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Preface

The KSCV Symposium, the Korean conference on Several Complex Variables,
started in 1997 at Pohang University of Science and Technology (POSTECH) in an
effort to promote the study of complex analysis and geometry in all dimensions.
Since then, the conference met semi-regularly for about 10 years and then settled as
a biannual conference. The sixth conference was held in 2002 as a satellite
conference to the Beijing ICM. The symposia have been successful in the sense that
many leading scholars in the field have participated from all over the world, and
more importantly, many new researchers in this field, especially from Korea, have
been brought up along with this effort.

The KSCV10 (the 10th) Symposium was held during 7–11 July 2014, as a
satellite conference to the ICM again; this time the ICM was held in Seoul, Korea.
It was clearly noticed by many that not only has the research level of the
Korean SCV community but also that of the conference improved so much that the
contents of the lectures will be useful to mathematicians in the field of complex
analysis and geometry of the world. Therefore, the organizers as well as the par-
ticipants of the conference agreed to have them organized into a book form;
therefore, this proceedings volume was composed.

I would like to express deep thanks to all those who contributed their articles to
this volume. We, the committee, of course, wish their study to flourish greatly.

April 2015 Filippo Bracci
Jisoo Byun

Hervé Gaussier
Kengo Hirachi
Kang-Tae Kim

Nikolay Shcherbina
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Fatou Flowers and Parabolic Curves

Marco Abate

Abstract In this survey we collect the main results known up to now (July 2015)
regarding possible generalizations to several complex variables of the classical Leau-
Fatou flower theorem about holomorphic parabolic dynamics.

Keywords Local holomorphic dynamical systems · Parabolic points · Fatou
flowers · Parabolic curves · Germs tangent to the identity

1 The Original Leau-Fatou Flower Theorem

In this survey we shall present the known generalizations of the classical Leau-Fatou
theorem describing the local holomorphic dynamics about a parabolic point. But let
us start with a number of standard definitions.

Definition 1.1 A local n-dimensional discrete holomorphic dynamical system (in
short, a local dynamical system) is a holomorphic germ f of self-map of a complex
n-dimensional manifold M at a point p ∈ M such that f (p) = p; we shall denote
by End(M, p) the set of such germs.

If f , g belongs to End(M, p) their composition g ◦ f is defined as germ in
End(M, p); in particular,we can consider the sequence { f k} ⊂ End(M, p)of iterates
of f ∈ End(M, p), inductively defined by f 0 = idM and f k = f ◦ f k−1 for k ≥ 1.
The aimof local discrete dynamics is exactly the study of the behavior of the sequence
of iterates.

Remark 1.1 In practice, we shall workwith representatives, that is with holomorphic
maps f : U → M , where U ⊆ M is an open neighborhood of p ∈ U , such that
f (p) = p. The fact we are working with germs will be reflected in the freedom
we have in taking U as small as needed. We shall also mostly (but not always) take
M = C

n and p = O; indeed a choice of local coordinates ϕ for M centered at p

M. Abate (B)
Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy
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2 M. Abate

yields an isomorphism ϕ∗ : End(M, p) → End(Cn, O) preserving the composition
by setting ϕ∗( f ) = ϕ ◦ f ◦ ϕ−1.

Definition 1.2 Let f : U → M be a representative of a germ in End(M, p). The
stable set K f ⊆ U of f is the set of points z ∈ U such that f k(z) is defined for all
k ∈ N; clearly, p ∈ K f . If z ∈ K f , the set { f k(z)} is the orbit of z; if z ∈ U \ K f

we shall say that z escapes. The stable set depends on the chosen representative, but
its germ at p does not; so we shall freely talk about the stable set of an element of
End(M, p). An f -invariant set is a subset P ⊆ U such that f (P) ⊆ P; clearly, the
stable set is f -invariant.

Definition 1.3 A local dynamical system f ∈ End(M, p) is parabolic (and some-
times we shall say that p is a parabolic fixed point of f ) if d f p is diagonalizable and
all its eigenvalues are roots of unity; is tangent to the identity if d f p = id. We shall
denote by End1(M, p) the set of local dynamical systems tangent to the identity in p.

Remark 1.2 If f ∈ End(M, p) is parabolic then a suitable iterate f q is tangent to the
identity; for this reason we shall mostly concentrate on germs tangent to the identity.
Furthermore, if f ∈ End(M, p) is tangent to the identity then f −1 is a well-defined
germ in End(M, p) still tangent to the identity.

Definition 1.4 The order ordp( f ) of a holomorphic function f : M → C at p ∈ M
is the order of vanishing at p, that is the degree of the first non-vanishing term in the
Taylor expansion of f at p (computed in any set of local coordinates centered at p).
The order ordp(F) of a holomorphic map F : M → C

n at p ∈ M is the minimum
order of its components.

A germ f ∈ End(Cn, O) can be represented by a n-tuple of convergent power
series in n variables; collecting terms of the same degree we obtain the homogeneous
expansion.

Definition 1.5 A homogeneous map of degree d ≥ 1 is a map P : C
n → C

n

where P is a n-tuple of homogeneous polynomials of degree d in n variables. The
homogeneous expansion of a germ tangent to the identity f ∈ End1(Cn, O), f 	≡
idCn , is the (unique) series expansion

f (z) = z + Pν+1(z) + Pν+2(z) + · · · (1.1)

where Pk is a homogeneous map of degree k, and Pν+1 	≡ O . The number ν ≥ 1 is
the order (or, sometimes, multiplicity) ν( f ) of f at O , and Pν+1 is the leading term
of f . It is easy to check that the order is invariant under change of coordinates, and
thus it can be defined for any germ tangent to the identity f ∈ End1(M, p); we shall
denote by Endν(M, p) the set of germs tangent to the identity with order at least ν.

In the rest of this section we shall discuss the 1-dimensional case, where the
homogeneous expansion reduces to the usual Taylor expansion
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f (z) = z + aν+1zν+1 + O(zν+2) (1.2)

with aν+1 	= 0.

Definition 1.6 Let f ∈ End1(C, 0) be tangent to the identity given by (1.2). A unit
vector v ∈ S1 is an attracting (respectively, repelling) direction for f at 0 if aν+1vν is
real and negative (respectively, positive). Clearly, there are ν equally spaced attracting
directions, separated by ν equally spaced repelling directions.

Example 1.1 To understand this definition, let us consider the particular case f (z) =
z+azν+1. If v ∈ S1 is such that avν > 0 then for every z ∈ R

+vwe have f (z) ∈ R
+v

and | f (z)| > |z|; in other words, the half-line R
+ is f -invariant and repelled from

the origin. Conversely, if v ∈ S1 is such that avν < 0 then R
+v is again f -invariant

but now | f (z)| < |z| if z ∈ R
+v is small enough; so there is a segment of R

+v
attracted by the origin.

Remark 1.3 If f ∈ End1(C, 0) is given by (1.2) then

f −1(z) = z − aν+1zν+1 + O(zν+2).

In particular, if v ∈ S1 is attracting (respectively, repelling) for f then it is repelling
(respectively, attracting) for f −1, and conversely.

To describe the dynamics of a tangent to the identity germ two more definitions
are needed.

Definition 1.7 Let v ∈ S1 be an attracting direction for a f ∈ End1(C, 0) tangent
to the identity. The basin centered at v is the set of points z ∈ K f \ {0} such that
f k(z) → 0 and f k(z)/| f k(z)| → v (notice that, up to shrinking the domain of f ,
we can assume that f (z) 	= 0 for all z ∈ K f \ {0}). If z belongs to the basin centered
at v, we shall say that the orbit of z tends to 0 tangent to v.

A slightly more specialized (but more useful) object is the following:

Definition 1.8 Let f ∈ End1(C, 0) be tangent to the identity. An attracting petal
with attracting central direction v ∈ S1 for f is an open simply connected f -invariant
set P ⊆ K f \ {0} with 0 ∈ ∂ P such that a point z ∈ K f \ {0} belongs to the basin
centered at v if and only if its orbit intersects P . In other words, the orbit of a point
tends to 0 tangent to v if and only if it is eventually contained in P . A repelling petal
(with repelling central direction) is an attracting petal for the inverse of f .

We can now state the original Leau-Fatouflower theorem, describing the dynamics
of a one-dimensional tangent to the identity germ in a full neighborhood of the origin
(see, e.g., [M] for a modern proof):

Theorem 1.1 ([Le, F1, F2, F3]) Let f ∈ End1(C, 0) be tangent to the identity of
order ν ≥ 1. Let v+

1 , . . . , v+
ν ∈ S1 be the ν attracting directions of f at the origin,

and v−
1 , . . . , v−

r ∈ S1 the ν repelling directions. Then:
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(i) for each attracting (repelling) direction v+
j (v−

j ) we can find an attracting

(repelling) petal P+
j (P−

j ) such that the union of these 2ν petals together with
the origin forms a neighborhood of the origin. Furthermore, the 2ν petals are
arranged cyclically so that two petals intersect if and only if the angle between
their central directions is π/ν.

(ii) K f \ {0} is the (disjoint) union of the basins centered at the ν attracting direc-
tions.

(iii) If B is a basin centered at one of the attracting directions, then there is a function
χ : B → C such that χ ◦ f (z) = χ(z) + 1 for all z ∈ B. Furthermore, if P is
the corresponding petal constructed in part (i), then χ |P is a biholomorphism
with an open subset of the complex plane containing a right half-plane — and
so f |P is holomorphically conjugated to the translation z �→ z + 1.

Definition 1.9 The function χ : B → C constructed in Theorem 1.1. (iii) is a Fatou
coordinate on the basin B.

Remark 1.4 Up to a linear change of variable, we can assume that aν+1 = −1 in
(1.2), so that the attracting directions are the ν-th roots of unity. Given δ > 0, the set

Dν,δ = {z ∈ C | |zν − δ| < δ} (1.3)

has exactly ν connected components (each one symmetric with respect to a different
ν-th root of unity), and it turns out that when δ > 0 is small enough these components
can be taken as attracting petals for f —even though to cover a neighborhood of the
origin one needs slightly larger petals. The components of Dν,δ are distributed as
petals in a flower; this is the reason why Theorem 1.1 is called “flower theorem".

So the union of attracting and repelling petals gives a pointed neighborhood of
the origin, and the dynamics of f on each petal is conjugated to a translation via a
Fatou coordinate. The relationships between different Fatou coordinates is the key
to Écalle-Voronin holomorphic classification of parabolic germs (see, e.g., [A4] and
references therein for a concise introduction to Écalle-Voronin invariants), which is
however outside of the scope of this survey. We end this section with the statement
of the Leau-Fatou flower theorem for general parabolic germs:

Theorem 1.2 ([Le, F1, F2, F3]) Let f ∈ End1(C, 0) be of the form f (z) = λz +
O(z2), where λ ∈ S1 is a primitive root of the unity of order q. Assume that f q 	≡ id.
Then there exists μ ≥ 1 such that f q has order qμ, and f acts on the attracting
(respectively, repelling) petals of f q as a permutation composed by μ disjoint cycles.
Finally, K f = K f q .

In the subsequent sections we shall discuss known generalizations of Theorem 1.1
to several variables.
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2 Écalle-Hakim Theory

From now on we shall work in dimension n ≥ 2. So let f ∈ End1(Cn, O) be tangent
to the identity; we would like to find a multidimensional version of the petals of
Theorem 1.1.

If f had a non-trivial one-dimensional f -invariant curve passing through the
origin, that is an injective holomorphic map ψ : Δ → C

n , where Δ ⊂ C is a
neighborhood of the origin, such thatψ(0) = O ,ψ ′(0) 	= O and f

(
ψ(Δ)

) ⊆ ψ(Δ)

with f |ψ(Δ) 	≡ id, we could apply Leau-Fatou flower theorem to f |ψ(Δ) obtaining a
one-dimensional Fatou flower for f inside the invariant curve. In particular, if zo ∈
ψ(Δ) belongs to an attractive petal, we would have f k(zo) → O and [ f k(zo)] →
[ψ ′(0)], where [·] : C

n \ {O} → P
n−1(C) is the canonical projection. The first

observation we can make is that then [ψ ′(0)] cannot be any direction in P
n−1(C).

Indeed:

Proposition 2.1 ([H2]) Let f (z) = z + Pν+1(z) + · · · ∈ End1(Cn, O) be tangent
to the identity of order ν ≥ 1. Assume there is zo ∈ K f such that f k(zo) → O and
[ f k(zo)] → [v] ∈ P

n−1(C). Then Pν+1(v) = λv for some λ ∈ C.

Definition 2.1 Let P : C
n → C

n be a homogeneous map. A direction [v] ∈
P

n−1(C) is characteristic for P if P(v) = λv for some λ ∈ C. Furthermore, we
shall say that [v] is degenerate if P(v) = O , and non-degenerate otherwise.

Remark 2.1 From now on, given f ∈ End1(Cn, O) tangent to the identity of
order ν ≥ 1, every notion/object/concept introduced for its leading term Pν+1 will
be introduced also for f ; for instance, a (degenerate/non-degenerate) characteristic
direction for Pν+1 will also be a (degenerate/non-degenerate) characteristic direction
for f .

Remark 2.2 If f ∈ End1(Cn, O) is given by (1.1), then f −1 ∈ End1(Cn, O) is
given by

f −1(z) = z − Pν+1(z) + · · · .

In particular, f and f −1 have the same (degenerate/non-degenerate) characteristic
directions.

Remark 2.3 If ψ : Δ → C
n is a one-dimensional curve with ψ(0) = O and

ψ ′(0) 	= O such that f |ψ(Δ) ≡ id, it is easy to see that [ψ ′(0)] must be a degenerate
characteristic direction for f .

So if we have an f -invariant one-dimensional curve ψ through the origin then
[ψ ′(0)] must be a characteristic direction. However, in general the converse is false:
there are non-degenerate characteristic directions which are not tangent to any f -
invariant curve passing through the origin.

Example 2.1 ([H2]) Let f ∈ End(C2, O) be given by
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f (z, w) =
(

z

1 + z
, w + z2

)
,

so that f is tangent to the identity of order 1, and P2(z, w) = (−z2, z2). In particular,
f has a degenerate characteristic direction [0 : 1] and a non-degenerate characteristic
direction [v] = [1 : −1]. The degenerate characteristic direction is tangent to the
curve {z = 0}, which is pointwise fixed by f , in accord with Remark 2.3. We claim
that no f -invariant curve can be tangent to [v].

Assume, by contradiction, that we have an f -invariant curve ψ : Δ → C
2 with

ψ(0) = O and [ψ ′(0)] = [v]. Without loss of generality, we can assume that
ψ(ζ ) = (

ζ, u(ζ )
)
with u ∈ End(C, 0). Then the condition of f -invariance becomes

f2
(
ζ, u(ζ )

)= u
(

f1(ζ, u(ζ )
))
, that is

u(ζ ) + ζ 2 = u

(
ζ

1 + ζ

)
. (2.1)

Put g(ζ ) = ζ/(1 + ζ ), so that gk(ζ ) = ζ/(1 + kζ ); in particular, gk(ζ ) → 0 for
all ζ ∈ C \ {− 1

n | n ∈ N
∗}. This means that by using (2.1) we can extend u to

C \ {− 1
n | n ∈ N

∗} by setting

u(ζ ) = u
(
gk(ζ )

) −
k−1∑

j=0

[g j (ζ )]2

where k ∈ N is chosen so that gk(ζ ) ∈ Δ. Analogously, (2.1) implies that for |ζ |
small enough one has

u
(
g−1(ζ )

) + (
g−1(ζ )

)2 = u(ζ );

so we can use this relation to extend u to all of C, and then to P
1(C), because

g−1(∞) = −1. So u is a holomorphic function defined on P
1(C), that is a constant;

but no constant can satisfy (2.1), contradiction.

Remark 2.4 Ribón [R] has given examples of germshavingnoholomorphic invariant
curves at all. For instance, this is the case for germs of the form f (z, w) = (z +
w2, w + z2 + λz5) for all λ ∈ C outside a polar Borel set.

The first important theoremwewould like to quote is due to Écalle [E] and Hakim
[H2], and it says that we do always have a Fatou flower tangent to a non-degenerate
characteristic direction, even when there are no invariant complex curves containing
the origin in their relative interior. To state it, we need to define what is the correct
multidimensional notion of petal.

Definition 2.2 A parabolic curve for f ∈ End1(Cn, O) tangent to the identity is an
injective holomorphic map ϕ : D → C

n \ {O} satisfying the following properties:
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(a) D is a simply connected domain in C with 0 ∈ ∂ D;
(b) ϕ is continuous at the origin, and ϕ(0) = O;
(c) ϕ(D) is f -invariant, and ( f |ϕ(D))

k → O uniformly on compact subsets as
k → +∞.

Furthermore, if [ϕ(ζ )] → [v] in P
n−1(C) as ζ → 0 in D, we shall say that the

parabolic curve ϕ is tangent to the direction [v] ∈ P
n−1(C). Finally, a Fatou flower

with ν petals tangent to a direction [v] is a holomorphic map Φ : Dν,δ → C, where
Dν,δ is given by (1.3), such that 
 restricted to any connected component of Dν,δ

is a parabolic curve tangent to [v], a petal of the Fatou flower. If ν is the order of f
then we shall talk of a Fatou flower for f without mentioning the number of petals.

Then Écalle, using his resurgence theory (see, e.g., [S] for an introduction to
Écalle’s resurgence theory in one dimension), andHakim, usingmore classical meth-
ods, have proved the following result (see also [W]):

Theorem 2.2 ([E, H2, H3]) Let f ∈ End1(Cn, O) be tangent to the identity, and
[v] ∈ P

n−1(C) a non-degenerate characteristic direction for f . Then there exists (at
least) one Fatou flower tangent to [v]. Furthermore, for every petal ϕ : Δ → C

n of
the Fatou flower there exists a injective holomorphic map χ : ϕ(Δ) → C such that
χ

(
f (z)

) = χ(z) + 1 for all z ∈ ϕ(Δ).

Definition 2.3 The functionχ constructed in the previous theorem is aHakim-Fatou
coordinate.

Remark 2.5 A characteristic direction is a complex direction, not a real one; so it
should not be confused with the attracting/repelling directions of Theorem 1.1. All
petals of a Fatou flower are tangent to the same characteristic direction, but each petal
is tangent to a different real direction inside the same complex (characteristic) direc-
tion. In particular, Fatou flowers of f and f −1 are tangent to the same characteristic
directions (see Remark 2.2) but the corresponding petals are tangent to different real
directions, as in Theorem 1.1.

In particular there exist parabolic curves tangent to [1 : −1] for the system of
Example 2.1 even though there are no invariant curves passing through the origin
tangent to that direction.

Parabolic curves are one-dimensional objects in an n-dimensional space; it is
natural to wonder about the existence of higher dimensional invariant subsets. A
sufficient condition for their existence has been given by Hakim; to state it we need
to introduce another definition.

Definition 2.4 Let [v] ∈ P
n−1(C) be a non-degenerate characteristic direction for

a homogeneous map P : C
n → C

n of degree ν + 1 ≥ 2; in particular, [v] is a fixed
point for the meromorphic self-map [P] of P

n−1(C) induced by P . The directors
of P in [v] are the eigenvalues α1, . . . , αn−1 ∈ C of the linear operator

1

ν

(
d[P][v] − id

) : T[v]Pn−1(C) → T[v]Pn−1(C).
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As usual, if f ∈ End1(Cn, O) is of the form (1.2), then the directors of f in a
non-degenerate characteristic direction [v] are the directors of Pν+1 in [v].
Remark 2.6 Definition 2.4 is equivalent to the original definition used by Hakim
(see, e.g., [ArR]). Furthermore, in dimension 2 if [v] = [1 : 0] is a non-degenerate
characteristic direction of P = (P1, P2) we have P1(1, 0) 	= 0, P2(1, 0) = 0 and
the director is given by

1

ν

d

dζ

P2(1, ζ ) − ζ P1(1, ζ )

P1(1, ζ )

∣∣
∣∣
ζ=0

= 1

ν

[
∂ P2
∂z2

(1, 0)

P1(1, 0)
− 1

]

.

Remark 2.7 Recalling Remark 2.2 one sees that a germ f ∈ End1(Cn, O) tangent
to the identity and its inverse f −1 have the same directors at their non-degenerate
characteristic directions.

Remark 2.8 The proof of Theorem 2.2 becomes simpler when no director is of the
form k

ν
with k ∈ N

∗; furthermore, in this case the parabolic curves enjoy additional
properties (in the terminology of [AT1] they are robust; see also [Ro3]).

Definition 2.5 A parabolic manifold for a germ f ∈ End1(Cn, O) tangent to the
identity is an f -invariant complex submanifold M ⊂ C

n \ {O} with O ∈ ∂ M such
that f k(z) → O for all z ∈ M . A parabolic domain is a parabolic manifold of
dimension n. We shall say that M is attached to the characteristic direction [v] ∈
P

n−1(C) if furthermore [ f k(z)] → [v] for all z ∈ M .

Then Hakim has proved (see also [ArR] for the details of the proof) the following
theorem:

Theorem 2.3 ([H3]) Let f ∈ End1(Cn, O) be tangent to the identity of order ν ≥ 1.
Let [v] ∈ P

n−1(C) be a non-degenerate characteristic direction, with direc-
tors α1, . . . , αn−1 ∈ C. Furthermore, assume that Reα1, . . .,Reαd > 0 and
Reαd+1, . . .,Reαn−1 ≤ 0 for a suitable d ≥ 0. Then:

(i) There exist (at least) ν parabolic (d +1)-manifolds M1, . . . , Mν of C
n attached

to [v];
(ii) f |M j is holomorphically conjugated to the translation τ(w0, w1, . . . , wd) =

(w0 + 1, w1, . . . , wd) defined on a suitable right half-space in C
d+1.

Remark 2.9 In particular, if all the directors of [v] have positive real part, there is
at least one parabolic domain. However, the condition given by Theorem 2.3 is not
necessary for the existence of parabolic domains; see [Ri1, Us, AT3] for examples,
and [Ro8] for conditions ensuring the existence of a parabolic domain when some
directors have positive real part and all the others are equal to zero. Moreover, Lapan
[L1] has proved that if n = 2 and f has a unique characteristic direction [v] which
is non degenerate then there exists a parabolic domain attached to [v] even though
the director is necessarily 0.
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Two natural questions now are: how many characteristic directions are there?
Does there always exist a non-degenerate characteristic direction? To answer the first
question, we need to introduce the notion of multiplicity of a characteristic direction.
To do so, notice that [v] = [v1 : · · · : vn] ∈ P

n−1(C) is a characteristic direction
for the homogeneous map P = (P1, . . . , Pn) if and only if vh Pk(v) − vk Ph(v) = 0
for all h, k = 1, . . . , n. In particular, the set of characteristic directions of P is an
algebraic subvariety of P

n−1(C).

Definition 2.6 If the maximal dimension of the irreducible components of the sub-
variety of characteristic directions of a homogeneous map P : C

n → C
n is k, we

shall say that P is k-dicritical; if k = n we shall say that P is dicritical; if k = 0 we
shall say that P is non-dicritical.

Remark 2.10 Ahomogeneousmap P : C
n → C

n of degree d is dicritical if and only
if P(z) = p(z)z for some homogenous polynomial p : C

n → C of degree d − 1. In
particular, the degenerate characteristic directions are the zeroes of the polynomial p.

In the non-dicritical case we can count the number of characteristic directions,
using a suitable multiplicity.

Definition 2.7 Let [v] = [v1 : · · · : vn] ∈ P
n−1(C) be a characteristic direction

of a homogeneous map P = (P1, . . . , Pn) : C
n → C

n . Choose 1 ≤ j0 ≤ n so
that v j0 	= 0. The multiplicity μP ([v]) of [v] is the local intersection multiplicity
at [v] in P

n−1(C) of the polynomials z j0 Pj − z j Pj0 with j 	= j0 if [v] is an isolated
characteristic direction; it is +∞ if [v] is not isolated.
Remark 2.11 The local intersection multiplicity I (p1, . . . , pk; zo) of a set {p1, . . . ,
pk} of holomorphic functions at a point zo ∈ C

n can be defined (see, e.g., [GH]) as

I (p1, . . . , pk; zo) = dimOn,zo/(p1, . . . , pk),

whereOn,zo is the local ring of germs of holomorphic functions at zo, and the dimen-
sion is as vector space. It is easy to check that the definition of multiplicity of a
characteristic direction does not depend on the index j0 chosen. Furthermore, since
the local intersection multiplicity is invariant under change of coordinates, we can
use local charts to compute the local intersection multiplicity on complex manifolds.

Remark 2.12 When n = 2, the multiplicity of [v] = [1 : v2] as characteristic
direction of P = (P1, P2) is the order of vanishing at t = v2 of P2(1, t) − t P1(1, t);
analogously, the multiplicity of [0 : 1] is the order of vanishing at t = 0 of P1(t, 1)−
t P2(t, 1).

Then we have the following result (see, e.g., [AT1]):

Proposition 2.4 Let P : C
n → C

n be a non-dicritical homogeneous map of
degree ν + 1 ≥ 2. Then P has exactly
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1

ν

(
(ν + 1)n − 1

) =
n−1∑

j=0

(
n

j + 1

)
ν j

characteristic directions, counted according to their multiplicity.

In particular, when n = 2 then a homogeneous map of degree ν + 1 either is
dicritical (and all directions are characteristic) or has exactly ν + 2 characteristic
directions. But all of them can be degenerate; an example is the following (but it is
easy to build infinitely many others).

Example 2.2 Let P(z, w) = (z2w + zw2, zw2). Then the characteristic directions
of P are [1 : 0] and [0 : 1], both degenerate. Using Remark 2.12, we see that
μP ([1 : 0]) = 3 and μP ([0 : 1]) = 1.

So we cannot apply Theorem 2.2 to any germ of the form f (z) = z + P(z)+ · · ·
when P is given by Example 2.2. However, as soon as the higher order terms are
chosen so that the origin is an isolated fixed point then f does have parabolic curves:

Theorem 2.5 ([A2]) Let f ∈ End1(C2, O) be tangent to the identity such that O
is an isolated fixed point. Then f admits at least one Fatou flower tangent to some
characteristic direction.

In the next section we shall explain why this theorem holds, we shall give more
general statements, and we shall give an example (Example 3.1) showing the neces-
sity of the hypothesis that the origin is an isolated fixed point.

3 Blow-Ups, Indices and Fatou Flowers

In the previous section we saw that for studying the dynamics of a germ tangent to
the identity it is useful to consider the tangent directions at the fixed point. A useful
way for dealing with tangent directions consists, roughly speaking, in replacing the
fixed point by the projective space of the tangent directions, in such a way that the
new space is still a complex manifolds, where the tangent directions at the original
fixed point are now points. We refer to, e.g., [GH] or [A1] for a precise description
of this construction; here we shall limit ourselves to explain how to work with it.

Definition 3.1 Let M be a complex n-dimensional manifold, and p ∈ M . The
blow-up of M of center p is a complex n-dimensional manifold M̃ equipped with a
surjective holomorphic map π : M̃ → M such that

(i) E = π−1(p) is a compact submanifold of M̃ , the exceptional divisor of the
blow-up, biholomorphic to P(Tp M);

(ii) π |M̃\E : M̃ \ E → M \ {p} is a biholomorphism.

Let us describe the construction for (M, p) = (Cn, O); using local charts one
can repeat the construction for any manifold. As a set, C̃n is the disjoint union of
C

n \ {O} and E = P
n−1(C); we shall define a manifold structure using charts. For
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j = 1, . . . , n let U ′
j = {[v1 : · · · : vn] ∈ P

n−1(C) | v j 	= 0}, U ′′
j = {w ∈ C

n | w j 	=
0} and Ũ j = U ′

j ∪ U ′′
j ⊂ C̃n . Define χ j : Ũ j → C

n by setting

χ j (q) =
⎧
⎨

⎩

(
v1
v j

, . . . ,
v j−1

v j
, 0,

v j+1
v j

, . . . , vn
v j

)
if q = [v1 : · · · : vn] ∈ U ′

j ,(
w1
w j

, . . . ,
w j−1

w j
, w j ,

w j+1
w j

, . . . , wn
w j

)
if q = (w1, . . . , wn) ∈ U ′′

j .

We have

χ−1
j (w) =

{
[w1 : · · · : w j−1 : 1 : w j+1 : · · · : wn] ifw j = 0,

(w j w, . . . , w j w j−1, w j , w j w j+1, . . . , w j wn) ifw j 	= 0,

and it is easy to check that {(Ũ1, χ1), . . . , (Ũn, χn)} is an atlas for C̃n , with χ j ([0 :
· · · : 1 : · · · : 0]) = O and χ j

(
Ũ j ∩ P

n−1(C)
) = {w j = 0} ⊂ C

n . We can then
define the projection π : C̃n → C

n in coordinates by setting

π ◦ χ−1
j (w) = (w1w j , . . . , w j−1w j , w j , w j+1w j , . . . , wnw j );

it is easy to check that π is well-defined, that π−1(O) = P
n−1(C) and that π

induces a biholomorphism between C̃n \P
n−1(C) and C

n \ {O}. Notice furthermore
that C̃n has a canonical structure of line bundle over P

n−1(C) given by the projection
π̃ : C̃n → P

n−1(C) defined by

π̃(q) =
{

[v] if q = [v] ∈ P
n−1(C),

[w1 : · · · : wn] if q = w ∈ C
n \ {O} ;

the fiber over [v] ∈ P
n−1(C) is given by the line Cv ⊂ C

n .
Two more definitions we shall need later on:

Definition 3.2 Let π : M̃ → M be the blow-up of a complexmanifold M at p ∈ M .
Given a subset S ⊂ M , the full (or total) transform of S is π−1(S), whereas the strict
transform of S is the closure in M̃ of π−1(S \ {O}).

Clearly, the full and the strict transform coincide if p /∈ S; if p ∈ S then the full
transform is the union of the strict transformand the exceptional divisor. Furthermore,
if S is a submanifold at p then its strict transform is (S \ {p}) ∪ P(Tp S).

Definition 3.3 Let f ∈ End(M, p) be a germ such that d f p is invertible. Choose
a representative (U, f ) of the germ such that f is injective in U . Then the blow-up
of f is the map f̃ : π−1(U ) → M̃ defined by

f̃ (q) =
{

[d f p(v)] if q = [v] ∈ E = P(Tp M),

f (w) if q = w ∈ U \ {p}.
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In this way we get a germ about the exceptional divisor of a holomorphic self-map of
the blow-up, given by the differential of f along the exceptional divisor and by f itself
elsewhere, satisfyingπ◦ f̃ = f ◦π . In particular, K f̃ = π−1(K f ) = (

K f \{O})∪E ,

and to study the dynamics of f̃ in a neighborhood of the exceptional divisor is
equivalent to studying the dynamics of f in a neighborhood of p.

If f ∈ End1(Cn, O) is tangent to the identity, its blow-up f̃ in the chart (U1, χ1)
is given by

χ1 ◦ f̃ ◦ χ−1
1 (w) =

{
w ifw1 = 0,(

f1(w1, w1w2, . . . , w1wn),
f2(w1,w1w2,...,w1wn )
f1(w1,w1w2,...,w1wn )

, . . . ,
fn (w1,w1w2,...,w1wn )
f1(w1,w1w2,...,w1wn )

)
ifw1 	= 0;

similar formulas hold in the other charts. In particular, writing w = (w1, w′), and
χ1 ◦ f̃ ◦ χ−1

1 = ( f̃1, . . . , f̃n), if f is tangent to the identity of order ν ≥ 1 and
leading term Pν+1 = (Pν+1,1, . . . , Pν+1,n), we get

{
f̃1(w) = w1 + wν+1

1 Pν+1,1(1, w′) + O(wν+2
1 ),

f̃ j (w) = w j + wν
1

(
Pν+1, j (1.w′) − w j Pν+1,1(1, w′)

) + O(wν+1
1 ) if j 	= 1.

(3.1)
It follows immediately that:

– if ν ≥ 2 then f̃ is tangent to the identity in all points of the exceptional divisor;
– if ν = 1 then f̃ is tangent to the identity in all characteristic directions of f ; in
other points of the exceptional divisor the eigenvalues of the differential of f̃ are
all equal to 1 but the differential is not diagonalizable.

This means that we can always repeat the previous construction blowing-up f̃ at a
characteristic direction of f ; this will be important in the sequel.

As a first application of the blow-up construction, let us use it for describing the
dynamics of dicritical maps. If f ∈ End1(Cn, O) is dicritical, Theorem 2.2 yields a
parabolic curve tangent to all directions outside a hypersurface of P

n−1(C) (notice
that all directors are zero), and the same holds for f −1. One can then summarize the
situation as follows:

Proposition 3.1 ([Br1, Br2]) Let f ∈ End1(Cn, O) be a dicritical germ tangent to
the identity of order ν ≥ 1. Write Pν+1(z) = p(z)z, and let D = {[v] ∈ P

n−1(C) |
p(v) = 0}. Then there are two open sets U+, U− ⊂ C

n \ {O} such that:

(i) U+ ∪ U− is a neighborhood of P
n−1(C) \ D in the blow-up C̃n of O;

(ii) the orbit of any z ∈ U+ converges to the origin tangent to a direction [v] ∈
P

n−1(C) \ D;
(iii) the inverse orbit (that is, the orbit under f −1) of any z ∈ U− converges to the

origin tangent to a direction [v] ∈ P
n−1(C) \ D.
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Coming back to the general situation, when f ∈ End1(Cn, O) is tangent to the
identity its blow-up f̃ fixes pointwise the exceptional divisor; more precisely, the
fixed point set of f̃ is the full transform of the fixed point set of f , and in particular
f̃ has a at least a hypersurface of fixed points. This is a situation important enough
to deserve a special notation.

Definition 3.4 Let E be a connected (possibly singular) hypersurface in a complex
manifold M .We shall denote by End(M, E) the set of germs about E of holomorphic
self-maps of M fixing pointwise E .

If E is a hypersurface in a complex manifold M , we shall denote byOM the sheaf
of holomorphic functions on M , and by IE the subsheaf of functions vanishing
on E . Given f ∈ End(M, E), f 	≡ idM , take p ∈ E . For every h ∈ OM,p, the germ
h ◦ f is well-defined, and h ◦ f − h ∈ IE,p. Following [ABT1] (see also [ABT2,
ABT3]), we can then introduce a couple of important notions.

Definition 3.5 Let E be a connected hypersurface in a complex manifold M . Given
f ∈ End(M, E), p ∈ E and h ∈ OM,p, let ν f (h) = max{μ ∈ N | h◦ f −h ∈ I μ

E,p}.
Then the order of contact ν f of f with the identity along E is

ν f = min{ν f (h) | h ∈ OM,p};

it can be shown ([ABT1]) that ν f does not depend on p ∈ E . Furthermore, we say
that f is tangential if min{ν f (h) | h ∈ IE,p} > ν f for some (and hence any; see
again [ABT1]) p ∈ E .

Let (z1, . . . , zn) be local coordinates in M centered at p ∈ E , and � ∈ IE,p

a reduced equation of E at p (that is, a generator of IE,p). If ( f1, . . . , fn) is the
expression of f in local coordinates, it turns out [ABT1] that we can write

f j (z) = z j + �(z)ν f go
j (z) (3.2)

for j = 1, . . . , n, where there is a j0 such that � does not divide go
j0
; furthermore, f

is tangential if and only if ν f (�) > ν f .

Remark 3.1 If E is smooth at p, we can choose local coordinates so that locally E
is given by {z1 = 0}, that is � = z1. Then we can write

f j (z) = z j + z
ν f
1 go

j (z)

with z1 not dividing some go
j ; and f is tangential if z1 divides go

1 , that is if f1(z) =
z1 + z

ν f +1
1 ho

1(z). More generally, if E has a normal crossing at p with 1 ≤ r ≤ n
smooth branches, then we can choose local coordinates so that � = z1 · · · zr , so that
f j (z) = z j + (z1 · · · zr )

ν f go
j (z) with some go

j0
not divisible by z1 · · · zr ; in this case

f is tangential if and only if z j divides go
j for j = 1, . . . , r . In particular, in the

terminology of [A2] f is tangential if and only if it is nondegenerate and b f = 1.
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Definition 3.6 We say that p ∈ E is a singular point for f ∈ End(M, E) (with
respect to E) if go

1(p) = · · · = go
n(p) in (3.2); it turns out [ABT1] that this defi-

nition is independent of the local coordinates. Furthermore, the pure order (or pure
multiplicity) νo( f, E) of f along E at p is

νo( f, E) = min{ordO(go
1), . . . , ordO(go

n)} .

It is easy to see that the pure order does not depend on the local coordinates; in
particular, p is singular for f with respect to E if and only if νo( f, E) ≥ 1. If E is
the fixed point set of f at p then we shall talk of the pure order νo( f ) of f at p.

Remark 3.2 When f is the blow-up of a germ fo ∈ End1(Cn, O) tangent to the
identity of order ν ≥ 1, then (3.1) implies that:

– f is tangential if and only if fo is not dicritical; in particular, in this case being
tangential is a generic condition;

– ν f = ν if fo is not dicritical, and ν f = ν + 1 if fo is dicritical;
– if fo is non dicritical, then [v] ∈ P

n−1(C) is singular for f if and only if it is a
characteristic direction of fo.

Using the notion of singular points we can generalize Proposition 2.1 as follows:

Proposition 3.2 ([ABT1]) Let E ⊂ M be a hypersurface in a complex manifold M,
and f ∈ End(M, E), f 	≡ idM , tangential to E. Let p ∈ E be a smooth point of E
which is non-singular for f . Then no infinite orbit of f can stay arbitrarily close to
p, that is, there exists a neighborhood U of p such that for all q ∈ U either the orbit
of q lands on E or f n0(q) /∈ U for some n0 ∈ N. In particular, no infinite orbit is
converging to p.

More generally, we have:

Proposition 3.3 ([AT1]) Let f ∈ End(Cn, O) be of the form

f j (z) =
{

z j + z j
(∏r

h=1 zνh
h

)
g j (z) for 1 ≤ j ≤ r,

z j + (∏r
h=1 zνh

h

)
g j (z) for r + 1 ≤ j ≤ n,

(3.3)

for suitable 1 ≤ r < n, with ν1, . . . , νr ≥ 1 and g1, . . . , gn ∈ OCn ,O. Assume that
g j0(O) 	= 0 for some r + 1 ≤ j0 ≤ n. Then no infinite orbit can stay arbitrarily
close to O.

A very easy example of this phenomenon, promised at the end of the previous
section, is the following:

Example 3.1 Let f (z, w) = (z, w + z2). Then f is tangent to the identity at the
origin; the fixed point set is {z = 0}, and thus O is not an isolated fixed point. We
have f k(z, w) = (z, w + kz2); therefore all orbits outside the fixed point set escape
to infinity, and in particular no orbit converges to the origin. Notice that this germ



Fatou Flowers and Parabolic Curves 15

has only one characteristic direction, which is degenerate (and tangent to the fixed
point set). Moreover, f is tangential with order of contact 2 to its fixed point set, but
the origin is not singular.

After these generalities, in the rest of this section we specialize to the case n = 2
and to tangential maps (because of Remark 3.2; see anyway [ABT1] for information
on the dynamics of non-tangential maps). Take f ∈ End(M, E), where M is a
complex surface and E ⊂ M is a 1-dimensional curve smooth at p ∈ E , and assume
that f is tangential to E with order of contact ν f ≥ 1. Then we can choose local
coordinates centered at p so that we can write

{
f1(z) = z1 + z

ν f +1
1 ho

1(z),

f2(z) = z2 + z
ν f
1 go

2(z),
(3.4)

where z1 does not divide go
2; notice that ho

1(0, ·) = ∂go
1

∂z1
(0, ·), where go

1 = z1ho
1. In

particular, O is singular if and only if go
2(O) = 0. We then introduce the following

definitions:

Definition 3.7 Let f ∈ End(M, E) be written in the form (3.4). Then:

– themultiplicityμp of f along E at p isμp = ord0
(
go
2(0, ·)

)
, so that p is a singular

point if and only if μp ≥ 1;
– the transversal multiplicity τp of f along E at p is τp = ord0

(
ho
1(0, ·)

)
;

– p is an apparent singularity if 1 ≤ μp ≤ τp;
– p is a Fuchsian singularity if μp = τp + 1;
– p is an irregular singularity if μp > τp + 1;
– p is a non-degenerate singularity if μp ≥ 1 but τp = 0;
– p is a degenerate singularity if μp, τp ≥ 1;
– the index ιp( f, E) of f at p along E is

ιp( f, E) = ν f Res0
ho
1(0, ·)

go
2(0, ·)

;

– the induced residue Res0p( f ) of f along E at p is

Res0p( f ) = −ιp( f, E) − μp .

It is possible to prove (see [A2, ABT1, AT3]; notice that our index is ν f times the
residual index introduced in [A2]) that these definitions are independent of the local
coordinates.

Remark 3.3 Recalling (3.1), we see that if f is obtained as the blow-up of a non-
dicritical map fo, and E is the exceptional divisor of the blow-up, then:

– the multiplicity of [v] as characteristic direction of fo is equal to the multiplicity
of f along E at [v];
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– [v] is a degenerate/non-degenerate characteristic direction of fo if and only if it is
a degenerate/non-degenerate singularity of f .

Furthermore, if we write Pν+1,1(1, w) = ∑ν+1
k=0 akwk and Pν+1,2(1, w)

= ∑ν+1
k=0 bkwk then [1 : 0] is a characteristic direction if and only if b0 = 0,

non-degenerate if and only if moreover a0 	= 0, and (setting bν+2 = 0)

ho
1(0, ζ )

go
2(0, ζ )

= 1

ζ

a0 + ∑ν+1
k=1 akζ

k

(b1 − a0) + ∑ν+1
k=1(bk+1 − ak)ζ k

.

So if b1 	= a0 we have

μO = 1, ι[1:0]( f, E) = νa0
b1 − a0

, Res0[1:0]( f ) = (ν − 1)a0 + b1
a0 − b1

;

moreover, if a0 	= 0 then [1 : 0] is a non-degenerate characteristic direction with
director α = (b1 − a0)/νa0. More generally, we have τ[1:0] = ord0

(
Pν+1,1(1, w)

)
,

μ[1:0] = ord0
(
Pν+1,2(1, w) − wPν+1,1(1, w)

)
and

ι[1:0] = νaμ−1

bμ − aμ−1
, Res0[1:0] = (ν − μ)aμ−1 + μbμ

aμ−1 − bμ

,

where μ = μ[1:0]. In particular we obtain:

– if [v] is non-degenerate characteristic direction of fo with director α 	= 0 then

ι[v]( f, E) = 1

α
;

– [v] is a non-degenerate characteristic direction with non-zero director for fo if and
only if it is a Fuchsian singularity of multiplicity 1 for f .

Residues and indices are important for two reasons. First of all, we have the
following index theorem:

Theorem 3.4 ([A2, ABT1]) Let E ⊂ M be a smooth compact Riemann surface in
a complex surface M. Let f ∈ End(M, E), f 	≡ idM , be tangential with order of
contact ν; denote by Sing( f ) ⊂ E the finite set of singular points of f in E. Then

∑

p∈Sing( f )

ιp( f ) = νc1(NE ),
∑

p∈Sing( f )

Res0p( f ) = −χ(E),

where c1(NE ) is the first Chern class of the normal bundle NE of E in M, and χ(E) is
the Euler characteristic of E. In particular, when f is the blow-up of a nondicritical
germ tangent to the identity and E = P

1(C) is the exceptional divisor we have
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∑

p∈Sing( f )

ιp( f ) = −ν,
∑

p∈Sing( f )

Res0p( f ) = −2 .

Remark 3.4 Bracci and Tovena [BT] have defined a notion of index at non-smooth
points of E allowing the generalization of Theorem 3.4 to non necessarily smooth
compact Riemann surfaces, where in the statement c1(NE ) is replaced by the self-
intersection E · E .

The second reason is that the index can be used to detect the presence of parabolic
curves. To state this precisely, we need a definition.

Definition 3.8 Let f ∈ End1(C2, O) be tangent to the identity. We say that O is a
corner if the germ of the fixed point set at the origin is locally reducible, that is has
more than one irreducible component.

Then

Theorem 3.5 ([A2]) Let E ⊂ M be a smooth Riemann surface in a complex sur-
face M, and take f ∈ End(M, E) tangential. Let p ∈ E be a singular point, not a
corner, such that ιp( f ) /∈ Q

+ ∪ {0}. Then there exists a Fatou flower with ν f petals
for f at p.

Corollary 3.6 ([A2]) Let f ∈ End1(C2, O) be tangent to the identity, and assume
that O is a nondicritical singular point. Let [v] ∈ P

1(C) be a characteristic direction,
and f̃ the blow-up of f . If [v] is not a corner for f̃ and ι[v]( f̃ ) /∈ Q

+ ∪ {0} then
there exists a Fatou flower for f tangent to [v].

Theorem 2.5 is then a consequence of Theorem 3.4 andCorollary 3.6. Indeed, take
f ∈ End1(C2, O) tangent to the identity with an isolated fixed point at the origin. If
O is dicritical, we can directly apply Theorem2.2. Assume then O non-dicritical, and
let f̃ ∈ End(C̃2, E) be the blow-up of f . Since O is non-dicritical, f̃ is tangential;
Theorem 3.4 then implies that at least one characteristic direction [v] has negative
index. Since O is an isolated fixed point, the fixed point set of f̃ coincides with the
exceptional divisor; therefore [v] is not a corner, and Corollary 3.6 yields the Fatou
flower we were looking for.

Remark 3.5 Bracci and Degli Innocenti (see [B, D]), using the definition of index
introduced in [BT], have shown that Theorem 3.5 still holds when E is not smooth
at p. Bracci and Suwa [BS] have also obtained a version of Theorem 3.5 when M
has a (sufficiently tame) singularity at p.

Example 3.2 Let f (z, w) = (z + z2w+ zw2 +w4, w+ zw2 + z4). Then f is tangent
to the identity at the origin of order 2, and the origin is an isolated fixed point. Further-
more, f is non-dicritical and it has (see Example 2.2) two characteristic directions,
[v1] = [1 : 0] and [v2] = [0; 1], both degenerate. Working as in Remark 3.4 it is easy
to see that [v1] is an irregular singularity of multiplicity 3 with index−2 and induced
residue−1, and that [v2] is an apparent singularity of multiplicity 1, vanishing index,
and induced residue −1. In particular, f admits a Fatou flower with 2 petals tangent
to [v1].



18 M. Abate

Example 3.3 Let f (z, w) = (z + w2, w + z3). Then f is tangent to the identity at
the origin of order 1, and the origin is an isolated fixed point. Furthermore, f is non-
dicritical with only one characteristic direction [v] = [1 : 0], which is degenerate of
multiplicity 3, Fuchsian, with index−1 and induced residue−2. Therefore f admits
a Fatou flower with one petal tangent to [v]; compare with Example 3.4.

There are still instances where Theorem 3.5 cannot be applied:

Example 3.4 Let f (z, w) = (z + zw + w3, w + 2w2 + bz3) with b 	= 0. This map is
tangent to the identity,with order 1, and the origin is an isolated fixed point.Moreover,
it has two characteristic directions: [1 : 0], degenerate Fuchsian with multiplicity 2,
index 1 and induced residue −3; and [0 : 1], non-degenerate Fuchsian with multi-
plicity 1, index −2 and induced residue 1. Theorem 2.2 (as well as Corollary 3.6)
yields a Fatou flower tangent to [0 : 1]; on the other hand, none of the results proven
up to now say anything about direction [1 : 0].

However, a deep result by Molino gives the existence of a Fatou flower in the
latter case too:

Theorem 3.7 ([Mo]) Let E ⊂ M be a smooth Riemann surface in a complex sur-
face M, and take f ∈ End(M, E) tangential with order of contact ν. Let p ∈ E be
a singular point, not a corner, such that νo( f ) = 1 and ιp( f ) 	= 0. Then there exists
a Fatou flower for f at p. More precisely:

(i) if p is an irregular singularity, or a Fuchsian singularity with ιp( f ) 	= νμp,
then there exists a Fatou flower for f with ν + τp(ν + 1) petals;

(ii) if p is a Fuchsian singularity with ιp( f ) = νμp then there exists a Fatou flower
for f with ν petals.

Remark 3.6 Evenmore precisely,when p is Fuchsianwithμp ≥ 2 and ιp( f ) = νμp

then Molino constructs parabolic curves defined on the connected components of a
set of the form

Dν+1− 1
μp

,δ = {
ζ ∈ C

∣
∣ |ζ r+1−1/μp (log ζ )1−1/μp − δ| < δ

}
,

which has at least ν connected components with the origin in the boundary.

Corollary 3.8 ([Mo])Let f ∈End1(C2, O) be tangent to the identity of order ν ≥ 1,
and assume that O is a nondicritical singular point. Let [v] ∈ P

1(C) be a charac-
teristic direction, and f̃ the blow-up of f . If [v] is not a corner for f̃ , νo( f̃ ) = 1
and ι[v]( f̃ ) 	= 0 then there exists a Fatou flower for f with at least ν petals tangent
to [v].

The assumption on the pure order in these statements seems to be purely technical;
so it is natural to advance the following

Conjecture 3.9 Let E ⊂ M be a smooth Riemann surface in a complex surface M ,
and take f ∈ End(M, E) tangential of order of contact ν. Let p ∈ E be a singular
point, not a corner, such that ιp( f ) 	= 0. Then there exists a Fatou flower for f at p.
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See Sect. 5, and in particular (5.3), for examples of systems having Fatou flowers
at singular points with vanishing index.

Instrumental in the proofs of Theorems 3.5 and 3.7 is a reduction of singularities
statement. We shall need a few definitions:

Definition 3.9 Let f ∈ End1(Cn, O) be tangent to the identity. A modification of
f is a f̃ ∈ End(M, E) obtained as the lifting of f to a finite sequence of blow-
ups, where the first one is centered in O and the remaining ones are centered in
singular points of the intermediate lifted maps contained in the exceptional divisor.
A modification is non-dicritical if none of the centers of the blow-ups is dicritical.
Associated to a modification f̃ ∈ End(M, E) of f we have a holomorphic map
π : M → C

n such that π−1(O) = E , π |M\E is a biholomorphism between M \ E
and C

n \ {O}, and f ◦ π = π ◦ f̃ . The exceptional divisor E is the union of a finite
number of copies of P

n−1(C), crossing transversally.

Definition 3.10 Let f ∈ End1(M, p) be tangent to the identity, where M is a com-
plex surface. In local coordinates centered at p, we can write f (z) = z + �(z)go(z),
where � = gcd( f1 − z1, f2 − z2) is defined up to units. We shall say that p is an
irreducible singularity if:

(a) ordp(�) ≥ 1 and νo( f ) = 1; and
(b) if λ1, λ2 are the eigenvalues of the linear part of go then either

(�1) λ1, λ2 	= 0 and λ1/λ2, λ2/λ1 /∈ N, or
(�2) λ1 	= 0, λ2 = 0.

It turns out that there always exists amodificationwith only dicritical or irreducible
singularities:

Theorem 3.10 ([A2]) Let f ∈ End1(C2, O) be tangent to the identity, and assume
that O is a singular point. Then there exists a non-dicritical modification f̃ ∈
End(M, E) of f such that the singular points of f̃ on E are either irreducible
or dicritical.

Definition 3.11 Let f ∈ End1(C2, O) be tangent to the identity. The modification
of f satisfying the conclusion of Theorem 3.10 obtained with the minimum number
of blow-ups is the minimal resolution of f .

It is easy to see that the techniques of the proof of Theorem 2.2 yield the existence
of a Fatou flower at dicritical singularities, and at irreducible singularities of type
(�1) which are not a corner; then the proof of Theorem 3.5 amounts to showing
that if the index is not a non-negative rational number then the minimal resolution
contains at least a singularity which is either dicritical or of type (�1) and not a corner.
The proof of Theorem 3.7(i) consists in showing that, under those hypotheses, the
minimal resolution must contain a non-degenerate singularity, which is not a corner
and where one can apply Theorem 2.2; the proof of Theorem 3.7(ii) requires instead
a technically hard extension of Theorem 2.2.
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See also [Ro4, Ro7] and [LS] for other approaches to resolution of singularities
for germs tangent to the identity in arbitrary dimension, and [AT2, AR] for the
somewhat related problem of the identification of formal normal forms for germs
tangent to the identity.

4 Parabolic Domains

Theorem 2.3 yields conditions ensuring the existence of parabolic domains attached
to a non-degenerate characteristic direction. In dimension 2, Vivas has found condi-
tions ensuring the existence of a parabolic domain attached to Fuchsian and irregular
degenerate characteristic directions, and Rong has found conditions ensuring the
existence of a parabolic domain attached to apparent degenerate characteristic direc-
tions. Very recently, Lapan [L2] has extended Rong’s approach to cover more types
of degenerate characteristic directions.

More precisely, Vivas has proved the following result:

Theorem 4.1 ([V1]) Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1,
with O nondicritical. Let [v] ∈ P

1(C) be a degenerate characteristic direction, and
f̃ the blow-up of f . Denote by μ ≥ 1 the multiplicity , by τ ≥ 0 the transversal
multiplicity, by ι ∈ C the index, and by νo ≥ 1 the pure order of f̃ at [v]. Assume
that either

(a) [v] is Fuchsian (thus necessarily τ ≥ 1 because [v] is degenerate) and

Re ι + τ > 0 ,

∣
∣∣ι + τ

2
− νμ

2

∣
∣∣ >

τ

2
+ νμ

2
;

or
(b) [v] is Fuchsian, νo = 1 and

∣∣∣ι − μν

2

∣∣∣ <
μν

2
;

or
(c) [v] is Fuchsian, νo > 1 and

Re ι + τ > 0,

∣
∣∣∣ι − (ν + 1)τ

2

∣
∣∣∣ >

(ν + 1)τ

2
;

or
(d) [v] is irregular.

Then there is a parabolic domain attached to [v].
See also Remark 6.4 for a comment about the conditions on ι and τ .
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To state Rong’s theorem, consider a germ f ∈ End1(C2, O) tangent to the identity
of order ν ≥ 1, and assume that [1 : 0] is a characteristic direction of f . Then we
can write

{
f1(z, w) = z + azr+1 + O(zr+2) + wα(z, w),

f2(z, w) = w + bzνw + dzs+1 + O(zs+2) + O(wzν+1) + w2β(z, w),
(4.1)

with ν ≤ r ≤ +∞, ν + 1 ≤ s ≤ +∞, ordO(α) ≥ ν, ordO(β) ≥ ν − 1, and a 	= 0
if r < +∞ (respectively, d 	= 0 if s < +∞). The characteristic direction [1 : 0] is
non-degenerate if and only if r = ν; in this case the director is given by 1

ν

( b
a − 1

)
.

On the other hand, saying that [1 : 0] is degenerate with b 	= 0 is equivalent to saying
that r > ν and that [1 : 0] has multiplicity 1 and transversal multiplicity at least 1;
in particular, in this case it is an apparent singularity. Then Rong’s theorem can be
stated as follows:

Theorem 4.2 ([Ro9]) Let f ∈End1(C2, O) be tangent to the identity of order ν ≥ 1
and written in the form (4.1), so that [1 : 0] is a characteristic direction. Assume that
r > ν and b 	= 0, so that [1 : 0] is an apparent degenerate characteristic direction.
Suppose furthermore that s > r , and that b2/a /∈ R

+ if r = 2ν. Then there is a
parabolic domain attached to [1 : 0].

To state Lapan’s result we need to introduce a few definitions.

Definition 4.1 Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1 with
homogeneous expansion (1.1). We say that [v] ∈ P

1(C) is a characteristic direction
of degree s ≥ ν + 1 if it is a characteristic direction of Pν+1, . . . , Ps . We shall say
that it is non-degenerate in degree r + 1, with ν < r < s, if it is degenerate for
Pν+1, . . . , Pr and non-degenerate for Pr+1.

For instance, if f is in the form (4.1) with s < +∞, then [1 : 0] is a characteristic
direction of degree s. If furthermore r+1 ≤ s then it is non-degenerate in degree r+1.

Definition 4.2 Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1
with homogeneous expansion (1.1). Assume that [1 : 0] ∈ P

1(C) is a characteristic
direction of degree s ≥ ν + 1. Given ν + 1 ≤ j ≤ s, the j-order of [1 : 0] is the
order of vanishing at 0 of Pj,2(1, ·), where Pj = (Pj,1, Pj,2). We say that [1; 0] is
of order one in degree t + 1, with ν ≤ t < s, if the j-order of [1 : 0] is larger than
one for ν + 1 ≤ j ≤ t and of (t + 1)-order exactly equal to 1.

For instance, if b 	= 0 in (4.1) then [1 : 0] is of order one in degree ν + 1. More
generally, if b = 0 and [1 : 0] is of order one in degree t + 1 then we can replace the
term O(wzν+1) by O(wzt+1).

Assume that [1 : 0] is a characteristic directionof degree s < +∞, non-degenerate
in degree r + 1 ≤ s and of order one in degree t + 1 ≤ s. Then we can write

{
f1(z, w) = z + azr+1 + O(zr+2) + wα(z, w),

f2(z, w) = w + bzt+1w + dzs+1 + O(zs+2) + O(wzt+2) + w2β(z, w),

(4.2)
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with abd 	= 0. Then Lapan’s theorem can be stated as follows:

Theorem 4.3 ([L2]) Let f ∈ End1(C2, O) be tangent to the identity of order ν ≥ 1
and written in the form (5.1), so that [1 : 0] is a characteristic direction of degree
s < +∞, non-degenerate in degree ν + 1 ≤ r + 1 ≤ s, and of order one in
degree t + 1 ≤ s. Assume that t ≤ r and s > r + t − ν. Suppose furthermore that
either

(i) r 	= t , 2t , or
(ii) r = t and Re(b/a) > 0, or

(iii) r = 2t and b2/a /∈ R
+.

Then there is a parabolic domain attached to [1 : 0].
The assumptions of Theorem 4.2 imply that [1 : 0] is a characteristic direction

of degree s, non-degenerate in degree ν + 1 < r + 1 ≤ s, and of order one in
degree t + 1 = ν + 1; therefore Theorem 4.2 is a particular case of Theorem 4.3.

Parabolic domains are often used to build Fatou-Bieberbach domains, that is
proper subsets ofC

n biholomorphic toC
n ; see, e.g., [V2, SV] and references therein.

5 The Formal Infinitesimal Generator

A different approach to the study of parabolic curves in C
2 has been suggested

by Brochero-Martínez, Cano and López-Hernanz [BCL], and further developed by
Câmara and Scárdua [CaS] and by Lopez-Hernanz and Sánchez [LS]. It consists in
using the formal infinitesimal generator of a germ tangent to the identity. To describe
their approach, we need to introduce several definitions.

Definition 5.1 We shall denote by Ôn = C[[z1, . . . , zn]] the space of formal power
series in n variables. The order ord(�̂) of �̂ ∈ Ôn is the lowest degree of a non-
vanishing term in the Taylor expansion of �̂. A formal map is a n-tuple of formal
power series in n variables; the space of formal maps will be denoted by Ôn

n
. We

shall denote by Ênd(Cn, O) the set of formal maps with vanishing constant term; by
Ênd1(Cn, O) the subset of formal maps tangent to the identity, and by Êndν(C

n, O)

the subset of formal maps tangent to the identity of order at least ν ≥ 1.

Definition 5.2 We shall denote by Xn the space of germs at the origin of holo-
morphic vector fields in C

n . A formal vector field is an expression of the form X̂ =
X̂1

∂
∂z1

+· · ·+ X̂n
∂

∂zn
where X̂1, . . . , X̂n ∈ Ôn are the components of X̂ . The space of

formal vector fields will be denoted by X̂n . The order ord(X̂) of X̂ ∈ X̂n is the min-
imum among the orders of its components. We put X̂ k

n = {X̂ ∈ X̂n | ord(X̂) ≥ k}.
If X̂ ∈ X̂ k

n , the principal part of X̂ will be the unique polynomial homogeneous
vector field Hk of degree exactly k such that X̂ − Hk ∈ X̂ k+1

n . A characteristic
direction for X̂ is an invariant line for Hk .
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Remark 5.1 There is a clear bijection between X̂n and Ôn
n
obtained by associating

to a formal vector field the n-tuple of its components; so we shall sometimes identify
formal vector fields and formal maps without comments. In particular, this bijection
preserves characteristic directions.

If X ∈ Xn is a germ of holomorphic vector field vanishing at the origin (that
is, of order at least 1), the associated time-1 map fX will be a well defined germ
in End(Cn, O), that can be recovered as follows (see, e.g., [BCL]):

fX =
∑

k≥0

1

k! X (k)(id) , (5.1)

where X (k) is the k-th iteration of X thought of as derivation of End(Cn, O). Now,
not every germ in End(Cn, O) can be obtained as a time-1map of a convergent vector
field (see, e.g., [IY, Theorem 21.31]). However, it turns out that the right-hand side
of (5.1) is well-defined as a formal map for all X ∈ X̂ 1

n .

Definition 5.3 The exponential map exp : X̂ 1
n → Ênd(Cn, O) is defined by the

right-hand side of (5.1).

When k ≥ 2, if X̂ ∈ X̂ k
n has principal part Hk then it is easy to check that

exp(X̂) = id+Hk + h.o.t. ; (5.2)

in particular, the exponential of a formal vector field of order k is a formal map
tangent to the identity of order k − 1. Takens (see, e.g., [IY, Theorem 3.17]) has
shown that on the formal level the exponential map is bijective:

Proposition 5.1 The exponential map exp : X̂ ν+1
n → Êndν(C

n, O) is bijective for
all ν ≥ 1.

Definition 5.4 If f̂ ∈ Êndν(C
n, O), the unique formal vector field X̂ ∈ X̂ ν+1

n such
that exp(X̂) = f̂ is the formal infinitesimal generator of f̂ .

The idea now is to read properties of a holomorphic germ tangent to the identity
from properties of its formal infinitesimal generator, using Theorem 2.2 as bridge
for going back from the formal side to the holomorphic side.

The first observation is that if π : (C̃2, E) → (C2, O) is the blow-up of the origin,
X̂ ∈ X̂ 2

2 is a formal vector field and [v] ∈ E is a characteristic direction of (the
principal part of) X̂ then we can find a formal vector field X̂[v] ∈ X̂ 2

2 such that
dπ(X̂[v]) = X̂ ◦ π . This lifting is compatible with the exponential in the following
sense:

Proposition 5.2 ([BCL])Let f ∈End1(C2, O) be tangent to the identity with formal
infinitesimal generator X̂ ∈ X̂ 2

2 , and let f̃ ∈ End(C̃2, E) be the blow-up of f . Let
[v] ∈ E be a characteristic direction of f , and denote by f̃[v] the germ of f̃ at [v].
Then f̃[v] = exp(X̂[v]).
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In particular, Brochero-Martínez, Cano and López-Hernanz’s proofs of Theo-
rems 2.5 and 3.5 go as follows: let X̂ ∈ X 2

2 be the formal infinitesimal generator of
f ∈ End1(C2, O) with an isolated fixed point (so that X̂ has an isolated singular
point at the origin). Then the formal version of Camacho-Sad’s theorem [CS] (see
also [Ca]) shows that we can find a finite composition π : (M, E) → (C2, O) of
blow-ups at singular points and a smooth point p ∈ E such that the lifting X̂ p of X̂ ,
in suitable coordinates centered at p adapted to E (in the sense that E is given by
the equation {z = 0} near p), has the expression

X̂ p(z, w) = zm
((

λ1z + O(z2)
) ∂

∂z
+ (

λ2w + O(z)
) ∂

∂w

)

with λ1 	= 0, λ2/λ1 /∈ Q
+ and m ≥ ord(X̂) − 1. Then exp(X̂ p) has the form

exp(X̂ p)(z, w) = (
z + λ1zm+1 + O(zm+2), w + λ2zmw + O(zm+1)

)
,

which has a non-degenerate characteristic direction transversal to E — and hence
a Fatou flower outside the exceptional divisor. By Proposition 5.2, exp(X̂ p) is the
blow-up of exp(X̂) = f ; therefore projecting this Fatou flower down by π we get a
Fatou flower for f .

In [CaS] and [LS] this approach has been pushed further showing how to relate
formal separatrices and parabolic curves.

Definition 5.5 A formal curve Ĉ in (C2, 0) is a reduced principal ideal of Ô2. Any
generator of the ideal is an equation of the curve; the equation is defined up to an unit
in Ô2. The tangent cone of a formal curve Ĉ is the set of zeros of the homogeneous
part of least degree of any equation of Ĉ ; the tangent directions to Ĉ are the points
in P

1(C) determined by the tangent cone.

Remark 5.2 It is known that a formal curve Ĉ is irreducible if and only if it has a
unique tangent direction.

Definition 5.6 Let X̂ ∈ X̂ 2
2 .A singular formal curve for X̂ is a formal curve Ĉ = (�̂)

such that X̂ = �̂X̂1 for some X̂ ∈ X̂ 1
2 . A formal separatrix of X̂ is a formal curve

Ĉ = (�̂) such that X̂(�̂) ∈ (�̂). Clearly singular formal curves are formal separatrices.

The corresponding notions for germs tangent to the identity are:

Definition 5.7 Let f ∈ End1(C2, O). A formal curve Ĉ = (�̂) is a formal separatrix
for f if �̂ ◦ f ∈ (�̂). In particular, this means that f acts by composition on Ô2/(�̂);
if the action is the identity, we say that Ĉ is completely fixed by f . Notice that Ĉ is
completely fixed by f if and only if we can write f = id+�̂ĝ for some ĝ ∈ Ô2

2 .

Proposition 5.3 ([CaS]) Let X̂ ∈ X̂ 2
2 be the formal infinitesimal generator of f ∈

End1(C2, O). Then:
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(i) a formal curve is a formal separatrix for f if and only if it is a formal separatrix
for X̂;

(ii) a formal curve is completely fixed for f if and only if it is a singular formal
curve for X̂;

(iii) a completely fixed curve for f always has a convergent equation;
(iv) the tangent directions to a formal separatrix are characteristic directions for f ,

and the tangent directions to a completely fixed curve are degenerate charac-
teristic directions for f .

Let Ĉ = (�̂) be a formal curve, and [v] ∈ P
1(C) a tangent direction to Ĉ . If

π : (C̃2, E) → (C2, O) is the blow-up of the origin, we can find a formal curve
π∗Ĉ[v] = (�̂[v]) at [v] such that �̂[v] = �̂ ◦ π ; the tangent directions to π∗Ĉ[v] are
higher order tangent directions of Ĉ . This construction can be iterated, and it gives
a way of lifting formal curves along a finite sequence of blow-ups. Using this idea,
and a generalization of Hakim’s technique, López-Hernanz and Sánchez have been
able to prove the following

Theorem 5.4 (López-Hernanz and Sánchez, [LS]) Let f ∈ End1(C2, O) be a germ
tangent to the identity admitting a formal separatrix Ĉ not completely fixed. Then f
or f −1 (or both) admit a parabolic curve tangent to (a tangent direction of) Ĉ.

Remark 5.3 Actually, [LS, Theorem 1] gives the more precise statement that the
parabolic curve φ : D → C

2 is asymptotic to the formal separatrix Ĉ . This means

that there exists a formal parametrization γ̂ ∈ Ô1
2
of Ĉ such that for every N ∈ N

there exists cN > 0 such that

|φ(ζ ) − (JN γ̂ )(ζ )| ≤ cN |ζ |N+1

for all ζ ∈ D, where JN γ̂ is the N -th jet of γ̂ . A formal parametrization of Ĉ is a

formal map γ̂ ∈ Ô1
2
such that g ∈ Ĉ if and only if g ◦ γ̂ ≡ 0.

Remark 5.4 In [CaS] Câmara and Scárdua claimed that under the hypotheses of
Theorem 5.4 f must admit a parabolic curve tangent to Ĉ . Unfortunately, the core of
their argument was [CaS, Proposition 2.12], and in its proof they forgot to consider
vector fields of the form X̂o(z, w) = z(1+λwp) ∂

∂z +wp+1 ∂
∂w , where their approach

does not work.

The proof of Theorem 5.4 has three steps. First of all, the authors show that,
assuming the existence of a formal separatrix not completely fixed, after a finite
number of blow-ups the germ f can be brought in the following normal form:

{
f1(z, w) = z + zν+p+1

(
λ + ψ(z, w)

)
,

f2(z, w) = w + zν
(
b(z) + a(z)w + O(w2)

)
,

(5.3)

with p ≥ 0, λ 	= 0, ordO ψ ≥ 1, a(0) 	= 0 and b(0) = 0. For a germ in this form,
a real attracting direction is a τ ∈ S1 such that τ ν+pλ = −1. Then, generalizing
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Hakim’s proof of Theorem 2.2, the authors show that if f has a real attracting

direction τ such that Re
(

a(0)
λτ p

)
< 0 then f admits a parabolic curve, that turns out

to be asymptotic to Ĉ . Finally, they show that at least one between f and f −1 have
a real attracting direction satisfying the given condition.

Notice that a germ in the form (5.3) has pure order 1, but vanishing index if
p ≥ 1; so we cannot apply Theorem 3.7. On the other hand, there are germs tangent
to the identity admitting parabolic curves thanks to Theorem 3.7 but without formal
separatrices not completely fixed:

Example 5.1 Let f = exp(zν Xo), with ν ≥ 2 and

X̂o(z, w) = z
(
λ + A(z, w)

) ∂

∂z
+ (

z + λw + B(z, w)
) ∂

∂w
,

with λ 	= 0, ordO(A) ≥ 1 and ordO(B) ≥ 2. Then

f (z, w) =
(

z + zν+1(λ + A(z, w)
) + O(z2ν+1), w + zν

(
z + λw + B(z, w)

) + O(z2ν)
)

.

The germ f has pure order 1 and the linear part of go is not diagonalizable; since
the index of f at O along the fixed point set is 1, Theorem 3.7 yields a Fatou flower.
Furthermore, f has a unique (degenerate) characteristic direction, [0 : 1]. Blowing
up and looking in the coordinates centered at [0 : 1] we get

f̃ (u, w) =
(

u + uν+1wν
(−u + wÂ(u, w)

)
, w + uνwν+1(λ + u + wB̂(u, w)

))

= exp(uνwν X̃o) ,

where X̃o = uĈ(u, w) ∂
∂u + w

(
λ + D̂(u, w)

)
∂

∂w with ordO(Ĉ), ordO(D̂) ≥ 1. Since

the linear part of X̃o is diagonalizable, Xo has exactly two formal separatrices, nec-
essarily given by the axes. It follows that all formal separatrices of f̃ are completely
fixed; so to f̃ we cannot apply Theorem 5.4, but f̃ still has a Fatou flower because
f does.

The paper [LS] also indicates a way to adapt these techniques to more than two
variables. However, it should be kept in mind that [AT1] contains examples in C

3 of
germs tangent to the identity without parabolic curves asymptotic to formal separa-
trices.

6 Homogeneous Vector Fields and Geodesics

None of the results presented up to now (with the partial exception of Proposition 3.1)
describe the dynamics in a full neighborhood of the fixed point, and so in this sense
they are not a complete generalization of the Leau-Fatou flower theorem. As far as
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we know, up to now the only techniques able to give results in a full neighborhood
are the ones introduced in [AT3], that we shall briefly describe now.

We have seen that every germ tangent to the identity can be realized as the time-
1 map of a formal vector field of order at least 2; and that a lot of information
can be deduced from the principal part of this vector field, principal part which is
a homogeneous vector field. Furthermore, in dimension 1 Camacho-Shcherbakov
theorem (see [C, Sh]) says that every germ tangent to the identity is locally topo-
logically conjugated to the time-1 map of a homogeneous vector field. So time-1
maps of homogeneous vector fields clearly are an important class of examples; and
the insights we obtain from their study (and, more generally, from the study of the
real dynamics of homogeneous vector fields) can shed light on the dynamics of more
general germs tangent to the identity.

The work described in [AT3] had exactly the aim of studying the real dynamics
of homogenous vector fields in C

n ; for the sake of clarity, here we shall summarize
only the results in C

2 only, referring to [AT3] for more general statements.
Let H ∈ X ν+1

2 be a homogeneous vector field in C
2 of degree ν + 1 ≥ 2. It

clearly determines a homogeneous self-map of C
2 of the same degree; in particular,

we can adapt to H all the definitions we introduced for homogeneous self-maps
(degenerate/non-degenerate characteristic directions, multiplicities, index, induced
residue, being dicritical).

Definition 6.1 Let H ∈ X2 be a homogeneous vector field in C
2. A characteristic

line for H is a line Lv = Cv which is H -invariant, that is such that [v] ∈ P
1(C) is a

characteristic direction.

If Lv = Cv is a characteristic line then integral lines of H issuing from points
in Lv stay inside Lv. If [v] is degenerate, H vanishes identically along Lv, and so
the dynamics there is trivial. If [v] is non-degenerate, then the dynamics inside Lv is
one-dimensional, and can be summarized as follows:

Lemma 6.1 Let [v] ∈ P
1(C) be a non-degenerate characteristic direction of a

homogeneous vector field H = H1
∂

∂z1
+ H2

∂
∂z2

∈ X ν+1
2 of degree ν + 1 ≥ 2.

Choose a representative v ∈ C
2 so that H(v) = v. Then the real integral curve of H

issuing from ζ0v ∈ Lv is given by

γζ0v(t) = ζ0v

(1 − ζ ν
0 νt)1/ν

.

In particular no (non-constant) integral curve is recurrent, and we have:

(a) if ζ ν
0 /∈ R

+ then lim
t→+∞ γζ0v(t) = O;

(b) if ζ ν
0 ∈ R

+ then lim
t→(ζ ν

0 ν)−1
‖γζ0v(t)‖ = +∞.

Lemma 6.1 completely describes the dynamics of dicritical homogeneous vector
fields. More precisely, we see that every non-degenerate characteristic line contains
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a Fatou flower; thus in this case Theorem 2.2 becomes trivial, and we can shift our
interest to the understanding of the dynamics outside the characteristic lines. To do
so we need to introduce a new ingredient:

Definition 6.2 Let ∇o be a meromorphic connection on P
1(C) (see [IY] for an

introduction to meromorphic connections), and denote by Sing(∇o) the set of its
poles. A geodesic for ∇o is a smooth real curve σ : I → P

1(C) \Sing(∇o) such that

∇o
σ̇ σ̇ ≡ O.

The main result allowing the understanding of the real dynamics of homogeneous
vector fields is the following:

Theorem 6.2 ([AT3]) Let H ∈ X ν+1
2 be a non-dicritical homogeneous vector

field of degree ν + 1 ≥ 2 in C
2, and denote by VH the complement in C

2 of the
characteristic lines of H. Then there exists a meromorphic connection ∇o on P

1(C),
whose poles are a (possibly proper) subset of the characteristic directions of H,
such that:

(i) if γ : I → VH is a real integral curve of H then its direction [γ ] : I → P
1(C)

is a geodesic for ∇o; conversely,
(ii) if σ : I → P

1(C) is a geodesic for ∇o then there exists exactly ν real integral
curves γ1, . . . , γν : I → VH of H, differing only by the multiplication by a ν-th
root of unity, whose direction is given by σ , that is such that σ = [γ j ].

Remark 6.1 If H = H1
∂

∂z1
+ H2

∂
∂z2

∈ X ν+1
2 is a homogeneous vector field of

degree ν + 1 ≥ 2, the meromorphic 1-form representing ∇o in the standard chart
centered at 0 ∈ P

1(C) is given by ([AT3])

ηo = −
[
ν

H1(1, ζ )

R(ζ )
+ R′(ζ )

R(ζ )

]
dζ,

where R(ζ ) = H2(1, ζ ) − ζ H1(1, ζ ); a similar formula, exchanging the rôle of z1
and z2, holds in the standard chart centered at ∞ ∈ P

1(C). In particular recalling
(5.2), (3.1) and Definition 3.7 we see that the poles of ∇o are singular points for the
blow-up f̃ of the time-1 map of H , and that the residue of ∇o at a pole p ∈ P

1(C)

coincides with the induced residue of f̃ at p.
Furthermore, in [AT3] we introduced another meromorphic connection∇ defined

on the ν-th tensor power N⊗ν
E of the normal bundle NE of the exceptional divisor

E = P
1(C) in the blow-up of the origin inC

2. Themeromorphic 1-form representing
∇ in the standard chart centered at 0 ∈ P

1(C) is given by

η = −ν
H1(1, ζ )

R(ζ )
dζ.

Therefore the poles of ∇ are exactly the Fuchsian and irregular characteristic direc-
tions of f̃ , and the residue of ∇ at a pole p ∈ P

1(C) coincides with the opposite of
the index of f̃ at p.



Fatou Flowers and Parabolic Curves 29

So the study of the real integral curves of H is reduced to the study of the geodesics
of a meromorphic connection on P

1(C). This study is subdivided in two parts: the
study of the global behavior of geodesics, and the study of the local behavior nearby
the poles. It turns out that the global behavior is related to the induced residues, while
the local behavior is mainly related to the index. To state our results we need a couple
of definitions.

Definition 6.3 A geodesic σ : [0, �] → P
1(C) for a meromorphic connection ∇o

is closed if σ(�) = σ(0) and σ ′(�) is a positive multiple of σ ′(0); it is periodic if
σ(�) = σ(0) and σ ′(�) = σ ′(0).

Contrarily to the case of Riemannian geodesics, closed geodesics are not nec-
essarily periodic; see [AT3]. The (induced) residue allows to recognize closed and
periodic geodesics:

Proposition 6.3 ([AT3]) Let ∇o be a meromorphic connection on P
1(C), with poles

{p0, p1, . . . , pr }, and set S = P
1(C) \ {p0, . . . , pr } ⊆ C. Let σ : [0, �] → S be a

geodesic with σ(0) = σ(�) and no other self-intersections; in particular, σ is an
oriented Jordan curve. Let {p1, . . . , pg} be the poles of ∇o contained in the interior
of σ . Then σ is a closed geodesic if and only if

g∑

j=1

ReResp j (∇o) = −1 ,

and it is a periodic geodesic if and only if

g∑

j=1

Resp j (∇o) = −1 .

If σ is closed, it can be extended to an infinite length geodesic σ : J → S, where J
is a half-line (possibly J = R). Moreover,

(i) if
g∑

j=1
ImResp j (∇) < 0 then σ ′(t) → O as t → +∞ and |σ ′(t)| → +∞ as t

tends to the other end of J ;

(ii) if
g∑

j=1
ImResp j (∇) > 0 then σ ′(t) → O as t → −∞ and |σ ′(t)| → +∞ as t

tends to the other end of J .

Corollary 6.4 Let γ : R → C
2 \ {O} be a non-constant periodic integral curve of a

homogeneous vector field H of degree ν + 1 ≥ 2. Then the characteristic directions
[v1], . . . , [vg] ∈ P

1(C) surrounded by [γ ] satisfy

g∑

j=1

Res0[v j ](H) = −1 ,
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where Res0[v j ](H) denotes the induced residue at [v j ] of the blow-up of the time-1
map of H.

Closed but not periodic geodesics correspond to integral curves converging to the
origin on one side and escaping to infinity on the other side; the convergence to the
origin occurs along a spiral, and thus the time-1 map has orbits converging to the
origin without being tangent to any direction. This can actually happen; see [AT3]
for an example.

Definition 6.4 Let σ : I → S be a curve in S = P
1(C) \ {p0, . . . , pr }. A simple

loop in σ is the restriction of σ to a closed interval [t0, t1] ⊆ I such that σ |[t0,t1] is
a simple loop τ . If p1, . . . , pg are the poles of ∇ contained in the interior of τ , we
shall say that τ surrounds p1, . . . , pg .

Definition 6.5 A saddle connection for a meromorphic connection ∇o on P
1(C) is

a maximal geodesic σ : (ε−, ε+) → P
1(C) (with ε− ∈ [−∞, 0) and ε+ ∈ (0,+∞])

such that σ(t) tends to a pole of ∇o both when t ↑ ε+ and when t ↓ ε−. A graph of
saddle connections is a connected graph in P

1(C) made up of saddle connections.

Then we have a Poincaré-Bendixson type theorem, describing the asymptotic
behavior of geodesics:

Theorem 6.5 ([AT3, AB]) Let σ : [0, ε0) → S be a maximal geodesic for a mero-
morphic connection ∇o on P

1(C), where S = P
1(C) \ {p0, . . . , pr } and p0, . . . , pr

are the poles of ∇o. Then either

(i) σ(t) tends to a pole of ∇o as t → ε0; or

(ii) σ is closed, and then surrounds poles p1, . . . , pg with
g∑

j=1
ReResp j (∇o) = −1;

or
(iii) the ω-limit set of σ in P

1(C) is given by the support of a closed geodesic

surrounding poles p1, . . . , pg with
g∑

j=1
ReResp j (∇o) = −1; or

(iv) the ω-limit set of σ in P
1(C) is a graph of saddle connections whose com-

plement in P
1(C) has a connected component containing p1, . . . , pg with

g∑

j=1
ReResp j (∇o) = −1; or

(v) σ intersects itself infinitely many times, and in this case every simple loop of
σ surrounds a set of poles whose sum of residues has real part belonging to
(−3/2,−1) ∪ (−1,−1/2).

In particular, a recurrent geodesic either intersects itself infinitely many times or is
closed.

Corollary 6.6 Let H be a homogeneous holomorphic vector field on C
2 of degreeν+

1 ≥ 2, and let γ : [0, ε0) → C
2 be a recurrent maximal integral curve of Q. Then γ

is periodic or [γ ] : [0, ε0) → P
1(C) intersects itself infinitely many times.
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Remark 6.2 We have examples (see [AT3]) of cases (i), (ii), (iii) and (v), but not yet
of case (iv).

It is worthwhile to notice that the maximal geodesics of generic meromorphic
connections will behave as in case (i), because the other cases require that a particular
relationships between the (induced) residues should hold. In particular, this means
that the direction of a maximal real integral curve of a generic homogeneous vector
field will go from a characteristic line to a characteristic line (possibly the same); the
next step then consists in understanding what happens nearby characteristic lines.
It turns out that we can find holomorphic normal forms for apparent and Fuchsian
singularities, and formal normal forms for irregular singularities; and we shall see
that the local behavior is mostly related to the index.

To key behind this local study is the following

Theorem 6.7 ([AT3]) Let NE be the normal bundle of the exceptional divisor of the
blow-up (M, E) of the origin in C

2. Then for every ν ≥ 1 there exists a holomorphic
ν-to-1 covering χν : C

2 \ {O} → N⊗ν
E \ E satisfying π ◦ χν(v) = [v], where

π : N⊗ν
E → E = P

1(C) is the canonical projection, such that for every homogeneous
vector field H ∈ X ν+1

2 of degree ν + 1 the push-forward dχν(H) defines a global
holomorphic vector field G on the total space of N⊗ν

E . In particular, a real curve
γ : I → C

2 \ {O} is an integral curve for H if and only if χν ◦ γ is an integral curve
for G.

Definition 6.6 The field G is the geodesic field associated to the homogeneous
vector field H . The reason of the name is that the projections on P

1(C) of the
integral curves of G are geodesics for the connection ∇o associated to H .

The point is that the field G has a form well suited to reduction to normal form.
Indeed, if we denote by ζ the usual coordinate on C ⊂ P

1(C) centered at the
origin, and by v the corresponding coordinate on the fibers of N⊗ν

E , which over C is
canonically trivialized, we have

G(ζ, v) = R(ζ )v
∂

∂ζ
+ νH1(1, ζ )v2

∂

∂v
,

where R(ζ ) = H2(1, ζ ) − ζ H1(1, ζ ) as before; and a similar formula holds in the
usual coordinates centered at ∞ ∈ P

1(C). In particular, we can read the multiplicity
and the transversal multiplicity (and hence the type of singularity) of a characteristic
direction of H in the order of vanishing of the components of the geodesic field.

Since G is a vector field on the total space of a line bundle, it is natural to
consider only changes of coordinates preserving the bundle structure, that is changes
of coordinates of the form

(ζ, v) �→ (
ψ(ζ ), ξ(ζ )v

)
,
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where ψ a germ of biholomorphism and ξ is a non-vanishing holomorphic function.
It turns out that these changes of coordinates are enough to obtain normal forms
around apparent and Fuchsian singularities.

For apparent singularities we have the following theorem:

Theorem 6.8 ([AT3]) Let [v] ∈ P
1(C) be an apparent characteristic direction of

multiplicity μ ≥ 1 of a homogeneous vector field H ∈ X ν+1
2 . Then we can find

local coordinates centered at [v] such that in these coordinates the geodesic field G
associated to H is given by

G =

⎧
⎪⎨

⎪⎩

ζv
∂

∂ζ
if μ = 1,

ζμ(1 + aζμ−1)v
∂

∂ζ
for some a ∈ C if μ > 1.

Furthermore, if μ > 1 then a ∈ C is a holomorphic invariant, the apparent index.

In particular, around an apparent singularity the geodesic field G is explicitly
integrable. Studying the integral lines of G and rephrasing the results in terms of the
integral curves of H we obtain the following corollary:

Corollary 6.9 ([AT3]) Let H ∈ X ν+1
2 be a homogeneous vector field on C

2 of
degree ν+1 ≥ 2. Let [v] ∈ P

1(C) be an apparent singularity of H of multiplicity μ ≥
1 (and apparent index a ∈ C if μ > 1). Then:

(i) if the direction [γ (t)] ∈ P
1(C) of an integral curve γ : [0, ε) → C

2 \ {O} of H
tends to [v] as t → ε then γ (t) tends to a non-zero point of the characteristic
leaf Lv ⊂ C

2;
(ii) no integral curve of H tends to the origin tangent to [v];

(iii) there is an open set of initial conditions whose integral curves tend to a non-zero
point of Lv;

(iv) if μ = 1 or μ > 1 and a 	= 0 then H admits periodic orbits of arbitrarily long
periods accumulating at the origin.

In particular, in case (iv) the time-1 map of H has both periodic orbits accumu-
lating at the origin (small cycles), when the period of the integral curve is rational,
and orbits whose closure a is a closed Jordan curve, when the period of the integral
curve is irrational; both phenomena cannot happen in one variable.

The holomorphic classification of Fuchsian singularities is the following:

Theorem 6.10 ([AT3]) Let [v] ∈ P
1(C) be a Fuchsian characteristic direction of

multiplicity μ ≥ 1, transversal multiplicity τ = μ − 1 ≥ 0 and index ι ∈ C
∗ of a

homogeneous vector field H ∈ X ν+1
2 . Then we can find local coordinates centered

at [v] such that in these coordinates the geodesic field G associated to H is given:

(i) if τ + ι /∈ N
∗ by

ζμ−1
(

ζv
∂

∂ζ
+ ιv2

∂

∂v

)
;
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(ii) if n = τ + ι ∈ N
∗ by

ζμ−1
(

ζv
∂

∂ζ
+ ιv2(1 + aζ n)

∂

∂v

)

for a suitable a ∈ C which is a holomorphic invariant, the resonant index.

When the resonant index is zero the integral curves of the geodesic field can
be expressed in terms of elementary functions and easily studied. This is not the
case when the resonant index is different from zero; however we are able to obtain
the following description of the integral curves of H nearby Fuchsian characteristic
directions:

Corollary 6.11 ([AT3]) Let H ∈ X ν+1
2 be a homogeneous vector field on C

2 of
degree ν+1 ≥ 2. Let [v] ∈ P

1(C) be a Fuchsian singularity of H of multiplicity μ ≥
1, transversal multiplicity τ = μ − 1 ≥ 0 and index ι ∈ C

∗ (and resonant index
a ∈ C if τ + ι ∈ N

∗). Then:

(i) if the direction [γ (t)] ∈ P
1(C) of an integral curve γ : [0, ε) → C

2 \ {O} of H
tends to [v] as t → ε and γ is not contained in the characteristic leaf Lv then

(a) if τ + Reι > 0 and
∣∣ι + τ

2

∣∣ > τ
2 then γ (t) tends to the origin;

(b) if τ + ι = 0, or τ +Reι < 0, or τ +Reι > 0 and
∣∣ι + τ

2

∣∣ < τ
2 , then ‖γ (t)‖

tends to +∞;
(c) if τ + Reι > 0 and

∣∣ι + τ
2

∣∣ = τ
2 then γ (t) accumulates a circumference in

Lv.

Furthermore there is a neighbourhood U ⊂ P
1(C) of [v] such that an integral curve

γ issuing from a point z0 ∈ C
2 \ Lv with [z0] ∈ U \ {[v]} must have one of the

following behaviors, where Û = {z ∈ C
2 \ {O} | [z] ∈ U }:

(ii) if τ + Reι < 0 then

(a) either γ (t) escapes Û , and this happens for a Zariski open dense set of
initial conditions in Û ; or

(b) [γ (t)] → [v] but ‖γ (t)‖ → +∞;

in particular, no integral curve outside Lv converge to the origin tangent to [v];
(iiii) if τ + Reι = 0 but τ + ι 	= 0 then

(a) either γ (t) escapes Û ; or
(b) γ (t) → O without being tangent to any direction, and [γ (t)] is a closed

curve or accumulates a closed curve in P
1(C) surrounding [v]; or

(c) ‖γ (t)‖ → +∞ without being tangent to any direction, and [γ (t)] is a
closed curve in P

1(C) surrounding [v];
in particular, no integral curve outside Lv converge to the origin tangent to [v];

(iv) if τ + ι = 0 then
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(a) either γ (t) escapes Û , and this happens for an open set Û1 ⊂ Û of initial
conditions; or

(b) [γ (t)] → [v] with ‖γ (t)‖ → +∞, and this happens for an open set Û2 ⊂ Û
of initial conditions such that Û1 ∪ Û2 is dense in Û ; or

(c) γ is a periodic integral curve with [γ ] surrounding [v];
in particular, no integral curve outside Lv converge to the origin tangent to [v],
but we have periodic integral curves of arbitrarily long period accumulating
the origin;

(v) if τ +Reι > 0 and a = 0 then [γ (t)] → [v] for an open dense set Û0 of initial
conditions in Û , and γ escapes Û for z ∈ Û \ Û0; moreover,

(a) if
∣∣ι + τ

2

∣∣ > τ
2 then γ (t) → O tangent to [v] for all z ∈ Û0;

(b) if
∣
∣ι + τ

2

∣
∣ < τ

2 then ‖γ (t)‖ → +∞ tangent to [v] for all z ∈ Û0;
(c) if

∣∣ι + τ
2

∣∣ = τ
2 then γ (t) accumulates a circumference in Lv.

Remark 6.3 We conjecture that Corollary 6.11.(v) should hold also when a 	= 0.

Remark 6.4 This result must be compared with Theorems 2.3 and 4.1. We already
noticed that a non-degenerate characteristic direction [v] with non-zero director δ is
a Fuchsian singularity of multiplicity 1, and hence transversal multiplicity 0. Then
Corollary 6.11 says that if Re ι < 0 (that is Re δ < 0) then no orbit of the time-1 map
of H outside of Lv converges to the origin tangent to [v], whereas if Re ι > 0 (that
is Re δ > 0) and ι is not a positive integer (or a = 0 if ι ∈ N

∗) then the orbits under
the time 1-map of H converge to the origin tangent to [v] for an open (and dense in
a conical neighbourhood of [v]) set of initial conditions, providing the existence of
a parabolic domain in accord with Theorem 2.3.

If instead τ > 0 and τ + ι /∈ N
∗ (or a = 0 if τ + ι ∈ N

∗) then Corollary 6.11
yields a parabolic basin when τ + Re ι > 0 and

∣∣ι + τ
2

∣∣ > τ
2 , which is a condition

strictly weaker than the condition found in Theorem 4.1(a); this suggests that there
might be room for improvement in the statement of the latter theorem.

Putting all of this together we can finally have a completely description of the
dynamics for a substantial class of examples. For instance, we get the following:

Corollary 6.12 ([AT3]) Let H ∈ X ν+1
2 be a homogeneous vector field on C

2 of
degree ν+1 ≥ 2. Assume that H is non-dicritical and all its characteristic directions
are Fuchsian of multiplicity 1. Assume moreover that for no set of characteristic
directions the real part of the sum of the induced residues belongs to the interval
(−3/2,−1/2). Let γ : [0, ε0) → C

2 be a maximal integral curve of H. Then:

(a) If γ (0) belongs to a characteristic leaf Lv0 , then the image of γ is contained
in Lv0 . Moreover, either γ (t) → O (and this happens for a Zariski open dense
set of initial conditions in Lv0 ), or ‖γ (t)‖ → +∞.

(b) If γ (0) does not belong to a characteristic leaf then either

(i) γ converges to the origin tangentially to a characteristic direction [v0]
whose index has positive real part; or



Fatou Flowers and Parabolic Curves 35

(ii) ‖γ (t)‖ → +∞ tangentially to a characteristic direction [v0] whose index
has negative real part.

Furthermore, case (i) happens for a Zariski open set of initial conditions.

Remark 6.5 The conditions in Corollary 6.12 imply that there must be at least one
index with positive real part. Indeed, if the multiplicity is 1 then the induced residue
is one less the opposite of the index. So assuming that no sum of 1 ≤ g ≤ ν + 2
induced residues has real part belonging to the interval (−3/2,−1/2) is equivalent
to saying that no sum of 1 ≤ g ≤ ν +2 indices has real part belonging to the interval
( 12 − g, 3

2 − g). Assume, by contradiction, that no index has positive real part; than
the real part of all of them should be less than −1/2. So the real part of the sum of
two indices must be less than −1 < −1/2; so it should be less than −3/2. Arguing
by induction on g one then shows that the sum of the real part of all indices should
be less than 1

2 − (ν + 2) = −ν − 3/2 < −ν, against Theorem 3.4, contradiction.

