2.2 (as well as Corollary 3.6)
yields a Fatou flower tangent to [0 : 1]; on the other hand, none of the results proven
up to now say anything about direction [1 : 0].

However, a deep result by Molino gives the existence of a Fatou flower in the
latter case too:

Theorem 3.7 ([Mo]) Let E ⊂ M be a smooth Riemann surface in a complex sur-
face M, and take f ∈ End(M, E) tangential with order of contact ν. Let p ∈ E be
a singular point, not a corner, such that νo( f ) = 1 and ιp( f ) 	= 0. Then there exists
a Fatou flower for f at p. More precisely:

(i) if p is an irregular singularity, or a Fuchsian singularity with ιp( f ) 	= νμp,
then there exists a Fatou flower for f with ν + τp(ν + 1) petals;

(ii) if p is a Fuchsian singularity with ιp( f ) = νμp then there exists a Fatou flower
for f with ν petals.

Remark 3.6 Evenmore precisely,when p is Fuchsianwithμp ≥ 2 and ιp( f ) = νμp

then Molino constructs parabolic curves defined on the connected components of a
set of the form

Dν+1− 1
μp

,δ = {
ζ ∈ C

∣
∣ |ζ r+1−1/μp (log ζ )1−1/μp − δ| < δ

}
,

which has at least ν connected components with the origin in the boundary.

Corollary 3.8 ([Mo])Let f ∈End1(C2, O) be tangent to the identity of order ν ≥ 1,
and assume that O is a nondicritical singular point. Let [v] ∈ P

1(C) be a charac-
teristic direction, and f̃ the blow-up of f . If [v] is not a corner for f̃ , νo( f̃ ) = 1
and ι[v]( f̃ ) 	= 0 then there exists a Fatou flower for f with at least ν petals tangent
to [v].

The assumption on the pure order in these statements seems to be purely technical;
so it is natural to advance the following

Conjecture 3.9 Let E ⊂ M be a smooth Riemann surface in a complex surface M ,
and take f ∈ End(M, E) tangential of order of contact ν. Let p ∈ E be a singular
point, not a corner, such that ιp( f ) 	= 0. Then there exists a Fatou flower for f at p.
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See Sect. 5, and in particular (5.3), for examples of systems having Fatou flowers
at singular points with vanishing index.

Instrumental in the proofs of Theorems 3.5 and 3.7 is a reduction of singularities
statement. We shall need a few definitions:

Definition 3.9 Let f ∈ End1(Cn, O) be tangent to the identity. A modification of
f is a f̃ ∈ End(M, E) obtained as the lifting of f to a finite sequence of blow-
ups, where the first one is centered in O and the remaining ones are centered in
singular points of the intermediate lifted maps contained in the exceptional divisor.
A modification is non-dicritical if none of the centers of the blow-ups is dicritical.
Associated to a modification f̃ ∈ End(M, E) of f we have a holomorphic map
π : M → C

n such that π−1(O) = E , π |M\E is a biholomorphism between M \ E
and C

n \ {O}, and f ◦ π = π ◦ f̃ . The exceptional divisor E is the union of a finite
number of copies of P

n−1(C), crossing transversally.

Definition 3.10 Let f ∈ End1(M, p) be tangent to the identity, where M is a com-
plex surface. In local coordinates centered at p, we can write f (z) = z + �(z)go(z),
where � = gcd( f1 − z1, f2 − z2) is defined up to units. We shall say that p is an
irreducible singularity if:

(a) ordp(�) ≥ 1 and νo( f ) = 1; and
(b) if λ1, λ2 are the eigenvalues of the linear part of go then either

(�1) λ1, λ2 	= 0 and λ1/λ2, λ2/λ1 /∈ N, or
(�2) λ1 	= 0, λ2 = 0.

It turns out that there always exists amodificationwith only dicritical or irreducible
singularities:

Theorem 3.10 ([A2]) Let f ∈ End1(C2, O) be tangent to the identity, and assume
that O is a singular point. Then there exists a non-dicritical modification f̃ ∈
End(M, E) of f such that the singular points of f̃ on E are either irreducible
or dicritical.

Definition 3.11 Let f ∈ End1(C2, O) be tangent to the identity. The modification
of f satisfying the conclusion of Theorem 3.10 obtained with the minimum number
of blow-ups is the minimal resolution of f .

It is easy to see that the techniques of the proof of Theorem 2.2 yield the existence
of a Fatou flower at dicritical singularities, and at irreducible singularities of type
(�1) which are not a corner; then the proof of Theorem 3.5 amounts to showing
that if the index is not a non-negative rational number then the minimal resolution
contains at least a singularity which is either dicritical or of type (�1) and not a corner.
The proof of Theorem 3.7(i) consists in showing that, under those hypotheses, the
minimal resolution must contain a non-degenerate singularity, which is not a corner
and where one can apply Theorem 2.2; the proof of Theorem 3.7(ii) requires instead
a technically hard extension of Theorem 2.2.
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See also [Ro4, Ro7] and [LS] for other approaches to resolution of singularities
for germs tangent to the identity in arbitrary dimension, and [AT2, AR] for the
somewhat related problem of the identification of formal normal forms for germs
tangent to the identity.

4 Parabolic Domains

Theorem 2.3 yields conditions ensuring the existence of parabolic domains attached
to a non-degenerate characteristic direction. In dimension 2, Vivas has found condi-
tions ensuring the existence of a parabolic domain attached to Fuchsian and irregular
degenerate characteristic directions, and Rong has found conditions ensuring the
existence of a parabolic domain attached to apparent degenerate characteristic direc-
tions. Very recently, Lapan [L2] has extended Rong’s approach to cover more types
of degenerate characteristic directions.

More precisely, Vivas has proved the following result:

Theorem 4.1 ([V1]) Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1,
with O nondicritical. Let [v] ∈ P

1(C) be a degenerate characteristic direction, and
f̃ the blow-up of f . Denote by μ ≥ 1 the multiplicity , by τ ≥ 0 the transversal
multiplicity, by ι ∈ C the index, and by νo ≥ 1 the pure order of f̃ at [v]. Assume
that either

(a) [v] is Fuchsian (thus necessarily τ ≥ 1 because [v] is degenerate) and

Re ι + τ > 0 ,

∣
∣∣ι + τ

2
− νμ

2

∣
∣∣ >

τ

2
+ νμ

2
;

or
(b) [v] is Fuchsian, νo = 1 and

∣∣∣ι − μν

2

∣∣∣ <
μν

2
;

or
(c) [v] is Fuchsian, νo > 1 and

Re ι + τ > 0,

∣
∣∣∣ι − (ν + 1)τ

2

∣
∣∣∣ >

(ν + 1)τ

2
;

or
(d) [v] is irregular.

Then there is a parabolic domain attached to [v].
See also Remark 6.4 for a comment about the conditions on ι and τ .



Fatou Flowers and Parabolic Curves 21

To state Rong’s theorem, consider a germ f ∈ End1(C2, O) tangent to the identity
of order ν ≥ 1, and assume that [1 : 0] is a characteristic direction of f . Then we
can write

{
f1(z, w) = z + azr+1 + O(zr+2) + wα(z, w),

f2(z, w) = w + bzνw + dzs+1 + O(zs+2) + O(wzν+1) + w2β(z, w),
(4.1)

with ν ≤ r ≤ +∞, ν + 1 ≤ s ≤ +∞, ordO(α) ≥ ν, ordO(β) ≥ ν − 1, and a 	= 0
if r < +∞ (respectively, d 	= 0 if s < +∞). The characteristic direction [1 : 0] is
non-degenerate if and only if r = ν; in this case the director is given by 1

ν

( b
a − 1

)
.

On the other hand, saying that [1 : 0] is degenerate with b 	= 0 is equivalent to saying
that r > ν and that [1 : 0] has multiplicity 1 and transversal multiplicity at least 1;
in particular, in this case it is an apparent singularity. Then Rong’s theorem can be
stated as follows:

Theorem 4.2 ([Ro9]) Let f ∈End1(C2, O) be tangent to the identity of order ν ≥ 1
and written in the form (4.1), so that [1 : 0] is a characteristic direction. Assume that
r > ν and b 	= 0, so that [1 : 0] is an apparent degenerate characteristic direction.
Suppose furthermore that s > r , and that b2/a /∈ R

+ if r = 2ν. Then there is a
parabolic domain attached to [1 : 0].

To state Lapan’s result we need to introduce a few definitions.

Definition 4.1 Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1 with
homogeneous expansion (1.1). We say that [v] ∈ P

1(C) is a characteristic direction
of degree s ≥ ν + 1 if it is a characteristic direction of Pν+1, . . . , Ps . We shall say
that it is non-degenerate in degree r + 1, with ν < r < s, if it is degenerate for
Pν+1, . . . , Pr and non-degenerate for Pr+1.

For instance, if f is in the form (4.1) with s < +∞, then [1 : 0] is a characteristic
direction of degree s. If furthermore r+1 ≤ s then it is non-degenerate in degree r+1.

Definition 4.2 Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1
with homogeneous expansion (1.1). Assume that [1 : 0] ∈ P

1(C) is a characteristic
direction of degree s ≥ ν + 1. Given ν + 1 ≤ j ≤ s, the j-order of [1 : 0] is the
order of vanishing at 0 of Pj,2(1, ·), where Pj = (Pj,1, Pj,2). We say that [1; 0] is
of order one in degree t + 1, with ν ≤ t < s, if the j-order of [1 : 0] is larger than
one for ν + 1 ≤ j ≤ t and of (t + 1)-order exactly equal to 1.

For instance, if b 	= 0 in (4.1) then [1 : 0] is of order one in degree ν + 1. More
generally, if b = 0 and [1 : 0] is of order one in degree t + 1 then we can replace the
term O(wzν+1) by O(wzt+1).

Assume that [1 : 0] is a characteristic directionof degree s < +∞, non-degenerate
in degree r + 1 ≤ s and of order one in degree t + 1 ≤ s. Then we can write

{
f1(z, w) = z + azr+1 + O(zr+2) + wα(z, w),

f2(z, w) = w + bzt+1w + dzs+1 + O(zs+2) + O(wzt+2) + w2β(z, w),

(4.2)
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with abd 	= 0. Then Lapan’s theorem can be stated as follows:

Theorem 4.3 ([L2]) Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1
and written in the form (5.1), so that [1 : 0] is a characteristic direction of degree
s < +∞, non-degenerate in degree ν + 1 ≤ r + 1 ≤ s, and of order one in
degree t + 1 ≤ s. Assume that t ≤ r and s > r + t − ν. Suppose furthermore that
either

(i) r 	= t , 2t , or
(ii) r = t and Re(b/a) > 0, or

(iii) r = 2t and b2/a /∈ R
+.

Then there is a parabolic domain attached to [1 : 0].
The assumptions of Theorem 4.2 imply that [1 : 0] is a characteristic direction

of degree s, non-degenerate in degree ν + 1 < r + 1 ≤ s, and of order one in
degree t + 1 = ν + 1; therefore Theorem 4.2 is a particular case of Theorem 4.3.

Parabolic domains are often used to build Fatou-Bieberbach domains, that is
proper subsets ofC

n biholomorphic toC
n ; see, e.g., [V2, SV] and references therein.

5 The Formal Infinitesimal Generator

A different approach to the study of parabolic curves in C
2 has been suggested

by Brochero-Martínez, Cano and López-Hernanz [BCL], and further developed by
Câmara and Scárdua [CaS] and by Lopez-Hernanz and Sánchez [LS]. It consists in
using the formal infinitesimal generator of a germ tangent to the identity. To describe
their approach, we need to introduce several definitions.

Definition 5.1 We shall denote by Ôn = C[[z1, . . . , zn]] the space of formal power
series in n variables. The order ord(�̂) of �̂ ∈ Ôn is the lowest degree of a non-
vanishing term in the Taylor expansion of �̂. A formal map is a n-tuple of formal
power series in n variables; the space of formal maps will be denoted by Ôn

n
. We

shall denote by Ênd(Cn, O) the set of formal maps with vanishing constant term; by
Ênd1(Cn, O) the subset of formal maps tangent to the identity, and by Êndν(C

n, O)

the subset of formal maps tangent to the identity of order at least ν ≥ 1.