Example 6.1 Corollary 6.12 describes completely the dynamics ofmost vector fields
of the form

H(z, w) = (
ρz2 + (1 + τ)zw

) ∂

∂z
+ (

(1 + ρ)zw + τw2) ∂

∂w
.

Indeed such a vector field has exactly three Fuchsian characteristic directions with
multiplicity 1 and indices respectively ρ, τ and −1 − ρ − τ ; so the conditions
required by Corollary 6.12 are satisfied as soon as Re ρ, Re τ /∈ (−1/2, 1/2) and
Re(ρ + τ) /∈ (−3/2,−1/2).

7 Other Systems with Parabolic Behavior

Another situation where Fatou flowers can exist is when the eigenvalues of the
differential are all equal to 1 but the differential is not necessarily diagonalizable.
The reason is that we can reduce to the tangent to the identity case by using a suitable
sequence of blow-ups:

Theorem 7.1 ([A1]) Let f ∈ End(Cn, O) be such that all eigenvalues of d fO are
equal to 1. Then there exist a complex n-dimensional manifold M, a holomorphic
projection π : M → C

n, a canonical point e ∈ M and a germ around π−1(O) of
holomorphic self-map f̃ : M → M such that:

(i) π restricted to M \ π−1(O) is a biholomorphism between M \ π−1(O) and
C

n \ {O};
(ii) π ◦ f̃ = f ◦ π ;

(iii) e is a fixed point of f̃ where f̃ is tangent to the identity.

It should be remarked that the projection π : M → C
n is obtained as a sequence

of blow-ups whose centers are not necessarily reduced to points, and depend on the
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Jordan structure of d fO . Furthermore π is chosen in such a way that the interesting
part of the dynamics of f̃ is outside the exceptional divisor E (which is not in
general pointwise fixed by f̃ ), allowing the study of the dynamics of f by means of
the dynamics of f̃ . For instance, we can get the following

Proposition 7.2 ([A1]) Let f = ( f1, . . . , fn) ∈ End(Cn, O) be such that d fO

is not diagonalizable with all eigenvalues equal to 1. Without loss of generality
we can suppose that d fO is in Jordan form with ρ blocks of order respectively
μ1 ≥ μ2 ≥ · · · ≥ μρ ≥ 1, where μ1+· · ·+μρ = n. Assume that μ1 > μ2 and that
the coefficient of (z1)2 in fμ1 is not zero. Then f admits a parabolic curve tangent
to [1 : 0 : · · · : 0].

In dimension 2, using the tools introduced in [A2], one can get a cleaner result:

Corollary 7.3 ([A2]) Let f ∈ End(C2, O) be such that d fO is a Jordan block with
eigenvalue 1, and assume that the origin is an isolated fixed point. Then f admits a
parabolic curve tangent to [1 : 0].

See [Ro6] (and [A3] for a particular example) for a detailed study of the existence
of parabolic domains for germs in End(C2, O) with non-diagonalizable differential.

Finally, I would like to mention that parabolic curves, parabolic domains and
Fatou flowers appear also in non-parabolic dynamical systems. This is not surprising
in semi-parabolic systems, that is when the eigenvalues of the differential are either
equal to 1 or in modulus strictly less than 1 (see, e.g., [N, H1, Ri2, U1, U2, Ro5]), or
in quasi-parabolic systems, where the eigenvalues of the differential are either equal
to 1 or have modulus equal to 1 (see, e.g., [BM, Ro1, Ro2]). On the other hand, a
recent surprising discovery is that they also appear in multi-resonant systems, whose
differential is not parabolic at all but whose eigenvalues satisfies some resonance
relation; see, e.g., [BZ, BRZ, RV, BR] for the main results of this very interesting
theory.

Acknowledgments Partially supported by FIRB 2012 project “Geometria Differenziale e Teoria
Geometrica delle Funzioni”.
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A CR Proof for a Global Estimate
of the Diederich–Fornaess Index of Levi-Flat
Real Hypersurfaces

Masanori Adachi

Abstract Yet another proof is given for a global estimate of the Diederich–Fornaess
index of relatively compact domains with Levi-flat boundary, namely, the index must
be smaller than or equal to the reciprocal of the dimension of the ambient space. This
proof reveals that this kind of estimate makes sense and holds also for abstract
compact Levi-flat CR manifolds.

Keywords Diederich–Fornaess index · CR geometry · Levi-flat real hypersurface

1 Introduction

The Diederich–Fornaess index η(Ω) of a C∞-smoothly bounded domain Ω in a
complex manifold X is a numerical index on the strength of certain pseudoconvexity
of its boundary ∂Ω . In this paper, we consider the index in the sense that η(Ω) is
defined to be the supremum of the exponents η ∈ (0, 1] admitting a C∞-smooth
defining function of ∂Ω , say ρ : (∂Ω ⊂)U → R, so that −|ρ|η is strictly plurisub-
harmonic in U ∩ Ω; if no such η is allowed, we let η(Ω) = 0.

For instance, if a defining function attains η = 1, it gives a strictly plurisub-
harmonic defining function of ∂Ω and the boundary is strictly pseudoconvex. The
pseudoconvexity of ∂Ω is clearly necessary for η(Ω) to be positive; a much stronger
condition is actually necessary and sufficient, the existence of a defining function ρ

such that the complex hessian of − log |ρ| is bounded from below by a hermitian
metric of X near the boundary ∂Ω as observed by Ohsawa and Sibony [OS].
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The Diederich–Fornaess index η(Ω) being positive means that the boundary ∂Ω

is well approximated by a family of strictly pseudoconvex real hypersurfaces from
inside. The original motivation of the study of Diederich and Fornaess [DF] was
to construct such an approximation on pseudoconvex domains in Stein manifolds,
and the index is considered to measure certain strength of the approximation. Since
then, the meaning of the index has been intensively studied in relation to the global
regularity in the ∂-Neumann problem, in particular, pathologies occurring on the
worm domain. See for example [FS, §1], [Be] and references therein.

Under such circumstances, Fu and Shaw [FS] and Brinkschulte and the author
[AB1] reached a general estimate for the Diederich–Fornaess index of weakly
pseudoconvex domains. Here we state the result in a restricted form, for domains
with C∞-smooth Levi-flat boundary:

Theorem 1 ([FS], see also [AB1] and [A2]) Let Ω be a relatively compact domain
withC∞-smooth Levi-flat boundary M in a complex manifold of dimension (n+1) ≥
2. Then the Diederich–Fornaess index η(Ω) must be ≤ 1/(n + 1).

The purpose of this paper is to give yet another proof of Theorem via an estimate
on the Levi-flat boundary M without looking insideΩ directly. The idea is to identify
the usual Diederich–Fornaess index η(Ω) with its counterpart η(M) on the Levi-flat
boundary based on the author’s previous work [A1].

Definition 1 Let M be an oriented C∞-smooth Levi-flat CR manifold. The
Diederich–Fornaess index η(M) of M is defined to be the supremum of η ∈ (0, 1)
admitting aC∞-smooth hermitian metric h2 of the holomorphic normal bundle N 1,0

M
of M so that

iΘh − η

1 − η
iαh ∧ αh > 0

holds on M as quadratic forms on the holomorphic tangent bundle T 1,0
M of M ; if no

such η is allowed, we let η(M) = 0. Here the forms αh and Θh denote the leafwise
Chern connection form and its curvature form of N 1,0

M with respect to h2 respectively.
(See Sect. 2 for their precise definitions.)

In our setting, η(Ω) agrees with η(M) as we will see in Lemma 3, and Theorem
follows from the following main lemma.

Lemma 1 Let M be a compact C∞-smooth Levi-flat CR manifold of dimension
(2n + 1) ≥ 3. Then the Diederich–Fornaess index η(M) must be ≤ 1/(n + 1).

The organization of this paper is as follows. In Sect. 2, we provide preliminaries on
CR geometry and confirm that the two notions of Diederich–Fornaess index, η(Ω)

and η(M), actually coincide for Levi-flat real hypersurfaces based on previousworks.
In Sect. 3, after proving Lemma 1, we give a remark that the substantial content of
Lemma 1 has been already pointed out by Bejancu and Deshmukh [BD] in manner
of differential geometry, and conclude this paper with an open question.
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2 Preliminaries

2.1 Levi-Flat CR Manifold

Let us recall the notion of Levi-flat CR manifold briefly. In the sequel, “smooth”
means infinitely differentiable.

Let M be a smooth manifold of dimension (2n + 1) ≥ 3. A CR structure (of
hypersurface type) of M is given by a subbundle T 0,1

M ⊂ C ⊗R T M satisfying the
following conditions:

• T 0,1
M is a smooth C-subbundle T 0,1

M ⊂ C ⊗R T M of rankC n;

• T 1,0
M ∩ T 0,1

M = (the zero section) where T 1,0
M := {v ∈ C ⊗R T M | v ∈ T 0,1

M };
• [Γ (T 0,1

M ), Γ (T 0,1
M )] ⊂ Γ (T 0,1

M )

where Γ ( · ) denotes the space of smooth sections of the bundle, and the bracket
means the Lie bracket of complexified vector fields. The pair (M, T 0,1

M ) is called a
CR manifold, which is regarded as an abstraction of real hypersurfaces in complex
manifolds associated with their (anti-)holomorphic tangent bundles.

We say that a CRmanifold (M, T 0,1
M ) is Levi-flat if it satisfies further integrability

condition

[Γ (T 1,0
M ⊕ T 0,1

M ), Γ (T 1,0
M ⊕ T 0,1

M )] ⊂ Γ (T 1,0
M ⊕ T 0,1

M ). (1)

This is equivalent to say that the real distribution HM := Re(T 1,0
M ⊕ T 0,1

M ) ⊂ T M
of rankR 2n is integrable in the sense of Frobenius. It follows from Frobenius’
theorem and Newlander–Nirenberg’s theorem that the distribution HM defines a
smooth foliationF by complexmanifolds on M , namely, we have an atlas consisting
of foliated charts. We call F the Levi foliation.

For a Levi-flat CR manifold (M, T 0,1
M ), we shall refer to T 1,0

M as the holomorphic

tangent bundle of M and call the quotient C-line bundle N 1,0
M ,

0 → T 1,0
M ⊕ T 0,1

M → C ⊗R T M
π→ N 1,0

M → 0,

the holomorphic normal bundle. This is because T 1,0
M agrees with the holomorphic

tangent bundle of the leaves of the Levi foliation F . Note that our holomorphic
tangent bundle is distinct from (C ⊗R T M)/T 0,1

M and our (p, q)-form on M means

a section of
∧p

(T 1,0
M )∗ ⊗ ∧q

(T 0,1
M )∗ ⊂ ∧p+q

(T 1,0
M ⊕ T 0,1

M )∗.
Now let us consider a Levi-flat CR manifold, simply denoted by M , and define

the form αh mentioned in Sect. 1. Fix a smooth hermitian metric h2 of N 1,0
M ; in our

convention, we denote by h : N 1,0
M → R the map given by the norm induced from

h2 on (N 1,0
M )p for each p ∈ M . Pick a local smooth section ξ of N 1,0

M around p ∈ M
so that it is both normalized by h2 and real, i.e., ξ = ξ , which is determined up to
its sign. Using such a ξ , we define the (1, 0)-form αh : T 1,0

M → C so as to satisfy
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π([v, ξ̃ ]p) = −αh(vp)ξp (2)

for vp ∈ (T 1,0
M )p where ξ̃ and v are any lift and extension of ξ and vp to local

sections of C⊗R T M respectively. Here we used the Levi-flatness (1) to assure that
αh is independent of the choice of ξ , ξ̃ and v. We define αh(vp) := αh(vp), the
complex-conjugate (0, 1)-form of αh .

Remark 2 The left hand side of (2) is the covariant derivative of ξ along vp with
respect to a complex Bott connection of the Levi foliation F and the form α is
considered to measure the size of infinitesimal holonomy of F with respect to h2.

We give the (1, 1)-form Θh : T 1,0
M ⊗ T 0,1

M → C by

Θh(vp ⊗ wp) := vpαh(w) − wpαh(v) − αh([v, w]p)

= −wpαh(v) − αh([v, w]p)

where v and w are arbitrary extensions of vp and wp to local sections of T 1,0
M and

T 0,1
M respectively. We again used the Levi-flatness (1) for the last term to be defined.

2.2 Description on Foliated Charts

Although we have defined the forms αh and Θh in a coordinate-free manner, their
descriptions on foliated charts are convenient in actual computations. Here we briefly
introduce them.

Take a foliated chart (U, (zU , tU )) of the Levi-flat CR manifold M , a chart
(zU , tU ) : U → C

n × R so that T 1,0
M |U agrees with the pull-back bundle of

T 1,0
C

n ⊂ C ⊗R T (Cn × R). Any coordinate change between intersecting foliated
charts, say (U, (zU , tU )) and (V, (zV , tV )), are of the form

zU = zU (zV , tV ), tU = tU (tV )

where zU is holomorphic in zV . A leaf N of F is a connected complex manifold
injectively immersed in M such that zU is holomorphic and tU is locally constant
on U ∩ N for any foliated chart (U, (zU , tU )). Our manifold M is decomposed into
the direct sum of the leaves of F . A CR function on M , a C-valued function which
is annihilated by vectors in T 0,1

M by its definition, agrees with a function which is
leafwiseholomorphic, namely, holomorphic in zU on any foliated chart (U, (zU , tU )).

On a foliated chart (U, (zU = (z1U , z2U , · · · , zn
U ), tU )), we may trivialize T 1,0

M and

N 1,0
M by using {

∂

∂z1U
,

∂

∂z2U
, · · · ,

∂

∂zn
U

}

and
∂

∂tU
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respectively. This description illustrates that T 1,0
M and N 1,0

M are locally trivial CR
vector bundles, smooth vectors bundles with local trivialization covers whose tran-
sition functions are CR. The transition functions of N 1,0

M are much better; They are
leafwise constant.

Some computations show that on a foliated chart (U, (zU , tU )), the forms αh and
Θh for a given hermitian metric h2 of N 1,0

M are described as

αh =
n∑

j=1

∂ log hU

∂z j
U

dz j
U ,

Θh =
n∑

j,k=1

∂2(− log hU )

∂z j
U ∂zk

U

dz j
U ∧ dzk

U

where hU := h( ∂
∂tU

). We can see that αh and Θh agree with the leafwise Chern

connection and curvature form of N 1,0
M with respect to h2 respectively up to a positive

multiplicative constant.

2.3 The Diederich–Fornaess Index

In this section, we confirm that the two notions of Diederich–Fornaess index given
in Sect. 1 coincide for Levi-flat real hypersurfaces.

Let Ω be a relatively compact domain with smooth Levi-flat boundary M in
a complex manifold of dimension ≥ 2. We introduce here terms for intermedi-
ate notions that appeared in the definition of the Diederich–Fornaess indices. The
Diederich–Fornaess exponent ηρ of a fixed defining function ρ : (∂Ω ⊂)U → R

of ∂Ω is the supremum of the exponents η ∈ (0, 1] such that −|ρ|η is strictly
plurisubharmonic in U ∩ Ω; if no such η is allowed, we let ηρ = 0. We also define
the Diederich–Fornaess exponent ηh of a fixed hermitian metric h2 of N 1,0

M in the
same manner. The Diederich–Fornaess indices are clearly the supremum of the cor-
responding Diederich–Fornaess exponents.

Lemma 3 We have η(Ω) = η(M).

Proof It is proved in [A1, Theorem 1.1] that one can construct a smooth hermitian
metric h2

ρ of N 1,0
M from a given smooth defining function ρ of M with ηρ > 0 so that

ηρ = ηhρ . Hence, η(Ω) ≤ η(M).
To derive the other inequality, it suffices to show that any hermitian metric h2

of N 1,0 with ηh > 0, which condition is equivalent to iΘh > 0 as quadratic forms
on T 1,0

M , can be obtained by the construction above from a defining function of
M . This inverse construction originates from the work of Brunella [Br] where he
proved that this is possible if the Levi foliation of M extends to a holomorphic
foliation on a neighborhood of M . Although the extended holomorphic foliation
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may not exist in our setting, we are able to apply refined constructions explained in
[O, §1], [BI, Proposition 1], or [A2, Proposition 3.1] and finish the proof. �

Remark 4 We have restricted ourselves not to formulate the results for Levi-flat real
hypersurfaces with finite differentiability because we have a technical problem at
this point. The construction from defining functions to hermitian metrics in [A1]
loses one order in differentiability since taking its normal derivative, although the
inverse constructions in [? ] or [A2] do not give us a gain in differentiability. So we
cannot simply state that any C k-smooth hermitian metric can be obtained from a C k

or C k+1-smooth defining function for 2 ≤ k < ∞ unlike in the case k = ∞.

3 The Proof of Lemma 1 and a Remark

3.1 Proof of Lemma 1

Now we shall give the proof of Lemma 1.

Proof of Lemma 1 Suppose the contrary: η(M) > 1/(n + 1). By definition, there
exists a smooth hermitian metric of N 1,0

M , say h2, such that

iΘh − 1

n
iαh ∧ αh > 0

as quadratic forms on T 1,0
M .

By taking a double covering of M if necessary, wemay assume that M is oriented.
We let η := hU dtU where tU is the transverse coordinate of a positively-oriented
foliated chart (U, (zU , tU )) and hU := h( ∂

∂tU
). Then we see that η is a well-defined

1-form on M , and thatΘh ∧η, αh ∧η and αh ∧η make sense as differential forms on
M regardless of the choice of extensions of αh orΘh to tensors onC⊗RT M . Among
these forms, we can show the equalities (dαh)∧η = Θh ∧η and dη = (αh +αh)∧η

from straightforward computation on the foliated chart.
Now we obtain by direct computation that

d

(
(iΘh − 1

n
iαh ∧ αh)n−1 ∧ iαh ∧ η

)

= (n − 1)(iΘh − 1

n
iαh ∧ αh)n−2 ∧ 1

n
iΘh ∧ iαh ∧ αh ∧ η

+ (iΘh − 1

n
iαh ∧ αh)n−1 ∧ (iΘh − iαh ∧ αh) ∧ η

= (iΘh − 1

n
iαh ∧ αh)n ∧ η,

and Stokes’ theorem yields a contradiction:
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0 <

∫

M
(iΘh − 1

n
iαh ∧ αh)n ∧ η

=
∫

M
d

(
(iΘh − 1

n
iαh ∧ αh)n−1 ∧ iαh ∧ η

)

= 0. �

Remark 5 The proof shows in particular that
∫

M iΘh ∧η = ∫
M iαh ∧αh ∧η always

holds when dimR M = 3. This equality well explains the behavior of the Diederich–
Fornaess exponent of an explicit example described in [A2, §5].

3.2 The Approach of Bejancu and Deshmukh

We give a remark that the substantial content of Lemma 1 has been already observed
by Bejancu and Deshmukh [BD] in the context of differential geometry.

Remark 6 When dimR M = 3, the integrand (iΘh − iαh ∧αh)∧η was used in [BD]
to show that the totally real Ricci curvature of compact Levi-flat real hypersurfaces
in Kähler surfaces cannot be everywhere positive.

Let us explain this coincidence. Suppose that we have an oriented smooth Levi-
flat real hypersurface M in a Kähler surface (X, ω). We restrict on M the Kähler
metric ω as a Riemannian metric and consider its Levi-Civita connection ∇M and
Ricci curvature RicM . We also consider the Gauss–Kronecker curvature GF /M of
the leaves of the Levi foliationF in M . Take the signed distance function to M with
respect to the given Kähler metric ω and induce a hermitian metric h2 of N 1,0

M from
it. Then, we can observe by direct computation that

4(iΘh − iαh ∧ αh) = (RicM (ξ, ξ) − 2GF /M ) ω|T 1,0
M ⊗ T 0,1

M

= (RicM (ξ, ξ) − 1

2
‖dη‖2 + ‖∇Mξ‖2) ω|T 1,0

M ⊗ T 0,1
M

where ξ is the Reeb vector field of M chosen so that it is normalized and orthogonal
to HM with respect toω and positively directed, and η is the metric dual of ξ . The last
line is exactly the integrand used in [BD]. We leave the details of this computation
to the reader, who can find the techniques needed in [AB2, BD].
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3.3 Open Question

We conclude this paper with stating an open question explicitly.

Question Can we formulate the Diederich–Fornaess index for any CR manifold of
hypersurface type? Needless to say, it should agree with the Diederich–Fornaess
index of its complemental domain when it is realized as the boundary real hypersur-
face of a domain in a complex manifold. Can we prove the global estimate of Fu and
Shaw, and Brinkschulte and the author for this index in its full generality?

Acknowledgments The author is partially supported by anNRFgrant 2011-0030044 (SRC-GAIA)
of the Ministry of Education, the Republic of Korea, and a JSPS Grant-in-Aid for Young Scientists
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Unbounded Pseudoconvex Domains in Cn

and Their Invariant Metrics

Taeyong Ahn, Hervé Gaussier and Kang-Tae Kim

Abstract In this article, we introduce a method to study the positivity and the com-
pleteness of the Bergman metric for a broad collection of unbounded domains.

Keywords Bergman metric · Positivity · Completeness · Hahn-Lu comparison ·
Unbounded domain

1 Some Problems

Whether a complex manifold admits a positive-definite and complete Bergman
metric (as well as other invariant metrics) has attracted much attention for quite
some time. While the Bergman metric of any bounded domain in C

n is positive-
definite, the completeness was extensively studied and has satisfactory conclusion
(cf. [Ohs, Diede] et al.). For manifolds, there are not many theorems in this direc-
tion; one of the well-known theorems is Theorem H of [GW]. In between, there are
unbounded domains of Cn . As pointed out in [HTS], even some of the most basic-
looking features of bounded domains have turned out nontrivial when asked upon
the general unbounded domains in Cn .
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Naturally, we wished to introduce a method for studying the positivity and the
completeness of the Bergman metric for unbounded domains. But before focussing
more narrowly, we feel that it may be appropriate to point out some more related
problems whose answers are still in order.

Question 1.1 Which unbounded domains possess the property that their Bergman
metric is positive-definite and complete?

One quick example is the domain

Ω := {(z, w) ∈ C
2 : |w| < exp(−|z|2)}.

This domain contains the complex line {(z, w) ∈ C
2 : w = 0} and hence is not

Kobayashi-hyperbolic and not biholomorphic to any bounded domain. But its volume
is finite, as one can check by a direct computation. Therefore any constant function
is square integrable. More generally, all holomorphic polynomial functions are of
L2. Thus the Bergman kernel exists. Moreover, in an unpublished note, the 3rd
named author in a communication with S. Shimizu of Tohoku University (Japan)
found explicit formulae of the Bergman kernel and metric; the result, showing the
positivity and the completeness of the Bergman metric, is presented in [AGK].

Now, consider the famous examples (for ε = 0, 1)

Ωε
KN := {(z, w) ∈ C

2 : Rew + ε|zw|2 + |z|8 + 15

7
Re |z|2z6 < 0}

called the Kohn-Nirenberg domain. The case ε = 0 was studied by Herbort [Herb];
its Bergman metric is positive and complete. The other case is not so much different,
but requires some care. See [AGK] for details; the main theme of [AGK] is to set
up a method that can be used in this direction of study, and we shall present a brief
survey on this in the later part of this article.

A more general question is the following:

Question 1.2 Is the Kohn-Nirenberg domain biholomorphic to a bounded domain?

No progress has beenmade toward the solution of this problem as far as the authors
are aware of, at least at the time of this writing. However, this may be interesting to
see: according to Bedford and Fornaess [BF], the domain Ωε

KN has a holomorphic
peak function at the origin, say h, that is continuous up to the boundary and enjoys
exponential decay. Now if one considers the map f : Ωε

KN → C
3 defined by

f (z, w) = (h(z, w), zh(z, w), wh(z, w)),∀(z, w) ∈ Ωε
KN

then f (Ωε
KN) is a bounded subset of C3. Notice that f is also 1-1 and holomorphic.

This domain is, therefore, Caratheodory (and hence also Kobayashi) hyperbolic.

Question 1.3 Which unbounded convex domains are biholomorphic to a bounded
convex domain?
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For a complex manifold to be biholomorphic to a bounded domain, it must be
Kobayashi hyperbolic. Then any Kobayashi hyperbolic convex domain is known to
be biholomorphic to a bounded domain. However it is still unclear when the bounded
realization of the unbounded convex hyperbolic domain should be convex.

This problem is more attractive when one recalls the theorem of Vinberg,
Piatetskii-Shapiro and Gindikin which says that every bounded homogenous domain
(hence in particular Kobayashi hyperbolic) is biholomorphic to a Siegel domain (of
the second kind). Since every Siegel domain is an unbouned convex domain, the
above question transforms into: “Which homogeneous domains are biholomorphic
to a bounded convex domain?” It is an open conjecture that all homogeneous domains
biholomorphic to a bounded convex domain is a bounded symmetric domain. [Known
as Gindikin’s problem.]

The main focus of this article, however, is upon the Bergman metric, its positivity
and completeness.

2 A Remark on Hahn-Lu Comparision Theorem

Toward Question 1.1, the following (slight) modification of the statement turns out
to be useful:

Theorem 2.1 (Hahn-Lu Comparison Theorem, II) If the Bergman kernel KM of a
complex manifold M satisfies the condition KM (p, p) �= 0 at p ∈ M then, for the
Caratheodory pseudometric cM and the Bergman (pseudo) metric βM , it holds that

(cM (p, v))2 ≤ βM |p(v, v),∀v ∈ Tp M.

Here, the Caratheodory pseudometric is the classic concept defined upon the
family H (M, D) of the holomorphic functions of M with image contained in the
unit open disc D in C:

cM (p, v) = sup{|dψp(v)| : ψ ∈ H (M, D), ψ(p) = 0}.

The Bergman (pseudo) metric at p is defined by the matrix representation (with
respect to a holomorphic local coordinate system) with its jk-th entry

β jk(p) = ∂2

∂z j∂ z̄k

∣
∣∣∣

p
log K∗(z, z),

where K∗ is the complex-valued function defined by

KM (z, w) = K∗(z, w)dz1 ∧ . . . ∧ dzn ∧ dw̄1 ∧ . . . ∧ dw̄n .
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We recall that KM denotes the Bergman kernel of M . Notice that, if KM (p, p) �= 0,
then the Bergman metric is nonnegative, but it may not in general be positive (or,
positive-definite in this case). This is why we used the term “pseudo” in parentheses.

The theorem was proved in 1958 by Q.-K. Lu (the transliteration of his Chinese
name then was written as K.-H. Look) for the bounded domains and was proved
independently byK.T.Hahn around1976 for complexmanifoldswith the assumption
that both Caratheodory and Bergmanmetrics are positive [Lu, Hahn76]. Their proofs
were essentially the same.

Then we observed that the “short” proof presented by Hahn in [Hahn78] actually
demonstrated more than what was written in the statement of the theorem. Indeed,
the above statement is just the result of the arguments there.

On the other hand, the significance of this observation is that this current version
can be useful for showing the positivity of the Bergman metric; notice that the
Bergman metric is positive whenever the kernel is nonzero and the Caratheodory
metric is positive.

3 A Technique for Positivity and Completeness of Bergman
Metric

From the preceding section, it became obvious that one should study the class of
square integrable functions. The following theorem provides a technique which has
turned out to be useful.

First we set the notation: we put δU (z) := min{1, dist (z,Cn \ U )}, where U
is an open subset in C

n and “dist” means the Euclidean distance. Moreover, with a
holomorphic function g, define Z(g) = {z : g(z) = 1}.
Theorem 3.1 (Ahn et al. [AGK]) Let Ω be a domain in C

n. If p ∈ ∂Ω satisfies the
following two properties:

1. There exists an open neighborhood V of p and a function g ∈ O(V ) supporting
V ∩ Ω at p.

2. There are constants r1, r2, r3 with 0 < r1 < r2 < r3 < 1 and Bn(p, r3) ⊂ V , and
there exists a Stein neighborhood U of Ω and a function h ∈ O(Ω ∪ V )∩O∗(V )

satisfying

Zg ∩ U ∩ Bn(p, r2) \ Bn(p, r1) = ∅ (†)

and

|h(z)|2 ≤ C0
δU (z)2n

(1 + ‖z‖2)2 ,∀z ∈ Ω (‡)

for some positive constant C0, then Ω admits a holomorphic peak function at p.
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The reader would agree that construction of globally bounded holomorphic func-
tions with peaking property at boundary points should be useful in the light of the
exposition of this article, but would ask a question, incidentally, whether the condi-
tions in the hypothesis of this theorem can be met in a broad collection of domains.
We shall discuss this point in the next section with examples.

4 Examples

4.1 The Kohn-Nirenberg and Fornaess Domains

The first is the Kohn-Nirenberg domain mentioned earlier:

Ω0
KN := {(z, w) ∈ C

2 : ρ(z, w) = Rew + |z|8 + 15

7
Re |z|2z6 < 0}

For this domain we use the holomorphic peak-function, say f , constructed in [BF].
It enjoys the following properties:

• f vanishes nowhere,
• | f | decays exponentially at infinity. In particular it is square-integrable on Ωε =

{ρ < ε(|z|8 + |w|)},
• f peaks at (0, 0), i.e., | f (z)| < 1 for every z ∈ ΩKN, and f (z) → 1 as z ∈ ΩKN
approaches (0, 0).

Thus one may let this f take the role of h. Then this constructs, via Theorem 3.1,
global peak functions at every strongly pseudoconvex boundary point. Then the other
properties (such as the facts that all weakly pseudoconvex boundary points are in
the orbit of (0, 0) via the action by translation, and that the domain is weighted-
homogeneous) combined shall imply that the domain is complete Caratheodory
hyperbolic. Then the comparison theorem of Hahn-Lu applies here and one obtains
that the Bergman metric is positive and complete.

The other domain

Ω1
KN := {(z, w) ∈ C

2 : ρ(z, w) = Rew + |zw|2 + |z|8 + 15

7
Re |z|2z6 < 0}

as well as similar domains constructed by Fornaess [Fspso] can be shown, after some
minor adjustments, to satisfy the same conclusion that their respective Bergman
metric is positive and complete.

4.2 Other Domains

Herbort presented in [Herb] the concept of domains with diagonal type, and showed
that their Bergman metrics are positive and complete. Our method is more general
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in its nature and shows that the same conclusion holds for all domains defined by a
weighted-homogeneous pluri-subharmonic polynomial defining function regardless
the dimension.

Notice that Theorem3.1 concerns only the technique of finding a global peak func-
tion startingwith a local holomorphic support function.This procedure is independent
of the particular features of the defining function such as weighted-homogeneity. In
fact this theorem works for the domain defined by |w| < exp(−|z|2) for instance.

5 Remarks and More Questions

Earlier, the following theorem was discovered:

Theorem 5.1 (Chen et al. [CKO]) If ρ : Cn → R is a pluri-subharmonic func-
tion with lim‖z‖→∞ ρ(z) = +∞, then the Bergman metric of the domain Ω =
{(z0, . . . , zn) ∈ C

n+1 : Re z0 > ρ(z1, . . . , zn)} is positive and complete.

The proof-arguments appear quite different from ours. It is of interest to compare
the two methods. For instance one can observe from the assumptions in Theorem 5.1
thatΩ admits a global holomorphic peak function at infinity. Indeed, (z ∈ Ω, ||z|| →
∞) ⇔ (z ∈ Ω, |z0| → +∞). Denote by Φ that peak holomorphic function :

∀z ∈ Ω, |Φ(z)| < 1 and lim|z|→∞ Φ(z) = 1.

Since the Caratheodory (pseudo)metric decreases under the action of holomorphic
maps, then limz∈Ω, |z|→∞ dC

Ω(z, z0) = +∞ for every z0 ∈ Ω , where dC
Ω denotes the

Caratheodory pseudodistance on Ω . The same condtion is satisfied for the Bergman
metric according to the Hahn-Lu comparison Theorem. It seems particularly inter-
esting to investigate the existence of holomorphic peak functions at boundary points
of Ω .

Finally, we would like to suggest another problem. Fornaess constructed in [F04]
a manifold exhausted by a sequence of biholomorphic images of the open unit
ball, which admits a nonconstant bounded plurisubharmonic function, and yet its
Kobayashi metric is identically zero. This is called a Short-Ck for every k ≥ 2. Not
much has been studied on this manifold. Although the problem seems to be beyond
our techniques, we would like to close this article with the following question.

Question 5.1 Does a Short-Ck admit Bergman metric?

For further details, the reader is invited to read [AGK].

Acknowledgments Research of the first and the third named authors is supported in part by the
grant 2011-0030044 (The SRC-GAIA) of the NRF of Korea. Part of the contents of this article
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Abstract Basins of Attraction

Leandro Arosio

Abstract Abstract basins appear naturally in different areas of several complex
variables. In this survey we want to describe three different topics in which they play
an important role, leading to interesting open problems.

Keywords Canonical models · Bedford’s conjecture · Loewner theory in several
variables

1 The Construction of Abstract Basins

In recent years strong links among three different areas of research in several complex
variables were discovered. It was indeed shown that the Bedford conjecture, the
Loewner theory and the theory of models for holomorphic self-maps revolve around
a common concept introduced by Fornæss–Stensønes [FS04] in 2004: the abstract
basin of attraction. LetBq denote the open unit ball inC

q , and let (ϕn : B
q → B

q)n≥0
be a family of univalent (holomorphic injective) self-maps.Wecan thinkof this family
as a dynamical system whose evolution law may change in time, and we call it a
non-autonomous univalent dynamical system. If ϕn = ϕ for all n ≥ 0, then we call it
autonomous. If 0 ≤ n ≤ m we denote byϕn,m the composition ϕm−1◦ϕm−2◦· · ·◦ϕn .
To construct the abstract basin we take the direct limit of (ϕn), that is, we consider
the following equivalence relation on the product B

q × N: let 0 ≤ n ≤ m, then
(x, n) � (y, m) if and only if ϕn,m(x) = y. The set Ω = B

q × N/∼ is the abstract
basin of attraction (or the tail space) of (ϕn). It comes naturally endowed with a
family of mappings ( fn : B

q → Ω)n≥0 which satisfy

fn = fm ◦ ϕn,m, 0 ≤ n ≤ m,
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andwhich give a complex structure toΩ . The abstract basinΩ satisfies the following
universal property: if Λ is a complex manifold, and (gn : B

q → Λ)n≥0 is a family
of holomorphic mappings which satisfy

gn = gm ◦ ϕn,m, 0 ≤ n ≤ m, (1.1)

then there exists a holomorphic mapping Ψ : Ω → Λ such that fn = Ψ ◦ gn for all
n ≥ 0. The mapping Ψ is univalent if and only if the mappings gn are univalent for
all n ≥ 0, and its image is the domain

⋃
n≥0 gn(B

q) ⊂ Λ.

Remark 1.1 The same construction works for a non-autonomous univalent dynam-
ical system with R

+ as an index set, that is, a family of univalent mappings
(ϕs,t : B

q → B
q)0≤s≤t satisfying the evolution equation

ϕu,t ◦ ϕs,u = ϕs,t , 0 ≤ s ≤ u ≤ t. (1.2)

If t 	→ ϕs,t (z) is locally lipschitz, uniformly on compacta in z, then (ϕs,t ) is called
an evolution family.

We know by construction that the basinΩ is the growing union of the subdomains
fn(Bq)which are biholomorphic toB

q , however, the complex structure ofΩ may be
very complicated. Using a striking example due to Fornæss [FO76] it is easy to see
that there exists an abstract basin which is not Stein and which is not biholomorphic
to a domain of C

q .
The name “abstract basin of attraction” deserves an explanation. Assume that

there exists a non-autonomus dynamical system given by a family of automorphisms
(Φn : X → X), where X is a q-dimensional complex manifold, and a univalent
mapping h : B

q → X such that for all n ≥ 0 we have

h ◦ ϕn = Φn ◦ h.

For all n ≥ 0, let Φ0,n := Φn−1 ◦ Φn−2 ◦ · · · ◦ Φ0. Then the family gn := Φ−1
0,n ◦ h

satisfies equation (1.1), and thus, by the universal property, the abstract basin of
attraction Ω of (ϕn) is biholomorphic to the domain of X given by

⋃

n≥0

gn(B
q) = {x ∈ X : Φ0,n(x) ∈ h(Bq) eventually}.

Assume now that the origin is attracting for the dynamical system (ϕn), that is
ϕ0,n(z) → 0 for all z ∈ B

q . Then Φ0,n(x) → h(0) for all x ∈ h(Bq), which implies
that the abstract basin of attraction Ω of (ϕn) is biholomorphic to the “actual” basin
of attraction of (Φn) at the point h(0), that is the domain of X defined by

{x ∈ X : Φ0,n(x) → h(0)}.
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2 Bedford’s Conjecture

Let ϕ : B
q → B

q be a univalent mapping fixing the origin such that the spectrum of
the differential at the origin d0ϕ is contained in the punctured disc Δ� {0}. Then the
autonomous univalent dynamical system associated with ϕ is attracting at the origin,
and its abstract basin of attraction is biholomorphic to C

q by the Poincaré–Dulac
theory (see e.g. [R88]).

It is natural to ask whether this holds true if we consider non-autonomous dynam-
ical systems (ϕn : B

q → B
q) whose contraction rate at the origin is uniformly

bounded from above and from below.

Conjecture 2.1 ([FS04]) Let (ϕn : B
q → B

q) be a non-autonomous univalent
dynamical system such that ϕn(0) = 0 for all n ≥ 0 and that

a‖z‖ ≤ ‖ϕn(z)‖ ≤ b‖z‖, n ≥ 0, 0 < a ≤ b < 1.

Then the abstract basin Ω of (ϕn) is biholomorphic to C
q .

Remark 2.1 Condition b < 1 ensures that ϕ0,n(z) → 0 for all z ∈ B
q . If we drop

the condition a > 0 there is the following counterexample by Fornæss [FOR03]. Set

ϕn : (z, w) 	→ (z2 + anw, anz),

where |a0| < 1 and |an+1| ≤ a2
n . Then Ω admits a non-constant bounded plurisub-

harmonic function, and thus is not biholomorphic to C
2. Such a domain is called

a short C
2, since it shares several invariants with C

2 without being biholomorphic
to C

2.

Conjecture 2.1 is still open, and is deeply studied since Fornæss–Stensønes [FS04]
proved that it is stronger than the well-known Bedford conjecture:

Conjecture 2.2 ([BED]) Let X be a complex manifold endowed with a Riemannian
metric, and let f : X → X be an automorphism which acts hyperbolically on some
invariant compact subset K ⊂ X . If p ∈ K , then the stable manifold Σ(p) is
biholomorphic to C

k , where k is the stable dimension.

Jonsson–Varolin [JV02] showed that the Bedford conjecture is true for every p in a
subset of K which is of full-measurewith respect to any invariant probabilitymeasure
on K , and Abate–Abbondandolo–Majer [A14] showed that Σ(p) is biholomorphic
to C

k when the negative Lyapounov exponents of f at p are well defined.
Fornæss–Stensønes [FS04] proved that Ω is always biholomorphic to a domain

of C
q . This implies in particular that Ω has to be Stein, and it is also easy to see

that the Kobayashi pseudometric and pseudodistance ofΩ are zero everywhere. The
main approach to Conjecture 2.1 consists in adapting the Poincaré–Dulac method
to the non-autonomous setting, and this is why arithmetic relations between a and b
play a capital role. Wold [WO05] showed that if b2 < a, then Ω is biholomorphic
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to C
q . Abbondandolo–Majer [A014] showed that in B

2 this condition can be loosen

to b29/14 < a. Very recently Peters–Smit [PT98] obtained b
11
5 < a, and, assuming

all d0ϕn diagonal, b3 < a.
Other interesting “weak monotonicity” relations among the eigenvalues of d0ϕn

are considered in [PE07, A14]. See [E35] for a survey on non-autonomous basins
and the Bedford conjecture.

3 Loewner’s Theory

The Loewner PDE in the unit disc was introduced by Loewner [LOE3] in 1923 while
he was working on the Bieberbach conjecture. It was later developed by Kufarev
[KUF43] and Pommerenke [PM65] and is today one of the principal tools in geo-
metric function theory. Recently Bracci–Contreras–Díaz-Madrigal [BC12, BD09]
introduced a framework for a very general Loewner theory which works in com-
plete Kobayashi hyperbolic manifolds (see also [AB11]). We consider the case of
B

q . They give the following definition, which is a generalization to the setting of
continuous time of the concept of non-autonomous univalent dynamical system. A
Herglotz vector field on B

q is a function h(z, t) : B
q × R

+ → C
q such that

1. z 	→ h(z, t) is a semicomplete holomorphic vector field for a.e. t ∈ R
+,

2. t 	→ h(z, t) is measurable and locally bounded, uniformly on compacta in z.

They prove that a Herglotz vector field h is semicomplete in the sense that the
ODE

dz(t)

dt
= h(z, t)

has a solution flow given by an evolution family (ϕs,t : B
q → B

q)0≤s≤t .
The Loewner PDE in several complex variables was studied by Pfaltzgraff, Gra-

ham, Duren, Kohr, Hamada, and others (see [PF74, P75, DG10, GK02, GH08]). In
[AH13], the Loewner PDE was generalized to the setting of Herglotz vector fields
in the following way:

∂ ft (z)

∂t
= −dz ft h(z, t), a.e. t ≥ 0, z ∈ B

q , (3.1)

where h(z, t) is a givenHerglotz vector field andwhere the unknown ( ft : B
q → C

q)

is a family of univalent mappings such that t 	→ ft (z) is locally lipschitz, uniformly
on compacta in z.

The following result shows that solutions exist and are essentially unique if we
do not restrict ourselves to solutions with values in C

q .

Theorem 3.1 ([AH13])The Loewner PDE (3.1) admits a univalent solution ( ft : B
q

→ Ω), where Ω is the abstract basin of attraction of the evolution family (ϕs,t )

associated with the Herglotz vector field h(z, t). If (gt : B
q → Q) is another solution,
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where Q is a q-dimensional complex manifold, then there exists a holomorphic
mapping Ψ : Ω → Q such that

gt = Ψ ◦ ft .

The abstract basin Ω is called the Loewner range of h(z, t) (or of (ϕs,t )).

Remark 3.1 This result transforms the analytic problem of finding a univalent solu-
tion ( ft : B

q → C
q ) for the Loewner PDE (3.1) to the geometric problem of under-

standing whether the Loewner rangeΩ of (ϕs,t ) is biholomorphic to a domain ofC
q .

For example, in one variable, we know that Ω is non-compact and simply connected
(since it is the growing union of discs). Thus, by the uniformization theorem, it has to
be biholomorphic toC or to the discΔ. In either case it is biholomorphic to a domain
of C, and hence we obtain that the Loewner PDE in one variable always admits a
univalent solution, as proved by Contreras–Díaz-Madrigal–Gumenyuk [ON10] with
a different method.

This embedding problem was solved in [AW13] using two major tools: a result
of Docquier–Grauert [DO60] which implies that for all 0 ≤ s ≤ t the pair
( fs(B

q), ft (B
q)) is Runge, and Andersén–Lempert theory.

Theorem 3.2 The Loewner range Ω of (ϕs,t ) is biholomorphic to a domain of
C

q . As a consequence, the Loewner PDE (3.1) always admits a univalent solution
( ft : B

q → C
q).

An interesting open question is to find conditions for aHerglotz vector field h(z, t)
which ensure that its Loewner rangeΩ is biholomorphic to C

q . Some conditions are
given in [AR11, AR13, AR12]. We can also formulate a continuous-time analogue
of the Bedford conjecture. Recall that if A is a linear endomorphism ofC

q , we denote
m(A) := min{Re〈Az, z〉 : |z| = 1} and k(A) := max{Re〈Az, z〉 : |z| = 1}.
Conjecture 3.1 Let h(z, t) a Herglotz vector field on B

q of the form h(z, t) =
A(t)z + O(|z|2). Assume that

1. m(A(t)) > 0 for all t ≥ 0 and
∫ ∞
0 m(A(t))d(t) = ∞,

2. there exists 
 ∈ R
+ such that 
m(A(t)) ≥ k(A(t)), for all t ≥ 0.

Then the Loewner range of h(z, t) is biholomorphic to C
q .

Consider the evolution family (ϕs,t )0≤s≤t associated with h(z, t). Notice that any
discretization of the index set R

+ gives as a result a (discrete) non-autonomous
dynamical system (ϕn,m)0≤n≤m . The abstract basins of the two families are easily
seen to be biholomorphic. The assumptions in Conjecture 3.1 allow to discretize the
index set R+ in such a way that (ϕn,m)0≤n≤m satisfies the assumption of the Bedford
conjecture. Thus Conjecture 3.1 is weaker than the Bedford conjecture.

For a survey on Loewner theory, see [AB10].
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4 Models

The idea of using representation models to understand the local dynamics of holo-
morphic self-maps goes back to the birth of complex dynamics itself, that is the
introduction in 1870 of the Schröder equation [E70, SC70]. Let f : Δ → Δ be a
holomorphic self-map of the unit disc fixing the origin. Assume that 0 < | f ′(0)| < 1.
Then the origin is an attracting fixed point, and the Schröder equation is the following:

σ ◦ f = f ′(0) ◦ σ, (4.1)

where σ : Δ → C is an unknown holomorphic function. This equation was solved
in 1884 by Königs [KO84], which showed that there exists a holomorphic solution
σ , which is unique if we impose σ(0) = 0, σ ′(0) = 1.

If f has no interior fixed points, then by the Denjoy–Wolff theorem there exists a
point a ∈ ∂Δ called theDenjoy–Wolff point such that f n converges toa uniformly on
compacta. Moreover the dilation of f at a is defined as the following non-tangential
limit:

∠ lim
z→a

f ′(z) = λ ∈ (0, 1].

The mapping f is called hyperbolic iff λ ∈ (0, 1), and is called parabolic iff λ = 1.
Let H denote the upper half-plane. If f is hyperbolic, Valiron [VA31] proved in

1931 that there exists a holomorphic function σ : Δ → H such that

σ ◦ f = 1

λ
σ,

and any other solution is a positive multiple of σ . Notice that the growing union
∪m∈N λmσ(Δ) fills the whole half-plane H. If f is parabolic, Pommerenke–Baker
[PO79, BA79] proved in 1979 that there exists a holomorphic function σ : Δ → C

such that
σ ◦ f = σ + 1.

In this case we have two cases for the complex structure of the growing union
∪m∈N (σ (Δ) − m). Recall that, if zm := f m(z0) is an orbit, its step s( f, z0) is
defined as limm→∞ kΔ(zm, zm+1), where kΔ denotes the Poincaré distance of the
disc Δ. Such a limit exists thanks to the non-expansiveness of the Poincaré distance.
We have the following dichotomy:

1. for any orbit (zm) we have s( f, z0) = 0 (zero-step),
2. for any orbit (zm) we have s( f, z0) > 0 (nonzero-step).

The union ∪m∈N (σ (Δ) − m) fills the whole C in the zero-step case, and is biholo-
morphic to Δ in the nonzero-step case.

Let now f : B
q → B

q . If the origin is an attracting fixed point, then the Poincaré–
Dulac theory applies and one can solve a generalized Schröder equation in several
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complex variables (see e.g. Rosay–Rudin [R88]). If there are no fixed points in B
q ,

then as in one variable there exists a Denjoy–Wolff point a ∈ ∂B
q , such that f n → a

uniformly on compact subsets. The dilation of f at a is defined as

lim inf
z→a

1 − ‖ f (z)‖
1 − ‖z‖ = λ ∈ (0, 1].

Again the mapping f is called hyperbolic iff λ ∈ (0, 1), and is called parabolic iff
λ = 1. Zero-step and nonzero-step are defined as in the disc using the Kobayshi
distance instead of the Poincaré distance (notice however that it is not a dichotomy
anymore).

There are several generalizations by Bracci, Poggi-Corradini, Gentili, Bayart,
Jury (see [G05, BGP10, JU10, BA08]) of the Valiron and Abel equations in the
unit ball which require additional regularity at the Denjoy–Wolff point a ∈ B

q .
All are obtained by scaling limit arguments. In 1981 Cowen [CO81] unified the
Schröder, Valiron andAbel equations in a unique framework, introducing the concept
of model (without naming it). Models in several complex variables were recently
introduced in [AM73]. If f : B

q → B
q is a univalent mapping, a semi-model for

f is given by a complex manifold Ω (the base space), an automorphism ψ of Ω

and a holomorphic mapping h : B
q → Ω such that h ◦ f = ψ ◦ h. We also assume

Ω = ∪m∈N ψ−m(h(Bq)). If h is univalent, then we call (Ω,ψ, h) a model for f .

Theorem 4.1 ([AM73]) Every univalent mapping f : B
q → B

q admits a model
(Ω, h, ψ), where Ω is the abstract basin of attraction of the autonomous univalent
dynamical system associated with f . Moreover, if (Λ, 
, φ) is any semi-model for f ,
then there exists a surjective holomorphic map Ψ : Ω → Λ such that the following
diagram commutes:

B
q 
 ��

h

���������������

f

��

Λ

φ

��

Ω

Ψ

����������

ψ

��

B
q 
 ��

h

��������������� Λ

Ω.

Ψ

����������

The complex structure ofΩ is not known in general. However, we can single out a
semi-model on a possibly lower dimensional ballBk which contains all theKobayashi
pseudodistance information of the model. Since Ω is the growing union of domains
which are biholomorphic toB

q , there exists, by a result of Fornæss–Sibony [FS81], a
surjective holomorphic submersion r : Ω → B

k , where 0 ≤ k ≤ q, on whose fibers
the Kobayashi pseudo-distance of Ω vanishes. This implies that the automorphism
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ψ preserves the fibers, inducing an automorphism τ of B
k such that the following

diagram commutes:

B
q

f ��

h
��

B
q

h
��

Ω
ψ ��

r
��

Ω

r
��

B
k τ ��

B
k .

Set 
 := r ◦ h. The semi-model (Bk, 
, τ ) is called the canonical (K obayashi
hyperbolic) semi-model: every other semi-model with Kobayashi hyperbolic base
space is a factor of this one.

Let us discuss what happens in the unit disc. If f is hyperbolic with dilation λ,
then by the Valiron equation it has a model with base spaceΔ, and the automorphism
ψ is hyperbolic with dilation λ. The canonical semi-model coincides with the model.
If f is parabolic nonzero-step, then by the Abel equation it has a model with base
spaceΔ, and the automorphismψ is parabolic. The canonical semi-model coincides
with the model. If f is parabolic zero-step the base space of the model is C and thus
the base space of the canonical semi-model is a single point. In [AM73], the first two
cases are generalized to several complex variables.

Theorem 4.2 Let f : B
q → B

q be a hyperbolic (resp. parabolic nonzero-step) uni-
valent mapping with dilation λ. Let (Bk, 
, τ ) be its canonical semi-model. Then
k ≥ 1 and τ is an hyperbolic (resp. parabolic) automorphism with the same dila-
tion λ.

Corollary 4.1 Let f : B
q → B

q be a hyperbolic univalent mapping with dilation
λ. Then there exists a holomorphic solution Θ : B

q → H to the Valiron equation

Θ ◦ f = 1

λ
Θ.

The following questions are open.

Question 4.1 It would be natural to conjecture the following dichotomy (which is
true in one variable and for linear fractional mappings of B

q ): if f : B
q → B

q is a
parabolic univalent mapping and (Bk, 
, τ ) is its canonical semi-model, then either
τ is a parabolic automorphism, or k = 0 and the canonical semi-model is trivial.

It is known that the automorphism τ cannot be hyperbolic, however it is an open
question whether a parabolic univalent mapping f : B

q → B
q can have a canonical

semi-model (Bk, 
, τ ) with k > 0 and τ with an interior fixed point.

Question 4.2 If f : B
q → B

q is univalent, are the fibers of the holomorphic sub-
mersion Ω → B

k biholomorphic to C
q−k? Is it true that Ω is biholomorphic to

B
k × C

q−k?
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Remark 4.1 By a result of Fornæss–Sibony [FS81], if k = q − 1, then the answer
to Question 4.2 is affirmative.

Acknowledgments Supported by the ERC grant “HEVO - Holomorphic Evolution Equations” n.
277691.
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Invertible Dynamics on Blow-ups of Pk

Eric Bedford

Abstract This is a survey of some recent results on the iteration of (pseudo) auto-
morphisms of blowups of k-dimensional projective space.

Keywords Pseudo automorphism · Birational map · Dynamical system · Rational
manifold

1 Introduction

Let X be a complex manifold, and let f be an automorphism, i.e. biholomorphic
self map, of X . We discuss the project of finding compact complex manifolds X
which carry automorphisms f which are dynamically interesting. If the dimension
of X is 1, then X is a compact Riemann surface, and if the genus is at least 2, then
Aut (X) is finite. The other two cases are when X is a torus, in which case the auto-
morphisms are essentially translations, or X = P

1, in which case the automorphisms
are linear (fractional). Thus, to find maps with interesting dynamics, we must start
with dimension 2. In this case, a Theorem of Cantat (see [C1, C2]) restricts the set
of possible surfaces X . This raises the question to know exactly which surfaces X
might arise in these cases. Some basic ergodic properties hold for all automorphisms
with dynamical degree >1, but little is known about the topological properties of
such maps. Here we focus on the case where X is a blowup of P2 and we describe
some of the results that are known.

Next we will consider the case of dimension 3 and higher. In this case, we find that
it is natural to widen our search to manifolds X which carry pseudo-automorphisms.
These are birational maps whose indeterminate and exceptional behaviors only influ-
ence subvarieties of codimension 2 and greater. It is the purpose of this paper to
discuss pseudo-automorphisms that can be obtained from birational maps of Pk by
blowing up, and in this discussion we formulate a number of open questions.
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2 Rational Surfaces

The group of automorphisms (biholomorphic self-maps) of complex projective space
P

k is PGL(C, k+1), whichmay bewritten as linear fractional transformations ofCk .
We can widen this class of manifolds by blowing up. In terms of complex analysis,
all the global holomorphic functions are constant, and this is not changed by blowing
up. However, the set of biholomorphic self-mappings might change.

Let us start with dimension 2 and the classical example of the Cremona Involution,
which on C

2 is given by (x, y) �→ (1/x, 1/y), and on projective space we write it
as a mapping of degree 2:

J : [x0 : x1 : x2] �→ [1/x0 : 1/x1 : 1/x2] = [x1x2 : x0x2 : x0x1]

A rational (or meromorphic) mapping is said to be regular at a point p if it is
holomorphic in a neighborhood of p. The indeterminacy locus of a rational map
f : X ��� Y , writtenI ( f ) is defined as the set of all points where f is not regular.
It may be shown that if f is indeterminate at a point p, then f blows up p to a
variety V ⊂ Y , and the dimension of V is at least one. This “blown up” image
V may be defined in more than one way. One of them is simply the cluster set:
V = ⋂

ε>0 closure ( f (B(p, ε) − I ( f ))), where B(p, ε) denotes the ball about p
with radius ε.

If W ⊂ X is any subvariety, and ifI ( f ) does not contain any irreducible compo-
nent of W , then W −I ( f ) is dense in W . The closure of the image f (W −I ( f ))

is a subvariety of Y , and we call it the strict transform of W . A general fact is that
the indeterminacy locus has codimension ≥ 2. Thus if H ⊂ X is a hypersurface,
then we may take its strict transform f (H) ⊂ Y . We say that a hypersurface H is
exceptional if the codimension of f (H) is ≥ 2.

With these definitions, we see that the indeterminacy locus of J is I (J ) =
{e0, e1, e2}, and the lines Σ j := {x j = 0}, j = 0, 1, 2, are exceptional. Since J is
an involution, (i.e. J 2 = identity), we see that J blows up e j to Σ j . Geometrically,
J acts as an inversion in the coordinate triangle, as shown in Fig. 1.

Nowweblowup ofP2 at the point e0. This is a newmanifold X with a holomorphic
projection π : X → P

2 with the properties: (1) the exceptional fiber E0 := π−1(e0)

Fig. 1 Indeterminate point
e0 = [1 : 0 : 0] ↔
exceptional curve
Σ0 = {x0 = 0}
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Fig. 2 The space X
obtained by blowing up e0;
action of the induced map JX

is isomorphic to P
1, and (2) π : X − E0 → P

2 − {e0} is biholomorphic. We may
represent X in local coordinates (ξ1, ξ2) over P2 − Σ0

π(ξ1, ξ2) = [1 : ξ1 : ξ1ξ2] = [x0 : x1 : x2], π−1(x) = (ξ1 = x1/x0, ξ2 = x2/x1)

Figure2 shows the new blowup space X in the (ξ1, ξ2) coordinate chart. The
point e0 has been replaced by a curve (called exceptional or blowup divisor) E0. The
projection π maps X − E0 biholomorphically to P

2 − {e0}. Since e0 /∈ Σ0, π−1 is
holomorphic in a neighborhood of Σ0, and via this biholomorphism, we have a new
curve π−1Σ0 inside X . We write this again asΣ0, although technically it is the strict
transform of Σ0 in X . We may also use π−1 to lift the curve Σ1 − {e0} to X − E0;
inside the (ξ1, ξ2) coordinate chart, this corresponds ξ2 = ∞. The closure of this set
is a curve in X , which is the strict transform Σ ′

1 of Σ1. Although the curves Σ1 and
Σ ′

1 are isomorphic, their normal bundles are not.
Now we describe the behavior of the induced map JX := π−1 ◦ J ◦ π in the part

of the (ξ1, ξ2)-coordinate chart where ξ2 �= 0,∞. JX will map this set into X − E0,
which is mapped biholomorphically to P2 − {e0} by π . We represent its range in the
homogeneous x-coordinates as

JX (ξ1, ξ2) = J ([1 : ξ1 : ξ1ξ2]) = [1 : ξ−1
1 : ξ−1

1 ξ−1
2 ] = [ξ1ξ2 : ξ2 : 1]

which shows that JX is regular in this coordinate chart.
To summarize: the induced map JX has two points of indeterminacy e1 and e2.

The exceptional locus of JX consists of the strict transforms of Σ1 and Σ2. If we
continue this process and blowup all 3 points e0, e1 and e2, then we obtain a manifold
Z , and the induced map JZ is an automorphism of Z . This is pictured symbolically
in Fig. 3, where all 3 blowup divisors are represented as red (thicker) segments, and
the strict transforms of the Σ j are blue (thinner) segments. Together, they form a
hexagon, and the action of the induced map JZ is to interchange opposite sides of
the hexagon.

Thus we have started with a birational map and have obtained an automorphism
on some blowup ofP2.Wewill explore the question of howmuchmore generally this
mightwork:what are the birationalmaps ofP2 thatmight lead to automorphisms after
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Fig. 3 The space Z obtained
by blowing up e0, e1, e2; the
action of the induced map JZ

some blowups? For instance, de Fernex and Ein [dFE] have shown: If f : X ��� X
is a birational map of finite order (i.e. if f N is the identity for some N ), then there
is an iterated blowup π : Z → X such that the induced map fZ is an automorphism
of Z .

3 Degree Complexity, or Dynamical Degree

Every holomorphic or rational map f : Pk ��� P
k is represented by polynomials

f = [ f0 : · · · : fk] of a common degree d. Dividing by the GCD, we may suppose
that the degree d is minimal, and we set deg( f ) := d. The dynamical degree is the
limit

δ( f ) := lim
n→∞

(
deg( f n)

)1/n
.

We may think of δ as the degree complexity, or as the exponential rate of degree
growth of f n as n → ∞. We note that 1 ≤ δ ≤ d, and for “generic” f we have
δ = d (see [FS1, FS2]). The cases we are interested in, however, are when f is an
automorphism (or pseudoautomorphism) with δ > 1, and in this case δ is algebraic
but never rational (see [B]). In particular, it follows that δ < d.

We may consider the lift F = (F0, . . . , Fk) of f to a polynomial self-map of
C

k+1. In this case, Fn = F ◦ · · · ◦ F is the usual composition of polynomials, and
the degree of Fn is dn . Let us write Fn = ψn F 〈n〉, where ψn is the GCD of Fn . In
this case, we have deg(F 〈n〉) ∼ δn , and deg(ψn) ∼ dn − δn , so ψn carries almost all
the degree of Fn .

The degree of f is closely related to how it pulls back hypersurfaces. Recall
that H2(Pk) = H1,1(Pk), and H2(Pk;Z) is generated by the class of a hyperplane,
which we will again write as H . If V is any hypersurface, then its class is given
by deg(V ) · H ∈ H2(Pk;Z) corresponding to its degree. The pullback of the class
of a hyperplane H = {∑ c j x j = 0} is given by the class of {∑ c j f j = 0}. Thus
f ∗ H = deg( f )H .
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Let β denote any Kähler form (for instance, the Fubini-Study form) with∫
Pk βk = 1. Then deg(V ) = ∫

V βk−1. It follows that for a generic hypersurface
H , we have

δ = lim
n→∞

(
Volk−1( f −n(H))

)1/n

= lim
n→∞

(∫

f −n H
βk−1

)1/n
= lim

n→∞

(∫

Pk
βk−1 ∧ ( f n)∗β

)1/n

so the dynamical degree also measures the exponential rate of growth of (k − 1)-
dimensional volume under pullback.

It would be convenient if we could have ( f n)∗ = ( f ∗)n . In our case, that would
mean that deg( f n) = (deg( f ))n (see [FS1, FS2]). In dimension k = 2, [DF] showed
that there is an iterated blowup π : X → P

2 such that the induced map fX :=
π−1 ◦ f ◦ π does satisfy ( f n

X )∗ = ( f ∗
X )n . In this case, we let βX := π∗(β), so these

integrals become:

δ = lim
n→∞

(∫

P2
β ∧ ( f n)∗β

)1/n

= lim
n→∞

(∫

X
βX ∧ ( f n

X )∗βX

)1/n

= lim
n→∞

(∫

X
βX ∧ ( f ∗

X )nβX

)1/n

= ‖ f ∗
X‖sp

where ‖ · ‖sp denote the spectral radius, i.e. the modulus of the largest eigenvalue.
The reason that the growth of βX under ( f ∗

X )n gives the growth of ||( f n
X )∗|| is that

since it is a Kähler form, it can lie in an eigenspace only if δ = 1, and thus ( f ∗
X )nβX

must grow like the largest eigenvalue.
To give a simple example of the regularization of a map, we return to the map J

from §1. In this case, we have J ∗ = 2, which means that J ∗ acts on the generator
of H2(P2;Z) as multiplication by 2. On the other hand J 2 is the identity map, so
(J 2)∗ = 1 �= 4 = (J ∗)2.

Now consider the space X , which was obtained by blowing up P2 at the points e0,
e1, e2. The cohomology group H2(X;Z) has the ordered basis 〈HX , E0, E1, E2〉,
where HX denotes the class of the strict transform of a generic hyperplane (line),
and E j denotes the class of the exceptional fiber over e j . Let us see how to represent
J ∗

X with respect to this basis. Since JX is an automorphism of X , we see that J ∗
X :

E j ↔ Σ ′
j . Next we need to represent Σ ′

j with respect to this basis. Inside P
2,

we have that Σ j = H is the generator of H2(P2;Z). Now let us pull this back
under π∗. It follows that π∗ H = HX = π∗Σ j . On the other hand, suppose for
instance that j = 0. Then Σ0 contains e1 and e2, so when we pull back, we get
the total preimage, and π∗(Σ0) = Σ ′

0 + E1 + E2. This gives J ∗
X : E j �→ Σ ′

j =
HX − E1 − E2. Finally, J−1{∑ c j x j = 0} = {c0x1x2 + c1x0x2 + c2x0x1 = 0},
so J−1{∑ c j x j = 0} contains {e0, e1, e2}. This is a curve of degree 2, so its class
in H2(P2) is 2H . We apply π∗ to 2H = J−1{∑ c j x j = 0} and find that we have
2HX = J−1{∑ c j x j = 0}X + ∑

E p inside H2(X). Since JX is an automorphism,
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we obtain J ∗
X = J−1{∑ c j x j = 0}X = 2HX − ∑

E p. Writing this as a matrix

with respect to our ordered basis, we find J ∗
X =

⎛

⎜
⎜
⎝

2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

⎞

⎟
⎟
⎠, which satisfies

(J ∗
X )2 = I .
In the preceding heuristic argument we did not take into account the multiplicities

of the E p, which in fact turn out to be 1 in this case. In higher dimension, they are
> 1.

4 Some Rational Surface Automorphisms with δ > 1

We start with a particularly simple family of planar rational maps:

fa,b(x, y) =
(

y,
y + a

x + b

)
: C2 ��� C

2

We may write this in homogeneous coordinates [x0 : x1 : x2] = [1 : x : y] as

fa,b : [x0 : x1 : x2] �→ [x0(bx0 + x1) : x2(bx0 + x1) : x0(ax0 + x2)]
The points of indeterminacy are {e1, e2, p = [1 : −b : −a]}. The Jacobian deter-
minant is 2x0(bx0 + x1)(ax0 + x2), which vanishes on three lines, which are the
exceptional curves of fa,b. Choosing a linear map mapping this triangle to the stan-
dard coordinate triangle {x0x1x2 = 0}, we may conjugate fa,b to a map of the form
L ◦ J , where L is linear, and J is the map from §1. The triangle of exceptional curves,
shown in Fig. 4, is mapped as:

Σβ = {bx0 + x1 = 0} → e2 ��� Σ0 → e1 ��� Σγ = {ax0 + x2 = 0} → q := [1 : −a : 0]

Now let us construct a new space Y by blowing up P
2 at the points e1 and e2.

We see that the induced map fY has one exceptional curve Σγ and one point of
indeterminacy p. If the orbit of q lands on p, i.e. if f N q = p, then we may blow
up the orbit q, f q, …, f N q = p. If we start by blowing up q, then Σγ is no longer

Fig. 4 The space Y obtained
by blowing up e1, e2; action
of the induced map fY
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exceptional, but the blowup fiber Q over q is exceptional. Next, we blow up f q,
so Q is now mapped to f Q (the fiber over q) and is no longer exceptional. We
continue over the whole orbit and obtain an automorphism, since the fiber P over
the indeterminate point p now maps in a regular way to the line qe2, which is drawn
in (dashed) black in Fig. 4. (It is easy to see that this line is what we would expect
because p = Σγ ∩ Σβ , and Σγ �→ q, Σβ �→ e2, so we expect p to be blown up to
qe2.)

Let us define the set

VN := {(a, b) ∈ C
2 : f N

a,b(q) = f N
a,b(−a, 0) = p = (−b,−a)}

From ([BK2], Theorem 2) we have: If (a, b) ∈ VN , then there is a blowup X such
that the induced map fX is an automorphism.

Now let us suppose that fa,b is an automorphism and show how determine f ∗
X .

Wemay use the basis 〈HX , E1, E2, P = f N Q, f N−1Q, . . . , Q〉 as an ordered basis
for H2(X;Z). Since fX is an automorphism, we can read off the behavior of f −1

X
from Fig. 8:

f ∗
X : E1 �→ Σ ′

0, E2 �→ Σ ′
β, P = f N Q �→ f N−1Q �→ · · · �→ Q �→ Σ ′

γ

Further, as we saw in the case of JX , we have

Σ ′
0 = HX − E1 − E2, Σ ′

β = HX − P − E2, Σ ′
γ = HX − E1 − P

and

f ∗
X : HX �→ 2HX − E1 − E2 − P

This defines f ∗
X on all the basis elements of H2(X), so we may now compute the

characteristic polynomial of f ∗
X , and we find that it is:

χN (t) = t N+1(t3 − t − 1) + t3 + t2 − 1 (4.1)

The dynamical degree of fa,b is the spectral radius of f ∗
X , which is the largest root

of χN . We conclude (cf [BK2]) that: If (a, b) ∈ VN , and if N ≥ 7, then fa,b is an
automorphism of X with δ( fa,b) > 1.

It is known that VN �= ∅ for all N (see [M] and [BK3]), but: It is not known
whether VN is discrete for N ≥ 7. For generic (a, b) ∈ C

2, the dynamical degree of
fa,b is δ∗ ∼ 1.324, the largest root of t3 − t − 1. Does the cardinality of VN grow
like δN∗ as N → ∞?
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5 Connection Between Dynamical Degree and Length
Growth: A Graphic Example

If we choose (a, b) ∈ V7, then the map fa,b in §3 will be an automorphism with
δ ∼ 1.17628, which is the largest root of χ7 from (4.1). By the discussion in §2,
we know that the nth iterate of a (complex) line will have 2-dimensional area ∼ δn .
This is closely related to the fact (see [C2]) that the entropy of fa,b is log δ. There
is only one map fa,b (and its inverse) with (a, b) ∈ V7 ∩ R

2. The restriction of this
map to XR, the real points of X was shown in [BK3] to have entropy log δ. Figure5,
taken from ([BK2], Figure A.1), shows the example of the real point (a, b) ∈ V7.
This shows the image of a line L after n iterations, and inspection shows empirically
that the length grows ∼ δn .

To represent the real projective plane, we have taken the usual polar coordinates
(r, θ) and replaced them by modified polar coordinates (ρ, θ), where ρ = arctan(r).
Thus lines appear to be circular in these coordinates. The exceptional curve Σ0
is the outer circle bounding the picture, and the exceptional curves Σβ and Σγ are
labeled. The intersection points of any two of these exceptional curves are necessarily
indeterminate. The image of Σγ is labeled “0”, and the image of “0” is “1”, etc. The
cubic invariant curve is pictured, and the two fixed points are on this curve, close
together, just above the number “7” (which is the label for the indeterminate point
Σβ ∩ Σγ ).

The forward image of the line L appears to be “bunched” at the points “0”, “1”,
… These points are blown up in the construction of X , so the “bunching” is an
artifact of the projection π , which takes all the points of a blowup fiber and collapses
them to a point. It appears that f n L may converge to a lamination as n → ∞, and it

Fig. 5 f (x, y) =(
y,

y + a
x + b

)
,

a = −0.499497,
b = −0.415761
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would be interesting to know whether this is true. (A related map was shown to have
a lamination in [BD].)

We note that one of the fixed points is attracting, and the basin has full area (see
[M, BK3]). Another graphical representation for this map is to choose a point of the
basin and plot its orbit under f −1, as was done in ([M], Fig. 1). It is striking to see
the similarities between these figures, the main visual difference coming from the
coordinate systems used: affine for ([M], Fig. 1) and compactified polar for Fig. 5
above.

6 Heuristic Picture: Dynamical Complexity Versus Degree
Complexity

The main goal of this paper is to discuss maps with interesting dynamics, so let us
give some examples of interesting dynamics. In dimension 1, we consider a rational
map f : P1 → P

1 with degree( f ) = δ( f ) = degtop( f ) > 1. Such maps are not
invertible. One of the basic results of the subject concerns the backward dynamics
of f , i.e. the distribution of preimages of a point.

Theorem ([Br, FLM, L]). For almost all points z0 there is a limiting distribution of
point masses over the preimages of z0:

μ f := lim
n→∞

1

dn

∑

{a: f n(a)=z0}
δa .

This measure is balanced, which means that, locally, f ∗μ f = d ·μ f . Thus, as we
consider backward iteration, the different branches of f −1 giveμ f (S j ) = μ f (S)/d.
The effect is like Bernoulli trials, as illustrated in Fig. 6.

If K ⊂ X is a compact set, and if f : X → X , then we may define the stable
set W s(K ) := {x ∈ X : dist( f n(x), K ) → 0 as n → ∞}. The unstable set W u(x0)
is defined as above, with f replaced by f −1. In dimension 1, if x0 is a repelling
periodic point, the stable set of a point W s(x0) is just the set of all preimages of x0.
The Theorem above says that the asymptotic distribution of W s(x0) is independent
of x0. In dimension 2, the stable set has the structure of a manifold (curve).

Stable Manifold Theorem. Let f : X → X be an automorphism of a complex
surface, let x0 be a saddle fixed point, and let

Fig. 6 Choosing preimages
of a point is like flipping a
d-sided coin
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Fig. 7 Stable/unstable
manifolds for the Horseshoe
Map fc,a(x, y) =
(c + ay − x2,−x) with
c = 6.0, a = 0.8

W s(x0) := {x : lim
n→∞ dist( f n x, x0) = 0}

be its stable set. Then there is an injective holomorphic immersion ξ : C → X such
that ξ(C) = W s(x0).

A classic example is the Horseshoe Map. Figure7 is the R
2 slice of a complex

automorphism of C2. It shows the stable and unstable manifolds of a saddle fixed
point x0, which is marked in the upper left. The arcs which are essentially “left-right”
(with bends) are contained in W u(x0). They are cut off by the viewbox of the picture,
but they are connected inR2. Similarly, the arcs which are oriented in the “up-down”
sense are contained in the stable manifold W s(x0). In the case of the horseshoe, the
closure of W s(x0) is a complicated set; a laminar structure is clearly visible.
We summarize some dynamical properties of the horseshoe map:

• All points outsideW s(x0)∪W u(x0) escape to infinity in either forward or backward
time.

• W s(x0) ∩ W u(x0) ∼= Cantor set × Cantor set
• Saddle (periodic) points are dense in W s(x0) ∩ W u(x0)
• Dynamics on Cantor set × Cantor set is conjugate to the shift on {0, 1}Z
• The closure W s(z0) is the same for all saddles z0.

In the 1-dimensional case, the stable set is W s(x0) = ⋃
n≥0 f −n(x0). This is an

infinite set whose closure contains the Julia set. If we start with an element x0 in the
Julia set, then f −n(x0) will also be contained in the Julia set, and it will fill it out
as n → ∞. By the Theorem at the beginning of this section, we may think of the
invariant measure μ as describing how the sets W s(x0) accumulate. We want to do
something similar in the 2-dimensional case. Suppose that γ is an oriented curve in
R
2, or if Γ is a complex submanifold of C2. If γ has locally bounded length (or if

Γ has locally bounded area), we can consider the current of integration [γ ], which
acts on test forms by ϕ �→ ∫

γ
ϕ. In the case of the horseshoe, we cannot define the

current of integration [W s(x0)] directly, but we may construct a current by taking the
average over arcs of stable manifolds in W s . Thus, instead of an invariant measure,
we have a family of transversal measures, which assign mass to families of stable
arcs. When we map W s by f −1, each individual stable manifolds is stretched, but
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Fig. 8 Mapping by f −1 acts on the family of transversal measures

the action on the set of transversal measures is very much like the Bernoulli trials that
we saw in the 1-dimensional case. Thus f −1 maps one stable manifold to another,
mixing them in the same chaotic way we saw in dimension 1 (Fig. 8).

While this phenomenon is rather special for real mappings, such as the horse-
shoe, it happens quite generally in the complex case. If f is an automorphism of a
complex surface with δ( f ) > 1, then there is an invariant current T s which satis-
fies f ∗T s = δT s . This current always exists, but it does not always have the same
elegant geometric laminarity that we have seen in the case of the horseshoe. The
current T s can be sliced by a complex disk, and such slices T s |D will serve as a
family of “transversal measures”. If we work in a more measure-theoretic sense, we
can assign a laminar structure to T s , and such currents have been useful in studying
the dynamics of f . With Misha Lyubich and John Smillie, we have written a series
of papers on the subject. See [D1, D2, D3] for a more recent treatment.

7 What Are the Compact Surfaces X Which Carry
an f ∈ Aut(X) with δ1( f ) > 1?

Using the Kodaira classification of surfaces, Cantat gave the following answer:

Theorem [C1]. Suppose that X is a compact complex manifold of (complex) dimen-
sion 2, and there is an automorphism f of X with δ( f ) > 1. Then X is a blowup of
one of the following cases:

• X is a torus, and f is a “standard” torus automorphism.
• X is a K3 surface, or a finite quotient of one of these.
• X is a rational surface

This leads immediately to the more precise question: What are the surfaces and
maps that actually occur for K3 or rational surfaces? The K3 surfaces or rational
surfaces which can carry nontrivial automorphisms are quite special and not easy to
find.

The set of all K3 surfaces has dimension 20, and the set of the family of K3
surfaces that carry nontrivial automorphisms has smaller dimension. On the other
hand, by [BK4], rational surfaces with automorphisms with δ > 1 can occur in
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families of arbitrarily large dimension. This leads us to expect that a more interesting
variety of dynamical behaviors will be found within the class of rational surfaces, so
we concentrate on them, rather than on K3 surfaces.

Theorem (Nagata). If a rational surface X carries an automorphism with δ > 1,
then X is an (iterated) blowup π : X → P

2 of the projective plane.
Any rational surface X can be obtained from P

2 by a series of blowings up and
down. This Theorem says that X can be obtained by blowups alone.

Thus one possible approach is to look for birational maps g : P2 ��� P
2 which

can be lifted to automorphisms, as was done in §2–4. Another approach which
has been productive is to require that the automorphism have an invariant curve.
McMullen gave a “synthetic” approach to this question, and Diller [Di] has shown
all the possibilities for rational surface automorphisms with invariant curves, and
which arise from quadratic maps of P2. Let us remark (see [BK3]) that while many
maps have been constructed by starting from invariant curves, not all rational surface
automorphisms have invariant curves.

If X is obtained from P
2 by a sequence of N blowups, then H2(X;Z) = Z

N+1,
and the intersection productmakes H2(X;Z) isometrically isomorphic to theLorentz
space Z1,N , with signature (1, N ). A Theorem of Nagata (see [Do1, M]) says that
if f is an automorphism of X , then f ∗ must belong to the Weyl group WN . Thus
the question arises: What are all the elements of WN which can be realized by
rational surface automorphisms? That is, if g ∈ WN , are there a surface X and an
f ∈ Aut (X) such that the map induced by f ∗ on Z

1,N coincides with g? If this is
the case, then δ( f ) is equal to the spectral radius of g. Uehara [Ueh] has shown that
for any g ∈ WN , there exists f ∈ Aut (X) such that δ( f ) is the spectral radius of g.
In other words, the set of all dynamical degrees coincides with the spectral radii of
elements of WN . On the other hand, Diller [Di] and Uehara [Ueh] have shown that
certain elements of WN cannot be realized by automorphisms with invariant curves,
leaving open the question: What happens for maps without invariant curves? The
set of all dynamical degrees of surface automorphisms is well ordered and has other
properties (see [BC]).

8 Pseudo-automorphisms

We were led to pseudo-automorphisms by the problem of finding all periodicities
within the family fa,b of birational maps of P3:

fa,b(x1, x2, x3) =
(

x2, x3,
a0 + a1x1 + a2x2 + a3x3
b0 + b1x1 + b2x2 + b3x3

)

What are the parameters a j , b j , 0 ≤ j ≤ 3, such that f p = identity for some p?
This question seems to have originated when the first of the period 8 maps belowwas
found many decades ago by Lyness [Ly]. The second one was found by Csörnyei and
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Laczkovich [CL]. The following is proved in [BK5], where the word “nontrivial” is
also explained.
Theorem. The only nontrivial periods that can appear are 8 and 12. The maps are

(x, y, z) → (y, z, (1 + y + z)/x) or (y, z, (−1 − y + z)/x) period 8

(x, y, z) →
(

y, z,

(
η

1 − η
+ ηy + z

)
/
(
η2x

))
period 12

where η is a primitive cube root of −1.
The principle behind the method of proof is to consider the function (a, b) �→

δ( fa,b) on parameter space and identify the subvariety of parameters {(a, b) :
δ( fa,b) = 1}, since any possible periodic map must lie here. The generic map in
this family has dynamical degree equal to δ∗ > 1, and the scan of parameter space
yielded a number of cases where 1 < δ( fa,b) < δ∗. In the most interesting cases, we
blow up 2 points, then 2 lines, and then an orbit of curves (11 in one case and 19 in
another) and arrive at a map without exceptional hypersurfaces. The first of these
cases is from ([BK5], Theorem 1):

Fa : (x, y, z) �→ (y, z, (a + ωy + z)/x) (8.1)

where a ∈ C, a �= 0, and ω is a primitive cube root of unity. After blowups, these
maps are “regularized” to the point that they are almost automorphisms, except that
there are a finite number of indeterminate curves, and points of these indeterminate
curves are blown up to other curves. These maps are pseudo-automorphisms, and it
is easy to deal with the map f ∗ on cohomology, but the existence of indeterminacy
makes it tricky to analyze the pointwise dynamics.

In connection with the method described above, it would be interesting to know
more generally for a family fa of rational maps:

Is a �→ δ( fa) lower semi-continuous?
and

Is {a : δ( fa) ≤ t} always a subvariety?
The answer is “yes” for birational surface maps (see [X], Theorem 1.6)).

The indeterminacy locusI ( f ) of any rationalmap f : X ��� Y has codimension
at least 2. Thus if H is any hypersurface, wemay define the image (strict transform) of
H as the closure of f (H −I ( f )).We say that H is exceptional if the codimension of
the strict transform of H is≥ 2. A birational f : X ��� X is a pseudo-automorphism
if neither f nor f −1 has an exceptional hypersurface.

Pseudo-automorphisms behave very much like automorphisms, and we expand
our search to include this richer source of interesting maps. In dimension 2, all
pseudo-automorphisms are in fact automorphisms.What happens in dimension> 2?
Given that the blowups of P2 have yielded interesting automorphisms, it makes sense
to ask: Are there 3-folds X which are obtained as blowups of P3 and which carry
automorphisms f with δ( f ) > 1? Of course, we would expect such automorphisms
to exist only in very special cases.
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Fig. 9 Cremona involution
blows up generic point of
edge α to all of edge β

Fig. 10 After blowup of e0:
generic point of edge α still
blows up to all of edge β

Theorem [T]. If X is obtained from P
3 by blowing up points and curves satisfying

a certain condition, and if f is an automorphism of X , then δ1( f ) = δ2( f ).

Theorem [BaC]. If X is obtained from P
k by blowing up points, then any automor-

phism f of X satisfies δ�( f ) = 1 for all �.
The Cremona involution on P

3 is the cubic map given by

J (x) = [1/x0 : 1/x1 : 1/x2 : 1/x3] = [x1x2x3 : x0x2x3 : x0x1x3 : x0x1x2]

which acts as an involution on the coordinate tetrahedron e j ↔ Σ j , j = 0, 1, 2, 3.
We now see a new phenomenon: any non-vertex point of an edge of the tetrahedron
is blown up by J to the skew edge. In Fig. 9, this means that any non-vertex point of
α will be blown up to the whole edge β.

Let π : X → P
3 be the blowup of P3 at e0. The 3 edges of the tetrahedron passing

through e0 are now separated as in Fig. 10. The induced map JX : X ��� X maps
E0 ↔ Σ0, so Σ0 is no longer exceptional. The restricted map JX |E0 : E0 → Σ0
“looks like” the 2D map J mapping P

2 to itself: the black triangle inside E0 is
exceptional, and the dotted black line is mapped to the bold black dot in Σ0 in
Fig. 10. The edges of the tetrahedron (in green) are still indeterminate.

If we let π : Y → P
3 be the space obtained by blowing up all the vertices e j ,

j = 0, 1, 2, 3, then the induced map JY will be a pseudo-automorphism of Y . In the
space Y , the strict transforms of the edges of the tetrahedron are disjoint curves. Let
π : Z → Y be the space obtained by blowing up the strict transforms of the edges
of the tetrahedron. Thus JZ is an automorphism of Z , a very simple instance of the
Theorem of de Fernex and Ein mentioned above.

On the other hand, the example of Fa in (8.1) illustrates why this procedure may
encounter difficulties if the map is not periodic; in [BK5] Theorem 4, it is shown
that Fa is not birationally conjugate to an automorphism. Since blowing up or down
is a birational operation, Fa cannot be turned into an automorphism by any sort of
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blowing up procedure. A heuristic explanation for this difficulty in the case of Fa is
that we will need to blow up an orbit of curves, but the curves in the orbit are not
pairwise disjoint.

9 Intermediate Dynamical Degrees

Let X be amanifold of dimension k, and let f be an automorphism of X . Wemeasure
the complexity of f in terms of dynamical degrees. We assume that X is Kähler,
so the action f ∗ on cohomology respects the (p, q) bi-gradation H∗ = ⊕H p,q . If
1 ≤ � ≤ k, then the �-th dynamical degree is defined as the exponential rate of
growth of the induced map f ∗ on H �,�(X):

δ�( f ) := lim sup
n→∞

|| f n∗ : H �,�(X) → H �,�(X)||1/n

This is independent of the choice of norm on H �,�. For an automorphism, we have
( f n)∗ = ( f ∗)n , so δ� is the same as the spectral radius of f ∗ acting on H �,�(X).
It is also the same as the spectral radius of the restriction of f ∗ to H2�(X). As
in §2, an equivalent definition is the exponential rate of growth of the integrals∫

βk−� ∧ ( f n)∗(β�) as n → ∞.
In all cases, δ� ≥ 1, δ0 = 1, and δk = degtop is the topological or mapping degree

of f . Since f is invertible, we have δk = 1. By duality, δ�( f ) = δk−�( f −1). For the
intermediate degrees, � �→ log(δ�) is concave. Thus, if δ1 = 1, then δ� = 1 for all
0 ≤ � ≤ k; and if δ1 > 1, then δ� > 1 for all 1 ≤ � ≤ k − 1.

Let us note that if f : X ��� Y is merely rational, then there is still a well-
defined linear map f ∗ : H∗(Y ) → H∗(X). In dealing with rational maps, birational
conjugacy is a natural sense of equivalence. It was shown (see [DF] and [DS2]) that
δ� is an invariant of birational conjugacy. However, the topological entropy is not a
birational invariant (see [G1]), but [DS2] gives an inequality:

entropytop( f ) ≤ max(log(δ1), . . . , log(δk))

The only general class of non-holomorphic, rational maps for which the interme-
diate degrees has been computed is the case of monomial maps, and the following
is nontrivial:

Theorem [Lin, FW]. Let A = (ap,q) be an integer matrix of size k × k, and let

f A(x) = x A = (x
a1,1
1 · · · x

a1,k
k , . . . , x

ak,1
1 · · · x

ak,k
k ) =

(
∏

q

x
a1,q
q , . . . ,

∏

q

x
ak,q
q

)
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be the associated monomial map. Then for each � ≥ 1, δ�( f A) is the spectral radius
of the �-th exterior power ∧� A of A. Equivalently, if |λ1| ≥ |λ2| ≥ · · · ≥ |λk | are
the eigenvalues of A, then δ� = |λ1λ2 · · · λ�|.

Intermediate degrees have also been determined by [A] and [KR], but despite
their obvious importance, we have the problem:

Determine δ�( f ) for 1 < � < k for other nontrivial f .

10 Existence of Pseudo-automorphisms of Blowups of Pk

We will try to find pseudo-automorphisms of the form L ◦ J for some L which is a
nonsingular (k + 1) × (k + 1) matrix, and thus a linear automorphism of Pk . The
exceptional locus consists of the hyperplanes Σ j , which are mapped:

f := L ◦ J : Σ j → L j

where L j denotes the point of Pk defined by the j th column of the matrix L . We will
have a pseudo-automorphism if

L j �→ f (L j ) �→ · · · �→ f m j (L j ) = eσ j , f �(L j ) /∈
⋃

i

Σi

where σ is a permutation of {0, . . . , k}. Let π : X → P
k be the blowup of the orbits

of the L j . The induced map fX := π−1 ◦ f ◦ π will be a pseudo-automorphism of
X . In ([BK1], Theorem A.1) a formula is given for the characteristic polynomial of
fX :

Theorem. The characteristic polynomial defining the dynamical degree δ1(L ◦ J ) =
δ1(m1, . . . , mk,σ ) is given by an explicit formula involving the orbit lengths m j and
the permutation σ .

Thus the lengths m j and the permutation σ specify the dynamical degree that will
be produced. As a practical matter, however, the strategy given above for finding L
is not feasible because it involves solving equations of very high degree in many
variables. The relevant computations are possible, however, if we assume that all
the centers of blowup lie in an invariant curve. The existence of automorphisms of
blowups of P2 with invariant curves was studied by McMullen, Diller and Uehara.
Perroni and Zhang brought the method of McMullen from dimension 2 to higher
dimension and gave the abstract existence of a map with an invariant curve.

Theorem [PZ]. For all k ≥ 2 and d ≥ 1 there exist infinitely many manifolds X
obtained by blowing up points on (Pk)d such that X carries a pseudoautomorphism
with δ > 1.

With Diller and Kim, we were motivated by the desire to see the Perroni-Zhang
maps more concretely, and for this we used the method of Diller [Di]. Let us consider
a parametrized curve ψ : C → C ⊂ P

k . We say that C satisfies a group law if
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the following holds: For each hyperplane H ⊂ P
k , the set of all solutions (with

multiplicity) t1, . . . , tN of ψ(ti ) ∈ H satisfies
∑

ti = 0. There are several cases of
curves with group law; all the curves we work with have degree k + 1. For instance,
there isC1 := ψ(C), which is the image of t �→ ψ(t) = [1 : t : t2 : · · · : tk−1 : tk+1]
which is irreducible and has a cusp. There is also C2 := ψ(C), which is the image
of the set-valued map t �→ ψ(t) = {[1 : t : · · · : tk], [0 : · · · : 0 : (−1)k−1 : t]}
and is the union of rational normal curve and a tangent line. Both of these curves are
singular at [0 : · · · : 0 : 1] = ψ(∞).

If there is an invariant curve, then the points to be blown up are of the formψ(t j ).
The problem of finding the centers of blowup is thus transformed to a problem of
determining the points {ti } ⊂ C. Using the group law on the curve, we obtain:

Theorem [BDK]. For most choices of orbit lengths (m0, . . . , mk) and permutations
σ , there is a matrix L such that the space π : X → P

k obtained by blowing up the
orbits yields an induced pseudo-automorphism fX : X ��� X .

This method applies also to products (Pk)d . For this we use the following variant
of J . We write a point of (Pk)d as (x, y(1), . . . , y(d−1)) and set

x/y( j) := (x0/y( j)
0 , . . . , xk/y( j)

k ), J (x, y(1), . . . , y(d−1)) = (1/x, x/y(1), . . . , x/y(d−1))

A linear map L ∈ Aut ((Pk)d has the form L ◦ τ where L := (L1, . . . , Ld), L j ∈
Aut (Pk), and τ is a permutation of the factors Pk .

This Cremona involution is discussed byDolgachev [Do2, Do3] andMukai [Muk]
in connection withWeyl groups W (p, q, r)which have T -shaped Coxeter diagrams.
In this case, p = k + 1, q = d + 1, and r − 1 is the number of blowups forming the
space π : X → (Pk)d , and W (p, q, r) ⊂ GL(H2(X;Z),Z). It is shown in [BDK]
that if a map of the form f := L ◦ τ ◦ J is a pseudo-automorphism of a space X
obtained by blowing up (Pk)d , then the induced map f ∗ belongs to the Weyl group
W (p, q, r). The more general statement, however, is still open: Let X be a blowup of
(Pk)d , and let G denote the group generated by J and the linear maps Aut ((Pk)d). If
f ∈ G induces a pseudo-automorphism of X , does if follow that f ∗ ∈ W (p, q, r)?
A reflection group like W (p, q, r) is generated by reflections r1, . . . , rN . The

Coxeter element of this group is given by the product r1 · · · rN of these reflections,
where each of the r j appears exactly once. This element is unique up to conjugation
and represents the simplest element of reflection group with spectral radius > 1 (see
[M] and [Do1]). The results of [PZ] and [BDK] also apply to the Coxeter elements of
W (p, q, r). For instance, let us consider the case with orbit lengths (1, . . . , 1, n), and
the permutation σ = (0 1 2 . . . k) is cyclic. In this case the action of f ∗ on Pic(X)

corresponds to the Coxeter element of the Weyl group W (k + 1, 2, n + k + 1). The
existence of such maps, representing the Coxeter element, was given by Perroni and
Zhang. In [BDK] it is shown that we may write such a map as f := L ◦ J , where L
has the form:
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L =

⎛

⎜⎜⎜⎜
⎜
⎝

0 0 0 . . . 0 1
β1 0 0 . . . 0 1 − β1
0 β2 0 . . . 0 1 − β2
...

...

0 0 0 . . . βk 1 − βk

⎞

⎟⎟⎟⎟
⎟
⎠

with βi being a rational function of δ, any root of the minimal polynomial χn which
gives the dynamical degree of L ◦ J . Different choices of invariant curve lead to
different expressions for βi as rational functions of δ.

In dimension 2, it appears that the majority of automorphisms f = L ◦ J of
blowups of P2 do not have invariant curves. Is it the case that “most” pseudo-
automorphsms of blowups of (Pk)d do not have invariant curves?

11 Cohomological Hyperbolicity

A map f : X ��� X is said to be cohomologically hyperbolic if there is a unique
1 ≤ p ≤ k − 1 such that δp( f ) is maximal. In this case, the maximal growth occurs
uniquely in bidegree (p, p), which corresponds to codimension p. As was noted in
[BDK], we have δ1 = δk−1 for all maps f = L ◦ J which are pseudo-automorphisms
of point blowups of Pk . Thus f is not cohomologically hyperbolic when k = 3. We
note the following open questions about maps L ◦ J :

What are the intermediate dynamical degrees δ�(L ◦ J ) when k > 3?
Can L ◦ J be cohomologically hyperbolic for even k greater than 3?