Definition 5.2 We shall denote by Xn the space of germs at the origin of holo-
morphic vector fields in C

n . A formal vector field is an expression of the form X̂ =
X̂1

∂
∂z1

+· · ·+ X̂n
∂

∂zn
where X̂1, . . . , X̂n ∈ Ôn are the components of X̂ . The space of

formal vector fields will be denoted by X̂n . The order ord(X̂) of X̂ ∈ X̂n is the min-
imum among the orders of its components. We put X̂ k

n = {X̂ ∈ X̂n | ord(X̂) ≥ k}.
If X̂ ∈ X̂ k

n , the principal part of X̂ will be the unique polynomial homogeneous
vector field Hk of degree exactly k such that X̂ − Hk ∈ X̂ k+1

n . A characteristic
direction for X̂ is an invariant line for Hk .
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Remark 5.1 There is a clear bijection between X̂n and Ôn
n
obtained by associating

to a formal vector field the n-tuple of its components; so we shall sometimes identify
formal vector fields and formal maps without comments. In particular, this bijection
preserves characteristic directions.

If X ∈ Xn is a germ of holomorphic vector field vanishing at the origin (that
is, of order at least 1), the associated time-1 map fX will be a well defined germ
in End(Cn, O), that can be recovered as follows (see, e.g., [BCL]):

fX =
∑

k≥0

1

k! X (k)(id) , (5.1)

where X (k) is the k-th iteration of X thought of as derivation of End(Cn, O). Now,
not every germ in End(Cn, O) can be obtained as a time-1map of a convergent vector
field (see, e.g., [IY, Theorem 21.31]). However, it turns out that the right-hand side
of (5.1) is well-defined as a formal map for all X ∈ X̂ 1

n .

Definition 5.3 The exponential map exp : X̂ 1
n → Ênd(Cn, O) is defined by the

right-hand side of (5.1).

When k ≥ 2, if X̂ ∈ X̂ k
n has principal part Hk then it is easy to check that

exp(X̂) = id+Hk + h.o.t. ; (5.2)

in particular, the exponential of a formal vector field of order k is a formal map
tangent to the identity of order k − 1. Takens (see, e.g., [IY, Theorem 3.17]) has
shown that on the formal level the exponential map is bijective:

Proposition 5.1 The exponential map exp : X̂ ν+1
n → Êndν(C

n, O) is bijective for
all ν ≥ 1.

Definition 5.4 If f̂ ∈ Êndν(C
n, O), the unique formal vector field X̂ ∈ X̂ ν+1

n such
that exp(X̂) = f̂ is the formal infinitesimal generator of f̂ .

The idea now is to read properties of a holomorphic germ tangent to the identity
from properties of its formal infinitesimal generator, using Theorem 2.2 as bridge
for going back from the formal side to the holomorphic side.

The first observation is that if π : (C̃2, E) → (C2, O) is the blow-up of the origin,
X̂ ∈ X̂ 2

2 is a formal vector field and [v] ∈ E is a characteristic direction of (the
principal part of) X̂ then we can find a formal vector field X̂[v] ∈ X̂ 2

2 such that
dπ(X̂[v]) = X̂ ◦ π . This lifting is compatible with the exponential in the following
sense:

Proposition 5.2 ([BCL])Let f ∈End1(C2, O) be tangent to the identity with formal
infinitesimal generator X̂ ∈ X̂ 2

2 , and let f̃ ∈ End(C̃2, E) be the blow-up of f . Let
[v] ∈ E be a characteristic direction of f , and denote by f̃[v] the germ of f̃ at [v].
Then f̃[v] = exp(X̂[v]).
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In particular, Brochero-Martínez, Cano and López-Hernanz’s proofs of Theo-
rems 2.5 and 3.5 go as follows: let X̂ ∈ X 2

2 be the formal infinitesimal generator of
f ∈ End1(C2, O) with an isolated fixed point (so that X̂ has an isolated singular
point at the origin). Then the formal version of Camacho-Sad’s theorem [CS] (see
also [Ca]) shows that we can find a finite composition π : (M, E) → (C2, O) of
blow-ups at singular points and a smooth point p ∈ E such that the lifting X̂ p of X̂ ,
in suitable coordinates centered at p adapted to E (in the sense that E is given by
the equation {z = 0} near p), has the expression

X̂ p(z, w) = zm
((

λ1z + O(z2)
) ∂

∂z
+ (

λ2w + O(z)
) ∂

∂w

)

with λ1 	= 0, λ2/λ1 /∈ Q
+ and m ≥ ord(X̂) − 1. Then exp(X̂ p) has the form

exp(X̂ p)(z, w) = (
z + λ1zm+1 + O(zm+2), w + λ2zmw + O(zm+1)

)
,

which has a non-degenerate characteristic direction transversal to E — and hence
a Fatou flower outside the exceptional divisor. By Proposition 5.2, exp(X̂ p) is the
blow-up of exp(X̂) = f ; therefore projecting this Fatou flower down by π we get a
Fatou flower for f .

In [CaS] and [LS] this approach has been pushed further showing how to relate
formal separatrices and parabolic curves.

Definition 5.5 A formal curve Ĉ in (C2, 0) is a reduced principal ideal of Ô2. Any
generator of the ideal is an equation of the curve; the equation is defined up to an unit
in Ô2. The tangent cone of a formal curve Ĉ is the set of zeros of the homogeneous
part of least degree of any equation of Ĉ ; the tangent directions to Ĉ are the points
in P

1(C) determined by the tangent cone.

Remark 5.2 It is known that a formal curve Ĉ is irreducible if and only if it has a
unique tangent direction.

Definition 5.6 Let X̂ ∈ X̂ 2
2 .A singular formal curve for X̂ is a formal curve Ĉ = (�̂)

such that X̂ = �̂X̂1 for some X̂ ∈ X̂ 1
2 . A formal separatrix of X̂ is a formal curve

Ĉ = (�̂) such that X̂(�̂) ∈ (�̂). Clearly singular formal curves are formal separatrices.

The corresponding notions for germs tangent to the identity are:

Definition 5.7 Let f ∈ End1(C2, O). A formal curve Ĉ = (�̂) is a formal separatrix
for f if �̂ ◦ f ∈ (�̂). In particular, this means that f acts by composition on Ô2/(�̂);
if the action is the identity, we say that Ĉ is completely fixed by f . Notice that Ĉ is
completely fixed by f if and only if we can write f = id+�̂ĝ for some ĝ ∈ Ô2

2 .

Proposition 5.3 ([CaS]) Let X̂ ∈ X̂ 2
2 be the formal infinitesimal generator of f ∈

End1(C2, O). Then:
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(i) a formal curve is a formal separatrix for f if and only if it is a formal separatrix
for X̂;

(ii) a formal curve is completely fixed for f if and only if it is a singular formal
curve for X̂;

(iii) a completely fixed curve for f always has a convergent equation;
(iv) the tangent directions to a formal separatrix are characteristic directions for f ,

and the tangent directions to a completely fixed curve are degenerate charac-
teristic directions for f .

Let Ĉ = (�̂) be a formal curve, and [v] ∈ P
1(C) a tangent direction to Ĉ . If

π : (C̃2, E) → (C2, O) is the blow-up of the origin, we can find a formal curve
π∗Ĉ[v] = (�̂[v]) at [v] such that �̂[v] = �̂ ◦ π ; the tangent directions to π∗Ĉ[v] are
higher order tangent directions of Ĉ . This construction can be iterated, and it gives
a way of lifting formal curves along a finite sequence of blow-ups. Using this idea,
and a generalization of Hakim’s technique, López-Hernanz and Sánchez have been
able to prove the following

Theorem 5.4 (López-Hernanz and Sánchez, [LS]) Let f ∈ End1(C2, O) be a germ
tangent to the identity admitting a formal separatrix Ĉ not completely fixed. Then f
or f −1 (or both) admit a parabolic curve tangent to (a tangent direction of) Ĉ.

Remark 5.3 Actually, [LS, Theorem 1] gives the more precise statement that the
parabolic curve φ : D → C

2 is asymptotic to the formal separatrix Ĉ . This means

that there exists a formal parametrization γ̂ ∈ Ô1
2
of Ĉ such that for every N ∈ N

there exists cN > 0 such that

|φ(ζ ) − (JN γ̂ )(ζ )| ≤ cN |ζ |N+1

for all ζ ∈ D, where JN γ̂ is the N -th jet of γ̂ . A formal parametrization of Ĉ is a

formal map γ̂ ∈ Ô1
2
such that g ∈ Ĉ if and only if g ◦ γ̂ ≡ 0.

Remark 5.4 In [CaS] Câmara and Scárdua claimed that under the hypotheses of
Theorem 5.4 f must admit a parabolic curve tangent to Ĉ . Unfortunately, the core of
their argument was [CaS, Proposition 2.12], and in its proof they forgot to consider
vector fields of the form X̂o(z, w) = z(1+λwp) ∂

∂z +wp+1 ∂
∂w , where their approach

does not work.

The proof of Theorem 5.4 has three steps. First of all, the authors show that,
assuming the existence of a formal separatrix not completely fixed, after a finite
number of blow-ups the germ f can be brought in the following normal form:

{
f1(z, w) = z + zν+p+1

(
λ + ψ(z, w)

)
,

f2(z, w) = w + zν
(
b(z) + a(z)w + O(w2)

)
,

(5.3)

with p ≥ 0, λ 	= 0, ordO ψ ≥ 1, a(0) 	= 0 and b(0) = 0. For a germ in this form,
a real attracting direction is a τ ∈ S1 such that τ ν+pλ = −1. Then, generalizing
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Hakim’s proof of Theorem 2.2, the authors show that if f has a real attracting

direction τ such that Re
(

a(0)
λτ p

)
< 0 then f admits a parabolic curve, that turns out

to be asymptotic to Ĉ . Finally, they show that at least one between f and f −1 have
a real attracting direction satisfying the given condition.

Notice that a germ in the form (5.3) has pure order 1, but vanishing index if
p ≥ 1; so we cannot apply Theorem 3.7. On the other hand, there are germs tangent
to the identity admitting parabolic curves thanks to Theorem 3.7 but without formal
separatrices not completely fixed:

Example 5.1 Let f = exp(zν Xo), with ν ≥ 2 and

X̂o(z, w) = z
(
λ + A(z, w)

) ∂

∂z
+ (

z + λw + B(z, w)
) ∂

∂w
,

with λ 	= 0, ordO(A) ≥ 1 and ordO(B) ≥ 2. Then

f (z, w) =
(

z + zν+1(λ + A(z, w)
) + O(z2ν+1), w + zν

(
z + λw + B(z, w)

) + O(z2ν)
)

.

The germ f has pure order 1 and the linear part of go is not diagonalizable; since
the index of f at O along the fixed point set is 1, Theorem 3.7 yields a Fatou flower.
Furthermore, f has a unique (degenerate) characteristic direction, [0 : 1]. Blowing
up and looking in the coordinates centered at [0 : 1] we get

f̃ (u, w) =
(

u + uν+1wν
(−u + wÂ(u, w)

)
, w + uνwν+1(λ + u + wB̂(u, w)

))

= exp(uνwν X̃o) ,

where X̃o = uĈ(u, w) ∂
∂u + w

(
λ + D̂(u, w)

)
∂

∂w with ordO(Ĉ), ordO(D̂) ≥ 1. Since

the linear part of X̃o is diagonalizable, Xo has exactly two formal separatrices, nec-
essarily given by the axes. It follows that all formal separatrices of f̃ are completely
fixed; so to f̃ we cannot apply Theorem 5.4, but f̃ still has a Fatou flower because
f does.

The paper [LS] also indicates a way to adapt these techniques to more than two
variables. However, it should be kept in mind that [AT1] contains examples in C

3 of
germs tangent to the identity without parabolic curves asymptotic to formal separa-
trices.

6 Homogeneous Vector Fields and Geodesics

None of the results presented up to now (with the partial exception of Proposition 3.1)
describe the dynamics in a full neighborhood of the fixed point, and so in this sense
they are not a complete generalization of the Leau-Fatou flower theorem. As far as
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we know, up to now the only techniques able to give results in a full neighborhood
are the ones introduced in [AT3], that we shall briefly describe now.

We have seen that every germ tangent to the identity can be realized as the time-
1 map of a formal vector field of order at least 2; and that a lot of information
can be deduced from the principal part of this vector field, principal part which is
a homogeneous vector field. Furthermore, in dimension 1 Camacho-Shcherbakov
theorem (see [C, Sh]) says that every germ tangent to the identity is locally topo-
logically conjugated to the time-1 map of a homogeneous vector field. So time-1
maps of homogeneous vector fields clearly are an important class of examples; and
the insights we obtain from their study (and, more generally, from the study of the
real dynamics of homogeneous vector fields) can shed light on the dynamics of more
general germs tangent to the identity.

The work described in [AT3] had exactly the aim of studying the real dynamics
of homogenous vector fields in C

n ; for the sake of clarity, here we shall summarize
only the results in C

2 only, referring to [AT3] for more general statements.
Let H ∈ X ν+1

2 be a homogeneous vector field in C
2 of degree ν + 1 ≥ 2. It

clearly determines a homogeneous self-map of C
2 of the same degree; in particular,

we can adapt to H all the definitions we introduced for homogeneous self-maps
(degenerate/non-degenerate characteristic directions, multiplicities, index, induced
residue, being dicritical).