Theorem [DS1]. If f is a cohomologically hyperbolic automorphism, then there
are invariant currents T s/u , and these may be used to form an invariant measure μ

with interesting dynamical properties.
Guedj [G2] has conjectured that in the presence of cohomological hyperbolicity,

the basic ergodic properties of 2-dimensionalmaps should carry over to higher dimen-
sion. If f is not cohomologically hyperbolic, then it is not clear to what extent a result
like this would remain valid, and it is not clear what approach will reveal the dynam-
ics of such maps. It would be helpful if there could be an invariant fibration which
would allow us to somehow study the dynamics with lower-dimensional objects and
techniques. In dimension 2, cohomological hyperbolicity fails (for invertible maps)
exactly when δ( f ) = 1. In this case, Diller-Favre have shown:

Theorem [DF]. If f : X ��� X is a bimeromorphic surface map with δ( f ) = 1,
then there is an invariant fibration.

Let f : X ��� X be a meromorphic map. Suppose that there is a dominant,
meromorphic map φ : X ��� Y and a meromorphic map g : Y ��� Y such that
0 < dim(Y ) < dim(X), and g ◦ φ = φ ◦ f . In other words, φ gives a meromorphic
semiconjugacy from ( f, X) to (g, Y ). In this case, the sets {φ = const} form an
invariant fibration.
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In the presence of an invariant fibration, there is a dynamical degree on the fiber,
written δ j ( f |φ) (defined in [DN]), and it is related to the other dynamical degrees by:

Theorem [DN, DNT]. Suppose that the map f has an invariant fibration as above.
Then

δp( f ) = max
max{0,p−k+�}≤ j≤min{p,�} δ j (g)δp− j ( f |φ) .

As a consequence of this, one can show:

Theorem. If X is a 3-fold, and f : X ��� X is a birational map with an invariant
fibration, then δ1 = δ2. In this case, f is not cohomologically hyperbolic.

The possibilities for invariant fibrations in the automorphisms of tori are discussed
in [OT1, OT2]. Guedj also conjectured: If f is not cohomologically hyperbolic, then
f has an invariant fibration, or at least an invariant foliation. In dimension 2,
[KPR] have given a counter-example with δ1 = δ2 = degtop = 2, which is thus a
non-invertible map.

If dim(X) = 3, and if f : X ��� X is birational, then the condition that f is not
cohomologically hyperbolic is equivalent to the condition that δ1( f ) = δ2( f ). We
now give a 3-dimensional counterexample which is invertible. Set

La,c =

⎛

⎜
⎜
⎝

0 0 0 1
1 0 0 a
0 1 0 0
0 0 1 c

⎞

⎟
⎟
⎠

with a, c ∈ C such that

na2 + (n + 1)ac + nc2 = 0

for some n ≥ 2, and let J (x) = [1/x0 : · · · : 1/x3] be the usual Cremona involution
on P3.

Theorem [BCK]. For n ≥ 2, we set fa,c := La,c ◦ J . The dynamical degrees are
δ1( f ) = δ2( f ) > 1. There is no (singular) foliation of dimension 1 or 2 which is
invariant under fa,c. In particular, there is no invariant (singular) fibration.

Now let us sketch the structure of the map f := fa,c in the example.

f (Σ0) = e1 := [0 : 1 : 0 : 0], f (Σ1) = e2, f (Σ2) = e3

f (Σ3) = p := [1 : a : 0 : c]

Theorem. Let Y denote P3 blown up at the points e1 and e3. Then the induced map
fY is a dominant map of an invariant 4-cycle of surfaces:

Σ0 → E1 → Σ2 → E3 → Σ0



86 E. Bedford

Fig. 11 Construction of Y

The orbit of the exceptional image point p is inside this invariant set (Fig. 11).

Theorem. If na2 + (n + 1)ac + nc2 = 0, then the fY -orbit of p lands on the point
e0. Let X denote the space obtained by blowing up the 4n + 2 points p, fY (p), …,
f 4n
Y p = e0, and e3. Then the induced map fX is a pseudo-automorphism.
One difference between these maps and the [BDK] maps is that that there are two

“levels” of blowup, and in fact none of the [BDK] maps is birationally conjugate to
any of the [BCK] maps. The invariant 4-cycle of surfaces Γ := Σ0 ∪ E1 ∪ Σ2 ∪ E3
plays an important role in understanding f .

Theorem. For g := f 4|Σ0 , the dynamical degree satisfies δ1(g) > 1, but it is not a
Salem number. Thus g is not birationally conjugate to a surface automorphism.

We note that the maps Fa of (8.1) were analyzed by means of an invariant 8-cycle
of surfaces with similar properties. We may use [BK5], Theorem 1.5, to conclude
that the maps in [BCK] are not birationally conjugate to an automorphism of a 3-
dimensional manifold.
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On Nazarov’s Complex Analytic
Approach to the Mahler Conjecture
and the Bourgain-Milman Inequality

Zbigniew Błocki

Abstract We survey the several complex variables approach to the Mahler
conjecture from convex analysis due toNazarov.We also show, although only numer-
ically, that his proof of the Bourgain-Milman inequality using estimates for the
Bergman kernel for tube domains cannot be improved to obtain the Mahler con-
jecture which would be the optimal version of this inequality.

Keywords Mahler conjecture · Bergman kernel · Pluricomplex Green function

1 Introduction

Let K be a convex symmetric body in R
n . This means that K = −K , K is convex,

bounded, closed and has non-empty interior. The dual (or polar) body of K is given
by

K ′ = {y ∈ R
n : x · y ≤ 1 for all x ∈ K },

where x · y = x1y1 + · · · + xn yn . The Mahler volume of K is defined by

M(K ) = λn(K )λn(K ′),

where λn denotes the Lebesgue measure inRn . It is easy to see that it is independent
of linear transformations and thus also on the inner product inRn . TheMahler volume
is therefore an invariant of the Banach space (Rn, qK ), where qK is the Minkowski
functional of K :

qK (x) = inf{t > 0 : t−1x ∈ K } = sup{x · y : y ∈ K ′}.
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The Blaschke-Santaló inequality says that the Mahler volume is maximal for balls:

λn(K )λn(K ′) ≤ (λn(B
2
n))2,

where for p ≥ 1 we denote

B
p
n = {x ∈ R

n : |x1|p + · · · + |xn|p ≤ 1}.

In fact, it holds without the assumption of symmetry but one has to assume that the
interior of K contains the origin. Moreover, one has equality if and only if K is an
ellipsoid, that is a linear image of B2

n . It was proved by Blaschke [B1, B2] for n = 2,
n = 3, and by Santaló [S1] for arbitrary n (see also [SR]).

Mahler [M1] conjectured that M(K ) is minimized by cubes, that is

λn(K )λn(K ′) ≥ λn(B1
n)λn(B

∞
n ) = 4n

n! ,

where B∞
n = [−1, 1]n . It can be easily proved for n = 2: if K is a polygon with k

vertices and K̃ is the polygon with k − 1 vertices obtained from K by moving one
vertex as in the following picture

then λ2(K̃ ) = λ2(K ) but one can show that λ2(K̃ ′) ≥ λ2(K ′).
Bourgain and Milman [BM] proved the following lower bound for the Mahler

volume: there exists c > 0 such that

λn(K )λn(K ′) ≥ cn 4
n

n! .

This is an important result in the theory of finitely-dimensional Banach spaces, it
also has applications in number theory, see [BM]. We see that the Mahler conjecture
is equivalent to this inequality with c = 1. The best known constant so far is c = π/4
and was obtained by Kuperberg [Ku].

One of possible difficulties with the Mahler conjecture is that if it is true then
there would be more minimizers than cubes (and their linear images). We have
(B∞

2 )′ = B
1
2 � B

∞
2 , where by � we denote the linear equivalence, and indeed for

n = 2 the square is the only minimizer (up to linear transformations). However,
for n = 3 the octahedron B

1
3 = (B∞

3 )′ is not linearly equivalent to the cube B
∞
3 .

The conjecture for n = 3 is that the cube and octahedron are the only minimizers.
For arbitrary n it should be so called Hansen-Lima bodies [HL]: these are intervals
for n = 1 and in higher dimensions they are obtained by either taking products of
lower-dimensional Hansen-Lima bodies or by taking their duals.
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There is also a version of the Mahler conjecture for not necessarily symmetric
bodies. Assuming that the origin is in the interior of K , it is expected that a centered
simplex (that is the convex hull of affinely independent v1, . . . , vn+1 ∈ R

n such that
v1 + · · · + vn+1 = 0) is the only minimizer, that is

λn(K )λn(K ′) ≥ (n + 1)n+1

(n!)2 .

Recently Nazarov [N1] proposed a complex analytic approach to the Bourgain-
Milman inequality and Mahler conjecture. Considering the Bergman kernel on the
tube domain Ω = intK + iRn at the origin

KΩ(0, 0) = sup{ | f (0)|2
|| f ||2

L2(Ω)

: f ∈ O(Ω) ∩ L2(Ω), f 	≡ 0}

and using the formula for the Bergman kernel in tube domains of Rothaus [R1], see
also [Hs], he proved the upper bound

KΩ(0, 0) ≤ n!
πn

λn(K ′)
λn(K )

. (1)

The main part of his paper was devoted to the proof of the lower bound

KΩ(0, 0) ≥
(π

4

)2n 1

(λn(K ))2
. (2)

As is usually the case with lower bounds for the Bergman kernel, the main tool
was Hörmander’s estimate [H1]. Combining (1) with (2) we immediately obtain the
Bourgain-Milman inequality with c = (π/4)3.

In Sect. 2 we will present Nazarov’s equivalent complex analytic formulation
of the Mahler conjecture using the Paley-Wiener theorem. The upper bound (1) is
explained in Sect. 3. We include the proof of Rothaus’ [R1] integral formula for the
Bergman kernel in tube domains, since it is not so well known. In Sect. 4 we discuss
the lower bound using some simplifications from [Bln]. We also show that this
approach cannot give the Mahler conjecture. We will see, although only numerically
using Mathematica, that although the Bergman kernel for tube domains does behave
well under taking products, it does not under taking duals.

The author is grateful for the invitation to the organizers of the 10th Korean Con-
ference in Several Complex Variables held in August 2014 in Gyeong-Ju, especially
to Kang-Tae Kim.
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2 Equivalent SCV Formulation

Assume that K is a convex body in R
n , not necessarily symmetric. For u ∈ L2(K ′)

consider its Fourier transform

û(z) =
∫

K ′
u(x)e−i x ·zdλ(x), z ∈ C

n,

it is an entire holomorphic function. By the Schwarz inequality and the Parseval
formula

|̂u(0)|2 ≤ λn(K ′)
∫

K ′
|u|2dλn = λn(K ′)

(2π)n

∫

Rn
|̂u(x)|2dλn(x)

and we have equality for u ≡ 1 on K ′. It is clear that f = û satisfies

| f (z)| ≤ CeqK (Imz), z ∈ C
n, (3)

for some C > 0. On the other hand, if f ∈ O(Cn) satisfies (3) and is such that

∫

Rn
| f (x)|2dλn(x) < ∞ (4)

then by the Plancherel theorem f = û for some u ∈ L2(Rn) and by the Paley-Wiener
theorem supp u ⊂ K′. Therefore

λn(K ′) = (2π)n sup
f ∈P, f 	≡0

| f (0)|2
|| f ||2

L2(Rn)

,

whereP denotes the family of entire holomorphic functions satisfying (3) and (4).
This way we have obtained a formula for the volume of the dual K ′ which is

expressed only in terms of K , and not K ′. It means that the Mahler conjecture is
equivalent to finding f ∈ O(Cn) with f (0) = 1, satisfying (3) and such that

∫

Rn
| f (x)|2dλn(x) ≤ n!

(π

2

)n
λn(K )

in the symmetric case, and

∫

Rn
| f (x)|2dλn(x) ≤ (n!)2(2π)n

(n + 1)n+1 λn(K )

in the asymmetric one.
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3 The Upper Bound

Nazarov [N1] showed that the upper bound (1) easily follows from the formula for
the Bergman kernel in tube domains Ω = D + iRn , where D is an arbitrary convex
domain in Rn :

KΩ(z, w) = 1

(2π)n

∫

Rn

e(z+w̄)·y

JD(y)
dλn(y), (5)

where

JD(y) =
∫

K
e2x ·ydλn(x)

(see [R1] and [Hs]). Indeed, for y ∈ R
n and x0 ∈ K using the fact that (x0+ K )/2 ⊂

K and that K is symmetric we get

JK (y) ≥ 1

2n

∫

K
e(x0+x)·ydλn(x) ≥ λn(K )

2n
ex0·y .

Therefore JK ≥ 2−neqK ′ and to obtain (1) it is enough to observe that

∫

Rn
e−qK dλn =

∫ ∞

0
e−tλn({qK < t})dt = n!λn(K ).

Proof (Proof of (5)) Take x̃ ∈ D and r > 0 such that Cr := x̃ + r(−1, 1)n ⊂ D.
Then

JD(y) ≥ JCr (y) = e2x̃ ·y sinh(2r y1)

y1
. . .

sinh(2r yn)

yn

and thus ∫

Rn

e2x̃ ·y

JD(y)
dλ(y) ≤

(c

r

)2n
, (6)

where

c2 = 1

2

∫ ∞

0

t

sinh t
dt = π2

8
.

Since D is convex, we have D + D = 2D and from (6) it follows in particular that
the integral on the right-hand side of (5) is convergent.

For u ∈ L2(Rn, JD) and z ∈ TD set

ũ(z) =
∫

Rn
u(y)ez·ydλ(y).

By (6) the integral is convergent and thus ũ is holomorphic in TD . It also follows that
h(y) := u(y)eRe z·y ∈ L2(Rn) and we can write ũ(z) = ĥ(−Im z). By the Parseval
formula and the Fubini theorem
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||̃u||2L2(TD)
= (2π)n

∫

K

∫

Rn
|u(y)|2e2x ·ydλ(y)dλ(x) = (2π)n||u||2L2(Rn ,JD)

. (7)

We claim that in fact the mapping

L2(Rn, JD) � u 
−→ ũ ∈ A2(TD) (8)

is onto. For f ∈ A2(TD) approximating D by relatively compact subsets from inside
and using the fact that | f |2 is subharmonic we may assume that f is bounded in TD .
Multiplying f by functions of the form eεz·z we may even assume that it satisfies the
estimate

| f (z)| ≤ Me−ε|Imz|2 (9)

for some positive constants M and ε. For a fixed x ∈ D and fx (y) = f (x + iy) we
have fx (y) = ũ(x + iy) where u(y) = (−2π)−n f̂x (y)e−x ·y . We have to prove that
for a fixed y the definition of u is independent of x . From (9) it follows that we can
differentiate under the sign of integration

∂

∂x j

∫

Rn
f (x + ia)e−(x+ia)·ydλ(a)

=
∫

Rn

(
∂ f

∂x j
(x + ia) − y j f (x + ia)

)
e−(x+ia)·ydλ(a).

We have ∂ f/∂x j = −i∂ f/∂a j and by (9) we can also integrate by parts. Therefore

∫

Rn

∂ f

∂x j
(x + ia)e−(x+ia)·ydλ(a) = −i

∫

Rn

∂ f

∂a j
(x + ia)e−(x+ia)·ydλ(a)

=
∫

Rn
y j f (x + ia)e−(x+ia)·ydλ(a)

and therefore u(y) is independent of x and the mapping (8) is onto.
By K (z, w) denote the right-hand side of (5) and fix w ∈ TD . Then K (·, w) =

(2π)−ñv, where

v(y) = ew̄·y

JD(y)
∈ L2(Rn, JD)

by (6). It follows from (7) that K (·, w) ∈ A2(TD) and to finish the proof we have
to show that it has the reproducing property. For f = ũ ∈ A2(TD) where u ∈
L2(Rn, JD) by (7)

〈 f, K (·, w)〉A2(TD) = 1

(2π)n
〈̃u, ṽ〉A2(TD) = 〈u, v〉L2(Rn ,JD) =

∫

Rn
u(y)ew·ydλ(y) = f (w).

This finishes the proof of (5).
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4 The Lower Bound

The lower bound (2) easily follows from a general lower bound for the Bergman
kernel proved in [Bln]: if Ω is a pseudoconvex domain in C

n then for w ∈ Ω and
t ≤ 0

KΩ(w, w) ≥ 1

e−2ntλ2n({GΩ(·, w) < t}) , (10)

where

GΩ(z, w) = sup{u(z) : u ∈ P SH−(Ω), lim sup
z→w

(u(z) − log |z − w|) < ∞}

is the pluricomplex Green function of Ω . It was proved in [Bln] using the Donnelly-
Fefferman [DF] estimate for ∂̄ (which can be easily deduced from Hörmander’s
estimate, see [Ber]) and the tensor-power trick.A simpler proof using subharmonicity
of sections of the Bergman kernel from [Ber2] was later given by Lempert [L2] (see
[Bms]).

The estimate (10) has various consequences when we let t → −∞. For example
for n = 1 it gives the Suita conjecture

cΩ(w)2 ≤ π KΩ(w, w),

where
cΩ(w) = exp( lim

z→w
(GΩ(z, w) − log |z − w|))

is the logarithmic capacity of C \ Ω with respect to w. It was originally proved in
[Bin]. For arbitrary n ifΩ is convex then using Lempert’s theory [L1] one can obtain
the estimate

KΩ(w, w) ≥ 1

λ2n(IΩ(w))
, (11)

where
IΩ(w) = {ϕ′(0) : ϕ ∈ O(Δ,Ω), ϕ(0) = w}

is the Kobayashi indicatrix (Δ is the unit disk in C). This particular estimate for
convex domains seems to be very accurate, see [BZ1, BZ2] for details.

Now let us come back to the case of the tube domain Ω = intK + iRn where
K is a convex symmetric body in R

n . Let ϕ ∈ O(Δ,Ω) be such that ϕ(0) = 0. By
S denote the strip {|Re ζ | < 1} in C and let Φ : S → Δ be biholomorphic with
Φ(0) = 0. By the Schwarz lemma for u ∈ K ′

∣∣∣∣
∣

∂

∂ζ

∣∣∣∣
ζ=0

Φ(ϕ(ζ ) · u)

∣∣∣∣
∣
≤ 1
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and since |Φ ′(0)| = π/4 we obtain

|ϕ′(0) · u| ≤ 4

π
.

It follows that

IΩ(0) ⊂ 4

π
(K ′′ + i K ′′) = 4

π
(K + i K )

and

λ2n(IΩ(0)) ≤
(
4

π

)2n

(λn(K ))2.

The estimate (11) now gives the lower bound (2).
It was conjectured in [Bln] that the following lower bound holds in tube domains

KΩ(0, 0) ≥
(π

4

)n 1

(λn(K ))2
. (12)

It would be optimal because one can easily check using the product formula for the
Bergman kernel that one has equality in (12) for the unit cube K = [−1, 1]n .

We will show however that we do not have equality in (12) for all Hansen-Lima
bodies. Take the octahedron

K = B
1
3 = {x ∈ R

3 : |x1| + |x2| + |x3| ≤ 1}.

One can then compute that

JK (y) = y1 sinh(2y1)

(y21 − y22 )(y21 − y23 )
+ y2 sinh(2y2)

(y22 − y21 )(y22 − y23 )
+ y3 sinh(2y3)

(y23 − y21 )(y23 − y22 )

when all coordinates y j are different and that it extends to a positive smooth function
in R3. One can then compute numerically using (5) that

KΩ(0, 0) = 1

(2π)3

∫

R3

dλ3

JK
= 0.2758 . . . (13)

However, since λn(B
1
n) = 2n/n!, the right-hand side of (12) is equal to

9π3

1024
= 0.2725 . . .

This shows (although only numerically) that the Bergman kernel for tube domains
does not behave well under taking duals. It is also clear that even proving optimal
versions of the estimates (2) and (1) cannot give an optimal lower bound for the
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Mahler volume and thus this Nazarov’s approach to the Bourgain-Milman inequality
cannot give its expected optimal form, that is the Mahler conjecture.

To make this argument precise and get rid of the numerical computation in (13),
one could try to consider the n-dimensional octahedron

Kn = B
1
n = {x ∈ R

n : |x1| + · · · + |xn| ≤ 1}.

One can compute that

JKn (y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

n∑

j=1

yn−2
j cosh(2y j )

(y2j − y21 ) . . . (y2j − y2j−1)(y2j − y2j+1) . . . (y2j − y2n )
, n even

n∑

j=1

yn−2
j sinh(2y j )

(y2j − y21 ) . . . (y2j − y2j−1)(y2j − y2j+1) . . . (y2j − y2n )
, n odd

.

One could perhaps estimate JKn from above in such a way that it would imply that

lim sup
n→∞

(
1

(n!)2
∫

Rn

dλn

JKn

)1/n

>
π2

8
.

Another possibility would be to apply (11): it would be enough to show that there
exists n such that if In is the Kobayashi indicatrix of the tube domain int Kn + iRn

at the origin then

λ2n(In) <
16n

(n!)2πn
.

This could perhaps be possible using Lempert’s theory for tube domains developed
by Zaja̧c [Z1].

Acknowledgments Partially supported by the Ideas Plus grant 0001/ID3/2014/63 of the Polish
Ministry of Science and Higher Education.
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A Survey on Bergman Completeness

Bo-Yong Chen

Abstract Weprovide a survey of results onBergman completeness of open complex
manifolds

Keywords Bergman completeness

1 Introduction

Let M be a complex manifold of dimension n. Let H be the Hilbert space of
holomorphic n−forms f on M satisfying

∣∣∣∣

∫

M
f ∧ f̄

∣∣∣∣ < ∞.

Let h1, h2, . . . be a complete orthonormal basis forH . We may define the Bergman
kernel (form) KM of M as

KM (z, w) =
∑

j

h j (z) ∧ h j (w).

Let (z1, z2, . . . , zn) be a local coordinate system in M . Let

KM (z) := KM (z, z) = K ∗(z)dz1 ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ dz̄n

where K ∗(z) is a locally defined function. If K ∗ is positive, then we may define the
Bergman metric ds2M of M as
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ds2M =
∑

α,β

∂2 log K ∗

∂zα∂ z̄β

dzαdz̄β.

We say that M possesses the Bergman metric if ds2M is a Kähler metric on M . The
Bergman distance dB is the distance with respect to ds2M . A complex manifold is
said to be Bergman complete if dB is complete.

In contrast with compact complex manifolds, the quantitative complex analysis
on open complex manifolds is far from well-developed, even in the case of Riemann
surfaces! As the Bergman kernel and metric depend only on the complex structure,
and they are invariant under biholomorphic transformations, thus they should occupy
a central place in the study of open complex manifolds. This is essentially the theme
of Kobayashi’s ground-breaking paper [Kobayashi59], although it is titled geometry
of bounded domains.

It is not difficult to see that M possesses the Bergman metric if and only if the
holomorphic mapping

τ : M → P(H ), z �→ [h1(z) : h2(z) : · · · ]

is an immersion, where P(H ) stands for the complex projective space of H .
Kobayashi’s decisive observation is

ds2M = τ ∗(ds2F S)

where ds2F S is the Fubini-Studymetric of P(H ). It follows that for any given distinct
points z, w ∈ M , the Bergman distance dB and the Fubini-Study distance dF S satisfy

dB(z, w) ≥ dF S(τ (z), τ (w)).

Since

dF S(τ (z), τ (w)) = arccos
| ∑ j h∗

j (z)h
∗
j (w)|

√∑
j |h∗

j (z)|
√∑

j |h∗
j (w)|

where h∗
j is a local representation of h j , we have

dB(z, w) ≥ arccos
|h∗

1(z)|√∑
j |h∗

j (z)|2
≥

√

1 − |h∗
1(z)|2∑

j |h∗
j (z)|2

=
√

1 − |h∗
1(z)|2

K ∗(z)
(1.1)

provided that we choose {h j } such that h j (w) = 0 for all j ≥ 2. From this Kobayashi
reached the following
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Kobayashi’s criterion (cf. [Kobayashi59, Kobayashi61]). Suppose there is a dense
subset S of H such that for every f ∈ S and for any infinite sequence {pk} of points
in M which has no adherent point in M , there is a subsequence {pk j } such that

f (pk j ) ∧ f (pk j )

KM (pk j )
→ 0 as j → ∞. (1.2)

Then M is Bergman complete.
Let us give a short proof of Kobayashi’s criterion. Suppose M is not Bergman

complete, i.e. there is a dB−Cauchy sequence {pk} which has no adherent point in
M . Let k0 ∈ Z

+ satisfy

dB(pk, pl) < 1/2 ∀ k, l ≥ k0.

Since S is dense inH , wemay construct by using the Gram-Schmidt procedure on S
a complete orthonormal basis {h̃ j } ofH such that every h̃ j enjoys the same property
as f ∈ S. Put w = pk0 in (1.1). We may write h1 = ∑

j a j h̃ j with
∑

j |a j |2 = 1.

Choose j0 ∈ Z
+ (depending only on pk0 ), such that

∑
j> j0 |a j |2 ≤ 1/4. Put h1, j0 =

∑ j0
j=1 a j h̃ j . By the Cauchy-Schwarz inequality, we have

(h1 − h1, j0) ∧ (h1 − h1, j0) ≤
∑

j> j0

|a j |2
∑

j> j0

h̃ j ∧ h̃ j ≤ 1

4
KM ,

so that
h1 ∧ h1

KM
≤ 2h1, j0 ∧ h1, j0

KM
+ 1

2
.

Let {pk j } be a subsequence of {pk} such that (1.2) is verified for h1, j0 . Then
h1∧h1

KM
(pk j ) < 3/4 provided j sufficiently large. On the other hand, it follows from

(1.1) that
h1(pk j ) ∧ h1(pk j )

KM (pk j )
>

3

4
,

and we get a contradiction.
The goal of this article is to survey some results concerning Bergman complete-

ness, built on Kobayashi’s criterion. Due to my personal taste, I am not able to
cover all interesting results in this direction. I must apologize to those authors whose
papers are not mentioned here. One may consult the nice books of Jarnicki and Pflug
[JarnickiPflug, JarnickiPflug2] for more references.

Nevertheless, Bergman completeness is only the first step to understand the geom-
etry of the Bergman metric, much more works need to be done in future.
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2 Bergman Completeness for Domains in C
n

The first result concerning Bergman completeness was given by Bremermann:

Theorem 2.1 (cf. [Bremermann]) Every bounded Bergman complete domain in C
n

is pseudoconvex.

Obviously, the converse is not true (e.g., the punctured disc). Thus it is natural to
ask

Problem 2.1 (cf. [Kobayashi59]) Which bounded pseudoconvex domain in C
n is

Bergman complete?

By using his criterion, Kobayashi showed that every bounded analytic polyhedron
is Bergman complete. A useful consequence of Kobayashi’s criterion is that

H∞(Ω) lies dense in H and lim
z→∂Ω

KΩ(z) = ∞ (2.1)

implies Bergman completeness, where H∞(Ω) stands for the set of bounded holo-
morphic functions on Ω . For the sake of simplicity, we say that a bounded domain
Ω is Bergman exhaustive if limz→∂Ω KΩ(z) = ∞.

The first general result toward Problem 2.1 is due to Ohsawa:

Theorem 2.2 (cf. [Ohsawa81]) Every bounded pseudoconvex domain in C
n with a

C1 boundary is Bergman complete.

The Bergman exhaustiveness follows from the following result of Pflug:

Theorem 2.3 (cf. [Pflug75]) Let Ω be a bounded pseudoconvex domain in C
n and

p ∈ ∂Ω . Suppose there exist a sequence {zν} ⊂ C
n\Ω , and positive numbers β ≥ 1,

r ≤ 1 such that zν → p and

B(zν, r |zν − p|β) ∩ Ω = ∅.

Then Ω is Bergman exhaustive.

It is difficult to verify that H∞(Ω) lies dense in H , yet it is easy to verify this
property locally. Thus the following localization principle of the Bergman metric
becomes important:

Proposition 2.1 (cf. [Ohsawa84]) Let Ω be a bounded pseudoconvex domain inCn.
Let p ∈ ∂Ω and let V ⊂⊂ U be two bounded neighborhoods of p. Then there are
constants C1, C2 > 0 such that

C1ds2Ω(z) ≤ ds2Ω∩U (z) ≤ C2ds2Ω(z), ∀ z ∈ Ω ∩ V .
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This propositionmay be proved by a standard application of Hörmander’s L2 esti-
mates for the ∂̄−operator (cf. [HormanderBook]).Without any regularity assumption
on the boundary, Jarnicki and Pflug [JarnickiPflug89] proved that every bounded bal-
anced domain is Bergman complete.

It follows from the work of Kerzman and Rosay [KerzmanRosay] that every
bounded pseudoconvex domain with a C1 boundary is hyperconvex, i.e., there
exists a continuous plurisubharmonic (psh) function ρ : Ω → [−1, 0) such that
{ρ < −c} ⊂⊂ Ω for all c > 0. Another important class of hyperconvex domains
are Teichmüller spaces of compact Riemann surfaces of genus ≥ 2 (cf. [Krushkal]).
Blocki and Pflug [BlockiPflug] and Herbort [HerbortHyperconvex] proved inde-
pendently the following result which has been a longstanding conjecture due to
Kobayashi (see e.g., [KobayashiBook98]):

Theorem 2.4 Every bounded hyperconvex domain in C
n is Bergman complete.

Earlier,Ohsawa [OhsawaHyperconvex] has proved that everyhyperconvexdomain
is Bergman exhaustive, which also initiates a program of studying asymptotic behav-
ior of L2 holomorphic objects through investigating the Green function (see also
[Ohsawa95]).

Recall that the pluricomplex Green function gΩ(z, w) of Ω is defined as

gΩ(z, w) = sup {u(z) : u < 0, u ∈ P SH(Ω), u(z) ≤ log |z − w| + O(1) near w}

where P SH(Ω) stands for the set of psh functions on Ω .
The following result was discovered independently by Herbort and myself, and

suggests that pluripotential theory would be essential for the study of Bergman com-
pleteness:

Proposition 2.2 (cf. [Chen99, HerbortHyperconvex]) Let Ω be a bounded pseudo-
convex domain in C

n. Suppose there is a constant c > 0 such that

lim
w→∂Ω

|{gΩ(·, w) < −c}| = 0 (2.2)

where | · | stands for the (Euclidean) volume. Then Ω is Bergman complete.

Let me explain briefly the idea of proving the proposition. It suffices to verify
Kobayashi’s criterion. Given f ∈ H and w ∈ Ω , we look for a new function
f̃ ∈ H (which actually depends on w) such that f̃ (w) = f (w) and ‖ f̃ ‖L2 tends to
zero as w → ∂Ω . Since KΩ(w) ≥ | f̃ (w)|2/‖ f̃ ‖2

L2 , it follows that

| f (w)|2
KΩ(w)

≤ ‖ f̃ ‖2L2 → 0 as w → ∂Ω.

The desired function f̃ is given by

f̃ = χ(log(−gΩ(·, w))) f − u
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where χ is a standard cut-off function such that

suppχ(log(−gΩ(·, w))) ⊂ {gΩ(·, w) < −c}.

Note that ∂̄ f̃ = 0 if and only if

∂̄u = f ∂̄χ(log(−gΩ(·, w))).

Thanks to the L2−estimates of Donnelly and Fefferman [DonnellyFefferman], we
may find a solution u satisfying

∫

Ω

|u|2e−2ngΩ(·,w)

≤ const.
∫

Ω

| f |2|χ ′(·)|2|∂̄ log(−gΩ(·, w))|2
i∂∂̄ log(−gΩ(·,w)+1)

e−2ngΩ(·,w)

≤ const.
∫

{gΩ(·,w)<−c}
| f |2.

Since u is holomorphic in a neighborhood of w, we see that u(w) = 0. Thus f̃ (w) =
f (w) and

‖ f̃ ‖2L2 ≤ 2
∫

{gΩ(·,w)<−c}
| f |2 + 2

∫

Ω

|u|2

≤ const.
∫

{gΩ(·,w)<−c}
| f |2 → 0 as w → ∂Ω.

Thus we are done. To make the argument rigorous, we need to smooth gΩ(·, w) by
a standard approximating procedure.

ToproveTheorem2.5, it suffices to verify (2.2) for boundedhyperconvexdomains.
Blocki and Pflug used the following results due to Blocki:

Proposition 2.3 (cf. [Blocki93]) Let Ω be a bounded domain in C
n. Assume that

u, v are non-positive psh functions such that u = 0 on ∂Ω . Then

∫

Ω

|u|n(ddcv)n ≤ n!‖v‖n−1∞
∫

Ω

|v|(ddcu)n . (2.3)

Theorem 2.5 (cf. [Blocki96]) Let Ω be a bounded hyperconvex domain inCn. Then
there exists a solution φ of the following Monge-Ampere equation

det

(
∂2φ

∂zα∂ z̄β

)
= 1, φ ∈ C(Ω) and φ|∂Ω = 0.

Put u = gΩ(·, w) and v = φ in (2.3), one gets
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|{gΩ(·, w) < −1}| ≤
∫

Ω

|gΩ(·, w)|n(ddcφ)n

≤ n!‖φ‖n−1∞
∫

Ω

|φ|(ddcgΩ(·, w))n

≤ const.|φ(w)| → 0

as w → ∂Ω , for (ddcgΩ(·, w))n = δw (cf. Demailly [Demailly82]).

Remark 2.1 Recently, the property of the function λ(t) := |{gΩ(·, w) < −t}| defi-
ned on (0,∞), in particular, the asymptotic behavior of λ(t) as t → ∞, has attracted
much attention (see e.g., [BlockiSuita, BlockiBourgain, BerndtssonLempert]).

On the other side, there are many non-hyperconvex, Bergman complete domains
(cf. [Chen99, HerbortHyperconvex, PflugZwonek03, PflugZwonek05]). For
instance, one has the following

Proposition 2.4 (cf. [ChenEssay]) Let D be a bounded pseudoconvex domain in C
n

and let ϕ > 0 be a continuous psh function on D satisfying

lim inf
z→∂ D

ϕ(z)

log 1/δD(z)
= ∞.

Then (2.2) holds for the Hartogs domain Ω := {(z, w) ∈ D × C : |w| < e−ϕ(z)}, in
particular, it is Bergman complete.

This result suggests that condition (2.2) is almost optimal for Bergman com-
pleteness, e.g., let D be a punctured disc and ϕ(z) be psh on D satisfying ϕ(z) ∼
N log 1/|z| as z → 0, where N is a positive integer, then Ω would not be Bergman
complete.

It is important to obtain quantitative lower estimates on the Bergman distance
which implies completeness. Diederich and Ohsawa proved the following

Theorem 2.6 (cf. [DiederichOhsawa]) Let Ω ⊂ C
n be a bounded pseudoconvex

domain with a C2 boundary and let z0 ∈ Ω . Then the Bergman distance dB satisfies

dB(z0, z) ≥ const. log | log δΩ(z)|

for all z ∈ Ω sufficiently close to ∂Ω . Here δΩ stands for the (Euclidean) boundary
distance.

The key idea of [DiederichOhsawa] is to use the following strengthening of
Kobayashi’ observation:

Proposition 2.5 (cf. [DiederichOhsawa]) Let p1, p2 be distinct points in a bounded
domain Ω ⊂ C

n. Suppose there exists a constant C > 0 such that for any f ∈ H
with ‖ f ‖L2 = 1 there is another f̃ ∈ H satisfying f̃ (p1) = 0, f̃ (p2) = f (p2),
and ‖ f̃ ‖L2 ≤ C, then dB(p1, p2) ≥ C ′ where C ′ is a positive constant depending
only on C.
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Proof Recall from (1.1) that

dB(p1, p2) ≥
√

1 − |h1(p2)|2
KΩ(p2)

where {h j } is a complete orthonormal basis of H satisfying h j (p1) = 0 for all
j ≥ 2. If |h1(p2)|2 ≤ 1

2 KΩ(p2), then we have dB(p1, p2) ≥ 1/
√
2; otherwise, we

may choose h2 satisfying |h2(p2)| ≥ |h1(p2)|/C , so that

dB(p1, p2) ≥
√

1 − |h1(p2)|2
KΩ(p2)

=
√∑∞

j=2 |h j (p2)|2
KΩ(p2)

≥ |h2(p2)|√
KΩ(p2)

≥ |h1(p2)|
C

√
KΩ(p2)

≥ 1√
2C

.

�

Built on the previous proposition, we may prove the following result through a
similar argument as the proof of Proposition 2.6:

Proposition 2.6 (cf. [BlockiGreen], see also [ChenZhang]) Let Ω be a bounded
pseudoconvex domain in C

n. Suppose that p1, p2 are distinct points in Ω satisfying

{gΩ(·, p1) < −1} ∩ {gΩ(·, p2) < −1} = ∅,

then dB(p1, p2) ≥ constn.

Blocki improved substantially the result of Diederich-Ohsawa as follows

Theorem 2.7 (cf. [BlockiGreen]) One has

dB(z0, z) ≥ const.| log δΩ(z)|/ log | log δΩ(z)|

for all z ∈ Ω sufficiently close to ∂Ω .

The proof of Theorem 2.7 relies on Proposition 2.6 and the following quantitative
estimate of gΩ , which is also useful for other purposes (see e.g., [ChenFu11]):

Proposition 2.7 (cf. [BlockiGreen], see also [HerbortGreen] for a weaker result)
Let Ω ⊂⊂ C

n be a pseudoconvex domain. Suppose there is a negative psh function
ρ on Ω satisfying

C1δ
a
Ω(z) ≤ −ρ(z) ≤ C2δ

b
Ω(z), z ∈ Ω

where C1, C2 > 0 and a ≥ b ≥ 0 are constants. Then there are positive numbers
δ0, C such that

{gΩ(·, w) < −1} ⊂ {C−1δΩ(w)
a
b | log δΩ(w)|− 1

b ≤ δΩ ≤ CδΩ(w)
b
a | log δΩ(w)| n

a }



A Survey on Bergman Completeness 107

holds for any w ∈ Ω with δΩ(w) ≤ δ0.

For planar domains, I showed the following

Theorem 2.8 (cf. [Chen00]) Let Ω be a bounded domain in C. If Ω is Bergman
exhaustive, then it is Bergman complete.

The converse does not hold. Zwonek [ZwonekExample] has constructed a
Bergman complete Zalcman type domain, which is not Bergman exhaustive. By
a Zalcman type domain we mean a planar domain defined by

Δ\
⎛

⎝
⋃

j

Δ j ∪ {0}
⎞

⎠

where {Δ j } is a sequence of disjoint discs in the unit disc Δ. Zwonek’s example
also disproved an old conjecture due to Kobayashi [Kobayashi59] that Bergman
completeness implies

lim
z→∂Ω

| f (z)|2/KΩ(z) = 0

for all f ∈ H . It is still unclear whether the converse of Kobayashi’s criterion fails.
A characterization in terms of logarithmic capacity for Bergman exhaustive planar

domains was given by Zownek:

Theorem 2.9 (cf. [ZwonekWiener]) Let Ω be a bounded domain in C and p ∈ ∂Ω .
Then

lim
z→p

KΩ(z) = ∞

if and only if

γΩ(z) :=
∫ 1/2

δΩ(z)

dt

t3| log(cap(Δt (z)\D))| → ∞ as z → p.

Here Δt (z) stands for the disc with center z and radius t .

Similar results on the Bergman metric were obtained in Pflug and Zwonek
[PflugZwonek03]. By using these results, Wang [XuWang] was able to show
that Bergman completeness is not a quasiconformal invariant for bounded planar
domains. It is a classical result that (Green) hyperbolicity is a quasiconformal invari-
ant for open Riemann surfaces.

It is well-known that every hyperbolic planar domain admits a canonical complete
conformally invariant metric: the Poincaré metric of constant curvature −1. The
following question is of classical interest:

Problem 2.2 What are relationships between the Bergman metric and the Poincaré
metric?
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I have not learnt any example that the Bergman metric is not dominated by the
Poincaré metric. On the positive side, one has the following

Theorem 2.10 (cf. [ChenEssay]) The Bergman metric and the Poincaré metric are
equivalent on uniformly perfect domains. Both distances grow like | log δΩ | near
∂Ω .

A hyperbolic domain Ω ⊂ C is said to be uniformly perfect if there exists a
constant c > 0 such that for any boundary point p ∈ ∂Ω and 0 < r < diam∂Ω

there is a point q ∈ ∂Ω such that cr ≤ |q − p| ≤ r . For instance, the complement of
the 1

3−Cantor set in Δ is uniformly perfect. There are many equivalent definitions
of uniform perfectness, as well as various interesting examples, among them of
particular interest is the complement in P

1 of the Julia set of a rational function of
degree at least two (cf. [SugawaPerfect]).

We refer to [Wolpert, NikolovPflugZwonek] for various interesting results con-
cerning the comparison of the Bergman metric with other invariant metrics on higher
dimensional domains (usually with a highly complicated boundary).

The Bergman kernel and metric are deeply studied for some unbounded domains,
e.g., Siegel domains of the second kind. Another interesting class of unbounded
domains are model domains defined by

Ωψ := {(z′, zn) ∈ C
n : Im zn > ψ(z′)}

where ψ is a psh function in Cn−1.

Problem 2.3 When is Ωψ Bergman complete?

The answer is positive when ψ satisfies ψ > 0 and

lim
|z′|→+∞

ψ(z′) = +∞

(cf. [ChenKamimotoOhsawa], see also [PflugZwonek05] for related results). The
case when ψ has singularities is more complicated and interesting. For instance, we
have KΩψ = 0 if ψ(z′) = log |z′|, whereas Kψ > 0 if

ψ(z′) ∼ log |z′| as z′ → 0 and ψ(z′) ∼ |z| as |z′| → +∞.

Recently, Ahn-Gaussier-Kim obtained a closely related result:

Theorem 2.11 (cf. [AhnKim]) Let ΩKN be the Kohn-Nirenberg domain defined by

ΩKN = {(z1, z2) ∈ C
2 : Im z2 > P2k(z1)}

where P2k is a real-valued polynomial in z1 and z̄1 satisfying (1) P2k(t z) = t2k P2k(z)
for any t ∈ R and z ∈ C. (2) ∂2P2k/∂z∂ z̄ > 0 on C

∗ = C − {0}. Then ΩKN is
complete with respect to the Carathéodory and Bergman metrics.
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3 Bergman Completeness for Open Complex Manifolds

For complex manifolds, one has to deal at first with the existence problem of the
Bergman kernel or metric. The following is a classical one:

Theorem 3.1 (cf. [AhlforsSario]) Every non-planar Riemann surface admits a
nonzero square integrable holomorphic 1−form, i.e., the Bergman kernel does not
vanish.

One of the most interesting class of open complex manifolds are universal cov-
erings of a compact complex manifold with an infinite fundamental group. Suppose
M̃ is a complex manifold and Γ is a free, properly discontinuous subgroup of the
automorphism groupAut(M̃) of M̃ such that M := M̃/Γ is compact. The first Chern
number c1 of M is negative provided that M̃ possesses the Bergman metric. From
the opposite direction, one may propose the following

Problem 3.1 Let M be a compact complex n−manifold with an infinite fundamen-
tal group and c1 < 0. Is the Bergman kernel of the universal covering M̃ of M
nonvanishing?

The answer is positive when n ≤ 2. The case n = 1 is trivial. The proof for
n = 2 is due to Claudon [Claudon]. It follows from Atiyah’s L2 index theorem and
Miyaoka-Yau’s inequality c2 ≥ c21/3:

h2,0
(2) (M̃) − h1,0

(2) (M̃) + h0,0
(2) (M̃) = χ(2)(OM̃ ) = χ(OM ) = c21 + c2

12
≥ c21

9
> 0.

Every L2 holomorphic function f on M̃ has to be constant in view of a L p−Liouville
theorem of Yau [Yau76]. Since M̃ is of infinite volume, f has to be zero, i.e.,
h0,0

(2) (M̃) = 0, so that h2,0
(2) (M̃) > 0, i.e., there exists a nonzero holomorphic 2−form

on M̃ .
Conversely, I would like to ask

Problem 3.2 Let Ω be a bounded pseudoconvex domain in C
n with n ≥ 2 (e.g.

a bounded symmetric domain) and Γ a free, properly discontinuous subgroup of
the automorphism group Aut(Ω) of Ω . When does Ω/Γ possess a nonzero square
integrable holomorphic n−form?

Kobayashi proposed the following criterion for the existence of the Bergman
metric:

Proposition 3.1 (cf. [Kobayashi59]) A complex manifold M possesses the Bergman
metric provided the following two conditions are verified:
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(1) For every w ∈ M, there exists a n−form f ∈ H such that f (w) �= 0;
(2) For every w ∈ M, there are n−forms f1, . . . , fn in H satisfying fα(w) = 0,

∂ f ∗
α

∂zβ
(w) = δαβ (Kronecker delta) for 1 ≤ α, β ≤ n. Here f ∗

α , 1 ≤ α ≤ n, are
local representations of f .

The concept of the pluricomplex Green function may be extended to complex
manifolds, which depends only on the complex structure of the manifold. A criterion
in terms of the pluricomplex Green function can be given as follows:

Proposition 3.2 (cf. [ChenZhang]) Let M be a Stein manifold. Suppose for any
w ∈ M there is a positive number c > 0 such that {gM (·, w) < −c} is relatively
compact in M. Then M possesses the Bergman metric.

From this we immediately know that every hyperbolic Riemann surface possesses
the Bergman metric. Combining with a theorem of Carleson on removable singu-
larities of L2 holomorphic functions (see e.g., [Conway95]), we know that for any
Ω ⊂ C

KΩ > 0 at one point ⇐⇒ KΩ > 0 everywhere

⇐⇒ ds2Ω exists ⇐⇒ Ω is hyperbolic.

The situation is completely different for higher dimensional domains. Rosay and
Rudin [RosayRudin] constructed a domain Ω ⊂ C

2 with finite volume, whereas
there exists a surjective, locally biholomorphic map F : C2 → Ω . It follows that
KΩ(z) ≥ 1/|Ω| > 0, i.e., ∂∂̄ log KΩ is well-defined, whereas

gΩ(z, w) ≤ inf
{

gC2(ζ, η) : ζ ∈ F−1(z), η ∈ F−1(w)
}

= −∞

for all z, w ∈ Ω . It is unclear whether Ω can be made to be Bergman complete.
Let D be a parabolic domain and U ⊂⊂ D a small disc. The domain Ω = D\U

is hyperbolic so that it possesses the Bergman metric, which is not complete in view
of Carleson’s theorem. It is reasonable to ask

Problem 3.3 1 Let M be a parabolic Riemann surface and U ⊂⊂ M a local coordi-
nate disc. Is M ′ := M\U always Bergman incomplete?

In their famous book [GreeneWuBook], Greene and Wu suggested to study the
Bergman metric through Riemannian geometry. They proved the following

Theorem 3.2 (cf. [GreeneWuBook]) Let (M, g) be a Kählerian Cartan-Hadamard
manifold, let o be a fixed point in M and let r be the distance from o. Then

1Recently, I got a counterexample.
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(1) If the inequality

sectional curvature ≤ −A

r2(log r)1−ε

holds outside a compact subset of M, where ε and A are positive constants, then
M possesses the Bergman metric.

(2) Suppose

− B

r2
≤ sectional curvature ≤ − A

r2

holds outside a compact subset of M for some positive constants A and B, then
the Bergman metric ds2M satisfies ds2M ≥ const.(1 + r2)−1g. In particular, M
is Bergman complete.

(3) Suppose
−B ≤ sectional curvature ≤ −A

for some positive constants A and B, then ds2M ≥ const.g. In particular, M is
Bergman complete.

Recall that a Cartan-Hadamard manifold is a complete, simply-connected Rie-
mannian manifold of nonpositive sectional curvature. Greene-Wu conjectured that
the hypothesized lower bound in (2) or (3) is unnecessary for the lower estimate of
the Bergman metric, they even conjectured that M is Bergman complete under the
assumptions in part (1).

In attempt to solve these conjectures, Zhang and I proved the following

Theorem 3.3 (cf. [ChenZhang])Let M be a Kählerian Cartan-Hadamard manifold,
let o be a fixed point in M and let r be the distance from o. Then

(1) Suppose

sectional curvature ≤ − A

r2

outside a compact subset of M for suitable positive constant A, then the Bergman
distance dB satisfies

dB(o, x) ≥ const. log r(x).

(2) Suppose
sectional curvature ≤ −A

for some positive constant A, then

dB(o, x) ≥ const.r(x).

Greene and Wu [GreeneWuBook] also showed that under the following weaker
assumption
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sectional curvature ≤ −(1 + ε)

r2 log r

outside a compact set, M has to be a hyperconvex manifold, i.e., there is a smooth
strictly psh function ρ : M → [−1, 0) such that {ρ < −c} ⊂⊂ M for all c > 0.
Thus it is worthwhile to extend Theorem 2.5 as follows:

Theorem 3.4 (cf. [ChenHyperconvex]) Every hyperconvex manifold is Bergman
complete.

Below we list some examples of hyperconvex manifolds beyond hyperconvex
domains:

(a) Closed complex submanifolds of a hyperconvex domainΩ; these manifolds can
be highly complicated even when Ω is the unit ball!

(b) Boundedpseudoconvexdomains inPn with aC2 boundary (cf. [OhsawaSibony]).
(c) Sufficiently small neighborhoods of a totally real C1 submanifold in a complex

manifold (cf. [HarveyWells]).
(d) Regular coverings of a hyperconvex manifold (cf. [Vajaitu]).

Although the proof of the previous theorem is not basically different from
[BlockiPflug], it still requires a few additional observations. Indeed, the following
modified criterion for Bergman completeness was implicitly used:

Proposition 3.3 (cf. [ChenEssay]) Let M be a Stein manifold which possesses the
Bergman metric. Suppose that for any infinite sequence of points {pk} in M which
has no adherent point in M, there are a subsequence {pk j }, a number c > 0 and a
continuous volume form dV on M such that for any compact subset K of M, the
related volume

|K ∩ {gM (·, pk j ) < −c}|

tends to zero as j → ∞, then M is Bergman complete.

Even for bounded hyperconvex domains, this criterion has the advantage of avoid-
ing any use of the solution of the Monge-Ampere equation. Furthermore, it was used
in [ChenEssay] to show that every Stein subvariety in a complex manifold admits a
fundamental family of Bergman complete Stein neighborhoods, which improves a
famous result of Siu [SiuNeighborhood].

As is well-known, every Stein manifold can be embedded holomorphically as a
closed complex submanifold of some Cn . It is natural to ask

Problem 3.4 Which closed complex submanifold of Cn is Bergman complete?

For instance, the preimage π−1(S) ⊂ C
n of a smooth ample divisor S in an

Abelian variety A is Bergman complete, where π : Cn → A is the covering map
(see e.g., [ChenEssay]). When n > 2, there is no nonconstant bounded holomor-
phic functions on π−1(S); I guess that the related pluricomplex Green function
equals −∞.
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Even for a smooth analytic hypersurface M defined by f = 0 where f is an entire
function inCn , it is still of great interest to find a criterion for Bergman completeness
of M in terms of the function f .

Finally, let us look at Riemann surfaces from a different viewpoint. Consider at
first an orientable surface M , i.e., a two-dimensional differentiable manifold. Let

ds2 = E(x, y)dx2 + 2F(x, y)dxdy + G(x, y)dy2

where EG − F2 > 0, E > 0, be a (smooth) Riemannian metric defined in local
coordinates (x, y) of M . It is easy to see that every (paracompact) surface carries
a (complete) Riemannian metric by means of patching up together local metrics
through a partition of unity. By isothermal parameters we mean local coordinates
(ξ, ζ ) with ξ = ξ(x, y), ζ = ζ(x, y), such that

ds2 = λ(ξ, ζ )(dξ2 + dζ 2), λ(ξ, ζ ) > 0.

Such isothermal parameters are known to exist by the famous Korn-Lichtenstein
theorem, which goes back to Gauss. Thus M carries local complex coordinates
z = ξ + ζ i so that it becomes a Riemann surface in classical sense. This observation
is significant since the complex structure of a surface is often unknown, whereas the
Riemannianmetric can be analyzed through general theory of Riemannian geometry.
From this viewpoint, assumptions relying on the complex structure are unnatural.

Now I formulate a basic problem:

Problem 3.5 Let M be an open Riemann surface with a complex structure induced
by some complete Riemannian metric ds2. Under which condition on ds2 is the
surface M Bergman complete?

As is well-known, popular conditions in Riemannian geometry are curvature,
volume, etc. These are not strong enough for giving a criterion for Bergman com-
pleteness. Certain global condition is needed.

A nice global property of Riemannian manifolds is isoperimetric inequalities.
Suppose M is a complete Riemannian n−manifold. LetF denote the set of precom-
pact domains Ω ⊂ M with a smooth boundary. For 0 < ν ≤ ∞, the ν−dimensional
isoperimetric constant Iν(M) of M is defined by

Iν(M) = inf
Ω∈F

|∂Ω|/|Ω|1−1/ν.

Recently, I obtained the following

Theorem 3.5 (cf. [ChenRiemann]) Let M be a complete Riemannian surface with
the Gauss curvature bounded below by a constant. Let o be a point in M and r be
the distance from o. Suppose either of the following conditions is verified:
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(1) Iν(M) > 0, for some 2 < ν < ∞;
(2) I∞(M) > 0 and infx∈M |B1(x)| > 0, where Ba(x) stands for the geodesic ball

with center x and radius a.

Then the Bergman distance dB satisfies

dB(o, x) ≥ const. r(x).

Remark 3.1 (1) For the flat complex plane, one has I2(C) > 0, whereas C does not
possess the Bergman metric. (2) For the punctured discΔ∗ with the Poincaré metric,
one has I∞(Δ∗) > 0, whereas the Bergman metric is not complete.

How to realize these assumptions?With respect the Poincaré metric, every unifor-
mly perfect domainΩ has bounded geometry and I∞(Ω) > 0 (cf. [SugawaPerfect]).
Recall that a complete Riemannian manifold M has bounded geometry if the Ricci
curvature is bounded below by a constant, and the injectivity radius is positive. Thus
Ω satisfies the assumption in part (2). The point is that one may construct from Ω

many open Riemannian surfaces verifying this assumption, based on the following
beautiful discovery of Kanai:

Theorem 3.6 (cf. [KanaiRough]) Let M1, M2 be complete Riemannian manifolds
with bounded geometries such that they are roughly isometric to each other. Let ν ≥
max{dim M1, dim M2}. Then Iν(M1) > 0 if and only if Iν(M2) > 0.

Recall that a map F : M1 → M2 between two Riemannian manifolds M1 and M2 is
called a rough isometry if there are constants a ≥ 1 and b ≥ 0 such that

a−1d1(x, y) − b ≤ d2(F(x), F(y)) ≤ ad1(x, y) + b

for all x, y ∈ M1, and F is ε−full for some number ε > 0, i.e.,

⋃

x∈M1

Bε(F(x)) = M2.

For instance,we learn fromKanai’s theorem that every 2−dimensional jungle gym
in R

n with n > 2 has a positive n−dimensional isoperimetric constant; similarly,
every 2−dimensional jungle gym in a Cartan-Hadamard n−manifold (n ≥ 2) with
sectional curvature ≤ −A (A > 0) has a positive infinite-dimensional isoperimetric
constant.

Problem 3.6 Let M be an open real surface. Does there always exist a complex
structure on M such that the related Bergman metric is complete?
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Structure Theorems for Compact Kähler
Manifolds with Nef Anticanonical Bundles

Jean-Pierre Demailly

Abstract This survey presents various results concerning the geometry of com-
pact Kähler manifolds with numerically effective first Chern class: structure of the
Albanesemorphismof suchmanifolds, relations tying semipositivity of theRicci cur-
vature with rational connectedness, positivity properties of the Harder-Narasimhan
filtration of the tangent bundle.

Keywords Compact Kähler manifold · Anticanonical bundle · Semipositive Ricci
curvature · Ricci flat manifold · Rationally connected variety · Holonomy principle

1 Introduction and Preliminaries

The goal of this survey is to present in a concise manner several recent results
concerning the geometry of compact Kähler manifolds with numerically effective
first Chern class. Especially, we give a rather complete sketch of currently known
facts about the Albanese morphism of such manifolds, and study the relations that
tie semipositivity of the Ricci curvature with rational connectedness. Many of the
ideas are borrowed from [DPS96, BDPP] and the recent PhD thesis of Cao [Cao13a,
Cao13b].

Recall that a compact complexmanifold X is said to be rationally connected if any
two points of X can be joined by a chain of rational curves. A line bundle L is said
to be hermitian semipositive if it can be equipped with a smooth hermitian metric of
semipositive curvature form. A sufficient condition for hermitian semipositivity is
that somemultiple of L is spanned by global sections; on the other hand, the hermitian
semipositivity condition implies that L is numerically effective (nef) in the sense of
[DPS94], which, for X projective algebraic, is equivalent to saying that L ·C ≥ 0 for
every curve C in X . Examples contained in [DPS94] show that all three conditions
are different (even for X projective algebraic). Finally, let us recall that a line bundle
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L → X is said to be pseudoeffective if here exists a singular hermitian metric h on
L such that the Chern curvature current T = iΘL ,h = −i∂∂ log h is non-negative;
equivalently, if X is projective algebraic, this means that the first Chern class c1(L)

belongs to the closure of the cone of effective Q-divisors.
The (Chern-)Ricci curvature is the curvature of the anticanonical bundle K −1

X =
det(TX ), and by Yau’s solution of the Calabi conjecture (see [Aub76, Yau78]), a
compact Kähler manifold X has a hermitian semipositive anticanonical bundle K −1

X
if and only if X admits a Kähler metric ω with Ricci(ω) ≥ 0. Let us first review
some classical examples of varieties with K −1

X nef.

(ZFCC) Compact Kähler manifolds with zero first Chern class
The celebrated Bogomolov-Kobayashi-Beauville theorem yields the structure of

compact Kähler Ricci-flat manifolds ([Bog74a, Bog74b, Kob81, Bea83]) which,
by Yau’s theorem [Yau78], are precisely compact Kähler manifolds with zero first
Chern class. Recall that a hyperkähler manifold X is a simply connected compact
Kähler manifold admitting a holomorphic symplectic 2-form σ (i.e. a holomorphic
2-form of maximal rank n = 2p = dimC X everywhere; in particular K X = OX ). A
Calabi-Yau manifold is a simply connected projective manifold with K X = OX and
H0(X,Ω

p
X ) = 0 for 0 < p < n = dim X . Sometimes, finite étale quotient of such

manifolds are also included in these classes (so that π1(X) is finite and possibly non
trivial).

1.1 Theorem ([Bea83]) Let (X, ω) be a compact Ricci flat Kähler manifold. Then
there exists a finite étale Galois cover ̂X → X such that

̂X = T ×
∏

Y j ×
∏

Sk

where T = C
q/Λ = Alb(̂X) is the Albanese torus of ̂X, and Y j , Sk are compact

simply connected Kähler manifolds of respective dimensions n j , n′
k with irreducible

holonomy, Y j being Calabi-Yau manifolds (holonomy group = SU(n j )) and Sk

holomorphic symplectic manifolds (holonomy group = Sp(n′
k/2)).

(RC-NAC) Rationally connected manifolds with nef anticanonical class
A classical example of projective surface with K −1

X nef is the complex projective
plane P

2
C
blown-up in 9 points {a j }1≤ j≤9. By a trivial dimension argument, there

always exist a cubic curve C = {P(z) = 0} containing the 9 points, and we assume
that C is nonsingular (hence a smooth elliptic curve). Let μ : X → P

2 the blow-up
map, E j = μ−1(a j ) the exceptional divisors and ̂C the strict transform of C . One
has

K X = μ∗KP2 ⊗ OX (
∑

E j ),

thus
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K −1
X = μ∗OP2(3) ⊗ OX (−∑

E j ) = OX (̂C),

̂L : = (K −1
X )|̂C = (μ|̂C )∗L

where L := OC (3)⊗OC (−∑[a j ]) ∈ Pic0(C). As a consequencewe have K −1
X ·̂C =

(̂C)2 = 0. For any other irreducible curve Γ in X , we find K −1
X · Γ = ̂C · Γ ≥ 0,

therefore K −1
X is nef. There is a non trivial section in H0(̂C, ̂L⊗m) if and only if L

is a m-torsion point in Pic0(C) (i.e. iff L has rational coordinates with respect to the
periods of ̂C), and in that case, it is easy to see that this section extends to a section
of H0(X, K −m

X ) (cf. e.g. [DPS96]). This also means that there is an elliptic pencil
αP(z)m + βQm(z) = 0 defined by a fibration

πm = Qm/Pm : X → P
1,

where Qm ∈ H0(P2,O(3m)) vanishing at order m at all points a j ; the generic fiber
of πm is then a singular elliptic curve of multiplicity m at a j , and we have K −m

X =
(πm)∗OP1(1), in particular K −m

X is generated by its sections and possesses a real
analytic metric of semipositive curvature. Now, when L /∈ Pic0(C) (corresponding
to a generic position of the 9 points a j on C), Ueda has analyzed the structure
of neighborhoods of ̂C in X , and shown that it depends on a certain following
diophantine condition for the point λ ∈ H1(C,OC )/H1(C, Z) on the Jacobian
variety of C associated with L (cf. [Ued82, p. 595], see also [Arn76]). This condition
can be written

− log d(mλ, 0) = O(logm) as m → +∞, (1.1)

where d is a translation invariant geodesic distance on the Jacobian variety. Espe-
cially, (1.1) is independent of the choice of d and is satisfied on a set of full measure
in Pic0(C). When this is the case, Ueda has shown that ̂C possesses a “pseudoflat
neighborhood”, namely an open neighborhood U on which there exists a plurihar-
monic function with logarithmic poles along ̂C . Relying on this, Brunella [Bru10]
has proven

1.2 Theorem Let X, C, L be as above and assume that L is not a torsion point in
Pic0(C). Then

(a) There exists on X a smooth Kähler metric with semipositive Ricci curvature if
and only if ̂C admits a pseudoflat neighborhood in X.

(b) There does not exist on X a real analytic Kähler metric with semipositive Ricci
curvature.

It seems likely (but is yet unproven) that ̂C does not possess pseudoflat neighbor-
hoods when (0.2) badly fails, e.g. when the coordinates of λ with respect to periods
are some sort of Liouville numbers like

∑

1/10n!. Then, K −1
X would be a nef line
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bundle without any smooth semipositive hermitian metric1. It might still be possible
that there always exist singular hermitian metrics with zero Lelong numbers (and
thus with trivial multiplier ideal sheaves) on such a rational surface, but this seems
to be an open question as well. In general, the example of ruled surface over an ellip-
tic curve given in [DPS94, Example 1.7] shows that such metrics with zero Lelong
numbers need not always exist when K −1

X is nef, but we do not know the answer
when X is rationally connected. Studying in more depth the class of rationally con-
nected projective manifolds with nef or semipositive anticanonical bundles is thus
very desirable.

2 Criterion for Rational Connectedness

We give here a criterion characterizing rationally connected manifolds X in terms
of positivity properties of invertible subsheaves contained in Ω

p
X or (T ∗

X )⊗p; this is
only a minor variation of Theorem 5.2 in [Pet06].

2.1 Critertion Let X be a projective algebraic n-dimensional manifold. The follow-
ing properties are equivalent.

(a) X is rationally connected.
(b) For every invertible subsheaf F ⊂ Ω

p
X := O(ΛpT ∗

X ), 1 ≤ p ≤ n, F is not
pseudoeffective.

(c) For every invertible subsheafF ⊂ O((T ∗
X )⊗p), p ≥ 1,F is not pseudoeffective.

(d) For some (resp. for any) ample line bundle A on X, there exists a constant
CA > 0 such that

H0(X, (T ∗
X )⊗m ⊗ A⊗k) = 0 for all m, k ∈ N

∗ with m ≥ CAk.

Proof Observe first that if X is rationally connected, then there exists an immersion
f : P

1 ⊂ X (in fact, many of them) passing through any given finite subset of X ,
and such that f ∗TX is ample, see e.g. [Kol96, Theorem 3.9, p. 203]. It follows easily
from there that 1.1 (a) implies 1.1 (d). The only non trivial implication that remains
to be proved is that 1.1 (b) implies 1.1 (a). First note that K X is not pseudoeffective,
as one sees by applying the assumption 1.1 (b) with p = n. Hence X is uniruled by
[BDPP].We consider the quotient with maximal rationally connected fibers (rational
quotient or MRC fibration, see [Cam92, KMM92])

f : X > W

1Added in proof. In a very recent manuscript, Takayuki Koike has established the existence of such
nef and non semipositive configurations, cf. arXiv:1507.00109, “Ueda theory for compact curves
with nodes”.
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to a smooth projective variety W . By [GHS01], W is not uniruled, otherwise we
could lift the ruling to X and the fibers of f would not be maximal. We may further
assume that f is holomorphic. In fact, assumption 1.1 (b) is invariant under blow-ups.
To see this, let π : X̂ → X be a birational morphisms from a projective manifold
X̂ and consider a line bundle F̂ ⊂ Ω

p

X̂
. Then π∗(F̂ ) ⊂ π∗(Ω p

X̂
) = Ω

p
X , hence we

introduce the line bundle

F := (π∗(F̂ ))∗∗ ⊂ Ω
p
X .

Now, if F̂ were pseudoeffective, so would be F . Thus 1.1 (b) is invariant under π

and we may suppose f holomorphic. In order to show that X is rationally connected,
we need to prove that p := dim W = 0. Otherwise KW = Ω

p
W is pseudoeffective by

[BDPP], andweobtain a pseudo-effective invertible subsheafF := f ∗(Ω p
W ) ⊂ Ω

p
X ,

in contradiction with 1.1 (b). �

2.2 Remark By [DPS94], assumptions 1.1 (b) and (c) make sense on arbitrary com-
pact complex manifolds and imply that H0(X,Ω2

X ) = 0. If X is assumed to be
compact Kähler, then X is automatically projective algebraic by Kodaira [Kod54],
therefore, 1.1 (b) or (c) also characterize rationally connected manifolds among all
compact Kähler ones. �

3 A Generalized Holonomy Principle

Recall that the restricted holonomy group of a hermitian vector bundle (E, h) of rank
r is the subgroup H ⊂ U(r) � U (Ez0) generated by parallel transport operators
with respect to the Chern connection ∇ of (E, h), along loops based at z0 that are
contractible (up to conjugation, H does not depend on the base point z0). The stan-
dard holonomy principle (see e.g. [BY53]) admits a generalized “pseudoeffective”
version, which can be stated as follows.

3.1 Theorem Let E be a holomorphic vector bundle of rank r over a compact
complex manifold X. Assume that E is equipped with a smooth hermitian structure
h and X with a hermitian metric ω, viewed as a smooth positive (1, 1)-form ω =
i
∑

ω jk(z)dz j ∧dzk. Finally, suppose that the ω-trace of the Chern curvature tensor
iΘE,h is semipositive, that is

iΘE,h ∧ ωn−1

(n − 1)! = B
ωn

n! , B ∈ Herm(E, E), B ≥ 0 on X,

and denote by H the restricted holonomy group of (E, h).

(a) If there exists an invertible sheaf L ⊂ O((E∗)⊗m) which is pseudoeffective as
a line bundle, then L is flat and L is invariant under parallel transport by the
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connection of (E∗)⊗m induced by the Chern connection ∇ of (E, h); in fact, H
acts trivially on L .

(b) If H satisfies H = U(r), then none of the invertible subsheavesL ofO((E∗)⊗m)

can be pseudoeffective for m ≥ 1.

Proof The semipositivity hypothesis on B = TrωiΘE,h is invariant by a conformal
change of metric ω. Without loss of generality we can assume that ω is a Gauduchon
metric, i.e. that ∂∂ωn−1 = 0, cf. [Gau77]. We consider the Chern connection ∇ on
(E, h) and the corresponding parallel transport operators. At every point z0 ∈ X ,
there exists a local coordinate system (z1, . . . , zn) centered at z0 (i.e. z0 = 0 in
coordinates), and a holomorphic frame (eλ(z))1≤λ≤r such that

〈eλ(z), eμ(z)〉h = δλμ −
∑

1≤ j,k≤n

c jkλμz j zk + O(|z|3), 1 ≤ λ,μ ≤ r,

ΘE,h(z0) =
∑

1≤ j,k,λ,μ≤n

c jkλμdz j ∧ dzk ⊗ e∗
λ ⊗ eμ, ck jμλ = c jkλμ,

where δλμ is the Kronecker symbol andΘE,h(z0) is the curvature tensor of the Chern
connection ∇ of (E, h) at z0.

Assume that we have an invertible sheafL ⊂ O((E∗)⊗m) that is pseudoeffective.
There exist a covering U j by coordinate balls and holomorphic sections f j ofL|U j

generatingL over U j . ThenL is associated with the Čech cocycle g jk in O∗
X such

that fk = g jk f j , and the singular hermitian metric e−ϕ ofL is defined by a collec-
tion of plurisubharmonic functions ϕ j ∈ PSH(U j ) such that e−ϕk = |g jk |2e−ϕ j . It
follows that we have a globally defined bounded measurable function

ψ = eϕ j ‖ f j‖2 = eϕ j ‖ f j‖2h∗m

over X , which can be viewed also as the ratio of hermitian metrics (h∗)m/e−ϕ

along L , i.e. ψ = (h∗)m
|L eϕ . We are going to compute the Laplacian Δωψ . For

simplicity of notation,we omit the index j and consider a local holomorphic section f
ofL and a localweightϕ ∈ PSH(U ) on some open subsetU of X . In a neighborhood
of an arbitrary point z0 ∈ U , we write

f =
∑

α∈Nm

fα e∗
α1

⊗ . . . ⊗ e∗
αm

, fα ∈ O(U ),

where (e∗
λ) is the dual holomorphic frame of (eλ) in O(E∗). The hermitian matrix

of (E∗, h∗) is the transpose of the inverse of the hermitian matrix of (E, h), hence
we get

〈e∗
λ(z), e∗

μ(z)〉h = δλμ +
∑

1≤ j,k≤n

c jkμλz j zk + O(|z|3), 1 ≤ λ,μ ≤ r.
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On the open set U the function ψ = (h∗)m
|L eϕ is given by

ψ =
(

∑

α∈Nm

| fα|2 +
∑

α,β∈Nm , 1≤ j,k≤n, 1≤�≤m

fα fβ c jkβ�α�
z j zk + O(|z|3)| f |2

)

eϕ(z).

By taking i∂∂(...) of this at z = z0 in the sense of distributions (that is, for almost
every z0 ∈ X ), we find

i∂∂ψ =eϕ
(

| f |2i∂∂ϕ + i〈∂ f + f ∂ϕ, ∂ f + f ∂ϕ〉
+

∑

α,β, j,k,1≤�≤m

fα fβ c jkβ�α�
idz j ∧ dzk

)

.

Since i∂∂ψ ∧ ωn−1

(n−1)! = Δωψ ωn

n! (we actually take this as a definition of Δω), a

multiplication by ωn−1 yields the fundamental inequality

Δωψ ≥ | f |2eϕ(Δωϕ + mλ1) + |∇1,0
h f + f ∂ϕ|2ω,h∗m eϕ

where λ1(z) ≥ 0 is the lowest eigenvalue of the hermitian endomorphism B =
TrωiΘE,h at an arbitrary point z ∈ X . As ∂∂ωn−1 = 0, we have

∫

X
Δωψ

ωn

n! =
∫

X
i∂∂ψ ∧ ωn−1

(n − 1)! =
∫

X
ψ ∧ i∂∂(ωn−1)

(n − 1)! = 0

by Stokes’ formula. Since i∂∂ϕ ≥ 0, the above inequality implies Δωϕ = 0, i.e.
i∂∂ϕ = 0, and∇1,0

h f + f ∂ϕ = 0 almost everywhere. This means in particular that the
line bundle (L , e−ϕ) is flat. In each coordinate ball U j the pluriharmonic function
ϕ j can be written ϕ j = w j +w j for some holomorphic function w j ∈ O(U j ), hence
∂ϕ j = dw j and the condition∇1,0

h f j + f j∂ϕ j = 0 can be rewritten∇1,0
h (ew j f j ) = 0

where ew j f j is a local holomorphic section. This shows that L must be invariant
by parallel transport and that the local holonomy of the Chern connection of (E, h)

acts trivially on L . Statement 2.1 (a) follows.
Finally, if we assume that the restricted holonomy group H of (E, h) is equal

to U(r), there cannot exist any holonomy invariant invertible subsheaf L ⊂
O((E∗)⊗m), m ≥ 1, on which H acts trivially, since the natural representation
of U(r) on (Cr )⊗m has no invariant line on which U(r) induces a trivial action.
Property 2.1 (b) is proved. �

4 Structure Theorem for Compact Kähler Manifolds
with K−1

X Semipositive

In this context, the following generalization of the Bogomolov-Kobayashi-Beauville
Theorem 1.1 holds.
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4.1 Structure Theorem Let X be a compact Kähler manifold with K −1
X hermitian

semipositive. Then there exists a finite étale Galois cover ̂X → X such that

̂X � C
q/Λ ×

∏

Y j ×
∏

Sk ×
∏

Z�

where C
q/Λ = Alb(̂X) is the Albanese torus of ̂X, and Y j , Sk , Z� are compact sim-

ply connected Kähler manifolds of respective dimensions n j , n′
k , n′′

� with irreducible
holonomy, Y j being Calabi-Yau manifolds (holonomySU(n j )), Sk holomorphic sym-
plectic manifolds (holonomy Sp(n′

k/2)), and Z� rationally connected manifolds with
K −1

Z�
semipositive (holonomy U(n′′

�)).

Proof The proof relies on our generalized holonomy principle, combined with De
Rham’s splitting theorem [DR52] and Berger’s classification [Ber55]. Foundational
background can be found in papers by Lichnerowicz [Lic67, Lic71], and Cheeger
and Gromoll [CG71, CG72].

We suppose here that X is equippedwith aKählermetricω such thatRicci(ω) ≥ 0,
and we set n = dimC X . We consider the holonomy representation of the tangent
bundle E = TX equipped with the hermitian metric h = ω. Here

B = TrωiΘE,h = TrωiΘTX ,ω ≥ 0

is nothing but the Ricci operator. Let ˜X → X be the universal cover of X and

(˜X , ω) �
∏

(Xi , ωi )

be the De Rham decomposition of (˜X , ω), induced by a decomposition of the
holonomy representation in irreducible representations. Since the holonomy is con-
tained in U(n), all factors (Xi , ωi ) are Kähler manifolds with irreducible holonomy
and holonomy group Hi ⊂ U(ni ), ni = dim Xi . By Cheeger and Gromoll [CG71],
there is possibly a flat factor X0 = C

q and the other factors Xi , i ≥ 1, are compact
and simply connected. Also, the product structure shows that each K −1

Xi
is hermitian

semipositive. By Berger’s classification of holonomy groups [Ber55] there are only
three possibilities, namely Hi = U(ni ), Hi = SU(ni ) or Hi = Sp(ni/2). The case
Hi = SU(ni ) leads to Xi being a Calabi-Yau manifold, and the case Hi = Sp(ni/2)
implies that Xi is holomorphic symplectic (see e.g. [Bea83]).Now, if Hi = U(ni ), the
generalized holonomy principle 2.1 (b) shows that none of the invertible subsheaves
L ⊂ O((T ∗

Xi
)⊗m) can be pseudoeffective for m ≥ 1. Therefore Xi is rationally

connected by Criterion 2.1.

It remains to show that the product decomposition descends to a finite cover ̂X
of X . However, the fundamental group π1(X) acts by isometries on the product, and
does not act at all on the rationally connected factors Z� which are simply connected.
Thanks to the irreducibility, the factors have to be preserved or permuted by any
element γ ∈ π1(X), and the group of isometries of the factors S j , Y j are finite (since
H0(Y, TY ) = 0 for such factors and the remaining discrete group Aut(Y )/Aut0(Y )
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is compact). Therefore, there is a subgroup Γ0 of finite index in π1(X) which acts
trivially on all factors except Cq . By Bieberbach’s theorem, there is a subgroup Γ of
finite index in Γ0 that acts merely by translations on C

q . After taking the intersection
of all conjugates of Γ in π1(X), we can assume that Γ is normal in π1(X). Then,
if Λ is the lattice of translations of C

q defined by Γ , the quotient ̂X = ˜X/Γ is the
finite étale cover of X we were looking for. �

Thanks to the exact sequence of fundamental groups associated with a fibration,
we infer

4.2 Corollary Under the assumptions of Theorem 4.1, there is an exact sequence

0 → Z
2q → π1(X) → G → 0

where G is a finite group, namely π1(X) is almost abelian and is an extension of a
finite group G by the normal subgroup π1(̂X) � Z

2q .

5 Compact Kähler Manifolds with Nef Anticanonical
Bundles

In this section, we investigate the properties of compact Kähler manifolds possessing
a numerically effective anticanonical bundle K −1

X . A simple but crucial observation
made in [DPS93] is

5.1 Proposition Let X be compact Kähler manifold and {ω} a Kähler class on X.
Then the following properties are equivalent:

(a) K −1
X is nef.

(b) For every ε > 0, there exists a Kähler metric ωε = ω + i∂∂ϕε in the cohomology
class {ω} such that Ricci(ωε) ≥ −εω.

(c) For every ε > 0, there exists a Kähler metric ωε = ω + i∂∂ϕε in the cohomology
class {ω} such that Ricci(ωε) ≥ −εωε.

Sketch of Proof The nefness of K −1
X means that c1(X) = c1(K −1

X ) contains a closed
(1, 1)-form ρε with ρε ≥ −εω, so (b) implies (a); the converse is true by Yau’s
theorem [Yau78] asserting the existence of Kähler metrics ωε ∈ {ω} with prescribed
Ricci curvature Ricci(ωε) = ρε. Since ωε ≡ ω, (c) implies

c1(X) + ε{ω} � ρ′
ε := Ricci(ωε) + εωε ≥ 0,

hence (c) implies (a). The converse (a) ⇒ (c) can be seen to hold thanks to the
solvability of Monge-Ampère equations of the form (ω + i∂∂ϕ)n = exp( f + εϕ),
due to Aubin [Aub76]. �
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By using standard methods of Riemannian geometry such as the Bishop-Gage
inequality for the volume of geodesic balls, one can then show rather easily that the
fundamental groupπ1(X) has subexponential growth. Thiswas improved byM. Păun
in his PhD thesis, usingmore advanced tools (Gromov-Hausdorff limits and results of
Cheeger and Colding [CC96, CC97], as well as the fundamental theorem of Gromov
on groups of polynomial growth [Gr81a, Gr81b]).

5.2 Theorem ([Pau97, Pau98]) Let X be a compact Kähler manifold with K −1
X nef.

Then π1(X) has polynomial growth and, as a consequence (thanks to Gromov) it
possesses a nilpotent subgroup of finite index.

We next study stability issues. Recall that the slope of a non zero torsion-free
sheaf F with respect to a Kähler metric ω is

μω(F ) = 1

rank(F )

∫

X
c1(F ) ∧ ωn−1.

Moreover,F is said to beω-stable (in the sense ofMumford-Takemoto) ifμω(S ) <

μω(F ) for every torsion-free subsheaf S ⊂ F with 0 < rank(S ) < rank(F ).
In his PhD thesis [Cao13a, Cao13b], Junyan Cao observed the following important
fact.

5.3 Theorem ([Cao13a, Cao13b]) Let (X, ω) be a compact n-dimensional Kähler
manifold such that K −1

X is nef. Let

0 = F0 ⊂ F1 ⊂ · · · ⊂ Fs = TX

be a Harder-Narasimhan filtration of TX with respect to ω, namely a filtration
of torsion-free subsheaves such that Fi/Fi−1 is ω-stable with maximal slope in
TX/Fi−1 [it is then well known that i �→ μω(Fi/Fi−1) is a non increasing
sequence]. Then

μω(Fi/Fi−1) ≥ 0 for all i.

Proof First consider the case where the filtration is regular, i.e., all sheaves Fi and
their quotientsFi/Fi−1 are vector bundles. By the stability condition, it is sufficient
to prove that

∫

X
c1(TX/Fi ) ∧ ωn−1 ≥ 0 for all i.

By 4.1 (b), for each ε > 0, there is a metric ωε ∈ {ω} such that Ricci(ωε) ≥ −εωε.
This is equivalent to the pointwise estimate

iΘTX ,ωε ∧ ωn−1
ε ≥ −ε · IdTX ωn

ε .



Structure Theorems for Compact Kähler Manifolds with Nef Anticanonical Bundles 129

Taking the induced metric on TX/Fi (which we also denote by ωε), the second
fundamental form contributes nonnegative terms on the quotient, hence the ωε-trace
yields

iΘTX /Fi ,ωε
∧ ωn−1

ε ≥ −ε rank(TX/Fi ) ωn
ε .

Therefore, putting ri = rank(TX/Fi ), we get

∫

X
c1(TX/Fi ) ∧ ωn−1 =

∫

X
c1(TX/Fi ) ∧ ωn−1

ε

≥ −εri

∫

X
ωn

ε = −εri

∫

X
ωn,

and we are done. In case there are singularities, they occur only on some analytic
subset S ⊂ X of codimension 2. The first Chern forms calculated on X � S extend
as locally integrable currents on X and do not contribute any mass on S. The above
calculations are thus still valid. �

By the results of Bando and Siu [BS94], all quotientsFi/Fi−1 possess aHermite-
Einstein metric hi that is smooth in the complement of the analytic locus S of codi-
mension at least 2 where the Fi are not regular subbundles of TX . Assuming ω

normalized so that
∫

X ωn = 1, we thus have

ΘFi /Fi−1,hi ∧ ωn−1 = μi IdFi /Fi−1ω
n

where μi ≥ 0 is the corresponding slope. Using this, one easily obtains:

5.4 Corollary Let (X, ω) be a compact Kähler manifold with K −1
X nef, and S the

analytic set of codimension ≥ 2 in X where the Harder-Narasimhan filtration of TX

with respect to ω is not regular. If a section σ ∈ H0(X, (T ∗
X )⊗m) vanishes at some

point x ∈ X � S, it must vanish identically.

Proof By dualizing the filtration of TX and taking the m-th tensor product, we obtain
a filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ GN = (T ∗
X )⊗m

such that all slopes μi = μω(Gi/Gi−1) satisfy 0 ≥ μ1 ≥ . . . ≥ μN . Now, if u is a
section of a hermitian vector bundle (G , h) of slope μ ≤ 0, a standard calculation
shows that

Δω(log ‖u‖2h) = i∂∂ log ‖u‖2h ∧ ωn−1

(n − 1)! ≥ ‖∇hu‖2h
ωn

n! ≥ 0.

By the maximum principle ‖u‖h must be constant, and also u must be h-parallel,
and if μ < 0, the strict inequality for the trace of the curvature implies in fact u ≡ 0.
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For μ = 0 and u �≡ 0, any equality u(x) = 0 at a point where h does not blow up
would lead to a non constant subharmonic function log ‖u‖h with a −∞ pole on
X � S, contradiction. From this, we conclude by descending induction starting with
i = N − 1 that the image of σ in H0(X, (T ∗

X )⊗m/Gi ) vanishes identically, hence
σ lies in fact in H0(X,Gi ), and we proceed inductively by looking at its image in
H0(X,Gi/Gi−1). �

The next result has been first proved by Zhang [Zha96] in the projective case, and
by Păun [Pau12] in the general Kähler case. We give here a different proof based on
the ideas of Junyan Cao (namely, on Theorem 5.3 and Corollary 5.4).

5.5 Corollary Let (X, ω) be a compact Kähler manifold with nef anticanonical
bundle. Then the Albanese map α : X → Alb(X) is surjective, and smooth outside
a subvariety of codimension at least 2. In particular, the fibers of the Albanese map
are connected and reduced in codimension 1.

Proof Let σ1, . . . , σq ∈ H0(X,Ω1
X ) be a basis of holomorphic 1-forms. The

Albanese map is obtained by integrating the σ j ’s and the differential of α is thus
given by dα = (σ1, . . . , σq) : TX → C

q . Hence α is a submersion at a point x ∈ X
if and only if no non trivial linear combination σ = ∑

λ jσ j vanishes at x . This
is the case if x ∈ X � S. In particular α has generic rank equal to q, and must be
surjective and smooth in codimension 1. The connectedness of fibers is a standard
fact (α cannot descend to a finite étale quotient because it induces an isomorphism
at the level of the first homology groups). �

A conjecture attributed to Mumford states that a projective or Kähler manifold
X is rationally connected if and only if H0(X, (T ∗

X )⊗m) = 0 for all m ≥ 1. As an
application of the above results of J. Cao, it is possible to confirm this conjecture in
the case of compact Kähler manifolds with nef anticanonical bundles.

5.6 Proposition Let X be a compact Kähler n-dimensional manifold with nef anti-
canonical bundle. Then the following properties are equivalent:
(a) X is projective and rationally connected;
(b) for every m ≥ 1, one has H0(X, (T ∗

X )⊗m) = 0 ;
(c) for every m = 1, . . . , n and every finite étale cover ̂X of X, one has

H0(̂X ,Ωm
̂X

) = 0.

Proof As already seen, (a) implies (b) and (c) (apply 1.1 (d) and the fact that X is
simply connected). Now, for any p : 1 cover ̂X → X , by taking a “direct image
tensor product”, a non zero section of H0(̂X ,Ωm

̂X
) would yield a non zero section of

(Ωm
X )⊗p ⊂ (T ∗

X )⊗mp,

thus (b) implies (c). It remains to show that (c) implies (a). Assume that (c) holds.
In particular H0(X,Ω2

X ) = 0 and X must be projective by Kodaira. Fix an ample
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line bundle A on X and look at the Harder-Narasimhan filtration (Fi )0≤i≤s of TX

with respect to any Kähler class ω. If all slopes are strictly negative, then for any
m � p > 0 the tensor product (T ∗

X )⊗m ⊗ Ap admits a filtration with negative slopes.
In this circumstance, themaximumprinciple then implies that Criterion 2.1 (d) holds,
therefore X is rationally connected. The only remaining case to be treated is when
one of the slopes is zero, i.e. for every Kähler class there is a subsheaf Fω � TX

such that
∫

X c1(TX/Fω) ∧ ωn−1 = 0. Now, by standard lemmas on stability, these
subsheaves Fω live in a finite number of families. Since the intersection number
∫

X c1(TX/F ) ∧ ωn−1 does not change in a given irreducible component of such a
family of sheaves,we infer (e.g. byBaire’s theorem!) that therewould exist a subsheaf
F � TX and a set of Kähler classes {ω} with non empty interior in the Kähler
cone, such that

∫

X c1(TX/F ) ∧ ωn−1 = 0 for all these classes. However, by taking
variations of (ω+ tα)n−1 with t > 0 small, we conclude that the intersection product
of the first Chern class c1(TX/F ) with any product ωn−2 ∧ α vanishes. The Hard
Lefschetz together with Serre duality now implies that c1(TX/F )R ∈ H2(X, R) is
equal to zero. By duality, there is a subsheaf G ⊂ Ω1

X of rank m = 1, . . . , n such
that c1(G )R = 0. By takingL = det(G )∗∗, we get an invertible subsheafL ⊂ Ωm

X
with c1(L )R = 0. Since h1(X,OX ) = h0(X,Ω1

X ) = 0, some power L p is trivial
and we get a finite cover π : ̂X → X such that π∗L is trivial. This produces a non
zero section of H0(̂X ,Ωm

̂X
), contradiction. �

The following basic question is still unsolved (cf. also [DPS96]).

5.7 Problem Let X be a compact Kähler manifold with K −1
X pseudoeffective. Is the

Albanese map α : X → Alb(X) a (smooth) submersion? Especially, is this always
the case when K −1

X is nef?

By [DPS96] or Theorem 4.1, the answer is affirmative if K −1
X is semipositive.

More generally, the generalized Hard Lefschetz theorem of [DPS01] shows that
this is true if K −1

X is pseudoeffective and possesses a singular hermitian metric of
nonnegative curvature with trivial multiplier ideal sheaf. The general nef case seems
to require a very delicate study of the possible degenerations of fibers of the Albanese
map (so that one can exclude them in the end). In this direction, Cao and Höring
[CH13] recently proved the following

5.8 Theorem ([CH13]) Assuming X compact Kähler with K −1
X nef, the answer to

Problem 4.7 is affirmative in the following cases:
(a) dim X ≤ 3 ;
(b) q(X) = h0(X,OX ) = dim X − 1;
(c) q(X) = h0(X,OX ) ≥ dim X − 2 and X is projective;

(d) the general fiber F of α : X → Alb(X) is a weak Fano manifold, i.e. K −1
F is

nef and big.

In general, a deeper understanding of the behavior of Harder-Narasimhan filtra-
tions of the tangent bundle of a compact Kähler manifold would be badly needed.
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An Estimate for the Squeezing Function
and Estimates of Invariant Metrics

J.E. Fornæss and E.F. Wold

Abstract We give estimates for the squeezing function on strictly pseudoconvex
domains, and derive some sharp estimates for theCarathéodory, Sibony andAzukawa
metrics near their boundaries.

Keywords Invariant metrics · Squeezing function · Exposing points

1 Introduction

Let Ω be a bounded domain in Cn . The squeezing function SΩ(z), which was intro-
duced in [Deng] inspired by [Liu04, Liu05, Yeun09], measures how much a domain
looks like the unit ball observed from a given point z ∈ Ω . More precisely it is
defined as follows: For a given injective holomorphic map f : Ω → B

n satisfying
f (z) = 0 we set

SΩ, f (z) := sup{r > 0 : rBn ⊂ f (Ω)},

and then we set

SΩ(z) := sup
f

{SΩ, f (z)},

where f ranges over all injective holomorphic maps f : Ω → B
n with f (z) = 0.

Using the themethodof exposingpoints from [Died14] and themethod from[Frid95],
it was proved in [Deng] that

lim
z→bΩ

SΩ(z) = 1
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if Ω is a C 2-smooth strictly pseudoconvex domain, and it was proved in [KimZ]
that the squeezing function is bounded on any bounded convex domain. Our goal
is to improve this estimate when the boundary has higher regularity, and to give an
application to invariant metrics.

Theorem 1.1 Let Ω = {δ < 0} ⊂ C
n be a strictly pseudoconvex domain with

a defining function δ of class C k for k ≥ 3. The squeezing function SΩ(z) for Ω

satisfies the estimate

SΩ(z) ≥ 1 − C · √|δ(z)|

for a fixed constant C. If we even have k ≥ 4, then there exists a constant C > 0
such that the squeezing function SΩ(z) for Ω satisfies

SΩ(z) ≥ 1 − C · |δ(z)|

for all z

Combining with a theorem due to D. Ma [Ma92] and a result of Deng, Guan and
Zhang [Deng], an immediate consequence is a sharp estimate for invariant metrics
near the boundary of a strictly pseudoconvex domain. Before we state the result, we
briefly recall the definitions of some invariant metrics. Let Δ denote the unit disc,
and let O(M, N ) denote the holomorphic maps from M to N .

• Kobayashi metric KΩ(p, ξ). We define

KΩ(p, ξ) = inf{|α|; ∃ f ∈ O(Δ,Ω), f (0) = p, α f ′(0) = ξ}.

• Carathéodory metric CΩ(p, ξ). We define

CΩ(p, ξ) = sup{| f ′(p)(ξ)|; ∃ f ∈ O(Ω,Δ), f (p) = 0}.

• Sibony metric SΩ(p, ξ). We define

SΩ(p, ξ) = sup{(∑i, j
∂2u(p)
∂zi ∂z j

ξiξ j )
1/2, u(p) = 0, 0 ≤ u < 1, u is C 2 near p and

ln u is plurisubharmonic in Ω}.
• Azukawa metric AU (p, ξ). We define

AΩ(p, ξ) = sup
u∈PΩ(p)

{lim sup
λ↘0

1

|λ|u(p + λξ)}

where

PΩ(p) = {u : Ω → [0, 1), ln u is plurisubharmonic and

∃Mu > 0, ru > 0 such that

B
n(p, r) ⊂ Ω, u(z) ≤ M‖z − p‖, z ∈ B

n(p, r)} .
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Theorem 1.2 Let Ω ⊂ C
n be a strictly pseudoconvex domain of class C 3, let

p ∈ bΩ , and let δ be a defining function for Ω near p, such that ‖∇δ(z)‖ = 1 for
all z ∈ bΩ . Then if FΩ(z, ζ ) is either the Carathéodory, Sibony or Azukawa metric,
there exists a constant C > 0 such that

(1 − C
√|δ(z)|)

[
Lπ(z)(ξT )

|δ(z)| + ‖ξN ‖
4δ(z)2

]1/2
≤ FΩ(z, ξ)

≤ (1 + C
√|δ(z)|)

[
Lπ(z)(ξT )

|δ(z)| + ‖ξN ‖
4δ(z)2

]1/2

for all z near p, and all ξ = ξN + ξT , where π is the orthogonal projection to bΩ ,
ξN is the complex normal component of ξ at π(z) and ξT is the complex tangential
component, and L is the Levi form of δ.

Ma’s result is the corresponding statement for the Kobayashi metric, and the result
is sharp in the sense that one cannot in general do better than the square root of the
boundary distance.