Definition 6.1 Let H ∈ X2 be a homogeneous vector field in C
2. A characteristic

line for H is a line Lv = Cv which is H -invariant, that is such that [v] ∈ P
1(C) is a

characteristic direction.

If Lv = Cv is a characteristic line then integral lines of H issuing from points
in Lv stay inside Lv. If [v] is degenerate, H vanishes identically along Lv, and so
the dynamics there is trivial. If [v] is non-degenerate, then the dynamics inside Lv is
one-dimensional, and can be summarized as follows:

Lemma 6.1 Let [v] ∈ P
1(C) be a non-degenerate characteristic direction of a

homogeneous vector field H = H1
∂

∂z1
+ H2

∂
∂z2

∈ X ν+1
2 of degree ν + 1 ≥ 2.

Choose a representative v ∈ C
2 so that H(v) = v. Then the real integral curve of H

issuing from ζ0v ∈ Lv is given by

γζ0v(t) = ζ0v

(1 − ζ ν
0 νt)1/ν

.

In particular no (non-constant) integral curve is recurrent, and we have:

(a) if ζ ν
0 /∈ R

+ then lim
t→+∞ γζ0v(t) = O;

(b) if ζ ν
0 ∈ R

+ then lim
t→(ζ ν

0 ν)−1
‖γζ0v(t)‖ = +∞.

Lemma 6.1 completely describes the dynamics of dicritical homogeneous vector
fields. More precisely, we see that every non-degenerate characteristic line contains
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a Fatou flower; thus in this case Theorem 2.2 becomes trivial, and we can shift our
interest to the understanding of the dynamics outside the characteristic lines. To do
so we need to introduce a new ingredient:

Definition 6.2 Let ∇o be a meromorphic connection on P
1(C) (see [IY] for an

introduction to meromorphic connections), and denote by Sing(∇o) the set of its
poles. A geodesic for ∇o is a smooth real curve σ : I → P

1(C) \Sing(∇o) such that

∇o
σ̇ σ̇ ≡ O.

The main result allowing the understanding of the real dynamics of homogeneous
vector fields is the following:

Theorem 6.2 ([AT3]) Let H ∈ X ν+1
2 be a non-dicritical homogeneous vector

field of degree ν + 1 ≥ 2 in C
2, and denote by VH the complement in C

2 of the
characteristic lines of H. Then there exists a meromorphic connection ∇o on P

1(C),
whose poles are a (possibly proper) subset of the characteristic directions of H,
such that:

(i) if γ : I → VH is a real integral curve of H then its direction [γ ] : I → P
1(C)

is a geodesic for ∇o; conversely,
(ii) if σ : I → P

1(C) is a geodesic for ∇o then there exists exactly ν real integral
curves γ1, . . . , γν : I → VH of H, differing only by the multiplication by a ν-th
root of unity, whose direction is given by σ , that is such that σ = [γ j ].

Remark 6.1 If H = H1
∂

∂z1
+ H2

∂
∂z2

∈ X ν+1
2 is a homogeneous vector field of

degree ν + 1 ≥ 2, the meromorphic 1-form representing ∇o in the standard chart
centered at 0 ∈ P

1(C) is given by ([AT3])

ηo = −
[
ν

H1(1, ζ )

R(ζ )
+ R′(ζ )

R(ζ )

]
dζ,

where R(ζ ) = H2(1, ζ ) − ζ H1(1, ζ ); a similar formula, exchanging the rôle of z1
and z2, holds in the standard chart centered at ∞ ∈ P

1(C). In particular recalling
(5.2), (3.1) and Definition 3.7 we see that the poles of ∇o are singular points for the
blow-up f̃ of the time-1 map of H , and that the residue of ∇o at a pole p ∈ P

1(C)

coincides with the induced residue of f̃ at p.
Furthermore, in [AT3] we introduced another meromorphic connection∇ defined

on the ν-th tensor power N⊗ν
E of the normal bundle NE of the exceptional divisor

E = P
1(C) in the blow-up of the origin inC

2. Themeromorphic 1-form representing
∇ in the standard chart centered at 0 ∈ P

1(C) is given by

η = −ν
H1(1, ζ )

R(ζ )
dζ.

Therefore the poles of ∇ are exactly the Fuchsian and irregular characteristic direc-
tions of f̃ , and the residue of ∇ at a pole p ∈ P

1(C) coincides with the opposite of
the index of f̃ at p.
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So the study of the real integral curves of H is reduced to the study of the geodesics
of a meromorphic connection on P

1(C). This study is subdivided in two parts: the
study of the global behavior of geodesics, and the study of the local behavior nearby
the poles. It turns out that the global behavior is related to the induced residues, while
the local behavior is mainly related to the index. To state our results we need a couple
of definitions.

Definition 6.3 A geodesic σ : [0, �] → P
1(C) for a meromorphic connection ∇o

is closed if σ(�) = σ(0) and σ ′(�) is a positive multiple of σ ′(0); it is periodic if
σ(�) = σ(0) and σ ′(�) = σ ′(0).

Contrarily to the case of Riemannian geodesics, closed geodesics are not nec-
essarily periodic; see [AT3]. The (induced) residue allows to recognize closed and
periodic geodesics:

Proposition 6.3 ([AT3]) Let ∇o be a meromorphic connection on P
1(C), with poles

{p0, p1, . . . , pr }, and set S = P
1(C) \ {p0, . . . , pr } ⊆ C. Let σ : [0, �] → S be a

geodesic with σ(0) = σ(�) and no other self-intersections; in particular, σ is an
oriented Jordan curve. Let {p1, . . . , pg} be the poles of ∇o contained in the interior
of σ . Then σ is a closed geodesic if and only if

g∑

j=1

ReResp j (∇o) = −1 ,

and it is a periodic geodesic if and only if

g∑

j=1

Resp j (∇o) = −1 .

If σ is closed, it can be extended to an infinite length geodesic σ : J → S, where J
is a half-line (possibly J = R). Moreover,

(i) if
g∑

j=1
ImResp j (∇) < 0 then σ ′(t) → O as t → +∞ and |σ ′(t)| → +∞ as t

tends to the other end of J ;

(ii) if
g∑

j=1
ImResp j (∇) > 0 then σ ′(t) → O as t → −∞ and |σ ′(t)| → +∞ as t

tends to the other end of J .