2 Proof of Theorem 1.2

The following was proved in [Deng], and we include the proof for the benefit of the
reader.

Lemma 2.1 Let Ω be any bounded domain in C
n, and let FΩ(z, ξ) be either the

Carathéodory, Sibony or Azukawa metric. Then

SΩ(z)KΩ(z, ξ) ≤ FΩ(z, ξ) ≤ KΩ(z, ξ)

for all z ∈ Ω and all ξ ∈ C
n, where K denotes the Kobayashi metric.

Proof It is well known that K dominates F so we need to show the lower estimate.
Let f : Ω → B

n be injective holomorphic with f (z) = 0, such that Br ⊂ f (Ω)

where r = SΩ(z). For the existence of f see [Deng] (alternatively one can use a
limiting argument). We get that

FΩ(z, ξ) = F f (Ω)(0, f∗ξ) ≥ FBn (0, f∗ξ) = KBn (0, f∗ξ)

= SΩ(z)K Br (0, f∗ξ) ≥ SΩ(z)K f (Ω)(0, f∗ξ) = SΩ(z)KΩ(z, ξ).

�
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Proof of Theorem 1.2: By Lemma 2.1 we have that

SΩ(z)KΩ(z, ξ) ≤ FΩ(z, ξ) ≤ KΩ(z, ξ).

Then combining Theorem 1.1 with the fact that Theorem 1.2 holds with FΩ(z)
replaced by KΩ(z) (see [Ma92]) completes the proof. �

3 Proof of Theorem 1.1

The following provides the key geometric setup for the proof. Let k = 3 or 4, and
let Ω be a bounded strongly pseudoconvex domain of class C k .

Lemma 3.1 Let p ∈ bΩ . There exists an injective holomorphic map φ : Ω → C
n

such that Ω̃ = φ(Ω) satisfies the following:

(i) Ω̃ ⊂ B
n,

(ii) φ(p) = (1, 0, · · ·, 0) =: a and φ−1(bBn) = {p},
(iii) near a we have that, Ω̃ = {ρ < μ2}, 0 < μ < 1 where

ρ(z) = |z1 − (1 − μ)|2 + ‖z′‖2 + O(|z1 − 1|2) + O(‖z − a‖k).

Proof By the main theorem in [Died14] there exists a map φ such that (i) and (ii)
are satisfied. That we can achieve (iii) follows from the proof which consists of three
steps. We first apply an automorphism of Cn to ensure that, locally near p = 0, our
domain has a defining function

ρ(z) = 2Re(z1) + ‖z‖2 + O(‖z‖k). (3.1)

To achieve this one approximates a local map with jet interpolation using the
Andersén-Lempert theory. We next apply another automorphism of Cn which can
be chosen to match the identity at the origin to any given order, so we still have a
defining function of the form (3.1). The final exposing map is of the form ϕ = φ ◦α,
where φ(z) = ( f (z1), z2, ..., zn) where f is injective holomorphic with f ′(0) > 0,
and α(z) can be chosen to match the identity to any given order at the origin. By a
translation we assume that ϕ(0) = 0. We then have a defining function for ϕ(Ω) of
the form

ρ(z) = 2Re(c1z1 + c2z21 + c3z31) + |c1|2|z1|2 + ‖z′‖2 + O(|z1|2) + O(‖z‖k)

= 2c1Re(z1) + |c1|2|z1|2 + ‖z′‖2 + O(|z1|2) + O(‖z‖k).

Applying the linear change of coordinates (z1, z′) �→ (z1/c1, z′), we get a defining
function

ρ(z) = 2Re(z1) + |z1|2 + ‖z′‖2 + O(|z1|2) + O(‖z‖k).
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By chosing a small 0 < μ < 1 we have that μϕ(Ω) is contained in the translated
unit ball {2Re(z1) + ‖z‖2 < 0}, with defining function

ρ(z) = 2μRe(z1) + |z1|2 + ‖z′‖2 + O(|z1|2) + O(‖z‖k),

which is the same as (iii) when translated (z1, z′) �→ (z1 + 1, z′). �

Remark 3.1 On bΩ̃ the remainder term in (iii) is actually O(|z1−1|k/2). To see this
we first translate Ω̃ to the origin, set z̃1 = z1 − 1, z̃ = (z̃1, z′) so that it is defined by

ρ̃(z̃) = 2Re(z̃1) + |z̃1|2 + 1

μ
‖z′‖2 + O(|z̃1|2) + O(‖z̃‖k) < 0.

We estimate ‖z′‖ on ρ̃ = 0. If ‖z′‖ ≤ |z̃1| the remainder term is less than C |z̃1|k =
O(|z1|k/2). If |z̃1| ≤ ‖z′‖ then the remainder term is O(‖z′‖k) and we get

‖z′‖2 + O(‖z′‖k) = μ(−2Re(z̃1) − |z̃1|2 + O(|z̃1|2))

= μ|z̃1|(−2Re(z̃1)

|z̃1| − |z̃1| + O(|z̃1|2)
|z̃1| ).

This implies that the remainder term is O(‖z′‖k) = O(|z1 − 1|k/2).

From now on we assume that Ω = Ω̃ and satisfies (i)–(iii) above. Then Ω is
“almost” contained in the ball Bμ ⊂ B

n defined by

|z1|2 + 1

μ
‖z′‖2 < 1.

We will use automorphisms of the ball Bn of the form

φr (z1, z′) =
(

z1 − r

1 − r z1
,

√
1 − r2

1 − r z1
z′

)

.

We have that φr leaves Bμ invariant. To prove the theorem, we will estimate two
things:

(a) How much φr (Ω) sticks out of Bμ and
(b) the size of the largest ball in Bμ contained in φr (Ω).

3.1 Estimate (a)

Lemma 3.2 There exists a constant C > 0 such that for w ∈ bφr (Ω) we have that

|w1|2 + 1
μ
‖w′‖2 ≤ 1 + C(1 − r)

k−2
2 .
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Proof We would like to express the maximum of the function ‖φr (z)‖ in terms of
(1 − r) on bΩ , i.e., we look at

‖φr (z)‖2 = |z1 − r |2 + 1
μ
(1 − r2)‖z′‖2

|1 − r z1|2 = |z1 − r |2
|1 − r z1|2 + 1

μ

(1 − r2)|z′|2
|1 − r z1|2

for z ∈ bΩ . Fix any η > 0. We show first that if z ∈ B
n with |z1 − 1| > η, then we

have a uniform estimate

‖φr (z)‖2 ≤ 1 + C(1 − r).

In this case we have that the denominator of the second term stays bounded
independent of r , while |z′| ≤ 1, hence the term goes to zero like (1 − r). For the
other term we write

|z1 − r |2
|1 − r z1|2 = 1 + (1 − r2)(|z1|2 − 1)

|1 − r z|2 ≤ 1 + C(1 − r).

Next we look at |z1 − 1| ≤ η. If η is chosen small enough, the local description
(iii) is valid. Hence if |z1 − 1| < η and if z ∈ bΩ we have that

‖z′‖2 = −|z1 − (1 − μ)|2 + O(|z1 − a|k/2) + μ2

= −|z1 − 1|2 − 2μRe(z1 − 1) + O(|z1 − a|k/2),

which gives that

1

μ
‖z′‖2 = − 1

μ
|z1 − 1|2 − 2Re(z1 − 1) + O(|z1 − a|k/2)

≤ −|z1 − 1|2 − 2Re(z1 − 1) + O(|z1 − a|k/2)

= 1 − |z1|2 + O(|z1 − a|k/2).

Hence

|z1 − r |2 + 1
μ
(1 − r2)‖z′‖2

|1 − r z1|2

= |z1 − r |2 + (1 − r2)(1 − |z1|2)
|1 − r z1|2 + (1 − r2)O(|z1 − 1|k/2)

|1 − r z1|2

= 1 + (1 − r2)O(|z1 − 1|k/2)

|1 − r z1|2 ≤ 1 + C
(1 − r2)|1 − r z1|k/2

|1 − r z1|2
≤ 1 + C1

1 − r

|1 − r z1|2−(k/2)
≤ 1 + C1

1 − r

(1 − r)2−(k/2)

≤ 1 + C2(1 − r)
k−2
2 .

�
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3.2 Estimate (b)

We define

Bμ

η,η̃
= {|z1 − (1 − η)|2 + η̃

μ
|z′|2 < η2}

with constants 0 < η ≤ η̃ < 2η.

Lemma 3.3 We set η̃ =
{

η, k = 4
η

1−Cη
, k = 3

.

(i) If k = 4 then Bμ

η,η̃
⊂ Ω for all η small enough

(ii) If k = 3, and the constant C > 0 is fixed large enough, then Bμ

η,η̃
⊂ Ω for

all η small enough.

Proof For η small enough, the ellipsoid Bμ

η,η̃
is contained in the region where the

local defining function ρ is defined. Since ρ is plurisubharmonic it suffices to show
thatρ ≤ 0 on bBμ

η,η̃
.We translate coordinates, by setting z̃1 = z1−1 and z̃ = (z̃1, z′).

We want to show that

{2ηRe(z̃1) + |z̃1|2 + η̃

μ
|z′|2 = 0}

is contained in the set

{2μRe(z̃1) + |z̃1|2 + ‖z′‖2 + O(|z̃1|2) + O(‖z̃‖k) ≤ 0}.

Write z̃1 = x1 + iy1. On the boundary of the ellipsoid we have that

2ηx1 + x21 + y21 + η̃

μ
‖z′‖2 = 0 ⇔ μ

η̃
y21 + ‖z′‖2 = −μ

η̃
(2ηx1 + x21 )

and consequently we get on the boundary of the ellipsoid that

‖z̃‖2 = x21 + y21 + ‖z′‖2 ≤ x21 + μ

η̃
y21 + ‖z′‖2 = x21 − μ

η̃
(2ηx1 + x21 )

= −x1(−x1 + μ

η̃
(2η + x1)) .

It follows that ‖z̃‖2 ≤ C |x1|, and so

‖z̃‖k ≤ C |x1|k/2 . (3.2)
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Consider again the boundary of the ellipsoid; we have

x21 + y21 + 2ηx1 + η̃

μ
‖z′‖2 = 0 .

Hence

‖z′‖2 = −μ

η̃
(x21 + y21 + 2ηx1) .

Therefore

2μx1 + |z̃1|2 + ‖z′‖2 + O(|z̃1|2) + O(‖z̃‖k)

≤ 2μx1 + |z̃1|2 − μ

η̃
(|z̃1|2 + 2ηx1) + C3|x1|k/2 + C4|z̃1|2.

using (3.2). It suffices therefore to show that the right side is ≤ 0. This means:

2μx1(1 − η

η̃
) + |z̃1|2(1 − μ

η̃
) + C3|x1|k/2 + C4|z̃1|2 ≤ 0. (3.3)

Observe that 1
2 ≤ η

η̃
≤ 1, so 1− η

η̃
≥ 0. Morever x1 ≤ 0 on the translated ellipse.

Hence the first term in (3.3) is ≤ 0. It suffices therefore that

|z̃1|2(1 − μ

η̃
) + C |z̃1|k/2 ≤ 0, (3.4)

where we merged the constants C3 and C4. When k = 4, this holds as soon as η is
small enough. When k = 3, this holds when

C |z̃1|3/2 ≤ μ

η̃
|z̃1|1/2|z̃1|3/2(1 − η̃

μ
)

or

C ≤ |z̃1|1/2
η̃

(μ − η̃)

This holds when |z̃1| ≥ C̃η2 for large enough C̃ . To complete the proof we need
to consider the case when k = 3 and |z̃1| ≤ C̃η2, and we go back to consider the full
expression (3.3). Since the sum |z̃1|2(1− μ

η̃
) + C4|z̃1|2 is negative when η is small,

it is enough to determine when

2μx1(1 − η

η̃
) + C3|x1|3/2 ≤ 0.



An Estimate for the Squeezing Function and Estimates of Invariant Metrics 143

or equivalently when

2μx1(1 − η

η̃
) ≤ C3x1|x1|1/2 ⇔ 2μ(1 − η

η̃
) ≥ C3|x1|1/2.

By our assumption we now have that C3|x1|1/2 ≤ C3(C̃η2)1/2 = C5η, and so we
need that

2μ(1 − η

η̃
) ≥ C5η.

Hence the choice η̃ = η

1− C5
2μ η

works. �

Now let ψ(z1, z′) = (z1,
1√
μ

z′). Then ψ(Bμ

η,η̃
) is the ellipsoid

B1
η,η̃ = {|z1 − (1 − η)|2 + η̃‖z′‖2 < η2},

Lemma 3.4 Let 0 < η, r < 1 and η̃ > 0. If z ∈ bB1
η,η̃

, then

‖φr (z1, z′)‖2 = 1 + (1 − r2)|z1 − 1|2
|1 − r z|2 − (1 − r2)(1/η̃)|z1 − 1|2

|1 − r z1|2

+
(1 − r2)2(1 − η

η̃
)(Re(z1) − 1)

|1 − r z1|2 .

Proof

‖φr (z1, z′)‖2 = |z1 − r |2 + (1 − r2)|z′|2
|1 − r z1|2

= |z1 − r |2 + (1 − r2)(1/η̃)(η2 − |z1 − (1 − η)|2)
|1 − r z1|2

= |z1 − r |2 + (1 − r2)(1/η̃)(η2 − |z1 − 1|2 − 2ηRe(z1 − 1) − η2)

|1 − r z1|2

= |z1 − r |2 + (1 − r2)(1/η̃)(−2ηRe(z1 − 1) − |z1 − 1|2)
|1 − r z1|2

= 1 +
|z1 − r |2 − |1 − r z1|2 − (1 − r2) 2η

η̃
Re(z1 − 1)

|1 − r z1|2

− (1 − r2)(1/η̃)|z1 − 1|2
|1 − r z1|2

= 1 + |z1|2 − 2r Re(z1) + r2 − (1 − 2r Re(z1) + r2|z1|2)
|1 − r z1|

−
(1 − r2) 2η

η̃
Re(z − 1)

|1 − r z1|2 − (1 − r2)(1/η̃)|z1 − 1|2
|1 − r z1|2
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= 1 +
(1 − r2)(|z1|2 − 2η

η
Re(z1) + (

2η
η̃

− 1))

|1 − r z1|2

− (1 − r2)(1/η̃)|z1 − 1|2
|1 − r z1|2

= 1 + (1 − r2)|z1 − 1|2
|1 − r z|2 − (1 − r2)(1/η̃)|z1 − 1|2

|1 − r z1|2

+ (1 − r2)2(1 − η
η̃
)(Re(z1) − 1)

|1 − r z1|2
�

Lemma 3.5 Let ψ(z) = (z1,
1√
μ

z′). Suppose that 0 < η, r < 1, 1 − 2η < r and

η̃ > 0. Then ψ(φr (Bμ

η,η̃
)) contains the ball of radius

√

1 − 2(1 − r)
1

η̃
− 4|1 − η

η̃
|.

Proof Since 1 − 2η < r, we have that 0 ∈ ψ(φr (Bμ

η,η̃
)). Hence it suffices to show

that ‖ψ(φr )(z)‖2 ≥ 1 − 2(1 − r) 1
η̃

− 4|1 − η
η̃
| on the boundary of Bμ

η,η̃
. (This is

nonempty if the expression on the right is nonnegative.) Since ψ ◦ φr = φr ◦ ψ , it
suffices to show that ‖φr (z)‖2 ≥ 1− 2(1− r) 1

η̃
− 4|1− η

η̃
| on the boundary of B1

η,η̃
.

From the previous lemma we have that

‖φr (z)‖2 ≥ 1 + (1 − r2)|z1 − 1|2
|1 − r z|2 − (1 − r2)(1/η̃)|z1 − 1|2

|1 − r z1|2

+
(1 − r2)2(1 − η

η̃
)(Re(z1) − 1)

|1 − r z1|2

≥ 1 − (1 − r2)(1/η̃)|z1 − 1|2
|1 − r z1|2 −

(1 − r2)2|1 − η
η̃
||Re(z1) − 1|

|1 − r z1|2

≥ 1 − (2(1 − r))(1/η̃)|r z1 − 1|2
|1 − r z1|2 −

(2(1 − r))2|1 − η
η̃
||r z1 − 1|

|1 − r z1|2

≥ 1 − (1 − r))(2/η̃) −
4|1 − r z1|)(1 − η

η̃
)

|1 − r z1|
≥ 1 − (1 − r))(2/η̃) − 4|1 − η

η̃
|

�
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We prove Theorem 1.1

Proof We will estimate the squeezing function at points (r, 0) when r < 1 is close
to 1. That this gives the uniform constant claimed in Theorem 1.1, follows from the
dependence on p as p varies over the boundary of the original domain. In particular,
the constants in our estimates can be chosen independently of the point p, and the
radial lines will foliate a neighborhood of the boundary so that we get an estimate for
all points near the boundary. The map ψ ◦ φr maps (r, 0) to the origin. We estimate
the image of Ω.

It follows from Lemma 3.2 that there exists a constant C > 0 such that for
w ∈ bφr (Ω) we have that |w1|2 + 1

μ
‖w′‖2 ≤ 1 + C(1 − r)

k−2
2 . Since the left side

is plurisubharmonic, the same estimate holds by the maximum principle on φr (Ω).

Suppose that (z1, z′) ∈ ψ(φr (Ω)). Then (z1, z′) = ψ(w1, w′) = (w1,
1√
μ

w′) for

some w ∈ φr (Ω). Hence ‖z‖2 = |w1|2 + 1
μ
‖w′‖2 ≤ 1+C(1− r)

k−2
2 . It follows that

ψ(φr (Ω)) is contained in the ball centered at the origin of radius 1 + C(1 − r)
k−2
2 .

We next estimate the radius of the largest ball contained inψ(φr (Ω)).By Lemma
3.3 we have ellipsoids Bμ

η,η̃
= {|z1 − (1 − η)|2 + η̃

μ
|z′|2 < η2} contained in Ω for

certain η, η̃ : We set

η̃ =
{

η, k = 4
η

1−Cη
, k = 3.

(i) If k = 4 we have that Bμ

η,η̃
⊂ Ω for all η small enough, and

(ii) if k = 3, and the constant C > 0 is fixed large enough, then Bμ

η,η̃
⊂ Ω for

all η small enough. We can then estimate instead the largest ball contained
in ψ(φr (Bμ

η,η̃
)).

We use Lemma 3.5: Suppose that 0 < η, r < 1, 1 − 2η < r and η̃ > 0. Then
ψ(φr (Bμ

η,η̃
)) contains the ball of radius

√

1 − 2(1 − r)
1

η̃
− 4|1 − η

η̃
|.

We deal first with the case k = 4. Then we assume that 1− 2η < r and η̃ = η. It
follows that

ψ(φr (Ω)) ⊃ ψ(φr

(
Bμ

η,η̃

)
) ⊃ B(0,

√
1 − 2(1 − r) 1

η̃
). We choose a fixed η, and

let r → 1.We then get that for a fixed constantC ′,ψ(φr (Ω)) ⊃ B(0, 1−C ′(1−r)).

Hence we have shown that in the case k = 4, k−2
2 = 1,

B(0, 1 − C ′(1 − r)) ⊂ ψ(φr (Ω)) ⊂ B(0, 1 + C(1 − r)).
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Composing with the map λ(z) = z
1+C(1−r)

we obtain that λ(ψ(φr (r, 0))) = 0 and
that

B

(
0,

1 − C ′(1 − r)

1 + C(1 − r)

)
⊂ λ(ψ(φr (Ω))) ⊂ B(0, 1).

Hence it follows that the squeezing function at (r, 0) is at least 1 − C ′′(1 − r).

Since the defining function δ(z) = −(1−r)+O((1−r)2) for z = (r, 0) and r close
to 1, we obtain Theorem 1.1 in the case when k = 4.

It remains to do the case k = 3.
It follows as above that ψ(φr (Ω)) is contained in the ball centered at the origin

of radius 1 + C(1 − r)
k−2
2 = 1 + C(1 − r)

1
2 .

As abovewe suppose that 0 < η, r < 1, 1−2η < r , andwe have thatψ(φr (Bμ

η,η̃
))

contains the ball of radius
√

1 − 2(1 − r)
1

η̃
− 4|1 − η

η̃
|.

We have that η̃
η

= 1 − Cη, and so it follows that

ψ(φr (Ω)) ⊃ψ(φr (Bμ

η,η̃
))

⊃B

(

0,

√

1 − 2(1 − r)
1

η̃
− 4Cη

)

⊃B

(

0,

√

1 − 2(1 − r)
1

η
− 4Cη

)

.

In this case, we let η depend on r. Set η = √
1 − r . Then r = 1− η2 > 1− 2η if

r is close enough to 1. We then get that

ψ(φr (Ω)) ⊃B

(

0,

√

1 − 2(1 − r)
1

η
− 4Cη

)

=B

(

0,

√

1 − 2(1 − r)
1√
1 − r

− 4C
√
1 − r

)

=B

(
0,

√
1 − (2 + 4C)

√
1 − r

)

⊃B

(
0, 1 − (2 + 4C)

√
1 − r

)
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Now it follows by the same scaling type argument with a map λ that we get the
desired lower bound for the squeezing function in the case k = 3. �

4 An Example

Let Ω be the domain Ω := B
n \ 1

2B
n
. We will show that SΩ(z) cannot approach 1

faster than 1−Cdist(z, bΩ). By abuse of notation we set r = (r, 0, ..., 0), 0 < r < 1
and we set a = (1/2, 0, ..., 0). Then the Kobayashi distance with respect to Bn from
a to r is 1

2 (log(
1+r
1−r ) − log(3)). Now let f : Ω → B

n be an injective holomorphic

map with f (r) = 0. Then f extends to a holomorphic map f̃ : Bn → B
n , so by the

decreasing property of the Kobayashi metric we have that the Kobayashi distance
between f (r) and f (a) is less that 1

2 log(
1+r
1−r ). It follows that SΩ, f (r) ≤ r .
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Classification of Proper Holomorphic
Mappings Between Generalized
Pseudoellipsoids of Different Dimensions

Atsushi Hayashimoto

Abstract Wegive a rigidity theorem of proper holomorphicmappings between gen-
eralized pseudoellipsoids. The theorem claims that any proper holomorphic mapping
which is holomorphic extendable up to the boundary between generalized pseudoel-
lipsoids of non-equidimensions is a collections of totally geodesic embeddings up to
automorphisms.

Keywords Gap theorem · Proper holomorphic mappings · Generalized pseudoel-
lipsoids

1 The Research of Proper Holomorphic Mappings

The purpose of this article is to classify proper holomorphic mappings between cer-
tain bounded weakly pseudoconvex domains of different dimensions. Before going
on this, we survey the research of proper holomorphic mappings. Let f : D1 → D2
be a holomorphic mapping. If the inverse image of any compact subset of D2 is
compact, then f is called proper. Therefore biholomorohic mappings are the typical
example of proper holomorphic mappings, and many properties on biholomophic
mappings are generalized to those on proper holomorphic mappings. In this section,
we review three research topics of proper holomorphic mappings. There are many
topics which we shall not refer here, for example, complexity of proper holomor-
phic mappings, group invariant proper holomorphic mappings, the relations between
proper holomorphic mappings and CR mappings, rationality of proper holomorphic
mappings, and so on.
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1.1 Extension Problem

In 1974, C. Fefferman proved that any biholomorphic mapping between bounded
strictly pseudoconvex domains in C

n with smooth boundaries can be extended to
a closure of the domains as a biholomorphic mapping. Motivated by this theorem,
many research have been done. The central problem of this line is the following.

Problem 1.1 Does every proper holomorphic mapping between bounded domains
D1, D2 with smooth boundaries in C

n extend smoothly to the boundary of D1?

Bell-Catlin [BC] and Diederich-Fornaess [DF] gave important progress by introduc-
ing the notion of Condition R. A smooth bounded domain D ⊂ C

n is said to satisfy
Condition R if the Bergman projection associated to D maps C∞(D̄) into C∞(D̄).

Theorem 1.1 Let D1 and D2 be bounded pseudoconvex domains in C
n with smooth

boundaries and let D1 satisfy the Condition R. Then any proper holomorphic mapping
f : D1 → D2 extends smoothly to D̄1.

The examples of domains satisfying Condition R are

• strongly pseudoconvex domains with smooth boundaries,
• pseudoconvex domains with real analytic boundaries,
• pseudoconvex domains of finite type with smooth boundaries.

For a long time, Condition R had been considered as the best method to getting
the positive answer to the extension problem. However Barrett [B] constructed non
pseudoconvex domains in C

2 which do not satisfy Condition R. Therefore we need
another tools to attack this problem. If we do not assume the pseudoconvexity,
Diederich-Pinchuk proved the theorem in dimension 2 in [DP1] and then proved
in the general dimension in [DP2].

Theorem 1.2 Let D1, D2 be bounded domains in C
n with real analytic boundaries

and let f : D1 → D2 a proper holomorphic mapping. Then f extends holomorphi-
cally to an open neighborhood of D1.

They use Segre varieties. Segre variety is determined by a point near the boundary of
D1. Since there are only the finite number of points which determine the same Segre
variety, the mapping f can be extended as a proper holomorphic correspondence.
Then they show that the correspondence is actually a mapping.

1.2 Proper Holomorphic Mappings and Biholomorphic
Mappings

By definition, biholomorphic mappings are proper, and in some cases, the inverse
holds. The fundamental theorem of this line was shown by Alexander [A].



Classification of Proper Holomorphic Mappings … 151

Theorem 1.3 A proper holomorphic mapping f : Bn → Bn is necessarily biholo-
morphic if n > 1. Up to a unitary transformation, f has the form:

f (z) = a − Paz − sa Qaz

1− < z, a >
, (1)

where a ∈ Bn, Paz = < z, a >

< a, a >
a if a �= 0 and P0z = 0 if a = 0, sa = (1−|a|2)1/2,

and Qa = I − Pa.

The same conclusion holds for wider class of domains, such as

• bounded strictly pseudoconvex domains in C
n(n > 1) with C2 boundaries,

• bounded weakly pseudoconvex domains in C
n(n > 1) with real analytic

boundaries,
• bounded smooth pseudoconvex complete Reinhardt domains whose weakly pseu-
doconvex boundaries points are contained in coordinate hyperplanes.

Themore should be known for the special kind of domain, such as complex ellipsoids,
symmetric domains and Hua domains. Let

E p = {(z1, . . . , zn) ∈ C
n :

n∑

j=1

|z j |2p j < 1, p j ∈ R>0} (2)

be a complex ellipsoid. As a corollary of the theorem in [L1], we know that any
proper holomorphic self mapping of E p is an automorphism if p j ∈ N. We expect
that this holds if p j ∈ R>0, but it is not known yet.

The mappings between symmetric domains, refer to [T] and between Hua
domains, refer to [TW].

1.3 Determination of Proper Holomorphic Mappings

The determination problem is the following.

Problem 1.2 Let D1, D2 be domains in C
n with certain conditions. Determine the

form of a proper holomorphic mapping between D1 and D2. For example, Taylor
expansion of them, or dependency of variables, and so on. Or determine it up to
automorphisms of D1 and D2.

The typical answer to this problem is also Theorem 1.3. Many research of this topics
has been studied for complex ellipsoids or more generally, for Reinhardt domains
and we focus on these domains here. Let Ta be a transformation defined by

Ta : (z1, . . . , zn) �→ (a1z1, . . . , anzn) (3)

for |a j | = 1, a = (a1, . . . , an). Dini-Selvaggi [DS] proved the following theorem.
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Theorem 1.4 Let R ⊂ C
n be a Reinhardt domain and f : R → E p a proper

polynomial mapping. Here E p is defined by (2) for p j ∈ N. Then there exists a linear
automorphism K of E p and a transformation Ta such that f = K ◦(zq1

1 , . . . , zqn
n )◦Ta

for q j ∈ N. Hence R = Tb(Er ) for some b and r = (p1q1, . . . , pnqn).

For Reinhardt domains, the forms of the mappings are not determined in general.
But some information, for example, variable splitting, is obtained. Landucci-Pinchuk
[LP] proved the following theorem.

Theorem 1.5 Let D1, D2 ⊂ C
2 be bounded pseudoconvex complete Reinhardt

domains and f = ( f1, f2) : D1 → D2 a proper holomorphic mapping. Assume
that there exist a complex variety V and an open neighborhood U of some point
p ∈ ∂ D1 such that V ∩U ⊂ ∂ D1. Then f1 and f2 depend only on a single variable.
Namely, f (z1, z2) = ( f1(z1), f2(z2)) or f (z1, z2) = ( f1(z2), f2(z1)).

Recently, the forms of proper holomorphic mappings between generalized Hartogs
triangles [CX, CL, Z] and between weakly spherical domains [L2] are obtained.

If we consider mappings between non equidimensional domains, more facts are
known and it is the topics that we shall study in this note. We shall refer it in the next
section.

This article is organized as follows. In Sect. 2, we state the main result of this
note, which is a kind of gap or rigidity theorem and we shall review a history of
gap theorems. In Sect. 3, we fix some notation and expansions of a mapping under
consideration. In Sect. 4, we explain the main result and in Sect. 5, we consider the
low dimensional case. In the last Sect. 6, some conjectures are posed.

Finally, the author would like to express his gratitude to the organizers of KSCV10
for the hospitality during the conference. He attended KSCV1 at POSTEC and it was
his first time to go abroad. I am very happy to attend the memorial 10th conference.

2 Main Theorem and History of Gap Theorems

2.1 Main Theorem

Let E(m; m1, . . . , m N ;α1, . . . , αN ) = E(m; (m j ); (α j )) be a bounded domain in
C

m+1 with a real analytic boundary defined by

E(m; (m j ); (α j )) = {(z, w1, . . . , wN ) ∈ C × C
m1 × · · · × C

m N ;
|z|2 + ||w1||2α1 + · · · + ||wN ||2αN − 1 < 0} (4)

where α1, . . . , αN ∈ N and α j ≥ 2, m1 + · · · + m N = m and ||w j ||2α j = (|w1
j |2 +

· · · + |wm j
j |2)α j for w j = (w1

j , . . . , w
m j
j ) ∈ C

m j . For simplicity, we use the notation

|||w|||2α = ||w1||2α1 + · · · + ||wN ||2αN . This domain E(m; (m j ); (α j )) is called a
generalized pseudoellipsoid with N blocks. We say that the mapping F : D1 → D2
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is equivalent to the mapping G : D1 → D2 if there exist automorphisms φ1 of D1
and φ2 of D2 such that F = φ2◦G ◦φ1.We classify mappings under this equivalence
relation. The following is the main theorem in this article.

Theorem 2.1 Let E(m; (m j ); (α j )) and E(n; (n j ); (β j )) be generalized pseudoel-
lipsoids with N blocks. Assume that there exists a proper holomorphic mapping
(F ,G1, . . . ,GN ) : E(m; (m j ); (α j )) → E(n; (n j ); (β j )) which is holomorphic
up to the boundary and fixes the origin. Assume that there exists a permutation of
indices σ of order N such that one of three relations holds:

(a) 2 ≤ mσ( j) ≤ n j ≤ 2mσ( j) − 2,
(b) 3 ≤ mσ( j), n j = 2mσ( j) − 1,
(c) 4 ≤ mσ( j), 2mσ( j) ≤ n j ≤ 3mσ( j) − 4.

Then ασ( j) = β j and (F ,G1, . . . ,GN ) is equivalent to (z, G̃1, . . . , G̃N ). Here, G̃ j =
(wσ( j), 0, . . . , 0) with the first mσ( j) components being wσ( j) and the rest being
zeros.

We also show the case of m j = 2, n j = 3 in Theorem 5.1.
If all α j are equal to one, then a generalized pseudoellipsoid E(m; (m j ); (1))

is a ball, and this is a well known case. Since any proper holomorphic mapping
between equidimensional balls is an automorphism, we are interested in the non-
equidimensional case, which is the topics that we see in the next subsection.

2.2 History of Gap Theorems

Webster [W] proved that any proper holomorphic mapping f : Bn → Bn+1, n ≥ 3,
which extends C3 up to the boundary is equivalent to a totally geodesic embedding
given by z → (z, 0). In the case of n = 2, Faran [F1] proved that, under the
assumption that it is C2 up to the boundary, such a mapping is classified into four
cases:

(z, w, 0), (z2,
√
2zw, w2), (z, zw, w2), (z3,

√
3zw, w3). (5)

Let Ik be a closed interval

Ik = [kn + 1, (k + 1)n − k(k + 1)

2
− 1]. (6)

Faran [F2] proved that any proper holomorphic mapping between n dimensional
ball to N dimensional ball which is holomorphic up to the boundary is equivalent
to the totally geodesic embedding provided that N ∈ I1. Huang [Hu] also obtained
the same conclusion under the weaker assumption that the mapping is only C2 up to
the boundary. X. Huang and S. Ji studied the case that the codimension N − n is
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higher. They proved in [HJ] that if N = 2n − 1, such a mapping is equivalent to a
totally geodesic embedding or Whitney mapping,

(z1, . . . , zn−1, zn) → (z1, . . . , zn−1, z1zn, . . . , zn−1zn, z2n). (7)

Hamada proved in [Ham] that if N = 2n, such a mapping is equivalent to D’Angelo
mapping,

Fθ (z) = (z1, . . . , zn−1, zn cos θ, z1zn sin θ, . . . , zn−1zn sin θ, z2n sin θ), (8)

for some θ with 0 ≤ θ ≤ π/2. Note that F0(z) is a totally geodesic embedding and
Fπ/2(z) is a Whitney mapping. If θ differs, then Fθ (z)’s are mutually non-equivalent
and therefore there are infinitely many non equivalent classes. Huang et al. [HJX]
proved that if a proper holomorphic mapping F between Bn and B N that is C3 up to
the boundary is equivalent to (Fθ (z), 0, . . . , 0) provided that N ∈ I2. In the case
of 3n − 3 ≤ N ≤ 3n, as far as I know, classification has not obtained yet. But there
are infinitely many mappings, see [HJY1]. If N ∈ I3, a similar theorem is known
by X. Huang, S. Ji and W. Yin. They proved in [HJY2] that under the assumption
that n > 7 and N ∈ I3, any proper holomorphic mapping between Bn and B N is
equivalent to a mapping (G, 0, . . . , 0), where G is a proper holomorphic mapping
from Bn to B3n . The paper by Huang et al. [HJY1] is a good survey of these topics.
These results say that if the target dimension N stays in each interval I1, . . . ,I3,
then new mapping does not appear, but it is out of intervals, new mappings appear.
We call such a phenomenon a gap phenomenon. If the domains under consideration
are Levi degenerate, then Ebenfelt-Son [ES] proved a kind of a rigidity theorem for
a local holomorphic mapping between boundaries of complex ellipsoids of different
dimensions.

3 Expansion of a Mapping

The bounded domains E(m; (m j ); (α j )) and E(n; (n j ); (β j )) have unbounded rep-
resentations E1 and E2 respectively by Cayley transformation, which are defined by

E1 = {(z, w1, . . . , wN ) ∈ C × C
m1 × · · · × C

m N ;
Imz > ||w1||2α1 + · · · + ||wN ||2αN }, (9)

E2 = {(z, w1, . . . , wN ) ∈ C × C
n1 × · · · × C

nN ;
Imz > ||w1||2β1 + · · · + ||wN ||2βN }. (10)

We denote by (F, G) = (F, G1, . . . , G N ) the mapping between E1 and E2. Since
it is holomorphic up to the boundary, the restricted mapping on the boundary, which
is denoted by the same notation, is expanded as
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F(x, w) =
∑

|p|+q≥0

ap,q(w)p(x + i |||w|||2α)q , (11)

Gλ
j (x, w) =

∑

|p|+q≥0

bλ
j;p,q(w)p(x + i |||w|||2α)q , j = 1, . . . , N , λ = 1, . . . , n j

(12)

as a CR mapping on the boundary. Here we use a multi-index notation. For w =
(w1, . . . , wm) ∈ C

m and p = (p1, . . . , pm) ∈ N
m , we define (w)p = wp1

1 . . . wpm
m .

By observing the Levi degenerate set and its image, the following lemma holds.

Lemma 3.1 Let (F, G1, . . . , G N ) : E(m; (m j ); (α j )) → E(n; (n j ); (β j )) be a
proper holomorphic mapping which can be extended holomorphically up to the
boundary. Then there exists a permutation of indices σ of order N such that
Gi |wσ(i)=0 = 0 holds for any i = 1, . . . , N. Therefore we have G(x, 0) = 0.

Let Lλ
j be a CR vector field on the boundary of E1:

Lλ
j = ∂

∂wλ
j

+ iα j ||w j ||2(α j −1)w̄λ
j

∂

∂x
, j = 1, . . . , N , λ = 1, . . . , m j . (13)

In the expansion of F , it does not contain the (w)p variable.

Lemma 3.2 We have the expansion

F(x, w) =
∑

q≥0

aq(x + i |||w|||2α)q , aq ∈ R. (14)

Proof By iterating CR vector fields, we have

Lλk
jk

. . . Lλ1
j1

= ∂k

∂wλk
jk

. . . ∂wλ1
j1

+ w̄λ1
j1

P1 + · · · + w̄λk
jk

Pk, (15)

where P1, . . . , Pk are differential operators with order smaller than or equal to k.
Since we have G(x, 0) = 0, we obtain

0 = (Lλk
jk

. . . Lλ1
j1

|||G|||2β)(x, 0)

= (Lλk
jk

. . . Lλ1
j1
ImF)(x, 0) = 1

2i
(Lλk

jk
. . . Lλ1

j1
F)(x, 0) (16)

for any vector fields Lλ1
j1

, . . . , Lλk
jk
. Therefore F(x, w) satisfies

∂k F

∂wλk
jk

. . . ∂wλ1
j1

(x, 0) = 0. (17)
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It implies, in the expansion (11) of F , that ap,q = 0 for |p| > 0. We replace a0,q by
aq . Since F(x, 0) is real, aq ∈ R follows. �

4 Main Result (General Case)

In this section, we shall explain how the Theorem 2.1 is proved. The proof contains
four steps. The first two steps appear in [Hay].

Proof Step 1. In this and the next Steps, we assume that 2 ≤ mσ( j) ≤ n j ≤
2mσ( j) −2.We prove it for one block case (N = 1). We substitute (14) and (12) with
N = 1 into the defining function of the target domain. Pick up the terms with same
degree in the variables to get the relations among the coefficients in the expansions.
We continue the following arguments.

• By the method of undetermined coefficients, some coefficients of Taylor series are
zero.

• We construct a unitary matrix which normalizes some coefficients of expansions.
• We construct a proper homogeneous mapping between balls, which are already
classified, to get normalizations of some coefficients. The assumption 2 ≤ m1 ≤
n1 ≤ 2m1−2 is posed to use the fact that anyproper holomorphicmappingbetween
Bm1 and Bn1 with such dimension condition is a totally geodesic embedding up to
automorphisms.

By these methods, we have proved the one block case.

Step 2. Next the N blocks case. Let w j ∈ C
m j be a variable in the j th block in the

source domain. If we put w1 = · · · = wN = 0 except for w j , then all components,
except for F and Gσ−1( j), vanish by Lemma 3.1. This is the one block case, which
has already proved. Since j is arbitrary, we obtain the relations of α’s and β’s.
Assume that σ = id and α1 = β1 ≤ · · · ≤ αN = βN . To get the normalization,
we use the three arguments as in the one block case. The difficulty is that, after
getting partially normalization of, say, G1, next we normalize G2 by certain change
of coordinate. But, in the process of normalization of G2, the coordinate change
gives some influences the obtained form of G1 and therefore a partial normalization
of G1 breaks. Therefore we need to check the influences seriously. By these Steps,
we completes the proof.

Step 3. Ifm j ≥ 3, n j = 2mσ( j)−1, then we useWhitney map and a totally geodesic
embedding instead of a totally geodesic embedding in Steps 1 and 2. Then we obtain
the result.

Step 4. If m j ≥ 4, 2mσ( j) ≤ n j ≤ 3mσ( j) − 4, then we use D’Angelo map instead
of a totally geodesic embedding in Steps 1 and 2. Then we obtain the result. �

Theorem2.1 says that, up to a permutation of indices and automorphisms, themap-
ping is a collection of totally geodesic embeddings between corresponding blocks.
Since it holds for n j = mσ( j), we have the following corollary.
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Corollary 4.1 The proper holomorphic mapping from a generalized pseudoellipsoid
into itself is an automorphism.

5 Main Result (Low Dimensional Case)

The theorem proved in the previous section does not cover the case of m j = 2,
n j = 3. Let

E(2; 2;α) = {(z, w1, w2) ∈ C × C
2 : |z|2 + ||w||2α − 1 < 0, α ∈ N}, (18)

E(3; 3;β) = {(z, w1, w2, w3) ∈ C × C
3 : |z|2 + ||w||2β − 1 < 0, β ∈ N} (19)

be generalized pseudoellipsoids with one block. On the line of the previous section,
this case has close relation to the proper mapping f : B2 → B3, which is classified
into four mappings.

Theorem 5.1 Let E(2; 2;α) and E(3; 3;β) be as defined. Assume that there exists
a proper holomorphic mapping (F ,G1,G2,G3) : E(2; 2;α) → E(3; 3;β) which is
holomorphic up to the boundary and fixes the origin. Then we have the two equivalent
classes:

• α = β, (F ,G1,G2,G3) ∼ (z, w1, w2, 0),
• α = 2β, (F ,G1,G2,G3) ∼ (z, w2

1, w2
2,

√
2w1w2).

Among fourmappings in the classification (5) of f : B2 → B3, the twomappings
appearing in this theorem satisfy

||(z, w1, w2, 0)||2 = ||(z, w1, w2)||2, (20)

||(z, w2
1, w2

2,
√
2w1w2)||2 = ||(z, w1, w2)||4. (21)

But other two do not satisfy ||F(z)||2 = ||z||2n for any n. This is the reason why
only two mappings appear in the theorem.

6 Some Conjectures

There are some situations to be studied in the line of gap theorems.
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6.1 The Number of Blocks

In Theorem 2.1, the number of blocks of source and target domains are the same.
Assume that the conditions of the mapping are the same as Theorem 2.1.

Conjecture 6.1 (1) Let N and N ′ be the numbers of blocks in the source and target
domains respectively. If the inequality N < N ′ holds, then any proper holomorphic
mapping as in Theorem 2.1 is a collection of totally geodesic embeddings.

(2) If the opposite inequality N > N ′ holds, then there does not exist such a
mapping.

6.2 Dimension in the Blocks

We pose assumptions on the dimensions m j and n j of variables in the blocks in
Theorem 2.1. It is needed to use the gap theorem for balls. If the codimension
n j − mσ( j) is sufficiently large, a gap phenomenon does not occur and we can
not classify the mappings as shown in [DL]. But I guess that proper holomorphic
mappings between generalized pseudoellipsoids are not the cases.

Conjecture 6.2 Let (F ,G1, . . . ,GN ) : E(m; (m j ); (α j )) → E(n; (n j ); (β j )) be a
proper holomorphic mapping which is extendable holomorphically up to the bound-
ary between generalized pseudoellipsoids with N blocks. Assume that there exists
a permutation of indices σ such that 2 < mσ( j) < n j . Then ασ( j) = β j and
(F ,G1, . . . ,GN ) is equivalent to (z, G̃1, . . . , G̃N ). Here, G̃ j = (wσ( j), 0, . . . , 0)
with the first mσ( j) components being wσ( j) and the rest being zeros.
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Bergman Kernel Asymptotics and a Pure
Analytic Proof of the Kodaira Embedding
Theorem

Chin-Yu Hsiao

Abstract In this paper, we survey recent results in [HMA12] about the asymptotic
expansion of Bergman kernel and we give a Bergman kernel proof of the Kodaira
embedding theorem.

Keywords Bergman kernel asymptotics · The Kodaira embedding theorem

1 Introduction and Set up

Let L be a holomorphic line bundle over a complexmanifold M and let Lk be the k-th
tensor power of L . The Bergman projection Pk is the orthogonal projection onto the
space of L2-integrable holomorphic sections of Lk . The study of the large k behaviour
of Pk is an active research subject in complex geometry and is closely related to topics
like the structure of algebraic manifolds, the existence of canonical Kähler metrics,
Toeplitz quantization, equidistribution of zeros of holomorphic sections, quantum
chaos and mathematical physics. We refer the reader to the book [MM07] for a
comprehensive study of the Bergman kernel and its applications and also to the
survey [Ma10].

When M is compact and L is positive, Catlin [Cat97] and Zelditch [Zel98] estab-
lished the asymptotic expansion of the Bergman kernel (see Theorem 4.2) by using a
fundamental result by Boutet de Monvel-Sjöstrand [BouSj76] about the asymptotics
of the Szegö kernel on a strictly pseudoconvex boundary.Dai et al. [DLM06] obtained
the full off-diagonal asymptotic expansion andAgmon estimates of the Bergman ker-
nel for a high power of positive line bundle on a compact complex manifold by using
the heat kernel method. Ma and Marinescu [MM07, MM08a] proved the asymptotic
expansion for yet another generalization of the Kodaira Laplacian, namely the renor-
malized Bochner-Laplacian on a symplectic manifold and also showed the existence
of the estimate on a large class of non-compact manifolds. Another proof based on
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microlocal analysis of the existence of the full asymptotic expansion for the Bergman
kernel for a high power of a positive line bundle on a compact complex manifold
was obtained by Berndtsson, Berman and Sjöstrand [BBS04].

In [HMA12], we impose a very mild semiclassical local condition on ∂k , namely
the O(k−N ) small spectral gap on an open set D � M (see Definition 3.1), where ∂k

denotes the Cauchy-Riemann operator with values in Lk . We prove that the Bergman
kernel admits an asymptotic expansion on D if ∂k has O(k−N ) small spectral gap on
D, cf. Theorem 3.1. Our approach is based on the microlocal Hodge decomposition
for Kohn Laplacian established in [Hsiao08]. The distinctive feature of these asymp-
totics is that they work under minimal hypotheses. This allows us to apply them in
situations which were up to now out of reach. We illustrate this in the study of the
Bergman kernels of positive but singular Hermitian line bundles (see Theorem 3.3).

1.1 Set up

In this paper, we let M be a not necessary compact complex manifold of dimension
n with a smooth positive (1, 1) form Θ . The form Θ induces Hermitian metrics
on the complexified tangent bundle CT M and T ∗0,q M bundle of (0, q) forms on
M , q = 0, 1, . . . , n. We shall denote all these Hermitian metrics by 〈 · | · 〉. Let
(L , hL) → M be a holomorpic line bundle over M , where hL denotes the Hermitian
fiber metric of L . Let RL be the canonical curvature two form induced by hL . Given
a local trivializing section s of L on an open subset D ⊂ M we define the associated
local weight of hL by

|s(x)|2hL = e−2φ(x), φ ∈ C∞(D,R). (1.1)

Then RL |D = 2∂∂φ. Let (Lk, hLk
) be the k-th tensor power of the line bundle L .

If s is a local trivializing section of L , |s|2
hL = e−2φ , then sk is a local trivializing

section of Lk and
∣∣sk

∣∣2
hLk = e−2kφ . We take dvM = dvM (x) as the volume form

on M induced by Θ . For every q = 0, 1, 2, . . . , n, let ( · | · ) and ( · | · )
hLk be the

standard L2 inner products on Ω
0,q
0 (M) := C∞

0 (M, T ∗0,q M) and Ω
0,q
0 (M, Lk) :=

C∞
0 (M, T ∗0,q M ⊗ Lk) respectively induced by dvM , 〈 · | · 〉 and hLk

and we write
‖·‖ and ‖·‖

hLk to denote the corresponding norms. Let L2
(0,q)(M) and L2

(0,q)(M, Lk)

be the completions of Ω
0,q
0 (M) and Ω

0,q
0 (M, Lk) with respect to ‖·‖ and ‖·‖

hLk

respectively.
Let ∂k : C∞(M, Lk) → Ω0,1(M, Lk) be the Cauchy-Riemann operator with

values in Lk . We extend ∂k to L2(M, Lk) := L2
(0,0)(M, Lk) by ∂k : Dom ∂k ⊂

L2(M, Lk) → L2
(0,1)(M, Lk), where Dom ∂k := {u ∈ L2(M, Lk); ∂ku ∈

L2
(0,1)(M, Lk)}. Let

Pk : L2(M, Lk) → Ker ∂k
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be the Bergman projection, i.e. Pk is the orthogonal projection onto Ker ∂k with
respect to ( · | · )

hLk and let Pk(x, y) ∈ C∞(M × M,L (Lk
y, Lk

x )) be the distribution
kernel of Pk .

2 Terminology in Semi-classical Analysis

In this section, we collect some definitions and notations in semi-classical analysis.
Let Bk : L2(M, Lk) → L2(M, Lk) be a continuous operator with smooth kernel

Bk(x, y). Let s, s1 be local trivializing sections of L on D0 � M , D1 � M respec-
tively, |s|2

hL = e−2φ , |s1|2hL = e−2φ1 . The localized operator (with respect to the
trivializing sections s and s1) of Bk is given by

Bk,s,s1 : L2
comp (D1) → L2(D),

u → e−kφs−k Bk(s
k
1ekφ1u). (2.1)

and let Bk,s,s1(x, y) ∈ C∞(D × D1) be the distribution kernel of Bk,s,s1 , where

L2
comp (D1) :=

{
v ∈ L2(D1); Supp v � D1

}
.

Let D be a local coordinate patch of M and let Ak : C∞
0 (D) → C∞(D) be a

k-dependent continuous operator with smooth kernel Ak(x, y). We write Ak ≡ 0
mod O(k−∞) (on D) or Ak(x, y) ≡ 0 mod O(k−∞) (on D) if Ak(x, y) satisfies∣∣∣∂α

x ∂
β
y Ak(x, y)

∣∣∣ = O(k−N ) uniformly on every compact set in D × D, for all multi-

indices α, β ∈ N
2n and all N > 0. Let Bk : L2(M, Lk) → L2(M, Lk) be a k-

dependent continuous operator with smooth kernel.Wewrite Bk ≡ 0 mod O(k−∞)

if Bk,s,s1 ≡ 0 mod O(k−∞) for every local trivializing sections s and s1.

Definition 2.1 Let D be a local coordinate patch of M . Let S(1; D) = S(1) be
the set of all a ∈ C∞(D) such that for every α ∈ N

2n , there exists Cα > 0,
such that

∣∣∂α
x a(x)

∣∣ ≤ Cα on D. If a = a(x, k) depends on k ∈]1,∞[, we say
that a(x, k) ∈ Sloc (1; D) = Sloc (1) if χ(x)a(x, k) uniformly bounded in S(1)
when k varies in ]1,∞[, for any χ ∈ C∞

0 (D). For m ∈ R, we put Sm
loc(1; D) =

Sm
loc(1) = km Sloc (1). If a j ∈ S

m j
loc (1), m j ↘ −∞, we say that a ∼

∞∑
j=0

a j (in

Sm0
loc (1)) if a −

N0∑

j=0
a j ∈ S

m N0+1

loc (1) for every N0. For a given sequence a j as above,

we can always find such an asymptotic sum a and a is unique up to an element in
S−∞
loc (1) = S−∞

loc (1; D) := ⋂
m Sm

loc (1).
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3 Asymptotic Expansion of Bergman Kernel

Let s, s1 be local trivializing sections of L on D0 � M , D1 � M respectively,
|s|2

hL = e−2φ , |s1|2hL = e−2φ1 . Let Pk,s,s1 be the localized operator of Pk given
by (2.1) and let Pk,s,s1(x, y) ∈ C∞(D × D1) be the distribution kernel of Pk,s,s1 .
When s = s1, D = D1, we write Pk,s := Pk,s,s1 , Pk,s(x, y) := Pk,s,s1(x, y). When
x = y, Pk,s(x, x) is independent of s. We write Pk(x) := Pk,s(x, x) and we call
Pk(x) Bergman kernel function. Let f1 ∈ C∞(M, Lk), . . . , fdk ∈ C∞(M, Lk) be
orthonormal frame for Ker ∂k , dk ∈ {0} ⋃

N
⋃ {∞}. On D0 and D1, we write

f j = skekφ f̃ j , f̃ j ∈ C∞(D), j = 1, 2, . . . , dk,

f j = sk
1ekφ1 f̂ j , f̂ j ∈ C∞(D1), j = 1, 2, . . . , dk .

We can check that

Pk,s,s1(x, y) =
dk∑

j=1

f̃ j (x) f̂ j (y),

Pk(x) =
dk∑

j=1

∣∣ f j (x)
∣∣2
hLk . (3.1)

We recall O(k−N ) small spectral gap property introduced in [HMA12]

Definition 3.1 Let D ⊂ M . We say that ∂k has O(k−N ) small spectral gap on D
if there exist constants CD > 0, N ∈ N, k0 ∈ N, such that for all k ≥ k0 and
u ∈ C∞

0 (D, Lk), we have

‖(I − Pk)u‖
hLk ≤ CD k N

∥∥∂ku
∥∥

hLk .

It should be mentioned that in [HMA12], we actually introduced O(k−N ) small
spectral gap for Kodaira Laplacian. Note that O(k−N ) small spectral gap for ∂k

implies O(k−N ) small spectral gap for Kodaira Laplacian.
One of the main results in [HMA12] is the following

Theorem 3.1 With the notations and assumptions used before, let s be a local trivi-
alizing section of L on an open set D ⊂ M, |s|2

hL = e−2φ , and assume that RL is pos-

itive on D. Suppose that ∂k has O(k−N ) small spectral gap on D. Then, χ1Pkχ ≡ 0
mod O(k−∞) for every χ1 ∈ C∞

0 (M), χ ∈ C∞
0 (D) with Suppχ1

⋂
Suppχ = ∅

and

Pk,s(x, y) ≡ eikΨ (x,y)b(x, y, k) mod O(k−∞) on D,
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where b(x, y, k) ∼
∞∑
j=0

b j (x, y)kn− j in the sense of Definition 2.1, b j (x, y) ∈
C∞(D × D), j = 0, 1, . . ., b0(x, x) = (2π)−n

∣
∣ det RL(x)

∣
∣ and

Ψ (x, y) ∈ C∞(D × D), Ψ (x, y) = −Ψ (y, x) , (3.2)

∃ c > 0 : ImΨ ≥ c |x − y|2 , Ψ (x, y) = 0 ⇔ x = y ,

for any p ∈ D, take local holomorphic coordinates z = (z1, . . . , zn) vanishing at
p, then near (p, p),

Ψ (z, w) =i(φ(z) + φ(w))

− 2i
∑

α,β∈({0}⋃
N)n ,

|α|+|β|≤N

∂ |α|+|β|φ
∂zα∂zβ

(0)
zαwβ

α!β! + O(|(z, w)|N+1), ∀N ∈ N,

(3.3)

where det RL(x) = λ1(x) · · · λn(x), λ j (x), j = 1, . . . , n, are the eigenvalues of RL

with respect to 〈 · | · 〉.
In particular, Pk(x) ∼

∞∑
j=0

b j (x, x)kn− j in the sense of Definition 2.1.

3.1 Big Line Bundles and Shiffman Conjecture

As an application of Theorem 3.1, we will establish Bergman kernel asymptotic
expansion for a big line bundle and this yields yet another proof of the Shiffman
conjecture. Until further notice, we assume that M is compact. We recall

Conjecture 3.1 (Shiffman, 1990). If hL is a singular Hermitian metric, smooth out-
side a proper analytic set Σ , RL > 0 in the sense of current, then L is big.

A line bundle L is said to be big if dim H0(M, Lk) ≈ kn , where

H0(M, Lk) =
{

u ∈ C∞(M, Lk); ∂ku = 0
}

.

Ji and Shiffman [JS93] solved this conjecture.
Now, we assume that hL is a singular Hermitian metric, smooth outside a proper

analytic set Σ , RL > 0 in the sense of current. Consider the non-compact complex
manifold M \Σ . We also write ∂k to denote the Cauchy-Riemann operator on M \Σ

with values in Lk . Let Pk,M\Σ be the associated Bergman projection on M \ Σ and
let Pk,M\Σ(x) be the associated Bergman kernel function. In [HMA12], we showed
that

Theorem 3.2 ∂k has O(k−N ) small spectral gap on every D � M \ Σ .
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From Theorem 3.2 and Theorem 3.1, we deduce that

Theorem 3.3 Pk,M\Σ(x) ∼ (2π)−n
∣∣ det RL(x)

∣∣kn +b1(x)kn−1+b2(x)kn−2+· · ·
locally uniformly on M \ Σ , where b j (x) ∈ C∞(M \ Σ), j = 1, 2, . . ..

Let
{
g1, g2, . . . , gmk

}
be an orthonormal frame for H0(M, Lk)

⋂
L2(M\Σ, Lk).

The multiplier Bergman kernel function is defined by

Pk,I (x) :=
mk∑

j=1

∣
∣g j (x)

∣
∣2
hLk , x ∈ M \ Σ.

The following result is essentially due to Skoda (see Lemma 7.3 of Ch. VIII in
Demailly [Desps11]).

Theorem 3.4 Pk,M\Σ(x) = Pk,I (x), ∀x ∈ M \ Σ .

Proof (Proof of Shiffman conjecture) FromTheorem 3.4 and Theorem 3.3, we estab-
lish Bergman kernel asymptotic expansion for big line bundle:

Pk,I (x) ∼ (2π)−n
∣
∣ det RL(x)

∣
∣kn + b1(x)kn−1 + b2(x)kn−2

+ · · · locally uniformly onM \ Σ, (3.4)

where b j (x) ∈ C∞(M \ Σ), j = 1, 2, . . .. Let K � M \ Σ . Note that
dim H0(M, Lk) ≥ ∫

K Pk,I (x)dvM (x). From this observation and (3.4), we reprove
Shiffman conjecture. �

4 A Bergman Kernel Proof of the Kodaira Embedding
Theorem

For a holomorphic line bundle E → M , we say that E is positive if there is a
Hermitian metric hE of E such that the associated curvature RE is positive definite
on M . Let us recall the Kodaira embedding theorem first.

Theorem 4.1 Let M be a compact complex manifold. If there is a positive holomor-
phic line bundle E over M, then M can be holomorphic embedded into CP

N , for
some N ∈ N.

We return to our situation and we will use the same notations as before. By using
Hörmander’s L2 estimates [Hor90], it is easy to see that if M is compact and RL is
positive on M then ∂k has O(k−N ) small spectral gap on M . From this observation
and Theorem 3.1, we deduce

Theorem 4.2 Assume that M is compact and RL is positive on M. Then,

χ1Pkχ ≡ 0 mod O(k−∞) (4.1)
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for every χ1 ∈ C∞(M), χ ∈ C∞(M) with Suppχ1
⋂

Suppχ = ∅. Let s be a local
trivializing section of L on an open set D ⊂ M, |s|2

hL = e−2φ , then

Pk,s(x, y) ≡ eikΨ (x,y)b(x, y, k) mod O(k−∞) on D, (4.2)

where b(x, y, k) and Ψ (x, y) are as in Theorem 3.1.
In particular,

Pk(x) ∼ (2π)−n
∣∣ det RL(x)

∣∣kn + b1(x)kn−1 + b2(x)kn−2 + · · · uniformly on M .

(4.3)

By using Theorem 3.1, we are going to give a Bergman kernel proof of theKodaira
embedding theorem. From now on, we assume that RL is positive on M . As before,
put

H0(M, Lk) :=
{

u ∈ C∞(M, Lk); ∂ku = 0
}

and let
{

f1, . . . , fdk

}
be an orthonormal basis for H0(M, Lk) with respect to

( · | · )
hLk . The Kodaira map is given by

Φk : x ∈ X → [ f1(x), f2(x), . . . , fdk (x)] ∈ CP
dk−1. (4.4)

From (4.3), we see that there is a k0 > 0 such that for every k ≥ k0,
dk∑

j=1

∣
∣ f j (x)

∣
∣2
hLk ≥

ckn on M , where c > 0 is a constant independent of k. Hence, fix any k ≥ k0, for
every x ∈ X , there is a f j , j ∈ {1, 2, . . . , dk}, such that

∣∣ f j (x)
∣∣2
hLk > 0.We conclude

that Φk is a well-defined as a smooth map from X to CPdk−1. We will prove

Theorem 4.3 For k large, Φk is a holomorphic embedding.

It is clearly that the Kodaira embedding theorem follows from Theorem 4.3. We
recall that for a smoothmapΦ : X → CP

N is an embedding if dΦx : T X → TCP
N

is injective at each point x ∈ X and Φ : X → CP
N is globally injective.

Let s be a local trivializing section of L on an open set D ⊂ M . Fix p ∈ D and let
z = (z1, . . . , zn) = x = (x1, . . . , x2n), z j = x2 j−1 + i x2 j , j = 1, . . . , n, be local
holomorphic coordinates of X defined in some small neighbourhood of p such that

φ(z) =
n∑

j=1

λ j
∣∣z j

∣∣2 + O(|z|3), (4.5)

where 2λ1, . . . , 2λn are the eigenvalues of RL(p) with respect to 〈 · | ·〉. We may
assume that the local coordinates z defined on D. We also write y = (y1, . . . , y2n).
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Until further notice, we work on D. Take χ ∈ C∞
0 (R, [0, 1]) with χ(x) = 1 on

[− 1
2 ,

1
2 ], χ(x) = 0 on ] − ∞,−1]⋃[1,∞[ and χ(t) = χ(−t), for every t ∈ R. Let

uk := Pk

(
skekφχ(

√
ky1) · · · χ(

√
ky2n)

)
∈ H0(M, Lk). (4.6)

On D, we write uk = skekφ ũk , ũk ∈ C∞(D). Then, |uk(x)|2
hLk = |̃uk(x)|2, ∀x ∈ D.

We need

Lemma 4.1 With the notations used above, there is a k0 > 0 independent of k and
the point p such that for all k ≥ k0,

|uk(p)|2
hLk ≥ c0, (4.7)

|uk(x)|2
hLk ≤ 1

c0k
, ∀x /∈ D (4.8)

and
∣
∣∣∣
1√
k

∂ ũk

∂xs
(p)

∣
∣∣∣ ≤ 1

c0k
, s = 1, 2, . . . , 2n, (4.9)

where c0 > 0 is a constant independent of k and the point p.

Proof From (4.2), we can check that

ũk(x)

≡
∫

eikΨ (x,y)b(x, y, k)χ(
√

ky1) · · · χ(
√

ky2n)dvM (y) mod O(k−∞)

≡
∫

e
ikΨ (x,

y√
k
)
k−nb(x,

y√
k
, k)χ(y1) · · · χ(y2n)dvM (y) mod O(k−∞). (4.10)

From (3.3), Theorem 4.2 and note that Ψ (0, 0) = 0, we can check that

lim
k→∞ ũk(p) = 1

2
π−n

∣∣∣det RL
p

∣∣∣
∫

χ(y1) · · · χ(y2n)dvM (y).

Similarly, it is straightforward to check that limk→∞ 1√
k

∂ ũk
∂xs

(p) = 0, s = 1, 2,

. . . , 2n. Hence, there is a constant k̃0 > 0 such that for every k ≥ k̃0, (4.7) and (4.9)
hold. Since X is compact, k̃0 can be taken to be independent of the point p.

Now, we prove (4.8). Since x /∈ D, from (4.1), we see that |uk(x)|2
hLk ≡ 0

mod O(k−∞) outside D. Thus, there is a constant k̂0 > 0 such that for every k ≥ k̂0,
(4.8) holds. Since X is compact, k̂0 can be taken to be independent of the point p.
The lemma follows. �
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For every j = 1, 2, . . . , n, let

u j
k := Pk

(
skekφ

√
k(y2 j−1 + iy2 j )χ(

√
ky1) · · · χ(

√
ky2n)

)
∈ H0(M, Lk). (4.11)

On D, we write u j
k = skekφ ũ j

k , ũ j
k ∈ C∞(D), j = 1, 2, . . . , n. The following

follows from some straightforward computation and essentially the same as the proof
of Lemma 4.1. We omit the details.

Lemma 4.2 With the notations used above, there is a k1 > 0 independent of k and
the point p such that for all k ≥ k1,

∣∣∣̃u j
k (p)

∣∣∣ ≤ 1

c1k
, j = 1, 2, . . . , n,

∣∣∣∣
∣
1√
k

∂ ũ j
k

∂zs
(p)

∣∣∣∣
∣
≤ 1

c1k
, j, s = 1, 2, . . . , n,

∣∣∣∣
∣
1√
k

∂ ũ j
k

∂zs
(p)

∣∣∣∣
∣
≤ 1

c1k
, j, s = 1, 2, . . . , n − 1, j �= s,

∣∣∣∣
∣
1√
k

∂ ũ j
k

∂z j
(p)

∣∣∣∣
∣
≥ c1, j = 1, 2, . . . , n, (4.12)

where c1 > 0 is a constant independent of k and the point p.

From now on, we take k be a large constant so that k � 2(k0 + k1), where k0 > 0
and k1 > 0 are constants as in Lemma 4.1 and Lemma 4.2. We can prove

Theorem 4.4 dΦk(x) : Tx X → TxCP
dk−1 is injective at every x ∈ X.

Proof Fix p ∈ X and let s be a local trivializing section of L on an open
set D ⊂ M , p ∈ D. Let uk ∈ H0(M, Lk) and u j

k ∈ H0(M, Lk), j =
1, 2, . . . , n, be as in Lemma 4.1 and Lemma 4.2. From Lemma 4.1 and Lemma 4.2,
it is not difficult to check that uk, u1

k, u2
k . . . , un

k are linearly independent. Take{
uk, u1

k, u2
k, . . . , un

k , g1, . . . , gmk

}
be a basis (not orthogonal) for H0(M, Lk), mk =

dk − n − 1. From Lemma 4.1 and Lemma 4.2, it is easy to see that

the differential of the map x → (
u1k
uk

, . . . ,
un

k
uk

,
g1
uk

, . . . ,
gmk
uk

) is injective at p.

(4.13)
From (4.13) and some elementary linear algebra, it is not difficult to check that
dΦk(p) : Tp X → TpCP

dk−1 is injective. We omit the detail. �

Now, we can prove

Theorem 4.5 For k large, Φk : X → CP
dk−1 is globally injective.

Proof We assume that the claim of the theorem is not true.We can find xk j , yk j ∈ M ,
xk j �= yk j , 0 < k1 < k2 < · · · , lim j→∞ k j = ∞, such that Φk j (xk j ) = Φk j (yk j ),
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for each j . We may suppose that there are xk, yk ∈ M , xk �= yk , such that Φk(xk) =
Φk(yk), for each k. Thus, [ f1(xk), · · · , fdk (xk)] = [ f1(yk), · · · , fdk (yk)], for each
k. We conclude that for every gk ∈ H0(M, Lk), there is a λk ∈ C such that

gk(xk) = λk gk(yk). (4.14)

We may assume that |λk | ≥ 1. Hence, for every gk ∈ H0(M, Lk),

|gk(xk)|2hLk ≥ |gk(yk)|2hLk . (4.15)

Since M is compact, wemay assume that xk → p ∈ M , yk → q ∈ M , as k → ∞.
Suppose that p �= q. In view of Lemma 4.1, we see that there is a vk ∈ H0(M, Lk)

with |vk(yk)|2
hLk ≥ c0 and |vk(xk)|2

hLk ≤ 1
c0k , where c0 > 0 is a constant independent

of k. Thus, for k large, |vk(xk)|2
hLk < |vk(yk)|2

hLk . From this and (4.15), we get a
contradiction. Thus, we must have p = q.

Let s be a local trivializing section of L on an open subset D ⊂ X of p, |s|2
hL =

e−2φ . Now, we assume that xk → p ∈ M , yk → p ∈ M , as k → ∞. Let
z = (z1, . . . , zn) = x = (x1, . . . , x2n), z j = x2 j−1 + i x2 j , j = 1, . . . , n, be local
holomorphic coordinates of X defined in some small neighbourhood of p such that
(4.5) hold. We may assume that xk, yk ∈ D for each k and the local coordinates x
defined on D. We shall use the same notations as before.

Case I : lim supk→∞
√

k |xk − yk | = M > 0 (M can be ∞).
For simplicity, we may assume that

lim
k→∞

√
k |xk − yk | = M, M ∈]0,∞]. (4.16)

On D, we write f j = skekφ f̃ j , f̃ j ∈ C∞(D), j = 1, . . . , dk . Put

vk(x) :=
dk∑

j=1

f j (x) f̃ j (yk) ∈ H0(M, Lk). (4.17)

We can check that

|vk(xk)|2hLk =
∣∣∣∣
∣∣

dk∑

j=1

f̃ j (xk) f̃ j (yk)

∣∣∣∣
∣∣

2

= ∣∣Pk,s(xk, yk)
∣∣2 =

∣∣∣eikΨ (xk ,yk )b(xk, yk, k)

∣∣∣
2

≤ e−2kImΨ (xk ,yk ) |b(xk, yk, k)|2 (4.18)

and

|vk(yk)|2hLk = ∣∣Pk,s(yk, yk)
∣∣2 =

∣∣∣eikΨ (yk ,yk )b(yk, yk, k)

∣∣∣
2 = |b(yk, yk, k)|2 .

(4.19)
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From the fact that ImΨ (x, y) ≥ c |x − y|2, where c > 0 is a constant, (4.16), (4.18)
and (4.19), we can check that

lim
k→∞ k−2n |vk(xk)|2

hLk ≤ e−2cM2 |b0(p, p)|2 < |b0(p, p)|2 = lim
k→∞ k−2n |vk(yk)|2

hLk ,

(4.20)
where b0 is the leading term of b(x, y, k). Note that b0(p, p) = (2π)−n

∣
∣ det RL(p)

∣
∣

> 0 (see Theorem 3.1). From (4.20) and (4.15), we get a contradiction.
Case II : lim supk→∞

√
k |xk − yk | = 0.

Put fk(t) =
|vk (t xk+(1−t)yk)|2

hLk

Pk (t xk+(1−t)yk)Pk(yk )
, where vk is as in (4.17). We can check that

fk(t) =

∣∣
∣∣∣

dk∑

j=1
f̃ j (t xk + (1 − t)yk) f̃ j (yk)

∣∣
∣∣∣

2

dk∑

j=1

∣∣ f̃ j (t xk + (1 − t)yk)
∣∣2

dk∑

j=1

∣∣ f̃ j (yk)
∣∣2

=
∣∣Pk,s(t xk + (1 − t)yk, yk)

∣∣2

Pk(t xk + (1 − t)yk)Pk(yk)
.

(4.21)
From (4.14) and (4.21), it is easy to see that 0 ≤ fk(t) ≤ 1, ∀t ∈ [0, 1] and
fk(0) = fk(1) = 1. Thus, for each k, there is a tk ∈ [0, 1] such that f ′′

k (tk) ≥ 0.
Hence,

lim inf
k→∞

f ′′
k (tk)

|xk − yk |2 k
≥ 0. (4.22)

From (4.2), we see that

∣∣Pk,s(t xk + (1 − t)yk , yk)
∣∣2 = e−2kImΨ (t xk+(1−t)yk ,yk ) |b(t xk + (1 − t)yk , yk , k)|2 ,

Pk(t xk + (1 − t)yk)

= b(t xk + (1 − t)yk , t xk + (1 − t)yk , k) ∼
∞∑

j=0

kn− j b j (t xk + (1 − t)yk , t xk + (1 − t)yk).

(4.23)

From (4.23), it is straightforward to calculate that

∂
∣∣Pk,s(t xk + (1 − t)yk , yk)

∣∣

∂t

= e−2kImΨ (t xk+(1−t)yk ,yk )

(
〈 −2kImΨ ′

x (t xk + (1 − t)yk , yk) , xk − yk 〉 |b(t xk + (1 − t)yk , yk , k)|2

+ 〈 O(k2n) , xk − yk 〉
)
,

∂2
∣∣Pk,s(t xk + (1 − t)yk , yk)

∣∣

∂t2

= e−2kImΨ (t xk+(1−t)yk ,yk )
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((〈 −2kImΨ ′
x (t xk + (1 − t)yk , yk) , xk − yk 〉)2 |b(t xk + (1 − t)yk , yk , k)|2

+ 〈 −2kImΨ ′′
x (t xk + (1 − t)yk , yk)(xk − yk) , xk − yk 〉 |b(t xk + (1 − t)yk , yk , k)|2

+ 〈 −2kImΨ ′
x (t xk + (1 − t)yk , yk) , xk − yk 〉〈 O(k2n) , xk − yk 〉

+ 〈 O(k2n)(xk − yk) , xk − yk 〉
)
,

∂ Pk(t xk + (1 − t)yk , yk)

∂t
= 〈 O(k2n) , xk − yk 〉,

∂2Pk(t xk + (1 − t)yk , yk)

∂t2
= 〈 O(k2n)(xk − yk) , xk − yk 〉, (4.24)

where ImΨ ′
x (x, y) and ImΨ ′′

x (x, y) denote the derivative and the Hessian of
ImΨ (x, y) with respect to x respectively. Note that

∣∣〈−2kImΨ ′
x (t xk + (1 − t)yk, yk) , xk − yk 〉∣∣ ≤ 1

c0
k |xk − yk |2 → 0 as k → ∞

and

〈−2kImΨ ′′
x (t xk + (1 − t)yk, yk)(xk − yk) , xk − yk 〉 < −c0k |xk − yk |2 ,

where c0 > 0 is a constant independent of k. From this observation, (4.21) and (4.24),

it is straightforward to see that lim infk→∞
f ′′
k (tk )

|xk−yk |2k
< 0. From this and (4.22), we

get a contradiction.
The theorem follows. �

From Theorem 4.4 and Theorem 4.5, we obtain Theorem 4.3 and the Kodaira
embedding theorem follows then.
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On the Density and the Volume Density
Property

Shulim Kaliman and Frank Kutzschebauch

Abstract This article gives a short introduction into the notions of density property
(DP) and volume density property (VDP).Moreoverwe develop an effective criterion
of verifying whether a given X has VDP. As an application of this method we give a
new proof of the basic fact that the product of two Stein manifolds with VDP admits
VDP.

Keywords Stein manifolds · Density property · Flexibility · Volume density
property · Holomorphic automorphisms

1 Introduction

The density property has emerged from the so called Andersén-Lempert theory of
automorphisms of affine space C

n n ≥ 2, which was presented by Rosay in his
overview talks at the 1.KSCV Conference in 1997 [Ros]. It turns out that there
are many more Stein manifolds whose automorphism group is similarly big. For a
Stein manifold X the density property is a precise way of saying that X has a big
automorphism group. Density property has become an important notion for the study
of many geometric questions in Several Complex Variables.

Definition 1.1 (Varolin, [Var01]) A complex manifold X has the density property
(DP) if in the compact-open topology the Lie algebra generated by complete holo-
morphic vector fields Liehol(X) on X is dense in the Lie algebra of all holomorphic
vector fields on X .

We remind the reader that a holomorphic vector field Θ on a complex manifold
X is called complete if the ODE
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d

dt
ϕ(x, t) = Θ(ϕ(x, t))

ϕ(x, 0) = x

has a solution ϕ(x, t) defined for all complex times t ∈ C and all starting points
x ∈ X . It gives a complex one-parameter subgroup of the holomorphic automorphism
groupAuthol(X). The set of complete vector fields on X will be denoted by CVF(X).

In the presence of a holomorphic volume form ω on X (i.e., a nowhere vanishing
holomorphic n-form, where n = dim X ) it is natural to consider a similar notion for
vector fields θ preserving this volume form, i.e., such that Lθω = 0 or equivalently by
the Cartan formula diθω = 0. One also refers to such fields as fields of ω-divergence
zero orω-divergence free(where theω-divergence divωθ of a vector field θ is defined
by the formula Lθω = divωθ ω).

Definition 1.2 (Varolin, [Var01]) A complex manifold X has the ω-volume density
property if in the compact-open topology the Lie algebra Lieω

hol(X) generated by
complete holomorphic vector fields of ω-divergence zero on X is dense in the Lie
algebra of all holomorphic vector fields of ω-divergence zero on X .

We will sketch in Chap.2 some remarkable consequences these two properties
have together with some very recent applications.

In Chap.3 we give an analogous criterion for volume density property to what
we developed for the algebraic volume density property in [KaKu]. We apply this
criterion to give a short new proof of the fact that that the product of two Stein
manifolds with VDP has again VDP. The first quite complicated proof of this fact
using Grothendiecks theory of completions of tensor products has been given by the
authors in [KaKu3].

We end the paper with some open problems.

2 Main Feature of Density and Volume Density Property
and Some Recent Applications

The density property is a precise way of saying that the automorphism group of a
manifold is big, in particular for a Stein manifold this is underlined by the main
result of the theory (see [FR93] for Cn , [Var01], a detailed proof can be found in the
Appendix of [Rit13] or in [For11]).

Theorem 1 (Andersén-Lempert theorem) Let X be a Stein manifold with the density
property and let Ω be an open subset of X. Suppose that Φ : [0, 1] × Ω → X is a
continuous map such that

(1) Φt : Ω → X is holomorphic and injective for every t ∈ [0, 1],
(2) Φ0 = id : Ω → X is the natural inclusion of Ω into X, and

http://dx.doi.org/10.1007/978-4-431-55744-9_2
http://dx.doi.org/10.1007/978-4-431-55744-9_3
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(3) Φt (Ω) is a Runge subset1 of X for every t ∈ [0, 1].
Then for each ε > 0 and every compact subset K ⊂ Ω there is a continuous

family, α : [0, 1] → Authol(X) of holomorphic automorphisms of X such that

α0 = id and |αt − Φt |K < ε for every t ∈ [0, 1]

Here is a number of consequences the density property has, the proof of each of
them is a certain application of the Andersén-Lempert theorem:

If X is a Stein manifold with DP, then

(I) X is covered by Fatou-Bieberbach domains, i.e., each x ∈ X has a n-hood
Ωx ⊂ X biholomorphic to C

dim X , see [Var00].
(II) There is ϕ : X → X , injective holomorphic not surjective (biholomorphic

images of X in itself), see [Var00].
(III) If X is Stein with DP dim X ≥ 3 and Y is a complex manifold such that

End(X) and End(Y ) are isomorphic as abstract semigroups, then X and Y
are biholomorphic or anti-biholomorphic, see [A, AW]. We believe that the
same is true if the dimension of X is 2, but the known proofs do not apply.

(IV) There are complete homomorphic vector fields θ1, . . . , θN ∈ CV Fhol(X)

such that span(θ1(x), . . . , θN (x)) = Tx X ∀x ∈ X (see [KaKu2]) and there-
fore

(V) X is an Oka-Forstnerič manifold which means it is an appropriate (nonlinear)
target for generalizing classical Oka-Weil interpolation and Runge approxi-
mation for holomorphic functions (linear target C) or sections of vector bun-
dles (linear target as well). More precisely, the following is true (see [For11]).
For any Stein space W , complex subspace W ′, compactO(X)-convex subset
K = K̂ ⊂ W and any ϕ : W → X continuous, such that the restriction to
W ′ ∪ K is holomorphic, there is a homotopy of continuous maps

h : [0, 1] × W → X

from the continuous h0 = ϕ to a holomorphic h1, with
interpolation: ht = ϕ on W ′ ∀t
and
approximation: |ht − ϕ|K arbitrary small ∀t .

(VI) Authol(X) acts ∞-transitively on X , i.e., for all natural numbers N and
pairs of N -tupels of distinct points (x1, x2, . . . , xN ) and (y1, y2, . . . , yN )

there is a holomorphic automorphism α ∈ Authol(X) with α(xi ) = yi

∀i = 1, 2, 3, . . . , N , see [Var00].
(VII) Moreover a parametrized version has been proven recently (see [KR])

1Recall that an open subset U of X is Runge if any holomorphic function on U can be approxi-
mated by global holomorphic functions on X in the compact-open topology. Actually, for X Stein
(Footnote 1 continued)
by Cartan’s Theorems A and B this definition implies more: for any coherent sheaf on X its section
over U can be approximated in the compact-open topology by global sections.
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Theorem 2 Let W be a Stein manifold and X a Stein manifold with the density
property.
Let x : W → X N \ {

(z1, . . . , zN ) ∈ X N ; zi = z j for some i 
= j
}

be a holomorphic map. Then the parametrized points x1(w), . . . , x N (w) are simulta-
neously standardizable by an automorphism lying in the path-connected component
of the identity (AutW (X))0 of AutW (X) if and only if x is null-homotopic.

Here simultaneously standardizable means that given any fixed positions x̃1, x̃2,
. . . , x̃N ∈ X there are holomorphic automorphisms α of X depending holomor-
phically on w, i.e., an element of AutW (X) = {α ∈ Aut(W × X);α(w, z) =
(w, αw(z))}, with αw(x j (w)) = x̃ j for all w ∈ W and j = 1, . . . , N .

Coming back to the volume density property a theorem similar to the Andersén-
Lempert theorem formulated above can be proven. In addition to the natural condition
on volume preservation the open set Ω has to satisfy an additional cohomological
condition, namely the map Hn−1(X) → Hn−1(Ω) induced by the inclusion of Ω

into X is surjective. For contractible X , for example X = C
n , this is equivalent to

Hn−1(Ω) = 0. All properties mentioned above, except for (I) are also known for
Stein X with VDP, if in addition we demand that dim X ≥ 2. Property (I) is unknown
in this case. Concerning the dimension condition it is easy to see that DP implies
dim X ≥ 2, whereas C∗ is a (the only) 1-dimensional Stein manifold with VDP and
has to be excluded for all properties except (V) to hold. In order for (VII) to hold
for Stein X with VDP at the moment we need the additional assumption that X is
contractible. It is unknown whether this condition can be relaxed, see [KR].

Here is the complete list of known Examples of Stein manifolds with DP or VDP

• A homogeneous space X = G/H has DP, where G is a Linear Algebraic Group
and H is a closed reductive subgroup, such that X0 
= (C∗)k,C. Here (C∗)k for
k ≥ 2 is unknown. For Cn the result is due to Andersén-Lempert see [AL92], for
G semisimple with trivial center to Varolin-Toth see [VT1, VT2], for G Linear
Algebraic is due to the authors see [KaKu1], the general case toKaliman-Donzelli-
Dvorsky, see [DDK].2

• A homogeneous space X = G/H as above has VDP w.r.t. left invariant (Haar)
form in case this form exists. This result is due to the authors, for G see [KaKu4],
for the general case see [KaKu]. We would like to mention that before the work
of the authors only very view examples of manifolds with VDP had been known.
They were found by Andersén (Cn in [And1] and Varolin, e.g., Sl2(C), see [Var00,
Var01],

• The manifolds (sometimes called suspensions or modifications) {(u, v, z) ∈ Cu ×
Cv × C

n
z : uv = f (z)} where f ∈ O(Cn) has a smooth zero locus Z = {z ∈

C
n : f (z) = 0} have DP , and in case f is a polynomial and Hn−2(Z) = 0 they

have VDP. Both results are due to the authors see [KaKu2] and [KaKu4].

2In fact in the coming paper of the authors these results are extended to affine homogeneous spaces
of linear algebraic groups. More, precisely any such a space different from C or (C∗)k has DP.
Similarly, any such a space (including C or (C∗)k ) equipped with a left invariant volume form has
VDP.
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• Danilov-Gizatullin surfaces have DP due to Donzelli, see [Do].
• A hypersurface S in C3

x,y,z given by an equation

p(x) + q(y) + xyz = 1

where p and q are polynomials such that p(0) = q(0) = 0 and 1 − p(x) and
1 − q(y) have simple roots only, has VDP. This is a recent result of the authors,
[KaKu]. The surface has only discrete algebraic automorphism group.

• New examples by Matthias Leuenberger, for instance, the Koras-Russel threefold
{(x, y, s, t) ∈ C

4 : x + x2y + s2 + t3 = 0} with both DP and VDP, see [Leu14].

Here comes a number of applications which in one or the other form among other
things use the flexible behavior described by the Andersén-Lempert theorem. The
precise statements can be looked up at the references.

(a) Embedding Stein spaces of dimension n into affine space C
N of the optimal

dimension N = [ 32n]+1 with interpolation, see [FIKP]. Without interpolation
this is the celebrated result of Gromov-Eliashberg and Schürmann. Prezelj was
able to prove almost the same interpolation result but loosing one dimension in
half of the cases by adapting the methods of Gromov-Eliashberg. Instead of fol-
lowing the Gromov-Eliashberg proof one can simply use their result and achieve
interpolation by constructing a sequence of automorphisms, each moving one
point into the correct position at the time. The construction of the automorphisms
involves the Andersén-Lempert theorem.

(b) Embeddingmanymore examples ofRiemann surfaces R ↪→ C
2. There is a series

of results due to Fornæss-Wold and Forstnerič, see [FW1, FW2, W1, W2, W3]
substantially enlarging the number of examples of open Riemann surfaces which
can be properly embedded into C

2. The general notoriously difficult problem
whether all Riemann surfaces embed properly holomorphically into C2 remains
open.

(c) Fatou-Bieberbach domains inC2 with boundary ofHausdorff dimension 4. It has
been known from dynamics that Fatou-Bieberbach domains can have boundaries
of Hausdorff dimension d for any d between 3 and 4. The case d = 3 is a famous
result of Stensønes. Peters and Fornaess-Wold settled d = 4 with the help of the
Andersén-Lempert theorem [HFW].

(d) Embedding Ck ↪→ C
n in many different ways. The Andersén-Lempert theorem

was first used by Forstnerič, Globevnik, Rosay in [FGR], later by Buzzard and
Fornæss [BF]. The most elaborated results are due to the second author and his
students [LK, BK].

(e) There are (many different) non-linearizable holomorphic group actions on C
n

as a consequence of the existence of different embeddings [DK1, DK2, LK].
This is in turn an application of an application of the DP for Cn but it seems
worth mentioning since it solved the Holomorphic Linearization Problem to the
negative.

(f) Each open Riemann surface with abelian fundamental group admits an acyclic
embedding into a SteinmanifoldwithDP (thus into anOka-Forstneričmanifold).



180 S. Kaliman and F. Kutzschebauch

This is the first result, due to Ritter, concerning the general question whether any
Stein manifold embeds acyclically into an Oka-Forstnerič manifold, see [Rit13].

(g) If X is a Stein manifold with DP or VDP and W a Stein manifold such that
dim X ≥ 2 dim W + 1 then there is a proper holomorphic embedding W ↪→ X .
In case X is affine space (linear target) this is the classical Bishop-Remmert
embedding theorem. This result byAndrist, Fornæss-Wold, Forstnerič and Ritter
can be viewed as a generalization to any (non linear) Stein target with DP or
VDP, [AFFWR].

(h) Constructions of Fatou-Bieberbach domains in C
2 which are not Runge and a

long C
2 which is not C2. These beautiful results by Fornæss-Wold use DP for

C × C
∗, see [W4, W5].

(i) Any open Riemann surface admits a proper harmonic map to R
2 (disproving a

conjecture of Schoen and Yau). This result due to Andrist and Fornæss-Wold
uses VDP for C∗ × C

∗, see [AW].

There are versions of the Anderseń-Lempert theorem with (very special) control
on (very special) non-compact sets. One of them leads to

Theorem 3 ([KW]) Let ϕ : Rs → R
s be a smooth diffeomorphism, and assume

that s < n. Then φ can be approximated in the fine Whitney topology by holomorphic
automorphisms of Cn.

One can generalize the DP to (non-smooth) complex spaces X by considering
only vector fields vanishing on a subvariety which contains the singular locus. These
versions of DP have the same remarkable consequences as in the Andersén-Lempert
theorem, but for the automorphisms of X leaving the subset Y fixed (up to certain
order). The notions have been defined in a recent work of Liendo, Leuenberger and
the second author. Before coming to the definition we would also like to remark that
in case of X being affine algebraic one conveniently works with the dense (in the Lie
algebra of holomorphic vector fields) Lie sub algebra of algebraic vector fields on X .
One defines in the straightforward manner the algebraic density property ADP and
algebraic volume density property AVDP which imply DP resp. VDP. Thus these
algebraic versions are considered as tools for proving DP or VDP.

Definition 2.1 Let X be an affine algebraic variety and let X sing be the singular
locus. Let Y ⊆ X be an algebraic subvariety of X containing X sing and let I =
I (Y ) ⊆ C[X ] be the ideal of Y . Let VFalg(X, Y ) be theC[X ]-module of vector fields
vanishing in Y and Liealg(X, Y ) be the Lie algebra generated by all the complete
vector fields in VFalg(X, Y ).

Definition 2.2 X has the strong ADP relative to Y if VFalg(X, Y ) = Liealg(X, Y ).
Furthermore, we say that X has the ADP relative to Y if there exists � ≥ 0 such

that I � VFalg(X, Y ) ⊆ Liealg(X, Y ).
If we let Y = X sing we simply say that X has the strong ADP or the ADP,

respectively.



On the Density and the Volume Density Property 181

In connection with this relative property we have two results:

Theorem 4 ([KaKu1]) Let Y ⊂ C
n be an algebraic subvariety with codimY ≥ 2.

Then C
n has ADP relative to Y .

Theorem 5 ([LLK]) Let X be an affine toric variety of dimension n at least two for
the torus T = (C∗)n and let Y be a T -invariant closed subvariety of X containing
X sing. Then X has the ADP relative to Y if and only if X \ Y 
= T .

Every affine non-smooth (the smooth ones are the torusC∗ ×C
∗,C2 andC
 ×C)

toric surface is obtained as a quotient ofC2 by the action of a cyclic group. Let d > e
be relatively prime positive integers. We denote by Vd,e the toric surface obtained
as the quotient of C2 by the Zd -action ζ · (u, v) = (ζu, ζ ev), where ζ is a primitive
d-th root of unity. We can exactly characterize in these terms which toric surfaces
have strong ADP.

Theorem 6 ([LLK]) Vd,e has the strong ADP if and only if e divides d + 1 and
e2 
= d + 1.

3 The Criterion and Volume Density of Products

Notation: Let X be a Stein manifold with a holomorphic volume form ω. Let Ck(X)

be the space of holomorphic differential k-forms on X andZk(X) andBk(X) be its
subspaces of closed and exact k-forms respectively. If dim X = n then there exists
an isomorphism Θ : VFω(X) → Zn−1(X) given by the formula ξ → ιξω where
ιξω is the interior product of ω and ξ ∈ VFω(X).

Consider the homomorphism Dk : Ck−1(X) → Bk(X) generated by outer differ-
entiation d and let D = Dn−1. Themain theme of our new criterion is the search for a
O(X)-module in the space D−1 ◦ Θ(Lieω

hol(X)). With some additional assumptions
the existence of such a module implies VDP.

Definition 3.1 Let ξ and η be nontrivial complete holomorphic vector fields on a
Stein manifold X . We say that the pair (ξ, η) is semi-compatible

if the closure of the span of Ker ξ · Ker η contains a nonzero ideal of O(X).

The largest ideal contained in the closure of the span will be called the associate
ideal of the pair (ξ, η).

The next simple observation provides a crucial connection between semi-compa-
tibility and existence of O(X)-modules in D−1 ◦ Θ(Lieω

hol(X)) where D = Dn−1.

Proposition 3.1 Let ξ and η be vector fields from VFω(X) . Then

ι[ξ,η]ω = dιξ ιηω. (1)



182 S. Kaliman and F. Kutzschebauch

Proof Recall the following relations between the outer differentiation d, Lie deriv-
ative Lξ and the interior product ιξ

Lξ = dιξ + ιξd and [Lξ , ιη] = ι[ξ,η]. (2)

By this formula

ιξdιηω = ιξ (Lη − ιηd)ω

where the right-hand side is zero since Lηω − ιηdω = 0 for closed ω and η of
ω-divergence zero. Then another application of formula (2) in combination with the
fact that ιξdιηω = 0 yields

[Lξ , ιη]ω = Lξ ιηω − ιηLξω = Lξ ιηω = dιξ ιηω + ιξdιηω = dιξ ιηω.

Thus by formula (2) we have the desired equality

ι[ξ,η]ω = dιξ ιηω. �

Let ξ, η be nonzero complete divergence-free holomorphic vector fields on X , f ∈
Ker ξ , and g ∈ Ker η. Replacing ξ and η in Formula (1) by f ξ and gη respectively
we can see that ( f g)ιξ ιηω ∈ D−1 ◦ Θ(Lieω

hol(X)). Hence one has the following.

Corollary 3.1 Let X be a complex manifold equipped with a holomorphic volume
form ω and let ξ and η be semi-compatible divergence-free vector fields on X.
Then D−1 ◦ Θ(Lieω

hol(X)) contains a nontrivial O(X)-submodule L of the module
Cn−2(X).

Let μ(x) ⊂ O(X) be the maximal ideal of functions vanishing at x ∈ X and
let L be the largest O(X)-submodule of D−1 ◦ Θ(Lieω

hol(X)). By Cartan’s Theorem
B equality L = Cn−2(X) holds as soon as L/μ(x)L = Cn−2(X)/μ(x)Cn−2(X)

for every x ∈ X . The latter is provided by Condition (A) below and we have the
following.

Proposition 3.2 Let X be a Stein manifold equipped with a holomorphic volume
form ω and let (ξ j , η j )

k
j=1 be pairs of divergence-free semi-compatible vector fields.

Let I j be the ideal associated with (ξ j , η j ), and let I j (x) = { f (x)| f ∈ I j } for
x ∈ X. Suppose that

(A) for every x ∈ X the set {I j (x)ξ j (x) ∧ η j (x)}k
j=1 generates the fiber Λ2Tx X of

Λ2T X over x.