Corollary 6.4 Let γ : R → C
2 \ {O} be a non-constant periodic integral curve of a

homogeneous vector field H of degree ν + 1 ≥ 2. Then the characteristic directions
[v1], . . . , [vg] ∈ P

1(C) surrounded by [γ ] satisfy

g∑

j=1

Res0[v j ](H) = −1 ,
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where Res0[v j ](H) denotes the induced residue at [v j ] of the blow-up of the time-1
map of H.

Closed but not periodic geodesics correspond to integral curves converging to the
origin on one side and escaping to infinity on the other side; the convergence to the
origin occurs along a spiral, and thus the time-1 map has orbits converging to the
origin without being tangent to any direction. This can actually happen; see [AT3]
for an example.

Definition 6.4 Let σ : I → S be a curve in S = P
1(C) \ {p0, . . . , pr }. A simple

loop in σ is the restriction of σ to a closed interval [t0, t1] ⊆ I such that σ |[t0,t1] is
a simple loop τ . If p1, . . . , pg are the poles of ∇ contained in the interior of τ , we
shall say that τ surrounds p1, . . . , pg .

Definition 6.5 A saddle connection for a meromorphic connection ∇o on P
1(C) is

a maximal geodesic σ : (ε−, ε+) → P
1(C) (with ε− ∈ [−∞, 0) and ε+ ∈ (0,+∞])

such that σ(t) tends to a pole of ∇o both when t ↑ ε+ and when t ↓ ε−. A graph of
saddle connections is a connected graph in P

1(C) made up of saddle connections.

Then we have a Poincaré-Bendixson type theorem, describing the asymptotic
behavior of geodesics:

Theorem 6.5 ([AT3, AB]) Let σ : [0, ε0) → S be a maximal geodesic for a mero-
morphic connection ∇o on P

1(C), where S = P
1(C) \ {p0, . . . , pr } and p0, . . . , pr

are the poles of ∇o. Then either

(i) σ(t) tends to a pole of ∇o as t → ε0; or

(ii) σ is closed, and then surrounds poles p1, . . . , pg with
g∑

j=1
ReResp j (∇o) = −1;

or
(iii) the ω-limit set of σ in P

1(C) is given by the support of a closed geodesic

surrounding poles p1, . . . , pg with
g∑

j=1
ReResp j (∇o) = −1; or

(iv) the ω-limit set of σ in P
1(C) is a graph of saddle connections whose com-

plement in P
1(C) has a connected component containing p1, . . . , pg with

g∑

j=1
ReResp j (∇o) = −1; or

(v) σ intersects itself infinitely many times, and in this case every simple loop of
σ surrounds a set of poles whose sum of residues has real part belonging to
(−3/2,−1) ∪ (−1,−1/2).

In particular, a recurrent geodesic either intersects itself infinitely many times or is
closed.

Corollary 6.6 Let H be a homogeneous holomorphic vector field on C
2 of degreeν+

1 ≥ 2, and let γ : [0, ε0) → C
2 be a recurrent maximal integral curve of Q. Then γ

is periodic or [γ ] : [0, ε0) → P
1(C) intersects itself infinitely many times.
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Remark 6.2 We have examples (see [AT3]) of cases (i), (ii), (iii) and (v), but not yet
of case (iv).

It is worthwhile to notice that the maximal geodesics of generic meromorphic
connections will behave as in case (i), because the other cases require that a particular
relationships between the (induced) residues should hold. In particular, this means
that the direction of a maximal real integral curve of a generic homogeneous vector
field will go from a characteristic line to a characteristic line (possibly the same); the
next step then consists in understanding what happens nearby characteristic lines.
It turns out that we can find holomorphic normal forms for apparent and Fuchsian
singularities, and formal normal forms for irregular singularities; and we shall see
that the local behavior is mostly related to the index.

To key behind this local study is the following

Theorem 6.7 ([AT3]) Let NE be the normal bundle of the exceptional divisor of the
blow-up (M, E) of the origin in C

2. Then for every ν ≥ 1 there exists a holomorphic
ν-to-1 covering χν : C

2 \ {O} → N⊗ν
E \ E satisfying π ◦ χν(v) = [v], where

π : N⊗ν
E → E = P

1(C) is the canonical projection, such that for every homogeneous
vector field H ∈ X ν+1

2 of degree ν + 1 the push-forward dχν(H) defines a global
holomorphic vector field G on the total space of N⊗ν

E . In particular, a real curve
γ : I → C

2 \ {O} is an integral curve for H if and only if χν ◦ γ is an integral curve
for G.

Definition 6.6 The field G is the geodesic field associated to the homogeneous
vector field H . The reason of the name is that the projections on P

1(C) of the
integral curves of G are geodesics for the connection ∇o associated to H .

The point is that the field G has a form well suited to reduction to normal form.
Indeed, if we denote by ζ the usual coordinate on C ⊂ P

1(C) centered at the
origin, and by v the corresponding coordinate on the fibers of N⊗ν

E , which over C is
canonically trivialized, we have

G(ζ, v) = R(ζ )v
∂

∂ζ
+ νH1(1, ζ )v2

∂

∂v
,

where R(ζ ) = H2(1, ζ ) − ζ H1(1, ζ ) as before; and a similar formula holds in the
usual coordinates centered at ∞ ∈ P

1(C). In particular, we can read the multiplicity
and the transversal multiplicity (and hence the type of singularity) of a characteristic
direction of H in the order of vanishing of the components of the geodesic field.

Since G is a vector field on the total space of a line bundle, it is natural to
consider only changes of coordinates preserving the bundle structure, that is changes
of coordinates of the form

(ζ, v) �→ (
ψ(ζ ), ξ(ζ )v

)
,
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where ψ a germ of biholomorphism and ξ is a non-vanishing holomorphic function.
It turns out that these changes of coordinates are enough to obtain normal forms
around apparent and Fuchsian singularities.

For apparent singularities we have the following theorem:

Theorem 6.8 ([AT3]) Let [v] ∈ P
1(C) be an apparent characteristic direction of

multiplicity μ ≥ 1 of a homogeneous vector field H ∈ X ν+1
2 . Then we can find

local coordinates centered at [v] such that in these coordinates the geodesic field G
associated to H is given by

G =

⎧
⎪⎨

⎪⎩

ζv
∂

∂ζ
if μ = 1,

ζμ(1 + aζμ−1)v
∂

∂ζ
for some a ∈ C if μ > 1.