Then Θ(Lieω
hol(X)) contains Bn−1(X) .

As a consequence of Proposition 3.2 we have our criterion.
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Theorem 7 Let X be a Stein manifold equipped with a holomorphic volume form
ω and pairs of divergence-free semi-compatible vector fields satisfying

(A) for every x ∈ X the set {I j (x)ξ j (x) ∧ η j (x)}k
j=1 generates the fiber Λ2Tx X of

Λ2T X over x.

and

(B) the image of Θ(Lieω
hol(X)) under De Rham homomorphism Φn−1 : Zn−1(X)

→ Hn−1(X,C) coincides with the subspace Φn−1(Zn−1(X)) of Hn−1(X,C).

Then Θ(Lieω
hol(X)) = Zn−1(X) and therefore Lieω

hol(X) = VFω(X), i.e., X has the
volume density property.

Theorem 8 Let (X, ωX ) and (Y, ωY ) be Stein manifolds with VDP. Then the product
(X × Y, ωX ∧ ωY ) has VDP.

Proof The proof is an application of Theorem 7. Set n := dim X and m := dim Y ,
ω = ωX ∧ ωY .

First we will show that Condition (B) is fulfilled. Remember that the de Rham
cohomology of Stein manifolds can be calculated by means of holomorphic forms
[GR] p.155. Letα be a holomorphic (n+m−1) form on the Steinmanifold X ×Y . By
theKünneth formulawe can assume that eitherα = α1∧α2 whereα1 is a holomorphic
(n − 1)form on X and α2 a holomorphic m-form on Y or α1 is a holomorphic
n-form on X and α2 a holomorphic (m − 1)-form on Y . By symmetry it is enough
to consider the first case. Since ωY is a volume form we have α2 = f (y)ωY for
some holomorphic function f ∈ O(Y ). Since X has VDP there is a divergence-free
holomorphic field θ ∈ LieωX

hol(X) such that iθωX is cohomologous to α1. The field
f (y)θ is divergence-free on X ×Y and clearly contained in Lieω

hol(X × Y ) (multiply
one function in each iterated Lie bracket by f (y)). Moreover i f θω = iθωX ∧ α2
represents the class of α.

In order to prove condition (A) remark that if θ is a complete holomorphic vector
field on X and η a complete holomorphic vector field on Y , the pair (θ, η) is semi-
compatible on X ×Y . Indeed, let the Steinmanifolds X andY be closed submanifolds
of CN resp. CM . The algebra PX consisting of restrictions of polynomial functions
on C

N to X are contained in K er(η). Analogously the algebra PY consisting of
restrictions of polynomial functions on C

M to Y are contained in K er(θ). Thus
K er(η) · K er(θ) contains all restrictions of polynomial functions on C

N × C
M to

the closed submanifold X ×Y . By the Oka-Weill approximation theorem the closure
of K er(η) · K er(θ) is O(X × Y ), the associated ideal is therefore the whole algebra
of holomorphic functions.

Next remark that V D P implies the existence of finitely many globally integrable
divergence-free holomorphic fields which span the tangent space at every point, see
e.g. [KaKu3]. Let θi i = 1, 2, . . . , k and ηi i = 1, 2, . . . , l be such fields for X resp.
Y . The semi-compatible pairs (θi , η j ) span the subspace Tx X∧TyY ofΛ2T(x,y) X×Y
at a point (x, y). In order to span the remaining part of Λ2T(x,y) X × Y , namely the
subspaces Λ2Tx X and Λ2TyY we will to our pairs of semi-compatible fields apply
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holomorphic volume preserving automorphisms h of X × Y fixing the point (x, y).
The image of a semi-compatible pair under a volume preserving automorphism is
again semi-compatible. By symmetry it’s enough to show how to span Λ2Tx X . We
will show how to get θi ∧ θ j (x).

The following is easily proved in local coordinates:
Let ν be a completely integrable vector field on a manifold Z and f ∈ Ker ν be a

function vanishing at a point z, i.e., f (z) = 0. Then the phase flow ϕt associated with
the completely integrable field f ν generates an isomorphism Tz Z → Tz Z given by
the formula

w → w + td f (w)v (3)

where v = ν(z).
The holomorphic volume preserving automorphism h of X × Y fixing the point

(x, y) will be the time 1 map of the globally integrable divergence-free vector field
f θ2 where f ∈ O(Y ) is chosen such that f (y) = 0 and d f (ηm) = 1. For this we first
chose m such that the field ηm does not vanish at y and then use Cartans Theorem A
for Stein manifolds to find the appropriate f . The evaluation of the semi-compatible
pair (θ1, ηm) transported by the automorphism h at the h-fixed point (x, y)will be by
formula (3) equal to θ1(x), ηm(y) + θ2(x). Since θ1(x) ∧ ηm(y) is already spanned
by the semi-compatible pair (θ1, ηm) we are done.

Since both conditions (A) and (B) from our criterion are fulfilled the proof is
complete. �

4 Open Problems

Open Problem 1: Suppose X is a Stein manifold with density property and Y ⊂ X
is a closed submanifold. Is there always another proper holomorphic embedding
ϕ : Y ↪→ X which is not equivalent to the inclusion i : Y ↪→ X?
Here we say that two proper holomorphic embeddings ϕ1,2 : Y ↪→ X are equivalent
if there are holomorphic automorphisms α ∈ Authol(X) and β ∈ Authol(Y ) such that
α ◦ ϕ1 = ϕ2 ◦ β or equivalently there is holomorphic automorphism α ∈ Authol(X)

such that the images of α ◦ϕ1 and ϕ2 coincide. We should remark that an affirmative
answer to this question is stated in [Var00], but the author apparently had another
(weaker) notion of equivalence in mind.
Open Problem 2: Is any Stein manifold X , n = dim X ≥ 2 with VDP covered
by open subsets biholomorphic to Cn? In particular, does there exist an open subset
biholomorphic to C

2 in C∗ × C
∗?

Open Problem 3: [see, e.g., Rosay at KSCV 1 in 1997 [Ros]] Does (C∗)k for k ≥ 2
have DP?
(C∗)k hasVDP, see [Var01], whichwas crucial for disproving Schoen-Yau conjecture
(see application (i) above). It is conjectured that Authol((C

∗)k) preserves the Haar
volume form dz1

z1
∧ . . . ∧ dzk

zk
up to sign. For the subgroup AAuthol((C

∗)k) of the
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holomorphic automorphism group Authol((C
∗)k) generated by flows of complete

algebraic vector fields this conjecture has been confirmed in [And].
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[FW1] Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into C
2.

Anal. PDE 6(2), 499–514 (2013)
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On Meromorphic Continuation of Local Zeta
Functions

Joe Kamimoto and Toshihiro Nose

Abstract We investigate meromorphic continuation of local zeta functions and
properties of their poles. In the real analytic case, local zeta functions can be mero-
morphically continued to the whole complex plane and, moreover, properties of the
poles have been precisely investigated. However, in the only smooth case, the situa-
tion of meromorphic continuation is very different. Actually, there exists an example
in which a local zeta function has a singularity different from poles. We give a suf-
ficient condition for that the first finitely many poles samely appear as in the real
analytic case and exactly investigate properties of the first pole.

Keywords Local zeta function · Newton polyhedron · Superadapted coordinate

1 Introduction

The purpose of this article is to announce our recent studies about local zeta functions,
that is, integrals of the form

Z(s;ϕ) =
∫

Rn
| f (x)|sϕ(x)dx s ∈ C, (1.1)

where f and ϕ are real-valued (C∞) smooth functions defined on an open neighbor-
hood U of the origin in R

n and the support of ϕ is contained in U .
The integral in (1.1) converges locally uniformly on the region Re(s) > 0, which

implies that local zeta functions are holomorphic there. Moreover, when f (0) �= 0,
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if the support of ϕ is sufficiently small, then Z(s;ϕ) is holomorphic on the whole
complex plane. It is known that in many cases when f (0) = 0, the situation of
analytic continuation of Z(s;ϕ) is strongly affected by the singularity theoretical
property of f at the origin. In this article, we always assume that

f (0) = 0, ∇ f (0) = 0

and will consider detailed situation of analytic continuation of local zeta functions
from the viewpoint of singularity theory.

There have been many strong results about the above problem in the case when f
is real analytic on U . In this case, it is known (cf. [bg69, ati70]) by using Hironaka’s
resolution of singularities [hir64] that if the support of ϕ is sufficiently small, then
Z(s;ϕ) can be analytically continued as a meromorphic function in the whole com-
plex plane and its poles belong to finitely many arithmetic progressions which are
constructed from negative rational numbers independent of ϕ. (Recently, Greenblatt
[gre10jam] gives new proof of the results of [bg69, ati70] by using the elemen-
tary resolution of singularities constructed in his paper [gre08].) When Z(s;ϕ) is
regarded as a meromorphic function, various analytic properties of poles of Z(s;ϕ)

have been investigated in [gs64, bg69, ati70, var76, igu78, agv88], etc. In particu-
lar, Varchenko [var76] obtains quantitative results about the location and the order
of its poles by using the theory of toric varieties based on the geometry of the New-
ton polyhedron of f . Since his study, it has been strongly recognized that Newton
polyhedra play important roles in the analysis of local zeta functions. His results, in
general dimensional case, need somenondegeneracy condition,which depends on the
coordinates. Furthermore, in his same paper [var76], Varchenko more deeply inves-
tigates the two-dimensional case: the exisitence of so-called adapted coordinates
is shown and the above quantitative results about the poles of Z(s;ϕ) are obtained
by using these coordinates without the nondegenracy condition. Later, the results
of Varchenko about adapted coordinates have been improved and developped in
[pss99, gre09, im11tams] (see also Sect. 2.4). In particular, Greenblatt [gre09] intro-
duces special adapted coordinates, which are called superadapeted coordinates, and
gives accurate results about the behavior of oscillatory integrals at infinity.

On the other hand, let us consider these problems aboutmeromorphic continuation
of Z(s;ϕ)without the real analytic assumption on f . The authors [kn13] introduce a
certain class of smooth functions containing the real analytic functions and naturally
generalize the general dimensional results of Varchenko in the case when f belongs
to this class under the nondegeneracy conditions. This class consists of the funtions
admitting “the γ -parts” (see Sect. 2.3) for any face γ of the Newton polyhedron of f .
The purpose of this article is to discuss how to generalize the above two-dimensional
results due to Varchenko in the smooth case.

The difficulties of analysis in the smooth case are often caused by the nonexistence
of “complete” resolution of singularities of f . But, Greenblatt [gre06] uses an idea of
his resolution of singularities in [gre04], applies Van Der Corput lemma and obtains
interesting results showing that the local zeta function can be analytically continued
in the region Re(s) > −1/d( f ), where d( f ) is the Newton distance of f with
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respect to the adapted coordinates. Moreover, he investigates the behavior of Z(s;ϕ)

at the point s = −1/d( f ) and shows the sharpness of his results. Our result in
this article shows that Z(s;ϕ) can be meromorphically continued in a wider region
Re(s) > −1/d( f ) − ε, with some positive ε, under the additional assumption:
in a superadapted coordinate, f admits the γ -part for the edges γ of the Newton
polyhedron of f intersecting the bisectrix. Corresponding to our general dimensional
results in [kn13], we emphasize that these results do not always need the assumption
that f admits the γ -part for all edges γ of the Newton polyhedron of f . Moreover,
precise properties of poles of local zeta functions are obtained. In our analysis, after
using some kind of toric blowing-ups constructed in a similar fashion to the work of
Varchenko [var76], we also apply Var Der Corput lemma. In order to obtain many
estimates, we deeply use the properties of superadapted coordinates.

The properties of poles of local zeta functions are closely related to the asymptotic
behavior of oscillatory integrals, that is, integrals of the form

I (t;ϕ) =
∫

Rn
eit f (x)ϕ(x)dx t > 0,

where f and ϕ are as in (1.1). This relationship is explained in detail in [agv88],
Chap. 6. From many kinds of motivation, the bahavior of oscillatory integrals as
t → ∞ has been deeply investigated (see for example [agv88, mul]). We can also
obtain corresponding results of the asymptotic behavior of oscillatory integrals in
two dimensions with smooth phases f . These results will appear elsewhere.

Notation and symbols.

• We denote by Z+,R+ the subsets consisting of all nonnegative numbers in Z, R,
respectively. For s ∈ C, Re(s) expresses the real part of s.

• For x = (x1, x2), y = (y1, y2) ∈ R
2, α = (α1, α2) ∈ Z

2+, define

〈x, y〉 = x1y1 + x2y2, xα = xα1
1 xα2

2 .

• For A, B ⊂ R
2, we set A + B = {a + b ∈ R

2 : a ∈ A and b ∈ B}.

2 Preliminaries

2.1 Polyhedra

Let us explain fundamental notions in the theory of convex polyhedra in two dimen-
sions, which are necessary for our investigation. Refer to [zie95] for general theory
of convex polyhedra.

For (a, l) ∈ R
2 × R, let H(a, l) and H+(a, l) be a straight line and a closed

halfspace in R2 defined by

http://dx.doi.org/10.1007/978-4-431-55744-9_6
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H(a, l) := {x ∈ R
2 : 〈a, x〉 = l},

H+(a, l) := {x ∈ R
2 : 〈a, x〉 ≥ l},

respectively. A (convex rational) polyhedron is an intersection of closed halfspaces: a
set P ⊂ R

2 presented in the form P = ⋂N
j=1 H+(a j , l j ) for some a1, . . . , aN ∈ Z

2

and l1, . . . , lN ∈ Z.
Let P be a polyhedron in R

2. A pair (a, l) ∈ Z
2 × Z is said to be valid for P if

P is contained in H+(a, l). A face of P is any set of the form F = P ∩ H(a, l),
where (a, l) is valid for P . Since (0, 0) is always valid, we consider P itself as a
trivial face of P; the other faces are called proper faces. The dimension of a face F
is the dimension of its affine hull of F (i.e., the intersection of all affine flats that
contain F). The faces of dimensions 0 and 1 are called vertices and edges,
respectively.

2.2 Newton Polyhedra

Let f be a real-valued smooth function defined on a neighborhood of the origin in
R
2, which has the Taylor series at the origin:

f (x) ∼
∑

α∈Z2+

cαxα. (2.1)

The Newton polyhedron Γ+( f ) of f is defined by the convex hull of the set
⋃{α +

R
2+; cα �= 0}. Of course, the Newton polyhedron is a polyhedron. We say that f

is flat if Γ+( f ) = ∅ (i.e., all derivatives of f vanish at the origin). The Newton
distance of f is given by the coordinate d of the point (d, d) at which the bisectrix
α1 = α2 intersects the boundary of the Newton polyhedron of f , which is denoted by
d( f ). Of course, this distance depends on the coordinates. In order to make clear the
chosen coordinate x , we sometimes write this distance as dx ( f ). The principal face
γ∗ of the Newton polyhedron of f is the smallest face of Γ+( f ) containing the point
(d( f ), d( f )). The multiplicity of the Newton distance is given by the codimension
of γ∗, which is denoted by m( f ).

2.3 The γ -Part

Let f be a nonflat real-valued smooth function defined on an open neighborhood V
of the origin in R

2 with the Taylor series (2.2).

Definition 2.1 Let γ be a face of Γ+( f ). We say that f admits the γ -part on an
open neighborhood U ⊂ V of the origin if for any x in U the limit:

lim
t→0

f (ta1x1, ta2x2)

t l
(2.2)
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exists for all valid pairs (a, l) = ((a1, a2), l) ∈ Z
2+ ×Z+ defining γ . When f admits

the γ -part, it is known in [kn13], Proposition 5.2 (iii), that the above limits take the
same value for any valid pair (a, l) ∈ Z

2+ × Z+ defining γ , which is denoted by
fγ (x). Let us consider fγ as a function on U , which is called the γ -part of f on U .

Remark 2.1 We summarize important properties of the γ -part. See [kn13] for the
details.

(i) The γ -part fγ is a smooth function defined on U .
(ii) If f admits the γ -part fγ on U , then fγ has the quasihomogeneous property:

fγ (ta1x1, ta2x2) = t l fγ (x) for 0 < t < 1 and x ∈ U,

where (a, l) = ((a1, a2), l) ∈ Z
2+ × Z+ is a valid pair defining γ .

(iii) For a compact face γ of Γ+( f ), f always admits the γ -part near the origin.
Then fγ (x) is the same as the γ -part of f defined in [var76, agv88], i.e.,
fγ (x) = ∑

α∈γ∩Z2+ cαxα .
(iv) If f is real analytic, then f always admits the γ -part on U for any face γ of

Γ+( f ). Moreover, fγ (x) is real analytic and is equal to a convergent power
series

∑
α∈γ∩Z2+ cαxα on some neighborhood of the origin.

(v) Let f be a smooth function and γ a noncompact edge of Γ+( f ). Then, f does
not admit the γ -part in general. If f admits the γ -part, then the Taylor series
of fγ (x) at the origin is

∑
α∈γ∩Z2+ cαxα .

(vi) When a noncompact edge γ of Γ+( f ) is contained in some coordinate axis, f
always admits the γ -part on U . Indeed, for every valid pair (a, l) defining γ ,
we have l = 0 and so the limit (2.2) exists.

(vii) When f is smooth and γ is a noncompact edge, there are many examples
in which f does not admit the γ -part. For example, consider the case when
f (x1, x2) = x21+e−1/x22 and the face γ defined by {(α1, α2) : α1 = 2, α2 ≥ 0}.

2.4 Adapted Coordinates and Superadapted Coordinates

Let f be a nonflat real-valued smooth function defined near the origin in R
2 with

f (0) = 0 and ∇ f (0) = 0. The height of real analytic (resp. smooth) function f is
defined by

h( f ) := sup
x

dx ( f ),

where the supremum is taken over all local analytic (resp. smooth) coordinate systems
x at the origin and dx ( f ) is the Newton distance of f in the coordinates x .

Definition 2.2 A coordinate x is adapted to f (or f is in an adapted coordinate x)
if h( f ) = dx ( f ).
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When f is real analytic, the existence of adapted coordinates is shown by
Varchenko [var76] by means of two-dimensional resolution of singularities and by
Phong-Stein-Sturm [pss99] by means of the Puiseux series expansion of roots of f .
Moreover, Ikromov and Müller [im11tams] apply Varchenko’s algrithm for the con-
struction of the coordinates to the method of Phong-Stein [ps97] and give stronger
results for the existence and the criterion for the adaptedness. Indeed, they shows the
existence in the case when f is smooth. We remark that in dimension higher than
two, adapted coordinates may not exist, as Varchenko shows in [var76].

Remark 2.2 We gives some remarks on adapted coordinates. See [im11tams] for the
details.

(i) When γ∗ is a vertex or a noncompact edge of Γ+( f ) in a coordinate, this
coordinate is adapted to f .

(ii) A coordinate is adapted to f if and only if for any compact edge γ of Γ+( f )

intersecting the bisectrix, any zero of the functions fγ (±1, ·) or fγ (·,±1) has
order less than or equal to d( f ).

(iii) When f is in adapted coordinates, if a compact face γ of Γ+( f ) does not
intersect with the bisectrix, then any zero of fγ (·,±1) and fγ (±1, ·) has order
less than d( f ), where fγ is the γ -part of f .

(iv) The multiplicity m( f ) of d( f ) depends on taking adapted coordinates.

Greenblatt [gre09] introduces the following special adapted coordinates, called
superadapted coordinates. Though his coordinates are slightly different from the
adapted coordinates (compare to Remark 2.4 (ii)), they are much more useful for the
analysis of local zeta functions.

Definition 2.3 A coordinate x is superadapted to f (or f is in a superadapted
coordinate x) if for any compact edge γ of Γ+( f ) intersecting the bisectrix, any zero
of the functions fγ (±1, ·) or fγ (·,±1) has order less than dx ( f ).

For any smooth function f , the existence of superadapted coordinates is shown
by Greenblatt [gre09].

Remark 2.3 We give some remarks on superadapted coordinates. See [gre09] for
the details.

(i) Any superadapted coordinate system is adapted.
(ii) If the principal face of the Newton polyhedron Γ+( f ) is a noncompact edge,

then the function f is in superadapted coordinates.
(iii) For any superadapted coordinates, the multiplicity m( f ) of d( f ) is uniquely

determined. (i.e., The multiplicity m( f ) does not depend on taking super-
adapted coordinates.)
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3 Main Results

Now, let us explain our results. In this section, the following two conditions are
assumed: Let U be an open neighborhood of the origin in R

2.

(A) f is a nonflat real-valued smooth function defined on U satisfying that
f (0, 0) = 0 and ∇ f (0, 0) = (0, 0);

(B) ϕ is a real-valued smooth function whose support is contained in U .

Let us consider the local zeta function:

Z(s, ϕ) =
∫

R2
| f (x1, x2)|sϕ(x1, x2)dx1dx2 s ∈ C.

The main theorem in [gre06] due to Greenblatt implies that Z(s;ϕ) can be ana-
lytically continued in the region Re(s) > −1/h( f ), where h( f ) is the height of f
defined in Sect. 2.4. Adding some assumption, we can see better properties of Z(s;ϕ)

about the analytic continuation as follows.

Theorem 3.1 Suppose that a coordinate x is superadapted to f . We assume that if
the bisectrix intersects with a noncompact edge γ of Γ+( f ), then f (x1, x2) admits
the γ -part on U. For simplicity, we denote h = h( f ) and m = m( f ). If the support
of ϕ is contained in a sufficiently small neighborhood of the origin, then the following
hold:

(i) There exists a positive number ε independent of ϕ such that the function Z(s;ϕ)

can be analytically continued as a meromorphic function to the regionRe(s) >

−1/h − ε.
(ii) The poles of the function Z(s;ϕ) in the region Re(s) > −1/h − ε belong to

finitely many arithmetic progressions which are precisely obtained by using
the theory of toric varieties based on the geometry of the Newton polyhedron
of f .

(iii) When Z(s;ϕ) has a pole at s = −1/h, its order is at most m. More precisely,
the coefficient of the pole of Z(s;ϕ) at s = −1/h:

C(ϕ) := lim
s→−1/h

(1 + 1/h)m Z(s;ϕ)

is explicitly given as follows:

(a) Suppose that the principal face γ∗ of Γ+( f ) is a compact edge defined by a
valid pair (a, l) = ((a1, a2), l) ∈ Z

2+ × Z+. Then

C(ϕ) = ϕ(0, 0)

h(a2/a1 + 1)

∫

R

(
| fγ∗(1, u)|−1/h + | fγ∗(−1, u)|−1/h

)
du.
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(b) Suppose that the principal face γ∗ of Γ+( f ) is a vertex. Let ((a1, a2), l1)
and ((b1, b2), l2) be valid pairs in Z

2+ ×Z+ defining the two edges of Γ+( f )

containing γ∗, where 0 ≤ a2/a1 ≤ b2/b1 ≤ ∞. Then

C(ϕ) = 4ϕ(0, 0)| fγ∗(1, 1)|−1/h

h2

(
1

a2/a1 + 1
− 1

b2/b1 + 1

)
.

(c) Suppose that the principal face γ∗ is a noncompact vertical edge. Then

C(ϕ) = 1

h

∫

R

(
| fγ∗(1, u)|−1/h + | fγ∗(−1, u)|−1/h

)
ϕ(0, u)du.

In the case where the principal face γ∗ is a horizontal edge, we have the
analogous formula of C(ϕ).

In particular, when ϕ(0, 0) > 0 and ϕ is nonnegative on U, C(ϕ) is always
positive.

Remark 3.1 The above meromorphic continuation needs the additional assumption
of the admission of the γ -part. Indeed, consider the following example discovered
by Greenblatt in [gre06]:

f (x1, x2) = xa
1 xb

2 + xa
1 xb−2

2 e|−x1|−1/(2b)

,

where a, b ∈ N satisfy a < b and b ≥ 2. In this case, it is easy to see that the
height of f is b, the principal face γ∗ is {(α1, α2) : α1 ≥ a, α2 = b} and f does
not admit the γ∗-part. Moreover, the limit of Z(s;ϕ) as s ∈ R tends to −1/b from
the right hand side exists, as is shown in [gre06]. This means that s = −1/b cannot
become a pole of Z(s;ϕ).
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Themes on Non-analytic Singularities
of Plurisubharmonic Functions

Dano Kim

Abstract We survey some results and questions on the singularity of psh
functions with non-analytic singularities. Also we show that the Demailly approxi-
mation sequence of a psh function does not contain amonotone singularity-increasing
linear subsequence, in general.

Keywords Plurisubharmonic function · Lelong number · Multiplier ideal sheaf

1 Introduction

A plurisubharmonic (psh for short) function is a fundamental object in several com-
plex variables and complex geometry. It also plays an important role in algebraic
geometry of complex projective varieties since it appears as a local weight function
of a singular hermitian metric of a holomorphic line bundle.

A psh function can be considered as limit objects of those nice psh functions of
the form c log | f | where f is a holomorphic function and c > 0. More precisely, the
following definition gives the class of ‘nice’ psh functions.

Definition 1.1 [D]We say that a psh function ϕ on a complex manifold has analytic
singularities if it can be locally written as ϕ = c log(

∑N
i=1 | fi |αi ) + v where fi are

local holomorphic functions, c > 0 a real number, v a locally bounded function and
αi > 0 rational numbers.

It is easy to see that we get an equivalent definition if we require αi = 2. We
need αi to be at least rational since otherwise ϕ may not have a log-resolution
(see Example 4.1). Despite the name ‘analytic’ singularities, a psh funciton with
analytic singularities can be considered as an algebro-geometric object since at least
its singularity is completely described in terms of its log-resolution.
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On the other hand, the singularity of a general psh function ϕ with non-analytic
singularities can be highly complicated and mysterious. In particular, its pole set
ϕ−1(−∞) can be far from an analytic subset, unlike the case of ϕ with analytic
singularities. Nevertheless, a psh function with non-analytic singularities is expected
to be equally well-behaved in some important questions. One of them is the openness
conjecture of Demailly and Kollár, which was recently proved in general by Guan
and Zhou [GZ].

In this paper, we introduce two other unsolved questions of this nature and
survey related ideas. They are on the existence of attenuation of psh singularity
(Question 4.1) and on the coherence of analytic adjoint ideal sheaves (Question 5.1),
respectively. On the other hand, one original result in this paper is Theorem 3.1
(2) on the monotone linear subsequence of approximation of a psh function, which
complements [K13].

This paper is organized as follows. In Sect. 2, we recall some basic notions and
mention recent progresses on the openness conjecture for multiplier ideal sheaves.
In Sect. 3, we discuss our recent work on the monotone subsequences of Demailly
approximation of psh functions. In Sect. 4, we discuss the question on the attenua-
tion of psh singularities with a simple example. In Sect. 5, we discuss the question
on coherence of analytic adjoint ideal sheaves. Sections3, 4 and 5 are largely inde-
pendent from each other.

Although a psh function with non-analytic singularities is a transcendental object,
its various aspects we describe in this paper are closely related to algebraic geometry:
in Siu-type hermitian metrics, in log resolutions and in multiplier and adjoint ideal
sheaves.

2 Multiplier Ideal Sheaves and the Openness Conjecture

2.1 Basic Notions and Some Examples

We refer to [D] for the definition and basic properties of a psh function and Lelong
numbers.

Since a psh function often appears as a local weight function of a singular her-
mitian metric in a given geometric context, our discussion often refers to the singular
hermitian metric instead of the psh function. Of course, a psh function on a complex
manifold X itself can be always considered as defining a singular hermitian metric
of a trivial line bundle on X .

We define the notion of equivalence of psh singularities. Let L be a line bundle on
a complex manifold X and h1 = e−ϕ1 and h2 = e−ϕ2 two singular hermitian metrics
of L . Following the usual convention, we often use ϕ1 to refer to the metric h1.

Definition 2.1 [D14, Definition 0.5] We say h1 = e−ϕ1 is less singular than h2 =
e−ϕ2 and write ϕ1 � ϕ2 and h1 � h2 if the local weight functions satisfy ϕ2 ≤
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ϕ1 + O(1). We say ϕ1 and ϕ2 have equivalent singularities and write ϕ1 ∼ ϕ2 if
ϕ1 � ϕ2 and ϕ2 � ϕ1.

Now we introduce some important classes of psh functions. LetT0 be the class of
psh functions with analytic singularities. Another nice class of psh functions is T1
of toric psh functions: those locally given as ϕ(z1, · · · , zn) which depends only on
|z1| , · · · , |zn| in a polydisk (|zi | < r) (i = 1, · · · n) in Cn . (See [G, 1.3] and [R13g]
for more about toric psh functions.) Note that T0 ∩ T1 contains psh functions with
analytic singularities coming from monomials (in the place of fi in Definition 1.1).

Let T2 be the class of psh functions ϕ such that eϕ is locally Hölder continuous
(Definition [DK]).

As an example, we consider a specific type of psh function of the form

ϕS := log(
∞∑

m=1

εm

km∑

j=1

∣∣s j,m
∣∣2αm )

where s j,m are holomorphic functions (or holomorphic sections of a line bundle),
αm > 0 and the coefficients εm > 0 are such that the series converges.

If s j,m are holomorphic sections of the m-th tensor power mL of a holomorphic
line bundle L on a complex manifold X and αm = 1

m , then this expression defines
a singular hermitian metric of L (whose local weight functions are psh functions of
the same form). Such a singular metric (which we will refer to as of Siu type) was
first defined and used successfully in Siu’s proof of invariance of plurigenera [S98]
in the case of general type.

Based on the openness theorem [GZ], a recent work [K14] showed that if X is a
projective manifold and L a big line bundle, then ϕS has analytic singularities if and
only if the section ring of L is finitely generated. Therefore for each instance of L
whose section ring is not finitely generated, we have an example of a psh function
ϕS which does not have analytic singularities. Note that such ϕS typically belongs
to the class T2 \ (T0 ∪ T1).

2.2 Multiplier Ideal Sheaves and the Openness Conjecture

Given a psh function ϕ on a complex manifold X , its multiplier ideal sheafJ (ϕ) is
defined to be the ideal sheaf of holomorphic function germs u for which |u|2 e−ϕ is
locally integrable.

The term multiplier ideal sheaf in this context was first introduced in [N89, N90]
though the version in [D93, N90a] is the standard definition we are using here.

Let us defineJ+(ϕ) := limε→0 J ((1+ ε)ϕ). The openness conjectureJ+(ϕ)

= J (ϕ) was recently proved by [GZ] in all dimensions, after which [H] presented
a simplified proof. Before [GZ], it was proved in dimension 2 case by [FJ1, FJ2], in
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the toric psh case by [G] and more recently in the case whenJ (ϕ) is a trivial ideal
by [B]. Also [JM, GZ1, Le] are related to the recent activity on the conjecture.

A consequence of the openness theorem [GZ, H] in relation to the local algebraic
characterization of multiplier ideal sheaves ([LL]) is as follows. A multiplier ideal
is integrally closed ([D, L]). Let S0 be the class of integrally closed ideal sheaves
and S1 the class of multiplier ideal sheaves. Also let S2 be the class of multiplier
ideal sheaves J (ϕ) where ϕ is a psh with analytic singularities.

Then clearly we have the inclusion S2 ⊂ S1 ⊂ S0. Lazarsfeld and Lee [LL]
showed that S2 
= S0. Subsequently S1 
= S0 was shown by [K10]. Now that the
openness conjecture is proved, we know S2 = S1 by equisingular approximation
of psh functions (see [D92, D, D14]). In the next section, we discuss the usual
approximation of psh functions.

3 Demailly Approximation of Psh Singularity

A fundamental theorem of Demailly [D92, Proposition 3.1] states that given a
plurisubharmonic function ϕ on a domain, there always exists a sequence {ϕm} of
plurisubharmonic functions with analytic singularities converging to ϕ. Moreover,
the approximating function ϕm is given in a very natural form: ϕm = 1

2m log
∑ |σl |2

where (σl) is an orthonormal basis of the Hilbert space of holomorphic functions
that are square integrable with respect to the weight e−2mϕ .

It was further proved that the subsequence {ϕ2k } is increasing in its singularity:

ϕ2k � ϕ2k+1 (1)

in [DPS, Step 3, Proof of Theorem 2.3] using a subadditivity property of the sequence
ϕm’s. (Note that in [K13], such sequence was referred to as decreasing, rather than
increasing, in terms of its values. This discrepancy arises from Definition 2.1.)

It remained a natural question, raised explicitly in [B, p.134], to ask whether
the entire sequence {ϕm} is increasing in singularities. In [K13], we showed by
an example of ϕ that the Demailly approximation sequence of a plurisubharmonic
function is not necessarily increasing, thus answering the above question negatively.
The example ϕ was given as a plurisubharmonic function with analytic singularities,
for which we can compute the multiplier ideal sheaf of each mϕ and determine the
singularities of ϕm using a finite number of local generators of J (mϕ).

Then there still remained a question at the end of [K13] (asked by J.-P. Demailly)
asking whether there always exists an increasing singularity subsequence of ϕm with
linear indices m = ak + b (a, b ∈ Z).

Note that the existence of an increasing singularity subsequence with exponential
indices (1) is a consequence of subadditivity of multiplier ideal sheaves (which in
turn uses Ohsawa-Takegoshi extension theorem). Existence of such subsequence
with linear indices should require an even stronger general property for multiplier
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ideal sheaves than subadditivity. However, we answer the question negatively in the
second statement of the following

Theorem 3.1 (1) If ϕ has analytic singularities with the coefficient c rational (in
Definition 1.1), then its Demailly approximation has an increasing singularity sub-
sequence with linear indices.

(2) If ϕ = c log |z1|2 with the coefficient c irrational, then its Demailly approxi-
mation does not have an increasing singularity subsequence with linear indices.

The proof of (1) is exactly as in the proof for the special case of the example in
[K13]. The statement (2) follows immediately from the next arithmetic proposition,
which may be of independent interest.

Proposition 3.1 For c > 0 an irrational number, the sequence

{qm := �mc

m

}m≥1

does not have a monotone increasing subsequence of linear indices {qak+b}k≥k0
where a, b, k0 > 0 are integers. (Here �x
 refers to the greatest integer � such that
� ≤ x.)

First note that c − 1
m ≤ �mc


m ≤ c for m ≥ 1.

Proof Suppose that such subsequence {qak+b}k≥k0 exists for some a, b, k0 > 0.
Then we have

�(ak + b)c

ak + b

≤ �(ak + b)c + ac

ak + b + a

(2)

for every k ≥ k0.
Define {x} := x − �x
. We will use the following well-known classical fact.

Lemma 3.1 Let c > 0 be an irrational number. For any open interval J :=
(e1, e2) ⊂ (0, 1), there exists an integer n ≥ 1 such that {nc} ∈ (e1, e2).

Consider (ak + b)c + ac = �(ak + b)c
 + �ac
 + {(ak + b)c} + {ac}. Since
0 < {ac} < 1, there exists k = k1 ≥ k0 such that

{(ak + b)c} < min({ac}, 1 − {ac}) (3)

fromLemma 3.1. Hence for k = k1, we get �(ak + b)c + ac
 = �(ak + b)c
+�ac
.
For k = k1, from the previous line and (2), we get

�ac
 (ak + b) ≥ �(ak + b)c
 a = (ak + b)ca − {(ak + b)c}a
≥ �ac
 (ak + b) + {ac}(ak + b) − {ac}a

where we used (3) in the last inequality. This is contradiction since {ac} > 0 and
a, b, k ≥ 1. ��
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4 Resolution of Psh Singularity

In contrast to approximating a psh function by ones with analytic singularities, one
may try to resolve the psh singularity by blow ups. More precisely

Definition 4.1 Let ϕ be a psh function on a complex manifold X . A log resolution
of ϕ is a proper modification π : X ′ → X from a complex manifold X ′ such that
π∗ϕ = ψ + v where v is a locally bounded function and ψ is locally equal to a
function of the form

∑n
i=1 ai log |wi |2 (for ai ≥ 0 and local analytic coordinates

(w1, · · · , wn) of X with dimension n).

In other words, ψ is the psh weight associated to a simple normal crossing (SNC
for short) effective divisor on X ′. If ϕ has analytic singularities as in Definition 1.1,
then ϕ has a log-resolution π which one can take as the log resolution of the ideal
sheaf (or its integral closure) of the functions f1, · · · , fN (see [L, Definition 9.1.12]).

For example, near the origin of C2, one can take a log resolution π of ϕ =
log(

∣
∣x3

∣
∣+ ∣

∣y2
∣
∣) to be the composition of three blow-ups which gives a log resolution

of the ideal a = (x3, y2) [L, Example 9.1.13].
Obviously not every psh function can have a log resolution. For a simple example,

consider a psh function with zero Lelong number at every point, but not locally
bounded. Instead of log resolution, it is natural to raise the following

Question 4.1 Let ϕ be a psh function on X . For arbitrary ε > 0, does there exist
a proper modification π = πε : X ′ → X from a complex manifold X ′ such that
π∗ϕ = ψ + v where ψ is as in Definition 4.1 and v is a psh function whose Lelong
number is less than ε at every point of X ′?

Such πε is called an attenuation of the psh singularity of ϕ. This question can be
considered as generalization of Hironaka’s celebrated theorem [Hi] on the existence
of a log resolution of an ideal.

Question 4.1 is answered affirmatively in dimension 2 by [FJ1] (also by [Gu] in
the compact case). We would like to illustrate the question with a probably simplest
nontrivial example in dimension 2.

Example 4.1 Let ϕ = log(|x | + |y|α) near the origin of C2. Suppose that α > 1
is an irrational number. Consider the blow up π of the origin as given by (u, v) →
(x, y) := (u, uv) and (u, v) → (x, y) := (uv, v). The ‘strict transform’ of ϕ is given
by log(|u| + |v|α−1) which is of the same form as the original ϕ and again the origin
(u, v) = (0, 0) is the only point to be blown up again. (For general psh ϕ, one may
have a countable number of points to be blown up at each step, as was explained in
[DH1]. )

From this observation, we see that after �α
 times of point blow ups, the strict
transform psh function is of the formψ := log(|x |+|y|α−�α
)whose Lelong number
at the origin is α − �α
 < 1. Let β = 1

α−�α
 > 1. Up to equivalence of singularities,

we can retake ψ = log(|x | + |y| 1β ) ∼ 1
β
log(|y| + |x |β). Then similarly as before,
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we have �β
 times of point blow ups and at each time the Lelong number of the strict
transform psh function at the only singular point is 1

β
.

Now we will see that attenuation of ϕ indeed exists: let a1 := α and a2 := β.
Define am := 1

am−1−�am−1
 (m ≥ 2) which is well-defined and am > 1 since α /∈ Q.
Given ε > 0, the attenuation πε is the composition μk ◦ · · · ◦ μ1 for some k ≥ 1
sufficiently large:

C2 ←−μ1 X1 ←−μ2 X2 ←−μ3 X3 ←− · · ·

where μi is the composition of �ai
 times of point blow ups, each of which has
Lelong number of the strict transform at the origin as bi := 1

a2···ai
(for i ≥ 2) or as

1 (for i = 1). It is easy to see that the following equality of an infinite series holds
from the definition of am :

α = 12 + · · · + 12︸ ︷︷ ︸
�a1


+ 1

a2
2

⎛

⎝12 + · · · + 12︸ ︷︷ ︸
�a2


+ 1

a2
3

⎛

⎝12 + · · · + 12︸ ︷︷ ︸
�a3


+ 1

a2
4

(· · · · · · )
⎞

⎠

⎞

⎠

(4)
The sequence bi is decreasing and it should converge to zero as i → ∞, since the
RHS of (4) converges. This answers Question 4.1 positively in this special case.

Note that (4) also confirms the conjectured equality (**) of [DH1, p.26] in this
special case since the second Lelong number e2(ϕ) = α by [D, Corollary III (7.4)].

5 Analytic Adjoint Ideal Sheaves

The adjoint ideal sheaf is a variant of the multiplier ideal sheaf in algebraic geometry
(see [L, T10, E] and the references therein for its algebraic definition and its appli-
cations). Guenancia [G] gave an analytic definition of an adjoint ideal sheaf of a psh
function with respect to an SNC divisor H = ∑

Hi . For simplicity of exposition,
we will assume in this section that H has only one irreducible component. But the
discussion in this section makes sense in the general case as well.

Let X be a complex manifold and H ⊂ X a smooth irreducible hypersurface. Let
ϕ be a psh function on X (or a singular hermitian metric of a line bundle). For α > 1,
let Ad jαH,∗(ϕ) ⊂ OX be the ideal sheaf of holomorphic function germs u for which

|u|2 1

|h|2 (− log |h|)α e−ϕ

is locally integrable where h is a local equation of H . It is easy to see that the
definition is independent of the choice of h (as far as |h| < 1 around a point on H ).
Note that [G] was using α = 2 in the definition, but we allow α > 1 for a reason
to be explained later on. The weight function 1

|h|2(− log|h|)α appears in the norm of
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the extended section in many versions of Ohsawa-Takegoshi extension theorem with
α = 2, but also with α > 1 in [MV].

Guenancia [G] gave the following adjusted definition as the correct one to gener-
alize the algebraic adjoint ideal sheaf.

Definition 5.1 The ideal sheaf Ad jαH (ϕ) = ∪ε>0Ad jαH,∗((1 + ε)ϕ) is called the
analytic adjoint ideal sheaf of ϕ with respect to H (for α > 1).

This generalizes the algebraic adjoint ideal sheaf in the sense of the following

Proposition 5.1 Let X be a smooth complex variety and a ⊂ OX an ideal sheaf.
Then the algebraic adjoint ideal sheaf associated to ac (c > 0) is equal to the analytic
adjoint ideal sheaf associated to cϕa where ϕa is the psh function defined by a.

Proof This is [G, Proposition 2.11] for α = 2. The proof works for α > 1 when one
replaces the first identity in [G, Lemma 2.12] by

∫

(0,δ)2

xa y−1

(− log(xy))α
dydx = δ−1−a

α − 1

∫ δ2

0
xa(− log x)−α+1dx . ��

From the coherence of analyticmultiplier ideal sheaves and algebraic adjoint ideal
sheaves, it is natural to raise the following

Question 5.1 ([G]) For α > 1 and ϕ psh, is the analytic adjoint ideal sheaf Ad jαH (ϕ)

coherent ?

This was answered affirmatively for those ϕ with eϕ locally Hölder continuous
by [G, Corollary 2.19] using adjunction exact sequence.

It is reasonable to try using L2 estimates for a ∂ equation ([Ho, D]) forQuestion 5.1
as in the proof of coherence of multiplier ideal sheaves [D]. The problem is that the
weight eψ := 1

(− log|h|) appears with the ‘opposite’ sign: ψ is psh and we need L2

existence for ∂ for the weight of the form eαψ−η where α > 1 and η psh.
Such L2 estimates for ∂ equations result for α < 1 was given by Berndtsson

[B01] under the crucial condition ∂ψ ∧ ∂ψ = ∂∂ψ which is satisfied by the above
ψ . Recent results of this type of Błocki in the case α = 1 were given and applied
toward Suita conjecture in [Bl12, Bl13] (also see the references therein related to
this progress).

For Question 5.1, one would need a result of L2 estimates for ∂ for α > 1 and
that is our motivation in replacing α = 2 with α > 1 in Definition 5.1. Note that
in this context, the psh function η in the weight can be taken as ϕ + log |h|2 so the
weight eαψ−η at hand is more special than general, as in [B01].

Therefore, besides having the intrinsic interest on the coherence of the naturally
defined ideal sheaf, Question 5.1motivates further investigation into the fundamental
method of L2 estimates for ∂ equations.
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Proper Holomorphic Maps Between
Bounded Symmetric Domains

Sung-Yeon Kim

Abstract We consider rigidity problem of proper holomorphic maps between
bounded symmetric domains. We give an introduction to differential geometric tech-
niques on rigidity problems, based on the similar phenomenon for local CR maps
between arbitrary boundary components of two bounded symmetric domains of Car-
tan type I.

Keywords Bounded symmetric domains · Proper holomorphic map · CR map ·
Totally geodesic embedding

1 Introduction

Rigidity of holomorphic maps was first studied by Poincaré [P07] and later by
Alexander [A74] for maps sending one open piece of the sphere into another. Then
Webster [W79] obtained rigidity for holomorphic maps between pieces of spheres
of different dimensions, proving that any such map between spheres inCn andCn+1

is totally geodesic. Further rigidity results are obtained by Faran [Fa86], Cima-
Suffridge [CS83, CS90], Forstneric [Fo86, Fo89] and Huang [H99] for CR maps
between pieces of spheres inCn+1 andCn′+1 under the assumption n′ < 2n. Beyond
this bound, rigidity fails to hold as one can see Whitney map as a counterexample
[HJ01]. Rigidity for CR maps between real hypersurfaces and hyperquadrics are
studied by Ebenfelt-Huang-Zaitsev [EHZ04, EHZ05], Baouendi-Huang [BH05],
Baouendi-Ebenfelt-Huang [BEH08, BEH09].

On the other hand, since the work of Bochner [Bo47] and Calabi [Ca53], rigidity
phenomena for the quotients of bounded symmetric domains have been widely stud-
ied. The reader is referred to the survey by Mok [M11]. Among rigidity phenomena,
problems such as metric rigidity and the characterization of totally geodesic complex
submanifolds are formulated and studied by differential geometric methods. Though
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they are formulated usingmetric, theymay be deduced fromwhich concern primarily
the complex structure, such as rigidity results on holomorphic mappings. Remark-
ably, many rigidity properties survive when the isometry condition is replaced by
purely topological conditions such as properness [MN12, MNT10, Ng12, Ng13].

In this direction, Mok introduced a method to incorporate the study of proper
holomorphicmaps into the study of germs of holomorphicmappings preserving some
form of geometric structures [M89]. Then he proposed a question of using properness
only to verify a condition on the preservation of certain geometric structures such as
variety of minimal rational tangents, etc.

The aim of this article is to introduce a differential geometric method used in
[KZ13, KZ14] for the study of proper holomorphic maps between bounded sym-
metric domains. We use CR structure on the boundary components as geometric
structures preserved by proper holomorphic maps extending smoothly to an open
piece of a boundary component. Then we follow Cartan’s moving frame method
which was first adopted by Webster in the study of rigidity of locally defined
CR maps between spheres [W79]. In sphere case, moving frame method on local
CR rigidity rely heavily on Tanaka-Chern-Moser approach [Ta62, CM74] and many
of them also on Tanaka-Webster connection, which is unavailable for boundaries of
higher rank bounded symmetric domain. To compensate for the lack of the power of
Tanaka-Chern-Moser normalization, we introduce a sequence of several subsequent
adjustments of moving frames reaching further and further normalization conditions.

By slightlymodifying the statements in [KZ14], we prove the following theorems.

Theorem 1.1 Let f be a smooth CR map between connected open pieces of bound-
ary components Sp,q,r and Sp′,q ′,r ′ of rank r < q and r ′ respectively of bounded
symmetric domains Dp,q and Dp′,q ′ with q, q ′ > 1, such that d f (ξ) ∈ T ′ \ T ′c for
any tangent vector ξ ∈ T \ T c. Assume that

q ′ − r ′ < min(p − r, 2(q − r)).

Then r ≤ r ′ and after composing with suitable automorphisms of Dp,q and Dp′,q ′ ,
f takes the block matrix form

f (z) =
⎛

⎝
z 0 0
0 Ir ′−r 0
0 0 h(z)

⎞

⎠ ,

where h : Sp,q,r → C
[(q ′−r ′)−(q−r)]×[(p′−r ′)−(p−r)] is a CR map satisfying

I d − h(z)∗h(z) > 0.

Theorem 1.2 Let f : Dp,q → Dp′,q ′ (p ≥ q > 1) be a proper holomorphic map
which extends smoothly to a neighborhood of a smooth boundary point. Assume that
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1 < q ′ < min(p, 2q − 1).

Then p′ ≥ p, q ′ ≥ q and after composing with suitable automorphisms of Dp,q and
Dp′,q ′ , f takes the block matrix form

f : Dp,q → Dp′,q ′ , z �→
(

z 0
0 h(z)

)
,

where h(z) is arbitrary holomorphic matrix-valued function satisfying

Iq ′−q − h(z)∗h(z) is positive definite, z ∈ Dp,q .

In §1, we introduce a CR structure on the boundary components of bounded sym-
metric domain of Cartan type I. In §2, we formulate a Pfaffian differential system for
CR mappings. Then we construct second fundamental forms and Gauss formulae.
With these, we sketch the proof of Theorem 1.1. Theorem 1.2 follows from Theo-
rem 1.1 by letting r = 1. Notice that the condition in Theorem 1.2 is a condition
imposed only on the rank of the target manifold(=q ′), while the condition in [KZ14]
is on both p′ and q ′.

Throughout this paper, we adopt Einstein summation convention unless stated
otherwise.

2 Geometry of Boundary Components

Recall that a bounded symmetric domain Dp,q of Cartan type I has the standard
realization in the space Cp×q of p × q matrices, given by

Dp,q := {z ∈ C
p×q : Iq − z∗z is positive definite},

where Iq is the identity q × q matrix and z∗ = z̄t . We shall always assume p ≥ q
so that the rank of Dp,q is q. Then each boundary of Dp,q is given by

Sp,q,r = {z ∈ C
p×q : Iq − z∗z has (q − r) -positive and r -zero eigenvalues},

for r = 1, . . . , q. In particular, Sp,q,1 is the hypersurface boundary and Sp,q,q is the
Shilov boundary. For q = r = 1, Sp,1,1 is the unit sphere in Cp.

We shall consider the standard inclusion Dp,q ⊂ C
p×q ⊂ G p,q , where G p,q is

the Grassmanian of all q-dimensional subspaces (q-planes) of Cp+q . We equip the
space Cp+q with the nondegenerate hermitian form
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〈z, w〉 =
∑

j

ε j z j w̄ j , ε j =
{

−1, j = 1, . . . , q,

1, j = q + 1, . . . , q + p,

called the basic form.
In this identification, Dp,q is represented by all q-planes V ⊂ C

p+q such that the
restriction 〈·, ·〉|V is negative definite, and the boundary component Sp,q,r ⊂ ∂ Dp,q

by all q-planes V ⊂ C
p+q such that restriction 〈·, ·〉|V has (q − r)-negative and

r -zero eigenvalues. For V ∈ Sp,q,r , denote by V0 ⊂ V the r -dimensional kernel of
〈·, ·〉|V . The connected identity component G of the biholomorphic automorphism
group Aut (Dp,q) is now identified with the group of all linear transformations of
C

p+q preserving 〈·, ·〉, and each Sp,q,r is a G-orbit.

2.1 Adapted Frames

An adapted Sp,q,r -frame is a set of vectors

Z1, . . . , Zr , Z ′
1, . . . , Z ′

q−r , X1, . . . , X p−r , Y1, . . . , Yr ,

for which the basic form is given by the matrix

⎛

⎜
⎜
⎝

0 0 0 Ir

0 −Iq−r 0 0
0 0 Ip−r 0
Ir 0 0 0

⎞

⎟
⎟
⎠ .

Thus we have

V0 = span {Z1, . . . , Zr }, V = V0 ⊕ span {Z ′
1, . . . , Z ′

q−r }

and denote

V ′ := span {Z ′
1, . . . , Z ′

q−r }, X := span {X1, . . . , X p−r }, Y := span {Y1, . . . , Yr }.

2.2 The Connection Matrix Form

Write S := Sp,q,r and denote by B → S the adapted Sp,q,r -frame bundle and
by π the Maurer-Cartan (connection) form on B satisfying the structure equation
dπ = π ∧ π . Then we can write
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⎛

⎜⎜
⎝

d Zα

d Z ′
u

d Xk

dYα

⎞

⎟⎟
⎠ = π

⎛

⎜⎜
⎝

Zβ

Z ′
v

X j

Yβ

⎞

⎟⎟
⎠ =

⎛

⎜⎜⎜
⎝

ψ
β

α θ v
α θ

j
α φ

β
α

σ
β

u ω v
u δ

j
u θ

β
u

σ
β

k δ v
k ω

j
k θ

β
k

ξ
β

α σ v
α σ

j
α ψ̂

β
α

⎞

⎟⎟⎟
⎠

⎛

⎜⎜
⎝

Zβ

Z ′
v

X j

Yβ

⎞

⎟⎟
⎠ ,

where the matrix π satisfies the symmetry relation

⎛

⎜
⎜⎜
⎝

ψ
β

α θ v
α θ

j
α φ

β
α

σ
β

u ω v
u δ

j
u θ

β
u

σ
β

k δ v
k ω

j
k θ

β
k

ξ
β

α σ v
α σ

j
α ψ̂

β
α

⎞

⎟
⎟⎟
⎠

= −

⎛

⎜
⎜⎜⎜
⎝

ψ̂ ᾱ

β̄
εvθ

ᾱ
v̄ ε jθ

ᾱ

j̄
φ ᾱ

β̄

εuσ ū
β̄

εuεvω
ū

v̄ εuε jδ
ū
j̄

εuθ ū
β̄

εkσ
k̄

β̄
εkεvδ

k̄
v̄ εkε jω

k̄
j̄

εkθ
k̄

β̄

ξ ᾱ

β̄
εvσ

ᾱ
v̄ ε jσ

ᾱ

j̄
ψ ᾱ

β̄

⎞

⎟
⎟⎟⎟
⎠

,

where

εu := 〈Z ′
u , Z ′

u〉 = −1, u = 1, . . . , q − r, ε j := 〈X j , X j 〉 = 1, j = 1, . . . , p − r.

The defining equations of Sp,q,r can be written as

Sp,q,r = {[V ] ∈ G p,q : 〈·, ·〉|V0 = 0}

and hence their differentiation yields

〈d Zα, Zβ〉 + 〈Zα, d Zβ〉 = ϕ β
α + ϕ α

β = 0. (2.1)

By substituting d ZΛ = π Γ
Λ ZΓ into (1, 0) component of (2.1) we obtain, in partic-

ular,
ϕ γ

α 〈Yγ , Zβ〉 = ϕ β
α = 0,

when restricted to the (1, 0) tangent space. Comparing the dimensions, we conclude
that the kernel of {ϕ β

α , α, β = 1, . . . , q} forms the CR bundle of Sp,q,r , i.e.,

ker(ϕ|Z ) = T 1,0
Z Sp,q,r ⊕ T 0,1

Z Sp,q,r .

In other words, ϕ = (ϕ
β

α ) span the space of contact forms on Sp,q,r . Since

d Zα = ψ β
α Zβ + θ v

α Z ′
v + θ j

α X j + ϕ β
α Yβ,

d Z ′
u = σ β

u Zβ + ω v
u Z ′

v + δ
j

u X j + θ β
u Yβ

and ϕ = (ϕ
β

α ) is a contact form, we conclude that the upper right block forms
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(
θ

j
α ϕ

β
α

δ k
u θ

β
u

)

give together a basis in the space of all (1, 0) forms on Sp,q,r .

2.3 The Tangent Space of Sp,q,r

The tangent space to the Grassmanian G p,q at the element V is isomorphic to
Hom (V,Cp+q/V ). Hence, given an adapted frame (Z , Z ′, X, Y ), it is isomorphic
to

TV G p,q = Hom (V, X ⊕ Y ).

By taking into account the splitting V = V0 ⊕ V ′, the elements of

Hom (V, X ⊕ Y ) = Hom (V0 ⊕ V ′, X ⊕ Y )

are given by block 2 × 2 matrices decomposed as

R ∈
(

Hom (V0, X) Hom (V0, Y )

Hom (V ′, X) Hom (V ′, Y )

)
. (2.2)

Then the real tangent space TV Sp,q,r to Sp,q,r is

T = TV Sp,q,r =
(∗ R̃

∗ ∗
)

, R̃ = −R̃∗,

the complex tangent subspace is

T c =
(∗ 0

∗ ∗
)

.

The complex tangent space T c contains further two invariantly defined subspaces

T − := {R ∈ T c : R(V0) ⊂ V } =
(
0 0
∗ ∗

)
,

T + := {R ∈ T c : 〈R(V ), V0〉 = 0} =
(∗ 0

∗ 0

)
,

such that
T + + T − = T c.
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For a change of frame given by

⎛

⎜⎜
⎝

Z̃
Z̃ ′
X̃
Ỹ

⎞

⎟⎟
⎠ := U

⎛

⎜⎜
⎝

Z
Z ′
X
Y

⎞

⎟⎟
⎠ ,

π changes via
π̃ = dU · U−1 + U · π · U−1.

We shall employ several types of frame changes.

Definition 2.1 We call a change of frame

(i) change of position if

Z̃α = W β
α Zβ, Z̃ ′

u = W β
u Zβ + W v

u Z ′
v, Ỹα = V β

α Yβ + V v
α Z ′

v, X̃ j = X j ,

where W0 = (W β
α ) and V0 = (V β

α ) are r × r matrices satisfying V ∗
0 W0 = Ir ,

W ′ = (W v
u ) is a (q − r) × (q − r) matrix satisfying W ′∗W ′ = Iq−r and

V β
α W ∗ γ

β + V v
α W ∗ γ

v = 0;
(ii) change of real vectors if

Z̃α = Zα, Z̃ ′
u = Z ′

u, X̃ j = X j , Ỹα = Yα + H β
α Zβ,

where H = (H β
α ) is a skew hermitian matrix;

(iii) dilation if

Z̃α = λ−1
α Zα, Z̃ ′

u = Z ′
u, Ỹα = λαYα, X̃ j = X j ,

where λα > 0;
(iv) rotation if

Z̃α = Zα, Z̃ ′
u = Z ′

u, Ỹα = Yα, X̃ j = U k
j Xk,

where (U k
j ) is a unitary matrix.

The remaining change of frame is given by

Z̃α = Zα, Z̃ ′
u = Z ′

u, X̃ j = X j + C β
j Zβ, Ỹα = Yα + A β

α Zβ + B j
α X j ,

or ⎛

⎜⎜
⎝

Z̃α

Z̃ ′
u

X̃ j

Ỹα

⎞

⎟⎟
⎠ =

⎛

⎜⎜
⎝

Ir 0 0 0
0 Iq−r 0 0

C β
j 0 Ip−r 0

A β
α 0 B j

α Ir

⎞

⎟⎟
⎠

⎛

⎜⎜
⎝

Zβ

Z ′
u

Xk

Yβ

⎞

⎟⎟
⎠ ,
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such that
C α

j + B α
j = 0

and
(A β

α + A α
β ) + B j

α B β
j = 0,

where
B α

j := B j
α .

2.4 Structure Identities

The structure equations yield

dφ β
α = θ j

α ∧ θ
β

j + θ u
α ∧ θ β

u mod φ,

dθ j
α = θ v

α ∧ δ j
v mod {θ k

β , φ},

dθ α
u = δ k

u ∧ θ α
k mod {θ β

v , φ},

where φ stands for the span of all φ β
α . The first equation via Cartan’s formula

dτ(R1, R2) = R1τ(R2) − R2τ(R1) − τ([R1, R2]),

determines the invariant tensor

L = L1 : T 1,0×T 1,0 → CT

T 1,0 + T 0,1 , (R1, R2) �→ [R1, R2] mod T 1,0+T 0,1,

which represents the Levi form of Sp,q,r up to imaginary constant. In particular,

T 0 := T + ∩ T − =
(
0 0
∗ 0

)
⊂ T c

is the kernel of the Levi form of Sp,q,r . Levi kernel is always integrable. In fact, since
T 0 is given by

φ β
α = θ β

u = θ j
α = 0,

on the integral manifold of Levi kernel, we obtain

d Zα = ψ β
α Zβ,
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i.e., the space (Z1, . . . , Zr ) is fixed. Hence up to automorphisms of Dp,q , the integral
manifold of the Levi kernel is given by

(
Ir 0
0 z

)
,

where Ir is the r × r identity matrix and z is a (p − r) × (q − r) complex matrix
satisfying

Iq−r − z∗z > 0.

From this we can see that Sp,q,r is foliated by Dp−r,q−r .
Similarly, the second and the third equations of the structure equations determine

together the invariant tensor

L2 : K 1,0 × T 1,0 → T 1,0

K 1,0
∼= T 1,0 + T 0,1

K 1,0 + T 0,1 , (R1, R2) �→ [R1, R2] mod K 1,0 + T 0,1,

where K 1,0 is in the complexified Levi kernel. Note that for R1 ∈ K 1,0, one always
has [R1, R2] ⊂ T 1,0 + T 0,1. The tensor L2 can be regarded as the “second order
Levi form” that comes naturally into consideration along with the (first order) Levi
formL1 to gain the “missing nondegeneracy”. In the decomposition (2.2),L2 takes
the form

((
0 0
c1 0

)
,

(
a2 0
c2 d2

))
�→ (−c1d∗

2 ) ⊕ a∗
2c1 ∈ Hom (V0, X) ⊕ Hom (V ′, Y ).

3 Differential Equations for CR Maps

Let f be a local CR map from an open set M ⊂ Sp,q,r to an open set M ′ ⊂ Sp′,q ′,r ′ .

We shall consider the connection forms φ
β

α , θ j
α ,ψ β

α , ω k
j , σ

β
j , ξ β

α on M and denote

by capital letters Φ b
a , Θ J

a , Ψ b
a , Ω K

J , Σ b
K , Ξ b

a their corresponding counterparts on
M ′.

Since φ = (φ
β

α ) and Φ = (Φ b
a ) are contact forms on M and M ′, respectively,

the pull back of Φ via f is a linear combination of φ = (φ
β

α ). Choose a diagonal
contact form of M ′ and say Φ1

1. Since contact forms are spanned by φα
β , we can

write
Φ1

1 = c β
α φβ

α

for some smooth functions cα
β . At generic points, after a change of position vector

Z on M , we may assume

Φ 1
1 =

r∑

α=1

cαφ α
α
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for smooth functions cα . Then using the structure equation for φ and its analogue for
M ′, we obtain

Θ J
1 ∧ Θ 1

J + Θ U
1 ∧ Θ 1

U =
∑

α

cα(θ j
α ∧ θ α

j + θ u
α ∧ θ α

u ) mod φ,

Since the Levi form is nonnegative, we conclude cα ≥ 0. If Φ 1
1 �≡ 0, then after

dilation of Φ, we may assume that c1 = 1. Moreover, since f sends the Levi kernel
of M given by φ = θ = 0 into the Levi kernel of M ′ given by Φ = Θ = 0, we can
write

Θ J
1 = h J,α

j θ j
α + g J,u

α θ α
u mod φ,

Θ 1
U = η α

U, jθ
j

α + ξ u
U,αθ α

u mod φ.

The same argument in §3 of [KZ14] usingΘ 1
U in place ofΘ J

1 will yield the following
lemma.

Lemma 3.1 Suppose q ′ − r ′ < p − r . Then

g J,u
α = η α

U, j = 0,

i.e.,
f∗(T +) ⊂ T ′+, f∗(T −) ⊂ T −.

Furthermore, if q ′ − r ′ < 2(q − r), then

Φ 1
1 = φ 1

1 .

By this lemma and the same argument in §3 and §4 of [KZ14], we obtain the
second fundamental forms

Ω J
k = A J

k vθ
v

α + B J
k jθ

j
α mod φ, J > p − r,

Ω U
u = A U

u kθ
k

α + B U
u vθ

v
α mod φ, U > q − r, (3.1)

on T + and T −, respectively for each fixed α = 1, . . . , r . Since each θ
j
α , θ u

α is
independent, if r ≥ 2, then we conclude that the second fundamental forms are
trivial modulo φ. If r = 1, then we analyze the Gauss equations for T +;

B K
k l B j m

K = g m
l δ̂

j
k + g j

l δ̂ m
k + g m

k δ̂
j

l + g j
k δ̂ m

l ,

A K
k u B j m

K = η m
u δ̂

j
k + η

j
u δ̂ m

k ,
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for T −;

B V
u w Bv y

V = g y
w δ̂ v

u + g v
w δ̂

y
u + g y

u δ̂ v
w + g v

u δ̂ y
w , (3.2)

A V
u k Bv w

V = η v
k δ̂ w

u + η w
k δ̂ v

u , (3.3)

and mixed terms;
A V

u k Av j
V + A K

k u A j v
K = g v

u δ̂
j

k + g j
k δ̂ v

u ,

where δ̂ is the Kronecker delta, η k
u = −η u

k , and g k
j , g v

u satisfy

Δ
j

u − δ
j

u − η
j

u φ α
α = 0,

δ̂ k
j

(
Ψ α

α − ψ α
α

) −
(
Ω k

j − ω k
j

)
+ g k

j φ α
α = 0,

δ̂ u
v

(
Ψ α

α − ψ α
α

) − (
Ω u

v − ω u
v

) + g u
v φ α

α = 0

with relation
δ̂

j
k g v

u + δ̂ v
u g j

k = η
j;v

u;k (3.4)

such that
dη

j
u − η j

v ω v
u + η k

u ω
j

k = η
j;v

u;k δ k
v mod θ, θ̄ , φ.

Lemma 5.3 from [EHZ05] applied to (3.2) implies that

B V
u w = g v

u = 0

provided q ′ − r ′ < 2(q − r). Then differentiation of (3.1) as in [KZ14] implies

A V
u k = 0.

By (3.3), we obtain
η k

u = 0

and by (3.4), we obtain
g k

j = 0.

Then Gauss equations for T + and mixed terms will imply

B J
k � = A J

k u = 0,

i.e., the second fundamental forms are trivialmoduloφ. Thiswill lead to the following
key proposition.
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Proposition 3.1 There exist vector subspaces V0, V1, V2 ⊂ C
p′+q ′

of dimensions

dim V0 = p +q, dim V1 = r ′ −r, dim V2 = p′ −r ′ +q’−r ′ − (p −r)− (q −r)

that form a direct sum, such that the basic form 〈·, ·〉 is null when restricted to
V1, nondegenerate of signature (p, q) when restricted to V0, and nondegenerate of
signature (p′ − r ′ − (p − r), q ′ − r ′ − (q − r)) when restricted to V2, and such that
whenever x ∈ Sp,q,r and f (x) is defined, we have

f (x) = W0 ⊕ V1 ⊕ W2 ∈ Gr(V0, q) ⊕ V1 ⊕ Gr(V2, (q
′ − r ′) − (q − r)), (3.5)

such that the basic form restricted to W0 has rank r .

With this proposition and the same argument in §6 of [KZ14], we can prove the
theorems.
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Characterizations of Strongly Pseudoconvex
Models in Almost Complex and CR
Geometries

Kang-Hyurk Lee

Abstract In this paper,we introduce theWong-Rosay theorem,R. Schoen’s theorem
and its generalization in almost complex geometry.

Keywords Almost CR manifolds · Pseudo-Hermitian manifolds · Infinitesimal
automorphism

1 Introduction

The aim of this paper is to introduce (1) theWong-Rosay theorem, a characterization
of the unit ball by its holomorphic automorphism group, (2) Schoen’s theorem, a
characterization of the unit sphere and the Heisenberg group by their CR automor-
phism groups, and (3) their generalizations to the almost complex and CRmanifolds,
respectively.

1.1 The Characterization of the Unit Ball

The Riemann mapping theorem says that a simply connected proper domain in the
complex plane C is biholomorphic to the unit disc Δ. Hence in Complex Analysis
of one variable, it is important to understand the nature of the unit disc. But in
multi-dimensional complex Euclidean spaces, the Riemann mapping theorem fails
as H. Poincaré showed that the unit ball B2 = {

z ∈ C
2 : ‖z‖ < 1

}
and the bidisc

Δ2 = Δ×Δ are biholomorphically distinct. Moreover as showed in [BU78, GE82],
the biholomorphic equivalence classes of simply connected domains in C

n (n ≥ 2)
forms indeed an infinite dimensional space. Therefore it has been a fundamental
problem in Several Complex Variables to classify bounded domains which can play
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the same rôle ofmodel objects as the unit disc. A precondition for the rôle in Complex
Analysis and Complex Geometry is to admit a noncompact automorphism group.
While it is not possible to classify simply connected domains inCn , the classification
of domains with noncompact automorphism groups seems to be possible since a
generic bounded domain has no automorphism except the identity (see [GE82]). A
typical classification is B. Wong’s characterization of the unit ball Bn = {z ∈ C

n :
‖z‖ < 1}.
Theorem 1.1 ([WO77]) A bounded strongly pseudoconvex domain in C

n with non-
compact automorphism group is biholomorphic to the unit ball Bn.

For a bounded domain Ω , the noncompactness of the automorphism group of Ω ,
denoted by Aut(Ω), is equivalent to the existence of an automorphism orbit {ϕk(p)}
for some ϕk ∈ Aut(Ω) and p ∈ Ω which is accumulating at a bounded point. In his
paper [RO79], J. P. Rosay strengthened Wong’s theorem as following:

Theorem 1.2 ([RO79, EF95, GA02])A domain in a complex manifold which admits
an automorphism orbit accumulating at a strongly pseudoconvex boundary point is
biholomorphic to the unit ball.

Theorems 1.1 and 1.2 are usually called the Wong-Rosay theorem.

1.2 The Characterization of the Unit Sphere

In the confomal geometry, the Euclidean space Rn and the Euclidean sphere Sn =
{x ∈ R

n+1 : ‖x‖ = 1} are characterized as global homogeneous models as showed
in [AL72, SC95, FE96]:

Theorem 1.3 The conformal group of the Riemannian manifold (Mn, g) is essential
if and only if M is conformally equivalent to either Rn or Sn.

Here essential means that the conformal group can not be reduced to an isometry
group of a metric in the conformal class. As in [AL72], if the conformal group of M
is essential, then it acts improperly on M (A topological group G acts improperly on
M if there is a compact subset K of M such that G K = {ϕ ∈ G : ϕ(K ) ∩ K �= ∅}
is noncompact). The main proof of Theorem 1.3 is to confirm D. V. Alekseevskiı̆’s
assertion: if the conformal group acts improperly on M , then M is conformally
equivalent to R

n or Sn .
A strongly pseudoconvex real hypersurface in a complex manifold, especially

a boundary of a strongly pseudoconvex domain, has a similar geometric structure
to the conformal geometry, usually called the pseudo-conformal structure. A real
hypersurface M in a complex manifold X admits a CR structure inherited by the
complex structure of X . If M is strongly pseudoconvex, then its CR structure is
determined by the conformal structure of its pseudo-hermitian metric. R. Schoen
also gave the CR version of Theorem 1.3 in case of strongly pseudoconvex CR
manifolds:
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Theorem 1.4 ([SC95])Suppose that M2n+1 is a strongly pseudoconvex CR manifold
whose CR automorphism group acts on M improperly. Then M is CR equivalent to
either the unit sphere S2n+1 = {z ∈ C

n+1 : ‖z‖ = 1} if M is compact or the
Heisenberg group if M is noncompact.

This is a CR counterpart of the Wong-Rosay theorem. In case of a bounded strongly
pseudoconvex domainΩ , Fefferman’s extension theorem ([FE74]) implies that each
automorphism of Ω extends to a CR automorphism of the boundary ∂Ω which is a
compact strongly pseudoconvex CR manifold. Thus the noncompactness of Aut(Ω)

implies that the CR automorphism group of ∂Ω is also noncompact, equivalently, it
acts improperly (for a compact manifold, the improper action by a topological group
G is the same as the noncompactness ofG). In case of an unbounded domain, consider
the Siegel half plane, Hn+1 = {(z0, z1, . . . , zn) ∈ C

n+1 : Re z0 + ∑n
α=1 |zα|2 < 0}

which is biholomorphic to the unit ball Bn+1 by the Cayley transform. The group
of affine automorphisms of Hn+1 coincides with the CR automorphism group of
the Heisenberg group ∂Hn+1. Since Ds in (2.1) belongs to the isotropy subgroup at
the origin, the CR automorphism group of ∂Hn+1 is noncompact and moreover acts
improperly.

1.3 Generalizations

Gaussier and Sukhov ([GA03]) showed that the Wong-Rosay theorem is also valid
in almost complex manifolds of complex dimension 2. But in higher dimensional
case, there is an exotic model (called a pseudo-Siegel domain) which admits an
automorphism orbit accumulating at a strongly pseudoconvex boundary point and
whose almost complex structure is non-integrable, so which is not biholomorphic
to the unit ball with the standard complex structure. Thus the local version (The-
orem 1.2) fails in almost complex manifolds. Gaussier and Sukhov [GA06] and
the author [LK06] characterized the pseudo-Siegel domains: a domain in almost
complex manifold which admits an automorphism orbit accumulating at a strongly
pseudoconvex boundary point is biholomorphic to a pseudo-Siegel domain (Theo-
rem 2.1). However as in [BY09], the global version (Theorem 1.1) is also valid in
any dimension: a relatively compact, strongly pseudoconvex domain in an almost
complex manifold with a noncompact automorphism group is biholomorphic to the
unit ball with the standard complex structure (Theorem 2.2).

As in Sect. 2, a pseudo-Siegel domain is the Siegel half plane with a certain almost
complex structure, so its boundary is noncompact. And its automorphism group is
the same as the CR automorphism group of the boundary which acts improperly.
Therefore the relationship between the Wong-Rosay theorem and Schoen’s theorem
makes us to expect:

Conjecture 1.1 A strongly pseudoconvex almost CR manifold M whose CR auto-
morphism group action is improper is CR equivalent to either the standard sphere if
M is compact or a boundary of a pseudo-Siegel domain if M is noncompact.
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In this paper, we introduce the basic technique to get the Wong-Rosay theorem
in almost complex structure as in [GA06, LK06] and a partial confirmation of the
conjecture by the collaboration work with Joo [JO15].

Convention:Throughout this paper,Greek indices indicating coefficients of complex
tensor run from 1 to n and Latin indices for real tensors run from 1 to 2n. For Greek
indices, the summation convention is always assumed. We will take the bar on Greek
indices to denote the complex conjugation of the corresponding tensor coefficients:

Zα = Zᾱ , ω̄α = ωᾱ , R
α

β λμ̄ = R ᾱ

β̄ λ̄μ
.

2 The Wong-Rosay Theorem in the Almost Complex
Manifold

Let X be an almost complex manifold with an almost complex structure J . By an
(holomorphic) automorphism of (X, J ), we mean a biholomorphism of X onto itself
with respect to J . The automorphism group Aut(X, J ) of (X, J ) is the topological
group of automorphisms of (X, J ) with the composition law and the compact-open
topology.

Let us define the pseudo-Siegel domain as in [LK08]:

Definition 2.1 Consider the complex Eulidean spaceCn+1 with the standard coordi-
nates (z0, z1, . . . , zn). Let P = (Pαβ)α,β=1,...,n be a n ×n skew-symmetric complex
matrix. The model structure JP is the almost complex structure of Cn+1 defined by
the following (1, 0)-vector fields:

Z0 = ∂

∂z0
, Zα = ∂

∂zα
− i Pαβ zβ ∂

∂z0̄
(α = 1, . . . , n) .

The pair (Hn+1, JP ) is called a pseudo-Siegel domain for the Siegel half planeHn+1

and the model structure JP .

2.1 Automorphisms of the Pseudo-Siegel Domain

As mentioned, the Siegel-half planeH = H
n+1 with the standard complex structure

Jst (the case of P = 0) is biholomorphic to the unit ball (Bn+1, Jst); thus the pseudo-
Siegel domains can be considered as a deformation of the unit ball. The matrix P
represents the torsion for the integrability of the structure, in the sense of [Zα, Zβ ] =
−2i Pαβ∂/∂z0̄ so that JP is always non-integrable except P = 0. For any choice of
P , the boundary of H is always strongly pseudoconvex and H has the non-isotropic
dilation

Ds : (z0, z1, . . . , zn) �→ (es z0, es/2z1, . . . , es/2zn) (s ∈ R) (2.1)
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as its automorphism. This means that Theorem 1.2 fails in almost complex setting.
Moreover any pseudo-Siegel domain is homogeneous since it has the Heisenberg

group as its holomorphic transformation group. The Heisenberg group is the group
HP = (∂H, ∗P ) whose binary operation ∗P is defined by

ζ ∗P ξ =
(
ζ 0 + ξ0 − 2δαβ̄ξαζ β̄ + i Pαβξαζ β + i Pᾱβ̄ ξ ᾱζ β̄ , ζ ′ + ξ ′) , (2.2)

for ζ = (ζ 0, ζ ′), ξ = (ξ0, ξ ′) ∈ ∂H. Each element ζ ∈ HP generates an
automorphism by z �→ ζ ∗P z; hence HP can be considered as a subgroup of
Aut(H, JP ). Then one can easily see that the transformation group generated byHP

and {Ds : s ∈ R} acts on H transitively.
In [LK08], the automorphism groups and the bihomorphic equivalence of pseudo-

Siegel domains are completely described.

2.2 The Scaling Method in Almost Complex Manifold

Here, we introduce the scaling method to the almost complex manifold due to
Gaussier and Sukhov [GA03, GA06].

Let Ω be a domain in an almost complex manifold (X, J ) of complex dimension
n + 1. Suppose that there are ϕk ∈ Aut(Ω, J ) and p ∈ Ω such that

ϕk(p) → q ∈ ∂Ω as k → ∞ ,

where ∂Ω is smooth near q and strongly J -pseudoconvex at q.

Step 1 (a local coordinate system): Choosing a local coordinate system Φ : U ⊂
C

n+1 → M about q with Φ(0) = q, we can identity q = 0, Φ(U ) = U and
dΦ−1 ◦ J ◦ dΦ = J . For a suitable Φ, we may assume that

1. J (0) = Jst where Jst is the standard complex structure of Cn+1,
2. U ∩ Ω = {z : ρ(z) < 0} where ρ(z) = Re z0 + ∑n

α=1 |zα|2 + o(‖z‖2).
Step 2 (centering): We shall only consider sufficiently large k with ϕk(p) ∈ U . For
each k, take p∗

k ∈ U ∩ ∂Ω that realizes the Euclidean distant τk from pk = ϕk(p)

to U ∩ ∂Ω . Then we consider a rigid motion Lk of Cn+1 with Lk(p∗
k ) = 0 and

Lk(pk) = (−τk, 0, . . . , 0).

Step 3 (dilating): Now we let

Λk(z) =
(

z0

τk
,

z1√
τk

, . . . ,
zn

√
τk

)
.

For Ak = Λk ◦ Lk , the sequence Ak(U ∩Ω) of domains converges to the Siegel half
plane Hn+1 = {Re z0 + ∥∥z′∥∥2 < 0} in the sense of the Hausdorff set convergence.
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Simultaneously, the sequence d Ak ◦ J ◦ d A−1
k of induced almost complex structures

on Ak(U ∩ Ω) converges to an almost complex structure J ′ of H for which (H, J ′)
is biholomorphic to a pseudo-Siegel domain (H, JP ).

Finally one can get that Ak ◦ϕk : ϕ−1
k (U ∩Ω) ⊂ Ω → C

n+1 has a subsequential
limit F defined on the whole of Ω which is biholomorphism (Ω, J ) to (H, J ′).

Theorem 2.1 ([GA06, LK06]) Let Ω be a domain in an almost complex man-
ifold (X, J ). If Ω admits an automorphism orbit accumulating at a strongly J -
pseudoconvex boundary point, then (Ω, J ) is biholomorphic to a pseudo-Siegel
domains.

2.3 Bounded Realization of the Pseudo-Siegel Domain

For any non-integrable model structure, the induced structure by the Cayley trans-
form on the unit ball has a singularity at the boundary point corresponding to the
point at infinity. Thus it is natural to ask whether there is biholomorphism from the
non-integrable pseudo-Siegel domain to a relatively compact domain in an almost
complex manifold.

LetΩ be a relatively compact, strongly pseudconvex domain in an almost complex
manifold (X, J ). If Aut(Ω, J ) is noncompact, then byTheorem2.1, there is a biholo-
morphism F : (Ω, J ) → (H, JP ). Consider the point −1 = (−1, 0, . . . , 0) ∈ H

and the automorphism Dk as in (2.1) for k = 1, 2, . . .. Since the automorphism
orbit {Dk(−1) : k = 1, 2, . . .} is noncompact in H, there is a subsequential limit
q ∈ ∂Ω of the sequence F−1(Dk(−1)). Applying the scaling method again to the
automorphism orbit {F−1(Dk(−1))} with certain local coordinates about q, we can
obtain a biholomorphism G : (Ω, J ) → (H, JP ) with G(q) = 0 in the limit sense.
Then F−1 ◦ G is the automorphism of (H, JP ) with (F−1 ◦ G)(0) = ∞. But every
automorphism of (H, JP ) is affine if P �= 0 ([LK08]); thus P = 0 so JP is integrable.

Theorem 2.2 (Byun et al. [BY09]) A relative compact and strongly pseudoconvex
domain in an almost complex manifold with a noncompact automorphism group is
biholomorphic to the unit ball with the standard complex structure.

3 Schoen’s Theorem in Almost CR Manifolds

The scalingmethod in theWong-Rosay theorem allows to rescale a given domain and
its complex structure to a biholomorphically equivalent model. But in order to get
the CR equivalence to a model, the local equivalence problem of CR structures must
be considered since the CR structure is a local structure. For the CR equivalence in
Theorem 1.4, R. Schoen used the pseudo-hermitian equivalence of Webster [WE78]
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via the CR Yamabe problem. In this section, we introduce the pseudo-hermitian
equivalence problem, the Yamabe type problem and generalization of Theorem 1.4
in strongly pseudoconvex almost CR manifolds as studied in Joo and Lee [JO15].

3.1 Pseudo-hermitian Structure Equations

Let us consider an almost CR manifold M of real dimension 2n + 1 with a CR
structure (H, J ), that is, H = ⋃

p∈M Hp ⊂ T M is a hyperplane bundle with a
smooth field of bundle isomorphisms J : H → H such that J ◦ J = −I . By
a CR automorphism of M , we mean a diffeomorphism ϕ of M onto itself with
dϕ(H) = H and J ◦ dϕ = dϕ ◦ J . The CR automorphism group of M , simply
denoted by AutCR(M), is the topological group of CR automorphisms of M with the
composition law and the compact-open topology.

The tensor field J decomposes the complexified bundle CH = C ⊗R H by
CH = H1,0 ⊕ H0,1 where H1,0 = {v − i Jv : v ∈ H} and H0,1 = H1,0. The CR
manifold is strongly peudoconvex if for an 1-form θ annihilating H , the Levi form Lθ

defined by Lθ (Z , W ) = 2idθ(Z , W ) for Z , W ∈ H1,0 is positively or negatively
definite. This is independent of the choice of θ . Let (Zα) = (Z1, . . . , Zn) be a
(1, 0)-frame, a local frame filed to H1,0. Then there is an admissible (1, 0)-coframe
(ωα) = (ω1, . . . , ωn), a Cn-valued 1-form which is dual to (Zα) and satisfies

dθ = 2igαβ̄ωα ∧ ωβ̄ + pαβωα ∧ ωβ + pᾱβ̄ωᾱ ∧ ωβ̄ . (3.1)

Here (gαβ̄) stands for the Levi form and (pαβ) is uniquely determined by pαβ =
−pβα . We will use the Levi form (gαβ̄) and its inverse (gβ̄α) to lower and raise

indices (e.g. ω γ
β gγ ᾱ = ωβᾱ). Then we can define the pseudo-hermitian connection

form (ω
α

β ), uniquely determined by dgαβ̄ − ωαβ̄ − ωβ̄α = 0 and

dωα = ωβ ∧ω
α

β +T α
β γ ωβ ∧ωγ +N α

β̄ γ̄
ωβ̄ ∧ωγ̄ + Aα

β̄
θ∧ωβ̄ +Bα

βθ∧ωβ . (3.2)

The functions T α
β γ , N α

β̄ γ̄
, Aα

β̄
, Bα

β are also fixed by T α
β γ = −T α

γ β , N α

β̄ γ̄
=

−N α

γ̄ β̄
, Bβᾱ = Bᾱβ . The J -linear connection defined by ∇Zα = ω

β
α ⊗ Zβ is the

pseudo-hermitian connection. Then we have the pseudo-hermitian curvature tensor
(R α

β λμ̄) defined by

Ω
α

β ≡ R α
β λμ̄ωλ ∧ ωμ̄ mod {θ, ωλ ∧ ωμ,ωλ̄ ∧ ωμ̄}

for the curvature form Ω
α

β = dω
α

β − ω
γ

β ∧ ω
α

γ .
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3.2 Pseudo-hermitian Equivalence Problem

Now we characterize a pseudo-hermitian structure of the boundary of the Siegel
domain. First, we introduce an intrinsic form of the boundary.

Let (t, z) = (t, z1, . . . , zn) be the standard coordinates ofR×C
n . A n × n skew-

symmetric complex matrix P = (Pαβ) gives the Lie group structure ∗P to R × C
n

by
(t, z) ∗P (s, w) = (t + s + 2Im 〈z, w〉 − 2Re P(z, w), z + w)

where 〈z, w〉 = δαβ̄ zαwβ̄ and P(z, w) = Pαβ zαwβ . This is the induced operation

from (2.2) under the natural projection π : ∂Hn+1 → R × C
n . We call HP =

(R×C
n, ∗P ) a Heisenberg group associated to P . In fact all Heisenberg groups are

Lie group isomorphic to each others (see [BY09]).
Each Heisenberg group has the contact distribution HP annihilated by

θP = dt + iδαβ̄ zαdzβ̄ − iδαβ̄ zβ̄dzα + Pαβ zαdzβ + Pᾱβ̄ zᾱdzβ̄ (3.3)

and the strongly pseudoconvex CR structure JP on HP whose the global (1, 0)-frame
(Z1, . . . , Zn) is defined by

Zα = ∂

∂zα
+

(
iδαβ̄ zβ̄ + Pαβ zβ

) ∂

∂t
, α = 1, . . . , n.

Then the Heisenberg group HP acts transitively on itself as a CR transformation
group of (HP , JP ). We call the CRmanifoldR×C

n with the CR structure (HP , JP )

a Heisenberg group, simply denoted by HP .
Since [Zα, Zβ ] = −2Pαβ∂/∂t , the CR structure of HP is non-integrable except

P = 0. Each Heisenberg groupHP is CR equivalent to (∂Hn+1, JP ) and admits the
CR dilation,

Ds : (t, z1, . . . , zn) �→ (est, es/2z1, . . . , es/2zn) (s ∈ R) (3.4)

as its CR automorphism. Therefore the CR automorphism group ofHP acts improp-
erly, so Theorem 1.4 is not valid in the almost CR setting.

Let us consider the pseudo-hermitian structure equations of HP . For the contact
form θP , we have dθP = 2iδαβ̄dzα ∧ dzβ̄ + Pαβdzα ∧ dzβ + Pᾱβ̄dzᾱ ∧ dzβ̄ , so

that gαβ̄ ≡ δαβ̄ , pαβ ≡ Pαβ for (3.1), and (dz1, . . . , dzn) is the admissible coframe

for θP . Since dzα is closed, one can see that the connection form (ω
α

β ) of (dzα)

vanishes identically. So all torsion tensors except pαβ ≡ Pαβ and curvature tensors
are vanishing identically. This characterizes the Heisenberg model with θP :

Proposition 3.1 Let (M, θ) be a pseudo-hermitian manifold. Suppose that there is
an admissible coframe (ω1, . . . , ωn) with the following vanishing tensors:
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pαβ;γ ≡ T α
β γ ≡ N α

β̄ γ̄
≡ Aα

β̄
≡ R α

β λμ̄ ≡ 0 . (3.5)

Then (M, θ) is locally pseudo-hermitian equivalent to a Heisenberg group model
(HP , θP ).

Here pαβ;γ stands for the coefficient of the covariant derivative of the tensor (pαβ)

by Zγ ’s: pαβ;γ = Zγ pαβ − pαλω
λ

β (Zγ ) − ω λ
α (Zγ )pλβ .

3.3 Sub-Riemannian Yamabe Problem

In order to use the pseudo-hermitian equivalence (Theorem 3.1), we need to find
a contact form for which (3.5) holds. In his paper [SC95], R. Schoen uses the CR
Yamabe problem for the Webstar scalar curvature, R = Rαβ̄λμ̄gαβ̄gλμ̄. Unlike the
integrable case, the transformation formula of the Webster scalar curvature is much
more complicated. It is not possible to be simplified as the CR Yamabe equation in
the integrable pseudo-hermitian geometry. Thus in [JO15] we studied an auxiliary
contact sub-Riemannian structure and its Yamabe problem to find a desired contact
form.

Let (M2n+1, H) be a contact manifold and θ be a contact form (H = ker θ ). A
positive quadratic form g on the contact distribution H is called a sub-Riemannian
metric and the pair (θ, g) is called a contact sub-Riemannian structure of M .

For an orthonormal frame (X1, . . . , X2n) to H with respect to g, we have a 2n×2n
skew-symmetric matrix (hi j ) defined by

hi j = dθ(Xi , X j ) .

Let X0 be the characteristic vector field of the contact form θ , that is, the vector
field uniquely determined by θ(X0) = 1 and X0 � dθ = 0. For the dual coframe
(θ, θ1, . . . , θ2n) of (X0, X1, . . . , X2n), we have dθ = hi jθ

i ∧θ j . Thenwe can define
the contact sub-Rimannian connection form (θ i

j ) for (θ, g) (see [FV93, FV07])which
is uniquely determined by

dθ i = θ j ∧ θ i
j + θ ∧ τ i , θ i

j = −θ
j

i ,
∑

i

τ i ∧ θ i = 0 .

Moreover the curvature form (Θ i
j ) and the curvature tensor (Ri

jkl) for (θ, g) are
defined by

Θ i
j = dθ i

j − θk
j ∧ θ i

k ≡ Ri
jklθ

k ∧ θ l mod θ.

We call R = ∑
i, j Ri

ji j a sub-Riemannian scalar curvature of (θ, g). When we let

Rh = ∑
i, j,k,l Ri

jklh
ikh jl for the inverse (h ji ) of (hi j ), we call the amount
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S = (2n + 1)R − Rh

a twisted scalar curvature for (θ, g).
Assume that the contact sub-Riemannian structure (θ, g) is orthogonal, that is,

h = (hi j ) is the orthogonal matrix. Then we get the Yamabe type transformation
formula for the twisted scalar curvature:

Theorem 3.1 ([JO15])Let (M2n+1, θ, g) be an orthogonal contact sub-Riemannian
manifold. For a subconformal change (θ ′, g′) = (u2/nθ, u2/ng), let S and S′ be the
twisted scalar curvatures for (θ, g) and (θ ′, g′), respectively. Then u satisfies

S′u
2
n +1 = Lu , (3.6)

where L = 4(n + 1)Δb + S and Δb is the sub-laplacian operator defined by Δbu =
−∑

i Xi (Xi u) + ∑
i, j (X j u)θ

j
i (Xi ).

For p = 2 + 2/n and the volume form dV = (1/n!)θ ∧ dθn , the sub-conformal
Yamabe invariant Q(M) is defined by

Q(M) = inf

{∫

M
u Lu dV :

∫

M
u pdV = 1, u ∈ C∞

c (M) and u ≥ 0

}

which is independent from the subconformal change of the contact sub-Riemannian
structure. Then we can solve the subconformal Yamabe problem.

Theorem 3.2 ([JO15]) Let (M, θ, g) be an orthogonal contact sub-Riemannian
manifold.

(1) If M is compact and Q(M) < Q(S2n+1), then there is a sub-conformal change
(θ ′, g′) = (u2/nθ, u2/ng) whose twisted scalar curvature S′ of (M, θ ′, g′) is
the constant Q(M).

(2) If M is noncompact and Q(M) ≥ 0 or Q(M) < 0, then there exists a sub-
conformal change whose twisted scalar curvature is the constant 0 or −1,
respectively.

This is a generalization of the CR Yamabe problem for the Webster scalar curvature
as in Jerison and Lee [JE87], Schoen [SC95].

3.4 A Generalization of Schoen’s Theorem

Let M be a strongly pseudoconvex almost CR manifold with a CR structure (H, J ).
Suppose that there is a contact sub-Riemannian structure (θ, g) on (M, H) which
is associated to the almost CR structure of M , that is, every CR automorphism of
(M, J ) is a subconformal transformation of (M, θ, g). Note that if (θ, g) is associated
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to (M, H, J ), then a sub-conformal change (u2/nθ, u2/ng) for positive u is also
associated to the almost CR structure.

Suppose that M is noncompact. Then by (2) of Theorem 3.2, we may assume that
S ≡ −1 or S ≡ 0 for (θ, g).

Case 1 (S ≡ −1): For each CR automorphism ϕ of M , let uϕ be the positive function

with (ϕ∗θ, ϕ∗g) = (u2/n
ϕ θ, u2/n

ϕ g) satisfies (4(n + 1)Δb − 1)uϕ = −u2/n+1
ϕ from

(3.6) since ϕ is the isometry from (ϕ∗θ, ϕ∗g) to (θ, g). Using the self-adjoint prop-
erty of Δb to non-negative test functions, we get that

∫
u(n+2)/n

ϕ is locally bounded
uniformly for ϕ ∈ AutCR(M). Using the mean value inequality for sub-elliptic oper-
ator 4(n + 1)Δb − 1, one can conclude that uϕ is locally bounded uniformly for
ϕ ∈ AutCR(M); so the CR automorphism group of M acts properly by the Arzela-
Ascoli theorem.

Case 2 (S ≡ 0): Let θ be a contact form with S ≡ 0. If AutCR(M) acts improperly,
then there are a compact subset K of M and a sequence ϕk ∈ AutCR(M) such that
ϕk(K ) ∩ K �= ∅ and supK uk → ∞ where ϕ∗

k θ = u2/n
k θ . Equiation (3.6) to each

uk is
Δbuk = 0 . (3.7)

Using the normal coordinates for the orthogonal contact sub-Rimannian structure
(θ, g) about a point pk ∈ K with ϕk(pk) ∈ K , we take a small open neighborhood
Vk of pk such that infVk uk → ∞ by the sub-elliptic Harnack Principle to (3.7), so
ϕk(Vk) increasingly exhausts M by passing a subsequence.

Now consider T = (T α
β γ ), the torsion tensors in (3.2) for θ and let Tk = ϕ∗

k T
be the corresponding one for ϕ∗

k θ . Since ϕk is the pseudo-hermitian isometry from

ϕ∗
k θ to θ , we have

∥∥∥Tk ◦ ϕ−1
k

∥∥∥
ϕ∗

k θ
= ‖T ‖θ , where ‖ · ‖θ and ‖ · ‖ϕ∗

k θ stand for tensor

norms with respect to the pseudo-hermitian metrices of θ and ϕ∗
k θ , respectively.

Take any point q ∈ M .We shall consider sufficiently large k such that q ∈ ϕk(Vk).
For qk = ϕ−1

k (q) ∈ Vk , we have ‖Tk(qk)‖ϕ∗
k θ = ‖T (q)‖θ . The transformation

formula for T under the pseudo-conformal change ϕ∗
k θ = u2/n

k θ (Proposition 4.12
in [JO15]) gives

‖Tk(qk)‖2ϕ∗
k θ ≤ Cuk(qk)

−2/n
(

‖T (qk)‖2θ + 1

(nuk)2
‖dbu(qk)‖2θ

)

where ‖dbuk‖θ is the holomorphic gradient norm of uk with respect to θ . By the sub-
elliptic Schauder estimates for (3.7), we have a uniform bound of ‖dbuk‖θ /nuk on
the relatively compact subset ∪k Vk of M . Since uk(qk)

−2/n ≤ (infVk uk)
−2/n → 0,

we have that ‖T (qk)‖ϕ∗
k θ → 0, so ‖T (q)‖θ = 0. This means that T α

β γ = 0 at q.
Following the same manner, we have Condition (3.5) for θ , so get a local pseudo-
hermitian equivalence toHP by Theorem 3.1. Taking a local CR diffeomorphism Fk

from Vk toHP and a CR dilation Λk(t, z) = (τk t,
√

τk z) ofHP for some τk → ∞,
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we have a global CR diffeomorphism F : M → HP as a subsequential limit of
Λk ◦ Fk ◦ ϕ−1

k .

Theorem 3.3 ([JO15]) Let M be a noncompact, strongly pseudoconvex, almost CR
manifold with an associated orthogonal contact sub-Riemannian structure. If the
CR automorphism group of M acts on M improperly, then M is CR equivalent to a
Heisenberg group HP .

If M is compact and AutCR(M) acts improperly, then by the same way of
Schoen [SC95], we have a point p ∈ M such that there is a CR diffeomorphism
F : M \{p} → HP . Then we show that the CR automorphismDs of M \{p} � HP

as in (3.4) extends to the CR automorphism of the whole M . Since F−1(0) is a fixed
point of each Ds , {Ds : s ∈ R} acts improperly on M \ {F−1(0)} which contains
p. Form Therorem 3.3 and the homogeneity of HP , there is a CR diffeomorphism
G : M \ {F−1(0)} → HP with G(p) = 0. Thus the CR automorphism G ◦ F−1 of
HP \ {0} which can not extend on HP . This contacts to Proposition 3.3 in [JO15]
if P �= 0.

Theorem 3.4 ([JO15]) Let M2n+1 be a compact, strongly pseudoconvex, almost CR
manifold with an associated orthogonal contact sub-Riemannian structure. If the CR
automorphism group of M is noncompact, then M is CR equivalent to the standard
sphere S2n+1.

If dim M = 5 or 7, M always admits an associated orthogonal contact sub-
Riemannian structure. Thus we can partially confirm Conjecture 1.1.

Acknowledgments The research of the author was supported by Basic Science Research Program
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[AL72] Alekseevski Ĭ , D.V.: Groups of conformal transformations of Riemannian spaces. Mat.
Sb. (N.S.) 89(131), 280–296, 356 (1972)

[BU78] Burns Jr, D., Shnider, S., Wells Jr, R.O.: Deformations of strictly pseudoconvex domains.
Invent. Math. 46, 237–253 (1978)

[BY09] Byun, J., Gaussier, H., Lee, K.-H.: On the automorphism group of strongly pseudoconvex
domains in almost complex manifolds. Ann. Inst. Fourier (Grenoble) 59, 291–310 (2009)

[EF95] Efimov, A.M.: A generalization of theWong-Rosay theorem for the unbounded case.Mat.
Sb. 186, 41–50 (1995)

[FV07] Falbel, E., Veloso, J.M.: A bilinear form associated to contact sub-conformal manifolds.
Differ. Geom. Appl. 25, 35–43 (2007)

[FV93] Falbel, E., Veloso, J.M., Verderesi, J.A.: Constant curvature models in sub-Riemannian
geometry. Mat. Contemp. 4, 119–125 (1993). VIII School on Differential Geometry (Por-
tuguese) (Campinas, 1992)

[FE74] Fefferman, C.: The Bergman kernel and biholomorphic mappings of pseudoconvex
domains. Invent. Math. 26, 1–65 (1974)



Characterizations of Strongly Pseudoconvex Models … 233

[FE96] Ferrand, J.: The action of conformal transformations on a Riemannian manifold. Math.
Ann. 304, 277–291 (1996)

[GA02] Gaussier, H., Kim, K.-T., Krantz, S.G.: A note on the Wong-Rosay theorem in complex
manifolds. Complex Var. Theory Appl. 47, 761–768 (2002)

[GA03] Gaussier, H., Sukhov, A.: Wong-Rosay theorem in almost complex manifolds, preprint,
arXiv:math/0307335

[GA06] Gaussier, H., Sukhov, A.: On the geometry of model almost complex manifolds with
boundary. Math. Z. 254, 567–589 (2006)

[GE82] Greene, R.E., Krantz, S.G.: Deformation of complex structures, estimates for the ∂̄ equa-
tion, and stability of the Bergman kernel. Adv. Math. 43, 1–86 (1982)

[JE87] Jerison, D., Lee, J.M.: The Yamabe problem on CR manifolds. J. Differ. Geom. 25, 167–
197 (1987)

[JO15] Joo, J.-C., Lee, K.-H.: Subconformal Yamabe equation and automorphism groups of
almost CR manifolds, J. Geom. Anal., to appear

[LK06] Lee, K.-H.: Domains in almost complex manifolds with an automorphism orbit accumu-
lating at a strongly pseudoconvex boundary point. Mich. Math. J. 54, 179–205 (2006)

[LK08] Lee, K.-H.: Strongly pseudoconvex homogeneous domains in almost complex manifolds,
J. Reine Angew. Math. 623, 123–160 (2008)

[RO79] Rosay, J.-P.: Sur une caractérisation de la boule parmi les domaines de Cn par son groupe
d’automorphismes. Ann. Inst. Fourier (Grenoble), 29, ix, 91–97 (1979)

[SC95] Schoen, R.: On the conformal and CR automorphism groups. Geom. Funct. Anal. 5,
464–481 (1995)

[WE78] Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13,
25–41 (1978)

[WO77] Wong, B.: Characterization of the unit ball in Cn by its automorphism group. Invent.
Math. 41, 253–257 (1977)

http://arxiv.org/abs/math/0307335


Compact Smooth but Non-complex
Complements of Complete Kähler Manifolds

Xu Liu

Abstract We modify the techniques developed by Diederich and Fornaess, and
construct compact smooth submanifolds of arbitrary real codimension ≥ 3, which
are non-complex as the complements of complete Kähler manifolds.

Keywords Complements of complete Kähler domains · Complete pluripolar sets

1 Introduction

It was observed by Grauert that not every complex manifold M, dimCM > 1, car-
rying a complete Kähler metric is Stein. Instead, for any closed analytic subvariety
A of M , there exists a complete Kähler metric on M \ A (Satz A in [Grau1956]).

One question arises from the above observation: what kind of condition can force
the complement of a complete Kähler manifold to be complex-analytic?

The real codimension 2 case was considered by Ohsawa [Ohsa1980]: Assume M
is a complex manifold, and A ⊂ M is a closed C1 submanifold of real codimension
2. If M \ A admits a complete Kähler metric, then A is complex-analytic.

LaterDiederich andFornaess [Die1982] considered the higher codimensional case
and showed: Assume M is a complex manifold, and A ⊂ M is a closed real-analytic
submanifold of real codimension ≥ 3. If M \ A admits a complete Kähler metric,
then A is complex-analytic.

Notice that in Ohsawa’s result, the C1 regularity condition is sufficient. In the
contrary, in higher codimensional case, even smoothness is not able to guarantee the
analyticity. In other words, real-analyticity is necessary, due to the following: For any
k ∈ N, k ≥ 3, there exists a closedC∞ submanifold A of real codimension k in a ball
B, such that A is not complex-analytic and B \ A admits a complete Kähler metric.

The above examples were constructed on open manifolds. After some modifi-
cations, we generalize their result to the compact case and obtain the main result:
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Theorem 1.1 For any k ∈ N, k ≥ 3, there exists a compact C∞ submanifold A of
real codimension k in P

n, such that A is not complex-analytic and P
n \ A admits a

complete Kähler metric.

2 Compact Counterexamples

Here we are going to directly construct compact examples of non-complex submani-
folds of arbitrary real codimension≥ 3 in the complements of complete Kähler man-
ifolds.

Firstly, we construct a real dimension 2 submanifold A ⊂ C
3 as a graph over S1×

S1 (instead of a graph overR2 cf. [Die1982]) together with a complete Kähler metric
near A. It is based on the following key lemma.

Lemma 2.1 Assume f = F |S1×S1 where F(z1, z2) is a polynomial on C
2. Γ f is the

graph of f . Fix a point p /∈ Γ f with dist(p, Γ f ) ≥ 1. For given n ∈ N, ε > 0, there
exists a C∞ strictly plurisubharmonic function φ on C

3 and h = H(z1, z2)|S1×S1

where H is a polynomial on C
2 such that

(A) |Dα(h − f )| < ε on S1 × S1, |α| ≤ n;
(B) |φ| < ε on B2n := {z||z| ≤ 2n};
(C) |Dαφ| < ε on B2n ∩ {z|dist(z, Γ f ) ≥ ε}, |α| ≤ n;
(D) the distance from p to Γh ∩ B2n measured in B2n with respect to the metric

induced by ∂∂φ is at least n.

Proof It is known that there exists a continuous subharmonic function onC such that
φ is radially symmetric, i.e., φ(z) = φ(|z|); φ is smooth onC∗; ∂∂φ gives a complete
Kähler metric on C∗. A detailed constructive proof is contained in [Die1982]. There
are also other approaches. Consider, e.g., φ0(z) := 1

log(− log |z|) . Then ∂∂φ0 gives a

complete Kähler metric at the origin on the punctured disk {0 < |z| < 1
2e }. Using

a cut-off function to combine φ0 with a convex smooth function increasing rapidly
enough will extend it to the whole plane.

Let Z F be the graph of F and φF := φ(z3 − F(z1, z2)). Then φF is continuous
plurisubharmonic on C

3. Then we can use Richberg’s regularization [Rich1968] to
φF + |z|2 to get required smoothness and scale the result to satisfy the conditions
(B-C). Then we get a C∞ strictly plurisubharmonic function φ1 such that for any
curve γ : [0, 1] 	→ B2n going from p to q ∈ Γ f with γ ((0, 1)) ⊂ B2n\Γ f , γ has
length at least n+1with respect to ∂∂φ1 unless it satisfies the following condition (�):

γ (τ) /∈ A := {z | |z3 − F(x1, x2)| ≥ ε

16
, 1 − η ≤ |z j | ≤ 1 + η, j = 1, 2}

for all τ ≥ t := sup{τ ∈ [0, 1] | dist(γ (τ ), Γ f ) ≥ ε

8
},

where η is independent of γ and small enough such that Z F ∩ A ∩ B2n = ∅.



Compact Smooth but Non-complex Complements of Complete Kähler Manifolds 237

The condition (�) means that γ approaches Γ f along Z F . It makes sense because
due to the construction of φ, any curve going into Z F transversely in B2n has +∞
length with respect to the metric induced by ∂∂φF and therefore ∂∂φ1. It can also be
stated as: There exists δ1 > 0, δ1 � ε, such that any curve γ : [0, 1] 	→ B2n \ Γ f

going from p to q with dist(q, Γ f ) ≤ δ1 has length at least n with respect to the
metric induced by ∂∂φ1 unless γ satisfies (�).

Next we can choose a polynomial P(z1) and let G(z1, z2) := F(z1, z2) + P(z1)
such that |P(k)(z1)| < δ1 for all |z1| = 1, k ≤ n and dist((z1, z2, G(z1, z2))), Γ f ) >

ε for |z1| = 1 ± η
2 . Let g := G|S1×S1 and repeat the above process to φG + |z|2 to

obtain a smooth strictly plurisubharmonic fucntion φ2 such that φ2 satisfies condition
(B-C) and there exists δ2 > 0, 0 < δ2 � δ1, δ2 <

η
2 such that any curve γ : [0, 1] 	→

B2n \Γg going from p to any q with dist(q, Γg) ≤ δ2 has length at least n with respect
to the metric induced by ∂∂(φ1 +φ2) unless γ satisfies (�) and 1− η

2 ≤ |z1| ≤ 1+ η
2

for all τ ≥ t .
Similarly, we can choose a polynomial Q(z2) satisfying the same conditons as

P(z1) and repeat the same process to φH + |z|2 where H := G + Q to get a smooth
strictly plurisubharmonic fucntion φ3 such that φ3 satisfies condition (B-C) and any
curve γ : [0, 1] 	→ B2n \ Γh going from p to any q with dist(q, Γh) ≤ δ2 has length
at least n with respect to the metric induced by ∂∂(φ1 + φ2 + φ3) unless it satisfies
(�) and 1 − η

2 ≤ |z j | ≤ 1 + η
2 , j = 1, 2 for all τ ≥ t .

However, this is impossible since A defined in (�) and {|z j | < 1 − η
2 or |z j | >

1 + η
2 }, j = 1, 2 wrap up Γh , which means any curve going to Γh has to intersects

either of these three sets. �

Remark 2.1 In fact, since any periodic function onR can be considered as a function
defined on S1, if we allow the variable to take complex values, we get C∗ as the
complexification of S1 and a function defined on C

∗. Therefore, in the statement of
the lemma, we can take F as such extension of f from S1 × S1 to C

∗2 conversely,
where f can be chosen to be rational functions on C2 with a permissible pole at the
origin.

Proposition 2.1 There exists A ⊂ P
3 given by the graph of a C∞ function over

S1 × S1 such that P3 \ A admits a complete Kähler metric.

Proof Let f1 ≡ 0, p = ( 32 i, 0, 0) ∈ C
3. Apply the lemma inductively to find a

series of smooth strictly plurisubharmonic functions φ1, ..., φk−1 and polynomials
f1, ..., fk satisfying the following conditions:

(A′) |Dα( f j − f j−1)| < 1
2 j−1 on S1 × S1, |α| ≤ j − 1, j = 2, ..., k;

(B ′) |φ j | < 1
2 j on B2 j , j = 1, ..., k − 1;

(C ′) |Dαφ j | < 1
2 j on B2 j ∩ {z|dist(z, Γ f j ) ≥ 1

2 j+1 }, |α| ≤ j, j = 1, ..., k − 1;

(D′) the distance from p toΓ fk ∩B2α( j,k) in B2α( j,k) with respect to ∂∂φ j ≥ α( j, k) :=
j − 1 + 1

2k−1 , j = 1, ..., k − 1.

It follows from (A′) that fk → f∞ in theC∞-topology on S1×S1 and from (B ′) that
|z|2 + ∑k

j=1 φ j → φ uniformly on every compact subset such that φ is continuous
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onC3 and C∞ onC3 \Γ f∞ where ∂∂φ induces a complete Kähler metric. It remains
to use a cut-off function to combine it with a Fubini–Study metric to get the desired
complete Kähler metric on P

3 \ Γ f∞ . �

Proof (Proof of Theorem 1.1) In the above construction, by restricting the function
f∞ to C × {0}, we get its graph as a smooth curve in C × {0} × C ∼= C

2 (the real
codimension 3 case). It is also easily seen that Lemma 2.1 and Proposition 2.1 can
be generalized to higher dimensions, i.e., we can construct the graph Γ f ⊂ C

n of a
smooth function f over S1 × ... × S1

︸ ︷︷ ︸
n−1

and a continuous plurisubharmonic function

φ, smooth outside Γ f . In every case, ∂∂φ combined with a Fubini–Study metric will
give complete Kähler metrics on P

n \ Γ f∞ . �

3 Remarks

In the last section, the existence of complete Kähler metrics is shown by constructing
their potentials which are plurisubharmonic functions. It is also closely related to the
propeties of pluripolar sets.

Using similar techniques in [Die1982], Diederich and Fornaess [DieFor1982]
proved that complete pluripolar sets are not necessarily complex, even when they are
closed C∞ real submanifolds.

It is known that if ϕ is the defining function of a closed complete pluripolar set
A ⊂ C

n and smooth outside A, then

ds2 := ∂∂(|z|2 − log(−ϕ))

gives a complete Kähler metric on Cn \ A. Here f (t) = − log(−t) should be under-
stood as a function extended to be defined on R such that it keeps increasing and
convex . This provides another approach to Theorem 1.1, if we can prove:

For any k ∈ N, k ≥ 3, there exists a compact C∞ submanifold A of real codi-
mension k in Cn , such that A is complete pluripolar but not complex-analytic.

This problem was studied by Edlund [Edl2004] and answered affirmatively.
Sometimes, curvature conditions are considered when one studies the comple-

ments of complete Kähler manifolds. For example, Anchouche [Anc2009] used
additional curvature conditions to reduce the compact complements of complete
Kähler manifolds into finite point sets. It is shown that in general there exist nontriv-
ial examples.

Acknowledgments Iwould like to thankProfessorNikolayV. Shcherbina for pointing outEdlund’s
result and for helpful discussion during KSCV 10.
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Injectivity Theorems with Multiplier Ideal
Sheaves and Their Applications

Shin-ichi Matsumura

Abstract The purpose of this survey is to present analytic versions of the injectivity
theorem and their applications. The proof of our injectivity theorems is based on
a combination of the L2-method for the ∂-equation and the theory of harmonic
integrals. As applications, we obtain Nadel type vanishing theorems and extension
theorems for pluri-canonical sections of log pairs. Moreover, we give some results
on semi-ampleness related to the abundance conjecture in birational geometry (the
minimal model program).

Keywords Injectivity theorems ·Vanishing theorems ·Singularmetrics ·Multiplier
ideal sheaves ·The theory of harmonic integrals · L2-methods ·Extension theorems ·
Abundance conjecture

1 Introduction

The Kodaira vanishing theorem is one of the most celebrated results in complex
geometry, and such results play an important role when we consider certain funda-
mental problems in algebraic geometry and the theory of several complex variables,
including asymptotics of linear systems, extension problems of holomorphic sec-
tions, the minimal model program, and so on. According to these objectives, the
study of vanishing theorems has been a constant subject of attention in the last
decades. This paper is a survey of recent results in [Mat13b] and [GM13], whose
purpose is to present generalizations of theKodaira vanishing to pseudo-effective line
bundles equipped with singular metrics and their applications, from the viewpoint
of the theory of several complex variables and differential geometry.
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1.1 Analytic Versions of the Injectivity Theorem

In this subsection, we introduce analytic versions of the injectivity theorem. The
injectivity theorem is a generalization of the vanishing theorem to “semi-positive”
line bundles, and it has been studiedby several authors, for example,Tankeev [Tan71],
Kollár [Kol86], Enoki [Eno90], Esnault-Viehweg [EV92], Ohsawa [Ohs04], Fujino
[Fuj12, Fuj13a], Ambro [Amb03, Amb12], and so on. In his paper [Kol86], Kollár
gave the following injectivity theorem for semi-ample line bundles, whose proof
depends on theHodge theory. In [Eno90], Enoki relaxed his assumption by a different
method depending on the theory of harmonic integrals, which enables us to approach
the injectivity theorem from the viewpoint of complex differential geometry.

Theorem 1.1 ([Kol86] resp. [Eno90]) Let F be a semi-ample (resp. semi-positive)
line bundle on a smooth projective variety (resp. a compact Kähler manifold) X.
Then for a (non-zero) section s of a positive multiple Fm of the line bundle F, the
multiplication map induced by the tensor product with s

Φs : Hq(X, K X ⊗ F)
⊗s−→ Hq(X, K X ⊗ Fm+1)

is injective for any q. Here K X denotes the canonical bundle of X.

The above theorem can be regarded as a generalization of the Kodaira vanishing
theorem to semi-ample (semi-positive) line bundles. On the other hand, the Kodaira
vanishing theorem has been generalized by Nadel [Nad89, Nad90]. This generaliza-
tion uses singular metrics with positive curvature and corresponds to the Kawamata-
Viehweg vanishing theorem in algebraic geometry [Kaw82, Vie82]. Therefore, in the
same direction as this generalization, it is natural and of interest to study injectivity
theorems for line bundles equipped with “singular metrics”.

The Kodaira vanishing{
cpx. geom: smooth positive metrics
alg. geom: ample line bundles

semi-positivity−−−−−−−−→
Kollár’s injectivity theorem.{

cpx. : smooth semi-positive metrics
alg. : semi-ample line bundles

⏐⏐
�singular metrics

⏐⏐
�singular metrics

The Nadel, Kawamata-Viehweg vanishing{
cpx. : singular positive metrics
alg. : big line bundles

semi-positivity−−−−−−−−→
Theorem 1.2{

cpx. : singular semi-positive metrics
alg. : pseudo-effective line bundles

The following theorem is one of the main results, which can be seen as a gener-
alization of the injectivity theorem and the Nadel vanishing theorem.

Theorem 1.2 ([Mat13b, Theorem 1.3]) Let F be a line bundle on a compact Kähler
manifold X and h be a singular metric with semi-positive curvature on F. Then for
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a (non-zero) section s of a positive multiple Fm satisfying supX |s|hm < ∞, the
multiplication map

Φs : Hq(X, K X ⊗ F ⊗ I (h))
⊗s−→ Hq(X, K X ⊗ Fm+1 ⊗ I (hm+1))

is (well-defined and) injective for any q. Here I (h) denotes the multiplier ideal
sheaf associated to the singular metric h.

Remark 1.1 The multiplication map is well-defined thanks to the assumption of
supX |s|hm < ∞.When h is ametricwithminimal singularities on F , this assumption
is automatically satisfied for any section s of Fm (see [Dem] for the concept ofmetrics
with minimal singularities).

Whenwe consider the problem of extending (holomorphic) sections from subvari-
eties to the ambient space, we need to refine the above formulation (see Theorem2.1).
Our injectivity theorem can be seen as an improvement of [Eno90, Fuj12, Kol86,
Mat14]. For the proof, we take an analytic approach for the cohomology groups
with coefficients in K X ⊗ F ⊗ I (h), which includes techniques of [Eno90, Fuj12,
Mat13a, Mat14, Ohs04, Tak97]. The proof is based on a technical combination of
the L2-method for the ∂-equation and the theory of harmonic integrals. To handle
transcendental (non-algebraic) singularities, after regularizing a given singular met-
ric, we investigate the asymptotic behavior of the harmonic forms with respect to
a family of the regularized metrics. Moreover we establish a method to obtain L2-
estimates of solutions of the ∂-equation by using the Čech complex. See Sect. 2.1 for
more details.

1.2 Applications to the Vanishing Theorem

Theorem 1.2 is formulated for singular metrics with transcendental (non-algebraic)
singularities, which is one of the advantages of our injectivity theorem. For example,
metrics with minimal singularities are important objects, but they do not always
have algebraic singularities. By applying Theorem 1.2 to them, we can obtain an
injectivity theorem for nef and abundant line bundles (Corollary 1.1) and Nadel type
vanishing theorems (Theorem 1.3 and Corollary 1.2).

It is natural to expect the same conclusion as in Theorem 1.1 under the weaker
assumption that F is nef.However there is a counterexample to the injectivity theorem
for nef line bundles (see for example [Fuj13a, Example 5.1]). If F is nef and abundant
(that is, the numerical dimension agrees with the Kodaira dimension), the line bundle
F admits a metric hmin with minimal singularities satisfyingI (hm

min) = OX for any
m > 0. This follows from [Kaw85, Proposition 2.1]. Hence Theorem 1.2 leads to
the following corollary.



244 S. Matsumura

Corollary 1.1 ([Mat13b, Corollary 1.5]) Let F be a nef and abundant line bundle on
a compact Kähler manifold X. Then for a (non-zero) section s of a positive multiple
Fm of the line bundle F, the multiplication map induced by the tensor product with s

Φs : Hq(X, K X ⊗ F)
⊗s−→ Hq(X, K X ⊗ Fm+1)

is injective for any q.

The same statement was proved in [Fuj12], and a similar conclusionwas proved in
[EP08, EV92] by differentmethodswhen X is a projective variety. It isworth pointing
out that Theorem 1.1 is not sufficient to obtain Corollary 1.1. This is because the
above metric hmin may not be smooth and not have algebraic singularities even if F
is nef and abundant (see for example [Fuj13a, Example 5.2]).

As another application of Theorem 1.2, we obtain a Nadel type vanishing theorem
(Theorem 1.3) and its corollary (Corollary 1.2).

Theorem 1.3 ([Mat13b, Theorem 3.21] cf. [Mat14, Theorem 5.2]) Let F be a
line bundle on a smooth projective variety X and h be a singular metric with semi-
positive curvature on F. Then

Hq(X, K X ⊗ F ⊗ I (h)) = 0 for any q > dim X − κbdd(F, h).

See Sect.2.2 or [Mat14, Definition 5.1] for the definition of the bounded Kodaira
dimension κbdd(F, h).

Corollary 1.2 ([Mat13b, Corollary 1.6] cf. [Mat13a, Theorem 1.2]) Let F be a line
bundle on a smooth projective variety X and hmin be a singular metric with minimal
singularities on F. Then

Hq(X, K X ⊗ F ⊗ I (hmin)) = 0 for any q > dim X − κ(F).

Here κ(F) denotes the Kodaira dimension of F.

Since multiplier ideal sheaves are coherent ideal sheaves, the family of multiplier
ideal sheaves {I (h1+δ)}δ>0 has the maximal element, which we denote by I+(h)

(see [DEL00] for more details). In [Cao15], Cao gave striking results on the Nadel
vanishing theorem for the cohomology groups with coefficients in K X ⊗ F ⊗I+(h).
However, the Nadel vanishing theorem for K X ⊗ F ⊗ I (hmin) is non-trivial even
if F is big. In fact, it was first proved in [Mat13a] when F is big.

It is of interest to ask whether or notI+(ϕ) agrees withI (ϕ) for a plurisubhar-
monic (psh for short) function ϕ, which was first posed in [DEL00]. We can easily
see thatI+(ϕ) = I (ϕ) holds if ϕ has algebraic singularities, but hmin unfortunately
does not always have algebraic singularities. It is a natural problem related to the
(strong) openness conjecture of Demailly-Kollár (see [DK01]), but it had been an
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open problem. Recently, Guan-Zhou affirmatively solved the openness conjecture in
[GZ15], and Hiep gave another proof in [Hie14]. Although their celebrated results
imply Theorem 1.3, we believe that our techniques are still of interest, since they
bring a quite different viewpoint and have further applications.

1.3 Applications to the Extension Theorem

In this subsection, we give an extension theorem for pluri-canonical sections of log
pairs. Our motivation is the abundance conjecture, which is one of the most impor-
tant conjectures in the classification theory of algebraic varieties. From now on, we
freely use the standard notation in [BCHM10, KaMM87, KM] and further we inter-
changeably use the words “Cartier divisors”, “line bundles”, “invertible sheaves”.

Conjecture 1.1 (Generalized abundance conjecture) Let X be a normal projective
variety and Δ be an effective Q-divisor such that (X,Δ) is a klt pair. Then κ(K X +
Δ) = κσ (K X + Δ). In particular, if K X + Δ is nef, then it is semi-ample. See [Nak]
for the definition of κ(·) and κσ (·).

Toward the abundance conjecture, we need to study the non-vanishing conjecture
and the extension conjecture (see [DHP13], [Fuj00, Introduction], [FG14, Sect. 5]).
We study the following extension conjecture for dlt pairs formulated in [DHP13,
Conjecture 1.3]:

Conjecture 1.2 (Extension conjecture for dlt pairs) Let X be a normal projective
variety and S + B be an effective Q-divisor satisfying the following assumptions :
• (X, S + B) is a dlt pair.
• �S + B� = S.
• K X + S + B is nef.
• K X + S + B isQ-linearly equivalent to an effective divisor D with S ⊆ SuppD ⊆
Supp (S + B).

Then the restriction map

H0(X,OX (m(K X + S + B))) → H0(S,OS(m(K X + S + B)))

is surjective for sufficiently divisible integers m ≥ 2.

When S is a normal irreducible variety (that is, (X, S+ B) is a plt pair), Demailly-
Hacon-Păun proved the above conjecture in [DHP13] by using technical methods
based on a version of the Ohsawa-Takegoshi L2-extension theorem. This result can
be seen as an extension theorem for plt pairs.

By applying Theorem 2.1 instead of the Ohsawa-Takegoshi theorem to the exten-
sion problem, we prove the following extension theorem for dlt pairs. Thanks to the
injectivity theorem, we can obtain some extension theorems for not only plt paris but
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also dlt pairs. This is an advantage of our approach. Even if K X +Δ is semi-positive
(that is, it admits a smooth metric with semi-positive curvature), it seems to be very
impossible to prove the extension theorem for dlt pairs by the Ohsawa-Takegoshi
theorem at least in the current situation, and thus we need our injectivity theorem
(Theorem 2.1).

Theorem 1.4 ([GM13, Corollary 4.5]) Let X be a compact Kähler manifold and
S + B be an effective Q-divisor with the following assumptions:

• S + B is a simple normal crossing divisor with 0 ≤ S + B ≤ 1 and �S + B� = S.
• K X + S + B is Q-linearly equivalent to an effective divisor D with S ⊆ Supp D.
• K X + S + B admits a singular metric h with semi-positive curvature.
• The Lelong number ν(h, x) is equal to 0 at every point x ∈ S.

Then, for an integer m ≥ 2 with Cartier divisor m(K X + S + B), every section
u ∈ H0(S,OS(m(K X +S+B))) can be extended to a section in H0(X,OX (m(K X +
S + B))).

In particular, Conjecture 1.2 is affirmatively solved under the assumption that
K X +Δ admits a singular metric whose curvature is semi-positive and Lelong num-
ber is identically zero. This assumption is stronger than the assumption that K X +Δ

is nef, but weaker than the assumption that K X + Δ is semi-positive. Let us observe
that Verbitsky proved the non-vanishing conjecture on hyperKähler manifolds (holo-
morphic symplectic manifolds) under the same assumption (see [Ver10]).

As compared to Conjecture 1.2, one of our advances has been to remove the
condition Supp D ⊆ Supp(S+ B). As a benefit of removing the condition Supp D ⊆
Supp(S + B) in Conjecture 1.2, we can run the minimal model program while
preserving a good condition for metrics (cf. [DHP13, Sect. 8], [FG14, Theorem 5.9]).
By applying the above theorem and techniques of the minimal model program, we
obtain results related to the abundance conjecture (see [GM13] for more details).

2 Proof of the Main Results

2.1 Proof of Theorem 2.1

In this subsection, we give a proof of the following theorem,which is an improvement
of Theorem 1.2 to obtain Theorem 1.4.

Theorem 2.1 Let (F, hF ) and (L , hL) be (singular) hermitian line bundles with
semi-positive curvature on a compact Kähler manifold X. Assume that there exists
an effective R-divisor Δ with

hF = ha
L · hΔ,
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where a is a positive real number and hΔ is the singular metric defined by Δ.
Then for a (non-zero) section s of L satisfying supX |s|hL < ∞, the multiplication

map

Φs : Hq(X, K X ⊗ F ⊗ I (hF ))
⊗s−→ Hq(X, K X ⊗ F ⊗ L ⊗ I (hF hL))

is (well-defined and) injective for any q.

Remark 2.1 (1) The case of Δ = 0 corresponds to Theorem 1.2.

(2) If hL and hF are smooth on a Zariski open set, the same conclusion holds under
the weaker assumption of

√−1ΘhF (F) ≥ a
√−1ΘhL (L) (see [Mat14, Theorem

1.5]).

Proof We give here only the strategy of the proof. See [Mat13b, GM13] for the
precise proof. First of all, we recall Enoki’s method to generalize Kollar’s injectivity
theorem, which gives a proof of the special case where hL is smooth and Δ = 0. In
this case, the cohomology group Hq(X, K X ⊗ F) is isomorphic to the space of the
harmonic forms with respect to hF

H n,q(F)hF :=
{u | u is a smooth F-valued (n, q)-form on X such that ∂u = D

′′∗
hF

u = 0},

where D
′′∗
hF

is the adjoint operator of the ∂-operator. For an arbitrary harmonic form

u ∈ H n,q(F)hF , we can conclude that D
′′∗
hF hL

su = 0 from the semi-positivity of
the curvature and hF = ha

L . This step heavily depends on the semi-positivity of
the curvature. This implies that the multiplication map Φs induces the map from
H n,q(F)hF toH n,q(F ⊗ L)hF hL , and thus the injectivity is obvious.

When hL is smooth on a Zariski open set, the cohomology group Hq(X, K X ⊗
F ⊗ I (h)) is isomorphic to the space of harmonic forms on the Zariski open set.
Therefore we can give a proof similar to Enoki’s proof thanks to the semi-positivity
of the curvature (see [Mat14, Theorem 1.5]).

In our situation, we must consider singular metrics with transcendental (non-
algebraic) singularities. It is quite difficult to directly handle transcendental singu-
larities, and thus, in Step 1, we approximate a given singular metric hF by metrics
{hε}ε>0 that are smooth on a Zariski open set. Thenwe represent a given cohomology
class in Hq(X, K X ⊗ F ⊗I (hF )) by the associated harmonic form uε with respect
to hε on the Zariski open set. We want to show that suε is also harmonic by using
the same method as Enoki. However, the same argument as in [Eno90] fails since
the curvature of hε is not semi-positive. For this reason, in Step2, we investigate the
asymptotic behavior of the harmonic forms uε with respect to a family of the regu-
larized metrics {hε}ε>0. Then we show that the L2-norm ‖D

′′∗
hεhL ,ε

suε‖ converges to
zero as ε tends to zero, where hL ,ε is a suitable approximation of hL . Further, in Step
3, we construct solutions γε of the ∂-equation ∂γε = suε such that the L2-norm ‖γε‖
is uniformly bounded, by applying the Čech complex with the topology induced by
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the local L2-norms. In Step 4, we see that

‖suε‖2 = 〈〈suε, ∂γε〉〉 ≤ ‖D
′′∗
hεhL ,ε

suε‖‖γε‖ → 0 as ε → 0.

From these observations, we conclude that uε converges to zero in a suitable sense.
This completes the proof.

Step 1 (The equisingular approximation of hF )

Throughout the proof, we fix a Kähler form ω on X . For the proof, we want to apply
the theory of harmonic integrals, but the metric hF may not be smooth. For this
reason, we approximate hF by metrics {hε}ε>0 that are smooth on a Zariski open
set. By [DPS01, Theorem 2.3], we can obtain metrics {hε}ε>0 on F satisfying the
following properties:

(a) hε is smooth on Y := X \ Z , where Z is a subvariety independent of ε.
(b) hε2 ≤ hε1 ≤ hF holds for any 0 < ε1 < ε2.
(c) I (hF ) = I (hε).
(d)

√−1Θhε (F) ≥ −εω.

See [Mat13b, Theorem 2.3] for property (a). By [Fuj12, Lemma 3.1], we obtain a
Kähler form ω̃ on Y satisfying the following properties:

(A) ω̃ is a complete Kähler form on Y .
(B) There exists a bounded function Ψ such that ω̃ = ddcΨ on a neighborhood of

z ∈ Z .
(C) ω̃ ≥ ω.

In the proof, we mainly consider harmonic forms on Y with respect to hε and
ω̃. Let Ln,q

(2) (Y, F)hε,ω̃ be the space of L2-integrable F-valued (n, q)-forms α with
respect to the inner product ‖ · ‖hε,ω̃ defined by

‖α‖2hε,ω̃
:=

∫

Y
|α|2hε,ω̃

ω̃n .

Then we have the following orthogonal decomposition:

Ln,q
(2) (Y, F)hε,ω̃ = Im ∂ ⊕ H n,q(F)hε,ω̃ ⊕ Im D

′′∗
hε

.

Here the operator D
′∗
hε

(resp. D
′′∗
hε
) denotes the closed extension of the formal adjoint

of the (1, 0)-part D
′
hε

(resp. (0, 1)-part D
′′
hε

= ∂) of the Chern connection Dhε =
D

′
hε

+ D
′′
hε
. FurtherH n,q(F)hε,ω̃ denotes the space of harmonic forms with respect

to hε and ω̃, namely

H n,q(F)hε,ω̃ := {α | α is an F-valued(n, q)-form with ∂α = D
′′∗
hε

α = 0}.
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A harmonic form in H n,q(F)hε,ω̃ is smooth by the regularity theorem for elliptic
operators. These results are known to specialists. The precise proof of them can be
found in [Fuj12, Claim 1].

Take an arbitrary cohomology class {u} ∈ Hq(X, K X ⊗ F ⊗I (hF )) represented
by an F-valued (n, q)-form u with ‖u‖hF ,ω < ∞. In order to prove that the multi-
plication map Φs is injective, we assume that the cohomology class of su is zero in
Hq(X, K X ⊗ F ⊗ L ⊗ I (hF hL)). Our goal is to show that the cohomology class
of u is actually zero under this assumption.

By the inequality ‖u‖hε,ω̃ ≤ ‖u‖hF ,ω < ∞, we can obtain uε ∈ H n,q(F)hε,ω̃

and vε ∈ Ln,q−1
(2) (Y, F)hε,ω̃ such that

u = uε + ∂vε.

Note that the component of ImD
′′∗
hε

is zero since u is ∂-closed.
At the end of this step, we explain the strategy of the proof. In Step 2, we show that

‖D
′′∗
hεhL ,ε

suε‖hεhL ,ε,ω̃ converges to zero as ε tends to zero. Here hL ,ε is the singular
metric on L defined by

hL ,ε := h1/a
ε h−1/a

Δ .

Since the cohomology class of su is zero, there are solutions γε of the ∂-equation
∂γε = suε. For the proof, we need to obtain L2-estimates of them. In Step 3, we
construct solutions γε of the ∂-equation ∂γε = suε such that the norm ‖γε‖hεhL ,ε,ω̃

is uniformly bounded. Then we have

‖suε‖2hεhL ,ε,ω̃
≤ ‖D

′′∗
hεhL ,ε

suε‖hεhL ,ε,ω̃‖γε‖hεhL ,ε,ω̃.

By Step 2 and Step 3, we can conclude that the right hand side goes to zero as ε

tends to zero. In Step 4, from this convergence, we prove that uε converges to zero
in a suitable sense, which implies that the cohomology class of u is zero.

Step 2 (A generalization of Enoki’s proof)

By generalizing Enoki’s method, in Step 2, we prove the following proposition:

Proposition 2.1 As ε tends to zero, the norm ‖D
′′∗
hεhL ,ε

suε‖hεhL ,ε,ω̃ converges to zero.

The same argument as in [Eno90] fails since the curvature of hε is not semi-
positive, and further property (d) is not sufficient for the proof of the proposition
since there is counterexample to the injectivity theorem for nef line bundles. To
overcome these difficulties, we first see the following inequality:

‖uε‖hε,ω̃ ≤ ‖u‖hε,ω̃ ≤ ‖u‖h,ω. (1)
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This inequality and properties (b), (c) imply the proposition. This step can be con-
sidered as a generalization of Enoki’s method.

Step 3 (A construction of solutions of the ∂-equation via the Čech complex)
In Step 3, we construct solutions of the ∂-equation with suitable L2-norm by using
the Čech complex.

Proposition 2.2 There exist F-valued (n, q − 1)-forms αε on Y satisfying the fol-
lowing properties:

(1) ∂αε = u − uε. (2) The norm ‖αε‖hε,ω̃ is uni f ormly bounded.

Remark 2.2 We have already known that there exist solutions αε of the ∂-equation
∂αε = u − uε since u − uε ∈ Im∂ . However, for the proof of the main theorem, we
need to construct solutions with uniformly bounded L2-norm.

The strategy of the proof is as follows: The main idea of the proof is to convert the ∂-
equation ∂αε = u − uε to the equation δVε = Sε of the coboundary operator δ in the
space of cochains C•(K X ⊗ F ⊗I (hε)), by using the Čech complex and pursuing
the De Rham-Weil isomorphism. Here the q-cochain Sε is constructed from u − uε.
In this construction, we locally solve the ∂-equation. The important point is that the
spaceC•(K X ⊗ F ⊗I (hε)) is independent of ε thanks to property (c) of hε although
the L2-space Ln,q

(2) (Y, F)hε,ω̃ depends on ε. Since ‖u−uε‖hε,ω̃ is uniformly bounded,
we can observe that Sε converges to some q-coboundary in Cq(K X ⊗ F ⊗ I (h))

with the topology induced by the local L2-norms with respect to h. Further we can
observe that the coboundary operator δ is an open map. Then by these observations
we construct solutions Vε of the equation δVε = Sε with uniformly bounded norm.
Finally, by using a partition of unity, we conversely construct αε ∈ Ln,q−1

(2) (Y, F)hε,ω̃

from Sε satisfying the properties in Proposition 2.2. This proof gives a new method
to obtain L2-estimates of solutions of the ∂-equation.

Step 4 (The limit of the harmonic forms)

In Step 4, we investigate the limit of uε and complete the proof. By Step 2 and Step
3, we have

‖suε‖2hεhL ,ε,ω̃
≤ ‖D

′′∗
hεhL ,ε

suε‖hεhL ,ε,ω̃‖γε‖hεhL ,ε,ω̃ → 0 as ε → 0.

From this convergence, we can show that uε converges to zero in a suitable sense,
which implies that the cohomology class {u} of u is zero in Hq(X, K X ⊗F ⊗I (hε)).
By property (c), we obtain the conclusion of Theorem 2.1. �

2.2 Proof of Theorem 1.3

In this subsection, we give a proof of Theorem 1.3 by using Theorem 1.2 and [Mat14,
Theorem 4.1].
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Proof of Theorem 1.3Weconsider the space of sectionswith boundednormdefinedby

H0
bdd,hm (X, Fm) := {s ∈ H(X, Fm)

∣∣ sup
X

|s|hm < ∞}.

The bounded Kodaira dimension κbdd(F, h) of (F, h) is defined to be −∞ if
H0
bdd,hm (X, Fm) = 0 for any m > 0. Otherwise, κbdd(F, h) is defined by

κbdd(F, h) := sup{k ∈ Z | lim sup
m→∞

dim H0
bdd,hm (X, Fm)

/
mk > 0}.

For a contradiction, we assume that there exists a non-zero cohomology class α ∈
Hq(X, K X ⊗ F ⊗I (h)). If sections {si }N

i=1 in H0
bdd,hm (X, Fm) are linearly indepen-

dent, then {siα}N
i=1 are also linearly independent in Hq(X, K X ⊗Fm+1⊗I (hm+1)).

Indeed, if
∑N

i=1 ci siα = 0 for some ci ∈ C, then we know
∑N

i=1 ci si = 0
by Theorem 1.2. Since {si }N

i=1 are linearly independent, we have ci = 0 for any
i = 1, 2, . . . N . This yields

dim H0
bdd,hm (X, Fm) ≤ dim Hq(X, K X ⊗ Fm+1 ⊗ I (hm+1)).

On the other hand, by [Mat14, Theorem 4.1], we have

dim Hq(X, K X ⊗ Fm ⊗ I (hm)) = O(mdim X−q) asm → ∞,

for any q ≥ 0 (cf. [Dem, (6.18) Lemma]). If q > dim X − κbdd(F, h), this is a
contradiction. �

2.3 Proof of Theorem 1.4

In this subsection, we give a proof of Theorem 1.4.

Proof of Theorem 1.4 For simplicity, we put Δ := S + B and G := m(K X +Δ). We
may assume the additional assumption of h ≤ hD , where hD is the singular metric
onOX (K X +Δ) defined by the effective divisor D. Indeed, for a smooth metric g on
OX (K X +Δ) and an L1-function ϕ (resp. ϕD) with h = g e−ϕ (resp. hD = g e−ϕD ),
the metric defined by g e−max(ϕ,ϕD) satisfies the assumptions again.

Consider the following exact sequence:

0 → OX (G − S) ⊗ I (hm−1hB) → OX (G) ⊗ I (hm−1hB) → OS(G) ⊗ I (hm−1hB) → 0.

We first prove the induced homomorphism

Hq(X,OX (G − S) ⊗ I (hm−1hB)) → Hq(X,OX (G) ⊗ I (hm−1hB))
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is injective by our injectivity theorem. By the assumption on the support of D, we
can take an integer a > 0 such that aD is a Cartier divisor and S ≤ aD. Then we
have the following commutative diagram:

Hq (X,OX (G) ⊗ I (hm−1hB)) ⊇ Im (+S)

+(aD−S)

��
Hq (X,OX (G − S) ⊗ I (hm−1hB))

+S
������������������������

+aD
�� Hq (X,OX (G − S + aD) ⊗ I (ha+m−1hB)),

with amap+S : Hq(X,OX (G−S)⊗I (hm−1hB)) → Hq(X,OX (G)⊗I (hm−1hB)).

In order to show that the upper map on right is injective, we prove that the horizontal
map is injective as an application of Theorem 2.1.

By the definition of G, we have

G − S = m(K X + Δ) − S = K X + (m − 1)(K X + Δ) + B.

Then the line bundle F := OX ((m − 1)(K X + Δ) + B) equipped with the metric
hF := hm−1hB and the line bundle L := OX (aD) equippedwith themetric hL := ha

satisfy the assumptions in Theorem 2.1. Indeed, we have hF = h(m−1)/a
L hB by

the construction, and further the point-wise norm |sa D|hL is bounded on X by the
inequality h ≤ hD , where sa D is the natural section of aD. Therefore the horizontal
map is injective by Theorem 2.1. By the assumption on the Lelong number of h, we
can conclude that OS ⊗ I (hm−1hB) = OS . This follows from Skoda’s lemma and
Hölder’s inequality. This completes the proof. �

3 Open Problems

In this section, we summarize and give open problems related to the topicsmentioned
in this survey.

It is of interest to consider the injectivity theorem in the relative situation. The
following problem is a relative version of Theorem 1.2. For relative versions of the
injectivity theorem and their applications, we refer the reader to [Fuj13a]. In his
paper [Fuj13a], Fujino affirmatively solved this problem under the assumption on
the regularity of singular metrics, whose proof is based on the Ohsawa-Takegoshi
twisted version of the Bochner-Kodaira-Nakano identity. To remove this assumption,
it seems to be needed to use a combination of his method and the techniques of
Theorem 1.2.

Probelm 3.1 (cf. [Fuj13a, Problem 1.8]) Let π : X → Y be a surjective holo-
morphic map from Kähler manifold X to a complex manifold Y , and F be a line
bundle on X with a singular metric h whose curvature is semi-positive. Then for
a (non-zero) section s of a positive multiple Fm satisfying supX |s|hm < ∞, the
multiplication map
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Φs : Rqπ∗(K X ⊗ F ⊗ I (h))
⊗s−→ Rqπ∗(K X ⊗ Fm+1 ⊗ I (hm+1))

is injective for any q. Here Rqπ∗(F ) denotes the higher direct image of a sheafF .

Theorem 2.1 can be expected to hold under the weaker assumption made in the
following problem. Indeed, this problem was affirmatively solved in [Mat14] under
the regularity assumption on singular metrics. It is also an interesting problem to
consider the relative version of this problem in the same direction as Problem 3.1.

Probelm 3.2 (cf. [Mat14, Theorem 1.5], [Fuj12, Theorem 1.2]) Let (F, hF ) and
(L , hL) be (singular) hermitian line bundles with semi-positive curvature on a com-
pact Kähler manifold X . Assume there exists a positive real number a such that√−1ΘhF (F) ≥ a

√−1ΘhL (L). Then the same conclusion as in Theorem 2.1 holds.

Fujino proposed the following problem, which asks whether one can generalize
the injectivity theorem for lc pairs proved by him. The main difficulty in studying
this problem is that one must handle lc singularities by analytic methods.

Probelm 3.3 (cf. [Fuj11, Theorem 6.1]) Let D be a simple normal crossing divisor
and F be a semi-positive line bundle on a compact Kähler manifold X . Then, for a
(non-zero) section s of a positive multiple Fm whose zero locus s−1(0) contains no
lc centers of (X, D), the multiplication map

Φs : Hq(X, K X ⊗ F ⊗ OX (D))
⊗s−→ Hq(X, K X ⊗ Fm+1 ⊗ OX (D))

is injective for any q.

For a nef line bundle F on a smooth projective variety X , it can be proven that

dim Hq(X, Fm) = O(mdim X−q) asm → ∞.

When X is merely supposed to be a compact Kähler manifold, the same conclusion
can be expected. This was first posed by Demailly, and proved by Berndtsson under
the stronger assumption that F is semi-positive in [Ber12]. The following problem
was also proved in [Mat14] when X is a smooth projective variety.

Probelm 3.4 (cf. [Mat14, Theorem 4.1]) Let F be a line bundle on a compact Kähler
manifold X and h be a singular metric with semi-positive curvature on F . Then, for
any vector bundle (orlinebundle) M , we have

dim Hq(X, M ⊗ Fm ⊗ I (hm)) = O(mdim X−q) asm → ∞.
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Amoebas of Cuspidal Strata for Classical
Discriminant

E.N. Mikhalkin, A.V. Shchuplev and A.K. Tsikh

Abstract An amoeba of an analytic set is the real part of its image in a logarithmic
scale. Among all hypersurfaces A-discriminantal sets have themost simple amoebas.
We prove that any singular cuspidal stratum of the classical discriminant can be
transformed by a monomial change of variables into an A-discriminantal set and
compute the contours of the amoebas of these strata.

Keywords Amoeba · A-discriminant · Cuspidal stratum

The notion of the amoeba of an algebraic hypersurface was introduced in 1994 in
the book [GKZ94]. The study of the structure of amoebas began with the papers
[FPT00, Mik00], and by now there are many interesting results related both to the
description of amoebas [MR01, BT12], and to their applications in the study of
dimer configurations [KOS06], extensions of non-Archimedean fields [EKL06], to
mention but a few. The interest in amoebas is partly stimulated by the connections
to real algebraic geometry [Mik00] and tropical arithmetic [EKL06, Stu02]. The
extension of the notion of amoeba to non-algebraic complex analytic sets allows to
use this language in thermodynamics and statistical physics in general, for example
in problems with several Hamiltonians for a given physical system [PPT13, PT09].
In statistical physics amoebas appear when using asymptotical methods for studying
integrals with integration over cycles on analytic sets [LPT08, BKT14].
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Logz = (log |z1|, . . . , log |zn|).

The amoeba of an algebraic set V ⊂ T
n is its image LogV ⊂ R

n . The amoeba
of the set V will be denoted by AV , while its complement Rn \AV will be denoted
by cAV . Since the map Log is proper, the complement of the amoeba is open. For
a hypersurface V , i.e. for a set of codimension 1, the complement cAV consists
of a finite number of connected components, each is open and convex. Indeed, if a
hypersurface V is the zero set of a polynomial P , then for every connected component
E of cAV the set Log−1E is a domain of convergence for some Laurent series for
1/P centered at the origin:

1

P(z)
=

∑

α∈Zn

aαzα,

and such domains are logarithmically convex.
In the case of arbitrary codimension k = codimC V the complement cAV has the

property of being (k − 1)-convex (the 0-convexity is the usual convexity) [BT12,
Hen04].

In comparison to the case of hypersurfaces, amoebas of surfaces of codimension
k > 1 are studied to a less extent. One of the reasons behind that is the absence of a
simple analog of the Jensen-Ronkin function [PR04]. This paper deals with amoe-
bas of singular strata of cuspidal type for the classical discriminant. An important
role in this study is played by the Horn-Kapranov parametrization for the discrim-
inant set (see Sect. 2). The implicit function theorem yields that singularities of an
algebraic function, given by a polynomial equation, appear only in those points
where the discriminant of the polynomial vanishes. It turns out that a general alge-
braic function, i.e. given by a polynomial with independent variable coefficients, is a
hypergeometric function in the sense of Horn [Hor89]. The hallmark of this property
is that one can explicitly parametrize the boundary of the domain of convergence of
a hypergeometric series, i.e. parametrize the set of conjugate radii of convergence.
This parametrization was obtained by J.Horn in 1889, and a hundred years later
M. Kapranov noticed a miraculous fact: if in Horn’s parametrization we omit the
absolute value signs and let the parameters be complex it becomes the parametriza-
tion of the singular set of a hypergeometric function [Kap91]. The ideas of Horn and
Kapranov were further developed in [AT12] to parametrize discriminantal sets for
polynomial transformations of Cn .

We proceed as follows. In Sect. 1 we define the contour of an amoeba and the
logarithmic Gauss map and formulate a theorem that establishes a relationship
between them (Theorem 1). In Sect. 2 we consider cuspidal strata for the classi-
cal discriminant and find their place in the hierarchy of all A-discriminantal sets
(Theorem 2). Theorems 3 and 4 are necessary steps to justify the fact that amoebas
of cuspidal strata have non-empty contours, which admit explicit parameterizations
(Theorem 5).
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1 The Contour of Amoeba and the Logarithmic Gauss Map

Definition 1 The contour of the amoeba AV is the set CV of critical values of the
logarithmic mapping Log restricted to V , i.e. of the mapping Log : V → R

n .

The structure of the contour of an amoeba can be described in terms of the logarith-
micGaussmap.Thismapping, introducedbyKapranov in [Kap91] for hypersurfaces,
extends naturally to the case of surfaces V of any codimension k.

Definition 2 Let Gr(n, k) be the Grassmanian of k-dimensional complex subspaces
inCn . The logarithmic Gauss map γ : V → Gr(n, k) sends a smooth point z ∈ regV
to the normal subspace γ (z) to LogCV at LogC(z), where LogC is the complex
logarithm LogC : (z1, . . . , zn) → (log z1, . . . , log zn).

If V is a hypersurface

V = {z ∈ T
n : P(z) = 0}

(i.e. if k = 1 and Gr(n, 1) = CPn−1) the logarithmic Gauss map γ : V → CPn−1
has the following analytic expression

(z1, . . . , zn) →
(

z1
∂ P

∂z1
: . . . : zn

∂ P

∂zn

)
.

In this case it is known [Mik00, The02] that a point z ∈ regV is critical for the
map Log|V if and only if its image γ (z) under the logarithmic Gauss map lies in the
real projective subspace RPn−1 ⊂ CPn−1. So the contour CV of the amoeba AV of
a hypersurface is the set Log(γ −1(RPn−1)).

Consider now an algebraic surface V ⊂ T
n , n > 1. Assume that V is of pure

complex dimension d, i.e. all irreducible components of V have the same dimension
d. Denote by k = n − d the codimension of V .

In a neighborhood of any its smooth point z0 the set V is given by the system
P1(z)=. . .=Pk(z) = 0 with the Jacobian matrix of rank k. Then the logarithmic
Gauss map at this point is defined by the matrix

γ (z) =

⎛

⎜⎜⎜⎜
⎝

z1
∂ P1

∂z1
· · · zn

∂ P1

∂zn
...

...

z1
∂ Pk

∂z1
· · · zn

∂ Pk

∂zn

⎞

⎟⎟⎟⎟
⎠

.

The rows of this matrix form a basis for the normal space to the image LogCV at
LogC(z0).



260 E.N. Mikhalkin et al.

Theorem 1 ([BT12]) A point z ∈ regV is critical for the mapping Log if and only
if the image γ (z) of the logarithmic Gauss map contains

• at least n − 2d + 1 linearly independent real vectors if 2d ≤ n,
• at least one real vector if 2d ≥ n.

In particular, if V is a hypersurface or a curve, i.e. d = n − 1 or d = 1, a point z is
critical if and only if γ (z) is real.

Let us say some words on the essence of this statement. The mapping Log|V :
V → R

n is the composition of the complex logarithm

LogC(z) = Log(z) + iArg(z) : V → R
n ⊕ iRn

and the projection onto the real part Rn :

Log|V = πRn ◦ LogC
∣∣
V .

The complex logarithm does not have critical point on regV (it is locally biholomor-
phic in Tn), therefore the critical points of Log|V appear only as critical point of the
projection

πRn : LogCV → R
n .

But the critical point of this projection are defined by the properties of its tangent
map

d(πRn )|LogCV : Tw(LogCV ) → TRe(w)(R
n), w = LogC(z).

As a matter of fact, the criterion for Log|V to be critical at z can be formulated as
follows

• if 2d ≤ n, the tangent map of the projection πRn is not injective,
• if 2d ≥ n, the tangent map of the projection πRn is not surjective.

The conditions of being non-injective or non-surjective are related to whether the
normal space to LogCV is real or not (in some sense Fig. 1 clarifies that: in critical
points of the projectionπRn the normal subspace γ (z) becomes ‘horizontal’ and does
not have a real part, i.e. γ (z) is real).

As an example, let us examine whether an amoeba of a complex line has a contour.
Let the complex line V in Cn be given by

⎧
⎪⎨

⎪⎩

z2 = a2z1 + b2,

. . .

zn = anz1 + bn,

(1)

where all a j , b j 	= 0. The logarithmic projection of V has the form

Log(z)|V = (log |z1|, log |a2z1 + b2|, . . . , log |anz1 + bn|).
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Fig. 1 An illustration to Theorem 1

Its Jacobian matrix equals

∂(Log)

∂(z, z)
= 1

2

⎛

⎜⎜⎜⎜⎜⎜
⎜
⎝

1

z1

1

z1
a2
z1

a2

z1
. . .
an

z1

an

z1

⎞

⎟⎟⎟⎟⎟⎟
⎟
⎠

.

Denote

z1 = x + iy,
b j

a j
= c j + id j ,

then the condition for z1 = x + iy to be critical for the mapping Log|V (i.e. when
the rank of the Jacobian matrix is not maximal) can be written as

∣∣∣
∣

x y
c j d j

∣∣∣
∣ = 0, j = 2, . . . , n,

∣∣∣∣
ck dk

x y

∣∣∣∣ +
∣∣∣∣
x y
cl dl

∣∣∣∣ +
∣∣∣∣
ck dk

cl dl

∣∣∣∣ = 0, k, l = 2, . . . , n.

This system is consistent if and only if ckdl = cldk for all k, l = 2, . . . , n, but this
condition is equivalent to

akbl

albk
∈ R, k, l = 2, . . . , n. (2)
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Thus, we arrive at

Proposition For n ≥ 3 the contour of the amoeba of a complex line (1) is not empty
if and only if the conditions (2) hold. In such case the contour of the amoeba is the
image of the real line d2x = c2y under the mapping Log.

Consider two examples of lines in T
3.

Example 1 For the complex line given by

{
z2 = z1 + 1,

z3 = z1 + 1 + i,

the conditions (2) do not hold, therefore the contour of its amoeba is empty. The
logarithmic projection of this line does not have critical points, and the line is dif-
feomorphic to its amoeba (see Fig. 2, left). In this case we say that the amoeba is not
degenerate. At each point of the line the value γ (z) of the logarithmic Gauss map
has only one real vector (see Fig. 2, right).

Example 2 For the complex line

{
z2 = z1 + 1,

z3 = z1 + 2

the condition (2) holds:
a2b3
a3b2

= 2 ∈ R. The amoeba is a surface with a corner in

R
3, each its interior point has two preimages on the line. Namely, for every non-real

z1 = x + iy the images of

Log(z1, z1 + 1, z1 + 2) and Log(z1, z1 + 1, z1 + 2)

Fig. 2 The amoeba of the complex line of Example 1
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Fig. 3 The amoeba of the complex line of Example 2

coincide. The real line z1 = x1 ismapped to the contour of the amoeba (its topological
boundary), and the amoeba itself is the result of collapsing of a non-degenerate
amoeba (see Fig. 3, left). At the points of the contour the logarithmic Gauss map
γ (z) contains a plane of real normal vectors (see Fig. 3, right).

2 Cuspidal Strata for Classical Discriminant

By a general algebraic equation we understand the equation

f (y) := a0 + a1y + . . . + an−1yn−1 + an yn = 0 (3)

with variable complex coefficients a = (a0, a1, . . . , an).
The classical discriminant is the polynomial D(a) that vanishes if and only if the

Eq. (3) has multiple roots. The zero set of the discriminant D(a)we denote by∇ and
call the discriminantal set of the Eq. (3) or of the polynomial f .

Define subsets M j ⊂ ∇ that comprise all a ∈ C
n+1 for which the Eq. (3) has

roots of multiplicity ≥ j . They form a sequence of nested subsets

∇ = M 2 ⊃ M 3 ⊃ . . . ⊃ M n .

EachM j+1 is a subset of singular points sngM j , and the stratum S j = M j \M j+1

consists of points where either M j is smooth or self intersects with its smooth
components.Therefore we call M j the cuspidal strata. Note that certain properties
of these strata were studied in [Kat03].

Our recent result from the forthcoming paper [MT] states the following.

Theorem 2 There exist monomial transformations that turn the strata M 2,

M 3, . . . , M n into some A-discriminantal sets ∇A2 , ∇A3 , . . . ,∇An .

Recall the definition of an A-discriminantal set (see [GKZ94], Chap. 9). Instead of
Eq. (3) in one unknown y we consider an equation in k unknowns y = (y1, . . . , yk):
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f (y1, . . . , yk) :=
∑

α=(α1,...,αk )∈A

aα y1
α1 . . . yk

αk = 0, (4)

where A ⊂ Z
k is a fixed set of exponents that generate the lattice Zk as an additive

group, and the coefficients aα are variables. The set of coefficients (same as the set
of Eq. (4) and the set of Laurent polynomials f with exponents α ∈ A) isCA, whose
dimension is equal to the cardinality of A.

Definition 3 Let ∇◦ be the set of all (aα) ∈ C
A for which the Eq. (4) has critical

roots y ∈ (C \ 0)k , i.e. the roots where the gradient of f vanishes. The closure ∇◦

of this set is called an A-discriminantal set and is denoted by ∇A.

In the case k = 1, A = {0, 1, 2 . . . , n} ⊂ Z the set ∇A is the classical discrimi-
nantal set ∇ of the Eq. (3). In Theorem 2 each ∇A j is an A j -discriminantal set of an
equation in j − 1 unknowns. Moreover, the cardinality of A j is n + 1 and ∇A2 = ∇.

For the proof of Theorem 2, the crucial thing is the Horn-Kapranov parametriza-
tion (see [PT04]) for the discriminantal set of a reduced equation

f (y) = 1 + x1y + . . . + xn−1yn−1 + yn = 0. (5)

This parametrization x = Ψ (s) : CP
n−2
s → C

n−1
x is given by the formula

xk = − nsk

〈α, s〉
( 〈α, s〉

〈β, s〉
) k

n

, k = 1, . . . , n − 1, (6)

where α, β are vectors of integers

α = (n − 1, . . . , 2, 1), β = (1, 2, . . . , n − 1).

Notice that the Eq. (3) can be reduced differently, fixing coefficients of any pair of
monomials y p and yq . The parametrization of the corresponding reduced discrimi-
nantal set ∇pq will differ from formula (6) (i.e. the parametrization of ∇0n), it will
depend on different vectors α and β, and the root in the formula will be of degree
p − q instead of n [PT04].

Define the sequence of critical strata C jof the parametrization (6). The first stra-
tumC 1 is defined as the set of critical values of the parametrizationΨ . It turns out that
the critical points of Ψ constitute a hyperplane L1 ⊂ CP

n−2, consequently, the first
critical stratum C 1 is parametrized by the restriction of Ψ to L1. Analogously, we
define the stratum C 2 of critical values of that restriction and proceed by induction.
To formulate the result, introduce the following hyperplanes in CPn−2:

L j =
{

s :
n−1∑

i= j

i(i − 1) · · · (i − ( j − 1))(n − i)si = 0
}
,
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where s = (s1 : . . . : sn−1) is the homogeneous coordinates. The following theorem
is proved by the direct computations.

Theorem 3 The strata C j are parametrized by the restrictions Ψ

∣
∣∣
L j

on the planes

L j = L1 ∩ . . . ∩ L j .

The next theorem shows the relationship between the critical strata of Ψ with
the reduced singular strata M j

0n obtained from M j by intersecting with the plane
a0 = an = 1.

Theorem 4 The reduced singular strata M
j+2
0n ⊂ ∇0n coincide with the critical

strata C j of the parametrization Ψ .

The proof of Theorem 4 goes as follows. First, we notice that the expression

t (s) =
( 〈β, s〉

〈α, s〉
) 1

n

involved in (6) is a root of the Eq. (5) of multiplicity ≥ 2 for x = Ψ (s).
Let t be a root of the Eq. (5) of multiplicity ≥ μ, i.e.

f (y) = (y − t)μ fn−μ(y), (7)

where

fn−μ(y) :=
n−μ∑

k=0

x (n−μ)
k yk

is the result of division of f by (y − t)μ. Computing the coefficients x (n−μ)
k in terms

of the root t and the coefficients of xk of the initial polynomial f , we prove that

fn−μ(t (s)) = 0 ⇐⇒ s ∈ Lμ−1.

So, if x = Ψ (s) then y = t (s) is a root of multiplicity ≥ μ−2 if and only if s ∈ Lμ.
From there, it is easy to finish the proof of Theorem 4.

To explain the proof of Theorem 2, recall the Horn-Kapranov parametrization for
a reduced A-discriminantal set. In order to do that, with the set of exponents α j ∈ A
of (5) we associate the matrix

A =

⎛

⎜⎜⎜
⎝

1 1 · · · 1
α11 α21 · · · αN1
...

...
. . .

...

α1k α2k · · · αNk

⎞

⎟⎟⎟
⎠

(we denote this matrix by A too). For the Eq. (3) we have
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A =
(
1 1 · · · 1 1
0 1 · · · n − 1 n

)

Let B be an integer right annulator of A of rank m = N − k. There are many
such annulators and the choice of B gives a reduction of the Eq. (4) (see [GKZ94]
or [Kap91]). Write this annulator in the form

B =
⎛

⎜
⎝

b11 · · · b1m
...

. . .
...

bN1 · · · bNm

⎞

⎟
⎠ .

The matrix B defines the mapping

ΨB : CP
m−1 → (C∗)m, s → z = (Bs)B, (8)

where s = (s1 : . . . : sm) is the homogeneous coordinates in CP
m−1. Coordinate-

wise the mapping ΨB has the form

zk =
N∏

j=1

〈b j , s〉b jk , k = 1, . . . , m,

where b j = (b j1, . . . , b jm) are the rows of the matrix B. Since the first row of A
is orthogonal to each column of B, the degree of homogeneity of these expressions
in s is zero, therefore (Bs)B are correctly defined on CP

m−1. The mapping ΨB(s)
defined by (8) is called the Horn-Kapranov parametrization. The importance of this
mapping follows from Kapranov’s theorem [Kap91] stating that

• The mapping ΨB(s) is a parametrization of the reduced A-discriminantal set ∇̃A.
• If ∇̃A is a hypersurface then ΨB(s) is a birational isomorphism that coincide with
the inversion of the logarithmic Gauss map for ∇̃A.

Example 3 Let us sketch the idea of the proof of Theorem 2 by the example of the
stratum M 3

01 for the equation of degree 4. Consider a reduced equation of fourth
degree

1 + y + z2y2 + z3y3 + z4y4 = 0.

According to Kapranov’s theorem the reduced discriminantal set∇01 is parametrized
by the mapping Ψ : CP

2 → C
3 by

z2 = s2(s2 + 2s3 + 3s4)1(−2s2 − 3s3 − 4s4)−2

z3 = s3(s2 + 2s3 + 3s4)2(−2s2 − 3s3 − 4s4)−3

z4 = s4(s2 + 2s3 + 3s4)3(−2s2 − 3s3 − 4s4)−4.

The line L1 ⊂ CP
2 of its critical points has the equation s2 + 3s3 + 6s4 = 0. There-

fore, the reduced stratum M 3
01 defined by the restriction Ψ

∣∣
L1 , in the homogeneous

coordinates s′ = (s3 :s4) of this line is given by the formulas
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z2 = (−3s3 − 6s4)(−s3 − 3s4)1(3s3 + 8s4)−2

z3 = s3(−s3 − 3s4)2(3s3 + 8s4)−3

z4 = s4(−s3 − 3s4)3(3s3 + 8s4)−4.

The coefficients of five linear functions involved here define the matrix

B =

⎛

⎜
⎜⎜⎜
⎝

−1 −3
3 8

−3 −6
1 0
0 1

⎞

⎟
⎟⎟⎟
⎠

.

The monomial change of variables M : (z1, z2, z3) → (w3, w4) given by

w3 = z3z−3
2 , w4 = z4z−6

2 ,

transforms the parametrization of M 3
01 into

w3 = s13s04 (−3s3 − 6s4)−3(−s3 − 3s4)−1(3s3 + 8s4)3

w4 = s03s14(−3s3 − 6s4)−6(−s3 − 3s4)−3(3s3 + 8s4)8,

which has the form w = (Bs′)B . By Kapranov’s theorem such a mapping parame-
trizes some reduced A-discriminantal set. In order to determine the set A it is enough
to find a left integer annulator of B of the size 3×5 such that all elements of its first
row are 1 and its columns generate Z3. In this case we can take

A =
⎛

⎝
1 1 1 1 1
1 0 0 1 3
0 0 1 3 6

⎞

⎠ .

Therefore, w = (Bs′)B parametrizes a reduced A-discriminantal set of the equa-
tion

a10y1 + a01y2 + a00 + a31y31 y2 + a63y61 y32 = 0,

whose exponents are columnsof thematrix Awithout thefirst row.The corresponding
reduction of the equation is obtained if we fix a10 = a01 = a00 = 1 and denote
a31 =: w3, a63 =: w4.

Notice that the chosen annulator A of B has all its elements non-negative. Fol-
lowing the general scheme (see Lemma below), we would have chosen the matrix

⎛

⎝
1 1 1 1 1
1 0 0 1 3
0 1 0 −3 −8

⎞

⎠ ,

which is obtained from A by multiplication by a unimodular (3 × 3)-matrix.
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The following lemma is a generalization of the observations of this example, it is an
essential ingredient of the proof of Theorem 2. Here p, q, i0, . . . , i j−1 is an arbitrary
sequence of pair-wise distinct integers from {0, 1, . . . , n}, and 1 ≤ j ≤ n − 2.

Lemma Consider two sets of variables

z = (zi ), i 	= p, q,

w = (wk), k 	= p, q, i0, . . . , i j−1.

The map M : (C∗)n−1
z → (C∗)n−1− j

w defined by

wk = zk

j−1∏

ν=0

z
− (k−p)(k−q)

(iν−p)(iν−q)

∏

m 	=ν

k−im
iν−im

iν
, k 	= p, q, i0, . . . , i j−1, (9)

transforms the parametrization of the stratum M
j+2

pq to the form w = (Bs′)B, where
B is a rational (n + 1) × (n − 1 − j)-matrix of rank (n − 1 − j) such that the sum
of elements in a row is zero, and s′ = (sk), k 	= p, q, i0, . . . , i j−1.

For the proof of Theorem 2 it is convenient to take as p, q, i0, . . . , i j−1 the
sequence 0, 1, 2, . . . , j + 1.

3 Amoebas of Reduced Cuspidal Strata for Classical
Discriminant

Let us turn back to the reduced Eq. (5) and let n = 4. Consider the reduced discrim-
inantal set ∇04 for this equation. According to Theorems 2 and 3, its stratumM 3

04 is
parametrized by the restriction of

Ψ : CP
2 → ∇04 ⊂ C

3

to the complex line of its critical points

L1 = L1 = {(s1 :s2 :s3) : 1 · 3 · s1 + 2 · 2 · s2 + 3 · 1 · s3 = 0},

where Ψ is defined by formula (6) for n = 4. Choosing s1 as an affine coordinate in
L1, we see that the restriction Ψ

∣∣
L1 is

x1 = − 8s1
3s1−1

(
3s1−1
−s1+3

) 1
4

x2 = 23s1+3
3s1−1

(
3s1−1
−s1+3

) 1
2

x3 = − 8
3s1−1

(
3s1−1
−s1+3

) 3
4
.
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Fig. 4 The amoeba for the reduced stratumM 3
04 (left) and its contour from a different angle (right)

The amoeba and its contour for the stratum M 3, which admits this parametriza-
tion, is depicted on Fig. 4. One can see that the tentacles of the amoeba correspond
to the values

s1 = −∞, −1, 0,
1

3
, 3.

The value s1 = 1 corresponds to the zero-dimensional stratum M 4
04; this is a crit-

ical point of the parametrization. Thus, the contour of the amoeba for the zero-
dimensional stratum M 4

04 is a cuspidal point for the contour of the amoeba for the
one-dimensional stratumM 3

04 attached to it.
One has to be subtlewhen studying the attachement of the contours of the amoebas

for the strata M 2
04 = ∇04 and M 3

04. In the affine coordinates s1, s2 of CP2 the
parametrization Ψ for M 2 = ∇̃ looks like

x1 = −4s1
3s1+2s2+1

(
3s1+2s2+1
s1+2s2+3

) 1
4

x2 = −4s2
3s1+2s2+1

(
3s1+2s2+1
s1+2s2+3

) 1
2

x3 = −4
3s1+2s2+1

(
3s1+2s2+1
s1+2s2+3

) 3
4
.

To draw the contour of the amoeba we need to compute the image of R2 ⊂ RP
2

under the map Log ◦ Ψ . This map has four polar singularities on four lines (the fifth
line s3 = 0 lies at infinity of the chosen affine space):

s1 = 0, s2 = 0, 3s1 + 2s2 + 1 = 0, s1 + 2s2 + 3 = 0.

The contour of the amoeba for the stratumM 3
04 is a curve of cuspidal points for the

contour of the amoeba for the whole∇04, as shown on Fig. 5 (left). In a neighborhood
of the edge of the contour of the amoeba for M 3

04, which corresponds to s1 = 1,
the attachment of the contours forms ‘the swallowtail’. It should be noticed that the
contour of the amoeba of the discriminantal set contains the logarithmic image of the
real part of the discriminantal set, which is the object of study in singularity theory.
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Fig. 5 Attachment of the contour of the amoeba for ∇04 to the contour of the amoeba for M 3
04

The contour of the amoeba, however, is significantly larger, and its stratification is
more complex.

Let us make now some observations based on studying the equation of degree 4.
The contours of the amoebas for strataM 3

04 andM
2
04 = ∇04 are parametrized by the

restrictions of parameterizations Ψ

∣∣∣
L1

and Ψ

∣∣∣
L0

= Ψ (here L0 = CP
2) on the real

parts of the planes L1 and L0. ThemappingΨ behaves continuously as the parameter
s ∈ L0 approach L1 \ L2 (where L2 is the zero-dimensional subspace corresponding
to the stratumM 4

04). Note a sharp contrast of such a ‘nice’ behavior with the fact that
the inverse Ψ −1 : ∇04 → CP

2, which coincides with the logarithmic Gauss map, is
not defined at singular points M 3

04 ⊂ ∇04. In general, similar arguments prove the
following theorem.

Theorem 5 The contours of the amoebas of all strata M 2
0n ⊃ M 3

0n ⊃ · · · ⊃ M n
0n

are not empty and their preimages under the Log-projection are parametrized by
the restrictions of the parametrization (6) to the real parts of the complex planes
L0 ⊃ L1 ⊃ · · · ⊃ Ln−2.

In conclusion, we would like to raise a question about the distribution of values
of the classical Gauss map for amoebas of complex curves V ∈ T

3. In its smooth
points the curve V admits a holomorphic parametrization z = z(t), therefore the
mapping Logz(t), which parametrizes the amoeba AV , is given by a triple of har-
monic functions. If t = u + iv were an isothermal coordinate for AV , the amoeba
would be a minimal surface. According to the result of Fujimoto [Fuj97], the Gauss
map for a minimal surface can not omit more than 4 points. In the case of amoebas
the situation is quite different.

The line from Example 2 is parametrized by t = z1 and the Gauss map is given
by the formula

t �→
(−|t |2, 2|t + 1|2, −|t + 2|2)
√|t |4 + 4|t + 1|4 + |t + 2|4 .
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Fig. 6 An oval on the
sphere is the image of the
boundary of the amoeba

The image of the boundary of the amoebaAV under this map is shown on Fig. 6.
It is a smooth curve on the sphere, and the rest of the amoeba is mapped into the
smaller spherical cap bounded by this curve. The Gauss map omits here a dense set
of points of S2.
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A Remark on Hörmander’s Isomorphism

Takeo Ohsawa

To the memory of Lars Hörmander

Abstract A finiteness theorem on the bundle-valued L2 ∂̄-cohomology groups is
recalled and reproved with some refinement by employing the method of Hörmander
[H]. A new connection between the ∂̄-cohomology of noncompact manifolds and the
problem of extending analytic objects is remarked.

Keywords Weakly 1-complete · L2 ∂̄-cohomology · Extension

1 Introduction

This is a continuation of the author’s master thesis [Oh] where the following was
proved:

Theorem 1.1 Let X be a weakly 1-complete manifold of dimension n and let B → X
be a holomorphic line bundle. Assume that B admits a fiber metric whose curvature
form is positive outside some compact subset of X. Then

dim Hn,q(X, B) < ∞ for q ≥ 1,

where Hn,q(X, B) denotes the B-valued ∂̄-cohomology group of X of type (n, q).

This result is an extension of Grauert’s theorem in [G] asserting that the q-th coho-
mology groups of strongly pseudoconvex domains with coefficients in coherent
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analytic sheaves are finite dimensional for all q ≥ 1. A significance of the finite-
dimensionality lies in that it implies the existence of holomorphic sections of the
bundles with prescribed singularities at infinity. Nakano and Rhai [N-R] generalized
Theorem 1.1 for holomorphic vector bundles of higher rank, where the positivity
assumption on the curvature form is in the sense of Nakano [N]. Recall that X is
calledweakly 1-complete if there exists aC∞ plurisubharmonic functionϕ : X → R

such that the sublevel sets Xc := {x ∈ X;ϕ(x) < c} (c ∈ R) of ϕ are relatively
compact (i.e. ϕ is also an exhaustion function on X ). In what follows the pair (X, ϕ)

will be referred to as a weakly 1-complete manifold.
For the proof of Theorem 1.1 and its generalization in [N-R], the method of

Hörmander [H] is applied. For the case of Theorem 1.1, given a fiber metric of
B say h as above, Hn,q(X, B) is approximated by the L2 ∂̄-cohomology groups
Hn,q

(2) (X, B) with respect to a fixed Hermitian metric ω which satisfies ω = iΘh on

X \ Xc for the curvature form Θh of h. More precisely Hn,q
(2) (X, B) are considered

with respect to a family of fiber metrics. Namely, letting Hn,q
(2),λ(X, B) be the L2

∂̄-cohomology groups with respect to (ω, he−λ(ϕ)), Theorem 1.1 is a corollary of
the following more intricate assertion.

Theorem 1.2 Let (X, ϕ) be a weakly 1-complete manifold of dimension n, let ω be
a Hermitian metric on X, and let B be a holomorphic line bundle over X with fiber
metric h whose curvature form Θh satisfies ω = iΘh on X \ Xc for some c ∈ R.
Then, for any nonconstant C∞ convex increasing function λ, one can find a positive
number μ(λ) such that for all μ ≥ μ(λ) the following are true.

(1) dim Hn,q
(2),μλ(X, B) < ∞, q ≥ 1.

(2) The natural restriction homomorphisms

Hn,q
(2),μλ(X, B) −→ Hn,q

(2) (Xc, B), q ≥ 1

with respect to the restrictions of h and ω are bijective.
(3) The natural inclusion homomorphisms

αq
μ : Hn,q

(2),μλ(X, B) → Hn,q(X, B), q ≥ 1

are bijective.

Theorem 1.2, which is essentially what we have proved in [Oh], is a higher dimen-
sional analogue of Mittag-Leffler’s theorem and Runge’s approximation theorem in
function theory of one variable. We would like to note that this way of unified gen-
eralization is what Oka has meant in [O-1, O-2]. For the reader’s convenience, let
us mention Hörmander’s original result which is closer to Oka’s idea, in a slightly
modified but equivalent form:

Theorem 1.3 Let X be a complex manifold of dimension n and let φ : X → R

be an exhaustion function of class C2. Suppose that the Levi form of φ has at least
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n − q + 1 positive eigenvalues everywhere on X \ Xc. Then, for any holomorphic
vector bundle E → X, the following hold.

(1) For any fiber metric h on E, there exist a Hermitian metric ω on X, a convex
increasing function λ and μ0 > 0 such that

dim H0,p
(2) (X, E) < ∞

for all p ≥ q with respect to ω and he−μλ(φ) for any μ > 0, and

H0,p
(2) (X, E) ∼= H0,p(X, E)

holds with respect to ω and he−μλ(φ) if μ ≥ μ0 and p ≥ q .
(2) H0,p(X, E) ∼= H0,p(Xc, E) ∼= H0,p

(2) (Xc, E) for all p ≥ q.
(3) The image of

H0,q−1(X, E) → H0,q−1(Xc, E)

is dense.

Theorem 1.3 is due to Andreotti and Grauert [A-G] except for the assertions on
the L2 cohomology. An advantage of Theorems 1.2 and 1.3 is that one can see a
relation between them and the works of Kodaira [K] and Serre [S] on compact com-
plex manifolds. Namely, roughly speaking, the stability of weighted L2 cohomology
groups for sufficiently large μ as above can be regarded as the vanishing of coho-
mology groups along the divisor at infinity, under some curvature conditions. The
purpose of the present article is to make this similarily more explicit by establishing
an extension theorem on compact complex manifolds. Let M be a compact complex
manifold of dimension n, let D be an effective divisor on M , and let (E, h) be a
Hermitian holomorphic vector bundle over M . Let ID be the ideal sheaf of D, and
put OD = OM/ID , where OM denotes the structure sheaf of M . By (|D|,OD)

we denote the complex space whose underlying space is the support |D| of D and
structure sheaf isOD . By KM and [D]we denote the canonical line bundle of M and
the line bundle associated to D, respectively. Then our remark here on Theorem 1.3
is the following.

Theorem 1.4 Let M, E and D be as above. Suppose that [D] is semipositive and
E ||D| is Nakano positive. Then there exists μ0 ∈ N such that

(1) H0(M,OM (KM ⊗ E ⊗ [D]μ)) � H0(|D|,OD(KM ⊗ E ⊗ [D]μ)) if μ ≥ μ0

and

(2) Hn,q(M, E ⊗ [D]μ) ∼= Hn,q(M \ |D|, E) if q ≥ 1 and μ ≥ μ0.

For the reader’s convenience, the proof of Theorem 1.2 will be given at first.
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2 An L2 Isomorphism Theorem

Let (X, ϕ), (B, h), ω and Θh be as in the assumption of Theorem 1.2, and let λ0 be
any C∞ convex increasing function such that

ωε := ω + εi∂∂̄(λ0 ◦ ϕ) (2.1)

is a complete metric on X for any ε > 0. (One may take λ0(t) = et for instance.)
Here ∂ (resp.∂̄) denotes the complex exterior derivative of type (1, 0) (resp. (0, 1)).
Let λ be any nonconstant C∞ convex increasing function and let Ln,q

λ,ε (X, B)(=
Ln,q

(2),λ,ε(X, B)) denote the Hilbert space of square integrable (=L2) B-valued (n, q)-

forms on X with respect to (ωε, he−(λ+ελ0)◦ϕ).
By ∂̄ : Ln,q

λ,ε (X, B) → Ln,q+1
λ,ε (X, B) we denote the closed extension of ∂̄ whose

domain of definition is

Dom∂̄ ∩ Ln,q
λ,ε (X, B) := {u ∈ Ln,q

λ,ε (X, B); ∂̄u ∈ Ln,q+1
λ,ε (X, B)}.

We put

Hn,q
(2),λ,ε(X, B) = Ker(∂̄ : Ln,q

λ,ε (X, B) → Ln,q+1
λ,ε (X, B))

Im(∂̄ : Ln,q−1
λ,ε (X, B) → Ln,q

λ,ε (X, B))
.

Let Ln,q
(2) (Xc, B) and Hn,q

(2) (Xc, B) be defined similarlywith respect to the restrictions

of ω and h. Let ∂̄∗(= ∂̄∗
λ,ε) : Ln,q+1

λ,ε (X, B) → Ln,q
λ,ε (X, B) denote the adjoint of ∂̄

and put

H
n,q

λ,ε = Ker∂̄ ∩ Ker∂̄∗ ∩ Ln,q
λ,ε (X, B).

Similarly we define

∂̄ : Ln,q
(2) (Xc, B) → Ln,q+1

(2) (Xc, B),

∂̄∗(= ∂̄∗
c ) : Ln,q+1

(2) (Xc, B) → Ln,q
(2) (Xc, B)

and

H
n,q

c = Ker∂̄ ∩ Ker∂̄∗ ∩ Ln,q
(2) (Xc, B).

Finite-dimensionality theorems by Hörmander’s method are based on the follow-
ing.
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Proposition 2.1 Under the above situation, there exists a constant C > 0 which
does not depend on the choices of λ0, λ and ε such that

‖u‖2 ≤ C{‖∂̄u‖2 + ‖∂̄∗u‖2 +
∫

Xc+1

|u|2e−(λ+ελ0)◦ϕωn
ε } (2.2)

holds for any u ∈ Ln,q
λ,ε (X, B) ∩Dom∂̄ ∩Dom∂̄∗ with q ≥ 1. Here ‖ · ‖ denotes the

L2 norm with respect to (ωε, he−(λ+ελ0)(ϕ)) and |u| the length of u with respect to
ωε and h.

Corollary 1 dimH
n,q

λ,ε < ∞ and Hn,q
(2),λ,ε(X, B) ∼= H

n,q
λ,ε hold if q ≥ 1.

Corollary 2 There exists μ0 such that for any μ′ ≥ μ ≥ μ0 and ε > 0 the natural
inclusion homomorphisms

Hn,q
(2),μλ,ε(X, B) → Hn,q

(2),μ′λ,ε
(X, B), q ≥ 1

are injective.

Proof of Proposition 2.1. By the assumption on the curvature form of h, for any
compactly supported C∞ B-valued (n, q)-form u such that suppu � X \ Xc and
q ≥ 1,

‖u‖2 ≤ ‖∂̄u‖2 + ‖∂̄∗u‖2

holds with respect to ωε and he−(λ+ελ0)◦ϕ , by Kodaira-Nakano’s identity on Kähler
manifolds. Hence, for any u in Ln,q

λ,ε (X, B) ∩ Dom∂̄ ∩ Dom∂̄∗ with q ≥ 1, by
multiplying a C∞ cut-off function χ with suppχ ⊂ X \ Xc and supp(1−χ) ⊂ Xc+1
to u and approximating χu by C∞ forms, one has (2.2) by the completeness of ωε.
C depends only on the gradient of χ . �
Proof of Corollary 1.From (2.2) andRellich’s lemma, it follows that, for any sequence
uμ (μ = 1, 2, . . .) in Ln,q

λ,ε (X, B) (q ≥ 1) such that uμ⊥H
n,q

λ,ε , ‖uμ‖ = 1, ‖∂̄uμ‖ →
0 and ‖∂̄∗uμ‖ → 0, one can choose a strongly convergent subsequence, once we fix
λ and ε. Therefore, there has to exist a constant C0 such that

‖u‖2 ≤ C0{‖∂̄u‖2 + ‖∂̄∗u‖2}

holds for any u ∈ (Ln,q
λ,ε (X, B) � H

n,q
λ,ε ) ∩ Dom∂̄ ∩ Dom∂̄∗ with q ≥ 1, where

� denotes the orthocomplement. Indeed, if there were no such C0, one would have
a sequence uμ ∈ (Ln,q

λ,ε (X, B) � H
n,q

λ,ε ) ∩ Dom∂̄ ∩ Dom∂̄∗, q ≥ 1, such that

‖uμ‖ = 1, ‖∂̄uμ‖ → 0 and ‖∂̄∗uμ‖ → 0. Then the limit, say u, of a subse-
quence of uμ would satisfy ‖u‖ = 1, ∂̄u = ∂̄∗u = 0 and u⊥H

n,q
λ,ε , which is an

absurdity. Hence the assertion follows by a standard argument using Hahn-Banach’s
theorem. �
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Proof of Corollary 2. Let λ0 be as in (2.1). We may assume in advance that suppλ0 =
suppλ = (−∞, c] because for any convex increasing function λ1 one can find a
convex increasing function λ2 such that suppλ2 = (−∞, c] and |λ1−λ2| is bounded.
Then, similarly as in the proof of Corollary 1, one can find μ0 = μ0(λ) > 0 and a
constant C1 such that, for any ε > 0 and μ ≥ μ0,

‖u‖2 ≤ C1{‖∂̄u‖2 + ‖∂̄∗u‖2}

holds for any u ∈ Ln,q
μλ,ε(X, B) ∩ Dom∂̄ ∩ Dom∂̄∗ satisfying

∫

Xc

〈u, v〉ωn = 0

for all v ∈ H
n,q

c , where 〈·, ·〉 denotes the pointwise inner product with respect to ω

and h. Hence, by Hahn-Banach again, we obtain the desired conclusion. �
Proof of Theorem 1.2. Since this part is not used in the proof of Theorem 1.4, and
moreover the argument is essentially the repetition of the above, we shall only give
a sketch. Let μ0 be as above. Then, similarly as above, the natural homomorphisms

βq
μ,ε : Hn,q

(2),μλ,ε(X, B) → Hn,q
(2) (Xc, B), q ≥ 1

are injective for all μ ≥ μ0, dim Hn,q
(2) (Xc, B) < ∞ for q ≥ 1, and

(∪∞
μ=1Imβ

q
μ,ε) = Hn,q

(2) (Xc, B)

for all q ≥ 0.
Therefore, there exists μ1 ≥ μ0 such that β

q
μ,ε are bijective if q ≥ 1, μ ≥ μ1

and ε > 0. Since C1 is independent of μ and ε, we are allowed to let ε → 0 and
obtain the bijectivity of β

q
μ,0 for μ ≥ μ1 as well. Similarly, it is easy to see that α

q
μ

are bijective if μ ≥ μ1. Hence it suffices to put μ(λ) = μ1. �
As is easily seen from the above proof, given a Hermitian holomorphic vector

bundle (E, hE ) over X , the conclusions of Theorem 1.2 are also valid for the E-
valued L2 ∂̄-cohomology groups, provided that there exists a Hermitian metric ω on
X with supp(dω) ⊂ Xc such that the curvature form ΘhE of hE satisfies

iΘhE − I dE ⊗ ω ≥ 0

on X \ Xc in the sense of Nakano, since Proposition 2.1 holds for (E, hE ) then. This
is the reason why Theorem 1.4 is stated for vector bundles of any rank. In the proof
of Theorem 1.4 below, we shall use the above notations replacing (B, h) by (E, hE ).
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3 Extension and Isomorphism on Compact Manifolds

Let M, E and D be as in the assumption of Theorem 1.4, and let s be a canonical
section of [D]. Since [D] is semipositive, there exists a fiber metric of [D] for which
the function − log |s| is plurisubharmonic on M \ |D|. Here |s| denotes the length
of s. Since E is Nakano positive along |D|, there exists a fiber metric hE of E and a
neighborhood U ⊃ |D| such that (E, hE ) is Nakano positive on U . In this situation,
one can find a Hermitian metric ωM on M such that

‖u‖2 ≤ ‖∂̄u‖2 + ‖∂̄∗u‖2

holds for any compactly supported C∞ E-valued (n, q)-form u on U \ |D|, in virtue
of Nakano’s identity (cf. [N]). Hence, similarly as in the proof of Corollary 2, one
can find a complete Hermitian metric ωε on M \ |D| and μ0 ∈ N such that the
homomorphisms

Hn,1
(2),−μ log |s|,ε(M \ |D|, E) → Hn,1

(2),−μ′ log |s|,ε(M \ |D|, E), μ′ ≥ μ ≥ μ0 − 1

are injective. Given any f ∈ H0(|D|, KM ⊗ [D]μ ⊗ E), let f̃ be any extension of
f to M as a C∞ section of KM ⊗ [D]μ ⊗ E such that ∂̄ f̃ ||D| = 0. Then

∂̄ f̃

sμ
∈ Ln,1

−(μ−1) log |s|,ε(M \ |D|, E) ∩ Ker∂̄ .