Furthermore, if μ > 1 then a ∈ C is a holomorphic invariant, the apparent index.

In particular, around an apparent singularity the geodesic field G is explicitly
integrable. Studying the integral lines of G and rephrasing the results in terms of the
integral curves of H we obtain the following corollary:

Corollary 6.9 ([AT3]) Let H ∈ X ν+1
2 be a homogeneous vector field on C

2 of
degree ν+1 ≥ 2. Let [v] ∈ P

1(C) be an apparent singularity of H of multiplicity μ ≥
1 (and apparent index a ∈ C if μ > 1). Then:

(i) if the direction [γ (t)] ∈ P
1(C) of an integral curve γ : [0, ε) → C

2 \ {O} of H
tends to [v] as t → ε then γ (t) tends to a non-zero point of the characteristic
leaf Lv ⊂ C

2;
(ii) no integral curve of H tends to the origin tangent to [v];

(iii) there is an open set of initial conditions whose integral curves tend to a non-zero
point of Lv;

(iv) if μ = 1 or μ > 1 and a 	= 0 then H admits periodic orbits of arbitrarily long
periods accumulating at the origin.

In particular, in case (iv) the time-1 map of H has both periodic orbits accumu-
lating at the origin (small cycles), when the period of the integral curve is rational,
and orbits whose closure a is a closed Jordan curve, when the period of the integral
curve is irrational; both phenomena cannot happen in one variable.

The holomorphic classification of Fuchsian singularities is the following:

Theorem 6.10 ([AT3]) Let [v] ∈ P
1(C) be a Fuchsian characteristic direction of

multiplicity μ ≥ 1, transversal multiplicity τ = μ − 1 ≥ 0 and index ι ∈ C
∗ of a

homogeneous vector field H ∈ X ν+1
2 . Then we can find local coordinates centered

at [v] such that in these coordinates the geodesic field G associated to H is given:

(i) if τ + ι /∈ N
∗ by

ζμ−1
(

ζv
∂

∂ζ
+ ιv2

∂

∂v

)
;
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(ii) if n = τ + ι ∈ N
∗ by

ζμ−1
(

ζv
∂

∂ζ
+ ιv2(1 + aζ n)

∂

∂v

)

for a suitable a ∈ C which is a holomorphic invariant, the resonant index.

When the resonant index is zero the integral curves of the geodesic field can
be expressed in terms of elementary functions and easily studied. This is not the
case when the resonant index is different from zero; however we are able to obtain
the following description of the integral curves of H nearby Fuchsian characteristic
directions:

Corollary 6.11 ([AT3]) Let H ∈ X ν+1
2 be a homogeneous vector field on C

2 of
degree ν+1 ≥ 2. Let [v] ∈ P

1(C) be a Fuchsian singularity of H of multiplicity μ ≥
1, transversal multiplicity τ = μ − 1 ≥ 0 and index ι ∈ C

∗ (and resonant index
a ∈ C if τ + ι ∈ N

∗). Then:

(i) if the direction [γ (t)] ∈ P
1(C) of an integral curve γ : [0, ε) → C

2 \ {O} of H
tends to [v] as t → ε and γ is not contained in the characteristic leaf Lv then

(a) if τ + Reι > 0 and
∣∣ι + τ

2

∣∣ > τ
2 then γ (t) tends to the origin;

(b) if τ + ι = 0, or τ +Reι < 0, or τ +Reι > 0 and
∣∣ι + τ

2

∣∣ < τ
2 , then ‖γ (t)‖

tends to +∞;
(c) if τ + Reι > 0 and

∣∣ι + τ
2

∣∣ = τ
2 then γ (t) accumulates a circumference in

Lv.

Furthermore there is a neighbourhood U ⊂ P
1(C) of [v] such that an integral curve

γ issuing from a point z0 ∈ C
2 \ Lv with [z0] ∈ U \ {[v]} must have one of the

following behaviors, where Û = {z ∈ C
2 \ {O} | [z] ∈ U }:

(ii) if τ + Reι < 0 then

(a) either γ (t) escapes Û , and this happens for a Zariski open dense set of
initial conditions in Û ; or

(b) [γ (t)] → [v] but ‖γ (t)‖ → +∞;

in particular, no integral curve outside Lv converge to the origin tangent to [v];
(iiii) if τ + Reι = 0 but τ + ι 	= 0 then

(a) either γ (t) escapes Û ; or
(b) γ (t) → O without being tangent to any direction, and [γ (t)] is a closed

curve or accumulates a closed curve in P
1(C) surrounding [v]; or

(c) ‖γ (t)‖ → +∞ without being tangent to any direction, and [γ (t)] is a
closed curve in P

1(C) surrounding [v];
in particular, no integral curve outside Lv converge to the origin tangent to [v];

(iv) if τ + ι = 0 then
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(a) either γ (t) escapes Û , and this happens for an open set Û1 ⊂ Û of initial
conditions; or

(b) [γ (t)] → [v] with ‖γ (t)‖ → +∞, and this happens for an open set Û2 ⊂ Û
of initial conditions such that Û1 ∪ Û2 is dense in Û ; or

(c) γ is a periodic integral curve with [γ ] surrounding [v];
in particular, no integral curve outside Lv converge to the origin tangent to [v],
but we have periodic integral curves of arbitrarily long period accumulating
the origin;

(v) if τ +Reι > 0 and a = 0 then [γ (t)] → [v] for an open dense set Û0 of initial
conditions in Û , and γ escapes Û for z ∈ Û \ Û0; moreover,

(a) if
∣∣ι + τ

2

∣∣ > τ
2 then γ (t) → O tangent to [v] for all z ∈ Û0;

(b) if
∣
∣ι + τ

2

∣
∣ < τ

2 then ‖γ (t)‖ → +∞ tangent to [v] for all z ∈ Û0;
(c) if

∣∣ι + τ
2

∣∣ = τ
2 then γ (t) accumulates a circumference in Lv.

Remark 6.3 We conjecture that Corollary 6.11.(v) should hold also when a 	= 0.

Remark 6.4 This result must be compared with Theorems 2.3 and 4.1. We already
noticed that a non-degenerate characteristic direction [v] with non-zero director δ is
a Fuchsian singularity of multiplicity 1, and hence transversal multiplicity 0. Then
Corollary 6.11 says that if Re ι < 0 (that is Re δ < 0) then no orbit of the time-1 map
of H outside of Lv converges to the origin tangent to [v], whereas if Re ι > 0 (that
is Re δ > 0) and ι is not a positive integer (or a = 0 if ι ∈ N

∗) then the orbits under
the time 1-map of H converge to the origin tangent to [v] for an open (and dense in
a conical neighbourhood of [v]) set of initial conditions, providing the existence of
a parabolic domain in accord with Theorem 2.3.