Since ∂̄( f̃ /sμ) = ∂̄ f̃ /sμ and f̃ /sμ ∈ Ln,0
−μ log |s|,ε(M \ |D|, E), the above injectivity

implies that there exists g ∈ Ln,0
−(μ−1) log |s|,ε(M\|D|, E) such that ∂̄g = ∂̄ f̃ /sμ holds

on M \ |D|. Then f̃ − sμg is the desired extension of f in H0(M, KM ⊗[D]μ ⊗ E),
which is the end of the proof of 1). The proof of 2) is similar as in Theorem 1.2. �

4 Additional Remarks

Corollary of Theorem 1.4. Let M be a compact complex manifold. If there exist an
effective divisor D on M and a holomorphic line bundle B → M such that [D] ≥ 0
and B||D| > 0. Then M is a Moishezon manifold.

In particular, by a theorem of Chow and Kodaira [C-K], M is projective algebraic
if moreover dim M = 2. If there exists a compact Riemann surface S of genus g ≥ 2
and a holomorphic embedding p : S → M such that [p(S)] ≥ 0, onemay take KM or
[p(S)] as B. In other words, a compact complex surface containing a semipositively
embedded irreducible smooth curve of genus ≥ 2 is algebraic. Therefore, in the case
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deg [p(S)]|p(S) = 0, it might be an interesting question whether or not there eixsts a
constant μ2 independent of the choice of M , S and p such that the restriction maps

H0(M,OM (K μ
M )) → H0(p(S),Op(S)(K μ

M ))

are surjective for all μ ≥ μ2.
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The Julia-Wolff-Carathéodory Theorem
and Its Generalizations

Jasmin Raissy

Abstract This note is a short introduction to the Julia-Wolff-Carathéodory theorem,
and its generalizations in several complex variables, up to very recent results for
infinitesimal generators of semigroups.

Keywords Infinitesimal generators · Semigroups of holomorphic mappings · Julia-
Wolff-Carathéodory theorem · Boundary behaviour

1 The Classical Julia-Wolff-Carathéodory Theorem

One of the classical result in one-dimensional complex analysis is Fatou’s theorem:

Theorem 1.1 (Fatou [Fa]) Let f : Δ → Δ be a holomorphic self-map of the unit
disk Δ ⊂ C. Then f admits non-tangential limit at almost every point of ∂Δ.

This result however does not give precise information about the behavior at a
specific point σ of the boundary. Of course, to obtain a more precise statement in
this case some hypotheses on f are needed. In fact, as it was found by Julia [Ju1]
in 1920, the right hypothesis is to assume that f (ζ ) approaches the boundary of Δ

at least as fast as ζ , in a weak sense. More precisely, we have the classical Julia’s
lemma:

Theorem 1.2 (Julia [Ju1]) Let f : Δ → Δ be a bounded holomorphic function such
that

lim inf
ζ→σ

1 − | f (ζ )|
1 − |ζ | = α < +∞ (1.1)

for some σ ∈ ∂Δ. Then f has non-tangential limit τ ∈ ∂Δ at σ . Moreover, for all
ζ ∈ Δ one has
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|τ − f (ζ )|2
1 − | f (ζ )|2 ≤ α

|σ − ζ |2
1 − |ζ |2 . (1.2)

The latter statement admits an interesting geometrical interpretation. The horo-
cycle E(σ, R) contained in Δ of center σ ∈ ∂Δ and radius R > 0 is the set

E(σ, R) =
{
ζ ∈ Δ

∣∣∣∣
|σ − ζ |2
1 − |ζ |2 < R

}
.

Geometrically, E(σ, R) is an euclidean disk of radius R/(R + 1) internally tangent
to ∂Δ at σ . Therefore (1.2) becomes f

(
E(σ, R)

) ⊆ E(τ, αR) for all R > 0, and
the existence of the non-tangential limit more or less follows from (1.2) and from
the fact that horocycles touch the boundary in exactly one point.

A horocycle can be thought of as the limit of Poincaré disks of fixed euclidean
radius and centers going to the boundary; so it makes sense to think of horocycles
as Poincaré disks centered at the boundary, and of Julia’s lemma as a Schwarz-Pick
lemma at the boundary. This suggests that α might be considered as a sort of dilation
coefficient: f expands horocycles by a ratio of α. If σ were an internal point and
E(σ, R) an infinitesimal euclidean disk actually centered at σ , one then would be
tempted to say that α is (the absolute value of) the derivative of f at σ . This is exactly
the content of the classical Julia-Wolff-Carathéodory theorem:

Theorem 1.3 (Julia-Wolff-Carathéodory) Let f : Δ → Δ be a bounded holomor-
phic function such that

lim inf
ζ→σ

1 − | f (ζ )|
1 − |ζ | = α < +∞

for some σ ∈ ∂Δ, and let τ ∈ ∂Δ be the non-tangential limit of f at σ . Then both the
incremental ratio

(
τ − f (ζ )

)/
(σ − ζ ) and the derivative f ′(ζ ) have non-tangential

limit ασ̄ τ at σ .

So condition (1.1) forces the existence of the non-tangential limit of both f and its
derivative atσ . This is the result of thework of several people: Julia [Ju2],Wolff [Wo],
Carathéodory [C], Landau and Valiron [L-V], Nevanlinna [N] and others. We refer,
for example, to [B] and [A1] for proofs, history and applications.

2 Generalizations to Several Variables

It was first remarked byKorányi and Stein [Ko, K-S, St] in extending Fatou’s theorem
to several complex variables, that the notion of non-tangential limit is not the right
one to consider for domains in C

n . In fact, it turns out that two notions are needed,
and to introduce them it is useful to investigate the notion of non-tangential limit in
the unit disk Δ.
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The non-tangential limit can be defined in two equivalent ways. A function
f : Δ → C is said to have non-tangential limit L ∈ C at σ ∈ ∂Δ if f

(
γ (t)

) → L
as t → 1− for every curve γ : [0, 1) → Δ such that γ (t) converges to σ non-
tangentially as t → 1−. In C, this is equivalent to having that f (ζ ) → L as ζ → σ

staying inside any Stolz region K (σ, M) of vertex σ and amplitude M > 1, where

K (σ, M) =
{
ζ ∈ Δ

∣∣∣∣
|σ − ζ |
1 − |ζ | < M

}
,

since Stolz regions are angle-shaped nearby the vertex σ , and the angle is going to π

as M → +∞. These two approaches lead to different notions in several variables.
In the unit ball Bn ⊂ C

n the natural generalization of a Stolz region is theKorányi
region K (p, M) of vertex p ∈ ∂ Bn and amplitude M > 1 given by

K (p, M) =
{

z ∈ Bn
∣∣∣∣

|1 − 〈z, p〉|
1 − ‖z‖ < M

}
,

where ‖ · ‖ denote the euclidean norm and 〈· , ·〉 the canonical hermitian product.
Then a function f : Bn → C has K -limit (or admissible limit) L ∈ C at p ∈ ∂ Bn ,
and we write

K − lim
z→p

f (z)

if f (z) → L as z → p staying inside anyKorányi region K (σ, M). AKorányi region
K (p, M) approaches the boundary non-tangentially along the normal direction at p
but tangentially along the complex tangential directions at p. Therefore, having K -
limit is stronger than havingnon-tangential limit.However, as first noticed byKorányi
and Stein, for holomorphic functions of several complex variables one is often able
to prove the existence of K -limits. For instance, the best generalization of Julia’s
lemma to Bn is the following result (proved by Hervé [H] in terms of non-tangential
limits and by Rudin [R] in general):

Theorem 2.1 (Rudin [R]) Let f : Bn → Bm be a holomorphic map such that

lim inf
z→p

1 − ‖ f (z)‖
1 − ‖z‖ = α < +∞ ,

for some p ∈ ∂ Bn. Then f admits K -limit q ∈ ∂ Bm at p, and furthermore for all
z ∈ Bn one has

|1 − 〈 f (z), q〉|2
1 − ‖ f (z)‖2 ≤ α

|1 − 〈z, p〉|2
1 − ‖z‖2 .

To define Korányi regions for more general domains in C
n than the unit ball,

we need to briefly recall the definition of the Kobayashi distance (we refer, e.g., to
[A1, JP] and [Ko] for details andmuchmore).We denote by kΔ the Poincaré distance



284 J. Raissy

on the unit diskΔ ⊂ C. Given X a complex manifold, the Lempert function δX : X ×
X → R

+ of X is defined as

δX (z, w) = inf{kΔ(ζ, η) | ∃φ : Δ → X holomorphic, withφ(ζ ) = z andφ(η) = w}

for all z, w ∈ X . The Kobayashi pseudodistance kX : X × X → R
+ of X is then

defined as the largest pseudodistance on X bounded above by δX . The manifold X
is called (Kobayashi) hyperbolic if kX is indeed a distance; X is called complete
hyperbolic if kX is a complete distance.

The main property of the Kobayashi (pseudo)distance is that it is contracted by
holomorphic maps: if f : X → Y is a holomorphic map then

∀z, w ∈ X kY
(

f (z), f (w)
) ≤ kX (z, w) .

In particular, the Kobayashi distance is invariant under biholomorphisms.
It is easy to see that the Kobayashi distance of the unit disk coincides with the

Poincaré distance. Furthermore, the Kobayashi distance of the unit ball Bn ⊂ C
n

coincides with the Bergman distance (see, e.g., [A1, Corollary 2.3.6]); and the
Kobayashi distance of a bounded convex domain coincideswith theLempert function
(see, e.g., [A1, Proposition 2.3.44]). Moreover, the Kobayashi distance of a bounded
convex domain D is complete [A1, Proposition 2.3.45], and thus for each p ∈ D we
have that kD(p, z) → +∞ if and only if z tends to the boundary ∂ D.

Using the Kobayashi intrinsic distance we obtain the natural generalization to
complete hyperbolic domains of Korányi regions of the balls.

Let D ⊂⊂ C
n be a complete hyperbolic domain and denote by kD its Kobayashi

distance. A K -region of vertex x ∈ ∂ D, amplitude M > 1, and pole z0 ∈ D is the
set

K D,z0(x, M) =
{

z ∈ D | lim sup
w→x

[kD(z, w) − kD(z0, w)] + kD(z0, z) < log M

}
.

This definition clearly depends on the pole z0. However, this dependence is not
too relevant since changing the pole corresponds to shifting amplitudes. Moreover,
it is elementary to check that in the unit ball K -regions coincide with Korányi re-
gions, K Bn ,0(x, M) = K (x, M). Therefore K -regions are a natural generalization of
Korányi regions allowing us to generalize the notion of K -limit. A function f : D →
C

m has K -limit L at x ∈ ∂ D if f (z) → L as z → p staying inside any K -region of
vertex x . The best generalization of Julia’s lemma in this setting is then the following,
due to Abate:

Theorem 2.2 (Abate [A2]) Let D ⊂⊂ C
n be a complete hyperbolic domain and let

z0 ∈ D. Let f : D → Δ be a holomorphic function and let x ∈ ∂ D be such that

lim inf
z→x

[kD(z0, z) − kΔ(0, f (z))] < +∞ .
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Then f admits K -limit τ ∈ ∂ D at x.

In order to obtain a complete generalization of the Julia-Wolff-Carathéodory
for Bn , Rudin discovered that he needed a different notion of limit, still stronger
than non-tangential limit but weaker than K -limit. This notion is closely related to
the other characterization of non-tangential limit in one variable we mentioned at the
beginning of this section.

A crucial one-variable result relating limits along curves and non-tangential limits
isLindelöf’s theorem.Given σ ∈ ∂Δ, a σ -curve is a continuous curve γ : [0, 1) → Δ

such that γ (t) → σ as t → 1−. Then Lindelöf [Li] proved that if a bounded
holomorphic function f : Δ → C admits limit L ∈ C along a given σ -curve then
it admits limit L along all non-tangential σ -curves — and thus it has non-tangential
limit L at σ .

In generalizing this result to several complex variables, Čirka [Č] realized that
for a bounded holomorphic function the existence of the limit along a (suitable)
p-curve (where p ∈ ∂ Bn) implies not only the existence of the non-tangential limit,
but also the existence of the limit along any curve belonging to a larger class of curves,
including some tangential ones — but it does not in general imply the existence of
the K -limit. To describe the version (due to Rudin [R]) of Čirka’s result we shall
state in this survey, let us introduce a bit of terminology.

Let p ∈ ∂ Bn . As before, a p-curve is a continuous curve γ : [0, 1) → Bn such
that γ (t) → p as t → 1−. A p-curve is special if

lim
t→1−

‖γ (t) − 〈γ (t), p〉p‖2
1 − |〈γ (t), p〉|2 = 0 ; (2.1)

and, given M > 1, it is M-restricted if

|1 − 〈γ (t), p〉|
1 − |〈γ (t), p〉| < M

for all t ∈ [0, 1). We also say that γ is restricted if it is M-restricted for some M > 1.
In other words, γ is restricted if and only if t �→ 〈γ (t), p〉 goes to 1 non-tangentially
in Δ.

It is not difficult to see that non-tangential curves are special and restricted; on
the other hand, a special restricted curve approaches the boundary non-tangentially
along the normal direction, but it can approach the boundary tangentially along com-
plex tangential directions. Furthermore, a special M-restricted p-curve is eventually
contained in any K (p, M ′) with M ′ > M , and conversely a special p-curve eventu-
ally contained in K (p, M) is M-restricted. However, K (p, M) can contain p-curves
that are restricted but not special: for these curves the limit in (2.1) might be a strictly
positive number.

With these definitions in place, we shall say that a function f : Bn → C has
restricted K -limit (or hypoadmissible limit) L ∈ C at p ∈ ∂ Bn , and we shall write
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K ′ − lim
z→p

f (z) = L ,

if f
(
γ (t)

) → L as t → 1− for any special restricted p-curve γ : [0, 1) → Bn .
It is clear that the existence of the K -limit implies the existence of the restricted
K -limit, that in turns implies the existence of the non-tangential limit; but none of
these implications can be reversed (see, e.g., [R] for examples in the ball).

Finally, we say that a function f : Bn → C is K -bounded at p ∈ ∂ Bn if it is
bounded in any Korányi region K (p, M), where the bound can depend on M > 1.
Then Rudin’s version of Čirka’s generalization of Lindelöf’s theorem is the follow-
ing:

Theorem 2.3 (Rudin [R]) Let f : Bn → C be a holomorphic function K -bounded
at p ∈ ∂ Bn. Assume there is a special restricted p-curve γ o : [0, 1) → Bn such that
f
(
γ o(t)

) → L ∈ C as t → 1−. Then f has restricted K -limit L at p.

As before, it is possible to generalize this approach to a domain D ⊂ C
n different

from the ball. A very precise and systematic presentation, providing clear proofs,
details and examples, of various aspects of the problem of generalization of the
classical Julia-Wolff-Carathéodory theorem to domains in several complex variables,
and updated until 2004, can be found in [A6].

For the sake of simplicity we state here only the definitions needed to state Abate’s
version of Lindelöf’s theorem in this setting. Given a point x ∈ ∂ D, a x-curve is again
a continuous curve γ : [0, 1) → D so that limt→1− γ (t) = x . A projection device at
x ∈ ∂ D is the data of: a neighbourhood U of x inCn , a holomorphic embedded disk
ϕx : Δ → D ∩ U , such that limζ→1 ϕx (ζ ) = x , a family P of x-curves in D ∩ U ,
and a device associating to every x-curve γ ∈ P a 1-curve γ̃x in Δ, or equivalently
a x-curve γx = ϕx ◦ γ̃x in ϕx (Δ). If D is equipped with a projection device at
x ∈ ∂ D, then a curve γ ∈ P is special if limt→1− kD∩U (γ (t), γx (t)) = 0, and it is
restricted if γx is a non-tangential 1-curve inΔ. A function f : D → C has restricted
K -limit L ∈ C at x if limt→1− f (γ (t)) = L for all special restricted x-curves. A
projection device is good if: for any M > 1 there is a M ′ > 1 so that ϕx (K (1, M)) ⊂
K D∩U,z0(x, M ′), and for any special restricted x-curve γ there exists M1 = M1(γ )

such that limt→1− kK D∩U,z0 (x,M1)(γ (t), γx (t)) = 0. Good projection devices exist,
and several examples can be found for example in [A6]. Finally, we say that a function
f : D → C is K -bounded at p ∈ ∂ Bn if it is bounded in any K -region K D,z0(x, M),
where the bound can depend on M > 1.

With these definitions we can state the generalization of Lindelöf principle given
by Abate.

Theorem 2.4 (Abate [A6]) Let D ⊂ C
n be a domain equipped with a good projec-

tion device at x ∈ ∂ D. Let f : D → Δ be a holomorphic function K -bounded
at x. Assume there is a special restricted x-curve γ o : [0, 1) → D such that
f
(
γ o(t)

) → L ∈ C as t → 1−. Then f has restricted K -limit L at x.

We can now deal with the generalization of the Julia-Wolff-Carathéodory theorem
to several complex variables. With respect to the one-dimensional case there is an
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obvious difference: instead of only one derivative one has to deal with a whole
(Jacobian) matrix of them, and there is no reason they should all behave in the
same way. And indeed they do not, as shown in Rudin’s version of the Julia-Wolff-
Carathéodory theorem for the unit ball:

Theorem 2.5 (Rudin [R]) Let f : Bn → Bm be a holomorphic map such that

lim inf
z→p

1 − ‖ f (z)‖
1 − ‖z‖ = α < +∞ ,

for some p ∈ ∂ Bn. Then f admits K -limit q ∈ ∂ Bm at p. Furthermore, if we set
fq(z) = 〈

f (z), p
〉
q and denote by d fz the differential of f at z, we have:

(i) the function
[
1 − 〈

f (z), q
〉]/[1 − 〈z, p〉] is K -bounded and has restricted

K -limit α at p;
(ii) the map [ f (z) − fq(z)]/[1 − 〈z, p〉]1/2 is K -bounded and has restricted

K -limit O at p;
(iii) the function

〈
d fz(p), q

〉
is K -bounded and has restricted K -limit α at p;

(iv) the map [1 − 〈z, p〉]1/2d( f − fq)z(p) is K -bounded and has restricted
K -limit O at p;

(v) if v is any vector orthogonal to p, the function
〈
d fz(v), q

〉/[1 − 〈z, p〉]1/2 is
K -bounded and has restricted K -limit 0 at p;

(vi) if v is any vector orthogonal to p, the map d( f − fq)z(v) is K -bounded at p.

In the last twenty years this theorem (as well as Theorems 2.1 and 2.3) has been
extended to domains much more general than the unit ball: for instance, strongly
pseudoconvex domains [A1, A2, A3], convex domains of finite type [AT], and poly-
disks [A5] and [AMY], (see also [A6] and references therein).

We end this section with the general version of the Julia-Wolff-Carathódory the-
orem obtained by Abate in [A6] for a complete hyperbolic domain D in C

n . To
formulate it, we need to introduce a couple more definitions. A projection device at
x ∈ ∂ D is geometrical if there is a holomorphic function p̃x : D ∩U → Δ such that
p̃x ◦ ϕx = idΔ and γ̃x = p̃x ◦ γ for all γ ∈ P . A geometrical projection device at x
is bounded if d(z, ∂ D)/|1− p̃x (z)| is bounded in D ∩ U , and |1− p̃x (z)|/d(z, ∂ D)

is K -bounded in D ∩ U . The statement is then the following, where κD denotes the
Kobayashi metric.

Theorem 2.6 (Abate [A6]) Let D ⊂ C
n be a complete hyperbolic domain equipped

with a bounded geometrical projection device at x ∈ ∂ D. Let f : D → Δ be a
holomorphic function such that

lim inf
z→x

[kD(z0, z) − kΔ(0, f (z))] = 1

2
logβ < +∞ .

Then for every v ∈ C
n and every s ≥ 0 such that d(z, ∂ D)sκD(z; v) is K -bounded

at x the function
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d(z, ∂ D)s−1 ∂ f

∂v
(2.2)

is K -bounded at x. Moreover, if s > inf{s ≥ 0 | d(z, ∂ D)sκD(z; v) is K -bounded at
x}, then (2.2) has vanishing K -limit at x.

Depending on more specific properties of the projection device, it is indeed pos-
sible to deduce the existence of restricted K -limits, see [A6, Sect. 5].

Further generalizations of Julia-Wolff-Carathéodory theorem have been obtained
in infinite-dimensional Banach and Hilbert spaces, and we refer to [EHRS, ELRS,
ERS, F, MM, SW, Wl1, Wl2, Wl3, Z], and references therein.

3 Julia-Wolff-Carathéodory Theorem for Infinitesimal
Generators

Weconclude this survey focusing on a different kind of generalization in several com-
plex variables: infinitesimal generators of one-parameter semigroups of holomorphic
self-maps of Bn .

We consider Hol(Bn, Bn), the space of holomorphic self-maps of Bn , endowed
with the usual compact-open topology. A one-parameter semigroup of holomorphic
self-maps of Bn is a continuous semigroup homomorphismΦ : R+ → Hol(Bn, Bn).
In other words, writing ϕt instead of Φ(t), we have ϕ0 = idBn , the map t �→ ϕt

is continuous, and the semigroup property ϕt ◦ ϕs = ϕt+s holds. An introduction
to the theory of one-parameter semigroups of holomorphic maps can be found in
[A1, RS2] or [S].

One-parameter semigroups can be seen as the flow of a vector field (see, e.g.,
[A4]). Given a one-parameter semigroup Φ, it is possible to prove that there exists a
holomorphic map G : Bn → C

n , the infinitesimal generator of the semigroup, such
that

∂Φ

∂t
= G ◦ Φ . (3.1)

It should be kept in mind, when reading the literature on this subject, that in some
papers (e.g., in [ERS] and [RS1]) there is a change of sign with respect to our
definition, due to the fact that the infinitesimal generator is defined there as the
solution of the equation

∂Φ

∂t
+ G ◦ Φ = O .

A Julia’s lemma for infinitesimal generators was proved by Elin, Reich and
Shoikhet in [ERS] in 2008, assuming that the radial limit of the generator at a point
p ∈ ∂ Bn vanishes:

Theorem 3.1 ([ERS, Theorem, p. 403]) Let G : Bn → C
n be the infinitesimal

generator on Bn of a one-parameter semigroup Φ = {ϕt }, and let p ∈ ∂ Bn be such
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that
lim

t→1− G(tp) = O. (3.2)

Then the following assertions are equivalent:

(I) α = lim inf t→1− Re 〈G(tp),p〉
t−1 < +∞;

(II) β = 2 supz∈Bn Re
[ 〈G(z),z〉
1−‖z‖2 − 〈G(z),p〉

1−〈z,p〉
]

< +∞;

(III) there exists γ ∈ R such that for all z ∈ Bn we have |1−〈ϕt (z),p〉|2
1−‖ϕt (z)‖2 ≤

eγ t |1−〈z,p〉|2
1−‖z‖2 .

Furthermore, if any of these assertions holds then α = β = inf γ , and we have

lim
t→1−

〈G(tp), p〉
t − 1

= β . (3.3)

If (3.2) and any (whence all) of the equivalent conditions (I)–(III) holds, p ∈ ∂ Bn

is called a boundary regular null point of G with dilation β ∈ R.
This result suggested that a Julia-Wolff-Carathéodory theorem could hold for

infinitesimal generators along the line of Rudin’s Theorem 2.5. A first partial gen-
eralization has been achieved by Bracci and Shoikhet in [BS]. In collaboration
with Abate, in [AR] we have been able to give a full generalization of Julia-Wolff-
Carathéodory theorem for infinitesimal generators, proving the following result.

Theorem 3.2 ([AR]) Let G : Bn → C
n be an infinitesimal generator on Bn of a

one-parameter semigroup, and let p ∈ ∂ Bn. Assume that

〈G(z), p〉
〈z, p〉 − 1

is K -bounded at p (3.4)

and

G(z) − 〈G(z), p〉p

(〈z, p〉 − 1)γ
is K -bounded at p for some 0 < γ < 1/2. (3.5)

Then p ∈ ∂ Bn is a boundary regular null point for G. Furthermore, if β is the
dilation of G at p then:

(i) the function 〈G(z), p〉/(〈z, p〉−1) (is K -bounded and) has restricted K -limit β
at p;

(ii) if v is a vector orthogonal to p, the function 〈G(z), v〉/(〈z, p〉 − 1)γ is
K -bounded and has restricted K -limit 0 at p;

(iii) the function 〈dGz(p), p〉 is K -bounded and has restricted K -limit β at p;
(iv) if v is a vector orthogonal to p, the function (〈z, p〉 − 1)1−γ 〈dGz(p), v〉 is

K -bounded and has restricted K -limit 0 at p;
(v) if v is a vector orthogonal to p, the function 〈dGz(v), p〉 /

(〈z, p〉 − 1)γ is
K -bounded and has restricted K -limit 0 at p.
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(vi) if v1 and v2 are vectors orthogonal to p the function (〈z, p〉 − 1)1/2−γ

〈dGz(v1), v2〉 is K -bounded at p.

Sketch of Proof of Theorem3.2. Statement (i) follows immediately fromour hypothe-
ses, thanks to Theorems 2.3 and 3.1. Statement (iii) follows by standard arguments,
and (iv) follows from (ii), again by standard arguments.

The main point is the proof of part (ii). By Theorem 2.3, it suffices to compute
the limit along a special restricted curve. We use the curve

σ(t) = tp + e−iθ ε(1 − t)1−γ v

which is always restricted, and it is special if and only if γ < 1/2. We then plug (i)
and this curve into Theorem 3.1.(II), and we then let ε → 0+, using θ to get rid of
the real part.

Statement (v) follows from (i), (ii) and by Theorem 3.1 using somewhat delicate
arguments involving a curve of the form

γ (t) = (
t + ic(1 − t)

)
p + η(t)v ,

where 1 − t < |η(t)|2 < 1 − |t + ic(1 − t)|2, and the argument of η(t) is chosen
suitably. �

A first difference with respect to Theorem 2.5 is that we have to assume (3.4)
and (3.5) as separate hypotheses, whereas they appear as part of Theorem 2.5(i) and
(ii). Indeed, when dealing with holomorphic maps, conditions (3.4) and (3.5) are a
consequence of the equivalent of condition (I) in Theorem 3.1, but in that setting the
proof relies in the fact that there we have holomorphic self-maps of the ball. In our
context, (3.5) is not a consequence of Theorem3.1(I), as shown in [AR,Example 1.2];
and it also seems that (3.4) is stronger than Theorem 3.1(I).

A second difference is the exponent γ < 1/2. Bracci and Shoikhet proved Theo-
rem3.2with γ = 1/2 but they couldn’t prove the statements about restricted K -limits
in cases (ii), (iv) and (v). This is due to an obstruction, which is not just a technical
problem, but an inevitable feature of the theory. As mentioned in the sketch of the
proof, in showing the existence of restricted K -limits, the curves one would like to
use for obtaining the exponent 1/2 in the statements are restricted but not special, in
the sense that the limit in (2.1) is a strictly positive (though finite) number. Actually
the exponent 1/2 might not be the right one to consider in the setting of infinitesimal
generators, as shown in [AR, Example 1.2].

An exact analogue of Theorem 2.5 with γ = 1/2 can be recovered assuming a
slightly stronger hypothesis on the infinitesimal generator. Under assumptions (3.4)
and (3.5) we have 〈

G
(
σ(t)

)
, p

〉

〈σ(t), p〉 − 1
= β + o(1) (3.6)

as t → 1− for any special restricted p-curve σ : [0, 1) → Bn . Following ideas
introduced in [ESY, EKRS, EJ] in the context of the unit disk, p is said to be a
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Hölder boundary null point if there is α > 0 such that

〈
G

(
σ(t)

)
, p

〉

〈σ(t), p〉 − 1
= β + o

(
(1 − t)α

)
(3.7)

for any special restricted p-curve σ : [0, 1) → Bn such that 〈σ(t), p〉 ≡ t . Using
this notion we obtain the following result.

Theorem 3.3 ([AR]) Let G : Bn → C
n be the infinitesimal generator on Bn of a

one-parameter semigroup, and let p ∈ ∂ Bn. Assume that

〈G(z), p〉
〈z, p〉 − 1

and
G(z) − 〈G(z), p〉p

(〈z, p〉 − 1)1/2

are K -bounded at p, and that p is a Hölder boundary null point. Then the statement
of Theorem 3.2 holds with γ = 1/2.

Examples of infinitesimal generators with a Hölder boundary null point and sat-
isfying the hypotheses of Theorem 3.3 are provided in [AR].

In a forthcoming paper in collaboration with Abate, we will deal with the gener-
alization of Theorem 3.2 to strongly convex domains in Cn .
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[Č] Cirka, E.M.: The Lindelöf and Fatou theorems inCn .Math. USSR-Sb. 21, 619–641 (1973)
[EHRS] Elin,M., Harris, L.A., Reich, S., Shoikhet, D.: Evolution equations and geometric function

theory in J ∗- algebras. J. Nonlinear Conv. Anal. 3, 81–121 (2002)
[EKRS] Elin, M., Khavinson, D., Reich, S., Shoikhet, D.: Linearization models for parabolic

dynamical systems via Abel’s functional equation. Ann. Acad. Sci. Fen. 35, 1–34 (2010)
[ELRS] Elin, M., Levenshtein, M., Reich, S., Shoikhet, D.: Some inequalities for the horosphere

function and hyperbolically nonexpansive mappings on the Hilbert ball. J. Math. Sci.
(N.Y.) 201(5), 595–613 (2014)

[EJ] Elin, M., Jacobzon, F.: Parabolic type semigroups: asymptotics and order of contact.
Preprint. (2013). arxiv:1309.4002

[ERS] Elin, M., Reich, S., Shoikhet, D.: A Julia-Carathéodory theorem for hyperbolically
monotone mappings in the Hilbert ball. Israel J. Math. 164, 397–411 (2008)

[ES] Elin, M., Shoikhet, D.: Linearization models for complex dynamical systems. Topics in
univalent functions, functional equations and semigroup theory. Operator Theory: Ad-
vances and Applications, vol. 208, xii+265 pp. Linear Operators and Linear Systems
Birkhuser Verlag, Basel (2010). ISBN: 978-3-0346-0508-3

[ESY] Elin, M., Shoikhet, D., Yacobzon, F.: Linearization models for parabolic type semigroups.
J. Nonlinear Convex Anal. 9, 205–214 (2008)

[F] Fan, K.: The angular derivative of an operator-valued analytic function. Pac. J. Math. 121,
67–72 (1986)

[Fa] Fatou, P.: Séries trigonométriques et séries de Taylor. Acta Math. 30, 335–400 (1906)
[H] Hervé, M.: Quelques propriétés des applications analytiques d’une boule à m dimensions

dans elle-même. J. Math. Pures Appl. 42, 117–147 (1963)
[JP] Jarnicki, M., Pflug, P.: Invariant Distances and Metrics in Complex Analysis. Walter de

Gruyter & co., Berlin (1993)
[Ju1] Julia,G.:Mémoire sur l’itération des fonctions rationnelles. J.Math. PuresAppl. 1, 47–245

(1918)
[Ju2] Julia, G.: Extension nouvelle d’un lemme de Schwarz. Acta Math. 42, 349–355 (1920)
[Ko] Korányi, A.: Harmonic functions on hermitian hyperbolic spaces. Trans. Am. Math. Soc.

135, 507–516 (1969)
[K-S] Korányi, A., Stein, E.M.: Fatou’s theorem for generalized half-planes. Ann. Scuola Norm.

Sup. Pisa 22, 107–112 (1968)
[L-V] Landau, E., Valiron, G.: A deduction from Schwarz’s lemma. J. Lond. Math. Soc. 4,

162–163 (1929)
[L] Lempert, L.: La métrique de Kobayashi et la représentation des domaines sur la boule.

Bull. Soc. Math. France 109, 427–474 (1981)
[Li] Lindelöf, E.: Sur un principe générale de l’analyse et ses applications à la theorie de la

représentation conforme. Acta Soc. Sci. Fennicae 46, 1–35 (1915)
[MM] Mackey, M., Mellon, P.: Angular derivatives on bounded symmetric domains. Israel J.

Math. 138, 291–315 (2003)
[N] Nevanlinna, R.: Remarques sur le lemme de Schwarz. C.R. Acad. Sci. Paris 188, 1027–

1029 (1929)
[RS1] Reich, S., Shoikhet,D.: Semigroups and generators on convex domainswith the hyperbolic

metric. Atti Acc. Naz. Lincei Cl. Sc. Fis. Mat. Nat. Rend. Lincei 8, 231–250 (1997)

http://arxiv.org/abs/1309.4002


The Julia-Wolff-Carathéodory Theorem and Its Generalizations 293

[RS2] Reich, S., Shoikhet, D.: Nonlinear Semigroups, Fixed Points, and Geometry of Domains
in Banach Spaces. Imperial College Press, London (2005)

[R] Rudin, W.: Function Theory in the Unit Ball of Cn . Springer, Berlin (1980)
[S] Shoikhet, D.: Semigroups in Geometrical Function Theory. Kluwer Academic Publishers,

Dordrecht (2001)
[St] Stein, E.M.: The Boundary Behavior of Holomorphic Functions of Several Complex

variables. Princeton University Press, Princeton (1972)
[SW] Szałowska, A., Włodarczyk, K.: Angular derivatives of holomorphic maps in infinite

dimensions. J. Math. Anal. Appl. 204, 1–28 (1996)
[W] Wachs, S.: Sur quelques propriétés des transformations pseudo-conformes avec un point

frontière invariant. Bull. Soc. Math. Fr. 68, 177–198 (1940)
[Wl1] Włodarczyk,K.: The Julia-Carathéodory theorem for distance decreasingmaps on infinite-

dimensional hyperbolic spaces. Atti Accad. Naz. Lincei 4, 171–179 (1993)
[Wl2] Włodarczyk, K.: Angular limits and derivatives for holomorphic maps of infinite dimen-

sional bounded homogeneous domains. Atti Accad. Naz. Lincei 5, 43–53 (1994)
[Wl3] Włodarczyk, K.: The existence of angular derivatives of holomorphic maps of Siegel

domains in a generalization of C∗-algebras. Atti Accad. Naz. Lincei 5, 309–328 (1994)
[Wo] Wolff, J.: Sur une généralisation d’un théorème de Schwarz. C.R. Acad. Sci. Paris 183,

500–502 (1926)
[Z] Zhu, J.M.: Angular derivatives of holomorphic maps in Hilbert spaces. J. Math. (Wuhan)

19, 304–308 (1999)



A Brief Survey on Local Holomorphic
Dynamics in Higher Dimensions

Feng Rong

Abstract We give a brief survey on local holomorphic dynamics in higher dimen-
sions. The main novelty of this note is that we will organize the material by the
“level” of local invariants rather than the type of maps.

Keywords Local holomorphic dynamics · Local invariant · Attracting flower ·
Attracting domain

1 Introduction

Let f be a holomorphic map in Cn with a fixed point, which we assume to be the
origin. The local (discrete) holomorphic dynamics studies the asymptotic behavior
of f in a neighborhood of the fixed point under iterations. There are several well-
written surveys on this subject, see e.g. [A4, A5, B2]. The aim of this short note
is twofold. First, we will present some more recent results in this area which were
not covered in previous surveys. Second, we organize the material in a different way
than before so as to emphasize the importance of the “third-level” local invariants in
future studies.

A quantity will be called a local invariant if it only depends on the map f , i.e.
invariant under changes of local coordinates. (Écalle [E] gave a detailed study on
local invariants of holomorphic maps, although the dynamics associated with these
invariants are not clear.) We will divide local invariants into three levels, depending
on from which “level” of the Taylor expansion of f at 0 the invariants are defined.
Roughly speaking, a first-level invariant comes from the linear part of the Taylor
expansion; a second-level invariant comes from the leading nonlinear part of the
Taylor expansion; and a third-level invariant comes from higher order nonlinear part
of the Taylor expansion. When defining these local invariants, we will always use
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some suitable local coordinates. However, all these local invariants have been shown
to be well-defined, i.e. independent of the choice of (allowable) local coordinates.

There are two typical types of results in local holomorphic dynamics. One type is
to give normal forms or even linearizations via conjugations, the other is to describe
the attracting set of a given map.

Two maps f and g are said to be (holomorphically) conjugate if there exists a
biholomorphism ϕ such that f ◦ ϕ = ϕ ◦ g. Obviously, if f and g are conjugate
then their local dynamics are equivalent. For a given map f , the “simplest” g it is
conjugate to is called its normal form. The best one can hope for is that g is the linear
part of f , in which case we say that f is linearizable. The well-known Poincaré-
Dulac normal form and Brjuno’s linearization theorem are typical examples. This
type of results are certainly important. However, the majority of the note will be
devoted to results on the attracting sets.

A point p in a neighborhood of 0 is in the attracting set of f if f k(p) goes to
0 as k goes to the infinity. Here, of course, f k stands for the k-th iteration of f .
The ultimate goal of the local dynamical study is to give a complete description
of the asymptotic behavior of a map in a full neighborhood of the fixed point. The
first step in achieving this goal is to give a complete study on the attracting set. The
well-known Leau-Fatou Flower Theorem is the “model” result. Much of the work
on the attracting sets in higher dimensions can be viewed as generalizations of the
Leau-Fatou Flower Theorem.

Due to the limit of space, the results surveyed in the note are by no means com-
plete. Our focus will be on results obtained in the past few years. For more detailed
information on earlier results and results in one dimension, please see the existing
surveys cited above.

The author would like to thank the organizers of the KSCV10 conference, espe-
cially Prof. Kang-Tae Kim, for the invitation and hospitality. He also thanks Filippo
Bracci and the referee for valuable comments.

2 The First-Level Invariants

2.1 The Multipliers

Let f be a holomorphic map in Cn with the origin as a fixed point. Write f as

f (z) = L(z) + P2(z) + P3(z) + · · · ,

where L(z) is the linear part of f (z) and Pk(z) are homogeneous of degree k, k ≥ 2.
Write L(z) = L · z, where L is an n × n matrix. The multipliers of f are defined to
be the eigenvalues {λ j }n

j=1 of L .
Denote by N the set of non-negative integers. For α = (α1, · · · , αn) ∈ Nn , set

λα = ∏n
j=1 λ

α j
j and |α| = ∑n

j=1 α j . Define
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ω(m) = min
2≤|α|≤m

min
1≤ j≤n

|λα − λ j |, m ≥ 2.

We say that the multipliers of f satisfy the Brjuno condition if

∑

i≥0

1

pi
log

1

ω(pi+1)
< ∞,

where {pi }∞i=0 is a sequence of integers with 1 = p0 < p1 < · · · . The following is
the best known linearization result (improving earlier results by Siegel [S]).

Theorem 2.1 (Brjuno, [Br]) Let f be a holomorphic map in Cn with the origin as
a fixed point. If d f0 is diagonalizable and the multipliers of f satisfy the Brjuno
condition, then f is holomorphically linearizable.

A resonance for f is a relation of the form

λα − λ j = 0, |α| ≥ 2, 1 ≤ j ≤ n.

Obviously, Theorem 2.1 is not applicable in the presence of resonances. A map f is
said to be quasi-parabolic, if d f0 is diagonalizable and λ j = 1 for 1 ≤ j ≤ m < n
and λ j �= 1 but |λ j | = 1 for m + 1 ≤ j ≤ n. Note that quasi-parabolic maps always
have resonances. However, inspired by a partial linearization result by Pöschel [P],
the author proved the following linearization result for quasi-parabolic maps.

Theorem 2.2 (Rong, [R1]) Let f be a holomorphic map in Cn with the origin as a
quasi-parabolic fixed point. Assume that there exists an m-dimensional manifold M
of fixed points through 0 such that d f p = d f0 for every p ∈ M. If {λ j }n

j=m+1 satisfy
the Brjuno condition, then f is holomorphically linearizable.

This was later generalized to more general settings by Raissy [Ra].

2.2 Multi-resonance

Aswe have seen above, the presence of resonances is usually an obstacle for the local
dynamical study. However, in a recent development, the presence of resonances has
been used in a positive way to study the attracting sets of certain maps.

Assume that d f0 is diagonalizable and that there are resonances among the multi-
pliers {λ j }n

j=1. If the resonances are generated overN by a finite number ofQ-linearly
independent multi-indices, f is said to be multi-resonant. In [BZ], Bracci and Zait-
sev studied one-resonant maps and obtained sufficient conditions for the existence of
local attracting basins. This was later generalized to multi-resonant maps by Bracci
et al. [BRaZ]. More recently, Raissy and Vivas [RaV] gave a more detailed study
on two-resonant maps, and Bracci and the author [BR] studied quasi-parabolic one-
resonant maps.
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The basic idea of this line of study is as follows: first by using themulti-resonance,
f can be projected into a lower-dimensional map f̂ , the so-called parabolic shadow
of f , such that f̂ is tangent to the identity at the origin; then using the local attracting
basin of f̂ and some attracting conditions on the “fibers,” one can create an attracting
basin for f . Recall that a holomorphic map f is said to be tangent to the identity at
0 if d f0 = In , the identity matrix.

2.3 Diagonalization

Most of the results in local holomorphic dynamics assume the linear part of the
maps under study to be diagonalizable. However, the non-diagonalizable case is
certainly important and worth studying. For instance, Yoccoz [Y] pointed out that
the Brjuno condition is in general not sufficient for holomorphic linearization in the
non-diagonalizable case (see also [DG]).

The method of blow-up is a very important tool in the study of local holomorphic
dynamics. It is particularly so for the study on attracting sets in the non-diagonalizable
case. Indeed, Abate [A1] gave an explicit description of how to systematically diag-
onalize a non-diagonalizable map via blow-ups.

There are very few results in the non-diagonalizable case, see e.g. [A3]. Recently,
the author [R5] gave a somewhat systematic study of the non-diagonalizable case in
dimension two. In particular, the attracting basin studied in [A3] was recovered as a
special case.

3 The Second-Level Invariants

3.1 The Order and Characteristic Directions

Let us first recall the well-known Leau-Fatou Flower Theorem from the one-
dimensional theory (see e.g. [M]).

Theorem 3.1 (Leau, [L]; Fatou, [F1]) Let f be a holomorphic map in C with the
origin as a fixed point. Assume that f is tangent to the identity with order ν, i.e. f
can be written as

f (z) = z + azν + O(zν+1), ν ≥ 2, a �= 0.

Then there exist ν − 1 “attracting petals” for f at the origin.

A central theme in the study on attracting sets for holomorphic maps in higher
dimensions has been to generalize the Leau-Fatou Flower Theorem. To state the
known results so far, let us first make several definitions.
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Let f be a holomorphic map in Cn , tangent to the identity at the origin. Write f
as

f (z) = z + P2(z) + P3(z) + · · · ,

where Pk(z), k ≥ 2, are n-tuples of homogeneous polynomials of degree k. The
order ν of f is defined as

ν := min{k : Pk(z) �≡ 0}.

Write z = (z1, · · · , zn) and Pν(z) = (Pν,1(z), · · · , Pν,n(z)) and denote by [·] the
canonical projection from Cn\{0} to Pn−1. A direction [v] = [z1 : · · · : zn] is called
a characteristic direction of f if

(Pν,1(z), · · · , Pν,n(z)) = λ(z1, · · · , zn), λ ∈ C.

If λ �= 0, then [v] is said to be non-degenerate, otherwise degenerate.
An attracting petal of dimension d for f at the origin is an injective holomorphic

map ϕ : Δ → Cn satisfying the following properties:
(i) Δ is a simply connected domain in Cd with 0 ∈ ∂Δ;
(ii) ϕ is continuous on ∂Δ and ϕ(0) = 0;
(iii) ϕ(Δ) is invariant under f and f k(ϕ(ζ )) → 0 as k → ∞ for any ζ ∈ Δ.
Furthermore, if [ϕ(ζ )] → [v] ∈ Pn−1 as ζ → 0, then ϕ is said to be tangent to [v]
at 0. If there are ν − 1 attracting petals tangent to [v] at 0, then we say they form an
attracting flower tangent to [v] at 0. When d = 1, an attracting petal is also called
a parabolic curve. When 1 < d < n, an attracting petal is also called a parabolic
manifold. When d = n, an attracting petal is a (parabolic) attracting domain.

The first main generalization of the Leau-Fatou Flower Theorem to higher dimen-
sions is the following

Theorem 3.2 (Écalle, [E]; Hakim, [H2]) Let f be a holomorphic map in Cn, tangent
to the identity at the origin. If f is of order ν < ∞ and [v] is a non-degenerate
characteristic direction of f , then there exists a one-dimensional attracting flower
of f tangent to [v] at 0.

A similar result holds for quasi-parabolic maps, which was proven in dimension
two by Bracci and Molino [BMo] and in higher dimensions by the author [R2]. To
be more precise, we need some definitions.

Let f be a quasi-parabolic map in Cn with eigenvalue 1 of multiplicity l and other
eigenvalues λ j , 1 ≤ j ≤ m = n − l. Set Λ = Diag(λ1, · · · , λm). In a suitable local
coordinates (z, w) ∈ Cl × Cm , we can then write f as

{
z1 = z + p(z) + r(z, w),

w1 = Λw + q(z) + s(z, w),

where p, q, r, s are all of degree greater or equal to two and r(z, 0) = s(z, 0) = 0.
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We say that f is in ultra-resonant form if ordp(z) ≤ ordq(z), in which case we
call ν = ordp(z) the order of f . Assume that ν < ∞, and let pν(z) be the lowest
order term of p(z). A characteristic direction of f is of the form [v] = [z1 : · · · :
zl : 0 : · · · : 0] where [u] = [z1 : · · · : zl ] is a characteristic direction of pν(z), i.e.
pν(z) = λz for some λ ∈ C. And [v] is said to be non-degenerate if λ �= 0, otherwise
degenerate.

If f has a characteristic direction [v], then in a suitable local coordinates it can
be assumed that [v] = [1 : 0 : · · · : 0]. Write z = (x, y) ∈ C × Cl−1. Set
μ = min{k; xkw j in s(z, w)}. We say that f is dynamically separating in [v] if
μ ≥ ν − 1.

Theorem 3.3 (Bracci-Molino, [BMo]; Rong, [R2]) Let f be a holomorphic map in
Cn, with a quasi-parabolic fixed point at the origin. If f is of order ν < ∞, has a
non-degenerate characteristic direction [v], and f is dynamically separating in [v],
then there exists a one-dimensional attracting flower of f tangent to [v] at 0.

3.2 The Director and Residual Index

Let f be a holomorphic map in Cn , tangent to the identity at the origin. Assume that
f has order ν < ∞ and has a non-degenerate characteristic direction [v]. In suitable
local coordinates z = (x, y) ∈ C×Cn−1, it can be assumed that [v] = [1 : 0]. Write
f as {

x1 = x + pν(x, y) + O(ν + 1),

y1 = y + qν(x, y) + O(ν + 1),
(3.1)

where pν(x, y) and qν(x, y) are homogeneous of degree ν.
Under the blow-up y = xu, the blow-up map f̃ takes the form

{
x1 = x + xν pν(1, u) + O(xν+1),

u1 = u + xν−1r(u) + O(xν),
(3.2)

where r(u) = qν(1, u) − pν(1, u)u. The matrix

A := p−1
ν (1, 0)r ′(0)

is a local invariant associated with f and its n −1 eigenvalues are called the directors
of f in the non-degenerate characteristic direction [v].
Theorem 3.4 (Hakim, [H3]) Let f be a holomorphic map in Cn, tangent to the
identity at the origin. Assume that f has order ν < ∞ and has a non-degenerate
characteristic direction [v]. Let αi , 1 ≤ i ≤ n − 1, be the directors of f in [v].
Suppose that there exists α > 0 such that Reα j > α for 1 ≤ j ≤ l and Reαl+k < α
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for 1 ≤ k ≤ n − 1− l. Then there exists an (l + 1)-dimensional attracting flower of
f tangent to [v] at 0.

Similar results hold for quasi-parabolic maps (see [R3]) and semi-attractive maps
(see e.g. [F2, U, H1, Ri, R4]). Recall that a holomorphic map f is said to be
semi-attractive at 0 if d f0 = Diag(Il , A), where Il is the identity matrix with size
1 ≤ l ≤ n − 1 and the eigenvalues of A all have modulus less than one.

Theorems 3.2 and 3.4 deal with holomorphic maps tangent to the identity with
a non-degenerate characteristic direction, which is a generic condition. It would be
desirable to obtain a “full” generalization of the Leau-Fatou Flower Theoremwithout
this generic condition. So far, this has only been achieved in dimension two by
Abate [A2].

Theorem 3.5 (Abate, [A2]) Let f be a holomorphic map in Cn. Assume that the
origin is an isolated fixed point of f and f is tangent to the identity at 0. Then there
exists a one-dimensional attracting flower of f at 0.

The main point of the proof of Theorem 3.5 is to show that after a sequence
of blow-ups one gets a blow-up map which is generic, i.e. with a non-degenerate
characteristic direction, as in Theorem 3.2. For this purpose, Abate introduced a key
local invariant, the residual index, defined as follows.

Let f̃ be a holomorphic map in C2, tangent to the identity at the origin. Assume
that there is a line S of fixed points of f̃ through 0. In local coordinates (x, u) ∈ C×C,
such that S is given by {x = 0}, we can write f̃ as

{
x1 = x + xν p(x, u),

u1 = u + xμq(x, u),

where p(0, u) �≡ 0 and q(0, u) �≡ 0, ν ≥ 2 and μ ≥ 1.
Define a meromorphic function, the residual function, κ(u) by

κ(u) := lim
x→0

p(x, u)

xμ−ν+1q(x, u)
.

If μ < ν − 1, then κ(u) ≡ 0. If μ > ν − 1, then κ(u) ≡ ∞. If μ = ν − 1, then
κ(u) = p(0, u)/q(0, u). The residual index ι0( f̃ , S) of f̃ at 0 along S is defined as
Res(κ(u); 0). Note that if f̃ is the blow-up map of a holomorphic map tangent to the
identity in a non-degenerate characteristic direction and S is the exceptional divisor,
then the residual index is exactly the reciprocal of the director as defined above.

Although Theorem 3.5 gives a Leau-Fatou Flower Theorem in dimension two, it
leaves open two questions: 1. What happens if the origin is non-isolated? 2. Given a
degenerate characteristic direction, is there always an attracting petal tangent to it?

For results related to the first question, see e.g. [B1, De]. Note that the residual in-
dex theorems used in [A2, B1] have been developed systematically by Abate, Bracci
and Tovena [ABT] to much more general settings and also to higher dimensions. It
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would be desirable to find an effective use of such more general index theorems to
the study of local holomorphic dynamics.

For the second question, Abate [A2] already showed that the answer is yes if the
residual index of the blow-upmap at the given direction along the exceptional divisor
does not belong to Q+. This result was later generalized by Molino [Mo] to the case
of non-vanishing residual index (under a mild “regularity” condition).

In dimension two, using the residual function κ(u) defined above, the character-
istic directions can be divided into three types (cf. [AT]).

Let f be a holomorphic map in C2, tangent to the identity at the origin. Assume
that f has a characteristic direction, which we assume to be [1 : 0]. Then we can
write f as in (3.1), and its blow-up map f̃ as in (3.2). If r(u) ≡ 0, then f is said to
be dicritical at 0.

Assume that f is not dicritical at 0. Then the residual function is given by κ(u) =
pν(1, u)/r(u). If 0 is a simple pole of κ(u), then [1 : 0] is a Fuchsian characteristic
direction of f . If 0 is a pole of κ(u) of order greater than one, then [1 : 0] is an
irregular characteristic direction of f . If κ(u) ≡ 0 or if 0 is a removable singularity
of κ(u), then [1 : 0] is an apparent characteristic direction of f .

Theorem 3.6 (Vivas, [V2]) Let f be a holomorphic map in C2, tangent to the
identity at the origin. Assume that f has an irregular characteristic direction [v].
Then there exists an attracting domain of f tangent to [v] at 0.

Vivas [V2] also gave sufficient conditions (in terms of the residual index) for
the existence of attracting domains in Fuchsian characteristic directions, and studied
examples of apparent characteristic directions. See also [V1, La] for related results.

3.3 The Non-dicritical Order

Let f be a holomorphic map in Cn , tangent to the identity at the origin. Assume
that f has order ν < ∞ and has a non-degenerate characteristic direction [v]. Let
αi , 1 ≤ i ≤ n − 1, be the directors of f in [v]. If Reα j > 0 for 1 ≤ j ≤ l and
Reαl+k < 0 for 1 ≤ k ≤ m = n − 1 − l, then by Theorem 3.4 there exists an
(l + 1)-dimensional attracting flower of f tangent to [v] at 0. In fact, from [H3,
ArRa], it follows that l + 1 is the maximal dimension of attracting flowers in this
case. It is then natural to ask what happens when Reαl+k = 0 for all 1 ≤ k ≤ m.

In suitable local coordinates (x, y, z) ∈ C × Cl × Cm , we can assume that
[v] = [1 : 0 : 0]. Under the blow-up (y = xu, z = xv), the blow-up map f̃ can be
written as (after possible scaling and suitable linear transformations)

⎧
⎪⎨

⎪⎩

x1 = (1 − xν−1)x + O(xν‖w‖, xν+1),

u1 = (Il − xν−1B)u + O(xν−1‖w‖2, xν),

v1 = (Im − xν−1C)v + O(xν−1‖w‖2, xν),

(3.3)
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where w = (u, v), B is an l × l matrix with eigenvalues α j , 1 ≤ j ≤ l, and C is an
m × m matrix with eigenvalues αl+k , 1 ≤ k ≤ m.

Rewrite v1 in (3.3) as

v1 = v + xν−1
ν+1∑

|k|=1

vkγk + O(xν−1‖u‖‖w‖, xν),

where k = (k1, · · · , km) ∈ Nm is a multi-index, |k| = k1 + · · · + km , and γk ∈ Cm .
Then the non-dicritical order of f in the characteristic direction [v] is defined as

τ := min{|k| − 1; γk �= 0}.

The name “non-dicritical” refers to the fact that if l = 0 then f is dicritical at the
origin if and only if all γk vanish. It will always be assumed that some γk �= 0, in
which case 0 ≤ τ ≤ ν (see e.g. [Bro] for a study in the dicritical case).

Theorem 3.7 (Rong, [R6])Let f be a holomorphic map in C2, tangent to the identity
at the origin, with a non-degenerate characteristic direction [v]. Let τ be the non-
dicritical order of f in [v]. If τ ≥ 1, then there exists an attracting domain of f
tangent to [v] at 0.

A similar result holds in higher dimensions with extra conditions. When τ = 0, it
is possible for f to admit a “spiral domain” at the origin (see [R6] for more details).
Note also that in dimension two, if τ ≥ 1 then [v] is an irregular characteristic
direction of f .

4 The Third-Level Invariants

4.1 Essentially Non-degenerate

From the discussion above, it is clear that one of the main problems in the study
of local holomorphic dynamics of maps tangent to the identity is to understand
the dynamics in degenerate characteristic directions. So far there are only very few
results, and only in dimension two (see e.g. [R7, V2]).

Let f be a holomorphic map in C2, tangent to the identity at the origin. Assume
that f has order ν < ∞ and [v] = [x : y] = [1 : 0] is a degenerate characteristic
direction of f . Write f as

{
x1 = x + ypν−1(x, y) + O(ν + 1),

y1 = y + yqν−1(x, y) + O(ν + 1),
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where pν−1(x, y) andqν−1(x, y) are homogeneous of degree ν−1.We say that [1 : 0]
is a generically degenerate characteristic direction of f if qν−1(x, 0) �≡ 0. Note that a
generically degenerate characteristic direction is an apparent characteristic direction.

Let G be the group of local changes of coordinates which preserves [1 : 0] as the
degenerate characteristic direction. For each φ ∈ G, write (xφ, yφ) = φ(x, y). Then
f is transformed under φ as

{
xφ,1 = xφ + Pφ(xφ) + yφ O(ν − 1),

yφ,1 = yφ + Qφ(xφ) + yφ Rφ(xφ) + y2φ O(ν − 2),

where ordPφ ≥ ν + 1, ordQφ ≥ ν + 1 and ordRφ = ν − 1. The essential order of
f in [1 : 0] is defined as

μ := max
φ∈G

ordPφ(xφ).

We say that [1 : 0] is an essentially non-degenerate characteristic direction of f if
μ < ∞.

Remark 4.1 The above definition is slightly different than the original definition
given in [R7], whereμ is required to be less than the so-called virtual order. However,
using simple linear transformations of the form (X = x , Y = y + αxk) for k ≥ 2, it
is easy to check that the virtual order is always greater than μ if μ < ∞.

Now assume that μ < ∞ and rewrite f as

{
x1 = x − axμ + P(x) + yO(ν − 1),

y1 = y − byxν−1 + Q(x) + y R(x) + y2O(ν − 2),

where a, b �= 0, ordQ > ordP ≥ μ + 1 and ordR ≥ ν. Then the director of f in
[1 : 0] is defined as

α := b

a(ν−1)/(μ−1)
.

Theorem 4.1 (Rong, [R7]) Let f be a holomorphic map in C2, tangent to the iden-
tity at the origin. Assume that f has an essentially non-degenerate characteristic
direction [v] and the director of f in [v] is α. If Reα > 0, then there exists an
attracting domain of f tangent to [v] at 0.

Note that the above theorem gives an attracting petal instead of an attracting
flower. As first observed by the author [R2], this “symmetry break-down” is indeed
expected in degenerate characteristic directions.
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4.2 Non-dynamically-Separating

Let f be a holomorphic map in C2, quasi-parabolic at the origin. Then [1 : 0] is the
only characteristic direction of f . Write f as

{
z1 = z + P(z) + wS(z, w),

w1 = λw + Q(z) + wR(z) + w2T (z, w),

with |λ| = 1 and λ �= 1. Set p = ordP , q = ordQ and r = ordR. Assume that f is
in ultra-resonant form, i.e. q ≥ p, and non-dynamically-separating, i.e. r < p − 1.

Now rewrite f as

{
z1 = z − az p + O(z p+1, w),

w1 = λw − bwzr + O(z p, wzr+1, w2),

with a, b �= 0. We call p the essential order and r the generic order. The director
of f is then defined as

α := b

λar/(p−1)
.

Theorem 4.2 (Rong, [R8]) Let f be a holomorphic map in C2, quasi-parabolic at
the origin. Assume that f is non-dynamically-separating and the director of f is α.
If Reα > 0, then there exists an attracting domain of f tangent to [1 : 0] at 0.
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L2-Serre Duality on Singular Complex
Spaces and Applications

J. Ruppenthal

Abstract In this survey, we explain a version of topological L2-Serre duality for
singular complex spaces with arbitrary singularities. This duality can be used to
deduce various L2-vanishing theorems for the ∂-equation on singular spaces. As
one application, we prove Hartogs’ extension theorem for (n − 1)-complete spaces.
Another application is the characterization of rational singularities. It is shown that
complex spaces with rational singularities behave quite tame with respect to some
∂-equation in the L2-sense. More precisely: a singular point is rational if and only if
the appropriate L2-∂-complex is exact in this point. So, we obtain an L2-∂-resolution
of the structure sheaf in rational singular points.

Keywords Cauchy-Riemann equations · L2-theory · Serre duality · Dolbeault
cohomology ·Vanishing theorems · Singular complex spaces ·Rational singularities

1 Introduction

Classical Serre duality, [S1], can be formulated as follows: Let X be a complex n-
dimensional manifold, let V → X be a complex vector bundle, and let E 0,q(X, V )

and E
n,q
c (X, V ∗) be the spaces of global smooth (0, q)-form with values in V and

global smooth compactly supported (n, q)-forms with values in the dual bundle V ∗,
respectively. Then the following pairing is non-degenerate

Hq(
E 0,•(X, V ), ∂̄

) × Hn−q(
E n,•

c (X, V ∗), ∂̄
) → C, ([ϕ]∂̄ , [ψ]∂̄ ) �→

∫

X
ϕ ∧ ψ

(1)
provided that Hq

(
E 0,•(X, V ), ∂̄

)
and Hq+1

(
E 0,•(X, V ), ∂̄

)
are Hausdorff topolog-

ical vector spaces.
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If X is allowed to have singularities, then, traditionally, Serre duality takes a
more algebraic and much less explicit form. To explain that more precisely, let
F := O(F), F ∗ := O(F∗) and let Ωn

X denote the sheaf of holomorphic n-forms
on X . Then we can rephrase (1) via the Dolbeault isomorphism algebraically: There
is a non-degenerate topological pairing

Hq(X,F ) × Hn−q(X,F ∗ ⊗ Ωn
X ) → C, (2)

realized by the cup-product, provided that Hq(X,F ) and Hq+1(X,F ) are Haus-
dorff. In this formulation, Serre duality has been generalized to singular complex
spaces, see, e.g., Hartshorne [H1, H2] and Conrad [C] for the algebraic setting and
Ramis-Ruget [RR] and Andreotti-Kas [AK] for the analytic setting. In fact, if X is
of pure dimension n, paracompact and Cohen-Macaulay, then there is again a non-
degenerate topological pairing (2) if we replace Ωn

X by the Grothendieck dualizing
sheaf ωX . If X is not Cohen-Macaulay, then Hn−q(X,F ∗ ⊗ Ωn

X ) has to be the
replaced by the cohomology of a certain complex ofOX -modules, called a dualizing
complex.

In this survey, we will explain how L2-theory for the ∂-operator can be used
to obtain an L2-version of Serre duality on singular spaces which has an analytic
realization completely analogous to (1). More precisely, we will show how (1) gen-
eralizes to singular spaces by replacing the Dolbeault cohomology groups of smooth
(0, q) and (n, q)-forms, respectively, by L2-Dolbeault cohomology groups.

2 L2-Theory for the ∂-Operator on Singular Spaces

The Cauchy-Riemann operator ∂ plays a fundamental role in Complex Analysis
and Complex Geometry. On complex manifolds, functions— or more generally
distributions—are holomorphic if and only if they are in the kernel of the ∂-operator,
and the same holds in a certain sense on normal complex spaces. For forms of arbi-
trary degree, the importance of the ∂-operator appears strikingly for example in the
notion of ∂-cohomology which can be used to represent the cohomology of complex
manifolds by the Dolbeault isomorphism.

The L2-theory for the ∂-operator is of particular importance in Complex Analysis
and Geometry and has become indispensable for the subject after the fundamental
work of Hörmander on L2-estimates and existence theorems for the ∂-operator [H3]
and the related work of Andreotti and Vesentini [AV]. Important applications of the
L2-theory are e.g. the Ohsawa-Takegoshi extension theorem [OT], Siu’s analyticity
of the level sets of Lelong numbers [S2] or the invariance of plurigenera [S3]—just
to name some.



L2-Serre Duality on Singular Complex Spaces and Applications 311

The first problem one has to face when studying the ∂-equation on singular spaces
is that it is not clear what kind of differential forms and operators one should consider.
Recently, there has been considerable progress by different approaches.

Andersson and Samuelsson developed in [AS] Koppelman integral formulas for
the ∂-equation on arbitrary singular complex spaces which allow for a ∂-resolution
of the structure sheaf in terms of certain fine sheaves of currents, calledA -sheaves.
These A -sheaves are defined by an iterative procedure of repeated application of
singular integral operators, which makes them pretty abstract and hard to understand
(and difficult to work with in concrete situations).

A second, more explicit approach is as follows: Consider differential forms which
are defined on the regular part of a singular variety and which are square-integrable
up to the singular set. This setting seems to be very fruitful and has some history by
now (see [PS]).1 Also in this direction, considerable progress has beenmade recently.
Øvrelid–Vassiliadou and the author obtained in [OV2] and [R3] a pretty complete
description of the L2-cohomology of the ∂-operator (in the sense of distributions) at
isolated singularities.

In this setting,weunderstand the class of objectswithwhichwedeal verywell (just
L2-forms), but the disadvantage is a different one. Whereas the ∂-equation is locally
solvable for closed (0, q)-forms in the category of A -sheaves by the Koppelman
formulas in [AS], there are local obstructions to solving the ∂-equation in the L2-sense
at singular points (see e.g. [FOV, OV2, R3]). So, there can be no L2-∂-resolution
for the structure sheaf in general.

In this survey, we will see that the ∂-operator in the L2-sense behaves pretty well
on spaces with canonical singularities which play a prominent role in the minimal
model program. The underlying idea is that canonical Gorenstein singularities are
rational (see e.g. [K], Theorem 11.1), i.e., we expect that the singularities do not
contribute to the local cohomology.

Pursuing this idea, it turned out that there is a notion of L2-∂-cohomology for
(0, q)-forms which can be described completely in terms of a resolution of singu-
larities (see (6) below). A singular point is rational if and only if this certain L2-
∂-complex is exact in this point. If the underlying space has rational singularities,
particularly on aGorenstein space with canonical singularities, thenwe obtain an L2-
∂-resolution of the structure sheaf, i.e., a resolution of the structure sheaf in terms of
a well-known and easy to handle class of differential forms. One of our main tools is
a version of topological L2-Serre duality for singular complex spaces with arbitrary
singularities, which seems to be useful in other contexts, too (Theorem 4.1).

1 The interest in this setting goes back to the invention of intersection (co-)homology by Goresky
andMacPhersonwhich has very tight connections to the L2-deRham cohomology of the regular part
of a singular variety. We refer here to the solution of the Cheeger-Goresky-MacPherson conjecture
[CGM] for varieties with isolated singularities by Ohsawa [O] (see [PS] for more details).
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3 Two ∂-Complexes on Singular Complex Spaces

We need to specify what we mean by differential forms and the ∂-operator in the
presence of singularities. Let X be a Hermitian complex space2 of pure dimension
n and F → X a Hermitian holomorphic line bundle. We denote by L p,q(F) the
sheaf of germs of F-valued (p, q)-forms on the regular part of X which are square-
integrable on K ∗ = K \Sing X for any compact set K in their domain of definition.3

Note thatL p,q(F) becomes a Fréchet sheafwith the L2,loc-topology on open subsets
of X .

Due to the incompleteness of the metric on X∗ = X \ Sing X , there are different
reasonable definitions of the ∂-operator onL p,q(F)-forms. To be more precise, let
∂cpt be the ∂-operator on smooth forms with support away from the singular set
Sing X . Then ∂cpt can be considered as a densely defined operator L p,q(F) →
L p,q+1(F). One can now consider various closed extensions of this operator. The
twomost important are themaximal closed extension, i.e., the ∂-operator in the sense
of distributions which we denote by ∂w, and the minimal closed extension, i.e., the
closure of the graph of ∂cpt which we denote by ∂s . Let C p,q(F) be the domain
of definition of ∂w which is a subsheaf of L p,q(F), and F p,q(F) the domain of
definition of ∂s which in turn is a subsheaf of C p,q(F). We obtain complexes of fine
sheaves

C p,0(F)
∂w−→ C p,1(F)

∂w−→ C p,2(F)
∂w−→ ... (3)

and

F p,0(F)
∂s−→ F p,1(F)

∂s−→ F p,2(F)
∂s−→ ... (4)

We refer to [R4] for more details, but let us explain the ∂s-operator more precisely
for convenience of the reader. Let f be a germ in C p,q(F), i.e., an F-valued (p, q)-
form on an open set U in X (living on the regular part of U ) which is L2 on compact
subsets of U and such that the ∂ in the sense of distributions, ∂w f , is in the same
class of forms. Then f is in the domain of the ∂s-operator (and we set ∂s f = ∂w f )
if there exists a sequence of forms { f j } j ⊂ C p,q(U, F) with support away from the
singular set, supp f j ∩ Sing X = ∅, such that

f j → f in L p,q(U, F),

∂w f j → ∂w f in L p,q+1(U, F).

2AHermitian complex space (X, g) is a reduced complex space X with ametric g on the regular part
such that the following holds: If x ∈ X is an arbitrary point there exists a neighborhood U = U (x)

and a biholomorphic embedding of U into a domain G in C
N and an ordinary smooth Hermitian

metric in G whose restriction to U is g|U .
3This is what we mean by square-integrable up to the singular set.
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This means that the ∂s-operator comes with a certain Dirichlet boundary at the
singular set of X , which can also be interpreted as a growth condition. We have e.g.
the following:

Lemma 3.1 ([R4]) Bounded forms in the domain of ∂w are in the domain of ∂s .

If F is just the trivial line bundle, thenKX := ker ∂w ⊂ C n,0 is the canonical sheaf
of Grauert–Riemenschneider (see [GR]) and K s

X := ker ∂s ⊂ F n,0 is the sheaf of
holomorphic n-forms with Dirichlet boundary condition that was introduced in [R3].
We will see below that ÔX = ker ∂s ⊂ F 0,0 for the sheaf of weakly holomorphic
functions ÔX .

It is clear that (3) and (4) are exact in regular points of X . Exactness in singular
points is equivalent to the difficult problem of solving ∂-equations locally in the L2-
sense at singularities, which is not possible in general (see e.g. [FOV, OV1, OV2,
R1, R2, R3]). However, it is known that (3) is exact for p = n (see [PS]), and that
(4) is exact for p = n if X has only isolated singularities (see [R3]). In these cases,
the complexes (3) and (4) are fine resolutions of the canonical sheavesKX andK s

X ,
respectively.

For an open set Ω ⊂ X , we denote by H p,q
w,loc(Ω, F) the cohomology of the com-

plex (3), and by H p,q
w,cpt (Ω, F) the cohomology of (3) with compact support. Analo-

gously, let H p,q
s,loc(Ω, F) and H p,q

s,cpt (Ω, F) be the cohomology groups of (4). These

L2-cohomology groups inherit the structure of topological vector spaces, which are
locally convexHausdorff spaces if the corresponding ∂-operators have closed range.4

4 L2-Serre Duality

We can now formulate the L2-version of (1) for singular complex spaces:

Theorem 4.1 (Serre duality [R4]) Let X be a Hermitian complex space of pure
dimension n, F → X a Hermitian holomorphic line bundle, and let 0 ≤ p, q ≤ n.
If H p,q

w,loc(Ω, F) and H p,q+1
w,loc (Ω, F) are Hausdorff, then the mapping

L p,q(Ω, F) × L
n−p,n−q

cpt (Ω, F∗) → C , (η, ω) �→
∫

Ω∗
η ∧ ω,

induces a non-degenerate pairing of topological vector spaces

H p,q
w,loc(Ω, F) × Hn−p,n−q

s,cpt (Ω, F∗) → C

such that Hn−p,n−q
s,cpt (Ω, F∗) is the topological dual of H p,q

w,loc(Ω, F) and vice versa.

4 Note that different Hermitian metrics lead to ∂-complexes which are equivalent on relatively
compact subsets. So, one can put any Hermitian metric on X in many of the results below.



314 J. Ruppenthal

The same statement holds with the indices {s, w} in place of {w, s}. Then there is
a non-degenrate pairing

H p,q
s,loc(Ω, F) × Hn−p,n−q

w,cpt (Ω, F∗) → C.

If the topological vector spaces H p,q
w/s,loc(Ω, F), H p,q+1

w/s,loc(Ω, F) are non-
Hausdorff, then the statement of Theorem 4.1 holds at least for the separated coho-

mology groups Hw/s = ker ∂w/s/Im ∂w/s .5 The two main difficulties in the proof
of Theorem 4.1 are as follows. First, the ∂-operators under consideration are just
closed densely defined operators in the Fréchet spaces L p,q(Ω, F) and the (L F)-
spaces L n−p,n−q

cpt (Ω, F∗). Second, we have to show that the operators ∂w and ∂s

are topologically dual, even at singularities. Note that H p,q
w/s,loc(Ω, F) is Hausdorff

if and only if ∂w/s has closed range in L p,q(Ω, F), and to decide whether this is
the case is usually as difficult as solving the corresponding ∂-equation. Using local
L2-∂-solution results for singular spaces, one can show at least:

Theorem 4.2 ([R4]) Let X be a Hermitian complex space of pure dimension n,
F → X a Hermitian holomorphic line bundle, and let 0 ≤ p, q ≤ n. Let Ω ⊂ X be
a holomorphically convex open subset. Then the topological vector spaces

Hn,q
w,loc(Ω, F) , Hn,q

w,cpt (Ω, F) , H0,n−q
s,cpt (Ω, F∗) , H0,n−q

s,loc (Ω, F∗)

are Hausdorff for all 0 ≤ q ≤ n.

A main point in the proof of Theorem 4.2 is to show that the canonical Fréchet
sheaf structure of compact convergence on the coherent analytic canonical sheafKX

coincides with the Fréchet sheaf structure of L2-convergence on compact subsets.
This allows then to show also the topological equivalence of Čech cohomology and
L2-cohomology. If X has only isolated singularities, then the Hausdorff property is
known also for some cohomology spaces of different degree (see [R4]).

As a direct application of Serre duality, Theorem 4.1, one can deduce:

Theorem 4.3 Let X be a Hermitian complex space of pure dimension n, F → X
a Hermitian holomorphic line bundle and Ω ⊂ X a cohomologically q-complete
open subset, q ≥ 1. Then

Hn,r
w,loc(Ω, F) = H0,n−r

s,cpt (Ω, F∗) = 0 for all r ≥ q.

Note that Ω is cohomologically q-complete if it is q-complete by the Andreotti-
Grauert vanishing theorem [AG]. So, Theorem 4.3 allows to solve the ∂s-equation
with compact support for (0, n − q)-forms on q-complete spaces, which is of par-
ticular interest for 1-complete spaces, i.e., Stein spaces.

5The notation w/s refers either to the index w or the index s in the whole statement.
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5 Hartogs’ Extension Theorem

Let us mention some applications. As an interesting consequence of Theorem 4.3,
we obtain Hartogs’ extension theorem in its most general form. This version of the
Hartogs’ extension was first obtained by Merker-Porten [MP] and shortly thereafter
also by Coltoiu-Ruppenthal [CR]. Merker and Porten gave an involved geometrical
proof by using a finite number of parameterized families of holomorphic discs and
Morse-theoretical tools for the global topological control of monodromy, but no
∂-theory. Shortly after that, Coltoiu and Ruppenthal were able to give a short ∂-
theoretical proof by the Ehrenpreis-∂-technique (cf. [CR]). This approach involves
Hironaka’s resolution of singularities which may be considered a very deep theorem.
In the present survey, we give a very short proof of the extension theorem by the
Ehrenpreis-∂-technique without needing a resolution of singularities. We just use the

vanishing result H0,1
s,cpt (X) = 0

Theorem 5.1 Let X be a connected normal complex space of dimension n ≥ 2
which is cohomologically (n − 1)-complete. Furthermore, let D be a domain in X
and K ⊂ D a compact subset such that D \ K is connected. Then each holomorphic
function f ∈ O(D \ K ) has a unique holomorphic extension to the whole set D.

Proof Let f ∈ O(D \ K ). Choose a cut-off function χ ∈ C∞
cpt (D) such that χ

is identically 1 in a neighborhood of K . Then g := (1 − χ) f is an extension of
f , but unfortunately not holomorphic. However, we can fix it by the ∂-strategy of
Ehrenpreis. By Lemma 3.1, g is in the domain of ∂s and H0,1

s,cpt (X) = 0 by Theorem
4.3. So, there exists a solution h to the ∂s-equation with compact support ∂sh = ∂s g
and F := g − h is the desired extension of f to the whole of D. That can be seen by
use of the identity theorem and the fact that X cannot be compact (because Theorem
4.3 implies also that H0,0

s,cpt (X) = 0). ��

6 Rational Singularities

Another, very interesting application of L2-Serre duality is the following character-
ization of rational singularities. Let π : M → X be a resolution of singularities and
Ω ⊂⊂ X holomorphically convex. Give M any Hermitian metric. Then pullback of
L2-(n, q)-forms under π induces an isomorphism

π∗ : Hn,q
w,cpt

(
Ω

) ∼=−→ Hn,q
w,cpt

(
π−1(Ω)

) ∼= Hq
cpt

(
π−1(Ω),KM

)
(5)

for all 0 ≤ q ≤ n by use of Pardon–Stern [PS] and the Takegoshi vanishing theorem
[T] (see [R4] for more details). Now we can use the L2-Serre duality, Theorem 4.1,
and classical Serre duality on the smooth manifold π−1(Ω) to deduce that push-
forward of forms under π induces another isomorphism
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π∗ : Hn−q(
π−1(Ω),OM

) ∼=−→ H0,n−q
s,loc

(
Ω

)
(6)

for all 0 ≤ q ≤ n (see [R4], Theorem 1.1). This shows that the obstructions to solving
the ∂s-equation locally for (0, q)-forms can be expressed in terms of a resolution of
singularities. For the cohomology sheaves of the complex (F 0,•, ∂s), we see that

(
H q(

F 0,•, ∂s
))

x
∼= (

Rqπ∗OM
)

x

in any point x ∈ X for all q ≥ 0. It follows that the functions in the kernel of ∂s are
precisely the weakly holomorphic functions, and for p = 0 the complex (4) is exact
in a point x ∈ X exactly if x is a rational point:

Theorem 6.1 ([R4], Theorem 1.3) Let X be a Hermitian complex space. Then the
L2-∂-complex

0 → OX −→ F 0,0 ∂s−→ F 0,1 ∂s−→ F 0,2 ∂s−→ F 0,3 ∂s−→ ... (7)

is exact in a point x ∈ X if and only if x is a rational point.
Hence, if X has only rational singularities, then (7) is a fine resolution of the

structure sheaf OX .

Recall that a point x ∈ X is rational if it is a normal point and
(
Rqπ∗OM

)
x = 0 for

all q ≥ 1. If X has only rational singularities, then Theorem 6.1 yields immediately
further finiteness and vanishing results, e.g. if X is q-convex or q-complete.

Let us point out also the following interesting fact. Let X be a Gorenstein space
with canonical singularities. By exactness of (7) and exactness of (3) for p = n, the
non-degenerate L2-Serre duality pairing

H0,q
s,loc(Ω) × Hn,n−q

w,cpt (Ω) → C , ([η], [ω]) �→
∫

Ω∗
η ∧ ω,

is for 0 ≤ q ≤ n then an explicit realization of Grothendieck duality after Ramis-
Ruget [RR], (

Hq(Ω,OX )
)∗ ∼= Hn−q

cpt (Ω,ωX ),

given the cohomology groups under consideration are Hausdorff. Here, ωX denotes
theGrothendieck dualizing sheafwhich coincideswith theGrauert-Riemenschneider
canonical sheaf KX as X has canonical Gorenstein singularities.

7 A -sheaf duality

We conclude by mentioning another approach to analytic Serre duality on singular
complex spaces which is based on the so-calledA0,q -sheaves introduced by Anders-
son and Samuelsson in [AS]. These are certain sheaves of (0, q)-currents on singular
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complex spaces which are smooth on the regular part of the variety and such that the
∂-complex

0 → OX ↪→ A0,0
∂−→ A0,1

∂−→ A0,2 −→ ... (8)

is a fine resolution of the structure sheaf. TheA -sheaves are defined via Koppelman
integral formulas on singular complex spaces.

Analogously, in [RSW], we introduced a ∂-complex of fine sheaves of (n, q)-
currents (smooth on the regular part of the variety)

0 → ωX ↪→ An,0
∂−→ An,1

∂−→ An,2 −→ ... (9)

where X is of pure dimension n and ωX denotes the Grothendieck dualizing sheaf.
The complex (9) is exact only under some additional assumptions, e.g. if X is Cohen-
Macaulay.We call (An,•, ∂) a dualizingDolbeault complex forOX becauseweobtain
in [RSW] a non-degenerate topological pairing

Hq(
A0,•(X), ∂̄

) × Hn−q
cpt

(
An,•(X), ∂̄

) → C, ([ϕ]∂̄ , [ψ]∂̄ ) �→
∫

X
ϕ ∧ ψ, (10)

provided that Hq(X,OX ) ∼= Hq
(
A0,•(X), ∂̄

)
and Hq+1(X,OX ) ∼= Hq+1

(
A0,•(X),

∂̄
)
are Hausdorff topological spaces.
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Proper Holomorphic Maps Between
Bounded Symmetric Domains

Aeryeong Seo

Abstract In this article,we survey thebackgroundand recent development onproper
holomorphic maps between bounded symmetric domains.

Keywords Bounded symmetric domain · Proper holomorphic map

A bounded domain Ω is called symmetric if for each p ∈ Ω , there is a holo-
morphic automorphism Ip such that I 2p is the identity map of Ω which has p as an
isolated fixed point. All bounded symmetric domains are homogeneous domains,
i.e. the automorphism group acts transitively on the domain. In 1920s, E. Cartan
classified all irreducible bounded symmetric domains which consist of 4 classical
types and 2 exceptional types [CA35]. The classical types are the following:

1. Type I : Ω I
m,n = {Z ∈ M(m, n,C) : In − Z Z∗ > 0}

where m ≥ n = rank(Ω I
m,n)

2. Type II : Ω I I
m = {Z ∈ M(m, m,C) : Im − Z Z∗ > 0, Zt = −Z}

rank(Ω I I
m ) = [ 12m]

3. Type III : Ω I I I
m = {Z ∈ M(m, m,C) : Im − Z Z∗ > 0, Zt = Z}

rank(Ω I I I
m ) = m

4. Type IV : Ω I V = {z = (z1, . . . , zn) ∈ C
n : ||z||2 < 2, ||z||2 < 1 +∣∣ 1

2

∑
z2k

∣∣2}, rank(Ω I V ) = 2

Note that Ωm,1 is the m-dimensional unit ball and irreducible bounded symmetric
domain of rank 1 is the unit ball. Bounded symmetric domains have abundant sym-
metries, hence there are many structures to make these domains rigid. For domains
Ω1,Ω2, a map f : Ω1 → Ω2 is called proper if for every compact set K ⊂ Ω2,
f −1(K ) is compact. Equivalently, f is proper if and only if for every sequence
{a j } in Ω1 which converges to ∂Ω1, { f (a j )} converges to ∂Ω2. This is the reason
why proper holomorphic maps are deeply related to boundary structures of bounded
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domains. There are several interesting results on proper holomorphic maps between
strongly pseudoconvex domains or general weakly pseudoconvex domains. In this
article, we will only focus on proper holomorphic maps between bounded symmetric
domains of classical type.

1 Proper Holomorphic Maps Between the Unit Balls

The simplest case of classifying proper holomorphic maps is those between discs.
Denote the unit disc by Δ = {z ∈ C : |z| < 1} and the n-dimensional unit ball by
B

n = {z ∈ C
n : |z| < 1}.

Theorem 1.1 Let f : Δ → Δ be a proper holomorphic map between unit discs.
Then there are finitely many points {a j } in the unit disc, positive integers {m j } and
θ such that

f (z) = eiθ
m∏

j=1

(
a j − z

1 − a j z

)m j

(1.1)

The form of (1.1) is called Blaschke product. In higher dimensional ball, proper
holomorphic maps are more rigid as H. Alexander proved the following theorem.

Theorem 1.2 (Alexander (1974) [AL74]) Every proper holomorphic self-maps of
the unit ball Bn where n ≥ 2 are holomorphic automorphisms.

We say that proper holomorphic maps f1, f2 : Ω1 → Ω2 are equivalent if and
only if f1 = g2 ◦ f2 ◦ g1 for some gi ∈ Aut(Ωi ). Hence every proper holomorphic
self-maps of the unit ball are equivalent to the identitymap. Afirst result on rigidity of
proper holomorphic maps between balls with different dimensions is due to Webster
([W79]). He proved that every proper holomorphic maps from B

n to Bn+1 for n ≥ 3,
which extends C3 up to the boundary, are equivalent to

(z1, . . . , zn) �→ (z1, . . . , zn, 0).

For n = 2, Alexander suggested a proper map (z, w) �→ (z2,
√
2zw, w2) and Faran

classified sufficiently big subset of proper holomorphic maps as following:

Theorem 1.3 (Faran (1982) [F82]) Let f : B2 → B
3 be a proper holomorphic map

that is C3 up to the boundary. Then f is equivalent to one of the following:

(z, w) �→ (z3, w3,
√
3zw) , (z, w) �→ (z, zw, w2) ,

(z, w) �→ (z2,
√
2zw, w2) , (z, w) �→ (z, w, 0) .

If the difference of the dimension gets bigger, there are infinitely many inequiva-
lent proper holomorphic maps between the unit balls. For example, proper holomor-
phic maps Qt : Bn → B

2n with t ∈ [0, 1] defined by
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Qt (z) =
(

z1, . . . , zn−1, t zn,
(
1 − t2

)
z1zn,

(
1 − t2

)
z2zn, . . . ,

(
1 − t2

)
z2n

)

are inequivalent for every t ∈ [0, 1]. For the projection π0 : C2n → C
2n−1 given

by (z1, . . . , z2n) �→ (z1, . . . , zn−1, zn+1, . . . , z2n) and π1 : C
2n → C

n given by
(z1, . . . , z2n) �→ (z1, . . . , zn), π0 ◦ Q0 : B

n → B
2n−1 is the Whitney map and

π1 ◦ Q1 : Bn → B
n is the identity map. The Whitney map and the identity map are

homotopic to each other by Qt . On the other hand, if one considers only monomial
proper holomorphic maps, there are 12 number of maps.

Theorem 1.4 ( D’Angelo (1988) [DA88]) Let f : B2 → B
4 be a monomial proper

holomorphic map. Then f is equivalent to one of the following:

(z, w, 0, 0), (z2, zw, w, 0), (z2,
√
2zw, w2, 0), (z3,

√
3zw, w3, 0),

(z3,
√
3z2w,

√
3zw2, w3), (z3, z2w, zw, w), (z2, z2w, zw2, w),

(z2,
√
2z2w,

√
2zw2, w2), (z3,

√
3z2w,

√
2zw2, w2), (z, z2w,

√
2zw2, w3),

(z4, z3w,
√
3zw, w3), (z4,

√
3z2w, zw3, w), (z5,

√
5z3w,

√
5zw2, w5),

(z, cos(θ)w, sin(θ)zw, sin(θ)w2), (z2,
√

(1 + cos2(θ))zw, cos(θ)w2, sin(θ)w).

There are many other result finding difference of the dimension to make proper
holomorphic maps rigid. For more detail, see [F86, Fo89, Ds09, D07, L12, HU01,
Ds88, HA05, HJ06, Hu04] and the references therein.

2 Rigidity of Proper Holomorphic Maps Between Bounded
Symmetric Domains

The first work on the rigidity of proper holomorphic maps between bounded sym-
metric domains of rank greater than or equal to two are given by G. M. Khenkin and
R. Novikov in 1982. They proved that every proper holomorphic self-maps of irre-
ducible bounded symmetric domains of rank ≥ 2 are holomorphic automorphisms.
In case of proper holomorphic maps between two different bounded symmetric
domains, the difference of rank is more crucial than that of dimension because of
fine structures of bounded symmetric domains. Especially, orbits of domain’s auto-
morphism group at a given point in its compact dual and boundary arc components
are explicitly described in [W72].

Definition 2.1 ([W72]) Let V is a complex analytic space and S ⊂ V is a subset.We
call a holomorphicmap f : Δ → V with f (Δ) ⊂ S a holomorphic arc in S.We call a
finite sequence { f1, . . . , fk} of holomorphic arcs in S such that f j (Δ)

⋂
f j+1(Δ) 
=

∅ for 1 ≤ j ≤ k − 1 chain of holomorphic arcs in S. Then for v1, v2 ∈ S, v1 ∼ v2 if
and only if there is a chain { f1, . . . , fk} such that v1 ∈ f1(Δ) and v2 ∈ fk(Δ). We
call the equivalence classes of ∼ the holomorphic arc components of S in V .

Using the property that proper holomorphic maps between bounded symmetric
domains which can be extended over the boundary should preserve these bound-
ary components, N. Mok and I. H. Tsai proved that every proper holomorphic maps
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between bounded symmetric domain should preserve the maximal characteristic sub-
spaces (See [Mo92].) which are totally geodesic subspaces in its ambient bounded
symmetric domain. With these fine structures, I. H. Tsai proved that proper holo-
morphic maps between bounded symmetric domains are very rigid in some special
case.

Theorem 2.1 (Tsai (1993) [T93]) Let (Ω1, g1) and (Ω2, g2) be bounded symmetric
domains. Suppose that Ω1 is irreducible and rank(Ω1) ≥ rank(Ω2) ≥ 2. Then
rank(Ω1) = rank(Ω2) and any proper holomorphic map f : Ω1 → Ω2 is a totally
geodesic isometric embedding up to normalizing constants.

Based on I. H. Tsai’s result and structures given by Wolf et al. in [W72, Mo92], it is
proved that for equidimensional bounded symmetric domains Ω1,Ω2 where Ω1 is
irreducible and rank is greater than 1, then every proper holomorphic maps should
be biholomorphism [Tu02]. For the specific case, when f is a proper holomorphic
map fromΩ I

p,p−1 toΩ I
p,p, f should be a totally geodesic isometric embedding with

respect to their Bergman metrics [Tu03]. Furthermore, for proper holomorphic maps
from Ω I

r,s to Ω I
r ′,s′ where s ≥ 2 and s ≥ r ′ ≥ r , if r ′ ≤ 2r − 1, then the map is

equivalent to Z �→
(

Z 0
0 0

)
([Ng13]).

Bounded symmetric domains can be canonically embedded into some compact
manifold, so called, the compact dual by the Borel embedding. The compact dual of
Ω I

r,s is the Grassmannian of s-dimensional plane in C
r+s and the Borel embedding

is given by

Z �→ [v1 ∧ · · · ∧ vr ]

where [v1 ∧ · · · ∧ vr ] is the r -dimensional plane in C
r+s generated by row vec-

tors (v1, . . . , vr ) of
(

Ir , Z
)
. In [Mo92, T93], authors considered the subspaces of

bounded symmetric domains which are called the invariantly geodesic subspaces
which are totally geodesic under the action of automorphism group of its compact
dual.

Definition 2.2 For W ∈ Ωr ′,s′ with r ′ ≤ r and s′ ≤ s, consider the image of the
embedding

W ↪→
(
0 0
0 W

)
∈ Ωr,s

which is an invariantly geodesic subspace in Ω I
r,s . The totally geodesic subspaces

which are equivalent under the action of Aut(Ω I
r,s) = SU (r, s) to this subspace are

called (r ′, s′)-subspaces of Ωr,s .

Let Dr,s be a generalized ball in Pr+s−1 which is defined by

Dr,s = {[z1, . . . , zr+s] ∈ P
r+s−1 : |z1|2 + · · · + |zr |2 > |zr+1|2 + · · · + |zr+s |2}.
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Bounded symmetric domains of type I are more intensively studied by S. C. Ng
using maximal invariantly geodesic subspaces. For X ∈ M(r, r + s,C) of rank r ,
denote [X ] a r -plane in C

r+s which is generated by the row vectors of X . For Ωr,s

and Dr,s , consider the two surjective maps

φ : Pr−1 × Ωr,s → Ωr,s, ([X ], Z) �→ Z (2.1)

ψ : Pr−1 × Ωr,s → Dr,s, ([X ], Z) �→ [X, X Z ]. (2.2)

For Z ∈ Ωr,s , denote Z# = ψ(φ−1(Z)) ⊂ Dr,s . Similarly for X ∈ Dr,s , denote
X# = φ(ψ−1(X)) ⊂ Ωr,s . Z# and X# are called fibral images of Z and X respec-
tively. Then for Z ∈ Ωr,s and X = [A, B] ∈ Dr,s where A ∈ M(1, r,C) and
B ∈ M(1, s,C),

Z# = {[A, AZ ] ∈ Dr,s : [A] ∈ P
r−1} ∼= P

r−1 (2.3)

X# = {Z ∈ Ωr,s : AZ = B} ∼= (r − 1, s)-subspace (2.4)

This implies that the maximal subspaces, (r − 1, s)-subspaces are parametrized by
the generalized ball Dr,s in Pr+s−1.

Theorem 2.2 (Ng (2013) [Ng13])Let r ≥ r ′ ≥ 2 and f : Ωr,s → Ωr ′,s′ be a proper
holomorphic map. Suppose that f maps (r−1, s)-subspaces into (r ′−1, s′)-subspaces
and f (Ωr,s) is not contained in a single (r ′ − 1, s′)-subspace. Then r = r ′, s ≤ s′
and f is equivalent to Z �→ (

Z 0
)
.

The condition mapping (r − 1, s)-subspaces to (r ′ − 1, s′)-subspaces may be
considered strange. However since every proper holomorphic maps should send
(r − 1, s − 1)-subspaces to (r ′ − 1, s′ − 1)-subspaces, this condition is a little bit
stronger, but reasonable.

3 Other Proper Holomorphic Maps Between Bounded
Symmetric Domains of Type I

Now we can ask that what kind of proper holomorphic maps are there between
bounded symmetric domains non-equivalent to

Z �→
(

Z 0
0 h(Z)

)

for some holomorphic function h : Ω I
r,s → C satisfying Is−r,s−r − h(Z)h(Z)∗ > 0

for all Z ∈ Ω I
r,s? If the difference of the rank gets bigger, there exists many other

proper holomorphic maps.
Using the relations between proper holomorphic maps from Ω I

r,s to Ω I
r ′,s′ and

proper rational maps from Dr,s to Dr ′,s′ which parametrize (r − 1, s)-subspaces
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of Ω I
r,s and (r ′ − 1, s′)-subspaces of Ω I

r ′,s′ [Ng13] and [SE], one can find proper

holomorphic maps between Ω I
r,s and Ω I

r ′,s′ which maps (r − 1, s)-subspaces to
(r ′ − 1, s′)-subspaces explicitly. Since finding proper holomorphic maps between
bounded symmetric domains of type I is relatively harder than finding proper rational
maps between generalized balls, it gives an effective way.

Example 3.1 (Generalized Whitney map) In [SE], there is a proper holomorphic
map f : Ω I

2,2 → Ω I
3,3 given by

f

((
z1 z2
z3 z4

))
=

⎛

⎝
z21 z1z2 z2

z1z3 z2z3 z4
z3 z4 0

⎞

⎠ .

This map can be generalized to proper holomorphic map fromΩ I
r,s toΩ I

2r−1,2s−1 as

f

⎛

⎜
⎝

⎛

⎜
⎝

z11 . . . z1s
...

. . .
...

zr1 . . . zrs

⎞

⎟
⎠

⎞

⎟
⎠ =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

z211 z11z12 . . . z11z1s z12 . . . z1s

z11z21 z21z12 . . . z21z1s z22 . . . z2s
...

...
. . .

...
...

. . .
...

z11zr1 zr1z12 . . . zr1z1s zr2 . . . zrs

z21 z22 . . . z2s 0 . . . 0
...

...
. . .

...
...

. . .
...

zr1 zr2 . . . zrs 0 . . . 0

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

Under the condition of Theorem2.1, every proper holomorphicmaps can be extended
to its compact dual as a meromorphic maps. But this is no longer true if the rank
of the target domain is bigger than that of the source domain as we can see via the
generalized Whitney maps.

Example 3.2 (Homogeneous map) In [SE], there is a proper holomorphic map
given by

f

((
z1 z2
z3 z4

))
=

⎛

⎝
z21

√
2z1z2 z22√

2z1z3 z1z4 + z2z3
√
2z2z4

z23
√
2z3z4 z24

⎞

⎠

which is first found by S.C. Ng. This homogeneous map can be also generalized to
higher dimensional domain, i.e. from Ω I

r,s to Ω I
1
2 r(r+1), 12 s(s+1)

.

Definition 3.1 Let f, g : Ωr,s → Ωr ′,s′ be holomorphic maps. Then we call f and
g are isotropically equivalent if there are U ∈ Isot0(Ωr,s) and V ∈ Isot0(Ωr ′,s′)
such that f = V ◦ g ◦ U .

In [Ds88], D’Angelo proved that for f, g : Bn → B
N is equivalent if and only if f

and g are isotropically equivalent. Extending this result to the bounded symmetric
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domains, in [SE], the author proved that f, g : Ωr,s → Ωr ′,s′ is equivalent if and
only if f, g are isotropically equivalent. Using this property, one can find infinitely
many inequivalent proper holomorphic maps between Ω2,2 to Ω4,4.

Example 3.3 Let ft : Ω2,2 → Ω4,4 with t ∈ [0, 1] be maps defined by

ft

((
z1 z2
z3 z4

))
=

⎛

⎜⎜
⎝

z21
1

1+t z22
2+t
1+t z1z2

1
1+t z2

0 z24 (2 + t)z3z4 0
0 2

2+t z2z4 z1z4 + z2z3
1

2+t z4
(1 + t)z3 0 0 0

⎞

⎟⎟
⎠ . (3.1)

ft are inequivalent proper holomorphic maps for all t ∈ [0, 1].
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Some Dynamical Systems of Extremal
Measures

Hajime Tsuji

Abstract We consider the dynamical system of extremal measures on a compact
Kähler manifold. And we show that the dynamical system converges to the canonical
measure, if we assume the abundance of the canonical bundle.

Keywords Kähler-Einstein metrics · Bergman kernels · Extremal measures

1 Introduction

In complex geometry, there has been introduced several intrinsic (pseudo)volume
forms on complex manifolds such as Bergman volume forms, Kähler-Einstein vol-
ume forms, Carathéodory volume forms and Kobayashi volume forms (cf. [B, C, Y,
C-Y, K]). It is interesting to study the relation between these volume forms.

In this survey article, I would like to review my recent works about the construc-
tion of Kähler-Einstein volume forms in terms of the dynamical systems of twisted
Bergman volume forms (cf. Sect. 1.3) and twisted estremal measures (cf. Sect. 2).
These new constructions of Kähler-Einstein volume forms or more generally canon-
ical measures will be used to study the pluricanonical systems of compact Kähler
manifolds in [T9].

Let us briefly review several invariant volume forms which are used in this article.

1.1 Bergman Volume Forms

The Bergman volume forms is the most basic invariant volume form in complex
geometry.
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LetΩ be a bounded pseudoconvex domain inCn and let KΩ denote the canonical
bundle of Ω . Then the space of L2-canonical forms on Ω:

A2(Ω, KΩ) =
{
σ ∈ Γ (Ω,OΩ(KΩ))|

∫

Ω

|σ |2 < +∞
}

(|σ |2 = (
√−1)n2σ ∧σ)

is a Hilbert space with respect to the inner product:

(σ, τ ) := (
√−1)n2

∫

Ω

σ ∧ τ .

We set

K (Ω)(x) := sup{|σ |2(x)|σ ∈ A2(Ω, KΩ), ‖ σ ‖= 1}(x ∈ Ω), (1.1)

where ‖ σ ‖ denotes the L2-norm of σ . We call K (Ω) the Bergman volume form
on Ω . This definition is a little bit different from the usual one. But this definition
coincides with the usual definition:

K (Ω) :=
∑

i

|σi |2,

where {σi } is a complete orthonomal basis of A2(Ω, KΩ) (The definition is inde-
pendent of the choice of the complete orthonormal basis {σi }). Then

ωB := −Ric K (Ω)

is the pull back of the Fubini-Study Kähler form by the embedding

Φ : Ω −→ P
∞

defined by
Φ(x) := [σ1(x) : σ2(x) : · · · : σk(x) : · · · ].

Hence ωB is C∞ and
ωB > 0

holds, i.e., ωB is a C∞-Kähler form on Ω .
The Bergman kernel can be generalized to the case of compact complexmanifolds

as follows. Let X be a compact complex manifold of dimension n and let (L , hL)

be a singular hermitian line bundle on X . Let {σ j } be a complete orhonormal basis
of H0(X,OX (K X + L) ⊗ I (hL)) with respect to the L2-inner product:

(σ, τ ) := (
√−1)n2

∫

X
σ ∧ τ · hL .
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And we set
K (X, K X + L , hL) :=

∑

j

|σ j |2. (1.2)

Then K (X, K X + L , hL) is a semipositive |L|2 = L ⊗ L̄-valued semipositive (n, n)-
form on X such that K (X, K X + L , hL)−1 is a singular hermitian metric on K X + L
with semipositive curvature current, unless it is not identically +∞.

As above, in the case of a compact complex manifold, the Bergman kernel is
defined in terms of line bundle on X,

1.2 Kähler-Einstein Volume Forms

On the other hand, there exists another invariant volume form on a bounded pseudo-
convex domain in Cn .

Theorem 1.1 ([C-Y, M-Y]) Let Ω be a bounded pseudoconvex domain in C
n. Then

there exists a unique complete Kähler form ωE on Ω such that

−Ric(ωE ) = ωE

holds.

By the definition, we see that the Kähler-Einstein volume form:

dVE := 1

n!ω
n
E

satisfies
−Ric(dVE ) = ωE > 0.

In the compact case, we have the following theorem,

Theorem 1.2 ([A, Y]) Let X be a smooth projective variety with ample K X . Then
there eixsts a unique C∞-Kähler form ωE such that −Ric(ωE ) = ωE holds on X.

1.3 Dynamical System of Bergman Kernels

In [T3], I have discovered the relation between a dynamical system of Bergman
volumes forms and the Kähler-Einstein volume form on a smooth projective variety
with ample canonical bundle.

The relation is described as follows. Let X be a smooth projective variety with
ample canonical bundle. Let A be a sufficiently ample line bundle on X and let h A

be a C∞-hermitian metric on A. We set
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K1 := K (X, K X + A, h A)

and
h1 := K −1

1 .

We note that mK X + A is globally generated for every positive integer m. Then h1
is a C∞-hermitian metric on K X + A. For every m � 2, we define inductively

Km := K (X, mK X + A, hm−1)

and
hm = K −1

m .

Then we have the following theorem.

Theorem 1.3 ([T3, S-W])

lim
m→∞

(
(m!)−nh A · Km

) 1
m = 1

(2π)n
dVE

holds in the uniform topology.

1.4 Supercanonical Volume Form

In [T5], I have introduced the canonical volume form on a smooth projective variety
with pseudoeffective canonical bundle.

Let X be a smooth projective n-fold such that the canonical bundle K X is pseu-
doeffective. Let A be a sufficiently ample line bundle such that for every pseudo-
effective singular hermitian line bundle (L , hL) on X , OX (A + L) ⊗ I (hL) and
OX (K X + A + L) ⊗I (hL) are globally generated. The existence of such an ample
line bundle A follows from Nadel’s vanishing theorem ([N, p. 561]).

For every x ∈ X we set

K̂ A
m (x) := sup

{
| σ(x) | 2

m

∣
∣∣σ ∈ Γ (X,OX (mK X + A)), ‖ σ ‖ 1

m
= 1

}
, (1.3)

where

‖ σ ‖ 1
m
:=

∣∣∣
∣

∫

X
h

1
m
A · (σ ∧ σ̄ )

1
m

∣∣∣
∣

m
2

. (1.4)
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Here | σ | 2
m is not a function on X , but the supremum is takan as a section of the real

line bundle | A | 2
m ⊗ | K X |2 in the obvious manner.1 Then h

1
m
A · K̂ A

m is a continuous
semipositive (n, n)-form on X . Under the above notations, we have the following
theorem.

Theorem 1.4 ([T5]) We set

K̂ A∞ := lim sup
m→∞

h
1
m
A · K̂ A

m

and
ĥcan,A := the lower envelope of (K̂ A∞)−1.

Then ĥcan,A is an AZD(cf. Definition 1.1) of K X . And we define

ĥcan := the lower envelope of inf
A

ĥcan,A,

where inf denotes the pointwise infimum and A runs all the ample line bundles on X.
Then ĥcan is a well defined AZD(cf. Definition 1.1) on K X with minimal singularities
depending only on X.

Remark 1.1 As one sees later, ĥcan,A = ĥcan holds for every sufficiently ample A.

Definition 1.1 Let M be a compact complex manifold and let L be a line bundle on
X . A singular hermitian metric hL is said to be an AZD of L if the followings are
satisfied:

(1)
√−1Θ(hL) � 0 holds on M ,

(2) H0(M,OM (mL) ⊗ I (hm
L )) 	 H0(M,OM (mL)) holds for every m � 0.

Definition 1.2 Let X be a smooth projective variety with pseudoeffective canonical
bundle. Let ĥcan be as in Theorem 1.4. We set

dμ̂can := ĥ−1
can

and call it the supercanonical measure.

1.5 Extremal Measures

Nowwe shall introduce an intrisic volume form on a bounded pseudoconvex domain.
Let Ω be a bounded pseudoconvex domain in C

n . We shall introduce a new
invariant volume form on Ω:

1We have abused the notations | A |, | K X | here. These notations are similar to the notations of
corresponding linear systems. But we shall use the notation if without fear of confusion.
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dμ(Ω)ext (x) :=
(
sup

{
dV (x)| − Ric dV � 0,

∫

Ω

dV = 1

})∗
(x ∈ Ω),

where dV runs all the upper-semicontinuous semipostiive (n, n)-forms such that
dV −1 is a singular hermitian metric on KΩ and −Ric dV = √−1∂∂̄ log dV � 0
in the sense of current and ( )∗ denotes the uppersemicontinuous envelope. We call
dμ(Ω)ext the extremal measure of Ω . Then we see that

−Ric dμ(Ω)ext � 0

holds in the sense of current.
This definition can be generalized to the case of compact complex manifold with

pseudoeffective canonical bundles.

1.6 Relation Between Extremal Measures
and Supercanonical Measures

In the case of a smooth projective variety, the extermal measure conicides with the
supercanonical measure.

Theorem 1.5 ([T8]) Let X be a smoorh projective variety with pseudoeffective
canonical bundle. Then dμ̂(X)can = dμ(X)ext holds.

By the logarithmic plurisubharmonic variation property of supercanonical mea-
sures ([T5]), we have the following corollary.

Corollary 1.1 ([T5]) Let f : X → S be a surjective projective morphism with
connected fibers such that X and S are smooth. Suppose that K X/S is relatively
pseudoeffective. Let S◦ be the smoorh locus of f . We define the relative extremal
measure dμX/S on f −1(S◦) by

dμX/S|Xs := dμ(Xs)ext , s ∈ S◦.

Then we have

(1) dμ−1
X/S extends to a singular hermitian metric h X/S,ext of K X/S on the whole X.

(2)
√−1Θ(h X/S) � 0 holds on X.

2 Dynamical Systems of Extremal Measures

In this section, we shall consider a dynamical system of extremal measures and prove
that its normalized limit exists and is the Kähler-Einstein volume form. This result
is similar to the dynamical construction of the Kähler-Einstein volume form in [T3].
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2.1 Dynamical System of Extremal Measure

Let X be a smooth projective variety with ample canonical bundle. Let A be a
sufficiently ample line bundle on X such that for every pseudoeffective singular
hermitian line bundle (F, hF ) on X , OX (A + F) ⊗I (hF ) is globally generated on
X . Such a A exists by Nadel’s vanishing theroem ([N, p. 561]). Let us fix a C∞-
hermitian metric h A on A. Let dμ(A, h A)ext be the extremal measure associated
with (A, h A), i.e.,

dμ(A, h A)(x) :=
(
sup

{
dV (x)| − Ric dV + √−1Θ(h A) � 0,

∫

Ω

dV = 1

})∗
(x ∈ X),

where ( )∗ denotes the uppersemicontinuous envelope. And we set

h1 := dμ(A, h A)−1 ⊗ h A,

And for m � 2, inductively we define

hm := dμ((m − 1)K X + A, hm−1)
−1 ⊗ hm−1,

where

dμ((m − 1)K X + A, hm−1)(x) :=
(
sup

{
dV (x)| − Ric dV + √−1Θ(hm−1) � 0,

∫

Ω

dV = 1

})∗
(x ∈ X).

Then by definition, hm is a singular hermitian metric on mK X + A with semipositive
curvature current. We set

dνm := h−1
m = dμ((m − 1)K X + A, hm−1) ⊗ h−1

m−1.

Then h A · dνm is a m-ple volume form on X .
By the assumption that K X is ample, there exists a C∞-Kähler form ωE such that

−Ric(ωE ) = ωE holds on X . Let n denote the dimension of X and we set

dVE := 1

n!ω
n
E .

Then we have the following theorem.
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Theorem 2.1 ([T8])

lim
m→∞ h

1
m
A · ((m!)−n · dνm)

1
m = 1

(2π)n
dVE

holds in the uniform topology on X.

2.2 Proof of Theorem 2.1

Now we shall explain the proof of Theorem 2.1 according to [T8].
As in Sect. 2.1, we set

K1 := K (X, K X + A, h A)

and for m � 2, inductively we define

Km := K (X, K X + A, K −1
m−1).

By induction on m and the definition of A, we see that K −1
m is aC∞-hermitian metric

on mK X + A for every m.
Now we shall compare dνm and Km .

Lemma 2.1 dνm � Km holds on X for every m � 1.

Proof By the construction we have that

dνm(x) = sup{h−1(x)|√−1Θ(h) � 0,
∫

X
h−1 · hm−1 = 1}, (2.1)

holds, where h runs lower semicontinuous singular hermitian metrics on mK X + A.
On the other hand by the extremal property of the Bergman kernel, we have that

Km(x) = sup{|σ(x)|2|σ ∈ Γ (X,OX (mK X + A)),

∫

X
|σ |2 · K −1

m−1 = 1} (2.2)

holds. Comparing (2.1) and (2.2), noting h0 = K −1
0 = h A, the inequality dν1 � K1

holds on X . This means that h1 � K −1
1 . Hence again by (2.1) and (2.2), we have

that

dν2 � K (X, 2K X + A, h1) � K (X, 2K X + A.K −1
1 ) = K2
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holds. Hence dν2 � K2 holds on X . Continuing this process, we have the desired
inequality dνm � Km for every m. �


By Theorem 1.3 and Lemma 2.1, we have the following lower estimate:

Lemma 2.2

lim inf
m→∞ h

1
m
A · ((m!)−n · dνm)

1
m � 1

(2π)n
dVE

holds.

Next we shall estimate dνm from above.
Let x0 ∈ X be an arbitrary point. Then by the Kähler-Einstein condition, there

exists a holomorphic normal coordinate (U, (z1, . . . , zn)) with center x0 such that

(1) gi j̄ = δi j ,
(2)

det(gi j̄ ) =
n∏

j=1

(
1 − 1

2
|z j |2

)−1

+ O(‖ z ‖3), (2.3)

(3) U is biholomorphic to B(O, r) for some r > 0.

We shall identify U with B(O, r) and later we let r tend to 0.
For m = 1, there exists a positive constant C1 such that

dν1 � C1 · h−1
A · dVE

holds on X . Suppose that for some m � 1, such that

dνm � Cm · h−1
A · (dVE )m

holds on X . We note that

dνm(x0) � dν(U, C−1
m · h A · (dVE )−m)(x0)

holds, where

dν(U, C−1
m ·h A ·dV −m

E )(x) = sup{h(x)−1|√−1Θ(h) � 0, C−1
m

∫

X
h−1 ·h A ·dV −m

E = 1}.

Here h runs lowersemicontinuous singular hermitian metrics on mK X + A on U .
On the other hand, by Demailly’s approximation theorem ([D]), we have that

h−1 = lim

→∞ h

1



A



√
K (U, 
(mK X + A)|U , h
)
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holds. This implies that

dνm+1(x0) �

lim sup

→∞

sup{|σ | 2
(x0)|σ ∈ Γ (U,OX (
(mK X + A))),

∫

U
|σ | 2
 · h A · dV −m

E = 1}
(2.4)

holds.
Let eA be a local holomorphic frame of A onU . Letσ0 ∈ Γ (U,OX (
(mK X +A)))

be a section such that

|σ0(x0)|2 =
sup{|σ | 2
 (x0)|σ ∈ Γ (U,OX (
((m + 1)K X + A)),

∫

U
|σ | 2
 · h A · dV −m

E = 1}.

We define f ∈ OX (U ) by

σ0 = f · e⊗

A ⊗ (2

n
2 dz1 ∧ · · · ∧ dzn)⊗m
. (2.5)

Then

C−1
m

∫

U
| f | 2
 · h A(eA, eA) · dV −m

E · (2−n|dz1 ∧ · · · ∧ dzn|2)(m+1) � 1

holds. Hence we have
∫

U
| f | 2
 · (dV −1

E · (2−n |dz1 ∧· · ·∧dzn |2))m· |dz1 ∧· · ·∧dzn |2 � (inf
U

h A(eA, eA))−1 ·Cm .

By the Taylor expansion (2.3), there exist a function ε(r) of r > 0 such that

dV −1
E · (2−n|dz1 ∧ · · · ∧ dzn|2) �

n∏

j=1

(
1 − 1

2
(1 + ε(r))|z j |2

)
(2.6)

and
lim
r↓0 ε(r) = 0. (2.7)

We set

K
(x0) := sup{|F | 2
 (x0) | F ∈ OX (U ),

∫

U
|F | 2
 · (

n∏

j=1

(
1 − 2−1(1 + ε(r))|z j |2

)
)m · 2−n |dz1 ∧ · · · ∧ dzn |2 = 1}.
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We note that

√−1

2

∫

Δ(0,ρ)

(
1 − 1

2
|t |2

)m

dt ∧ dt̄ = 2π

m + 1

(

1 −
(
1 − 1

2
ρ2

)m+1
)

holds, where Δ(0, ρ) denotes the unit open disk in C with center 0 and radius ρ. By
the symmetry. we have that

K
(x0) � (1 + ε(r))n
(

2π

m + 1

)n

holds. By (2.5) and (2.6),
| f (x0)|2 � K
(x0)

and by (2.4) and (2.5), there exists a positive constant c < 1 and and a positive
function ε(r) of r such that

dνm+1(x0) � Cm ·
(

m + 1

2π

)n

(1 + ε(r))n(1 − cm+1) · dV m+1
E (x0) · h−1

A (x0)

holds. This implies that

lim sup
m→∞

h
1
m
A · ((m!)−ndνm)

1
m (x0) � 1

(2π)n
(1 + ε(r))ndVE (x0)

holds. Letting r ↓ 0, by (2.7), we have that

lim sup
m→∞

h
1
m
A · ((m!)−ndνm)

1
m (x0) � 1

(2π)n
dVE (x0)

holds. Since x0 is arbitrary we have the following lemma.

Lemma 2.3

lim sup
m→∞

h
1
m
A · ((m!)−ndνm)

1
m � 1

(2π)n
dVE

holds on X.

By Lemmas 2.2 and 2.3, we conclude that

lim
m→∞ h

1
m
A · ((m!)−ndνm)

1
m = 1

(2π)n
dVE

holds. By the proof, the convergence is uniform on X . This completes the proof of
Theorem 2.1.
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3 Dynamical System of Extremal Measures on Compact
Kähler manifolds

In this section we shall consider the dynamical systems of extremal measures on a
compact Kähler manifold. In this case the main difference is that we start from a
Kähler which is not a Chern form of an ample line bundle.

The motivation to investigate the dynamical systems of extremal measure on
compact Kähler manifolds is to prove the deformation invariance plurigenra for
compact Kähler manifolds ([T9]).

3.1 Abundance of Canonical Line Bundle

Let X be a compact complex manifold. The Kodaira dimension κ(X) of X is defined
by

κ(X) := lim sup
m→∞

log dim H0(X,OX (mK X ))

logm
.

It is known that if κ(X) � 0, then for every m >> 1, the complete linear system
|m!K X | defines a rational fibration (unique up to birational equivalence)

f : X − · · · → Y

with dim Y = κ(X). This fibration is called an Iitaka fibration.

Definition 3.1 Let X be a compact complex manifold with κ(X) � 0 and let f :
X → Y be an Iitaka fibration(We may and do assume that f is a morphism and Y is
smooth by taking a suitable modification).

K X is said to be abundant, if there exists a Q-line bundle L on Y and a singular
hermitian metric hL on L such that

(1) There exists an effective Q-divisor E on X such that

K X = f ∗L + E,

(2) Let σE be a multivalued holomorphic section of E with divisor E . Then

( f ∗h) · 1

|σE |2

is an AZD(Definition 1.1) of K X .

Remark 3.1 This definition is birationally invariant. Hence the abundance of K X is
defined for every compact complex manifold X . Also this definition can be general-
ized for any line bundle F on a compact complex manifold with κ(F) � 0.
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3.2 Twisted Kähler-Einstein Currents and Canonical
Measures

First we shall review the twisted Kähler-Einstein current on the canonical model of
a smooth projective variety with nonnegative Kodaira dimension.

Let X be a smooth projective variety with κ(X) � 0. Let f : X − · → Y be the
Iitaka fibration of X . The following argument is birationally invariant. We may and
do assume that f is a morphism and Y is smooth. Let L X/Y be the Hodge Q-line
bundle on Y defined by

L X/Y := 1

m! ( f∗OX (m!K X/Y ))∗∗ ∈ Div(Y ) ⊗ Q,

where m is a sufficiently large positive integer. We define a singular hermitian metric
on L X/Y by

hm!
L X/Y

(σ, σ ) =
(∫

X/Y
|σ | 2

m!
)m!

. (3.1)

hL X/Y is said to be the Hodge metric on L X/Y . We may take f : X → Y so that
some positive multiple of the Hodge Q-line bundle L X/Y is locally free.

Theorem 3.1 (cf. [T7, Theorem 1.5] and [S-T, Theorem B.2]) In the above nota-
tions, there exists a unique singular hermitian metric on hK on KY + L X/Y such
that

(1) hK is an AZD of KY + L X/Y ,
(2) f ∗hK is an AZD of K X + D,
(3) hK is C∞ on a nonempty Zariski open subset U of Y ,
(4) ωY = √−1ΘhK is a Kähler form on U,
(5) ωY satisfies the twisted Kähler-Einstein equation:

−RicωY + √−1ΘhL X/Y
= ωY

holds on U, where hL X/Y denotes the Hodge metric defined as (3.1).

The above equation:
− RicωY + √−1ΘhL X/Y

= ωY (3.2)

is similar to the Kähler-Einstein equation:

−RicωY = ωY .

The correction term
√−1ΘhL X/Y

reflects the isomorphism :

R(X, K X )(a) = R(Y, KY + L X/Y )(a)
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for some positive integer a, where for a graded ring R := ⊕∞
i=0Ri and a positive

integer b, we set
R(b) := ⊕∞

i=0Rbi .

We note that even if X is a compact Kähler manifold the Iitaka fibration f : X → Y ,
the Hodge Q-line bundle L X/Y and the Hodge metric hL X/Y is well defined and the
curvature

√−1Θ(hL X/Y ) is semipositive. Since the equation (3.2) is defined on the
projective variety Y even in this case, Theorem 3.1 is valid, even if X is a compact
Kähler manifold with nonnegative Kodaira dimension.

Now we shall define the twisted Kähler-Einstein current and the canonical mea-
sure.

Definition 3.2 ([S-T, T6, T7]) The current ωY on Y constructed in Theorem 3.1 is
said to be the twisted Kähler-Einstein current of the Iitaka fibration f : X −→ Y .
Also ωX,D := f ∗ωY is said to be the canonica of X . We define the measure dμcan

of X by

dμcan := 1

n! f ∗ (
ωn

Y · h−1
L X/Y

)

and is said to be the canonical measure of X , where n denotes dim Y . Here we note
that ωn

Y is a singular volume form on Y and f ∗h−1
X/Y is considered to be a relative

singular volume formon f : X → Y (cf. (3.1)), hence f ∗
(
ωn

Y · h−1
L X/Y

)
is considered

to be a singular volume form on X .

Remark 3.2 In Theorem 3.1, the metric hK depends only on the canonical ring of X .
Hence adding effective exceptionalQ-divisors does not affect hK andωY essentially.

We note that the canonical measure dμcan depends only on the canonical ring of
X , hence it is birationally invariant.

3.3 Dynamical Systems of Extremal Measures on a Compact
Kähler Manifold

Let X be a compact Kähler n-manifold with pseudoeffective canonical bundle. Let
ω0 be a C∞-Kähler form on X . We set

dμ1 = dμ(X, ω0) := sup{dV | − Ric dV + ω0 � 0,
∫

X
dV = 1}∗,

where dV runs semipositive (n, n)-forms such that dV −1 is a singular hermitian
metric on K X and { }∗ denotes the uppersemicontinuous envelope. And we set

T1 := −Ric dμ1 + ω0.
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For m � 2, we define

dμm = dμ(X, Tm−1) := sup{dV | − Ric dV + Tm−1 � 0,
∫

X
dV = 1}∗,

and
Tm := −Ric dμm + Tm−1.

By the construction we see that the de Rham cohomology class [Tm] of Tm satisfies
[Tm] = 2mπc1(K X ) + [ω0].

We shall consider the normalized limit of {Tm}∞m=1.

Theorem 3.2 ([T9]) Suppose that K X is abundant. Then

lim
m→∞

1

m
Tm = −Ric dμcan

holds, where dμcan denotes the canonical measure (cf. Definition 3.2) on X.

Remark 3.3 The abundance of K X is necessary because limm→∞ m−1Tm is a current
with minimal singularity (the curvature of an AZD of K X ) and dμ−1

can is an AZD of
K X , if and only if K X is abundant.
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On Representative Domains and Cartan’s
Theorem

Atsushi Yamamori

Abstract This is a short survey article on Cartan’s theorem about automorphisms
fixing the origin for certain class of quasi-circular domains and non-hyperbolic cir-
cular domains. Some open problems are also given.

Keywords Automorphism · Quasi-circular domain · Non-hyperbolic circular
domain · Bergman mapping · Representative domain

1 Introduction

Throughout this article, we always assume that D is a domain in Cn which contains
the origin. The focus of interest of the present article is on a certain class of domains
which are so-called representative domains (Definition 2.1). For instance, this class
of domains includes as a special case the bounded circular domains (e.g. the unit
ball, the polydisk, the Thullen domain). The purpose of this article is to survey how
this class of domains is useful to derive the linearity of automorphisms fixing the
origin.

Let us recall the following classical result due to Cartan.

Theorem 1.1 (Cartan’s Uniqueness Theorem)Let D be a bounded (or hyperbolic)
domain and f : D → D a holomorphic mapping such that

• f (p) = p,
• the Jacobian matrix of f at p is the identity matrix,

for some p ∈ D. Then f must be the identity mapping.

As a consequence of this theorem, one can prove the linearity of origin-preserving
automorphisms of the bounded circular domains (for the proof see Proposition 11.1.2
in [Kran]).
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It is also known byKaup [Kaup] that every origin-preserving automorphism of the
quasi-circular domains (Definition 3.1) is a polynomial mapping. The two theorems
due to Cartan and Kaup are apparently analogous and thus the problem below arises
naturally:

Problem 1 When does Cartan’s theorem remain true for quasi-circular domains?

For the circular case, the Jacobian matrix of the rotation mapping ρθ : z �→ eiθ z is a
scalarmatrix. This fact is substantial when one applies Cartan’sUniqueness Theorem
to prove the linearity. On the other hand, for the quasi-circular cases, the same
argument does not work. In fact, the Jacobian matrix of the mapping (z1, . . . , zn) �→
(eim1θ z1, . . . , eimnθ zn) is not a scalar matrix unless m1 = · · · = mn . This situation
indicates that an essentially different method is required for the study of Problem 1.
Moreover, the method presented here gives some non-hyperbolic circular domains
for which Cartan’s theorem remains true.

The organization of this article is as follows. In Sect. 2,we prepare basic definitions
and relevant properties. In Sect. 3,we explain how the notion of representative domain
is helpful in the study of automorphisms of certain class of quasi-circular domains and
non-hyperbolic circular domains.We conclude this article with some open problems.

This article is only an exposition of some aspects of applications of the represen-
tative domains. We do not intend to cover all important results in the subject. We
refer the readers to [IK, Lu, Tsuboi, Y2014, Ypre] and references therein for more
information about the representative domains and applications.

2 Preliminaries

In this section, we prepare some definitions and basic facts. Let D be a domain in
C

n , K D the Bergman kernel of D and TD the n × n matrix defined by

TD(z, w) :=

⎛

⎜⎜⎜
⎜⎜
⎝

∂2

∂w1∂z1
log K D(z, w) · · · ∂2

∂w1∂zn
log K D(z, w)

...
. . .

...

∂2

∂wn∂z1
log K D(z, w) · · · ∂2

∂wn∂zn
log K D(z, w)

⎞

⎟⎟⎟
⎟⎟
⎠

,

for K D(z, w) �= 0. In the following, for simplicity, we use the notation

Ti j (z, w) = ∂2

∂wi∂z j
log K D(z, w).

The matrix TD(z, z) is a positive definite hermitian matrix for all z ∈ D. The matrix
TD possesses the following transformation formula under the biholomorphism ϕ :
D → D′:
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TD(z, w) = t J(ϕ, w)TD′(ϕ(z), ϕ(w))J(ϕ, z), if K D(z, w) �= 0. (1)

Here J(ϕ, z) is the Jacobian matrix of ϕ at z. The matrix TD is well-defined if D
is bounded and z = w. However TD may not be well-defined for some z, w ∈ D
in general. For instance, it is known that the Bergman kernel of the domain Ep

defined by

Ep :=
{
(z1, . . . zn) ∈ C

n : |z1| + |z2|2/p2 + · · · + |zm |2/pn < 1
}

has zeros if p2 + · · · + pn > 2. It is also known that the Bergman kernel of the
domain defined by

{
(z1, z2) ∈ C

2 : |z2| <
1

1 + |z1|
}

has a zero at the origin. For details of these examples, see Boas’s paper [Boas].
We now define a class of domains, which plays an important role in this article

(see also [Lu]).

Definition 2.1 A domain D is called representative if TD satisfies

TD(z, t0) ≡ TD(t0, t0),

for some t0 ∈ D. The point t0 is called the center of D.

In the case of the unit ball B2 in C2, the Bergman kernel is given by

KB2(z, w) = 2!
π2(1 − 〈z, w〉)3 .

Using this explicit form, one has

TB2(z, 0) ≡ TB2(0, 0) ≡
(
3 0
0 3

)
.

It follows that the unit ballB2 is a representative domain with the center at the origin.
Since we do not know an explicit form of the Bergman kernel for an arbitrary given
domain D, it is impossible to verify TD(z, 0) ≡ TD(0, 0) in the same way.

Instead of an explicit form of the Bergman kernel, one can use the transformation
formula (1) of TD . Since B2 is circular (i.e. ρθ : z �→ eiθ z is an automorphism), one
can obtain the following relation on TB2 :

TB2(z, 0) ≡ TB2(ρθ (z), 0).
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It is not difficult to see that this relation gives us our desired conclusion. Since we
use the circularity of B2 and (1) in the argument, the same argument works for any
bounded circular domains. Namely we have the following proposition (cf. [IK]).

Proposition 2.1 Every circular domain is a representative domain with the center
at the origin.

In the next section, we will see an example of representative domain which is not
circular.

3 Cartan Theorem Revisited

One of the fundamental theorem on holomorphic automorphism groups is the fol-
lowing theorem due to Cartan.

Theorem 3.1 Let D be a bounded circular domain and f an automorphism of D
with f (0) = 0. Then f is a linear mapping.

As we mentioned in the Introduction, this theorem is proved by using Cartan’s
Uniqueness Theorem. In that proof, what is the most important part is to show the
commutative relation ρθ ◦ f = f ◦ρθ . However this is not the only way to prove this
theorem. Indeed, we will see that the theory of representative domain allows us to
have another commutative relation involving origin-preserving automorphisms and
the Bergman mapping.

Before explaining a connection between this theorem and representative domains,
let us pause to consider the following toy observation. Let D be a domain in C

n ,
Hol(D, D) the set of holomorphic mappings from D to D and S a certain class of
holomorphic mappings in Hol(D, D) such that one wishes to show the linearity for
all mappings in S. Further we pose the following assumption on S.

Assumption 1 For each element f of S, there exists a linear mapping L and a
holomorphic mapping gD such that the following diagram is commutative:

D

∃gD

��

f ��

�

D

∃gD

��
C

n ∃L ��
C

n .

Here gD depends only on D and L depends only on f .

Under this assumption, we readily observe the following:

Observation 1 Let S be a set as in Assumption 1. If D is a domain in Cn such that
gD is a biholomorphic linear mapping, then all elements of S are linear.
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Since Assumption 1 poses a strong condition on S, one cannot expect the existence
of such a nice mapping gD for an arbitrary given S. However if one considers the
set of all origin-preserving automorphisms of D as S, then one can show that such a
mapping gD exists. Indeed the following theorem is known (cf. [IK]):

Theorem 3.2 Suppose that K D(z, 0) �= 0 for any z ∈ D and let σ D
0 be a holomor-

phic mapping defined by

σ D
0 : D → C

n, (z1, . . . , zn) �→ TD(0, 0)−1/2gradw log
K D(z, w)

K D(0, w)

∣∣∣∣
w=0

,

where we set

gradw f (w) := t
(

∂ f

∂w1
(w), . . . ,

∂ f

∂wn
(w)

)
,

for anti-holomorphic functions f on D. Then the following commutative diagram
holds:

D

σ D
0

��

ϕ

∼ ��

�

D

σ D
0

��
C

n
Lϕ ��

C
n

.

Here ϕ is an automorphism of D with ϕ(0) = 0 and Lϕ is a certain unitary trans-
formation.

The mapping σ D
0 is called the Bergman (representative) mapping of D. If D is a

bounded circular or quasi-circular, then the Bergman kernel K D satisfies K D(z, 0) ≡
K (0, 0) > 0. Thus the σ D

0 is globally defined on D for these cases. However, in
general, the Bergman mapping is defined only on U D

0 = {z ∈ D : K D(z, 0) �= 0}
(cf. [IK]). From this theorem and Observation 1, one can see that Theorem 3.1
remains true for any domains for which the Bergman mapping is a biholomorphic
linear mapping. Moreover one can find that the Bergman mapping σ D

0 is linear if and
only if D is a representative domain with the center at the origin. In fact, it follows
from the following two facts on the Bergman mapping:

• σ D
0 (0) = 0,

• J(σ D
0 , z) = TD(0, 0)−1/2TD(z, 0).

This, together with Proposition 2.1, gives us another proof of Theorem 3.1 without
Cartan Uniqueness Theorem. Then it is appropriate to ask the question below.

Question 1 Can we find a class of representative domains which are not circular
domains?

In many standard texts on Several Complex Variables (cf. [Kran, Chapt. 11], [Nar,
Chap. 5]), Theorem 3.1 is proved as a consequence of Cartan’s uniqueness theorem.
It is absolutely unclear whether or not Cartan’s uniqueness theorem holds even for
some non-hyperbolic unbounded cases. Thus it is also non-trivial to decide whether
or not Theorem 3.1 holds for a given non-hyperbolic unbounded circular domain.
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Question 2 Can we find a non-hyperbolic unbounded domain for which Theorem
3.1 holds?

Before discussing the results related to these two questions, let us first introduce
some definitions.

Definition 3.1 Let m1, . . . mn be positive integers such that m1 < m2 < · · · < mn

and gcd(m1, . . . , mn) = 1. A domain in C
n is called quasi-circular if it is invariant

under

ρm,θ : D → C
n, (z1, . . . , zn) �→ (eim1θ z1, . . . , eimnθ zn).

The n-tuple m = (m1, · · · , mn) is called the weight of D.

The domains given below are examples of quasi-circular domains:

D1 = {(z1 + z2, z1z2) : |z1|, |z2| < 1},
D2 = {(z1, z2) : |z31 + z22| < 1}.

The weights of these domains are (1, 2) and (2, 3) respectively. Now we are ready
to state our result [Y2014], which gives an answer for Question 1:

Theorem 3.3 Let D ⊂ C
2 be a quasi-circular domain whose weight satisfies 2 ≤

m1 < m2. Then D is a representative domain with center at the origin. In particular,
every origin-preserving automorphism is linear.

Let us give a sketch of the proof:

Step 1. Applying the transformation formula (1) to ϕ = ρm,θ , one has a relation of
TD:

⎧
⎪⎨

⎪⎩

Tii (z, 0) = Tii ( fm,θ (z), 0), i = 1, 2,

T12(z, 0) = ei(m2−m1)θ T12(ρm,θ (z), 0),

T21(z, 0) = ei(m1−m2)θ T21(ρm,θ (z), 0).

Step 2. Put Ti j (z, 0) = ∑
k1,k2≥0 a(i, j)

k1k2
zk1
1 zk2

2 . Then, except for T21, one can show

that the coefficient a(i, j)
k1k2

= 0 for any k �= (0, 0) without the assumption
“2 ≤ m1 < m2”.

Step 3. Using the assumption of the theorem, one can conclude that T21(z, 0) ≡
T21(0, 0).

Remark 1 If the weight is (1, 2) then there exists a quasi-circular domain such that
the automorphism group contains a non-linear mapping [Z]. Thus, we cannot drop
the condition “2 ≤ m1” in the theorem.
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We note that the above theorem holds for any biholomorphism f : D → D′ between
quasi-circular domains with the assumption as in the theorem. It is known by Kaup
[Kaup] that if two quasi-circular domain are biholomorphic then there exists a biholo-
morphicmapping fixing the origin. Thereforewe obtain the next corollary (cf. [Rong,
Ypre]).

Corollary 3.1 Let D1, D2 be quasi-circular domains as in Theorem 3.3. Then the
two domains D1 and D2 are biholomorphically equivalent if and only if they are
linearly equivalent.

This result is regarded as an analogue of Braun-Kaup-Upmeier’s theorem [BKU] for
quasi-circular cases.

Theorem 3.4 (Braun, Kaup, Upmeier) Let D1, D2 be circular domains. Then the
two domains D1 and D2 are biholomorphically equivalent if and only if they are
linearly equivalent.

Let us now turn to Question 2. For unbounded cases, it is a non-trivial question
whether or not theBergman kernel exists.Moreover it is also unclear that K D(0, 0) >

0 and TD(0, 0) is positive definite for a unbounded circular domain D. The two
domains given below are examples of circular domains (more precisely Reinhardt
domains) for which the Bergman mappings are well-defined:

Ω1 = {(z, ζ ) ∈ C
n × C

m : ‖ζ‖2 < e−s‖z‖2}, s > 0,

Ω2 = {(z, w) ∈ C
2 : log |w|2 + |z|2 + |w|2 < 1}.

Since the Bergman mappings are well-defined for these two, Cartan’s theorem
remains true for Ωi (i = 1, 2). Using this fact, the automorphism groups of Ω1,Ω2
are computed (cf. [KNY, Kim]).

Theorem 3.5 The automorphism group of Ω1 is generated by the following
mappings:

ϕU : (z, ζ ) �→ (U z, ζ ), U ∈ U (n),

ϕU ′ : (z, ζ ) �→ (z, U ′ζ ), U ′ ∈ U (m),

ϕv : (z, ζ ) �→ (z − v, es〈z,v〉− s
2 ‖v‖2ζ ), v ∈ C

n .

Theorem 3.6 The automorphism group of Ω2 is generated by the following
mappings:

ϕθ : (z, w) �→ (eiθ z, w), θ ∈ R,

ϕθ ′ : (z, w) �→ (z, eiθ w), θ ′ ∈ R.

Remark 2 More information about Ω1,Ω2 can be found in [HST], [Spri] and
[Y2013].
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4 Open Problems

We conclude this article with some open problems.
In the previous section, we gave the two non-hyperbolic circular examplesΩ1,Ω2

with explicit descriptions of the automorphism groups. However, we do not know any
non-hyperbolic quasi-circular domain whose automorphism group can be computed
explicitly.

Problem 2 Can we find a non-hyperbolic quasi-circular domain with the well-
defined Bergman mapping and an explicit description of the automorphism group?

As we have seen in the previous section, Cartan’s theorem remains true for two
domains Ω1,Ω2. Since the Bergman mapping is used for the proof, we do not know
whether or not Cartan Uniqueness theorem holds for these domains. Thus it is natural
to ask to the following problem.

Problem 3 Can we find a non-hyperbolic circular domain D such that the Bergman
mapping is well-defined, but Cartan uniqueness theorem does not hold?

In particular, it might also be interesting to study this problem for two specific
domains Ω1,Ω2. We expect that there does not exist such a non-hyperbolic circular
domain. However, we do not succeed in proving it at the time of writing this article.
We hope that these problems will be helpful towards a deep understanding of non-
hyperbolic (quasi-)circular domains.

The following proposition asserts that if a holomorphic mapping f : D → D of
a representative domain D such that f (0) = 0, J( f, 0) = Id and f �= Id, then f
must not be biholomorphic. Although the proof is essentially contained in the article
[Lu], we give the proof of the proposition for the convenience of the reader (see also
[Kim, Proposition3.1]).

Proposition 4.1 Let D be a non-hyperbolic representative domain with the center at
the origin such that K D(0, 0) > 0 and TD(0, 0) is positive definite and f : D → D
an automorphism such that f (0) = 0 and J( f, 0) = Id. Then f must be the identity
mapping of D.

Proof Using the assumption J( f, 0) = Id and the transformation formula (1) to
ϕ = f , we obtain

TD(z, 0) = t J( f, 0)TD( f (z), 0)J( f, z),

= t J( f, 0)TD(0, 0)J( f, z),

= TD(0, 0)J( f, z). (2)

Combining two relations (2) and TD(z, 0) ≡ TD(0, 0), we see that

TD(0, 0) = TD(0, 0)J( f, z). (3)

It follows that J( f, z) = Id. This, together with f (0) = 0, implies that f = Id as
desired. ��
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The argument presented here entirely relies on the transformation formula of TD .
Thus this argument does not work for a holomorphic mapping f : D → D which is
not an automorphism.

Remark 3 The circularity of a domain D implies that K D(z, 0) ≡ K D(0, 0). Thus
it is enough to assume that K D(0, 0) > 0 to ensure U D

0 = D. We also note that the
assumption of TD is needed to derive the relation J( f, z) = Id from (3).
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On Curvature Estimates of Bounded
Domains

Liyou Zhang

Abstract We consider the Bergman curvatures estimate for bounded domains in
terms of the squeezing function. As applications, we give the asymptotic boundary
behaviors of the curvatures near strictly pseudoconvex boundary points, using a
recent result given by Fornaess and Wold.

Keywords Bergman curvature · Squeezing function · Intrinsic derivative

1 Introduction

The holomorphic invariant objects related to the Bergman geometry have been exten-
sively studied during the past decades, for instance, the Bergman canonical invariant
introduced by Bergman himself [Ber], various kinds of curvatures of the Bergman
metric, including the holomorphic sectional curvature, the Ricci curvature and the
scalar curvature. Sometimes, these curvatures are called Bergman curvatures in the
literatures (see e.g. [KiY, KrY]). It is well known that for any bounded domain in
C

n , the upper bound of the holomorphic sectional curvature is 2 (see [Fuk, Hua,
Kob]) and the Ricci curvature is strictly less than n + 1 (see [Kob, Noz]).

A natural question is to consider the lower bounds of the above mentioned curva-
tures. Usually, one can not expect there exist uniform lower bounds of the Bergman
curvatures for all bounded domains, like the upper bounds. Recently, Lu [Lu4] pro-
posed a program to investigate the lower bounds of the Bergman curvatures on a
bounded domain D in Cn , in terms of the Bergman kernel and metric of the domain
D1 contained in D and the domain D2 containing D. In particular, if D1 and D2 are
chosen "good" enough, for example, the Euclidean balls, then both the upper and
lower bounds can be established explicitly (see Theorem 3.1 and Theorem 3.2 in
Sect. 3). Unfortunately, the lower bounds of the Bergman curvatures in Theorem 3.1
and 3.2 tends to −∞ as the point goes to the boundary of the domain D.
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The aim of this present paper is to explore the lower bounds of the holomorphic
sectional curvature, the Ricci curvature and the scalar curvature. We show that both
the explicit uniform lower and upper bounds of these Bergman curvatures exist on
some general classes of bounded pseudoconvex domains named the holomorphically
homogeneous regular manifolds (HHR) or the uniformly squeezing domains (USq),
which was introduced independently by Liu-Sun-Yau in [LSY1, Definition 7.1] and
by Yeung in [Yeu, Definition 1] (see also Definition 4.1 in Sect. 4). The concept,
HHR or USq, has been developed in order for the study of completeness and other
geometric properties such as themetric equivalence of the invariantmetrics including
the Carathéodry metric, the Kobayashi-Royden metric, the Teichmüller metric, the
Bergman metric, and the Kähler-Einstein metric.

The examples of HHR or USq domains include bounded homogeneous domains,
bounded strongly convex domains, bounded domains which cover a compact Kähler
manifold, and the Teichmüler spaces Tg,n of hyperbolic Riemann surfaces of genus
g with n punctures (see [Yeu, Proposition 1]). Recently, it has been proved that
the bounded convex domains [KiZ] and the strictly pseudoconvex domains with C2

boundary also admit such HHR/USq property (see [DGZ2, KiZ]).
Note that for domains with HHR/USq property, it was S.-K Yeung who proved

firstly that the curvature tensor for either the Kähler-Einstein metric or the Bergman
metric, as well as any order of covariant derivatives of the curvature tensor is bounded
by a uniform constant [Yeu, Proposition 4]. What we present in this article is to
describe how the upper or lower bounds depend on the so called squeezing function
(see Definition 4.2 in Sect. 4) for a bounded domain inCn . The concept of squeezing
function was introduced by Deng, Guan and the author in [DGZ1], inspired by
Yeung’s talk in Chinese Academy of Science in 2009. It was used to characterize
how a bounded domain looks like the unit ball observed at a point of the given
domain. A bounded domain is HHR/USq if and only if its squeezing function admits
a positive lower bound. Later, it turns out that the squeezing function is powerful in
the characterization of the geometric and analytic properties of bounded domains in
C

n . In particular, the squeezing function approaches to 1 when the point tends to a
strictly pseudoconvex boundary point. In virtue of the squeezing function, we state
the main result as follows.

Theorem 1.1 Let D be a bounded domain inCn and sD(z) be the squeezing function
at the point z ∈ D. Denote by SecD(z, ξ), RicD(z, ξ) and ScalD(z, ξ) the holomor-
phic sectional curvature, the Ricci curvature and the scalar curvature at z in the
direction ξ , respectively. Then we have

2 − 2
n + 2

n + 1
s−4n

D (z) ≤ SecD(z, ξ) ≤ 2 − 2
n + 2

n + 1
s4n

D (z),

(n + 1) − (n + 2)s−2n
D (z) ≤ RicD(z, ξ) ≤ (n + 1) − (n + 2)s2n

D (z),

n(n + 1) − n(n + 2)s−2n
D (z) ≤ ScalD(z) ≤ n(n + 1) − n(n + 2)s2n

D (z).
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Furthermore, if D is HHR/USq, that is, the squeezing function sD(z) admits a
positive lower bound, say ŝD (depends merely on D), then one can substitute ŝD

into Theorem 1.1 to obtain the uniform bounds for the Bergman curvatures on the
domain D.

One important application of Theorem 1.1 is the boundary behaviors of the
Bergman curvatures near a strictly pseudoconvex point p ∈ ∂ D. As mentioned
above, the squeezing function at the moment tends to 1 when the point z tends to p.
Therefore, Theorem 1.1 immediately yields

lim
D�z→p

SecD(z, ξ) = − 2

n + 1
, lim

D�z→p
RicD(z, ξ) = −1 and lim

D�z→p
ScalD(z) = −n.

The asymptotic behavior of the holomorphic sectional curvature near strictly
pseudoconvex boundary points was firstly considered by Klecmbeck for the C∞
boundary case [Kle]. Later, Kim and Yu reduced the boundary condition to the C2

case by using the scaling method (see [KiY] or [GKK, Chap.10]).The boundary
limit of the Ricci curvature was indicated in [ChY, pp. 510]. The existence of the
boundary behaviors of the above Bergman curvatures was given by Krantz and Yu on
some h-extendible pseudoconvex domains (see [KrY, Definition 0]), or semiregular
domains as in [DiH]. These include, for example, not only the bounded pseudocon-
vex domains of finite type in C

2 and convex domains of finite type in C
n , but also

bounded strictly pseudoconvex domains (see [KrY, Corollary 2]). Green and Krantz
showed that for a sufficiently small C∞ perturbation D̃ of a strongly pseudoconvex
domain D, the boundary behavior of the holomorphic sectional curvature is stable
near the boundary of D̃ (see [GK1, Theorem 3] or [GK2, Theorem 1.1]).

The paper is organized as follows. In Sect. 2, we introduce some basic notations
and terminology, especially the concept of intrinsic derivatives of sections of the
canonical line bundle, induced by the Bergman kernel. In Sect. 3, we recall the min-
imal function method Lu used in [Lu4] to estimate the lower bounds of the Bergman
curvatures. In the last section, we will explore the curvature estimates in term of the
squeezing function on a bounded domain in C

n and obtain the uniform estimates
depending only on the squeezing constant. Some open questions are proposed in the
final conclusion.

2 Intrinsic Derivatives Induced by the Bergman Kernel

Let Ω be a bounded domain in Cn with C2 smooth boundary bΩ . Let A2(Ω) be the
space of L2 holomorphic n−forms on Ω , i.e. ,

A2(Ω) :=
{

F ∈ H0(Ω,O(∧nT ∗
(1,0)))

∣∣∣∣

∫

Ω

|F |2 < ∞
}

,

where∧nT ∗
(1,0)(Ω) denotes the canonical line bundle overΩ and |F |2 := (

√−1)n2 F

∧F̄ . It is well known that A2(Ω) is a Hilbert space with respect to the inner product

http://dx.doi.org/10.1007/978-4-431-55744-9_10
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(F, G) := (
√−1)n2

∫

Ω

F ∧ Ḡ, ∀F, G ∈ A2(Ω).

Let {Φ j }∞j=0 be a complete orthonormal basis of A2(Ω). The holomorphic (n, n)-

form KΩ(z, w̄) := ∑∞
j=0 Φ j (z) ∧ Φ̄ j (w) on Ω × Ω̄ is called the Bergman kernel

form ofΩ . Let z1, · · · , zn be a coordinate system onΩ and KΩ(z, z̄) = k(z, z̄)dz1∧
· · · ∧ dzn ∧ dz̄1 · · · ∧ dz̄n . The Kähler metric given by

ds2 =
n∑

α,β=1

∂2 log k(z, z̄)

∂zα∂ z̄β
dzα ⊗ dz̄β

is called the Bergman metric on Ω and ωB := √−1∂∂̄ log k(z, z̄) is the correspond-
ing Kähler form.

Let h := k−1(z, z̄). Then h is a C∞ Hermitian metric on the canonical line bundle
∧nT ∗

(1,0)(Ω) with strictly positive curvature. The Hermitian connection of h is given

by B(z, z̄) := ∂h · h−1 = −∂ log k(z, z̄).
For a smooth section F ∈ Γ (Ω,∧nT ∗

(1,0)), F = f dz1 ∧ · · · ∧ dzn , the covariant
derivative of F associated to the Hermitian connection B(z, z) is defined as

D(1,0)F := (
∂ f (z)/∂zα + f (z)Bα(z, z̄)

)
dz1 ∧ · · · ∧ dzn ⊗ dzα,

where Bα(z, z̄) = −∂ log k(z, z̄)/∂zα. This shows

D(1,0) : Γ (Ω,∧nT ∗
(1,0)) → Γ (Ω,∧nT ∗

(1,0) ⊗ T ∗
(1,0)),

where T ∗
(1,0)(Ω) is the holomorphic cotangent bundle of Ω .

Hereinafter, unless otherwise stated, the Einstein Summation Convention is used.
Let

δ f (z)

δzα
:= ∂ f (z)

∂zα
+ f (z)Bα(z, z̄).

δ f (z)/δzα is called the intrinsic derivative by Lu in [Lu2], where Lu considered the
estimates of higher order intrinsic derivatives of holomorphic mappings.

It is well known that there exists a reduced connection on T ∗
(1,0)(Ω) with respect

to the Kähler metric gαβ̄(z) = ∂2 log k(z, z̄)/∂zα∂ z̄β, that is,

Γ λ
αβ(z) = −gμ̄λ(z)

∂gαμ̄(z)

∂zβ
,

where (gβ̄α) denotes the inverse matrix of (gαβ̄). Therefore, one can define the
covariant derivative for a section F ∈ Γ (Ω,∧nT ∗

(1,0) ⊗ T ∗
(1,0)(Ω)) in terms of the

connections B(z, z̄) and Γ λ
αβ(z). More precisely, let F(z) = fα(z)e(z)⊗dzα , where
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we denote dz1 ∧ · · · ∧ dzn by e(z) for short, we define (Here we still use D(1,0) if
no confusions are caused)

D(1,0)F :=
(
∂ fα/∂zβ + fα Bβ(z, z̄) − fλΓ

λ
αβ(z)

)
e(z) ⊗ dzα ⊗ dzβ.

This implies that

D(1,0) ◦ D(1,0) : Γ (Ω,∧nT ∗
(1,0)) → Γ (Ω,∧nT ∗

(1,0) ⊗ T ∗
(1,0) ⊗ T ∗

(1,0)).

Similarly, for a smooth section F ∈ Γ (Ω,∧nT ∗
(0,1)), one can define the conjugate

covariant derivative D(0,1) by

D(0,1)F := (
∂ f (z)/∂ z̄α + f (z)Bᾱ(z, z̄)

)
e(z) ⊗ dz̄α,

and for F ∈ Γ (Ω,∧nT ∗
(1,0) ⊗ T ∗

(1,0)),

D(0,1)F :=
(
∂ fα/∂ z̄β + fα Bβ̄ (z, z̄) − fλΓ̄

λ
αβ(z)

)
e(z) ⊗ dz̄α ⊗ dz̄β,

where Bᾱ(z, z̄) = −∂ log k(z, z̄)/∂ z̄α.

In general, given a smooth section F ∈ Γ (Ω,∧nT ∗
(1,0)⊗∧nT ∗

(0,1)⊗T ∗⊗p
(1,0) ⊗T ∗⊗q

(0,1)),
one has

D(1,0)F ∈ H0(Ω,∧nT ∗
(1,0) ⊗ ∧nT ∗

(0,1) ⊗ T ∗⊗(p+1)
(1,0) ⊗ T ∗⊗q

(0,1)),

D(0,1)F ∈ H0(Ω,∧nT ∗
(1,0) ⊗ ∧nT ∗

(0,1) ⊗ T ∗⊗p
(1,0) ⊗ T ∗⊗(q+1)

(0,1) ).

For example, for the Bergman kernel form on the diagonal K (z, z̄) = k(z, z̄)e(z) ∧
e(z), both D(1,0)K (z, z̄) and D(0,1)K (z, z̄) vanish, while neither D(1,0)K (z, w̄) nor
D(0,1)K (z, w̄) does.

In the following theorem,wewill see the relations between the Bergman curvature
tensors and the above mentioned covariant derivatives (see [Lu3]).

Due to the well known reproducing property of the Bergman kernel, for any L2

holomorphic n−form F ∈ A2(Ω), in local coordinate system, we have

f (z) =
∫

Ω

f (w)k(z, w̄)dVw, (2.1)

where dVw is the Lebesgue measure on Ω .
Taking the covariant derivative D(1,0) on both sides of (2.1), we obtain by a direct

calculation that

δ f (z)

δzα
=

∫

Ω

f (w)
δkΩ(z, w̄)

δzα
dVw. (2.2)
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Fix t ∈ Ω and let f (w) = δk(w,u)

δūβ

∣∣
u=t , it is easy to check that f (w) ∈ A2(Ω). By

(2.2) we have
δ2k(z, t̄)

δzαδt̄β
=

∫

Ω

δk(w, ū)

δūβ

∣∣∣∣
u=t

δk(z, w̄)

δzα
dVw.

Inductively, one has the following higher order derivatives

δ p+qk(z, t̄)

δzα1 · · · δzαpδt̄β1 · · · δt̄βq
=

∫

Ω

δqk(w, ū)

δūβ1 · · · δūβq

∣∣∣∣
u=t

δ pk(z, w̄)

δzα1 · · · δzαp
dVw.

Let

Hα1···αp β̄1···β̄q
(z, z̄) :=

(
δ p+qk(z, t̄)

δzα1 · · · δzαpδt̄β1 · · · δt̄βq

)

t=z
,

we have the following theorem due to Q.-K. Lu.

Theorem 2.1 ([Lu3, Theorem 1.1]) Let Ω be a bounded domain in C
n. For any

point z ∈ Ω , we have

1. If p 
= q, then Hα1···αp β̄1···β̄q
(z, z̄) = 0.

2. If p = q, then Hα1···αp β̄1···β̄p
(z, z̄) is positively definite, i.e., for any non-zero

vector ζ , one has Hα1···αp β̄1···β̄p
(z, z̄)ζ α1···αp ζ̄ β1···βp > 0.

3. The following recurrence relation holds:

Hα1···αp β̄1···β̄p
(z, z̄) =

p∑

λ=1

H
α1···αp−1β̄1··· ˆ̄βλ···β̄p

Tαp β̄λ

−
∑

λ<l

Hα1···αp−1β̄1···β̄λ−1γ̄ β̄λ+1···β̄p
R̄γ

βλβl ᾱp
,

where Tαβ̄ and Rλ
αβμ̄ are the metric tensor and the curvature tensor with respect

to the Bergman metric.

Example 2.1 1. For p = 1, it’s easy to check Hαβ̄(z, z̄) = k(z, z̄)Tαβ̄ .

2. For p = 2, the above recurrence formula gives

Hα1α2β̄1β̄2
(z, z̄) = k(z, z̄)

(
Tα1β̄1

Tα2β̄2
+ Tα2β̄1

Tα1β̄2
− Rβ̄1α1α2β̄2

)
.

3 Lu’s Estimates of the Bergman Curvatures

In this section, we recall the lower bound estimates for the Bergman curvatures. First
of all, let us briefly recall some basis definitions and notations we will use in the text.

Throughout this section, we focus our attentions on a bounded domain D in C
n

with theBergmanmetricds2D = Tαβ̄(z, z̄)dzαdz̄β ,where Tαβ̄(z, z̄) = ∂2 log k(z, z̄)/
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∂zα∂ z̄β is the Bergman metric tensor and k(z, z̄) denotes the Bergman kernel. Let
(T β̄α) be the inverse matrix of T = (Tαβ̄). The holomorphic curvature tensor is
given by

Rλ̄αβμ̄ = − ∂2Tαλ̄

∂zβ∂ z̄μ
+ T ν̄σ ∂Tαν̄

∂zβ

∂Tσ λ̄

∂ z̄μ
,

and the holomorphic sectional curvature at z with a complex tangent direction ξ is
defined by SecD(z, ξ) = Rλ̄αβμ̄ξαξ̄ λξβ ξ̄μ/(Tσ ν̄ξ

σ ξ̄ ν)2.

The complex Ricci curvature tensor is defined by Rαλ̄ = T μ̄β Rμ̄βαλ̄, which is

equivalent to Rαλ̄ = −∂2 log det T /∂zα∂ z̄λ. The corresponding Ricci curvature at
z with direction ξ is RicD(z, ξ) = Rαλ̄ξ

αξ̄ λ/Tσ ν̄ξ
σ ξ̄ ν and the Scalar curvature is

ScalD(z) = T λ̄α Rαλ̄.

Remark 3.1 Due to Theorem 2.1, we know that Hα1α2β̄1β̄2
(z, z̄) in Example 2.1(2)

is positive definite. Therefore it follows that SecD(z, ξ) < 2 and RicD(z, ξ) < n +1
hold for any bounded domain D in Cn .

3.1 Lower and Upper Bounds of the Bergman Curvatures

For any fixed t ∈ D, Lu considered the subspace of A2(D), say E N
t (D), consisting

of the elements with the following property:

f (t) = 0,

δ f (z)

δzα1

∣∣
∣∣
z=t

ξα1 = 0,

· · · · · · · · ·
δN f (z)

δzα1 · · · δzαl

∣
∣∣∣
z=t

ξα1···αl = δl
N , l = 1, · · · , N ,

where δ
j
k is the Kronecker symbol, ξα1 , · · · , ξα1···αN−1 are arbitrary complex numbers

and ξα1···αN are some given constants.
Aminimal function of E N

t (D) is the elementwith theminimal L2 norm in E N
t (D).

The minimum problem in Bergman geometry goes back to S. Bergman in 1940s,
which was used to obtain the extremal function subject to some constraints (see [Ber,
Chap. 2]).

In what follows, we’d like to get the minimal function of E N
t (D). More precisely,

for f ∈ E N
t (D), f (z) = ∑

akϕk(z), where {ϕk}∞k=0 is a complete orthonormal
basis of A2(D), we will choose the coefficients a j to minimize the L2 norm ‖ f ‖2 =∑ |ak |2 under the following conditions:

http://dx.doi.org/10.1007/978-4-431-55744-9_2
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δl f (z)

δzα1 · · · δzαl

∣∣∣∣
z=t

ξα1···αl =
∑

akclk = δl
N , l = 0, 1, · · · , N ,

where

clk = δlϕk(z)

δzα1 · · · δzαl

∣∣∣∣
z=t

ξα1···αl .

The method of Lagrange multipliers allows us to minimize functions with the con-
straint. Let

L :=
∞∑

k=0

akāk −
N∑

l=1

λl

( ∞∑

k=0

akckl − δl
N

)

−
N∑

l=1

λ̄l

( ∞∑

k=0

āk c̄kl − δl
N

)

,

where λ0, λ1, · · · , λN are dummy variables called Lagrange multipliers.
Let ∂L /∂ak = 0, ∂L /∂ āk = 0. We have ak = λ̄l c̄lk and the constraint becomes

N∑

l=1

λ̄l

∞∑

k=0

c̄lkcmk = δm
N . (3.1)

Let Alm := ∑
c̄lkcmk(l, m = 0, 1, · · · , N ). From the definition of clk and Theorem

2.1, we see that A = (Alm) is a diagonal matrix of rank N +1, and all the eigenvalues
are positive. The equality (3.1) becomes (λ̄0, λ̄1, · · · , λ̄N )A = (0, · · · , 0, 1), which
yields λ0 = · · · = λN−1 = 0 and

λ−1
N = AN N = c̄NkcNk = δ2N k(z, w̄)

δzα1 · · · δzαN δw̄β1 · · · δw̄βN

∣∣∣
∣
z=w=t

ξα1···αN ξ̄ β1···βN .

The coefficients ak now is

ak = λ̄N c̄Nk = A−1
N N

δN ϕ̄k(z)

δz̄α1 · · · δz̄αN

∣∣∣∣
z=t

ξ̄ α1···αN

and the minimal function of E N
t (D), say fD , is

fD(z) =
∞∑

k=0

akϕk(z) = A−1
N N

δN k(z, t)

δt̄α1 · · · δt̄αN
ξ̄ α1···αN . (3.2)

The minimal L2 norm is

‖ fD‖2 =
∞∑

k=1

|ak |2 = A−1
N N = H−1

α1···αN β̄1···β̄N
(t, t̄)ξα1···αN ξ̄ β1···βN . (3.3)
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Let D1 ⊂ D be two bounded domains and fix t ∈ D1. It is easy to see that
E N

t (D) ⊂ E N
t (D1). Denote by fD and fD1 the minimal functions of E N

t (D) and
E N

t (D1), respectively, then we have ‖ fD1‖2 ≤ ‖ fD‖2, or equivalently,

H D
α1···αN β̄1···β̄N

(t, t̄)ξα1···αN ξ̄ β1···βN ≤ H D1

α1···αN β̄1···β̄N
(t, t̄)ξα1···αN ξ̄ β1···βN

(see [Lu4, Theorem 2]). In particular, we have the following three inequalities in the
cases of N = 0, 1, 2.

(1) For N = 0, we have kD(t, t̄) ≤ kD1(t, t̄), which is the well known decreasing
property of the Bergman kernel.

(2) For N = 1, we have kD(t, t̄)T D
αβ̄

(t, t̄) ≤ kD1(t, t̄)T D1

αβ̄
(t, t̄) due to Example

2.1(1), which can also be regarded as certain decreasing property (see also [JaP,
Remark 6.2.7].)

(3) For N = 2, we have kD(T D
α1β̄1

T D
α2β̄2

+T D
α2β̄1

T D
α1β̄2

−RD
β̄1α1α2β̄2

) ≤ kD1(T
D1

α1β̄1
T D1

α2β̄2

+ T D1

α2β̄1
T D1

α1β̄2
− RD1

β̄1α1α2β̄2
).

Divided by (T D
αβ̄

ξαξ̄ β)2 on both sides of the case (3), then we have

SecD(t, ξ) ≥ 2 − kD1

kD

(
2 − SecD1(t, ξ)

)
(

T D1
λμ̄ ξλξ̄μ

T D
αβ̄

ξαξ̄ β

)2

. (3.4)

Furthermore, if we consider three bounded domains D1 ⊂ D ⊂ D2, by the
decreasing property of the case (1) and (2), we have kD2 ≤ kD ≤ kD1, kD2T D2

αβ̄
≤

kDT D
αβ̄

≤ kD1T D1

αβ̄
. Substitute this relations into (3.4), we have

SecD(t, ξ) ≥ 2 − (
2 − SecD1(t, ξ)

)
⎛

⎝
kD1T D1

λμ̄ ξλξ̄μ

kD2T D2

αβ̄
ξαξ̄ β

⎞

⎠

2

. (3.5)

Similar arguments give the upper bound estimate,

SecD(t, ξ) ≤ 2 − (
2 − SecD2(t, ξ)

)
⎛

⎝
kD2T D2

αβ̄
ξαξ̄ β

kD1T D1
λμ̄ ξλξ̄μ

⎞

⎠

2

. (3.6)

In general, the Bergman kernel and the Bergmanmetric of D1 and D2 are not easy
to compute. However, if we choose D1 and D1 good enough, for instance, D1 and D2
are the Euclidean balls, with the same center t and radius r(t), R(t) respectively, the
following estimates were obtained by Lu. Note that at the moment the holomorphic
sectional curvature of Di (i = 1, 2) is −2/(n + 1).
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Theorem 3.1 ([Lu4, Corollary 5] Under the above hypothesis, we have

2 − 2
n + 2

n + 1

R4n

r4n
≤ SecD(t, ξ) ≤ 2 − 2

n + 2

n + 1

r4n

R4n
. (3.7)

Follows this line, we state the result without proof about the estimates for the
Ricci curvature and the scalar curvature.

Theorem 3.2 ([Lu4, Corollary 6]) Under the above hypothesis, we have

(n + 1) − (n + 2)
R2n

r2n
≤ RicD(t, ξ) ≤ (n + 1) − (n + 2)

r2n

R2n
. (3.8)

Theorem 3.3 Under the above hypothesis, we have

n(n + 1) − n(n + 2)
R2n

r2n
≤ ScalD(t) ≤ n(n + 1) − n(n + 2)

r2n

R2n
. (3.9)

Now one natural question occurs that the lower bound tends to −∞ as the point t
tends to ∂ D, or equivalently r(t) → 0. In the next section, we will see that there exist
some general classes of bounded domains with squeezing property whose Bergman
curvatures admit uniform bounds.

4 Uniform Estimates of the Bergman Curvatures

In this section, we will give uniform estimates for the Bergman curvatures on the
holomorphically homogeneous regular manifolds or the uniform squeezing domains.

Definition 4.1 [[LSY1, Definition 7.2], [Yeu, Definition 1]] A complex manifold X
of dimension n is called holomorphic homogeneous regular (HHR) or equivalently,
uniformly squeezing (USq) if ∃ r < R such that ∀p ∈ X , there is a holomorphic map
f p : X → C

n which satisfies

1. f p(p) = 0;
2. f p : X → f p(X) is bi-holomorphic;
3. Bn(0, r) ⊂ f p(X) ⊂ Bn(0, R), where Bn(0, r) and Bn(0, R) are Euclidean balls

with center 0 in Cn .

To tell a bounded domain is HHR orUSq, i.e., to determine the universal constants
r and R is not trivial. In [DGZ1], the authors introduced the concept of squeezing
function in order to study geometric and analytic properties of the HHR/USq mani-
folds.
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Definition 4.2 [[DGZ1, Definition 1.1]] Let D be a bounded domain in C
n . For

z ∈ D and an (open) holomorphic embedding f : D → Bn with f (z) = 0, we
define sD(z, f ) = sup{r |Bn(0, r) ⊂ f (D)} and sD(z) = sup f {sD(z, f )},where the
supremum is taken over all holomorphic embeddings f : D → Bn with f (z) = 0.
Here Bn is the unit ball inCn , and Bn(0, r) is the ball in Cn with center 0 and radius
r . We call sD the squeezing function of D.

For any point z ∈ D, we now consider the extremal holomorphic embedding
f : D → Bn with f (z) = 0. Since the Bergman curvatures are invariant under
biholomorphic mappings, taking the holomorphic sectional curvature for example,
SecD(z, ξ) = Sec f (D)(0, d f · ξ), therefore we have the following analogue of The-
orem 3.1, 3.2 and 3.3. Note that at the moment the radius of D1 and D2 are sD(z)
and 1, respectively.

Theorem 4.1 Let D ⊂ C
n be a bounded domain. For ∀z ∈ D and ξ ∈ C

n \ {0}, we
have

2 − 2
n + 2

n + 1
s−4n

D (z) ≤ SecD(z, ξ) ≤ 2 − 2
n + 2

n + 1
s4n

D (z),

(n + 1) − (n + 2)s−2n
D (z) ≤ RicD(z, ξ) ≤ (n + 1) − (n + 2)s2n

D (z),

n(n + 1) − n(n + 2)s−2n
D (z) ≤ ScalD(z) ≤ n(n + 1) − n(n + 2)s2n

D (z).

Furthermore, if we define the squeezing constant ŝD on the domain D as ŝD :=
inf
z∈D

sD(z), then D is HHR/USq if ŝD > 0. For HHR/USq domains, we have the

following estimates.

Corollary 4.1 Let D be a HHR/USq domain in C
n. We have

2 − 2
n + 2

n + 1
ŝ−4n

D ≤ SecD(z, ξ) ≤ 2 − 2
n + 2

n + 1
ŝ4n

D ,

(n + 1) − (n + 2)ŝ−2n
D ≤ RicD(z, ξ) ≤ (n + 1) − (n + 2)ŝ2n

D ,

n(n + 1) − n(n + 2)ŝ−2n
D ≤ ScalD(z) ≤ n(n + 1) − n(n + 2)ŝ2n

D .

Remark 4.1 Note that if s4n
D (z) > (n + 1)/(n + 2), then all the Bergman curvatures

of D are negative. This means that if the domain looks “close” enough to the unit
ball observed at z, then the curvatures are negative at this point.

One important application of Theorem 4.1 is boundary behaviors of the Bergman
curvatures near strictly pseudoconvex boundary points. First, let us recall the asymp-
totic behavior of the squeezing function.
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Theorem 4.2 ([DGZ2, KiZ])Let D be a C2−smooth bounded strictly pseudoconvex
domain in C

n. Then lim
D�z→p

sD(z) = 1 holds for any p ∈ ∂ D.

Remark 4.2 We should point out that what we proved actually is a little more general
than Theorem 4.2. That is, for any bounded domain D ⊂ C

n , if p ∈ ∂ D is global
strongly convex or extremely spherical (see [DGZ2] or [KiZ] for the definition), then
lim

D�z→p
sD(z) = 1.

The proof of Theorem 4.2 is based on the following remarkable theorem recently
given by Diederich, Fornaess andWold, which asserts that any strictly pseudoconvex
boundary point can be exposed to be global strongly convex or extremely spherical.

Theorem 4.3 ([DFW, Theorem 1.1]) Let Ω ⊂ C
n be a bounded domain which

is locally convexifiable and has finite type 2k near a point p ∈ ∂Ω . Assume
further that ∂Ω is C∞-smooth near p, and that Ω has a Stein neighborhood
basis. Then there exists a holomorphic embedding f : Ω → B

n
k , where Bn

k ={
z ∈ C

2 : |zn|2 + |z′|2k < 1
}
, such that f (p) = (0, · · · , 0, 1) and

{
z ∈ Ω : f (z) ∈

∂ Bn
k

} = {p}.
In particularly, if ∂Ω is strongly pseudoconvex near p, i.e. k = 1, it is enough to

assume that ∂Ω is C2-smooth near p.

Combining Theorem 4.1 and Theorem 4.2, one can immediately obtain

Corollary 4.2 Let D be a bounded p.s.c. domain and p ∈ ∂ D be C2 strictly
pseudoconvex. One has lim

D�z→p
SecD(z, ξ) = −2/(n + 1), lim

D�z→p
RicD(z, ξ) = −1,

lim
D�z→p

ScalD(z) = −n.

Very recently, Fornaess and Wold gave an improvement on the estimate of the
squeezing function when a bounded strictly pseudoconvex domain has Ck(k ≥ 3)
boundary.

Theorem 4.4 ([FoW, Theorem 1.1]) Let Ω = {z ∈ C
n : ρ(z) < 0} ⊂ C

n be a a
strictly pseudoconvex domain with a defining function ρ of class Ck for k ≥ 3. Then
there exists a constant C > 0 such that the squeezing function sΩ(z) for Ω satisfies
the estimate sΩ(z) ≥ 1 − C · √|ρ(z)|.

If k ≥ 4, then there exists a fixed constant C ′ such that sΩ(z) ≥ 1 − C ′ · |ρ(z)|
for all z ∈ Ω .

By Theorem 4.1 and Theorem 4.4, we have the following asymptotic behaviors
of the Bergman curvatures, which is an improvement of Corollary 4.2.

Corollary 4.3 Let D = {z ∈ C
n : ρ(z) < 0} be a strictly pseudoconvex domain

with a defining function ρ of class Ck for k ≥ 3. Then for any point z near the
boundary ∂ D and a nonvanishing direction ξ , there exists a constant C > 0 such
that
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SecD(z, ξ) = − 2

n + 1
+ O(

√|ρ(z)|), RicD(z, ξ) = −1 + O(
√|ρ(z)|),

ScalD(z) = −n + O(
√|ρ(z)|).

If k ≥ 4, there exists a constant C ′ > 0 such that

SecD(z, ξ) = − 2

n + 1
+ O(|ρ(z)|), RicD(z, ξ) = −1 + O(|ρ(z)|),

ScalD(z) = −n + O(|ρ(z)|),

where O(|ρ(z)|)denotes a quantity dominated by C|ρ|with the constant C depending
only on the dimension n.

A natural question now may be asked: Can we expect higher order asymptotic
behaviors of the Bergman curvatures when the boundary has more higher regularity?
The following theorem shows that this is not true in general.

Theorem 4.5 ([JoS, Theorem 1.1]) Let Ω be a bounded strictly pseudoconvex
domain in C

n with C∞-smooth boundary and ρ be a defining function of class
Ck for k ≥ 4 such that gi j̄ = −∂2 log(−ρ)/∂zi∂ z̄ j is a complete Kähler metric on
Ω . For z ∈ Ω and ξ ∈ C

n \ {0}, we have

1. For n ≥ 3, if SecΩ(z, ξ) = −2/(n + 1) + O(ρ2), then ∂Ω is locally spherical;
2. For n = 2, if k ≥ 5 and SecΩ(z, ξ) = −2/3 + O(ρ3), then ∂Ω is locally

spherical.

It has been proved by Nemirovskii and Shafikov that a strictly pseudoconvex
domain with spherical boundary is universally covered by the unit ball [NS1, The-
orem A.2] and if a strictly pseudoconvex domain with real analytic boundary is
covered by the unit ball, then its boundary is spherical [NS2, theorem 1.2]. However,
the boundary of a strictly pseudoconvex domain is non-spherical in general.

5 Concluding Remarks and Open Questions

In the final section, we present some remarks and open questions.
We have already talked about the Bergman curvature estimates for bounded

domains in C
n by using the squeezing function in the previous sections. Actually,

the study of squeezing functions has its own interest since in general it is difficult to
have the explicit expression of the squeezing function on a given bounded domain,
except bounded symmetric domains on which the squeezing functions have already
been calculated (see [Kub, Theorem 1]). For us, the only known example now is
the punctured ball Bn \ {0}, of which the squeezing function is sBn\{0}(z) = ‖z‖,
where ‖ • ‖ denotes the Euclidean norm (see [DGZ1, Corollary 7.3]). In general,
N. Shcherbina posed the following interesting question:Whether the squeezing func-
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tions are always plurisubharmonic without knowing the explicit formulae? At the
time of writing this paper, we do not know the answer yet.

From the squeezing function of the punctured unit ball, we know that Bn \ {0} is
not HHR/USq since sBn\{0}(z) = ‖z‖ has no positive lower bound on Bn \ {0}. Yet
it is well known that Bn \ {0} is not a domain of holomorphy for n > 1. Hence it
is natural to ask whether all smooth bounded pseudoconvex domains in C

n(n > 1)
admit HHR/USq property?One counterexample is the smooth pseudoconvex domain
Ω � C

3, constructed byDiederich and Fornaess [DiF], onwhich theBergmanmetric
and the Kobayashi metric are not equivalent. Consequently, Ω is not HHR or USq.
However, we do not know for instance whether the bounded pseudoconvex domains
of finite type in C2 are HHR/USq.

One amazing property of the squeezing function is the asymptotic behavior near
the strictly pseudoconvex boundary points. Thanks to J.E. Fornaesswho proposed the
following interesting question at the special workshop of several complex variables
held in Chinese Academy of Science in 2014: If the boundary limit of the squeezing
function is 1, does this imply the domain is strictly pseudoconvex? The answer is
still unknown.
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Some Problems

John-Erik Fornaess and Kang-Tae Kim

Abstract We pose some problems for the future research in complex analysis and
geometry.

Keywords Complex analysis · Dynamics · Holomorphic map · Invariant metric ·
Curvature · Automorphisms · Pseudoconvexity
Large part of this problem set is from a lecture by Fornaess at theCenter forGeometry
and its Applications of POSTECH in August 2014 after the KSCV10 Symposium in
Gyeong-Ju. Then the authors agreed to compose this problem set with the addition
by the second named author.

1 Worm

Problem 1 Let Ω be the worm domain. Show that every strongly pseudoconvex
boundary point of Ω can be exposed.

A boundary point p ∈ Ω is called exposed if there is an open neighborhood U
of p and a 1-1 holomorphic mapping f = ( f1, f2) : U ∪ Ω → C

2 [Note: the worm
domain introduced in [DF] is in C

2.] such that Re f1(p) = 0 and Re f1(z) < 0 for
every z ∈ Ω .

This problemwas solved in [DFW] for domainswhich are strongly pseudoconvex.
See [DF] for definition of the worm . The worm is strongly pseudoconvex except

on an annulus. It has no Stein neighborhood basis. But you can still solve the equation
∂̄u = f on the closure, so that u is C∞ if f is C∞, see Kohn [Kohn].
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2 Nirenberg Problem

Problem 2 (Nirenberg) Let U be a strongly pseudoconvex bounded domain in C
n

with smooth boundary. Suppose that γ is a smooth curve in the boundary which is
transverse to the complex tangent space at each point. Can there exist a continuous
function from U , holomorhic on U , such that it vanishes identically on γ but does
not have any zero inside U?

Note that the curve γ is not assumed to be real analytic. If it is real analytic, it
extends as a complex curve to the inside. Then the holomorphic function must be
zero there.

3 The ∂̄-problem

Problem 3 Solve for u in ∂̄u = f with sup-norm estimates on bounded convex
domains in C2 with C1 boundary.

If the boundary is real analytic, one can solve ∂̄ with supnorm estimates. The
difficulty is that there might be infinitely flat points.

4 Bergman Space

Problem 4 Let U be an unbounded (smooth strongly) pseudoconvex domain inC2.
Let A2(U ) be the set of L2 holomorphic functions on U . If A2(U ) �= {0}, is A2(U )

infinite dimensional?

There is an example by Wiegerinck (1984), Math. Z., a Reinhardt domain in C
2

with a nontrivial finite dimensional A2. But this domain is not pseudoconvex. M.
Englis showed that the Bergman space is either trivial or infinite dimensional if the
domain is pseudoconvex Reinhardt.

5 Polynomial Convexity

Problem 5 Let X be a complex hypersurface in C
3 with an isolated normal singu-

larity at 0. Suppose that K ⊂ X 0 is compact. Suppose that 0 is in the polynomially
convex hull of K . Let K ⊂ F ⊂ X be contained in the relative interior. Is 0 in the
relative interior of the polynomial hull of F?

This problem originated in some questions about the Levi problem in complex
spaces [Fornas].
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6 Complex Dynamics/Real Dynamics

Problem 6 Let P(z) be a complex polynomial in C. For z ∈ C let Pn(z) = zn =
xn + iyn . We call the sequence {xn} the real part of the orbit. Suppose that one only
knows the real orbits. How much can one say about the complex dynamics of P?
For example, how can one detect the degree of P?

See the paper by Fornæss and Peters [Fornaess]. Almost nothing is done on this
kind of problems. In general, one can iterate a map F : Rk → R

k and one can see
only the parts of the orbits, (xn

1 , . . . , xn
� ) where � < k. What can one then say about

the dynamics?

7 Fatou-Bieberbach Domains

7.1 Definition of Fatou-Bieberbach (FB) Domains

They are domains in C
2 which are biholomorphic to C

2 while being proper subsets
(Same in Cn, n > 2.).

7.2 Standard Construction of Fatou-Bieberbach Domains

See Rosay and Rudin [Ros]. Take a biholomorphic self map of C2; for example
a Henon map H with 0 < a < b < 1. Then there is a small ball B so that, if
(z, w) ∈ B then, a‖(z, w)‖ ≤ ‖H(z, w)‖ ≤ b‖(z, w)‖, for some constant c < 1.
This means that, on B, ‖Hn(z, w)‖ → 0 as n → ∞. We say that B is contained
in the basin of attraction of 0. Denote by Ω the set of all points (z, w) such that
‖Hn(z, w)‖ → 0. This is an open set and it is biholomorphic to C

2. One also sees
that, if we start with (z, w) = (100, 0) then, Hn(z, w) → ∞. Hence this point is not
in Ω . Hence Ω is a Fatou-Bieberbach domain. Since a Fatou-Bieberbach domain is
biholomorphic toC2, it contains a smaller FB domain. In fact we can find a sequence
of FB domains Ω1 ⊃ Ω2 ⊃ · · ·. One can then ask if it is possible to find such a
sequence such that

⋂
Ωn = ∅. If this is true, then an old conjecture by Michael is

true: All characters on a Frechet algebra are continuous. (See Dixon and Esterle
[DE] for precise statements).

One can have Fatou-Bieberbach domains V with a boundary which is C∞, Sten-
sønes [Sten].

Problem 7 The boundary of V is a union of Riemann surfaces. Are they all biholo-
morphic copies of C? Does there exist an FB domain which has real analytic
boundary?
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Problem 8 (Harz et al. [Harz]) Does there exist an FB domain which is contained
in a proper strongly pseudoconvex subdomain in C

2?

One can perturb the construction of FB domains: Pick two numbers 0 < a <

b < 1. Let Fn be a sequence of biholomorphisms of C2 such that, if ‖(z, w)‖ < 1
then, a‖(z, w)‖ ≤ ‖Fn(z, w)‖ ≤ b‖(z, w)‖. Then one can consider the iterates
F (n) = Fn ◦ · · · ◦ F1. Let Ω = {(z, w) : F (n)(z, w) → 0}. We call this a uniformly
random basin (or non-autonomous basin), see [AAF] for a recent survey.

Problem 9 Are uniformly random basins FB domains?

There are partial results if a and b are close together. (See Peters and Smit [Pet]
on Arxiv recently).

Consider the projective compactifiaction of a ball BR = {z ∈ C
n : ‖z‖ < R}.

Identify the boundary of BR with the plane at infinity. This gives topology to the
closure. The boundary and the inside both have complex structure. But they match
poorly. Note that if we take a limit as R → ∞, we get the usual Pn .

Now consider a random basin Ω . This Ω is an increasing union of balls (rather,
domains biholomorphic to a ball) Bn = (F (n))−1(B). Use this compactification.
And try to pass to the limit.

Problem 10 Does such a limit exist and does it give a complex structure on a com-
pactification of the random basin?

Remark 1 If the random basin is not biholomorphic to C
n , then this gives a new

complex structure to P
n . If this can be done when n = 3 this might provide a

complex structure to the real 6-dimensional sphere S6 as observed by Siu. In fact, if
there is a complex structure on S6, and we blow up a point then we get a complex
manifold which is diffeomorphic to P3 but not biholomorphic to P3. So if we get a
new complex structure on P3 so that we can blow down a copy of P2 we obtain a
complex structure on S6.

Remark 2 An alternative to the uniformly random basins are obtained by removing
the condition of the lower bound a. In such a case one can obtain random basins
which are not boholomorphic to Cn . (Fornaess: Short Cn , [Fornae]).

If one can use the above compactification in the case of short C3, then one surely
gets a nonstandard P

3.

Problem 11 Does the above compactification work for short C3? Harz et al. [Harz]
has introduced the concept “core of a domain”. There is also a notion of core for
short C2.

Problem 12 Describe the core of a short C2.

Problem 13 Let Ω be a random basin. Show that there exists a proper holomorphic
map from C into Ω [There exist many non-constant holomorphic maps from C into
Ω , see [AAF].].

This problem can be considered to be the next step in the process of showing that
uniformly random basins are biholomorphic to C

n . Random basins occur as stable
manifolds of hyperbolic maps on complex manifolds. One has similar questions.
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8 Convexity

Problem 14 Let Ω be an unbounded convex domain in C
n . When will there exist

a biholomorphic mapping-into ψ : Ω → C
n so that the image ψ(Ω) is bounded

convex?

If such ψ exists, Ω has to be Kobayashi hyperbolic. Every convex Kobayashi
hyperbolic domain can be mapped biholomorphically onto a bounded pseudoconvex
domain in C

n . But the image may not in general be convex. Thus finding some
analytic/geometric conditions on the boundary for such mapping ψ to exist is the
question here.

Problem 15 (Gindikin) Let Ω be a bounded homogeneous domain in C
n . If there

exists a biholomorphism-into ψ : Ω → C
n such that ψ(Ω) is bounded convex, then

show that Ω is a bounded symmetric domain.

A theorem by Vinberg, Pyatetsky-Shapiro and Gindikin says that every bounded
homogeneous domain is biholomorphic to aSiegel domain (of the secondkind). Since
all Siegel domains are tubes over a convex cone, they are convex but unbounded.
Then the Harish-Chandra realization (via linear fractional transformation) of such
domains is convex if and only if the domain is symmetric, [Kai]. There is another
special mapping, called the Bergman representative map, that can turn these domains
into bounded domains. Ishi and Kai [Ishi] showed that the image under this map of
a bounded homogeneous domain is convex if and only if the domain is symmetric.

9 Unbounded Domains

Problem 16 Which unbounded domains can be biholomorphic to a bounded
domain?

If one considers for instance the domain

W = {(z, w) ∈ C
2 : |w| < e−|z|2},

then a direct computation shows that this has a finite volume. Any monomial zkw�

is L2. Since the domain is Reinhardt, these generate the whole A2(W ) the space
of square integrable holomorphic functions of W . Its Bergman metric is positive-
definite and complete, [AGK]. But the domain contains the complex line defined by
w = 0. Hence it is not Kobayashi hyperbolic and cannot be realized as a bounded
domain.

The Kohn-Nirenberg domain

ΩK N = {(z, w) ∈ C
2 : Rew + |zw|2 + |z|8 + 15

7
|z|2Re z6 < 0}
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is still not known whether it is biholomorphic to a bounded domain in C
2. The

following problem may also be considered.

Problem 17 Whichunbouneddomains admit positive-definite (and complete)Berg-
man metric?

The domains W , ΩK N as well as several others are shown to admit positive-
definite and complete Bergman metric. See [AGK, CKOh, Herb], e.g. On the other
hand Short Ck does not; A. Seo showed recently, in a private discussion, that there
are no nonzero L2 holomorphic functions on Short Ck .

10 Automorphism Groups

Evenwhen the automorphism group of a bounded domain is non-compact, the under-
standing of general cases is rather poor.

In the paper of Griffiths [Griffi], a complex two dimensional bounded domain has
been constructed as the universal covering space of a Zariski open set. This domain
is a disc fibration over the unit open disc and has a noncompact automorphism group.

Problem 18 Is the automorphism group of this domain discrete?

There had been some claims but we are not aware of any written proof.

The Teichmüler space of a compact Riemann surface of genus g > 1 is biholo-
morphic to a bounded domain inC3g−3. The embedding by L. Bers is also a bounded
domain. This domain has been shown to be non-convex [Kim].

Problem 19 Can it be re-embedded biholomorphically to be a bounded convex
domain?

Of course there is this old guiding question: Which bounded domains admit non-
compact automorphism group?

For the pseudoconvex bounded domains, there are a few results. Along the line
of thoughts, there is this old problem:

Problem 20 (Greene-Krantz conjecture) Let Ω be a bouned pseudoconvex domain
with smooth boundary. If a boundary point is not of finite type in the sense of
D’Angelo, then show that there does not exist any automorphism orbit accumulating
at this boundary point.

A weaker problem may be:

Problem 21 Let Ω be a bounded pseudoconvex domain in C
2 with C∞ smooth

boundary. Then show that no automorphism orbit can accumulate at a boundary
point of infinite D’Angelo type if every other neighboring boundary points are of
finite type.

It is shown in [Byun] that if boundary is of finite type, but one boundary point
has the type strictly larger than the neighboring boundary points, then it cannot be
an orbit accumulation point.
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11 CR Manifolds and CR Vector Fields

Problem 22 Classify the germs of CR manifolds admitting a parabolic orbit.

The case of CR manifolds of CR codimension 1 that admit CR contractions is
understood. See [Yoccoz].

12 Semicontinuity of Automorphism Group

Problem 23 In case the bounded domains converge in the sense of normal conver-
gence (or equivalently, in the sense of Caratheodory kernel convergence) to another
bounded domain, show that the automorphism groups show the upper semicontinuity
phenomenon, i.e., show: ifΩ j → Ω0 as j → ∞ in the sense described above, show
that there exists N > 0 such that Aut (Ω j ) is a Lie subgroup of Aut (Ω0) for every
j > N .

See [Gree] for the developments concerning this problem up to the early 1980s.
Another recent progress is presented [Greene].

13 The Scaling Methods

In the late 1970s, S. Pinchuk came up with the scaling method in complex analysis.
See [Pin]. Another scalingmethod was presented by Frankel [Fran] in the mid 1980s.
But there are still some questions left.

Problem 24 Show the “forward convergence” of the Pinchuk scaling sequence for
the pseudoconvex domains of finite type when the dimension is 3 or higher.

Problem 25 On which domains, other than convex hyperbolic domains, does the
Frankel’s scaling sequence converge?

14 Curvature

Problem 26 McNeal proved in [McNeal] that the holomorphic sectional curvature
of the Bergman metric for a bounded domain in C2 with finite type boundary has to
be bounded. Can one prove it without using the results on the ∂̄-Neumann problem?

There is a counterexample inC3, see [Herbo]; it is a domain that is pseudoconvex,
Reinhardt, of finite type boundary, and defined by a polynomial defining function,
but not semiregular (or, h-extendable).
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