If instead τ > 0 and τ + ι /∈ N
∗ (or a = 0 if τ + ι ∈ N

∗) then Corollary 6.11
yields a parabolic basin when τ + Re ι > 0 and

∣∣ι + τ
2

∣∣ > τ
2 , which is a condition

strictly weaker than the condition found in Theorem 4.1(a); this suggests that there
might be room for improvement in the statement of the latter theorem.

Putting all of this together we can finally have a completely description of the
dynamics for a substantial class of examples. For instance, we get the following:

Corollary 6.12 ([AT3]) Let H ∈ X ν+1
2 be a homogeneous vector field on C

2 of
degree ν+1 ≥ 2. Assume that H is non-dicritical and all its characteristic directions
are Fuchsian of multiplicity 1. Assume moreover that for no set of characteristic
directions the real part of the sum of the induced residues belongs to the interval
(−3/2,−1/2). Let γ : [0, ε0) → C

2 be a maximal integral curve of H. Then:

(a) If γ (0) belongs to a characteristic leaf Lv0 , then the image of γ is contained
in Lv0 . Moreover, either γ (t) → O (and this happens for a Zariski open dense
set of initial conditions in Lv0 ), or ‖γ (t)‖ → +∞.

(b) If γ (0) does not belong to a characteristic leaf then either

(i) γ converges to the origin tangentially to a characteristic direction [v0]
whose index has positive real part; or
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(ii) ‖γ (t)‖ → +∞ tangentially to a characteristic direction [v0] whose index
has negative real part.

Furthermore, case (i) happens for a Zariski open set of initial conditions.

Remark 6.5 The conditions in Corollary 6.12 imply that there must be at least one
index with positive real part. Indeed, if the multiplicity is 1 then the induced residue
is one less the opposite of the index. So assuming that no sum of 1 ≤ g ≤ ν + 2
induced residues has real part belonging to the interval (−3/2,−1/2) is equivalent
to saying that no sum of 1 ≤ g ≤ ν +2 indices has real part belonging to the interval
( 12 − g, 3

2 − g). Assume, by contradiction, that no index has positive real part; than
the real part of all of them should be less than −1/2. So the real part of the sum of
two indices must be less than −1 < −1/2; so it should be less than −3/2. Arguing
by induction on g one then shows that the sum of the real part of all indices should
be less than 1

2 − (ν + 2) = −ν − 3/2 < −ν, against Theorem 3.4, contradiction.

Example 6.1 Corollary 6.12 describes completely the dynamics ofmost vector fields
of the form

H(z, w) = (
ρz2 + (1 + τ)zw

) ∂

∂z
+ (

(1 + ρ)zw + τw2) ∂

∂w
.

Indeed such a vector field has exactly three Fuchsian characteristic directions with
multiplicity 1 and indices respectively ρ, τ and −1 − ρ − τ ; so the conditions
required by Corollary 6.12 are satisfied as soon as Re ρ, Re τ /∈ (−1/2, 1/2) and
Re(ρ + τ) /∈ (−3/2,−1/2).

7 Other Systems with Parabolic Behavior

Another situation where Fatou flowers can exist is when the eigenvalues of the
differential are all equal to 1 but the differential is not necessarily diagonalizable.
The reason is that we can reduce to the tangent to the identity case by using a suitable
sequence of blow-ups:

Theorem 7.1 ([A1]) Let f ∈ End(Cn, O) be such that all eigenvalues of d fO are
equal to 1. Then there exist a complex n-dimensional manifold M, a holomorphic
projection π : M → C

n, a canonical point e ∈ M and a germ around π−1(O) of
holomorphic self-map f̃ : M → M such that:

(i) π restricted to M \ π−1(O) is a biholomorphism between M \ π−1(O) and
C

n \ {O};
(ii) π ◦ f̃ = f ◦ π ;

(iii) e is a fixed point of f̃ where f̃ is tangent to the identity.

It should be remarked that the projection π : M → C
n is obtained as a sequence

of blow-ups whose centers are not necessarily reduced to points, and depend on the
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Jordan structure of d fO . Furthermore π is chosen in such a way that the interesting
part of the dynamics of f̃ is outside the exceptional divisor E (which is not in
general pointwise fixed by f̃ ), allowing the study of the dynamics of f by means of
the dynamics of f̃ . For instance, we can get the following

Proposition 7.2 ([A1]) Let f = ( f1, . . . , fn) ∈ End(Cn, O) be such that d fO

is not diagonalizable with all eigenvalues equal to 1. Without loss of generality
we can suppose that d fO is in Jordan form with ρ blocks of order respectively
μ1 ≥ μ2 ≥ · · · ≥ μρ ≥ 1, where μ1+· · ·+μρ = n. Assume that μ1 > μ2 and that
the coefficient of (z1)2 in fμ1 is not zero. Then f admits a parabolic curve tangent
to [1 : 0 : · · · : 0].

In dimension 2, using the tools introduced in [A2], one can get a cleaner result:

Corollary 7.3 ([A2]) Let f ∈ End(C2, O) be such that d fO is a Jordan block with
eigenvalue 1, and assume that the origin is an isolated fixed point. Then f admits a
parabolic curve tangent to [1 : 0].

See [Ro6] (and [A3] for a particular example) for a detailed study of the existence
of parabolic domains for germs in End(C2, O) with non-diagonalizable differential.

Finally, I would like to mention that parabolic curves, parabolic domains and
Fatou flowers appear also in non-parabolic dynamical systems. This is not surprising
in semi-parabolic systems, that is when the eigenvalues of the differential are either
equal to 1 or in modulus strictly less than 1 (see, e.g., [N, H1, Ri2, U1, U2, Ro5]), or
in quasi-parabolic systems, where the eigenvalues of the differential are either equal
to 1 or have modulus equal to 1 (see, e.g., [BM, Ro1, Ro2]). On the other hand, a
recent surprising discovery is that they also appear in multi-resonant systems, whose
differential is not parabolic at all but whose eigenvalues satisfies some resonance
relation; see, e.g., [BZ, BRZ, RV, BR] for the main results of this very interesting
theory.
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